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Abstract
This study provides a whole-body physiologically-based pharmacokinetic (PBPK) 
model of dextromethorphan and its metabolites dextrorphan and dextrorphan 
O-glucuronide for predicting the effects of cytochrome P450 2D6 (CYP2D6) 
drug-gene interactions (DGIs) on dextromethorphan pharmacokinetics (PK). 
Moreover, the effect of interindividual variability (IIV) within CYP2D6 activity 
score groups on the PK of dextromethorphan and its metabolites was investigated. 
A parent-metabolite-metabolite PBPK model of dextromethorphan, dextrorphan, 
and dextrorphan O-glucuronide was developed in PK-Sim and MoBi. Drug-
dependent parameters were obtained from the literature or optimized. Plasma 
concentration-time profiles of all three analytes were gathered from published 
studies and used for model development and model evaluation. The model was 
evaluated comparing simulated plasma concentration-time profiles, area under 
the concentration-time curve from the time of the first measurement to the time 
of the last measurement (AUClast) and maximum concentration (Cmax) values to 
observed study data. The final PBPK model accurately describes 28 population 
plasma concentration-time profiles and plasma concentration-time profiles of 
72 individuals from four cocktail studies. Moreover, the model predicts CYP2D6 
DGI scenarios with six of seven DGI AUClast and seven of seven DGI Cmax ratios 
within the acceptance criteria. The high IIV in plasma concentrations was ana-
lyzed by characterizing the distribution of individually optimized CYP2D6 kcat 
values stratified by activity score group. Population simulations with sampling 
from the resulting distributions with calculated log-normal dispersion and mean 
parameters could explain a large extent of the observed IIV. The model is publicly 
available alongside comprehensive documentation of model building and model 
evaluation.
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INTRODUCTION

Dextromethorphan is a widely used over-the-counter 
cough suppressant and a common ingredient of cold 
medicines marketed toward children and adults.1 The 
mechanisms of action of dextromethorphan and its major 
metabolite dextrorphan are multifarious and include 
antagonism of σ1-  and N-methyl-D-aspartate (NMDA) 
receptors as well as inhibition of serotonin reuptake trans-
porters (SERTs) and norepinephrine reuptake transport-
ers (NERTs).2 Dextrorphan has a higher affinity to NMDA 
receptors than dextromethorphan and is considered to be 
mainly responsible for the psychoactive and euphoric ef-
fects when dextromethorphan is ingested in suprathera-
peutic doses as a recreational drug.3

Dextromethorphan is typically administered as its hy-
drobromide salt, which is considered a Biopharmaceutics 
Drug Disposition Classification System (BDDCS) class 
I drug with high solubility and permeability.4 After oral 
administration, dextromethorphan is rapidly absorbed. 
Next, dextromethorphan undergoes an extensive first-
pass metabolism, predominately mediated by CYP2D6, 
reducing the bioavailability to 1%–2% in CYP2D6 ex-
tensive metabolizers (EMs) and 80% in CYP2D6 poor 
metabolizers (PMs).5 Unbound dextromethorphan ac-
counts for 35% of the total drug plasma concentration.2 

Dextromethorphan-O-demethylation via CYP2D6 leads to 
the formation of the major active metabolite dextrorphan. 
Dextrorphan subsequently undergoes rapid glucuroni-
dation via uridine diphosphate-glucuronosyltransferases 
2B (UGT2Bs), namely UGT2B15, or N-demethylation 
via CYP3A4.6 Alternatively, dextromethorphan is  
N-demethylated by CYP3A4, which was found to be 
the main pathway of dextromethorphan metabolism in 
CYP2D6 PMs.2 Depending on the CYP2D6 phenotype, 
up to 50% of orally administered dextromethorphan is ex-
creted unchanged in urine.5,7 Because the CYP2D6 gene 
is prone to genetic alterations, dextromethorphan phar-
macokinetics (PK) is subject to considerable drug-gene 
interaction (DGI) effects. For instance, the dextrometho-
rphan area under the plasma concentration-time curve 
(AUC) in CYP2D6 PMs was reported to be 26-fold higher 
than that of CYP2D6 EMs.8 Hence, the US Food and Drug 
Administration (FDA) lists dextromethorphan as a sen-
sitive substrate of CYP2D6 and recommends its usage in 
clinical drug-drug interaction studies and dextrometho-
rphan O-demethylation as an in vitro marker reaction for 
CYP2D6 metabolism.9 Furthermore, the dextrometho-
rphan/dextrorphan metabolic ratio is frequently used to 
determine the CYP2D6 phenotype in vivo.10,11 Hence, dex-
tromethorphan is frequently included in different pheno-
typing cocktails.12,13

Ministry of Education and Research 
(BMBF, Horizon 2020 INSPIRATION 
grant 643271), under the frame of 
ERACoSysMed

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Dextromethorphan is a substrate of cytochrome P450 2D6 (CYP2D6) and is 
consequently subject to considerable drug-gene interaction (DGI) effects. High 
interindividual variability (IIV) in dextromethorphan plasma concentrations is 
apparent, even within activity score groups.
WHAT QUESTION DID THIS STUDY ADDRESS?
The objective of this study was to develop a physiologically-based pharmacoki-
netic (PBPK) model that can describe and predict the effect of CYP2D6 DGIs on 
the pharmacokinetics (PK) of dextromethorphan and its metabolites dextrorphan 
and dextrorphan O-glucuronide.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
This study presents a PBPK model of dextromethorphan and its major metabo-
lites that integrates current knowledge on relevant PK processes and DGIs. The 
model can accurately describe and predict the impact of CYP2D6 DGIs on the PK 
of the modeled analytes and was applied to explain a large extent of observed IIV 
in dextromethorphan plasma concentrations.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
The developed PBPK model serves as a prototype for the development of PBPK 
models for other CYP2D6 substrates. Modeling provides valuable insights regard-
ing the extent of observed overall IIV in plasma concentrations of CYP2D6 sub-
strates as well as the observed IIV within activity score groups.
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To date, more than 140 alleles of the CYP2D6 gene 
are known, some of which have only been discovered in 
recent years.14 With well over 10,000 potential CYP2D6 
diplotypes, investigating the effect of every genotype on 
a drug’s PK is an unfeasible task for clinical researchers.15 
Consequently, an activity score system is in place to fa-
cilitate the process of translating the CYP2D6 diplotype 
into a patient’s phenotype.15,16 This process has since 
been harmonized between pharmacogenomics labo-
ratories and between clinical guidelines of the Dutch 
Pharmacogenomics Working Group (DPWG) and the 
Clinical Pharmacogenetics Implementation Consortium 
(CPIC).17 Here, a patients’ activity score is defined as the 
sum of activity values assigned to the patients’ alleles with 
values encoding for no (0), decreased (0.25–0.5), or nor-
mal function (1), or a copy number variation of a normal 
function allele (>2).15 The activity score system is an emi-
nently useful concept for grouping study subjects based on 
their genotypes. However, a large interindividual variabil-
ity (IIV) in the PK of CYP2D6 substrates in subjects with 
an identical activity score remains largely unexplained 
and requires further research.16

The objectives of this study were (1) to develop and 
evaluate a physiologically-based pharmacokinetic (PBPK) 
parent-metabolite DGI model of dextromethorphan, dextro-
rphan, and dextrorphan O-glucuronide, (2) to describe the 
effects of different CYP2D6 activity scores on the PK of dex-
tromethorphan by implementing specific CYP2D6 activity 
score-dependent metabolic processes, and (3) to apply the 
developed model to explain the observed IIV in individual 
subjects sharing the same CYP2D6 activity score. The final 
PBPK model will be publicly available in the Open Systems 
Pharmacology (OSP) repository (www.open-syste​ms-
pharm​acolo​gy.org)18 as a clinical research tool. Moreover, 
the Supplementary document (Supplementary S1) to this 
article provides an in-depth evaluation of the model perfor-
mance and can be used as a model reference manual.

METHODS

Software

The dextromethorphan PBPK model was developed using 
PK-Sim and MoBi (Open Systems Pharmacology Suite 9.1, 
www.open-syste​ms-pharm​acolo​gy.org). Model parameter 
optimizations via Monte Carlo algorithm and local sen-
sitivity analyses were conducted in PK-Sim. Published 
clinical study data were digitized according to the rec-
ommended practice19 using GetData Graph Digitizer 
2.26.0.20 (© S. Fedorov). PK parameters, model perfor-
mance metrics, and plots were calculated and generated 
using Python (version 3.9.1; Python Software Foundation, 

Wilmington, DE). Regression analyses were performed 
using ordinary least squares utilizing the statsmodels 
package (version 0.12.2) in Python.20

Clinical study data

Published clinical studies were obtained from the litera-
ture, including aggregated plasma concentration-time pro-
files after intravenous and oral administrations in single 
and multiple dose regimens of dextromethorphan alone or 
various phenotyping cocktails. It was assumed that there 
were no relevant mutual interactions between the cocktail 
compounds affecting dextromethorphan PK.12,21 The com-
position of phenotyping cocktails used in the respective 
studies is provided in Section S1.1 of Supplementary S1. 
All collected dextromethorphan plasma concentration-
time profiles were split into a training dataset, for model 
building and a test dataset, for model evaluation. Studies 
for model training were selected to include different routes 
of administration (intravenous and oral), a wide range of 
administered doses as well as data covering all investi-
gated CYP2D6 genotypes or activity scores. The training 
dataset was used for estimation of model input param-
eters which could not be obtained from the literature. 
Studies were complemented by individual dextrometho-
rphan, dextrorphan, and total dextrorphan (dextrorphan 
and dextrorphan O-glucuronide) plasma profiles from 72 
study participants. The respective data was reported in 
a PhD thesis by Frank in 2009 as a compilation of four 
clinical cocktail studies (studies A–E).22 Study B was ex-
cluded from the dataset due to inconsistencies between 
the reported individual genotypes and the correspond-
ing plasma concentrations of dextromethorphan, which 
may be explained by the limited set of genetic CYP2D6 
variants assessed (see Section S6.1 of Supplementary S1 
for a detailed analysis). Sections S2.2, S4.2, and S6.3 of 
Supplementary S1 provide comprehensive information 
on population and individual demographics (sex, age, 
weight, and height), analyzed compounds, CYP2D6 ac-
tivity (CYP2D6 phenotype, genotype, and activity score, 
if available), drug dosing regimens and the assignment to 
the respective test and training datasets for all modeled 
studies and individual profiles.

PBPK base model building

The dextromethorphan PBPK model building process 
started with an extensive literature search to obtain phys-
icochemical data on dextromethorphan, dextrorphan, 
and dextrorphan O-glucuronide as well as information on 
absorption, distribution, metabolism, and excretion. The 

http://www.open-systems-pharmacology.org
http://www.open-systems-pharmacology.org
http://www.open-systems-pharmacology.org
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dextromethorphan PBPK model was developed using in-
dividual simulations based on typical mean individuals 
for the respective study populations (see Section S1.3 of 
Supplementary S1). First, a combination of quantitative 
structure-activity relationship methods implemented in 
PK-Sim was selected for the estimation of cellular perme-
abilities and organ/plasma partition coefficients. Here, 
the selection of the optimal combination was based on the 
minimum residual error for parameter estimations fitting 
intravenous dextromethorphan administration simula-
tions to their respective observed data. Subsequently, 
studies of orally administered dextromethorphan in PMs 
were used to optimize model parameters independent 
of CYP2D6 metabolism, as the CYP2D6 activity of poor 
metabolizers was assumed to be 0% due to the lack of 
expression of functional CYP2D6 protein in carriers of 
two CYP2D6 loss-of-function alleles (e.g., CYP2D6*3, *4, 
and *6).10 Finally, CYP2D6 catalytic rate constant (kcat) 
values were optimized for EMs by fitting to EM plasma 
concentration-time profiles of the training dataset. Here, 
the historical term “extensive metabolizer” was used to 
describe populations which were either not phenotyped 
or phenotyped via classical phenotyping methods, such 
as measurements of metabolic ratios or screening for 
CYP2D6 null alleles. Genotyped populations possessing 
activity scores ranging from 1.25–2.25 were considered 
“normal metabolizers.”17

Overall, the minimal number of processes necessary 
to mechanistically describe the PK of dextrometho-
rphan, dextrorphan, and dextrorphan O-glucuronide 
were implemented to limit the number of unknown pa-
rameter values to be optimized. Total dextrorphan was 
calculated as the sum of simulated dextrorphan and 
dextrorphan O-glucuronide. System-dependent param-
eters and details on the implementation of CYP2D6, 
CYP3A4, and UGT2B15 are presented in Section S7 of 
Supplementary S1.

PBPK model evaluation

Performance of the PBPK model regarding the prediction 
of dextromethorphan and its metabolites dextrorphan and 
dextrorphan O-glucuronide was evaluated using graphical 
and statistical methods.

First, simulated population plasma concentrations (arith-
metic mean ± SD) were compared graphically to observed 
data of the respective clinical studies. For this, virtual pop-
ulations of 1000 individuals were created using the mode of 
reported sex and ethnicity as well as mean values for age, 
weight, and height from each study protocol. Sections S1.3 
and S1.4 of Supplementary S1 provide a comprehensive de-
scription of virtual individuals and virtual populations.

Second, the arithmetic mean of population simulations 
or individual predictions for all plasma concentration-
time profiles were plotted against their corresponding ob-
served values in goodness-of-fit plots.

Third, predicted and observed AUC values and max-
imum plasma concentration (Cmax) values were graphi-
cally compared. Here, all AUC values (predicted as well as 
observed) were calculated from the time of the first mea-
surement to the time of the last measurement (AUClast).

Finally, as quantitative measures of the model perfor-
mance, the mean relative deviation (MRD) of all predicted 
plasma concentrations (Equation  1) and the geometric 
mean fold error (GMFE) of all predicted AUClast and Cmax 
values (Equation 2) were calculated.

where ̂ci = predicted plasma concentration that corresponds 
to the i-th observed concentration, ci = i-th observed plasma 
concentration, k = number of observed values.

where ̂pi = predicted AUClast or Cmax value of study pi = cor-
responding observed AUClast or Cmax value of study i, 
m = total number of studies.

Local sensitivity of the AUC0–24 h of dextromethorphan, 
dextrorphan, and dextrorphan O-glucuronide to single pa-
rameter changes was analyzed for a simulation of 30 mg 
orally administered dextromethorphan hydrobromide as 
a single dose (standard dose). Parameters were included 
if they have been optimized (kcat values and dextrometho-
rphan intestinal permeability), if they are associated with 
optimized parameters (KM values) or if they might have a 
strong impact due to calculation methods used (lipophilic-
ity, fraction unbound, and pKa values). A detailed descrip-
tion is provided in Section S1.6 of Supplementary S1 and a 
list of all parameters included in the sensitivity analysis is 
given in Section S3.6 of Supplementary S1.

DGI model building

The principal pathway of dextromethorphan metabo-
lism is the CYP2D6-mediated O-demethylation, leading 
to the formation of dextrorphan. This pathway was im-
plemented using Michaelis-Menten kinetics according to 
Equation 323:

(1)MRD = 10x; x =

�

∑k
i=1 (log10ĉi− log10ci)

2

k

(2)
GMFE=10x; x =

∑m
i=1

�

�

�

�

log10

�

ρ̂i

ρi

�

�

�

�

�

m

(3)V =

Vmax ⋅ S

KM + S
=

kcat ⋅ E ⋅ S

KM + S
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where v  =  reaction velocity at substrate concentration S, 
Vmax = maximum reaction velocity, KM = Michaelis-Menten 
constant, kcat  =  catalytic rate constant, and E  =  enzyme 
concentration.

For DGI modeling, the CYP2D6 Michaelis-Menten con-
stant (KM) values for the dextromethorphan O-demethylation 
were kept constant over the whole range of modeled activity 
scores.24 CYP2D6 kcat values were optimized separately for 
each activity score. CYP2D6 PMs (activity score = 0) were 
assumed to show no CYP2D6 activity (0%), whereas popula-
tions with two wildtype alleles (activity score = 2) were as-
sumed to possess normal CYP2D6 activity (100%). Activity 
scores were assigned according to Caudle et al.17

DGI model evaluation

Modeled DGIs were evaluated by comparison of predicted 
versus observed plasma concentration-time profiles of dex-
tromethorphan and its metabolites. Plasma concentration-
time profiles for populations displaying variant phenotypes 
were compared to those of the EM phenotype, whereas 
plasma concentration-time profiles for populations with a 
variant activity score were compared to profiles of a popula-
tion with normal activity (activity score = 2) in studies re-
porting activity scores or genotypes. Similarly, predicted DGI 
AUClast ratios (Equation 4) and DGI Cmax ratios (Equation 5) 
were evaluated for study populations with different CYP2D6 
activity scores or phenotypes.

Here, AUClast, DGI  =  AUClast of variant activity score or 
phenotype, AUClast, reference = AUClast of activity score = 2 
or EM phenotype.

with Cmax, DGI = Cmax of variant activity score or phenotype, 
Cmax, reference = Cmax of activity score = 2 or EM phenotype.

Additionally, GMFE values of the predicted DGI AUClast 
ratios and DGI Cmax ratios were calculated according to 
Equation 2 as a quantitative measure of prediction accuracy.

Assessment of interindividual variability 
within activity score groups

To assess the impact of IIV on the PK of dextromethor-
phan, CYP2D6 kcat values were optimized separately, using 
their respective observed data, for all individual plasma 

concentration-time profiles of the four cocktail studies. 
Activity scores for all genotyped subjects were calculated ac-
cording to Caudle et al.17 Subjects with the same activity scores 
were grouped and geometric means and standard deviations 
were calculated from the optimized individual CYP2D6 kcat 
values. Subsequently, these values were graphically compared 
to the population kcat values, obtained in the model building 
process. Finally, an ordinary least squares regression analy-
sis was applied between individual optimized kcat and their 
population kcat counterpart for the respective activity score.

RESULTS

PBPK base model building

The dextromethorphan PBPK model was developed using 
a total of 28 clinical studies where dextromethorphan was 
administered as an intravenous infusion (one study), orally 
in single (26 studies), or multiple doses (one study), alone 
(17 studies) or as part of a phenotyping cocktail (11 stud-
ies). Doses ranged between 5 and 80 mg of administered 
dextromethorphan. Table 1 provides an overview of demo-
graphics and CYP2D6 activity for all modeled studies.

For dextromethorphan, the PBPK model implements 
metabolism via CYP2D6 (leading to the formation of dex-
trorphan) and CYP3A4 as well as excretion via passive 
glomerular filtration. To emulate the effect of lysosomal 
trapping in the gastrointestinal mucosa,25,26 a binding pro-
cess was included in the model that is comprehensively 
described in Section S1.5 of Supplementary S1.

The primary metabolite dextrorphan is metabolized via 
CYP3A4 and UGT2B15. The latter serves as a surrogate 
pathway in the model for the glucuronidation via multiple 
UGT2B enzymes, as UGT2B15 was reported to have the 
largest contribution of all involved UGTs.6 Dextrorphan 
O-glucuronide is renally eliminated via passive glomeru-
lar filtration and active secretion to the urine. Other dex-
tromethorphan metabolites, such as 3-methoxymorphinan 
or 3-hydroxymorphinan, were not included as model com-
pounds due to the limited number of published plasma 
concentration-time profiles for these analytes.

An overview of the implemented model compounds 
and pathways is provided in Figure 1. For dextrometho-
rphan, dextrorphan, and dextrorphan O-glucuronide, the 
drug-dependent model input parameters are provided in 
Section S2.1 of Supplementary S1.

PBPK base model evaluation

Overall, the PBPK model accurately predicted dextrometho-
rphan, dextrorphan, and dextrorphan O-glucuronide plasma 

(4)DGIAUClast ratio=
AUClast, DGI

AUClast, reference

(5)DGI Cmax ratio =
Cmax, DGI

Cmax, reference
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concentrations after intravenous and oral administration with 
a selection of predicted compared to observed plasma concen-
tration time-profiles presented in Figure 2. The simulations of 
all 28 modeled population studies are shown in sections S3.1 
and S5.1 of Supplementary S1.

Goodness-of-fit plots comparing predicted and observed 
plasma concentrations, AUClast and Cmax values are presented 
in Figure  3. Overall, 70.6% of predicted plasma concentra-
tions were within the two-fold range of the corresponding 
observed concentrations. Furthermore, 35 of 42 of the pre-
dicted AUClast values (several studies included measurements 
of multiple analytes) and 35 of 41 of the predicted Cmax val-
ues were within two-fold range with model GMFE values of 
1.53 (range 1.01–3.45) for predicted AUClast and 1.46 (range 
1.01–2.97) for predicted Cmax values. MRD values of predicted 
plasma concentrations as well as AUClast and Cmax ratios for 
all 28 clinical studies and all measured analytes are provided 
in sections S3.3, S3.5, S5.3, and S5.5 of Supplementary S1.

A simulation of 30  mg dextromethorphan hydrobro-
mide administered orally (standard dose) was used for local 
sensitivity analysis. Parameters with associated sensitivity 
values greater than 0.5 (100% parameter value perturba-
tion resulting in a greater than 50% change of predicted 
AUC) were considered sensitive. Sensitive parameters 
were, in order of highest to lowest impact, fu (literature 
value), CYP2D6 kcat (optimized value), lipophilicity (liter-
ature value), CYP2D6 KM (literature value), and intestinal 
permeability (optimized value). A quantitative and visual 
representation of the local sensitivity analysis is provided 
in Section S3.6 of Supplementary S1.

DGI model building

The DGI model training dataset consisted of four studies 
that reported CYP2D6 activity scores or genotypes of their 
respective study populations. To complement these stud-
ies, 24 individual plasma concentration-time profiles were 
included. The assignment of studies and individual pro-
files to the respective datasets is listed in sections S4.2 and 
S6.3 of Supplementary S1.

Overall, activity scores in the DGI model training data-
set ranged from 0 (PM) to 3 (ultrarapid metabolizer) and 
covered a total of eight activity scores. This dataset was 
used to optimize population kcat values for the activity 
scores of the respective studies or individual profiles (see 
Section S4.1 of Supplementary S1).

DGI model evaluation

The DGI model was evaluated using a total of 13 clini-
cal population studies, which stratified their subjects by 
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CYP2D6 activity score or phenotype. These studies either 
provided the CYP2D6 phenotype (4 studies) or compre-
hensive information on the CYP2D6 genotype of indi-
viduals (9 studies). Simulations were performed using the 
corresponding kcat values with respect to activity score 
(Section S4.1 of Supplementary S1) or phenotype (Section 
S2.1 of Supplementary S1).

The good performance of the final dextromethorphan 
DGI model is demonstrated in Figure 4a–e depicting pre-
dicted dextromethorphan plasma concentration-time 
profiles of populations with different activity scores com-
pared to their respective observed data. Plots documenting 
the model performance of all 15 DGI studies are provided 
in Section S5.1 of Supplementary S1.

Predicted DGI AUClast and Cmax ratios were in good 
agreement with observed DGI ratios, demonstrating that 
the effect of different CYP2D6 activity scores on the PK of 
dextromethorphan and dextrorphan was well-described 
by the model. Specifically, six of seven AUClast and six of 
six Cmax ratios were within the prediction success limits 
suggested by Guest et al. adopted for DGI evaluations,27 
as visualized in Figure  4f,g. The predicted DGI AUClast 
ratios showed an overall GMFE of 1.45 (range 1.04–2.84) 
and the overall GMFE of predicted DGI Cmax ratios was 
calculated as 1.21 (range 1.02–1.40). Predicted to obser
ved DGI AUClast and Cmax ratios for all studies are pro-
vided in Section S5.5 of Supplementary S1. Predictions 
of dextromethorphan, dextrorphan, and dextrorphan  
O-glucuronide exposure in individuals with different 
activity scores after a single oral dose of 30  mg dextro-
methorphan hydrobromide and a comparison of the 
corresponding AUC values are given in Figure 5.

Interindividual variability within activity 
score groups

The individual profiles from four cocktail studies were 
used to assess the extent of IIV within activity score 
groups. For 66 of the 72 study subjects, the CYP2D6 geno-
type was provided. Six subjects were not genotyped and 
consequently excluded from this analysis.

The distribution of activity scores from the dataset 
is listed in Section S6.2 of Supplementary S1. Plasma 
concentration-time profiles of dextromethorphan, dextror-
phan, and total dextrorphan were simulated using the pop-
ulation kcat values given in Section S4.1 of Supplementary 
S1. Additionally, the profiles were simulated using individu-
ally optimized kcat values and the geometric mean with geo-
metric standard deviation of the individual kcat values were 
calculated for all activity score groups with n greater than 2 
(see Section S6.2 of Supplementary S1).

A representative selection of predictions using individ-
ual and model CYP2D6 kcat values is visualized in Figure 6. 
Furthermore, Section S6.4 of Supplementary S1 includes 
plots with model and individual predictions for all 66 gen-
otyped individuals alongside model predictions for the 
six non-genotyped individuals. The latter were simulated 
using the population kcat value for EMs (see Section S2.1 
of Supplementary S1).

The predictive performance using model kcat was 
compared to using the individual optimized kcat val-
ues by calculating the GMFE for all individual plasma 
concentration-time profiles (see Sections S6.7, S6.8, and 
S8 of Supplementary S1). Generally, model performance 
improved for simulations of dextromethorphan and 

F I G U R E  1   Implemented dextromethorphan metabolic pathways. Dextromethorphan is O-demethylated by CYP2D6 and N-
demethylated by CYP3A4. The metabolite dextrorphan is further metabolized via CYP3A4 (N-demethylation) and UGT2B15 (O-
glucuronidation). Dextrorphan O-glucuronide is excreted in the urine. Percentages shown refer to the fraction metabolized by the respective 
enzyme, calculated for extensive metabolizers of CYP2D6. CYP2D6: cytochrome P450 2D6, CYP3A4: cytochrome P450 3A4, UGT2B15: 
Uridine 5'-diphospho-glucuronosyltransferase 2B15

Compound Enzyme Metabolism

CYP2D6
96%

Other Metabolites

Dextromethorphan
CYP3A4

4%

UGT2B15
98%

Dextrorphan Dextrorphan O-glucuronide

Other Metabolites

CYP3A4
<2%
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dextrorphan plasma concentration-time profiles using 
the individually optimized kcat when compared to sim-
ulations, where population kcat values were used across 
all activity scores and analyzed studies. However, total 
dextrorphan AUClast and Cmax values were markedly un-
derpredicted for studies D and E (GMFEs of 3.93 and 3.28 
for study D and 2.81 and 2.69 for study E) compared to 

studies A and C (GMFEs of 1.30 and 1.44 for study A and 
1.20 and 1.24 for study C). Predicted to observed AUClast 
and Cmax ratios for all individual simulations using the 
model kcat and the individual optimized kcat are listed 
in Section S6.7 of Supplementary S1. Section S6.8 of 
Supplementary S1 gives a detailed breakdown of AUClast 
and Cmax ratios grouped by study and activity score.

F I G U R E  2   Dextromethorphan and dextrorphan plasma concentrations. Model predictions of dextromethorphan and its metabolites 
dextrorphan and dextrorphan O-glucuronide as well as total dextrorphan (dextrorphan + dextrorphan O-glucuronide) plasma 
concentration-time profiles of selected intravenous (a) and oral studies (b–i) from the training and test datasets, compared to observed 
data.7,8,45–51 Population predictions (n = 1000) are shown as lines with ribbons (arithmetic mean ± SD), symbols present the corresponding 
observed data ±SD. Detailed information on all clinical studies is listed in sections S2.2 and S4.2 of Supplementary S1. iv, intravenous; po, 
oral

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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Moreover, the optimized individual kcat values for the 
different activity score groups were plotted against their 
activity score to visualize the distribution of individual 
kcat values in the respective activity score groups (see 
Figure  7a). A regression analysis of model kcat values 
compared to the geometric mean of optimized individ-
ual kcat values revealed a high correlation (R2 = 0.9988). 
Consequently, the individual profiles were sufficiently 
well-described with the model kcat values. The results of 
the regression analysis are illustrated in Figure 7b.

Finally, population simulations were performed with 
sampling from a log-normal distribution with mean 
and dispersion parameters calculated from the samples 
of optimized individual kcat values (see Section S6.2 of 
Supplementary S1) to analyze the simulated coverage of 
IIV observed in dextromethorphan plasma concentrations 
from the study populations.

Subsequently, predictions were compared graphi-
cally in population simulations with no variability of the 

CYP2D6 population kcat. As expected, model predictions 
including the kcat variability improved describing the 
large extent of IIV within an activity score group com-
pared to predictions with no variability on the CYP2D6 
kcat (see Figure 7c–f).

DISCUSSION

In this study, a whole-body PBPK model of dextrometho-
rphan and its metabolites dextrorphan and dextrorphan 
O-glucuronide was developed and evaluated to predict 
drug plasma concentrations over a wide dosing range (5–
80 mg). A CYP2D6 activity score-dependent metabolism 
of dextromethorphan was implemented to describe the 
effect of CYP2D6 DGIs on the PK of the modeled com-
pounds. Moreover, the model was applied to investigate 
the IIV of dextromethorphan PK within different activity 
score groups.

F I G U R E  3   Goodness-of fit plots 
for the final dextromethorphan model. 
Predicted versus observed plasma 
concentrations (a, b), AUClast values (c, d) 
and Cmax values (e, f) for the training (left 
column) and test (right column) datasets. 
The solid black line indicates the line of 
identity, solid gray lines show two-fold 
deviation, dashed gray lines indicate 1.25-
fold deviation. Detailed information on 
all clinical studies is listed in sections S2.2 
and S4.2 of Supplementary S1. AUClast, 
area under the plasma concentration-
time curve from the time of the first 
concentration measurement to the time 
of the last concentration measurement; 
Cmax, maximum plasma concentration, 
dextrorphan-total: sum of dextrorphan 
and dextrorphan O-glucuronide 
concentrations

(a) (b)

(c) (d)

(e) (f)
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F I G U R E  4   Simulated dextromethorphan and dextrorphan plasma concentrations and DGI ratios for different CYP2D6 activity scores. 
Upper panel: Dextromethorphan (a–c) as well as Dextromethorphan and dextrorphan (d, e) plasma concentration-time profiles of selected 
dextromethorphan CYP2D6 DGI studies, compared to observed data.52,53 Population predictions (n = 1000) are shown as lines with ribbons 
(arithmetic mean ± SD), symbols present the corresponding observed data ±SD. Lower panel: comparison of predicted versus observed 
DGI AUClast ratios (f) and DGI Cmax ratios (g) for all analyzed dextromethorphan CYP2D6 DGI studies. The straight black line indicates 
the line of identity, curved black lines show prediction success limits proposed by Guest et al. including 1.25-fold variability.27 Solid gray 
lines indicate two-fold deviation, dashed gray lines show 1.25-fold deviation. Detailed information on all DGI studies as well as the plotted 
values are given in section S4.1 and S5.4 of Supplementary S1, respectively. AS, activity score; AUC, area under the plasma concentration-
time curve; AUClast, AUC from the time of the first concentration measurement to the time of the last concentration measurement; Cmax, 
maximum plasma concentration; DGI, drug-gene interaction; po, oral

(a)

(d) (e)

(f) (g)

(b) (c)
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Three previously published PBPK models of dextro-
methorphan were found in the literature that focused 
on different aspects of PBPK modeling, specifically 
cross-species modeling,28 investigation of pregnancy 
effects,29 and the impact of formulations (and, by ex-
tension, lysosomal trapping)26 on dextromethorphan 
pharmacokinetics. Two studies included either dextror-
phan29 or dextrorphan and dextrorphan O-glucuronide26 
as model compounds. These studies also included “tra-
ditional” phenotypes (EMs and PMs) in the model and 
did not further differentiate between CYP2D6 activity 
scores. Consequently, our model is the first whole-body 

parent-metabolite-metabolite PBPK model of dextro-
methorphan, aiming to investigate the effect of CYP2D6 
activity scores on dextromethorphan PK, with a total of 
eight different activity scores implemented.

In our model, the dextromethorphan CYP2D6 DGIs 
were described without explicitly modeling distinct 
CYP2D6 genotypes. Although a wide variety of relevant 
genotype-specific in vitro parameters, such as KM and Vmax 
are available in the literature,30–32 implementing all possi-
ble genotypes using a genotype-specific approach would 
be infeasible due to the large (and still growing) amount 
of known CYP2D6 alleles.33 Thus, a CYP2D6 activity 

F I G U R E  5   Predicted dextromethorphan, dextrorphan and dextrorphan O-glucuronide exposure in individuals with different activity 
scores. Simulations were performed for a single oral dose of 30 mg dextromethorphan hydrobromide in healthy male individuals. Top row: 
dextromethorphan (a), dextrorphan (b) and dextrorphan O-glucuronide (c) plasma concentrations. Bottom row: Dextromethorphan (d), 
dextrorphan (e) and dextrorphan O-glucuronide (f) AUC0–24 h values for different activity scores. AUC, area under the plasma concentration-
time curve

(a) (b) (c)

(d) (e) (f)

F I G U R E  6   Dextromethorphan and dextrorphan plasma concentrations for individuals of several activity score groups. Selected 
dextromethorphan, dextrorphan, and total dextrorphan (dextrorphan + dextrorphan O-glucuronide) plasma concentration-time profiles 
compared to observed data reported by Frank 2009.22 Predictions are shown as lines. Solid lines represent model predictions, dotted lines 
represent individual predictions. Symbols present the corresponding observed data. Detailed information on all individual profiles is listed 
in Sections S6.1, S6.2, and S6.3 of Supplementary S1. AS, activity score; po, oral
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)
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F I G U R E  7   Analysis of optimized 
individual CYP2D6 kcat values for the 
different activity scores and population 
simulations for different activity score 
groups. (a) Box- and scatterplots for 
optimized individual kcat values in the 
respective activity score groups. Boxes 
represent interquartile ranges, lines 
within boxes represent median values. (b) 
Comparison of model kcat and optimized 
geometric mean kcat values and regression 
analysis. Colored circles represent 
the geometric mean kcat value for an 
activity score group compared to the 
population kcat value. Error bars represent 
the geometric standard deviation. 
Simulations were performed with the 
population kcat values using a standard 
administration protocol (a single dose of 
30 mg dextromethorphan hydrobromide) 
for populations with an CYP2D6 activity 
score of 1 (c), 1.5 (d), 2 (e), and 3 (f) with 
no variability and variability (calculated 
geometric standard deviation) on the 
CYP2D6 population kcat. Population 
predictions (n = 1000) are represented as 
lines with ribbons (geometric mean with 
geometric standard deviation), symbols 
represent the corresponding observed data 
(geometric mean with geometric standard 
deviation) for the population reported by 
Frank 2009.22 AS, activity score; CYP2D6, 
cytochrome p450 2D6; dxt, dextrorphan; 
kcat, catalytic rate constant; R2, coefficient 
of determination
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score-specific approach was developed. As a result, this 
PBPK model cannot further differentiate between differ-
ent genotypes within the same activity score group, for 
instance, CYP2D6*1/*1 and CYP2D6*2/*2. However, the 
model could be readily extended to include a genotype-
specific CYP2D6 metabolism in the future.

Moreover, CYP2D6 metabolism for different activity 
scores was implemented with a fixed KM literature value6 
for all covered activity scores. However, in vitro data 
shows that KM may vary between different genotypes and 
activity scores.31,32,34 Nonetheless, a study investigating 
the effect of activity scores on the CYP2D6-dependent 
metabolism of dextromethorphan in vitro found no sig-
nificant correlation between activity score and CYP2D6 
KM.30 Most studies reported a reduction of CYP2D6-
dependent clearance (CLint and Vmax/KM) when compar-
ing reduced function alleles (*10 and *17) to the wildtype 
*1 allele.30–32 Additionally, analyses of CYP2D6 content 
in HLMs showed a high positive correlation between 
CYP2D6 abundances and activity score, albeit substan-
tial IIV in CYP2D6 content within activity score groups 
and even in groups sharing the same CYP2D6 diplotype 
has been observed.16 These trends in CYP2D6 content in 
HLMs and CYP2D6 CLint are reflected in the final dextro-
methorphan PBPK model with higher CYP2D6 activity 
scores inferring higher population kcat values (see Section 
S4.1 of Supplementary S1). A similar modeling approach 
was also utilized for previously developed PBPK models 
of CYP2D6 substrates.24 The CYP2D6 kcat value for pop-
ulations grouped as EMs was observed to be lower than 
for genotyped normal metabolizers with activity scores 
ranging from 1.25–2.25 (compare sections S2.1 and S4.1 
of Supplementary S1). Typically, study subjects in the lit-
erature were either phenotyped via measurements of uri-
nary metabolic ratio, often using arbitrary cutoff points 
for poor metabolizers,15 or via screening for null alleles.35 
Thus, there is only a limited intersection between the 
broad EM phenotype category and the genetically deter-
mined NMs.36 Overall, the presented model was able to 
accurately describe DGI AUClast and Cmax ratios as well 
as the plasma concentration-time profiles of all analyzed 
clinical studies.

The final dextromethorphan PBPK model was applied 
to investigate the effect of IIV on the PK of dextrometho-
rphan with a total of 72 individual plasma concentration-
time profiles of dextromethorphan, dextrorphan, and total 
dextrorphan. A substantial variability was observed within 
activity scores 1–3 (geometric standard deviation range of 
1.29–2.52). For activity scores less than 1, the number of 
individual profiles per score (less than 5) was insufficient 
to make meaningful assessments of the IIV. The large 
extent of IIV in the PK of CYP2D6 substrates within ac-
tivity score groups or even within subjects possessing the 

same CYP2D6 genotype, is a well-documented phenome-
non.16 A twin study on the heritability of metoprolol PK, 
concluded that genetic components independent of the 
CYP2D6 gene may be responsible for the IIV in CYP2D6 
activity.37 Indeed, the rs5758550 single-nucleotide poly-
morphism (SNP) was identified as an enhancer SNP and 
may, in the future, even lead to a reclassification of ac-
tivity scores based on CYP2D6 and rs5758550 genotype.38 
Currently published literature lacks clinical in vivo studies 
describing the effect of the rs5758550 genotype on the PK 
of dextromethorphan. Other genetic factors, such as reg-
ulation of CYP2D6 expression via transcription factors or 
miRNA, are also likely to contribute to IIV and intraindi-
vidual variability.16 Additionally, genetic and non-genetic 
variability in enzymes other than CYP2D6 are expected 
to contribute to the IIV in dextromethorphan PK, spe-
cifically for CYP2D6 PMs, as the fraction metabolized by 
CYP2D6 decreases for dextromethorphan from greater 
than 95% for EMs5 to 0% for PMs of CYP2D6,10 conse-
quently increasing the fraction of dextromethorphan me-
tabolized by CYP3A4. Additionally, IIV can be observed 
in plasma concentrations of dextrorphan and dextrorphan 
O-glucuronide, possibly caused by variability in CYP3A4 
and UGT enzymes. As genotypic data for CYP3A and UGT 
was unavailable for study subjects, the analysis of IIV was 
performed for dextromethorphan plasma concentrations 
purely in the context of CYP2D6 activity score groups. 
However, as new data emerges, the presented PBPK 
model can mechanistically be adapted to describe these 
genotypic effects of CYP2D6 and other pharmacogenes af-
fecting the PK of dextromethorphan and its metabolites. A 
large extent of IIV in plasma concentrations and CYP2D6 
activity was observed and quantified in this study. To re-
flect this in the model, the distributions of CYP2D6 kcat 
values for activity scores 1, 1.5, 2, and 3 were characterized 
from kcat optimizations in 72 individuals to improve pop-
ulation predictions, as demonstrated in Figure 7c–f, and 
may be used in future PBPK models of CYP2D6 substrates.

To supplement the limited number of studies in which 
dextromethorphan was administered alone (14 studies), 
studies in which dextromethorphan was administered as 
part of a phenotyping cocktail (11 studies and the studies 
compiled by Frank et al.22) were included in the model 
dataset. All modeled cocktail studies administered either 
the “Cologne” cocktail,21,39 the “Cooperstown 5+1”12 
cocktail, or minor variations thereof (see Section 1.1 of 
Supplementary S1). No relevant mutual interactions have 
been observed for these cocktails, although sample sizes 
for these assessments were often small.21 Additionally, 
assessments of these interactions are generally con-
cerned with the effect of the cocktail on primary path-
ways of the cocktail compounds (i.e., dextromethorphan 
O-demethylation).40 Here, additional in vitro experiments 
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are needed to evaluate possible effects of phenotyping 
cocktails on other model pathways, such as dextrorphan 
O-glucuronidation. Overall, plasma concentration-time 
profiles were well-predicted for all population studies re-
gardless of whether dextromethorphan was administered 
alone or as part of a phenotyping cocktail (see Sections 
S3.1–S3.5 and Sections S5.1–S5.5).

Overall, model predictions were considered adequate 
for all population studies regardless of whether the study 
was a cocktail study or not (see Sections S3.2–S3.5 and 
S5.2–5.7 of Supplementary S1). For studies reporting in-
dividual plasma concentration-time profiles, the model 
performed comparably well across all activity scores. 
However, a large interstudy variability was observed for 
dextromethorphan and total dextrorphan AUClast and 
Cmax values (see Section S6.8 of Supplementary S1). For 
instance, studies D and E reported up to four-fold higher 
AUClast and Cmax values for total dextrorphan compared 
with studies A and C. As these studies were comparable 
in study design, cocktail composition, and sample analy-
sis, as well as dextromethorphan and dextrorphan plasma 
concentrations, this apparent discrepancy was attributed 
to relatively small study cohorts and the large extent of 
IIV in CYP2D6 activity (see Figure 7a,b) described in the 
published literature.16

Finally, the developed and evaluated PBPK model of 
dextromethorphan is a useful tool for clinicians to inves-
tigate the effect of CYP2D6 DGIs and the associated IIV 
on the PK of dextromethorphan and its metabolites. The 
mechanistical model can be extended to be used in other 
PBPK modeling scenarios, such as the prediction of drug-
drug interaction and DGI effects41 and scaling to special 
populations, such as pediatrics,42 geriatrics,43 or patients 
with renal or hepatic impairment.44 Moreover, the model-
ing approach presented in this study can serve as a blue-
print to develop PBPK models of other CYP2D6 substrates.
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