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Introduction

The creep strength of metallic materials can be improved significantly by the introduction of fine, non-shearable
dispersoid particles (see e.g. /1-3/). Over the last decade the theoretical understanding of this technologically
important effect has been improved considerably; the results of these studies can be summarized as follows:

1) During the passage of a dislocation through an array of particles at high temperatures the Orowan stress is not
reached because dislocation climb occurs /4,5/. At high homologous temperatures however climb is much too
rapid to allow an explanation of the creep rates based on this mechanism alone. Only the assumption of “local”
climb /5/ leads to correct order-of-magnitude in strength; the necessary dislocation configuration is however
very unlikely /6,7/.

ii) A more natural explanation for the effect is based on TEM observations /8,9/ which suggest an attractive
particle-dislocation interaction. Such a mechanism can be rationalized as being due to rapid diffusional
relaxation in the particle-matrix interface /10/. A model which simulates the attractive force by assigning a
lower line energy to the dislocation segment in the interface shows that only a small relaxation is necessary for
dislocation detachment from the dispersoid to become the strength-determining event /11/.

iii) A more complete model /11,12/, which also considers the possibility of thermally activated dislocation
detachment, results in a creep equation that has been successfully applied to several dispersion-strengthened

materials:
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where £ is the creep rate, 2 A the particle spacing, p the density of mobile dislocations, Dy the volume
diffusivity, b the Burgers vector, G the shear modulus, 2 r the dispersoid diameter, k the relaxation parameter,
kp the Boltzmann's constant and o the athermal detachment stress.

Both the otherwise "abnormal" stress sensitivities and the activation energies can in many cases be explained
naturally with this equation /12/.

iv)  The model of detachment-controlled creep leads to several new consequences for optimum alloy design /1/.

While this kind of modelling has up to now been carried out for disordered matrix materials, there is presently
considerable interest in raising the strength of ordered matrix materials by dispersion strengthening. The reason lies
in the fact that the creep strengths of monolithic intermetallic compounds are generally inferior, by a large margin, to
those of advanced superalloys. This weakness may preclude the application of some otherwise atfractive compounds
in certain areas,
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In this paper we explore the effects which are introduced into the model as it stands by atomic order in the mAatrix. It
is shown that, depending on the APB energy, certain intermetallic compounds may be more amenable to dispersion
strengthening than others. The new mod;l also l_eads to f“qst conclusions concerning optimum alloy design, in
particular whith respect to obtaining an optimum dispersoid size.

Effi f Order on Dis id-Dislocation Interaction

Consider an ordered matrix material with a low volume fraction of non-shearable dispersoid particles, such as Y03
in NiAl for example. In comparison with disordered materials, at least two separate phenomena peculiar to
intermetallics must be taken into account: First, the diffusivity (which enters in all creep models, including equation
1) often exhibits a complicated dependence on the stoichiometry of the compound (e.g. /13/); constitutional
vacancies, for example, provide a possible explanation for the reduced creep strength of off-stoichiometric
compositions (e.g. /14/). If the diffusivity is known as a function of composition, this effect can readily be
incorporated in equation 1.

Secondly, an ordered matrix is known to affect the structure of lattice dislocations: complete dislocations in the
disordered lattice become incomplete in the ordered matrix and hence superdislocations form, e.g. /15/. When
treating the process by which a dislocation surmounts a dispersoid particle, the interaction of the superpartials must
now be considered (figure 1). The present paper will focus on this effect.

The stress-distance profile for the disordered case

When a single dislocation climbs over a spherical particle, it will encounter two distinct "obstacles" which result
from an increase in total line energy /11/: as the dislocation climbs up, it has to increase its length: this effect leads to
a "climb barrier". On the other hand, when the dislocation leaves the energetically favorable particle-matrix interface,
additional specific line energy has to be supplied: this is the origin of the "detachment barrier", As before /11/, the
attractive interaction is modelled by assigning a line energy k-Ty to the dislocation segment in the interface, where k
lies in the theoretical range O to 1, and Ty is the line energy remote from the particle. Thus k = 1 denotes the case of
no attractive interaction, the magnitude of which increases as k falls further below 1.

The shear stress 1 necessary for the dislocation motion over the particle to continue at any position x, i.e. the "back
stress", has been evaluated as a function of position x /11/:
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where Tp is the Orowan stress in shear and a = V12 - h2 - x2 with h as the distance of the glide plane from the
equator of the particle.

Figure 2 shows a plot of this stress profile in normalized form. It is seen, as expected, that the climb barrier
decreases with increasing relaxation (smaller k), while the detachment barrier shows the opposite dependence. It has
been shown /11/ that the climb threshold is given by

T hy¥?
== (-3) 2

where h is the distance of the glide plane from the equator of the particle. When averaged over all possible glide
plane/particle configurations, this becomes:
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The detachment threshold has the following dependence on k:

i (P - k2)1/2
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Equation 3c gives the athermal detachment stress without consideration of thermally activated detachment. The
present paper will be restricted to this case.

(3¢c)

Effect of superpartials on the detachment stress

Now consider the case of a superdislocation consisting of two partials with equal Burgers vector b. We assume that
the spacing w between the partials is fixed by the APB energy Y and is unaffected by the external stress; this is a
reasonable simplification for yp/b >> T, which is usually the case. The dispersoid spacing along both partials is
considered to be identical and independent of the bowing out distance. Finally, we restrict ourselves to the case of
low volume fractions, e.g. below 10%, such that the change, with dislocation position, in APB area (figure 1) and
in the extent of the fault in the interface can to a first order be neglected.

As one dislocation moves forward by an increment 8x, virtual work is done against the back stress at the position of
the dislocation considered. The total energy balance is composed of the work done by the external shear stress, the
work done by the mutually repulsive stress on the partials and the change in APB aréa. For the leading dislocation
(1) at x = x; we get:

Tb L8k +—-L-8x—yp-L-8x = 1(x)-b-L-8x
w (4a)

where 1 is the external shear stress, L the dispersoid spacing, o = Gb%/25x with the shear modulus G and ¥ = 1 for
screw and k = 1 - v for edge dislocations, v is Poisson's ratio, and T (x;) the back stress on dislocation (1) due to
the particle, as given by equation 2. 4

Similarly we get for the trailing dislocation (2) at x = x

T-b-L-8x—— L-8x+79-L-3x = t(xp)-b-L8x
w

(4b)
Equations 4 can be combined to give:
& o= T(X]) +1 (Xz)
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This result means that in the present approximation the shear stress 1 required to move the superdislocation from
any position is given by the arithmetic mean of the back stress values at the positions of the two partials. Some
special cases, in which the leading dislocation is situated at the point of detachment, are illustrated in figure 3:

a)  If the spacing of the partials exceeds the particle diameter d (figure 3, case a), then 1(x7) =0 and the
detachment stress for the leading dislocation is reduced to half its original value.

b)  If the spacing is such that the trailing dislocation sits at the point of the climb barrier maximum (figure 3,

case b), then the detachment stress for dislocation 1 is reduced only by a small amount. This is the optimum
case, with the detachment stress being given by the average of egs. 3a and 3c:
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c) If on the other band, dislocation 2 resides in the valley of the stress profile (figure 3, case c), then it aides
dislocation 1 in the detachment process, to the extent that the detachment stress for that dislocation can become
negative. This case provides a lower bound on the detachment stress:

Td m_khﬂm
B, -~
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Figure 4 shows the resulting detachment stresses as a function of w/d. It is clear that the detachment stress is at
maximum when i) w/d = 0 (no dislocation splitting), and ii) w/d = 0.55 (case b above). The position of the second
maximum is relatively insensitive to the value of k. It dominantes over the first maximum when the attractive
interaction is small (k = 1).

The resulting detachment stresses can also be plotted as a function of k (figure 5). Note that in the range of k values
usually encountered (0.8 <k < 1.0) the variation in detachment threshold can be enormous. Only for exceptionally
attractive particles (k < 0.7) can a narrow range for the detachment stress be expected.

i ion an

The model for the effect of an ordered matrix on the particle-dislocation interaction at high temperatures, as
presented here, still contains many simplifying assumptions. Probabiy most seriously, we have neglected the
change in APB area near the particle, and we have not considered the fault that may develop between the partials in
the particle/matrix interface. In addition, we have only treated the effects on the athermal detachment stress. Further
work to include thermally activated detachment and the statistics of the processes is currently in progress.

Nevertheless, even this simplified formulation leads to some possibly interesting conclusions for alloy design. It is
striking that for a fixed partial spacing w, i.e. for a given APB energy, there appears to be an optimum particle size

w
dopt = .55

Because of the inverse dependence of w on the APB energy g, dgp is inversely proportional to Y.

In practice, this optimum may be difficult to achieve in a given material. The second best strategy would then be to
choose a dispersoid size well in excess of w, in order to fulfill the requirement w/d = 0, corresponding to negligible
dislocation splitting.

A first estimate for the dispersoid sizes required in two different intermetallics leads to the following conclusions
f16/: For NiAl, with vy =~ 800 mJ/m? and w = 0, a particle size of 10 nm should give good results. By contrast,
in Fe-40at%Al, with yg = 150 mJ/m?Z and w =7 nm, much larger particles (of order of 50 nm) would be
required. We suggest that the relatively inconsistent creep strength data of dispersion strengthened Fe-40at%Al, as
compared to the much more consistent NiAl /16/, may be accounted for by this effect.

Summary

We have presented a first model for the effect of superpartials on dispersoid-dislocation interactions relevant for
creep strength of dispersion strengthened intermetallics. The analysis indicates that the particle size, relative to the
spacing of the superpartials, can have a significant effect on the creep strength. This result suggests a connection
betwéen the APB energy and the optimum particle size in dispersion strengthened intermetallics.
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Fig. 1: The effect of an ordered matrix considered in
this paper: dispersoid-dislocation interaction in a
disordered matrix (left) is altered by the mutual forces on
the superpartials (right).
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Fig. 2: Shear stress ¢ on the dislocation

(normalized by the Orowan stress 1g) vs.
position x along the particle of radius r. Glide
plane is assumed to intersect the particle near its
equator,
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Fig. 4;: The detachment stress for the leading
partial with the aid of the trailing partial, as a
function of partial spacing / dispersoid diameter,
d=2r.
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Fig. 3;: The effect of the spacing w between

superpartials on the detachment stress of the

leading pardal:

a) w>d

b) w=0,55d

¢) w=0,45d, where d = 2 r is the dispersoid
diameter. The arrows indicate the resulting
stress level for detachment in the three cases.
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Fig. 5: Bounds on the detachment stress for the
leading partial as a function of the relaxation
factor k (eqgs. 6a and 6b). Also shown are the
detachment stress (eq. 3c) and the average climb
stress (eq. 3b) for the disordered case (broken
lines)
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