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ABSTRACT Internet of energy based smart power grids demonstrate high in-feed from renewable energy
resources (RESs) and lofty out-feed to energy consumers. Uncertainties evolved by incorporating RESs
and time-varying energy consumption present immense challenges to the optimal control of smart power
networks. To deal with these challenges, it is important to make the system deterministic by making time-
ahead prediction and scheduling of power supply and demand. The present work confers a model of a
co-scheduling framework, organizing cost-efficient activation of energy supply entities (ESEs) and load
demands in a home area power network (HAPN). It integrates roof-top photovoltaic (PV) panels, diesel
energy generator (DE), energy storage devices (ESDs), and smart load demands (SLDs) along with grid-
supplied power. The scheduling model is based on mixed-integer linear programming (MILP) framework,
incorporates a ‘‘min-max’’ optimization algorithm that reduces the daily energy bills, maintains high comfort
level for the energy consumers, and increases the self-sufficiency of the home. The proposed strategy exploits
the flexibility in dynamic energy price signals and SLDs of various classes, providing day-ahead cost-optimal
scheduling decisions for incorporated energy entities. A linearized component-based model is developed,
considering inefficiencies, taking various power phase modes of the SLDs along with the cost of operation,
maintenance, and degradation of the equipment. A case study based on numerical analysis determines the
particular features of the proposed HAPN model. Simulation results demonstrate the real prospect of our
implemented strategy, utilizing a cost-effective optimal blend of distinct energy entities in a smart home.

INDEX TERMS Smart home, home area power network, energy management system, optimization,
scheduling, demand side management, mixed integer linear programming.

NOMENCLATURE
PARAMETERS
ηpvcon Efficiency of a PV attachedDC/DC converter.
Psaj,t PV subarray power (W ).
Pmt Power produced by a PV module (W ).
Nm Number of PV modules.
F saj Electrical loss factor of PV sub-array j (%).

Lmj Mismatch losse index of subarray j.
Ldcj DC wiring loss index in subarray j.
Pmp Maximum power output of a PVmodule (W ).
GSTC Standard irradiance value (W/m2).
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Gt Predicted irradiance (W/m2).
α Temperature coefficient.
Tc Ambient temperature ◦C .
FF Fill factor (%)
V pvcell
oc Open circuit voltage of PV cell (V ).
Ipvcellsc Short circuit current in PV cell (A).
ηpvcell Efficiency of a PV cell
Ppvin Actual input power to PV cell (W ).
Plosspv,t Power loss in a PV cell (W ).
Cbat Nominal capacity of the storage unit (Wh).
V bat
oc Open circuit voltage of battery cell (V ).
Ibatsc Short circuit current in battery cell (A).

E
bat

Maximum energy stored in a battery (Wh).
Rbat Internal resistance of a battery (�).
Pbat Battery power (W ).
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Ibat Current of a battery (A).
ηbcell Battery cell dis(charging) efficiency’s.
Pcell Battery cell power (W ).
Plossbat,t Power loss in battery (W ).
ηbatcon Battery attached DC/DC converter efficiency.
ηbat Overall battery efficiency.

PTA
−

f ,t Power dissipated by TA unit f (W ).
ETA Energy requirement for TA load (Wh).
EPEa Energy requirement of a PE unit a (Wh).
EECLb,d Energy requirement of a ECL device b (Wh).
ETCLc Energy requirement of a TCl device c (Wh).
EDT Energy requirement of DT load (Wh).

PL
−

t Total power requirement of SLDs (W ).

PL,peakt Demand response peak signal (W ).
CG,t Cost of energy obtained from Grid at time

t (e).
%t Grid electricity prices at anytime t (e).
ξ Panelty price for CO2 (e/ton).
Cco2
DE,t Cost for producing CO2 by the DE (e).
ς Operational cost of PV array (e).

C f
DE,t Diesel engine fuel cost (e).
β/γ Diesel engine fuel coefficients (e).
σ f Fuel price for fossil fuel (e).
Csu
DE,t Start-up cost of diesel engine (e).
σ su Diesel engine Start-up price (e).
Csd
DE,t Shut-down cost of diesel engine (e).
σ sd Diesel engine Shut-down price (e).
Com
DE,t Operation and maintenance cost of DE (e).
σ om Diesel engine operational price (e).
πk,t Price of (dis)charging storage units k (e).
ICk Investment cost of a storage device k (e).
Nk,t Storage (dis)charging cycles of device k at t .
CBdeg
k,t Cost of storage degradation (e).

Cpenalty
PE,t Penalty cost for curtailable PE loads (e).
ζ Penalty rate for PE load curtailment (e).
LPEa,t Actual power elastic load (W ).
Cdelay
DT ,t Cost associated with the loads in the queue

(e).
δ Penalty rate for DT loads in the queue (e).

Q
DT
e,t Maximum queue length (W ).

TPEV
(+/−)

t User time preference for EVS (dis)charging
(t).

TPECLb,d,t User time preference for ECL unit to be on (t).
PGR Minimum power in-feed from grid (W ).

P
GR

Maximum power in-feed from grid (W ).

P
PV

Maximum power in-feed from PV (W ).
PDE Minimum power in-feed from DE (W ).

P
DE

Maximum power in-feed from DE (W ).

E
bat
k Maximum SoC of the storage unit k (W ).

Ebatk Minimum SoC of the storage unit k (W ).

ε Initial/final SoC constant (W ).

P
B
(ch/dch) Maximum (dis)charging rates of a battery

(W ).
PB(ch/dch) Minimum (dis)charging rates of a battery

(W ).

P
PE
a Maximum power dissipation by PE loads

(W ).

P
ECL
b,d Maximum power dissipation by ECL unit

(W ).
PECLb,d Minimum power dissipation by ECL unit b

(W ).

τECLb,d Min time for a particular phase process (t).
τECLb,d Max time for a particular phase process (t).
Db,d/Db,d Upper and lower limits of inter-phase

delay (t).
PTCLc Minimum power usage by the TCL unit (W ).

P
TCL
c Maximum power usage by the TCL unit (W ).

T
TCL
c User’s set maximum temperature (◦C).

T TCLc User’s set minimum temperature (◦C).
T roomt Room temperature (◦C).
RTCLc Equivalent thermal resistance (◦C/W ).
CTCL
c Equivalent heat rate.

P
DT
e Maximum power dissipation by DT device

(W ).
PDTe Minimum power dissipation by DT device

(W ).
LDTe,t Actual loads entering the queue (W ).

BINARY VARIABLES
xGRt Status of grid connected converter (0/1).
xPVt On-off status of PV unit (0/1).
xDEt On-off status of DE unit (0/1).
zDEt Start-up status of DE unit (0/1).
xB

(+/−)

k,t (Dis)charging status of ESDs unit k (0/1).
xPEa,t Status of unit a of PE load demands (0/1).
xB

(+/−)

EV ,t (Dis)charging status of EV storage (0/1).

xB
(+/−)

HB,t (Dis)charging status of HB storage (0/1).
xECLb,d,t Status of power phase d of appliance b (0/1).
sECLb,d,t Power phase finishing indicator (0/1).
dECLb,d,t Inter-phase delay indicator (0/1).
xTCLc,t Status of unit c of TCL load demands (0/1).
xDTe,t Status of unit e of DT load demands (0/1).

CONTINUOUS VARIABLES
PPV

+

t Power in-feed from PV array (W ).
PB

(+/−)

k,t (Dis)charging rates of ESDs unit k (W ).
PPE

−

a,t Power out-feed to PE unit a (W ).
PECL

−

b,d,t Power out-feed to phase d of ECL unit b (W ).
PTCL

−

c,t Power out-feed to TCL unit c (W ).
PDT

−

e,t Power out-feed to DT unit e (W ).
PGR

+

t Power in-feed from electricity grid (W ).
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PDE
+

t Power in-feed from DE unit (W ).
Ebatk State of charge of the storage unit k (W ).
T TCLc,t TCL unit c cabin internal temperature (◦C).
QDTe,t Delay-tolerant queue length (W ).

I. INTRODUCTION
According to the ‘US’ state department of energy, the ratio
of utilizing energy is 60% to 40%, for the residential and
commercial sectors, respectively. At present, most of the con-
sumable energy is produced by conventional power plants,
i.e., fossil fuel and coal generation [1]. However, due to
the rapid increase in fuel prices and the elevating emission
problems, the World is adopting a better option of utilizing
abundantly available natural resources of energy [2]. Renew-
able energy sources (RESs) (i.e., solar and wind) are clean
and cheap sources of energy but are highly intermittent. This
intermittency is due to the time-limited sun irradiations and
the varying wind speed. Integrating RESs in the conven-
tional grid is an inefficient task because the present grids
are incapable of handling the uncertainties produced by these
sources [3].

A framework of decentralized Smart grid, also known as
distributed grids (DGs) is developed to address the above
problem. It integrates the RESs with the conventional power
network more effectively by providing the facility of energy
storage and control schemes [4]. The smart grid reinvents
the conventional power network by making it independent,
intelligent, self-controlled and resilient. It also supports the
concept of the internet of energy (IoE) by incorporating infor-
mation and communication technologies (ICTs) [5]. More-
over, it encourages energy savings and energy trading at the
consumer level through demand-side management (DSM)
and demand response (DR) techniques.Whereas, DR orDSM
programs can also be sufficient to mitigate the intermittency
of RESs [6].

DSM and DR are the two main elements of the smart grid
encourage the energy consumers to use energy efficiently and
economically. It has a significant role in developing strategies
for flexible operations of energy entities (EEs) keeping the
power network stable [7]. Moreover, It includes some mone-
tary incentives, e.g., variable energy prices, low energy usage
awards, etc. Applying these incentives, the user can modify
its energy usage pattern by deferring, shifting, or curtailing its
non-priority load demands [8]. These strategies can be named
as peak clipping, valley filling, and critical control of load
demands, etc. In support to DR schemes, various types of
energy tariffs are introduced including, time-of-use pricing
(ToU), day-ahead pricing (DAP), real-time pricing (RTP),
critical-peak pricing (CCP), and inclined-block rates (IBR),
etc [9].

A. RELATED WORK
Since the motivation of the work is to demonstrate the flex-
ibility at the consumer level, by putting up the idea of a
smart home. In a smart home, every power-related entity has

an influential role in the overall power network. Introducing
home area power network (HAPN), it deals in the smart
energy generation and utilization within a home. This concept
of smart homes is already discussed in [18]–[25]. The vital
component of the HAPN is its self reliability and resiliency,
but there are numerous challenges like self-sufficiency,
integrating new appliances, communication among various
energy entities, etc [26]. These may cause irregularities in
energy generation and utilization, resulting in increasing the
power load on the generation units and sometimes there is a
surplus and costly generation that could not be utilized by the
energy consumers [12].

Moreover, the high load demands, especially in peak hours,
increase the electricity prices. while, the low demands during
abundantly available Photovoltaic (PV) energy also ends in
costly energy operations [27]. To address these problems,
the well known DSM or DR strategies can be implemented.
DSM can optimize the energy generation and utilization
brings down the cost of electricity used and reduces the
CO2 emissions [7]. The efficient scheduling algorithms for
DR problems are a need of time that helps the users to shift
their loads intelligently at a low cost operating time of the
day in a balanced way [24]. Table 1 summarizes various DSM
strategies and their limitations.

Likewise, there are other numerous options to tackle the
above mentioned problems. Among these, one is to include a
combination of various types of energy resources i.e., elec-
tric grid, PV power, diesel engine generator (DE) power,
and energy storage devices (ESDs) [27], [28]. PV is the
cheapest source of generating electricity as compared to its
counterparts but is highly unreliable [22]. It depends on the
sun irradiations, that is only available in the day time and
even sometimes these are disrupted by the clouds and the
neighborhood [8], [13]. Hence, this varying PV energy can
be compensated in several ways. For example, the PV output
could be made smooth by incorporating ESDs [3], [29], or the
grid energy could be utilized, or the DE power could be used
if grid energy is unavailable at that time [30], [31].

In contrast, if the PV power is available in abundant, then
it can be curtailed to maintain the balance in power flow
and keep the voltage levels stable [5]. However, the thermal
generators and pumped hydro stations can also be incor-
porated at a significant scale to handle the uncertainties in
power generation [18], [32]. However, there is some trade-
off in costs due to startup and shutdown operations of thermal
generators, i.e., DE [28]. Whereas, the other option is to use
the controllable flexible smart load devices (SLDs), that could
be operated according to the availability of the energy [33].
SLDs are of different types; power flexible and time flexible
(i.e., time shiftable and delay-tolerant devices) [8], [15], [34].
Some of the literature takes only HVAC loads as flexi-
ble loads [33], [35]. Unlikely, [23] described the incorpora-
tion of electric vehicles in the transportation system as a
new type of electrical load in the residential area. Many
researchers take aggregated power load as a flexible, con-
trollable load [22], [34], and most of them differentiate these
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TABLE 1. Objectives and limitations in state of the art work.

TABLE 2. Critical analysis of past work. (PE, power elastic loads; ECL, electric controllable loads; TCL, thermal controllable loads; DT, delay tolerant load
demands; Occ, occupancy behaviour; Ss, Self-sufficiency; Ps, pricing scheme; Cr, cost reduction; DA, day-ahead; Roll, rolling time horizon).

aggregated load as time shiftable and non-shiftable power
loads [7], [11], [19], [20], [26]. Table 2 provides a critical
analysis of the past work regarding the usage of type of energy
sources, various smart load demands, the pricing scheme, and
the algorithm working time horizon.

The most favourable flexible load is in the form of
electric vehicle storage (EVS), providing a vast range of

dynamic charging power [5]. A long term outcome of variable
short-term operations and life-time of the battery storage
component is discussed in [18], [36]. Where an aggregated
battery storage systems are presented, that acts as an energy
supplier or energy dissipate entity, helps in reducing ramp-
ing provisions while balancing demands with the low-cost
energy supply. Moreover, to maximize the life cycle of ESDs,
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a pseudo cost function for battery storage deterioration is
proposed in [22], [24], [27], while the storage loss cost is
discussed in [28], [31]. Furthermore, the storage deteriora-
tion and battery inefficiency in a certain time of operation
are subject to the battery operational limitations and energy
trading requirements [4]. To increase the life of the battery,
it is recommended to keep the working cycle of the battery in
its safe working zone. Since the energy prices and the user’s
load demands fluctuate over time, the worth capacity of the
system and the future power costs, both are dependent on
the system states and time of operation [11]. These functions
are additionally approximated by fuzzy frameworks, and the
ideal (dis)charging activities are observed by the anticipated
Newton technique [10]. Additionally, a generalized battery
model (GBM) is presented in [17] to portray the adaptability
of building energy demand and its storage capability.

Besides, an important aspect of HAPN is its schedul-
ing or controlling polices for the energy generators and
the load demands [37]. The cost-optimal operation of the
HAPN is based on sophisticated optimization algorithms.
Various optimization algorithms have different workingmod-
els and unique computational complexities. Most popular
technique is mixed-integer linear programming (MILP) tech-
nique, in which the linear models and linear constraints are
integrated with the linear objective function and is discu-
ssed in [7], [18], [22], [23], [28], [30], [32], [34], [36], [38].
While, some work dealt with heuristic algorithms [19], [20],
especially the population-based particle swarm optimiza-
tion (PSO) method [8], [25], [26] and genetic algorithms
(GA) [3], [9], [39]. Moreover, some researchers have used
stochastic programming [6], [24], while some have discussed
dynamic programming (DP) [21], and some have worked on
decision tree algorithms [27], [31]. In [29], a stochastic net-
work calculus theory is adopted to solve the problem of uncer-
tainties related to supply and demands for long timescales
while satisfying the energy balance constraints. A real-time
binary back-tracking search algorithm (BBSA) is used to
optimally schedule the home devices in order to reduce the
energy consumption of the home residents without affecting
their comfort level [40]. To address the uncertainties in the
generation and the demands, [35] and [13] have discussed
model predictive control where the predictions were made
before applying the algorithm. Moreover, if the constraints or
the objective function are taken as nonlinear equations, then
a nonlinear algorithm, i.e., mixed-integer nonlinear program-
ming (MINLP) can be utilized [15]. There is another option
of real-time operation for SLDs, where the uncertainties are
neglected, and the operations can be carried out using Lya-
punov optimization algorithm [4], [11], [33].

Usually, the cost minimization is a primary objective
of any energy optimization problem and is discussed
in [9], [18]–[20]. Whereas, most of the researches discussed
the trade-off between electricity prices and the consumers
distress [9], [14], [21], while some have also discussed
a connection between cost reduction and peak to average
ratio (PAR) of power demand [9], [19]. It is evident, that while

minimizing the cost one shall compromise its discomfort
or there will be the problem of getting peaks in off-peak
times, and it is of colossal disadvantage while considering
day-ahead defined dynamic price signals [8]. In the end,
the schemes mentioned above need to exchange a bunch
of information between various energy entities, e.g., irradi-
ation sensors, home appliances, and grid energy manage-
ment system. Considering the variety of devices in HAPN,
a standardized communication system network approach is
fundamental for its fruitful execution [5].

B. OUR CONTRIBUTION
In this paper, we target the cost-effective operations of dif-
ferent energy entities (EEs) installed in a house that has
any influence on daily accumulative electricity cost. The
EEs include various types of energy generators and electri-
cal appliances. This paper is an extension of our previous
work [42], in which we have only analysed the generation
side for cost optimal operations i.e., scheduling of energy
supply entities (ESEs). These ESEs were limited to grid and
PV sources only. In addition, we also did not include DSM
strategies which we now have discussed in detail in this work.
Hence, we reproduce our problem of cost minimization and
consumer satisfaction in the context of internet of energy
(IoE), where every energy entity is smartly controlled through
HEMS. The ultimate objective is to integrate cheap, clean,
and uncertain EEs under a joint framework of supply and
demand control. Moreover, the advantage of installing ESDs
and DE is investigated in diminishing the cost of electricity
in a time horizon of one day, also considering the grid outage
and the temperature requirements of the thermal devices.
Since there are many EEs involved along with their time cou-
pling constraints, so it is challenging to solve the optimization
problem.

The distinctive aspects of this prospective work are as
follows:

1) Analyzing in-depth models for PV and ESDs, estab-
lishing component level inefficiencies and energy
losses. Also, including the storage degradation cost
model that interprets the ESDs life cycle.

2) Implementing a constraint-based mathematical model
for various SLDs, reflecting an important contribution
for DSM strategies.

3) Introducing a reward and penalty factor, guaranteeing
the activation of power elastic and delay-tolerant loads
at a low price, while determining the desired comfort
level for the users.

4) A novel day-ahead ‘‘min-max co-scheduling’’ (MMCS)
optimization strategy is proposed. It effectively solves
the optimization problem of cost minimization and
maximizing the consumer’s satisfaction within a single
optimization framework. The model is solved using
a branch and bound method based on mixed-integer
linear programming (MILP) framework.

5) Validating the optimal scheduling problem on
simulation-based real case study example of a signal
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house. Also utilizing the dynamical day-ahead auc-
tioned electricity price information from [43] for the
realistic numerical analysis.

The rest of the paper is organized as follows: HAPN
structure and operating features are discussed in Section II.
It includes detailed information about Nano-grid model,
PV array model, ESDs model, and home appliance model.
While Section III illustrates the optimal scheduling frame-
work for our problem. It comprises of cost formulations
subsection, system-level constraints, component level con-
straints, problem formulation, implementation and algorithm
subsections. In Section IV, there is a case study example,
while Section V illustrates the simulation results of the
proposed optimization model. It concludes the numerical
observations as a prediction module output, ESEs utilization,
activation of SLDs, ESDs cooperation, power mix, and algo-
rithm computational results. Finally, in Section VI, we make
a conclusion statement with future work indication.

II. HAPN STRUCTURE AND OPERATING FEATURES
The proposed operational nano-grid model for the optimal
scheduling of EEs is a small scaled HAPN. It acts as a low
voltage distribution nano-grid, facilitating ESDs, incorporat-
ing energy in-feed from RESs, and supplying energy to the
(in)flexible home appliances. The gateway to this HAPN is a
smart meter that connects a house to the outer grid.

A. NANO-GRID MODEL
The HAPN acts as an autonomous nano-grid, balancing sup-
ply and demands, while considering low-cost energy procure-
ment. Fig. 1 illustrates a proposed structure of a nano-grid.
Where, power loads (PL

−

t ), diesel generator power (PDE
+

t )
and grid power (PGR

+

t ) share AC line. While, DC line is
shared by the power obtained from PV (PPV

+

t ) and the
ESDs (PB

+/−

k,t ). To implement a realistic scenario of off-grid
operations, we have assumed that this nano-grid is established
in a rural area where the power from the grid is not always
guaranteed. Hence, a backup diesel generator is incorporated
to ensure smooth power supply at any time of the day. The

FIGURE 1. HAPN system model.

power exchanges between the buses is carried out through a
bidirectional converter delivering power to DC line and AC
line [12]. However, it is recommended that to minimize the
line losses, the nano-grid must distribute the energy through

DC lines. We have assumed that most of our electrical appli-
ances are AC operated and converting power at the appliance
level is not a cost-effective solution. In contrast, a one time
DC to AC conversion exhibits less cost and fewer conversion
losses. In this paper, the power convention is set as (+) for
power in-feed to the HAPN and (−) power out-feed to the
energy-hungry devices.

FIGURE 2. (a) PV array structure. (b) PV schematic model.

B. PV ARRAY MODEL
In the proposed HAPNmodel, a PV array as shown in Fig. 2a,
is installed on the rooftop, acting as a cheap and clean source
of energy. The PV array output power (PPV

+

t ) is a collec-
tive power produced by all PV subarrays j ∈ [1, 2, . . . , J ]
installed at the roof top and is illustrated as [44];

PPV
+

t = ηpvcon

J∑
j=1

Psaj,t , ∀t (1)

where, ηpvcon represents the efficiency of a DC-DC converter
attached with the PV arrray. The power output of each sub-
array (Psaj,t ) is calculated based on the power produced by the
individual PVmodule (Pmt ), number ofmodules (Nm) inserted
in the subarray and the electrical loss factor (F saj ) associated
with it [45].

Psaj,t = (Pmt Nm)F
sa
j . ∀t, j (2)

While, F saj is established on the loss percentage of arrays
mismatch loss (Lmj ) and dc wire loss (Ldcj ).

F saj = (1−
Lmj
100

)(1−
Ldcj
100

). ∀j (3)

Since, we assume that each PV module produce the power
Pmt at its maximum power output (Pmp) incorporating pre-
dicted irradiance (Gt ) and ambient temperature (TC ) levels.

Pmt = Pmp
Gt
GSTC

(
1+ α

(
TC − 25◦C

))
. ∀t (4)

where, GSTC represents standard solar irradiance factor and
α indicates the temperature coefficient. Moreover, Pmp is
dependent on the parameter called fill factor (FF), that esti-
mates the maximum power of PV cell as shown in Fig. 2b.

Pmp = FF × V pvcell
oc Ipvcellsc . (5)

The short-circuit current (Ipvcellsc ) and the open-circuit voltage
(V pvcell

oc ) are the maximum current and voltage of a PV cell,
respectively. Moreover, a PV cell efficiency (ηpvcell) can be
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defined as; ηpvcell =
Pmp
Ppvin

where, Ppvin is the input energy from
the sun in terms of spectrum and intensity of the incident
sunlight.
Remark 1: The overall power loss associated with PV

array is expressed as; Plosspv,t =
∑J

j=1 P
sa
j,t − P

PV+
t .

C. ESDS MODEL
The primary reason for installing and using ESDs is to make
the availability of energy at any time t of the day. Its impor-
tance accounts when the RESs are not producing sufficient
energy, or the cost of supplying energy from the grid is very
high. For HAPN, we have introduced two kinds of ESDs,
i.e., home battery (HB) storage and electric vehicle (EV)
storage. Both of these storages are of same type (i.e., chemi-
cally reacted storage devices). So the workingmodel for these
ESDs is the same.

The nominal capacity of the storage is defined as; Cbat
=

Ibatsc ×V
bat
oc , where, Ibatsc &V bat

oc represents short-sircuit current
and open-circuit voltage, respectively. However, because of
some internal losses, the maximum energy withdrawn (E

bat
)

from the storage devices is usually lower than the Cbat . This
limit is known as depth of discharge (DoD) and is calculated

as; DoD = 1 − E
bat

Cbat , which is the complement to storage’s
state of charge (SoC) [10].

Moreover, the storage efficiency is an important parameter
that influences the battery capacity and is dependent on the
internal resistance (Rbat ) [46]. The battery power (Pbat ) can
be established as;

Pbat = V bat
oc I

bat
− Rbat Ibat

2
. (6)

The efficiency during discharging, when Ibat ≥ 0 is;

ηdchbcell =
Pbat

Pcell
=
V bat
oc I

bat
− Rbat Ibat

2

V ocIbat
= 1−

Rbat Ibat

V bat
oc

, (7)

where, Pcell represents the power input to the battery circuit.
Remark 2:

ηchbcell ≈ ηdchbcell ≈ ηbcell = 1−

∣∣∣∣Rbat IbatV bat
oc

∣∣∣∣ .

FIGURE 3. ESDs model.

So, to decide the cost-optimal action of a storage system,
a model is required that describes the efficiency of a stor-
age device analyzing both the battery and converter losses.
Fig. 3 shows a block diagram of a battery storage system.
It includes the efficiency of a battery (ηbcell) and the converter
efficiency (ηbatcon).

FIGURE 4. Home electrical appliances classification.

Remark 3: The overall power loss associated with the bat-
tery and the converter is illustrated as [46];

Plossbat,t =

{
(η−1bcellη

−1
batcon − 1)PB

+

= (η−1bat − 1)PB
+

(ηbcellηbatcon − 1)PB
−

= (ηbat − 1)PB
−

,

where, PB
+

is established when Ibat ≥ 0, and PB
−

is estab-
lished when Ibat < 0.

D. HOME APPLIANCE MODEL
One of the main contributions of this work is to introduce an
automatic operation of smart home appliances. A day-ahead
scheduling mechanism incorporates flexible and inflexible
smart appliances along with their pre-defined operating con-
ditions. In the considered HAPN model, appliances are
divided into twomajor categories based on their technologies:
1) Traditional appliances (TA) and 2) Smart appliances (SA)
[7], [15].

1) TRADITIONAL APPLIANCES
This category of appliances is also known as critical loads.
These are manually operated devices, having no or little sense
of intelligence, and hence, these should be served imme-
diately. These loads can be interpreted as the base load of
a home that includes; consumer electronics (CE), cooking
range (CR), and instant water heating (WH). As these loads
are uncontrollable so the modelling of these devices is not
considered in this work.
Remark 4: ATA = {CE ∪ CR ∪WH}.

In this paper, these loads are taken as deterministic loads that
can be predicted a day ahead. The total energy requirement
ETA for all of these loads is illustrated as:

ETA =
T∑
t=1

F∑
f=1

PTA
−

f ,t , (8)

where, f ∈ [1, 2, . . . ,F] is the appliances index and PTA
−

f ,t is
the power dissipated by a device at any time t .

2) SMART APPLIANCES
This category of appliances is usually energy-efficient and
self-intelligent devices. These are capable of modifying their
power demands and working patterns. The scheduling unit
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may decide the energy consumption pattern for these loads.
We assume that these devices are connected with the central
control unit through personal area wireless communication
technologies (i.e., Zig-bee orWiFi). These appliances are fur-
ther classified into two types: a) Power elastic appliances (PE)
and b) Time elastic appliances (TE).
Remark 5: ASA = {PE ∪ TE}.

a: POWER ELASTIC APPLIANCES
This class of appliances includes variable powered devices
that can alter their power magnitudes. The power for these
appliances can also be curtailed, having an impact on the
comfort of the users. These appliances can be the lights or
fans etc.
Remark 6: APE = {lights ∪ fans}
The energy requirement EPEa for an individual PE load is

illustrated as:

EPEa =
T∑
t=1

PPE
−

a,t , ∀a ∈ APE (9)

where, PPE
−

a,t is the power dissipated by the device a at any
time t . In this paper, these loads are taken as static and
deterministic that can be predicted a day ahead.

b: TIME ELASTIC APPLIANCES
There are two types of TE appliances; i) Time shiftable (TS)
devices and ii) Delay tolerant (DT) devices. TS loads can be
scheduled anywhere on the time scale t based on the optimal
decisions. While DT loads can make themselves delayed
from a certain time, they are due to serve. Here, TS loads
are considered to be dynamic and un-deterministic loads.
The users hand over the time preference for the activation of
these loads to the HEMS. Whereas, DT loads are static and
deterministic and are known in advance. TS loads are further
divided into two groups; electric controllable loads (ECL) and
b) thermal controllable loads (TCL).
Remark 7: ATS = {ECL ∪ TCL}.
ECL: These loads are fixed energy loads and can only

alter their power magnitudes within a single-phase duration.
The phases d ∈ [1, 2, . . . ,D] can be varied according
to the working schedule of a particular device. Moreover,
devices can shift their activation time within user-defined
time preference interval (TPECLb,d,t ). These appliances cannot be
interrupted once activated, but the different working phases of
the appliance can be delayed based on the current electricity
prices and consumer satisfaction preferences. These energy
loads can be, washing machine (WM), clothes dryer (CD),
and water pumps (WP), etc.
Remark 8: AECL ∈ {WM ∪ CD ∪WP}.
The total energy requirement EECLb,d of different phases d of

device b these loads is illustrated as:

EECLb,d =

T∑
t=1

PECL
−

b,d,t , ∀d, b ∈ AECL (10)

where, PECL
−

b,d,t is the power required by the particular phase d
of device b at any time t .
TCL: These appliances are fixed power appliances [47].

However, the activation of such devices is subjected to certain
temperature-dependent optimal decision values of a schedul-
ing unit. It incorporates the thermal constraints of the device
and the ambient environmental temperatures. These energy
loads can be, air conditioner (AC), water cooler (WC), and
refrigerator (RF), etc.
Remark 9: ATCL ∈ {AC ∪WC ∪ RF}
The energy requirement ETCLc for a specific TCL load is

illustrated as:

ETCLc =

T∑
t=1

PTCL
−

c,t , ∀c ∈ ATCL (11)

where, PTCL
−

c,t is the power required by the particular device
c at any time t .
DT loads: These are fixed power loads, that cannot be

curtailed or interrupted in between their working cycles.
Moreover, these cannot be shifted on time scale before their
actual activation time. However, these can be delayed from
the time they are being activated until a certain time threshold.
For controlling their time delays, a concept of a loads queue
is introduced. These queues are developed with time, account
for the amount of power for the loads being delayed and
served. With the help of this queue terminology, one can see
how big the queue is and for how long a particular device
has been waiting in the queue. The load delay timings can
be controlled by putting a threshold on queue size and by
suggesting some cost factor for these developing queues.
These loads may include; kettle and iron, etc.
Remark 10: ADT ∈ {kettle ∪ iron}
The total energy requirement EDT for these loads is

illustrated as:

EDT =
T∑
t=1

E∑
e=1

PDT
−

e,t , (12)

where, e ∈ [1, 2, . . . ,E] is the load index and PDT
−

e,t is the
power required by the particular device e at any time t .

Hence, if assuming a single home, it may have some ran-
dom occupants U , occupying the home randomly between
{1, 2, . . . nu} in a day. LetPL

−

t be the established total demand
requests for HAPN at any time t and it is formulated as:

PL
−

t =
∑
f ∈ATA

PTA
−

f ,t +
∑
a∈APE

PPE
−

a,t +
∑

b∈AECL

D∑
d=1

PECL
−

b,d,t

+

∑
c∈ATCL

PTCL
−

c,t +

∑
e∈ADT

PDT
−

e,t , ∀t (13)

III. OPTIMAL SCHEDULING FRAMEWORK
In a HAPN, to reduce the cost of daily electricity, it is crucial
to develop an optimal scheme. This scheme may incorporates
various EEs (i.e., energy sources and electrical appliances),
that are scheduled in such a way that at a particular time the
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energy must be taken from possible cheapest energy source
and the amount of the energy used would be minimum.While
scheduling different EEs at the time t , it must be ensured that
the energy supply and demand are balanced and the consumer
satisfaction level would be high. Moreover, to implement
such a scheduling model, a problem formulation is normal-
ized to a defined cost function where the amount of energy
utilized and the level of consumer satisfaction both are for-
mulated in a cost parameter.

A. COST FORMULATIONS
The cost formulation of various EEs are illustrated as follows:
1) Grid operating cost: The cost of the energy obtained

from the grid at any time t is illustrated as:

CG,t = (PGR
+

t xGRt )%t , ∀t (14)

where %t is the dynamic electricity price determined
by the grid power supplier. While PGR

+

t is the power
in-feed from the grid to the house and xGRt ∈ [0/1]
represents the on/off status of grid energy.

2) PV operating cost: As there is no operational cost for
PV to produce electricity because it uses free of cost
abundantly available solar energy. However, it exhibits
some operational and maintenance costs. That also
includes the replacement costs of the PV equipment.

CPV ,t = (PPV
+

t xPVt )ς, ∀t (15)

where, ς is the fixed cost determined by the operational
managers. While, xPVt ∈ [0/1] represents the on/off
status of PV energy.

3) DE operating cost: The time intensive running cost
C f
DE,t of DE unit is dependent on the amount of fuel

used for the specific amount of power generated at any
time t of the day. However, the fuel consumption model
of a DE is usually modeled as a quadratic function
given in [32]. But, this function can be approximated to
a linear expression by dropping out its quadratic term.
Hence, the fuel cost is established as;

C f
DE,t = (βxDEt + γP

DE+
t xDEt )σ f , ∀t (16)

where,β and γ are the curve fitting parameters given by
the manufactures. While, PDE

+

t is the power generated
by the DE unit, xDEt ∈ [0/1] represents the on/off
status of generator, and σ f is the fixed fuel cost. More-
over, every time the generator starts or stop working,
it exhibits some costs, reflecting in as start-up cost (σ su)
and shutdown cost (σ sd ). These costs are developed due
to the crew costs, pre-heating and no-load conditions of
the generator [28]. In case of steam power plants, this
cost is usually exponential function, while in our case
it is fixed, because of a small diesel unit. These costs
are illustrated as;

Csu
DE,t = zDEt σ su, ∀t (17)

Csd
DE,t = vDEt σ sd , ∀t (18)

where, zDEt ∈ [0/1] and vDEt ∈ [0/1] indicator the
start-up and shut-down status of DE. Besides, there
are also some operation and maintenance costs σ om

reflecting filter or oil change, or the replacement of
some components of the DE unit. These costs for any
time t is illustrated as:

Com
DE,t = xDEt σ om. ∀t (19)

Moreover, DE also produces CO2 emissions that are
toxic to the environment. So, there is a penalty cost of
ξ for producing amass of carbon element. This quantity
of carbon increases with the increasing power out-feed
of the generator [1]. The total cost of producing CO2
emissions at any time t is established as

Cco2
DE,t = (CO2 × PDE

+

t xDEt )ξ, ∀t (20)

4) ESDs operating cost: The most significant parameter
of a battery storage in an energy management system
is its lifetime. The cost associated with the degradation
of storage is a non-negligible parameter. There are
two ways to ensure a good life of a battery. One is
to limit the DoD of storage to a certain threshold at
which the battery gives its maximum life cycles while
ignoring the number of cycles Nk,t in a day. The cost
of the battery in this scenario is fixed, reflecting the
replacement cost of the battery after a fixed duration.
However, the second one is to establish a cost function,
that calculates the degradation in the storage capacity in
terms of cycles and the DoD. In this scenario, a variable
cost operator is proposed, which is the ratio of storage
total investment cost (ICk ) of the battery k to its total
energy throughput [18].
Remark 11: πk,t =

ICk
Nk,t (DoDk,t )E

bat
k

.

It means a relatively high cost is imposed if the battery
is cycled at a high DoD for the number of cycles.
Hence, the time intensive cost associated with battery
degradation and replacement is established as;

CBdeg
k,t = (PB

−

k,t x
B−
k,t + P

B+
k,t x

B+
k,t )πk,t , ∀k, t (21)

where, PB
−

k,t and P
B+
k,t represents, charging and discharg-

ing power rates of the storage devices k with charging
and discharging indicators xB

−

k,t ∈ [0/1] and xB
+

t ∈

[0/1], respectively.
5) User discomfort penalty for PE load demands: PE loads

are interruptable and their power can be curtailed to
lower the energy costs. However, this phenomenon will
increase the discomfort for the users. Hence, introduc-
ing a discomfort penalty that a HEMS considers while
establishing various scheduling strategies. The penalty
rate ζ applies to the magnitude of the power curtailed
and the total penalty cost at any time t is:

Cpenalty
PE,t =

∑
a∈APE

(LPEa,t − P
PE−
a,t xPEa,t )ζ, ∀t (22)
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where, LPEa,t is the actual PE load and (LPEa,t −
PPE

−

a,t ) represents the amount of curtailed loads given
xPEa,t ∈ [0/1].

6) DT demand Queue costs: DT loads can be delayed
up to a certain time instance so that the total cost of
electricity used by these devices could be lowered. The
delayed activation of DT loads can be established by
integrating DT queues. However, there is some cost for
developing these queues and keeping the loads inside
the queue for a long time. This cost is increasing with
the queue length, indicating the evolving discomfort
for the users [2]. This delay cost is illustrated as;

Cdelay
DT ,t =

∑
e∈ADT

QDTe,t δ, ∀t (23)

where, δ is the delay penalty rate for putting the loads
in the queue and QDTe,t represents the queue length.

B. SYSTEM LEVEL CONSTRAINTS
• Power balancing constraints: For the stability of the
power network and to keep the power losses at its min-
imum, the following equation ensures the balance in
supply and demands.

PGR
+

t +PPV
+

t +PDE
+

t +PB
+

k,t = PL
−

t +P
B−
k,t . ∀k, t (24)

• Operations of ESDs: The following constraints forbid
the simultaneous operations of charging xB

−

k,t ∈ [0/1]
and discharging of ESDs xB

+

k,t ∈ [0/1] at any time t .

xB
−

k,t + x
B+
k,t ≤ 1. ∀k, t (25)

• Prohibition of charging ESDs from grid power: The
charging of ESDs from grid power is forbidden by the
following constraints.

xB
−

k,t + x
GR
t ≤ 1. ∀k, t (26)

• Prohibiting inter-ESDs energy sharing: The inefficient
operation of charging ESDs from each other is denied
using the following constraints;

xB
(+/−)

(HB/EV ),t + x
B(−/+)
(EV/HB),t ≤ 1, ∀t (27)

• Prohibiting energy export: The following constraint
describes the no-export policy for HAPN.

PDE
+

t + PPV
+

t + PB
+

k,t − P
L−
t − P

B−
k,t ≤ 0. ∀k, t (28)

• Time preferences for (dis)charging of EV storage: The
following constraint shows the time bounding condition
on EV storage charging and discharging.

xB
(+/−)

EV ,t − TP
EV (+/−)

t ≤ 0, ∀k, t (29)

where, TPEV
(+/−)

t is the user time preference for dis-
charging and charging of of EV storage.

• ECL user time preference: The ECL demands are
dynamic and they can be operated at any time t . A user

can set up a time preference (TPECLb,d,t ) for a specific phase
of a particular device.

xECLb,d,t − TP
ECL
b,d,t ≤ 0. ∀b, d, t (30)

• Demand response signal: A demand response peak con-
straint that limits the maximum power assigned to the
whole load of a smart home. This is a kind of safety
signal from the utility to avoid overloading in the power
network.

PL
−

t − P
L,peak
t ≤ 0. ∀t (31)

C. COMPONENT LEVEL CONSTRAINTS
1) GRID CONSTRAINTS
• Power in-feed from the grid: The following equation
exhibits the range of power that can be obtained from
the grid at any time t .

PGRxGRt ≤ P
GR+
t ≤ P

GR
xGRt . ∀t (32)

2) PV ARRAY CONSTRAINTS
• Power in-feed from PV panel: The following constraint
determines the upper threshold of PV power that can be
obtained from the PV array at any time t .

PPV
+

t ≤ P
PV
xPVt . ∀t (33)

3) DE CONSTRAINTS
• DE power capacity: This constraint determines the range
of producing power from minimum to maximum power
by a diesel engine generator.

PDExDEt ≤ P
DE+
t ≤ P

DE
xDEt . ∀t (34)

• DE start-up indicator: Whenever, the generator move
into the dynamicmode from the staticmode the indicator
zDEt becomes 1.

−xDEt−1 + x
DE
t − z

DE
t ≤ 0. ∀t (35)

However, we assume that the shut-down cost for the DE
is zero and so we does not use any indicator for that.

4) ESDs CONSTRAINTS
• ESDs evolving energy states: The equation below shows
the difference in energy levels for varying time slots
(4t = t− (t−1)) in the ESDs. This difference in energy
level is developed due to the charging and discharging
power rates induced along with their efficiency factors.

ηbatPB
−

k,t − η
−1
batP

B+
k,t

= Ebatk,t − E
bat
k,t−1. ∀k, t ∈ [2 · · · T − 1] (36)

Remark 12: Initial and final SoC of ESDs is supposed
to be the same, so that from the next day the storage must
have the same value of SoC e.g., Ebatk,1 ' Ebatk,T ' ε.

VOLUME 8, 2020 2061



D. M. Minhas, G. Frey: Modeling and Optimizing Energy Supply and Demand in HAPN

• Actual capacity of the ESDs: The available storage
capacity of the ESDs is bounded by its maximum and
minimum values.

Ebatk ≤ E
bat
k,t ≤ E

bat
k . ∀k, t (37)

• Maximum (dis)charge rates for ESDs: The given con-
straints show the upper and lower bounds of charging
and discharging rates of the ESDs.

PBch,kx
B−
k,t ≤ PB

−

k,t ≤ P
B
ch,kx

B−
k,t , ∀k, t (38)

PBdch,kx
B+
k,t ≤ PB

+

k,t ≤ P
B
dch,kx

B+
k,t . ∀k, t (39)

5) POWER ELASTIC (PE) DEMANDS CONSTRAINTS
The power dissipation by these demands are bounded by their
maximum energy requirement given as;

PPE
−

a,t ≤ P
PE
a xPEa,t . ∀a, t (40)

6) TIME ELASTIC ECL DEMANDS CONSTRAINTS
a: ENERGY CONSTRAINTS
• Appliance phase energy specification: The phase d
of any device b has a specific energy requirement.
To ensure this requirement, the total power for a partic-
ular phase must qualify the given constraints.

T∑
t=1

PECL
−

b,d,t − E
ECL
b,d ≤ 0. ∀b, d (41)

• Appliance phase power limits: For any operational
phase, there is a certain limit of power in-feed to a
device. This bound is specified in the following con-
straint.

PECLb,d x
ECl
b,d,t ≤ P

ECL−
b,d,t ≤ P

ECL
b,d x

ECL
b,d,t . ∀b, d, t (42)

b: TIME CONSTRAINTS
• Appliance phase time bounds: Every device phase has a
specific time limit in which it has to be operated. This
time-bound is illustrated as;

τECLb,d ≤

T∑
t=1

xECL
−

b,d,t ≤ τ
ECL
b,d . ∀b, d (43)

• Appliance intra-phase operations: Every phase is unin-
terrupted and it must complete its cycle. However,
the cycle completion is indicated by an auxiliary variable
sECLb,d,t which is 1 when a particular phase is finished [48].
Then it must remain unity for the rest of time the device
is on.

xECLb,d,t + s
ECL
b,d,t ≤ 1, ∀b, d, t (44)

xEClb,d,(t−1) − x
ECL
b,d,t − s

ECL
b,d,t ≤ 0, ∀b, d, ∀t=2, 3,. . . ,T

(45)

sECLb,d,(t−1) − s
ECL
b,d,t ≤ 0. ∀b, d, ∀t=2, 3,. . . ,T

(46)

• Appliance inter-phase operation: The next phase can
only be started once the previous phase of the device is
completed and is forced as;

xECLb,d,t − s
ECL
b,(d−1),t ≤ 0. ∀b, t, ∀d = 2, 3, . . . ,D(47)

• Appliance inter-phase delay: There can be flexibility in
the starting time of the next phase, and the following
delay constraint ensures this.

dECLb,d,t = sECLb,(d−1),t − (xECLb,d,t + s
ECL
b,d,t ), ∀b, t,

∀d = 2, 3, . . . ,B (48)

where, this delay dECLb,d,t is adjustable, depending on the
cost and comfort trade off already set by the user.

Db,d ≤
T∑
t=1

db,d,t ≤ Db,d , ∀t, b. ∀d = 2, 3, . . . ,T

(49)

7) TIME ELASTIC TCL DEMANDS CONSTRAINTS
• Appliance power limits: The power range of the specific
phase of the operating device is bounded by;

PTCLc xTCLc,t ≤ P
TCL−
c,t ≤ P

TCL
c xTCLc,t , ∀c, t (50)

• Appliance temperature limits: The allowed temperature
range over which the device is operated is set by the
user and the variations are bounded by the following
constraints.

T TCLc ≤ T TCLc,t ≤ T
TCL
c , ∀c, t (51)

• Temperature variations in thermal devices: The chang-
ing temperature condition inside a thermal cabin (i.e.,
refrigerate, freezer) is illustrated as [11], [33];

T TCLc,t = T roomt − PTCL
−

c,t RTCLc

−(T roomt −PTCL
−

c,t RTCLc −T TCLc,t−1)e
−4t/RTCLc CTCLc ,

∀c,∀t = 2, 3, . . . ,T (52)

where, T TCLc,t represents inside temperature; RTCLc
depicts equivalent thermal resistance; CTCL

c represents
equivalent heat rate; PTCL

−

c,t is equivalent heat capacity.

8) TIME ELASTIC DT DEMANDS CONSTRAINTS
• Appliance power limitation: The power dissipation by
these demands are bounded by their maximum energy
requirement given as;

PDTe xDTe,t ≤ P
DT−
e,t ≤ P

DT
e xDTe,t . ∀e, t (53)

• Load queue: A demand queue is established, enforcing
the scheduling framework for DT loads [2]. At any time
t , the accumulated load demands in a queue are indicated
as QDTe,t and is concluded as;

QDTe,t = max[QDTe,t−1 − P
DT−
e,t , 0]+ LDTe,t , ∀e, t (54)
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where, PDT
−

e,t are the loads emptying the queue and LDTe,t
are the actual loads that are entering the queue. To keep
the above queue stable, the queue backlog must be finite
by enforcing the following queue emptying law.
Remark 13: PDT

−

e,t ≥ L
DT
e,t .

D. PROBLEM FORMULATION
This section presents a mathematical formulation of the prob-
lem supposed to be evaluated. The problem is to minimize
the overall cost of the electricity, the discomfort to the resi-
dents, and to maximize the self-sufficiency of the local power
production.

Considering a HAPN, that contains a set of generators G =
{1, 2, . . . , nG} and a set of demands D = {1, 2, . . . , nD}. The
model is composed of a set of energy entities AEEs ∈ [G ∪D]
attached all-together in a single operating domain (Home).

Let PG
t ∈ R+ be the power supplied by the individual

power source at time-slot t ∈ T = {τ, . . . , τ + T − 1}
and xG

t ∈ R+ is the sources binary activation set. Similarly,
PD
t ∈ R+ be the power demand of each type of load attached

to the HAPN and xG
t ∈ R+ is the appliances’ on/off set.

A subset GAC of generators (i.e., Grid, DE) is attached to AC
line of HAPN, while a subset GDC of generators (i.e., PV,
ESDs) is attached to DC line. However, the demands are
assumed to be AC and are attached only to the AC line.

TheHEMS evaluates a set of cost functionCt : R+ 7→ R+,
establishing the cost of supplying energy to the households,
operation & maintenance cost of ESEs, and penalty costs
associated with discomfort of the users at time-slot t .
Remark 14: Given the HAPN’s power sources feasible

binary schedule sets X G
= [xG

t , . . . , x
G
τ+T−1] and their

activation profile will be xG
∈X G .

Remark 15: Given the HAPN’s generators feasible power
schedule sets PG

= [PG
t , . . . ,P

G
τ+T−1] and their power

supply profile will be PG
∈PG .

Remark 16: Given the HAPN’s load demands feasible
binary schedule sets X D

= [xD
t , . . . , x

D
τ+T−1] and their

activation profile will be xD
∈X D .

Remark 17: Given the HAPN’s load demands feasible
power dissipation schedule sets PD

= [PD
t , . . . ,P

D
τ+T−1]

and their power demand profile will be PD
∈PD .

The HEMS can minimize the total cost of power used
per scheduling horizon T by following the general problem
formulation indicated as:

min
ut

T∑
t=0

Ct (ut ),

s.t. Aequ = beq
Au ≤ b

lb ≤ u ≤ ub (55)

where, ut ∈ [(xG ∈X G)∪(PG ∈PG)∪(xD ∈X D)∪(PD ∈
PD)], Aeq & A are coupling constraint matrix, and lb & ub
represents lower and upper bound, respectively.

Moreover, a modelling scheme is incorporated to exploit
the maximum variability in operational costs of the var-
ious components of HAPN (e.g., variable prices of grid
energy, fuel and maintenance costs of DE, operational costs
of DE, PV, and ESDs). The proposed supply and demand
‘‘min-max’’ co-scheduling scheme (MMCS) combines the
scheduling mechanism of both energy supply sources and
energy-hungry devices. It optimizes the supply and load pro-
file of a HAPN using source controlled loads (i.e., SLDs,
ESDs) and load driven energy sources (i.e., grid, DE, ESDs),
whistle the PV source is usually uncontrollable. Hence,
the problem is a MILP problem, that reflects the category
of NP-hard problems which are infamous for tending to be
unmanageable when they increase in size. The day-ahead
accumulative cost minimization problem is mathematically
formulated as:

C1 = min
ut

T∑
t=0

{CG,t + CPV ,t + C
f
DE,t + C

su
DE,t + C

sd
DE,t

+Com
DE,t + C

co2
DE,t + C

Bdeg
k,t + C

penalty
PE,t + C

delay
DT ,t }.

s.t. (1), (13− 54) (56)

Whereas, the intention of maximizing the satisfaction level
of the consumers is reflected indirectly as minimizing the
penalty cost for curtailed load demands and the queue evolu-
tion cost for the delayed load demands. Furthermore, in this
paper, we also emphasize on the self-sufficiency of the HAPN
by maximizing the self-generation ratio (SGR). This ratio
usually deals with the maximum utilization of the PV source
and ESDs attached to HAPN and is modeled as:

C2 = max
ut

T∑
t=0

{−PL
−

t + P
B+
k,t x

B
k,t + P

PV+
t xPVt },

s.t. (1), (13− 54) (57)

The block diagram of the proposed HEMS is shown
in Fig. 5. The solar irradiance, price signals, and electricity
demands are established on the historical and climate data.
The problem is formulated together with the time horizon T
with t time steps.

E. IMPLEMENTATION AND ALGORITHM
The aim is to establish a scheduling policy ut , that controls the
in-feed from the grid, PV, DE, and the out-feed to the SLDs.
The policy is established on the criterion of;
1) Minimizing the total cost of energy utilized.
2) Maximizing the satisfaction level of the consumers.
3) Maximizing the utilization of PV energy.
4) Optimizing the operations of ESDs.

Similarly, it is implemented under the influence of various
system and components level constraints. These constraints
address system stability by forcing lower and upper bounds
on supply and demands, representing physical limitations on
influential energy entities of the nano-grid.
At the time the HEMS is triggered, it takes the input of

costs related to different energy sources (including forecasted
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FIGURE 5. The multi-objective optimization problem for HEMS.

grid price signals, degradation costs of the storage devices,
and DE operating costs). It also put in the information
of penalty or award prices suggested for the SLDs (cur-
tailed and delayed loads). Moreover, HEMS also takes in
the pre-configured information of appliance operating con-
ditions, i.e., consumer setting, time preferences of activating
demands, type of use of device, power profile of a load, attain-
ing specific energy requirements, preferred cooling tempera-
ture for TCLs. While it also takes in the forecasted indoor
temperature information for the next 24 hours for generating
an activation profile of TCLs. An optimization algorithm is
applied to identify the best schedule sequence for both of the
ESEs and SLDs. These scheduling sequences guarantee the
minimum cost of electricity for a home consumer along with
the considerable satisfaction level across the time horizon T .
It includes following workload model;

• The preferred time and cost for taking in the energy from
the grid.

• The optimal configuration of ESDs charging and dis-
charging to increase the energy cost savings.

• The on-off time for the Diesel engine.
• The curtailed power for power elastic loads.
• The preferable delay time for queuing loads.
• The starting time for time elastic ECL loads.
• The temperature and load activation trade-off for TCL
devices.

The algorithm discussed below encapsulates the iterative
process of the optimization formulation.

For the proposed optimization model, the simulation anal-
ysis is performed on a laptop equipped with an Intel Core i7,
2.6GHz, 2 Core processor and 20GB of memory. The results
are carried out using ‘‘MATLAB’’ optimization toolbox. The
objective function obtained is linear, so we useMixed-integer
linear programming solver ‘‘intlinprog’’. This solver uses
a linear programming algorithm ‘‘primal-simplex’’, and the
method for searching the optimal solution is ‘‘Branch and
bound’’. A 15-min time slot resolution (4t) has been used
to calculate the costs associated with ESEs and to predict the
24-Hr day-ahead power profile of various SLDs.

Algorithm 1 Algorithm for Cost-Comfort Reciprocity
1: procedure MILP(System& cost parameters)
2: System Initialization
3: Set parameter values
4: Set consumer preferences
5: Set system bounds
6: while C1 6= min(Cost) & C1 6= max(SGR) do
7: for (t ≤ T − 1) do
8: Initialize system constraints
9: Initialize components constraints
10: Implementing Branch & Bound algorithm
11: Store scheduling variables set (ut )
12: t ← t + 1
13: Execute problem set: C1 & C2

14: ut → [xG ,PG , xD ,PD ] F ut ∈ [u1,u2, . . .uT−1]
15: Conclude day-ahead total electricity cost
16: Conclude day-ahead self-sufficiency
17: Conclude SLDs satisfaction level (SL)
18: Conclude ESEs utilization factor (UF)

Hence, our scheduling problem is a mixed-integer lin-
ear problem tracing already predicted values of day-ahead
PV supply and users load demands and generates cost-
optimal decision vector for obtaining energy from various
supply sources and activating different types of users load
demands intelligently. To implement the framework of appli-
ance scheduler, the following section introduces a case study
example that consists of different types of home appliances
having varying energy consumption pattern.

IV. CASE STUDY EXAMPLE
To perform the load management and to schedule the loads
optimally, it is essential to have a device power consumption
data and the load profile information of a home. Physical
modelling of an individual appliancemodel is out of the scope
of this work, so we have used a data driven approach to design
the loads for our energy demand model. In this paper, a daily
energy demand profile of a single medium-size home is used
using the model in [49].

The load profiles of almost all the standard home appli-
ances are obtained with a high resolution of one-second inter-
vals. This model is developed by the Center of Renewable
Energy System Technology (CREST). It incorporates the
historical data for the number of occupants, their activities
and the activation of desired appliances. Since the energy pat-
tern produced for an individual local dwelling is very reliant
on the tasks of the inhabitants and their usage of electrical
gadgets. The model mentioned below takes historical data
from the UK Time Use Survey, generating time using statisti-
cal models for residential consumers, providing information
about occupants activities and the duration of each activity.
Furthermore, it demonstrates an actual appliance operation
for a particular activity of an occupant in a dwelling. A
transition probability matrix for occupants is used to develop
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the occupancy model, that realizes the exact number of
occupants [49].

Historical data is used to determine each occupant’s activ-
ity and the relevant appliance associated with it. After appli-
ance identification, a typical day profile for the particular
appliance is generated and by aggregating all the appliances
profiles, a load profile for a home is obtained. The collected
data is composed of average power consumption along with
operating modes or the cycles of each appliance. The model
covers almost every single electricity device that can be
found in the residential habitat. It utilizes these devices as the
basic building block, where the device indicates an individual
household power load, e.g., TV, clothes washer or vacuum
cleaner. It is, therefore, can be called as bottom-up model [6].

FIGURE 6. Electricity demand model architecture [49].

The demand model architecture constitutes active occu-
pancy, daily activity profile, and the installed devices,
as shown in Fig. 6. Active occupancy model takes stochas-
tically assigned residents (one to five). Whereas, the electric-
ity consumption timing is modelled based on the activities
of the individual occupants. The activity profiles generated,
reflects the actual activities of occupants at a particular time.
For example, around mealtime, the most likely activity is of
cooking. Similarly, the activity of watching TV is determined
usually in the evening. Likewise, every activity of an occupant
has its daily profile.

Moreover, these activity profiles are assigned to the partic-
ular appliance. For instance, the activity of cooking involves
the oven, microwave, or small cooking appliances. While
watching TV needs a TV to be on. Hence, without determin-
ing the detailed appliance usage statistics, an activity profile
model makes sure the appliance is active at a desired time
of usage [49]. This activity profiling is crucial to demand
side management, as it establishes a relationship between
electricity usage and the occupant activity. It means, if one
is dealing with the flexible demands, the activity profile of a
user must also be adaptable. The same strategy is adopted in
this proposed model of SLDs.

For the case study example, we have extracted six different
activities from the established energy demand model of a

TABLE 3. Home appliances activities and classification.

home with five occupants. There are 22 appliances discussed
in Table 3 providing with their average power consumption
and the appliance class. We classify these appliances into
five different categories, which are already discussed in the
‘‘home appliance model’’ section.

For the above-discussed model, the oftenly used parameter
that can be used for evaluation or control purposes is the
power value of any device. However, in some cases, we may
need more than one parameter to control the device. For
example, in the case of ECL devices (i.e., washing machine
and dishwasher) as shown in Table 4 & 5, these loads have
a different number of working cycles and each cycle has its
energy usage and time duration limitations [48]. So, we re-
model the load profiles of these devices by introducing the
power and time constraints, i.e., (41-49) in their mathematical
models. A similar case is with the TCL devices (i.e., refrig-
erator and freezer). An equivalent thermal parameter (ETP)
model is introduced in (52), that includes indoor and outdoor
temperature along with the thermal flow mechanism of these
devices [47]. The parameters related to various home devices
are illustrated in Table 6.

TABLE 4. Dish washer parameters.

As discussed earlier, the load demands taken are AC loads.
So, generally, theAC power flow is expressed in terms of non-
linear and complex equations which are not compatible with
the proposed scheduling problem equation [50]. Therefore,
the equations are approximated into linear real power equa-
tions by introducing the terminology of power factor with the
power load demands and ignoring the actual characteristics
of the power lines. This approximation will not affect the
solution of our scheduling model.
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TABLE 5. Washing machine parameters.

TABLE 6. Energy demands parameters (pred, predicted).

V. NUMERICAL ANALYSIS
In this paper, power allocation strategies are demonstrated by
implementing optimal scheduling algorithm. The scheduling
decisions are obtained by exploiting an optimization tech-
nique based on MILP framework. An example of a smart
home is considered, that behaves as an autonomous nano-
grid. We have used a term HAPN to illustrate our energy
network model for a single home with a varying number of
occupants. The parametric values of various power entities
used in our system model are shown in the following table:

TABLE 7. System parameters (pred, predicted).

While the cost parameters associated with various EEs are
given as:

TABLE 8. Cost parameters (pred, predicted).

The task of the proposed HEMS is to exhibit the reaction of
the scheduling framework towards dynamic objective func-
tion. The optimization algorithm looking for the minimum

cost also has an objective of improving self-sufficiency of
a HAPN. The whole operation includes the forecasting of
grid energy prices, solar irradiance, room temperature, and
solving the optimization problem. The effect of indirect link-
age of price signal with a peak power indicator is likewise
introduced in terms of the daily peak demand. Besides,
the minimum and maximum energy limitations are adopted
for corresponding energy supply and demand entity to estab-
lish a feasible range of operations. In the end, the proposed
HEMS is examined for 3 different ESEs profiles and 22
residential SLDs profiles. U.K. insights realistically produced
SLDs profiles are used to demonstrate the effectiveness of the
adopted scheduling scheme in diminishing the energy bills
and peak load demands.

A. PREDICTION MODULE
We have incorporated the predictive energy demands model,
realizing the exact amount of power requirements by activat-
ing real appliances in a house [49]. This model takes in the
account of active occupants, that have an impact in transform-
ing energy demand pattern. Amaximumnumber of occupants
U is taken as 5. The account of activating different appliances
in a house is done through a probabilistic approach.

Whereas, for our suggested model, on any particular day of
the week, the average number of active occupants in a house
and their total energy demands at any time instant t are shown
in Fig. 7. It shows that the maximum number of occupants
is activated usually in the afternoon and the evening with
an average rate of 3 occupants for the whole day. While the
energy demands are changing rapidly over the whole day. The
demand increases drastically in the night due to the activation
of high power load, that could probably be the heating load.
We have predicted on average app. 1 kWh of energy demands
for any particular day as shown in the figure below.

FIGURE 7. House occupants and their energy demands.

Similarly, We have incorporated a predictive PV energy
model, that forecasts the exact PV power by putting in the
predicted values of solar irradiance, ambient temperature,
day of the week in (4) [51]. Hence, the total PV power
output can be obtained by evaluating (1). The solar irradiance
data is obtained from Meteonorm Irradiation Data software
for the any specific area of the United Kingdom [52]. This
forecasted PV power is utilized to enhance the planning of
energy storage and load scheduling operations for a particular
location. Fig. 13 shows the maximum PV power available at
any time t.
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Moreover, the pricing markets usually have complicated
attributes of non-linearity and inconstancy, so price prediction
can help the energy producers and purchasers to improve their
respective scheduling techniques, that increase their profit
benefits andminimize the electricity prices, respectively [53].
A power utility can design this day-ahead electricity price.
It may have locally produced RES power, and it can likewise
import power from the power grids whenever required. The
price of the electricity is varied with time throughout a day
depending on the situation of available RESs and the import
cost from power grid. The benefit of formulating the electric-
ity cost by a utility is that it can revise the cost of power for
each energy user, who needs to take part in DSM strategies.
Fig. 8 shows the daily electricity price information. In our
case, a day-ahead price is taken from [43] to evaluate the
scheduling problem, guaranteeing the scheduling of energy
loads at low prices.

FIGURE 8. Day-ahead predicted price.

Furthermore, for the TCL demands as discussed in (50-52),
they need to operate themselves based on the room tempera-
ture. Hence, for the proposed TCL device a day-ahead room
temperature is forecasted based on the previously available
data including home dimension, the thermal conductivity of
a house, season, month, day of the week, and time of the
day [54]. Fig. 9 shows the predicted in-door temperature for
a typical home.

FIGURE 9. Predicted room temperature.

B. ENERGY SUPPLY ENTITIES UTILIZATION
As discussed earlier in section 2 that our model can operate
smoothly even in the absence of power from the main grid.
A grid shutdown signal shown in Fig. 10 is incorporated to
demonstrate the off-grid behaviour of HAPN. Actual power
that is obtained from the grid is shown in Fig. 11. Here,
the high power load is being served in the early morning
around 04:00 that is of 3kW . At this time, the price of elec-
tricity is at its lowest and while looking into the predictive
load demands in Fig. 7, it shows a minimum amount of loads
are forecasted at this time. Hence, it is evident that a shiftable

FIGURE 10. Electric grid power outage signal.

FIGURE 11. Grid power utilization.

load is executed at this time. Similarly, on average the high
amount of power is utilized in the night after 21:00 and before
midnight. It is due to the mid-range price of electricity and
because the day is closing. So, it is the only cheap source
of energy available for the remaining load demands that are
needed to be served in any way.

Moreover, the power procured from the diesel generator is
shown in Fig. 12. One of the reason of activating DE power is
the grid outage. During grid outage if there is no other option
is available then the DE is operated. While it can also be
operated if the cost associated with its power production is
relatively low as compared to other sources.

FIGURE 12. Diesel generator power production.

Similarly, the power procured from the PV arrays is shown
in Fig. 13. PV power is meant to serve only home appliances,
while the export to the grid is not allowed in our case. How-
ever, the power in excess can be used to charge HB storage.
Home battery storage is the only component available to store
this cheap energy and it also increases the self-sufficiency
of the HAPN. While seeing into the figure around 08:00,
the actual utilization of PV source is less than the available.
The reason is that all the loads are already been served and
charging the home battery storage at this time is not a cost-
optimal solution.

C. ACTIVATION OF SMART LOAD DEVICES
1) PE DEMANDS
Fig. 14 illustrates the scheduled and curtailed load demands.
In our case, the PE load is mostly light bulbs that are usually
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FIGURE 13. Power procured from the PV.

FIGURE 14. Power elastic load demands.

activated at night. So, we see a considerable load in the
night that is being served by the ESEs. Here, we see a little
glitch in load execution around 14:30 and a considerable load
curtailment can be seen around 19:45. Of course, there is
some penalty against this action of load curtailment, which
is quite bearable according to our cost function. However,
the maximum load that can be served is limited to (40).

FIGURE 15. a) Power profile of Washing machine. b) Phase indicator.

2) ECL DEMANDS
Moreover, in our prediction module, we have already pre-
dicted a count of operating dishwasher and washing machine.
Hence, these appliances are supposed to be scheduled once
in a whole day. These devices have two types of constraints
(energy and time). To execute these loads, we have estab-
lished a required energy level for each working phase of
the device, as shown in (41). While the power limitation for
each phase is settled in (42). Furthermore, the phase time
requirements are set according to (43). As shown in Fig. 15a
the washing machine is active between 04:00 to 06:00. The
peak power approaches 3kW is due to the heating element
in the washing machine that warms up the water up to the
desired temperature before cleaning the clothes. There are
total 5 phases of WM operations as discussed in Table 5.
There is no delay between different phase operations of
the device. While the phase indicator is shown in Fig. 15b,

FIGURE 16. a) Power profile of Dish washer. b) Phase indicator.

indicates the successful execution of all the working phases
of the appliance.

Similarly, the dishwasher is active soon after the washing
machine at 06:00, as shown in Fig. 16a. The reason is the
availability of relatively low price grid energy and the low
power load demands at that time. Hence, providing a bet-
ter time for executing high power shiftable load demands.
Besides, the average power approaches 1kW showing all the
two phases require different amount of energy to execute the
operation of the device. These phases are discussed in Table 4.
Like a washing machine, there is no delay in between differ-
ent phase operations of dish washer. The phase indicators are
shown in Fig.16b, indicates the successful execution of all the
working phases of the appliance. By concluding, as discussed
earlier that the ECL demands are the only loads that are not
deterministic and can be executed on demand.

3) TCL DEMANDS
Only one type of TCL load demands has been used in this
work and that is the cooling load. However, two kinds of
cooling loads are illustrated as example; i.e, refrigerator and
freezer.

FIGURE 17. a) Temperature profile and on/off status of a refrigerator.
b) Power profile of a refrigerator.

The working mechanism of both of these devices is the
same. The only difference is the operating temperatures. The
temperature setting is established through (51), that is around
0 → 4◦C for refrigerator and −16 → −20◦C for freezer.
Fig. 17a indicates the activation status of the refrigerator
along with its indoor temperature profile changing optimally
between its lower and upper bounds. Moreover, the power
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FIGURE 18. a) Temperature profile and on/off status of a freezer. b)
Power profile of a freezer.

profile is illustrated in Fig. 17b, showing almost fixed oper-
ating power for all of its phases throughout a day.

Similarly, for the freezer, the same phenomenon of the
above device is applicable. The power limitations are illus-
trated in (50), and the temperature variationswithin the device
are controlled through (52). Fig. 18a shows the activation pro-
file and the temperature profile of the freezer. While Fig. 18b
shows power profile distribution for the whole day.

FIGURE 19. a) Predicted DT demands. b) Scheduled DT demands. c) DT
demands queue backlog.

4) DT DEMANDS
DT loads are deterministic power demands predicted day-
ahead using the prediction module. The power limitations
of DT loads is illustrated in (53) and the accumulated load
demands are established in (54). Fig. 19a describes the rate
of actual DT demands predicted, while Fig. 19b shows exact
amount of load demands served at any time t . Moreover,
Fig. 19c indicates the rate of DT demands entering and leav-
ing the load queue. It is evident from figure that loads are
satisfied at the end of day, while the clear difference in the
predicted and scheduled load demands represents theworking
phenomenon of the queue.

D. INCORPORATION OF ENERGY STORAGE DEVICES
Fig. 20a indicates the rate at which the ESDs are being
charged and discharged. As the storage is of limited capacity,
so the rates of charge and discharge are also limited, as shown
in (38-39) which are set according to the data provided by
the manufacturer. We have set an initial and final SoC (ε) for
our ESDs so that we can get the desired amount of energy
available in the storage at the end of each day, as shown

FIGURE 20. a) ESDs (dis)charging rates. b) SoC of HB storage. c) SoC of EV
storage.

FIGURE 21. Scheduling various ESEs under the influence of varying
electricity price.

in Fig. 20b&c. Setting SoC may also help in controlling the
number of discharge cycles of the storage that have a huge
impact on battery life. If we use deep cycle discharge (e.g.,
80% of DoD) phenomenon, then the battery life decreases
rapidly as compared to the DoD of 20%. In Fig. 20b, it is
evident that the home battery is being charged with excess
PV energy during day time. In the morning, it uses DE power
to charge itself. Moreover, it is being discharged when the
electricity price is increasing and PV power is depleting.
Similarly, for EV storage, it is being charged in the day
somewhere else (probably at the workplace), and a portion
of it is utilized back at home when the grid energy price is
high as shown in Fig. 20c. These ESDs have some capacity
limitations (37), so we can utilize these devices for a limited
duration. For these storage systems, we have some hard con-
straints of charging the HB storage and utilizing EV storage
as discussed in (25-29).

E. POWER MIX
Fig. 21, shows day-ahead auctioned electricity price. The
energy utilities for their customers usually formulate these
energy prices. So that the customers can get an advantage of
these volatile prices and can purchase energy at their ease.
Moreover, in the same figure, we can also see the activation of
different ESEs. Our proposed scheduling scheme is making
this activation decision. We have formulated our cost mini-
mization problem, keeping in view the variable energy grid
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prices and various system constraints. Our scheduling frame-
work tracked down the possible minimum cost of electricity
for utilizing the best combination of available ESEs at any
time, t . As shown in this figure, that in the night (21:00 to
24:00) and early morning (04:00 to 06:30) the electricity is
being provided by the grid because the price of electricity is
relatively low at these time durations. While, around morning
at 06:30, the energy prices of the grid is increased and the
HB storage becomes activated. As soon as the sun rises,
the energy is being procured from the PV source instead.
Around mid-day, the energy is being shifted among grid,
HB storage, DE, and PV sources. However, in the evening,
the PV power is depleting, so the HB storage is compensating
it. The HB storage SoC is still high enough and be good for
discharge. So, most of the time during the availability of PV
and DE energy, the HB makes itself charged and becomes
discharged in the evening when there is no other option of
cheap energy. Soon after 06:30, the charge in HB is getting
low, and there is another storage EV is available. So it gets
preferred over all other energy sources until the price of grid
energy becomes low again.

Likewise, Fig. 22, illustrates the utilization factors and
the accumulated energy shares of various ESEs integrated in
HAPN. It also depicts that on average the electricity cost for
1kW of power in a whole day is around 310 cents. Whereas,
the total power utilized in last 24-hours for operating home
appliance is about 73 kW .

FIGURE 22. a) ESEs utilization factor (UF). b) Energy shares.

FIGURE 23. a) SLDs satisfaction level (SL). b) Load shares.

Similarly, Fig. 23, illustrates the satisfaction level and the
accumulated load demand shares of various SLDs integrated
into HAPN.

Moreover, we can see in Fig. 24, that our scheduling tech-
nique has successfully balanced the required energy with the
generated one as illustrated in (24). There is a clear division

in traditional baseload demands and the SLDs. All the loads
are satisfied successfully with an optimized power mix. The
scheduling of different ESEs is carried out by formulating
a cost minimization and SGR maximization problem. Our
scheduling algorithm activates those energy sources that are
comparable cheaper at any particular time instant t .

FIGURE 24. Total load demands and the scheduling power.

Finally, in Fig. 25 we can see a definite difference in
the load demands before and after establishing a scheduling
framework. A reasonable portion of peak load demands is
shifted at the off-peak time, mostly in the early morning when
the price of electricity is also at its lowest. Hence, the peak
load is now limited to 3kW , which was previously above it.
Similarly, in earlymorning between 00:00 and 09:00 the aver-
ager predicted load demand was below 500W , which is now
near 1kW . Hence, we can conclude that by using our proposed

FIGURE 25. Pre and post scheduling load demands.

HAPNmodel and the optimized HEMS, we have lessened the
cost of electricity used. Furthermore, we have also observed
the phenomenon of peak clipping, valley filling, and load
shifting in our day-ahead EEs scheduling results.

F. COMPUTATIONAL RESULTS
The outcomes are established utilizing ‘‘MATLAB’’ opti-
mization toolbox. The optimization technique of Mixed-
integer linear programming (MILP) is utilized to solve the
optimization problem. In the above analysis, the MILP solver
‘‘intlinprog’’ is used to find a feasible solution (the minimum
requirement of supply and demand scheduling problem). This
solver can rashly abort the procedure of searching an optimal
solution. It can be stopped when it finds a possible feasible
solution of (56-57). Moreover, regardless of a feasible solu-
tion is found or not, the ‘‘intlinprog’’ enables the operator to
indicate a time limit after which the solving must be ended.

Our problem resolution is quite huge, means;
• It has 40 optimization variables that take integer values.
• It has 9 linear equality constraints.
• It uses 17 linear inequality constraints.
• It uses 20 bounding condition constraints.
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Hence, it is suggested that the sub-optimal energy profiles
obtained by early stopped solver are adequate substitutes
for the genuine ideal profiles which are significantly more
tedious to discover. In this case, it takes 21 seconds to take
an integer solution to the required level of optimality. The
required level of optimality in this problem is ‘‘integer fea-
sible solution’’ and relative gap of 360%. It is thus exhib-
ited that reasonable approximate solution can be achieved
in an equitable amount of computation time (e.g., in about
30 seconds. The above investigation shows that it is promising
to apply the proposed framework in the real-time house-
hold appliances scheduling scenario. The speed with which
scheduling decisions must be made relies on the number of
decision variables.

VI. CONCLUSION
In this work, we have proposed a model for home area
power network (HAPN). It integrates time-varying photo-
voltaic (PV) energy source along with two types of storages
(i.e., home battery (HB) and electric vehicle (EV)) with
the grid power and assume a diesel energy generator (DE)
for a backup. Furthermore, it also incorporates different
types of load demands, including baseload and smart load
devices (SLDs), i.e., power elastic and time elastic appli-
ances. We have proposed a home energy management system
(HEMS), forcing various energy entities (EEs) of HAPN to
coordinate with each other and establishes a cost-optimal
scheduling framework of drawing power from energy supply
entities (ESEs) and serving the SLDs. Moreover, the pro-
posed framework is extended to incorporate the optimization
concerning consumers’ satisfaction and CO2 footprints. The
proposed ‘‘min-max’’ multi-objective optimization problem
is based on an optimal strategy of minimizing accumulated
electricity cost, maximizing self-sufficiency and the satis-
faction level of the consumers. We have implemented an
optimization algorithm using mixed-integer linear program-
ming (MILP) approach. Our motive is to obtain cost-effective
optimal decision vectors for home integrated energy supply
entities and smart load demands for the whole day. We have
also exploited the efficiency parameters along with storage
degradation model of energy storage devices (ESDs) for the
exact realization of storage capacities and costs. The simula-
tion results demonstrate the effectiveness of our operational
strategy by scheduling ESEs and SLDs with the least cost
option available. We also make ensure the high utilization
of locally installed PV energy and the significant satisfaction
level of the energy consumers.

In our future work, we may incorporate a 24-Hr rolling
time horizon scheduling mechanism. We may use a frame-
work of model predictive control to establish a real-time
control strategy for ESEs and SLDs. It will help in handling
the uncertainties in the electricity prices and solar irradiance
values. It may also further reduces the cost of electricity and
dissatisfaction of the consumers by predicting the new load
demand arrivals on hourly basis.
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