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Abstract—A model for the high-temperature creep strength of dispersion strengthened materials is
presented. It is based on part I of this paper which treated dislocation climb over “non-interacting"
particles. The present part IT deals with the kinetics of dislocation climb over hard particles which exert
an attractive force on the dislocations. The attraction is shown to affect the climb and bypass process in
two ways: (i) above a certain stress, local climb hecomes a stable mechanism, and (ii) a sirong threshold
stress appears for detachment of the dislocation from the particle. Thermal activation of the detachment
process and particle dragging are incorporated and shown to affect the threshold stress for very small
particles. Qualitative comparison of predictions with the creep behaviour of dispersion-strengthened
materials suggests that an attractive interaction is probably the key to & better understanding of the highly
stress-sensitive creep rate in these materials.

Résumé—Nous présentons un modéle de la résistance au fluage 4 heute température de matériaux durcis
par dispersion, Les bases de ce modéle ont été exposées dans Ia premiére partie de Varticle qui traitait
de la montée des dislocations en présence de particules ‘‘non interactives™. Cette seconde partie concerne
la cinétique de la montée des dislocations en présence de particules dures qui exercent une force
d'attraction sur les dislocations, Nous montrons que l'attraction aflecte le mécanisme de montée et de
franchissement de deux fagons: (i) au-dessus d’une certaine contrainte, J]a montée locale devient un
mécanisme stable, et (ii) une contrainte-seuil &levée apparait pour détacher la dislocation de la particule,
Nous incorporons Iactivation thermique du mécanisme de détachement et le trainage de la particule, et
nous montrons que tous deux agissent sur la contrainte-sevil dans le cas de particules trés petites. Une
comparaison qualitative des prédictions et du comportement en fluage de matériaux durcis par dispersion
sugpére qu'une interaction attractive est sans doute la clef d*une meilleure compréhension de la forte
influence de la contrainte sur la vitesse de fluage dans ces matériaux,

Zusammenfassung—Ein Modell fir die Hochtemperatur-Kriechfestigheit dispersionsgehiirteter Leg-
ierungen wird vorgelegt. Es beruht auf dem Versetzungsklettern {iber “nicht-wechselwirkende” Teilchen,
welches im Teil I dieser Arbeit behandelt worden ist. Der vorliegende Teil II behandelt die Kinetik des
Versetzungsklettern iiber harte Teilchen, die eine attraktive Kraft auf die Versetzung ausiiben. Diese
attraktive Wechselwirkung beinflut den Kletter- und PassierprozeB auf zweierlei Weise: (i) oberhalb einer
bestimmten Spannung wird lokales Klettern ein stabiler Prozel, und (ji), es erscheint eine kriiftige
Schwellspannung fiir das Ablésen der Versetzung vom Teilchen. Die thermische Aktivierung dieses
Ablseprozesses und der Reibungseffekt durch das Teilchen werden mit beriicksichtigt; sie beeinflussen
die Schwellspannung bei kleinen Teilchen. Aus dem qualitativen Vergleich der Voraussagen mit dem
Kriechverhalten dispersionsgehiirteter Werkstoffe peht hervor, dafl eine attraktive Wechselwirkung
wahrscheinlich der Schliissel zu einem besseren Verstiindnis der héchst spannungsempfindlichen Kriech-
rale dieser Werkstoffe ist.
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1. INTRODUCTION

Incorporation of incoherent, non-shearable dis-
persoids is an efficient way of improving the mechan-
ical properties of metallic materials at very high
temperatures. Such dispersion strengthened alloys
show a drastic reduction in creep rate with dimin-
ishing stress, see e.g. [1-7]. Because stress exponents
for the creep rate lie in the range n = 2040, the creep
behaviour of such alloys is best described by speci-
fying a so-called “threshold stress” below which the
rate of creep deformation is negligible. Threshold
stresses lie typically between 0.4 and 0.8 -of the

Orowan stress, as measured by relatively fast defor-
mation or estimated using standard equations.

In part I of this paper [8] it was shown that such
g behaviour cannot be modelled in terms of dis-
location climb over particles under equilibrium con-
ditions. The reason is that local climb, which has been
the basis of earlier models, is never stable under these
conditions; a dislocation climbing over a “non-
interacting” particle unravels its sharp curvature at
the point where it meets the particle, until climb at the
particle can proceed, This lowers:the necessary line
length increment, and leads to an unrealistically small
threshold stress. :
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An explanation for the creep behaviour of dis-
persion strengthened materials must therefore be
sought in an additional mechanism. One possibility
is the existence of an attractive interaction between
the climbing dislocation and the particle. Such an
effect would be expected only for elastically soft
particles or voids; but recent theoretical studies, see
e.g. [9], have shown that at high temperatures an
incoherent particle can behave elastically just like
a void with an internal pressure. The reason is that
diffusion can rapidly relax shear stresses and, to some
extent, hydrostatic stresses imposed on the particle
by the approaching dislocation. If in addition the
particle—matrix interface is considered as “slipping”,
the dislocation can lower its energy in the vicinity of
the interface. This implies that at high temperature a
dislocation can be attracted towards a particle, even
if it is infinitely hard [9].

Experimental evidence for an attractive interaction
comes from TEM studies of dislocation con-
figurations in crept oxide-dispersion strengthened
alloys [10-12]. The dislocations are predominantly
captured in a situation where they seem to stick to the
“departure”™ side of the particles, indicating that they
are immobilized by an attractive force after climb
over the particle has been completed. Under weak-
beam conditions, the dislocation contrast is usually
well visible in (or near) the particle-matrix interface
[11]. This observation suggests that the dislocation
core has not relaxed completely as might be expected
in the presence of a phase boundary.

That full relaxation of the dislocation is not re-
quired for the attraction effect to become the
strength-determining mechanism has been estab-
lished by Arzt and Wilkinson [13]. In their model, the
magnitude of the threshold stress is calculated as a
function of the interaction strength and compared
with the threshold for local climb. The result shows
that only a small interaction, corresponding to a
relaxation of the dislocation line energy by about 6%,
is necessary for detachment of the dislocation from
the particle to become the overriding threshold mech-
anism.

Although the idea of an attractive interaction is
thus consistent with experimental and first theoretical
results, the consequences of such a mechanism are
not totally clear. As long as a kinetic model for the
climb process with an attractive interaction is lacking,
the influence of the attraction on the geometry of
climb remains unknown. The aim of the second part
of this paper is therefore to establish the kinetics of
dislocation climb over an attractive particle, with
similar simplifying assumptions as in part I. We
consider the effect of the interaction on the equi-
librium profile of the dislocation at, and in the
vicinity of, the particle. The resulting dislocation
velocities are calculated, and the threshold stress for
detachment is incorporated. In this way several fea-
tures which are reflected in the creep behaviour of
dispersion strengthened alloys emerge naturally from
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Table 1. List of symbols used in parts [ and II

T shear stress

Ty shear stress for detachment

T threshold shear stress

Thh threshold shear stress for restricted climb

79 Orowan stress (in shear)

S particle volume fraction

2 mean planar particle spacing

hd § height, width and ramp angle of the particles (cf.
Fig. 2 in part 1)

o shear modulus

b magnitude of a Burgers vector

W2 coordinates (cf. Fig. 2 in purt I)

Xp4 2 coordinates describing the dislocation profile (cf.
Fig. 2 in purt I)

xg, zf dislocation profile al the transition to local climb

i chemical potential for vacancies

ky Boltzmann's constant

T absolule temperature

Aapp area under the climbing dislocation segment

D, Inttice diffusivity

a, D, pipe cross section times pipe diffusivity (g = b3

dy area of & vacancy

Tacs Tep line energy of the dislocation segment AC and CD
resp.

i radius of curvature of the climbing dislecation (cf.
Fig, 2 in part I)

o, p for restricted climb (Fig. 5)

A time for a dislocation to climb over a particle

I =d3/60C,Gb*, normalizing parumeter for r,

H, fraction of particles to be climbed over

Y equilibrium contact angle of the dislocution at the
particle

k relaxation factor

M mobility of a dispersoid particle

P mobile dislocation density

the analysis. The symbols used in the development
are listed in Table 1.

2, STABILITY OF LOCAL CLIMB DUE TO
PARTICLE-DISLOCATION ATTRACTION

One effect of an attractive interaction is the
modification of the equilibrium dislocation profile at,
and in the vicinity of, the particle during climb. The
dislocation will attempt to maximize its line length at
the particle-matrix interface, even at the expense of
more total line length. This aspect is treated in this
section; we will turn to the effect on dislocation
detachment in Section 3.

An atlractive interaction between dislocations
and particles can be modelled, as has been done
before [13], by assigning a lower line energy Tyc
to the dislocation segment residing in or near the
particle-matrix interface

TACEk'TCD (1)

Tep is the line energy of a lattice dislocation remote
from the particle; it will be approximated by

Tep 21 Gb? )

where G is the shear modulus of the matrix and b the
magnitude of the Burgers vector of a dislocation. The
factor & in equation (1) can be thought of as a
“relaxation factor” [13]: it describes the extent to
which the dislocation relaxes its energy by interaction
with the particle-matrix interface. For k=1, no
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line energy k-T

glide plane

Fig. 1. Equilibrium profile of a dislocation climbing over an
attractive, cube-shaped particle. The attractive interaction is
modelled by assigning a reduced line tension to the dis-
location segment along the interface. This leads to a stable
dislocation bend at C, with equilibrium angle y,. Depending
on k, fully or partially local climb can oceur (see text).

relaxation, and thus no attractive interaction, occurs;
such “‘non-interacting” particles have been consid-
ered in part L. k = 0 signifies the other extreme, i.e.
complete relaxation and maximum attractive inter-
action, with the particle behaving as if it were a void.
Relaxation, which occurs by diffusion, is a time-
dependent process: its extent will therefore be deter-
mined by the ratio of its time constant to the time for
climb bypass. As a result, k values which lie inter-
mediate between 0 and 1 are possible.

Because of the discontinuity in line energy, a sharp
bend of the dislocation at the particle surface can now
be stable (at C in Fig. 1). The situation is analogous
to two impinging surfaces of different specific energy:
they form a well-defined “wetting angle” which
depends on the ratio between their energies. A similar
analysis gives the equilibrium contact angle y, for the
dislocation

(3)

For “non-interacting” particles with & = 1, this con-
dition is equivalent to the requirement that a smooth
tangent exists (y, = 0). In this case a sharp dislocation
bend is unstable, and the kinetics of climb reduces to
that described in part I. For maximum interaction
(k = 0), the dislocation will enter the particle-matrix
interface perpendicular to the particle surface
(ro=m/2).

A stable sharp bend in the dislocation makes local
climb a viable mechanisms, Consider the sequence of
events as a dislocation climbs up an attractive particle
(Fig. 2):

(a) At first, the dislocation climbs in “general”
mode and its shape (xy, 7o) is given by equation (10)
of part I. The angle y.is large compared with y,.

(b) As the dislocation climbs further, it unravels to
larger values of x,; this leads to a decrease of the
angle y. Eventually, when this angle reaches the
equilibrium value the dislocation segment CD can
remain in its equilibrium position without accepting
further vacancies.

cospp=K.
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Fig. 2. Sequence of events during climb over an attractive
particle: (a) initial general climb (y > y,), (b) transition to
local climb (y = y,), and (c) local climb with constant .

(c) From now vacancies are only accepted along
AB and y, is retained. The rest of the particle is
surmounted by local climb.

The point z§ at which the transition to local climb
is possible can be calculated by first expressing the
angle y formed by the segments AC and CD during
general climb, as a function of z,/x,, ramp angle f§
and normalized shear stress 7/tg [Where 74 is the
Orowan stress given in equation (2) of part I
Applying trigonometry we obtain after considerable
rearrangement

2

cosy =—coif—5-{2-z—q+ (1 ——Z—Z)Tltanﬁ}- 4

1+ ( _u) Xy Xi/ To
Xg

This angle becomes equal to the equilibrium value

[equation (3)] when

LIRS .
1—\/1—(m) +(‘C/I’g) tanzﬁ. (5)

2y
xd k T
i +—tanf
cosfi g

The unravelling distance x# at the point of transition
is given by equation 10 of part I

x;=d{m(§§+ﬁ)
0

xg

: 1 2\
[tama () o

By combining equations (5) and (6), an explicit
(but lengthy) expression for z} at the point of transi-
tion can be obtained. The results are plotted in
Fig, 3 for different values of & and will be discussed
in Section 5.

3. DETACHMENT THRESHOLD DUL TO
PARTICLE-DISLOCATION ATTRACTION

Besides stabilizing local climb, an attractive
particle-dislocation interaction has a second effect on
bypass by a climbing dislocation: it introduces a
threshold stress for detachment of the dislocation
from the particle after climb has been completed.
The origin of this threshold is the energy which
must be supplied to substitute new dislocation line
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Fig. 3. Regimes of local and general climb as a function of
climb height z; and applied stress 1/1q, for various relax-
ation parameters k.

of full energy Top for dislocation line relaxed to
energy k' Tep (Fig. 4). The magnitude of the resul-
ting threshold for detachment is calculated in the
Appendix

% ST

To

Q)

Because the critical configuration which determines
the detachment threshold is reached only at the very
point of detachment, the threshold is independent of
particle size and shape. Therefore equation (7) is
identical with the result obtained from a limit consid-
eration in {13] for spherical particles. Also the detach-
ment threshold applies irrespective of whether climb
is local or general. It is further not affected by the
position of the glide plane with respect to the particle
it intersects.

The detachment threshold truncates the overall
climb velocity, overriding all other considerations
concerning climb kinetics. Al stresses below t,, a
dislocation remains stuck to the particle, although
climb up the “‘arrival” side of the particle may have
been fast and easy. In fact, the shape of the

Fig. 4. Illustration of the energy balance for a dislocation
at the point of detachment from the particle. The line
energy is Tp in the lattice, and is reduced to e+ Tep at the
particle-matrix interface. A detachment threshold T4 AFiSes
because dislocation line length of full line energy has to be
substituted for relaxed dislocation line.

ARZT and ROSLER: DISLOCATION CLIMB OVER HARD PARTICLES—II

force—distance profiles for a dislocation climbing over
a spherical particle is such [13] that the dislocation
hardly “feels” the detachment stress before it actually
reaches the point of detachment. (It is much like a
ball rolling down a ramp with a hole at the end: the
hole does not affect the speed of the ball until it finally
captures it) When calculating climb velocities as
described in the following section, the detachment
threshold is taken into account by truncating the
velocities at the stress given by equation (7).

The detachment threshold has up to now been
considered as a reliable, athermal limit to dislocation
motion. There are however two ways in which this
threshold could be circumvented: thermally activated
dislocation detachment from the particle or particle
dragging by the captured dislocations, Because both
processes could potentially lower the effective thresh-
old stress, their relative importance will be estimated
in the following, .

It is shown in the Appendix that thermally acti-
vated detachment of a dislocation from an attractive
particle gives the appearance of a reduced threshold
stress of the following form

74(T) Wy T ¥

zo_$ G+%HMJ “
where ¢ is the strain rate, and ¢ the reference creep
rate (e.g. that of the particle-free material at the
same stress). This expression reduces to equation )]
for T/d—0. ©4(T)fzy is plotted as a function of
(2ksT/Gb?d) in Fig. 5, with ¢/¢ = 10" (see Appen-
dix). The threshold is found to disappear at very high
temperatures and/or small particle sizes, i.e, for

Gb?

e ,‘_3 e

d " 2kyln (§/€)
A rough order-of-magnitude estimate gives as
a limiting particle size d~10nm (k=09, G~
I0MNm=2, bm10"°m, kzTin (Efé) =2 x 107"
Nm). For stronger interactions (k < 0.9}, this limit is
shifted to even smaller particle sizes.

(1 —k). ©)

10 1
08 -

06 A

0.0

107 1072 10

w? 0"
2hyT
Ghid
Fig. 5. Normalized shear stress vs the parameter 2%y T/Gb*H
for €y/¢ = 10", according to équation (8), Thermal activa-

tion contributes significantly to the detachment process
from small particles with diameter d < (0.02k, TH(GE?),
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Another possibility for a captured dislocation to
continue moving is by pulling the particle in its wake,
The resulting strain rate is derived in the Appendix

b= 2pn MbTep 1 [70] (10)

1fant

2p.,bA
where p,, is the mobile dislocation density, M the
mobility of the particle, and e the accumulated strain.

Deformation with particle movement is a process
without a threshold stress and is therefore expected
to dominate at low stresses. However, it is self-
exhausting; its rate decreases with strain because the
dislocation collects particles as it sweeps through the
material. Therefore particle dragging cannot con-
tribute to steady-state deformation, it can only give
rise to a transient creep rate, The maximum strain
due to this mechanism is usually negligible: it is
estimated in the Appendix to be typically 1074
Indirect evidence for particle dragging is found in
TEM micrographs showing agglomerates of fine par-
ticles in a dispersion strengthened superalloy after
creep [19].

4, THE KINETICS OF COMBINED
GENERAL +4- LOCAL CLIMB WITH A
DETACHMENT THRESHOLD

The forward velocity of a dislocation which climbs
over a particle has been expressed in part I as

||
|dd fdy|

where A4 is the projected area under the climbing
dislocation segment, and C; is a kinetic constant
which depends on whether volume diffusion or lattice
diffusion is faster in supplying vacancies to the climb-
ing dislocation segment.

The chemical potential u for vacancies along the
climbing dislocation and the area increment dd /dy
depend on whether or not the transition to local
climb has already occurred. In the general climb
mode, p is unaffected by the attractive interaction,
because the segment at the interface has constant
length. The chemical potential is then given as before
by equation (6) of part I. Once the transition has
taken place, the chemical potential for addition of
further vacancies along AB changes. In the Appendix

dy _
= @)=C, an)

+At the point of transition given by equation (5) also the
driving force for local climb [equation (12)] starts to
exceed that for general climb [equation (6) in part .
Thereforc the transition could have been based alterna-
tively on a driving force criterion. Because of the
simplifications in dislocation geometry introduced in
part I, the driving force criterion diverges somewhat
from the equilibrium angle criterion for k > 0.8. We
have chosen to use always the angle criterion for
describing the point of transition. :

it is calculated, with the following result

e 24
a8 = Jsin fcosf

Unlike the potential for general climb, that for local
climb is independent of z,.} The increment in the area
under the climbing dislocation during an infinitesimal
advance is given by a simple expression

d4d d

—=—sinfic 13

T sin B cos f8 (13)
The dislocation velocity during local climb can now
be obtained explicitly by combining equation, (11),
(12) and (13)

dy 4a,
dty. d*sin®f cos’f
We arrive at the total time for a dislocation to bypass

a particle by combined general + local climb afier
appropriate integration

»* ]_ Ymax 1
I L PR L N WU
L @ran™ J @ (R

where y* denotes the y-coordinate at the point of
transition z§ given by equations (5) and (6). To
incorporate the detachment threshold in a simple
way, we require further

(Tacsinf —tib).  (12)

(@b - Tycsin ).  (14)

t,=00 for t<7g. (15b)

Using equations (15), dislocation velocities (i.e. re-
cipracals of the bypass times) were calculated as a
function of applied stress for several particle par-
ameters and values of k, Some results are shown in
Figs 6 and 7.

5. DISCUSSION

The nmew element which this paper adds to the
discussion on dislocation climb over particles is the

1 i local ¢lind
Detachment .
Threshold Oravan

‘tli' gaparol
o climb
ke

nen~inferacting o

..f"'.d‘
L~

Tk 2k 1

Tt

Fig. 6. Dislocation velocity 1}/¢. as a function of normalized
shear stress, t/ty (schematically). The regions of the

. different climb variants are indicated approximately. For

comparison, the result for ‘*‘non-interacting” particles
. (k =1) is also included (fine dashed line—see part I [8]).
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Fig. 7. Dislocation velocities vs normalized shear stress for
different relaxation parameters k and particle geometries.

assumption of an attractive interaction between par-
ticles and dislocations. The present model describes,
to a certain approximation, the details of the bypass
process of a dislocation past an attractive particle. It
hinges on the assumption that the dislocation can
adopt a minimum energy configuration; this may not
always be the case, but this assumption appears to be
better justified for a slow high-temperature process
than the a priori postulate of local climb. It has been
shown that an interaction has two separate effects on
the climb and bypass process:

(i) it can stabilize local climb during certain parts
of the climb process, and

(i) it introduces a strong threshold stress for
dislocation detachment from the particle.

The reason for the transition from general to local
climb lies in the assumption that the dislocation
always adopts a configuration of minimum energy.
For the simple particle shape assumed in this paper,
several observations can be made. For a given inter-
action strength, the tendency towards local climb
depends on the applied stress. In Fig. 3 the regimes
of the two climb variants ““general” and “local” are
demarcated as a function of stress, At sufficiently
high stresses, climb is local from the beginning; the
borderline is obtained by requiring z# = 0 in equation
(5) (which determines where the transition occurs),
ie.

T k

T Sinf

(16)

In this range, the previous models for local climb
would in principle be applicable. However, “non-
interacting” particles (k = 1)}—the only ones consid-
ered in previous models—would require a stress at
least as high as the Orowan stress in order to ensure
local climb, When attractive particles are considered
(k < 1), then the borderline to purely local climb falls
below the Orowan stress; a stress “window” then
opens up in which the climb part of the present model
reduces to the former models for local climb. But at
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the same time the detachment threshold appears, and
it is usually the dominating threshold.

At sufficiently low stresses, the equilibrium contact
angle is never reached and climb is general through-
out, This situation occurs when the square root in
equation (5) becomes unreal, i.e. when

T \/ E\? I
:c;< (Sl_nﬁ) T tan’ g

For & < 0.8, a simple, approximate borderline for
equiaxed particles of height & and ramp angle 45° is
obtained by inspection of Fig. 3

i%-?i.d'c.
o 4

. 17)

(18)

Finally, in the intermediate range a transition from
initially general to local climb occurs.

The detachment threshold is the second, and usu-
ally more important, eflect ol an attractive inter-
action. The treatment of thermally activated detach-
ment, leading to equation (8), shows that it is not a
true athermal threshold; it disappears when the
length over which the dislocation adheres to the
dispersoid reaches the magnitude of a few nm. In
dispersion strengthened alloys the average dispersoid
size is commonly larger than this, but the smaller
particles in the distribution will cease to be effective
obstacles. Hence this mechanism defines a potential
limit to the fineness of an efficient particle
dispersion—it is an “intrinsic” limitation to the dis-
persion strengthening achievable by a given volume
fraction of dispersoid. When the particles are spheri-
cal the “‘detachment length® can be much smaller
than the particle diameter. This provides a possible
explanation for the temperature dependence of the
threshold stress, as will be detailed elsewhere [20].

The theoretical dislocation velocities reflect the
existence of the different climb and bypass mech-
anisms (Fig. 6). At low velocities, the detachment
threshold is the dominating feature. Just above this
threshold, general climb occurs, with a dislocation
velocity identical to that for climb over a “‘non-
interacting” particle (fine dashed line in Fig, 6); the
kinetics of general climb is not affected by the
interaction. At 11y~ 3/4k, where the transition to
local climb occurs, the stress sensitivity increases: the
reason is that the point of transition is highly stress-
dependent (Fig. 3) and local climb, which requires
fewer vacancies, is kinetically faster than general
climb. The magnitude of this “bump” depends on
particle geometry and increases with the aspect ratio
h/d and the ramp angle f. Finally, at still higher
stresses, & transition to Orowan bowing occurs and
the behaviour of the material eventually approaches
that of the dispersoid-freec material.

Figure 7 illustrates the effects of different values of
k and particle parameters /4/d and f. The particle
geometry influences the climb velocity above the
threshold substantially. At k& =0.6 the detachment
threshold exceeds the stress at which the transition to
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local climb occurs, and the general climb region
disappears altogether.

The main weakness of the model as it stands lies
in the fact that only a single particle of simple shape
is considered, Therefore an abrupt transition to local
climb is predicted, resulting in the peculiar features
shown in Fig. 6, which are not reflected in experi-
mental creep data. The problem is that the fine details
of the climb kinetics are very sensitive to particle
shape and will remain difficult to model for reaiistic
particle geometries. It can be expected that the oscil-
lations in Fig. 6 will disappear when an ensemble of
statistically distributed obstacles with varying 1/d
and f is considered, resulting possibly in the heavy
dashed line in Fig. 6. A computer simulation will be
necessary to verify this point.

Overall, the assumption of an attractive interaction
seems to have great potential for explaining the creep
behaviour of dispersion strengthened materials. The
high stress sensitivity at low creep rates can be
attributed, at least qualitatively, to a detachment
threshold and—depending on particle geometry, but
usually less important—to the transition to local
climb. The relaxation parameter k plays therefore a
central role for the creep strength; it is not clear
whether and how its value depends on the micro-
structure, e.g. dispersoid size, structure of the
dispersoid-matrix interface etc. To allow a quan-
titative prediction of threshold stresses, a more de-
tailed understanding of the microscopic interaction
mechanisms between dislocations and incoherent
particles at high temperature is therefore urgently
needed.

6. SUMMARY

1. The high stress sensitivity of the creep rate in
dispersion strengthened alloys can be explained in
terms of a threshold stress for detachment of dis-
locations captured at attractive dispersoid particles.
The assumption of such an interaction is indispens-
able because “‘non-inleracting” particles of low vol-
ume fraction cannot suppress creep (see part I).

2. Besides introducing a detachment threshold, an
attractive interaction also stabilizes local climb, lead-
ing to an increased creep rate at higher stresses.
Compared to the detachment threshold, this is an
effect of secondary importance (unless the parlicles
have an unusually high aspect ratio and/or ramp
angle),

3, Thermally activated escape of captured dis-
locations and particle dragging can lower the thresh-
old stress for very small particles. This sets a theor-
etical limit to the fineness of an efficient particle
dispersion at a particle diameter of a few nm. '

4, The attractive interaction is probably due to
dislocation relaxation in the vicinity of the
particle-matrix interface. It arises only in the pres-
ence of incoherent particles. Clarification of the de-
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tailed atomistic process at these interfaces requires
further work.,

5. The mechanism of dispersion strengthening as it
is proposed here is consistent with TEM observations
of dislocation structures in ODS superalloys. The
theoretical considerations suggest that it is probably
generally applicable to other dispersion strengthened
systems.
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APPENDIX

Calculations

For calculating the detachment threshold [equation (7)),
consider the energy balance of an advancing dislocation at
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the point of detachment from the particle (Fig. 4). We
equate the work done during an infinitesimal advance by dy
with the energy required for exchanging a dislocation
segment of length d/| and energy kTcp by a segment of
length d/, and energy Tep

bl dy = Tep (dly — & di}). (A1)

Using
(dhL)! =(d})* + (dy)* (A2)
and
dy =dy 2 (A3)
we get for the detachment threshold
Ty =1~/ 1 — k> (Ad)

Thermal activation of dislocation delachment from an
attractive particle is modelled as follows. Consider a dis-
location captured at the departure side of a particle of width
d, as shown in Fig. 4. If the applied stress is insufficient to
allow detachment from the particle (z < 1,), then in order
to escape by thermal activation the dislocation will have to
surmount a potential hill of magnitude

3
U mgt-,-—(-g)[ L~ (/o) ~ k) (AS5)
This result obtained by subtracting the left-hand side of
equation (A1) {from the right-hand side and multiplying by
Al = d. The patential hill vanishes for t = 1, [equation (7)]
as required.

The resuiting strain rate can be written phenom-

enologically as
u
¢ =¢exp| ———
o€ P( ¥ T)

where ¢, is the equivalent strain rate of the particle-free
material. Combining equations (A5) and (A6), and solving
for 1 /1, gives equation (8) in the text, Strictly speaking it
does not define a threshold stress, but the stress necessary
for achieving a certain strain rate ratio é/¢ (as a function of
k, T and d),

Equation (Af) can however give the appearance of a
threshold stress when lhe resolution limit for measuring
strain rates is considered. As a realistic example we set
£ 75 10~"/s-and take for ¢, a typical strain rate value for the
particle-free material, at the threshold stress for the particle-
containing alloy (see e.g. [1]: é = 10=%s). For plotting
Fig. 5 we therefore use ¢,/¢ = 10". Because this ratio enters
equation (8) only logarithmically, its choice is not very
critical.

Another possibility for continued dislocation motion at
T <1y(T) is the dragging of particles by the dislocation
captured on the “departure” side. The velocity of the

(A6)
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particle is given by
v=M-F (AT

F is the force exerted on the particle by the dislocation
captured on the detachment side

F = 2Tep[zfio). (AB)

If diffusion along the particle-matrix interface (with

diffusivity D,) is considered to be rate-limiting, then the

particle mobility M is given, for cubes of edge length 4, by
46.D,Q

= ] A9

ey Td* 43

Similar expressions apply when other processes control the

rate [17].
The resulting creep rate due to particle movement is
bom = Pmb (AlD)

where p., is the mobile dislocation density. It is imporlant
however that deformation with particle movement is a
self-exhausting process: the dislocation collects particles on
its way, such that their spacing along the dislocation line
becomes

bl
£
2p,b4

The resulting strain rate decreases with strain ¢ as is evident
from equation (10) in the text. The limiting strain g, that
can be achieved by this mechanism is reached when the
particle spacing along the dislocation is equal to their size

@A =d)
24
bim = | 5 — 1 2p, 84,

A typical value for small volume fractions (24/d == 10) is
€ & 1074 (setting p, = 10%m?, b =10""m, 1 =10"m).
Therefore the contribution of the particle dragging mech-
anism can probably be neglected in most cases,

The chemical potential pff for local climb [equation (12)]
is obtained as follows, We assume, as in [14], that the
segment along the side face of the particle (BC in Fig. 1)
forms a right angle with the ramp contour. Then the line
length increment during & dislocation advance by dy is
simply

A=
1+

(All)

(Al2)

d/ |
— =gin f (Al3)
dy
and the increment in area under AB is
d4 d
d;“ =1 in f cos f (A14)

Substi_tuting these expressions in the general equation for
[equation (Al) in part I] leads to equation (12) in the text.



