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Introduction

Mechanical alloying is a process utilizing solid state diffusion reaction for producing powders with novel
and unique properties. By this process, currently intermetallics (1, 2), amorphous materials (3, 4), metal matrix
composites (5, 6) and dispersion strengthened alloys (7-9) are being produced.

While the processing related activities in mechanical alloying are extensive, except for a few notable
attempts (10-12), relatively little has been done to model the fundamental processes in mechanical alloying. One
of the basic mechanism governing mechanical alloying is believed to be solid state diffusion. In a recent paper
(13), it has been proposed that diffusive reaction can be strongly affected by extensive cold working that
accompanies mechanical alloying. The cold working generates increasing density of dislocations, which can
enhance core diffusion process and also the resulting plastic deformation can dramatically affect the interfacial
characteristics between powder particles by creating high concentration of vacancies and interstitials. Since the
mobilities of interstitials are usually very high compared to vacancies, there may be a supersaturation of vacancies
which can strongly affect the diffusion process. It is therefore important to have an understanding about the
evolution of plastic deformation that takes place as the mechanical alloying process progresses in time. In this
paper, we formulate a simple model, based on an analysis of high strain-rate deformation by Carroll and Holt
(14), which can estimate the plastic deformation and the resulting dislocation densities, so one can analyze the
diffusive process in mechanical alloying more accurately.

Model and Analysis

At the start of mechanical alloying process, a large number of particles (of the order of thousands) are
trapped in a typical collision between two impacting balls. For the purpose of brevity in the rest of our paper, we
call such an agglomeration a "powder compact". Schematically, such a compact, at the very beginning of the
alloying process, is shown in Fig.la. Subsequent impacts on this and other collections of compacts will continue
to flatten the particles inside the compact as shown in Fig.1b. In our analysis, we simplify such a state of powder
compact by a homogeneous medinm (Fig.1c) containing 4 uniform distribution of pores. The pore sizes will
continue to change with plastic deformation due to each impact event and it will also result in a change in the
porosity. We make assumptions that, a) the pore distribution is statistically homogeneous and isotropic, b) pores
are spatially isolated so that pore interactions are neglected, and c) initial porosity is known from some assumed
stacking of particles. For our calculation, we consider an initial stacking sequence as shown in Fig.2. For this
sequence, the pore size is obtained to be 0.46 times the average particle diameter and the porosity is 0.476. This
particular arrangement has been assumed here as a matter of convenience, but any other arrangement could be
used. Since the porosity changes considerably during the first impact itself, the subsequent results may not differ
much from the results with the present assumption for the initial configuration.

Carroll and Holt (14) dealt with the constitutive relations for rate-dependent pore-collapse based on the
properties of matrix materials and pore geometry. We assume that the hollow sphere model proposed by them is
applicable in the present case, where the hollow sphere of the powder material has inner and outer radii such that
the pore diameter and the overall porosity are those of the porous compact (Fig.1c). This is schematically shown
in Fig.3. They concluded that the matrix incompressibility during pore collapse yields a good pore collapse
relation for many materials. Neglecting any porosity change before the onset of plastic phase, they equated the
rate of change of kinetic energy of the hollow sphere with the net difference between the rate of change of work

by applied pressure p(t) and the rate of change in plastic work. In this way, the energy (Xp) required per unit
mass to reduce porosity from ¢g to ¢ is found to be,
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where ot =1/(1-$g), @ =1/(1-0), the porosity ¢ is defind as the volume fraction of pore space, pg the average

solid density of the powder material, and Y is the flow stress of the matrix. The factor o is determined from the
dimensions of the hollow sphere (Fig.3) and is given as,

Og =" & (2)

Now, the plastic energy available in each impact is a small fraction of the available kinetic energy of the

impacting balls. Approximate calculations by Maurice and Courtney (12) showed that this fraction () for
various metals is in the range of very small values to about 0.1, Their calculation for elastic energy ignored the
presence of the powder compact. A rigorous evaluation of the energy partitioning between the compact-balls
glastic energy and the plastic energy for deforming the compact is a complicated issue, and we will take an
empirical approach here. For a series of impacts on a particular porous powder compact, the elastic energy
required for deformation will increase at each subsequent impact due to an increase in the elastic modulus of the
compact. This increase in modulus occurs due to the decrease in porosity of the compact. Since the total impact
energy can be assumed to be constant, the available energy for plastic deformation for a particular powder

compact will decrease at each subsequent impact. The elastic energy () of two impacting spheres has been

calculated by Maurice and Courtney (12) using Hertz's analysis, and it is found to be proportional to ESO'Z,
where Eg is the Young's modulus of the spheres. To consider the effect of the porous powder compact in

between the impacting balls, we can approximately modify this by considering an equivalent Young's modulus
(Eeq) between the sphere material (Eg) and the porous compact material (E..), which is expressed as,

__EcEs

= (3)
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The elastic energy will now be proportional to Eeqo‘?‘. In eq.3, E¢ is expressed in terms of the well known
Spriggs equation,
E; = Egp exp(—p.§) (4}

where E is the Young's modulus of the compact material with zero porosity and p is a material constant. Thus,
for all subsequent impacts on a particular compact, we calculate the available plastic energy xp by deducting the
current elastic energy (ye) from the total available kinetic energy ()) of the balls. Here, all energies are implied to
be in Joules per unit mass (kg.) of the compact, Y in Pa. and pg in l{g/m3 :

Although Eq.1 was derived by Carroll and Holt for a material with constant flow stress, we consider the

same equation to be applicable to each impact event, by assuming that during an impact the yield stress is strain
rate independent, and that an average equivalent strain contributes to an increased flow stress Y, of the matrix, as,

Y=Y, +H(E/2) ©)

where Y, is the flow stress of the matrix material at the beginning of an impact, H the linear hardening rate of the

material and € is the equivalent strain incurred during an impact event. Equation 1 is a simplified approximate
dynamic pore-collapse relation by assuming that this hollow sphere response is the same throughout the material.
Use of such a relationship to an impact event in mechanical alloying can be further substantiated by observing that
the ratio between a typical compact thickness to ball diameter is very small and therefore, it can be assumed that
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the impact will create a uniform pressure at the surface of the compact. For the current impact event, € is still an

unknown quantity in eq.5. Noting that b> /a3 =o/ (@-1), ag jad = (0ty —1)/ (e —1). and neglecting any elastic
strain, the average of the equivalent strain in the sphere is obtained as,

(6)

By substituting egs.5 and 6 into eq.1, we obtain the average equivalent strain € in the compact due to an impact
event. Once the value of Eis determined, the new porosity level and flow stress at the end of impact is obtained

from eqs.6 and 5, respectively, and these values are used as 0q and Y, respectively, during the next impact
event, assuming that the pores remain unchanged in size during elastic unloading at the end of an impact.

Plastic strain imparted on the powder compact due to repeated impacts creates an increased dislocation
density inside the matrix material. The effective diffusivity D for mechanical alloying reaction can be strongly

influenced by the total dislocation density py , and is given as (13, 15),

D= DL.exp(—%]—k BbszDC.exp(w%) (N

Here, D, D and Qp . Q- are the diffusion pre-exponent and activation energy of lattice and core diffusion,
respectively, b is the Burgers vector, py is the total dislocation density and [ is a core diffusivity factor. For

; evaluating the diffusion coefficient D, we can have an upper bound estimate of p;_by considering only statistical

storage of dislocations but neglecting any loss of dislocations by dynamic recovery. Neglecting any dynamic
recovery may be quite reasonable when one considers that the duration of a typical impact event is very short

(order of 107 sec.). The rate of change of dislocation density with imparted strain is then given as (15),
) SRS (8)

Results and Discussion

Throughout the above formulation we considered the porous compact to have an average property
representing various powder constitutents being alloyed. The compact is also assumed to statistically represent
the whole powder in the mill. This way we have neglected the migration of powder particles to and from the
compact. Also, the fracturing event has not been included, which means that the compact under consideration
does not include a mixture of compact fragments with various states of deformation.

For the purpose of obtaining meaningful information from the present analysis we first define an energy

input parameter ¥ as, W=XPg/Y; , where Yj is the average yield stress of the powder compact before any

deformation takes place. Figure 4 shows the variation of a compact porosity with number of impacts. In the
beginning the porosity quickly drops but as the number of impacts increases the rate of decrease in porosity
considerably diminishes. This is clearly because the pores become more and more incompressible as their size is

reduced. As intuitively expected, the rate of decrease in porosity increases as the energy input parameter b s

increases. It should be noted here that through the variation in parameter ¥, we include the effect of different
compact size, the intensity of milling(ball diameter, velocity, mill geometry etc.), powder density and its initial
average yield stress.

We calculate the plastic strain imparted in each impact and plot the evolution of dislocation density with
increasing number of impact in Fig.5. In these calculations an initial state of the powder compact was assumed to

contain a dislocation density of 1012 /m?. Again, as the parameter ¥ increases, the rate of increase in the
accurnulation of dislocations increases. It is also observed that the dislocation density increases by a three order
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of magnitude for a relatively large mill intensity parameter . As an indication of the typical value of ¥, for

powders having an average yield stress of 100 Mpa and a density of 8 gmfcm3, ¥'=0.6 can represent an attritor
milling with ball velocity of 8 m/sec. With known values of mill operating parameters and powder properties, we

can thus estimate the time-history of the average dislocation density py_in the powder compact as the milling

continues. However, it must be noted here that even though the parameter ¥ is a fully non-dimensional
parameter, the plots presented here are not universal because the rate of work-hardening H enters into the

calculation of porosity in an implicit way. Once the value of py is known at a particular time, the effective

diffusion coefficient D governing the diffusion in the alloying process can be calculated from eq.7. An
experimental study to verify the model prediction of the evolution of dislocation density developed here is
currently under way.

Conclusions

This paper describes a simple model of the plastic deformation in a powder compact during mechanical
alloying. The model utilizes the hollow sphere model proposed by Carroll and Holt and modifies it to describe
deformation in mechanical alloying. The utility of the proposed model is that it avoids the complicacy of
describing the powder deformation on a local scale by considering a mono-size distribution of pores present in

between the deforming particles. A "Mill Intensity Parameter” ‘¥’ is proposed which describes the simultaneous
effect of mill intensity, powder compact size, powder density and its initial average yield stress.
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FIG.1 - Schematic representation of a compact consisting of many powder particles undergoing plastic
deformation due to a series of impact events.
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FIG.2 - Intial configuration of powder FIG.3 - Hollow sphere model describing
particles present in a compact at the start the matrix material of the powder and a pore
of first impact.
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FIG.4 - Evolution of the compact porosity at various mill intensity parameter ‘. The initial yield stress is

assumed to be 100 MPa with a linear strain hardening rate of 300 Mpa. (assumed P=0.05 when the presence of
the compact is ignored as in (12))
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FIG.5 - Evolution of dislocation density with number of impacts at various mill intensity parameters. The initial
dislocation density was assumed to be IO12 /mz. (b=2.5x10‘12 m)




