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fkbstract—The effect of hard particles of low volume fraction on the creep strength is studied theoretically
in & two-part paper. Here in part I, the kinetics of dislocation climb over a particle is modelled assuming
that the particle does not exert an attractive force on the dislocation (‘“non-interacting” particle). The
shape of the climbing dislocstion is given by a minimum energy condition, which is shown to rule out
p}lre]y ‘-‘locn[" climb (as considered in previous models). A natural power-law dependence of the
dislocation velocity on the applied stress, with » ranging from about 3 Lo 4, is obtained, and oaly a small
threshold stress can be identified. The resulis appear compalible with the creep behaviour of alloys
strengthened by coherent precipitates, but are totally at variance with experimental threshold stress data
for materials with incoherent particle dispersions.

Résumé—Nous présentons dans un article en deux parties une étude théorique de Peffet des particules
dures de faible fraction volumique sur In résistance au fluage, Dang cette premiére partie, nous modélisons
Ia cinétique de la montée d’une dislocation qui franchit une particule en supposant que la particule n’attire
pas la dislocation (particule non interactive). La forme de la dislocation qui monte est donnée par une
condition d'énergie minimale qui exclut la montée purement “locale” que I’on considérait dans les modéles
précédents. Nous trouvons que la vitesse des dislocations varie en fonction de la contrainte appliquée selon
une loi de puissance naturelle, avec # variant d’environ 3 4 4; nous n'avons pu identifier qu'une faible
contrainte-seuil. Les résultats semblent compatibles avec le comportement en fluage des alliages durcis par
des précipités cohérents, mais ils sont en désaccord complet avec les résultats expérimentaux concernant
le senil de contrainte dans les matérirux comportant des dispersions de particules incohérentes.

Zusammenfassung—Der Einflub harter Teilchen in geringem Volumanteil aufl das Kriechen wird in einer
zweiteiligen Arheit theoretisch behandelt. In diesem ersten Teil wird die Kinetik des Kletterns von
Versetzungen iiber ein Teilchen betrachtet. Im Modell wird angenommen, daB das Teilchen keine
attraktive Wechselwirkung mit der Versetzung aufweist (‘nicht-wechselwirkendes’ Teilchen). Die Form der
Kletternden Versetzung wird durch eine Bedingung minimaler Energie bestimmt, welche -wie gezeigt wird-
reines “lokales” Klettern (welches in friiheren Modellen betrachtet worden ist) ausschlieBt. Es ergibt such
eine natiirliche Potenzgesetz-Abhiingigkeit der Versetzungsgeschwindigkeit von der duBleren Spannung,
wobei # zwischen 3 und 4 liegt; nur cine kleine Schwellspannung kann gefunden werden. Die Ergebnisse
scheinen mit dem Kriechverhalten von Legierungen, die durch kohérente Ausscheidungen gehiirtet sind,
vertriiglich zu sein, Sie sind jedoch vollstandig unvertriiglich mit experimentellen Ergebnissen iiber die
Schwellspannung von Materialien mit Dispersionen inkohiirenter Teilchen,

1. INTRODUCTION
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The presence of hard particles can improve the
mechanical behaviour of metallic materials at high
temperature in different ways. Alloys which are
strengthened by coherent precipitates, for example,
exhibit higher creep resistance [1-3] than the particle-
free matrix, provided the particle microstructure does
not degrade too rapidly during the thermal exposure.
Dispersion strengthened high temperature alloys ex-
ploit another, much more pronounced effect: the
incoherent . dispersoid particles introduce’ a clear
threshold stress below which the rate of creep defor-
mation is negligible and stress rupture lives become
exceedingly large, e.g. [4-10].

How these technically important effects can be
explained in terms of dislocation theory has been
discussed in the literature over the past 15 years
[9, 11-15], but the mechanisms are not as yet fully
understood, There is general agreement that at high
temperatures and relatively low stresses both non-
shearable dispersoids and shearable precipitates are
climbed over by lattice dislocations. It is this climb
mechanism (rather than particle cutting or Orowan
bowing, which predominate at higher stresses and/or
lower temperatures) with which the present paper—
part 1 here and part II [16]—is concerned,

. Up to now, two kinds of models for dislocation
climtb over particles have been put forward:

—models based on the “local climb” assumption,
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glide plane

glide plane
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Fig. 1. Schematic profile of a dislocation climbing over a

cube-shaped particle, according to different model assump-

tions: (a) “local” climb, with a sharp dislocation bend at C,

and (b) “general” climb, where the high curvature at C is
relaxed by “unravelling”.

which postulate that the climbing dislocation segment
profiles the dispersoid, and the dislocation between
the dispersoids remains in its glide plane [11,13]
[Fig. 1(a)], and

~-models based on “gencral climb”, in which the
dislocation is allowed to “unravel”, i.e. to reduce,
under the action of its line tension, the high curvature
at the point where it meets the dispersoid [12, 14] [Fi E.
I(b)].

Whether or not a threshold stress for dislocation
climb is predicted by these models depends sensitively
on which dislocation geometry has been postulated
[15]. During “local” climb a significant amount of
new dislocation line has to be created, leading to a
threshold shear stress which depends on particle
shape and is roughly given by [11, 13]

th(0.4...07)7 (1)

where o is the Orowan stress in shear [see equation
(2) below]. Although this is a correct order-of-
magnitude estimate for creep thresholds measured in
dispersion strengthened materials, it can be argued
rightly [12] that “local” climb is an extremely un-
stable process: the sharp bend in the dislocation,
which is instrumental in producing a threshold stress,
can be rapidly relaxed by diffusion, leading to more
“general” climb. For “general” climb, however, only
small [9, 14, 15] threshold stresses are predicted; de-
pending on the particle statistics, it can lie about as

low as 0.04 fi, (where f is the particle volume
fraction). Therefore, while the exact dislocation shape
which would be appropriate is still controversial, it is
likely that the agreement of the “local” climb theary
with threshold stress values for dispersion strength-
ened materials is fortuitous.

Besides the energetics of the climb process itself, an
attractive particle—dislocation interaction has been
suggested as another reason for the existence of a
threshold stress [17-21]. This hypothesis is supported
by TEM observations of dislocation structures in
crept dispersion strengthened alloys [18, 20]. An at-
tractive interaction may also localize climb; but since
only the energetics of this attraction, with fixed
dislocation geometry, has been considered so far, its
effect on the climb kinetics is unknown. What is
lacking therefore is (i) a kinetic analysis of dislocation
climb over particles without arbitrary assumptions on
dislocation shape, and (ii) a study of the effect of
particle—dislocation attraction on this kinetics.

The present paper reports on part I of a theoretical
study carried out with the aim to fill these gaps in the
fundamental understanding of particle strengthening
at high temperatures. We treat, to a good approxi-
mation, the full kinetics of dislocation climb over a
“non-interacting™ dispersoid particle of simple shape,
under only one assumption concerning dislocation
geometry: the climbing dislocation segment is re-
quired to have constant chemical potential for
vacancies along its length (minimum energy assump-
tion). Attractive interactions and their implications
for the kinetics of climb are dealt with in part I [16].

2. THE STRUCTURE OF THE MODEL

The geometry of the model follows the earlier
approaches by Brown and Ham [11] and Lagneborg
[12]. Consider a dispersion of particles with low
volume fraction f and mean planar spacing 24, The
particles have rectangular cross section, with edge
length d; their faces are inclined at an angle f§ to the
slip plane of the dislocations [Fig. 2(a)]. It is assumed
here in part T that except for the short-range re-
pulsion, no attractive or long-range repulsive inter-
action between particles and dislocations exists; in
this sense we will call the particles “non-interacting”.
The line energy of the dislocation is taken as constant
over its entire length.

The shear stress necessary for particle by-pass by
athermal dislocation bowing is given by the Orowan
stress, which in its simplest form is

Gb

To= 27 @
where G is the shear modulus of the material and b
the magnitude of a lattice dislocation Burgers vector.
Under the action of a shear stress below the Orowan
stress, dislocations glide a short distance until they
become pinned by the dispersoids, As the dislocation
now climbs up on the particle to position z (Fig. 2),
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Fig. 2. Geometrical details referred to in the development of
the present model: (a) perspective view, identifying particle
height /1, edge lenpgth 4 and ramp angle fl, and the dislocation
shape parameters x,, z;; (b) projected view after rolling out
the cylindrical surface (BCD) onto the plane of the paper.
The dislocation segment BD is assumed to be a circular arc
in this projection. The x-axis runs along CD. GP = glide
plane.

it leaves its glide plane, under the action of its line
tension, up to an unspecified distance x; from the
particle surface. The projected shape of such a dis-
location is shown in Fig. 2(b): a straight horizontal
line at the particle (A—B) which links up with a
segment in the matrix (B-D). As in [12], the segment
is assumed to have comstant curvature when the
cylindrical surface on which it lies is rolled out onto
a plane—an assumption which simplifies an other-
wise intractable analysis, Because the projected glide
plane must be tangent to the circular segment at x,,
the dislocation position and shape are uniquely de-
scribed by specifying z; and x,.

In the present model the extent to which climb is
localized at the particle will be determined by equi-
librium: for a given z;, the unravelling distance x, is
fixed by the condition that the driving forces for
vacancy absorption along AB (due to the applied
stress) and along BD (due to dislocation curvature
out of its glide plane) be identical; otherwise a
short-range diffusive flux would rapidly establish this
equilibrium The driving force for dislocation climb
is then given by the chemical potential p,pp along
ABD; it will be calculated in Section 3.

In order to surmont a dispersoid by climb. a
positive edge dislocation like the one shown in Fig.
2 absorbs vacancies which it receives by diffusion.

Two diffusion paths are possible [13]; either pipe
diffusion from the neighbouring particle (where on
average the dislocation will be climbing in the op-
posite direction) or volume diffusion (from a source,
defined to be at infinity, with a vacancy concentration
corresponding to thermal equilibrium). The resulting
forward velocity dy/dt of the dislocation is deter-
mined by the flux of vacancies arriving al segment
A-D. Therefore dy/dt is derived from Fick's law,
giving

dy | #apn (60: 20)|

b -

dt Caeta =G |dA app/dy (xp, 2)| i
Aapp is the area under the climbing segment A-D,
projected in the direction of the Burgers vector, such
that (dA4,pp/dy) is proportional to the number of
vacancies required for a unit advance of the dis-
location. C; is a kinetic constant which for volume
diffusion control is approximately equal to [13]

2 Dd
kpTh

C,= C)
If pipe diffusion from the neighbouring particle is
rate-limiting then [13]

a,D,
e kmiﬂb

D, is the volume diffusitivity, D, the pipe diffusivity,
and kpT the thermal energy. The linearity in |u| in
equation (3) holds only for |u|<kyZ which is
satisfied for particles larger than a few nm.

Equation (3) expresses the trade-off between the
kinetics and the energetics of the dislocation process:
if climb is “general”, i.e. x, is large, the additional line
length and the resulting energy penalty are small,
leading to large |u|, but the number of vacancies
needed to support this long-range climb process
(proportional to d4,p/dy) is also large, which slows
down the rate, Conversely, if climb is nearly “local”,
much additional line energy has to be expended, but
fewer vacancies are necessary; thus the process is fast,
provided the applied stress is sufficiently high to allow
enough new line length to be formed. This kinetic
argument has been put forward by Shewfelt and
Brown [13] to support the “local” climb hypothesis,
but as will be shown, for energetic reasons climb is
never truly local in the absence of an attractive
particle-dislocation interaction.

)

3. THE EQUILIBRIUM DISLOCATION PROFILE

First we establish the chemical potentials for
vacancies along the dislocation segments A-B and
B-D, and then equate them to obtain the equilibrium
value of x,. Despite the simple particle shape, the
mathematical treatment is complicated; the reader is
referred to the Appendix and to [22] for details. The
symbols used are listed in Table 1 of part IT [16].

T s I S e R
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The driving force for adding vacancies to the
dislocation segment AB is the work done by forward
glide of the entire dislocation when it climbs higher
at the particle. At the same time, extra dislocation
line of infinitesimal length d/ and specific energy Typ
has to be created along B-D. As a result, the chemical
potential along A-B is (Appendix)

2a al TAb
= = —_ — |, 6
£ [TBD (azﬂ)ffnn tanfs ] ©

Here a, = b? is the cross sectional area of a vacancy
and 7 the applied shear stress. The line length
differential is well approximated by

9/4
(ﬂ) gl——( —-@) : (M
azﬂ App Xo

Note that p,; becomes more positive with increasing
Zof %o Because z,/x, always increases during climb, the
driving force at AB diminishes as the dislocation
climbs up the dispersoid.

Along BD, the driving force for adding a vacancy
is the resulting reduction in dislocation curvature.
Thus the chemical potential is (Appendix)

1 1
Mpp = ~Tpp 8, ~ ——
BD BD P T o)

where the radius of curvature p of the dislocation
depends on x; and z,

_Zo| (% 3
p = 5 [:(Z_n) + 1]. )]

The square-root factor in equation (8) accounts ap-
proximately for the screw component of the edge
dislocation in the vicinity of the dispersoid. We nole
that ppy is always negative, with its absolute value
decreasing as the dislocation unravels.

The equilibrium shape x,(z,) is obtained implicitly
by equating p,p and ppp

Xp=d { /1 — (t /) (?-1—?)

0 0

T 1 Z\M -
[+ (-2 T

This equation can be solved numerically, The results
are shown in Fig, 3, with two dislocation profiles
illustrated in Fig. 4.

By inserting the result in equation (6) [or equiy-
alently in equation (8)], the equilibrium chemical
potential along ABD is obtained. Also the increment
of the area under the dislocation can now be ex-
pressed as a function of z (see Appendix). The final
solution for the dislocation velocity is obtained by
inserting equation (6) (or 8), using equations (M (or
9) and (10), and an expression for the area increment,
in equation (3). Integration yields the time for a dis-
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Fig. 3. The equilibrium unravelling distance x; as a function

of zy, both in units of the particle edge length  [equation

(10)], for § = 45°, The perameter shown is the applied siress,

in units of the Orowan stress. Note that truly local climb
(xo =0) is never stable.
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Fig. 4. Calculated dislocation profiles in the vicinity of a
cube-shaped particle with ramp angle f = 45° after equi-
distant time steps At [same projection as in Fig, 2(b)]. The
particle (shaded) appears distorted as a result of different
scaling of the axes. The abscissa coincides with the trace of

the plide plane. (2) At an applied stress T = 0.4 T, Biving &

by-pass time #,=2.3 x 107 (arbitrary units), and (b) 7 = 0.8
T With' & by-pass time 1, = 3.5 x 108 (same- units), Note
increasing climb localization on increasing stress,
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location to complete climb over a given particle

Fmux 1
fe—.[ mdy- (11

Ymin

Results of these calculations, which can only be
carried out numerically, are illustrated in Figs 7 and
g and will be discussed in Section 5.

4, THRESHOLD STRESS DUE TO RESTRICTED
CLIMB

The calculations described above apply strictly
only for the case of infinite particle spacings (zero
volume fraction), such that the unravelling process
can occur up to arbitrarily large values of x;. In a
random array of particles with finite volume fraction,
a dislocation will thread over and under neighbouring
particles, which makes the midpoint between them a
limit for x, (see Fig. 5). The maximum value of x, is
given by

xg = . arcsin — (12)
‘ /1o 1y

Further particle bypass occurs by a process which we

call “‘restricted” climb: x, stays fixed and the dis-

location can reduce its curvature only by tilting at

xf™, not by further unravelling.

Restricted climb introduces a small, but finite
threshold stress for the following reason. Eventually,
at sufficiently small strain rates, the dislocation be-
comes & straight line in projection (see the calculated
evolution of the dislocation profile in Fig. 6). To
reach this minimum energy configuration, a small
increment in line length is necessary; this is the origin
of a threshold stress for climb, as has been realized
before [13-15]. We neglect the possibility of “co-
operative” climb as addressed by McLean [23], which
is unlikely in alloys with particles of small valume
fraction,

For calculating the chemical potential at AB in the
case of restricted elimb, the new line length increment

Xg.2p)

B{0,2;)

GP M
C10,0)  pylees )

Fig. 5. Schematic profile of a dislocation after unravelling
to the midpoint M between two particles, giving rise to
“restricted” climb, Same projection as in Fig. 2(b).
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Fig. 6. Calculated dislocation profiles for © = 0.08 7, after
equidistant time steps Ay, showing climb restriction at Af
(same particle geometry and projection as in Fig. 4).

has to be worked out under different boundary
conditions than before. The result is (see Appendix)

2a, Xy g TAb
Ae=—1| T} - 13
luAB d [ BD ( 2zr + x.ﬁnn;) taﬂﬂ] ( )
with z, and xJ™ shown in Fig, 5.

At BD, the chemical potential phn is given by
equation (8), with

pe=~/zi + (% — ™) (14)

substituted for p (Fig. 5, Appendix).

A dislocation normally starts in unrestricted climb
and the equations of Section 3 apply. The transition
to restricted climb occurs when x; = x™*. From then
omn, pap [equation (6)] has to be replaced by phy. By
requiring phg = php, the equilibrium value of z is
determined as a function of z,. Substituting equation
(13) for p in equation (3) yields the dislocation
velocity during restricted climb.

The threshold stress is identified by setting uhy =0
with z, = 00 and z;=h

I{h _ h

—= —t : 15

m sin (A anﬁ) (15)
This reduces to

th A

s L 16

Sl (16)

for small volume fractions and § = nf4. This expres-
sion has the same form as the “general” climb
threshold obtained earlier [13, 15] for spherical par-
ticles of radius r, which amounts to r/24,

5. DISCUSSION OF RESULTS

The important feature of the present theoretical
model is that it allows for different degrees of climb
localization at the particle, depending on applied
stress, and does not impose a specific shape on the
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dislocation in the vicinity of the dispersoid (as in
earlier models, except Lagneborg’s [12] in which the
kinetics however is hidden in a factor 4). The
unravelling distance x, which is a natural con-
sequence of the equilibrium condition, increases with
decreasing stress, as shown in Fig, 3. This behaviour
is intuitively reasonable: because climb at the particle,
unlike the unravelling process, is driven by the ap-
plied stress, climb is more localized at high stresses.
Because of the simple correction for the screw com-
ponent of dislocation segment BD the mode! becomes
unstable close to the Orowan stress, therefore the
maximum stress shown in Fig. 3 is 0.95 75. The
dislocation profiles which result at a low and a high
stress value are shown in Fig. 4.

The equilibrium assumption strictly rules out
“local” climb: even at high stresses the value of x; is
always greater than zero. As expected, the sharp
bends necessary for “local” climb are unstable and
are always relaxed to the equilibrium curvature be-
fore climb at the particle continues. It will be shown
in part II [16] that & sharp bend can however be in
equilibrium if an attractive particle-dislocation inter-
action exists.

The assumption of constant chemical potential
along the climbing dislocation line is of course a
simplification; it implies that, from one particle to the
next, the chemical potential varies discontinuously
from + | ¢ | to —|p|. In reality a continuous gradient
will develop, subject to the appropriate Laplace
equation. Taking this effect into account would how-
ever drastically complicate the formalism of the
model calculations. The error introduced by our
simplifying assumption is not expected to be substan-
tial: in fact at low unravelling distances, where the
exact shape of the dislocation exerts a large influence
on the driving force for climb, it is negligible.

The varying degree of climb localization exerts an
important influence on the crecp rate in particle-
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Fig. 7. Schematic illustration of dislocation velocity vs

normalized stress T/t for “non-interacting” particles. The

dominant dislocation processes are identified. The dashed

line gives the climb velacity neglecting particle by-passing by
Orowan bowing.
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Fig, 8. Normalized dislocation velacity (1/1)/(1/t}) vs

tftg for different particle heights 4 and ramp angles g

with dfA=0.05 and 1/t* =60-C;-Gb* (1/d)’. Note that

the threshold stress zf, due to restricted climb is sensitively

dependent on particle geometry whereas the slope n in-

crenses only slightly with increasing ramp angle § and aspect
ratio A/d,

strengthened materials: with increasing stress fewer
vacancies are required to support the equilibrium
climb process, because the increment of the area
under the climbing dislocation (d4,pp/dy) falls rap-
idly as climb becomes more localized; at the same
time, the dislocation curvature becomes higher when
it unravels only over a short distance, and the driving
force |u| for climb [equation (8)] increases. Both
effects speed up the kinetics of climb on increasing
stress, Therefore the stress exponent » of the creep
rate will be higher than would be expected for a
dislocation with fixed climb geometry. This is illus-
trated in Figs 7 and 8, where the dislocation velocity
(i.e. the reciprocal of the time for dislocation climb
over a given particle) is plotted as a function of the
normalized stress. The stress exponent varies from
about n =3 to 4, depending slightly on the particle
parameters. It is emphasized that stress-induced
diffusional processes generally lead to a linear stress
dependence; the additional stress sensitivity of the
creep rate is a natural consequence of the varying
climb localization.

For the sake of completeness, the threshold stress
due to restricted climb is also shown in Figs 7 and 8,
although it is of little practical significance, Equation
(15) predicts very small thresholds for low-volume
fractions of particles, unless their aspect ratio 4 Jd and
ramp angle £ are high. Also the present analysis gives
only an upper bound, because—as has been shown in
[15] and [9]—the statistics of a real particle distri-
bution can lower this value by about an order of
magnitude.

At high stresses, an essential modification has been
incorporated in Figs 7 and 8 On approaching the
Orowan stress, an increasing number of particles are,
by-passed by Orowan bowing. This effect of com-
bined climb + Orowan bypass has been modelled in
a simple way by Arzt and Ashby [15), They argue that
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in a random array the fraction of particles which are
not by-passed by Orowan looping and therefore must
be climbed over by the dislocations, is roughly

T
Ho=1——.

%o

(17

To simulate the transition to Orowan looping, the
bypass time has therefore been multiplied by n,. The
uncorrected creep rate is indicated in Fig, 7 by the
dashed line.

Curves like the ones shown in Figs 7 and 8 have
been calculated for several sets of particle parameters.
Since these values enter the calculations in a compli-
cated way, the results were fitted to simple expres-
sions. They can be condensed into the following form

-:;ﬂ%:d'ci‘fi -(T ::f“)" (18)
where

1= 3.500 C-:)M (19)
and

A = 60- 10-’-‘)!‘-(;—:)]'6 20)

Ciis given by equations (4) or (5), 1§, by equation (15)
and o by equation (2).

Inserting for C; and 1,5, and taking n =3, the
following dependences of the dislocation velocity v on
the particle parameters are found

z:v'*-zflc:‘c}'zt:‘ca’2 21)
e S f
for volume diffusion, and
1 3)2
v o (7) (22)

for pipe diffusion. Hence for a given volume fraction
J: the creep retardation is expected to be higher for
small, closely spaced particles in the first case, and
insensitive to particle size and spacing in the latter.

When predictions of the present theory are com-
pared to measured creep data, it must be borne in
mind that comparison of absolute values ol creep
rates are bound to remain speculative. One reason is
the sensitivity of the dislocation velocity to particle
geometry and distribution; to include the statistics of
the climb process, a computer simulation of a dis-
location climbing over an irregular array of particles
with random #, ¢ and B is presently being developed.
Second, the translation of dislocation velocities into
creep rales requires quantitative knowledge of the
mobile dislocation density, which is usually not
available.

What can be compared however is the stress sensi-
tivity and the magnitude of the threshold stress. The
model predicts stress exponents for the dislocation

i
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velocity which are not very sensitive to the particle
parameters [equation (19)] and range from n =3 to
4. If a stress exponent of 2, accounting for a quadratic
stress dependence of dislocation density, is added,
then » lies in a range which is typical of the stress
dependence of the creep rate in precipitation
strengthened alloys at low stresses [1-3]. That the
frequently observed break in strain rate curves can be
interpreted as being due to the transition from climb
to particle cutting or Orowan bowing has been
concluded earlier by Lagneborg and coworkers
[2,12].

By contrast, the creep behaviour of dispersion
strengthened alloys cannot be explained in the frame-
work of the present model; their threshold stresses are
much too large to be identified with the threshold for
restricted climb. Their stress sensitivity, which in-
creases progressively with decreasing stress, thus can-
not be rationalized on the basis of the energetics of
dislocation climb over “non-interacting” particles.
Hence an additional effect, such as an attractive
particle—dislocation interaction, must be considered,
This will be done in part IT of this paper [16].

6. CONCLUSIONS

1. The kinetics of dislocation climb over hard,
“non-interacting” particles has been treated without
the usual arbitrary assumptions concerning dis-
location shape in the vicinity of the particle. Instead,
the equilibrium shape of the dislocation is calculated
subject to a condition of minimum energy. The
resulting dislocation velocities are expressed in ap-
proximate analytical form in equations (18)-(20).

2. The model predicts quantitatively the extent to
which climb is localized near the particle, Local-
ization increases with increasing stress but truly
“lacal” climb is always unstable. Because fewer
vacancies are required to support a more localized
climb process, a natural power-law dependence of the
dislocation velocily on applied stress, withn = 3 to 4,
is obtained.

3. The predicted creep behaviour is in qualitative
agreement with the behaviour of precipitation
strengthened alloys, which on decreasing stress show
a transition from (stress-sensitive) Orowan looping
to (less siress-dependent) climb. This conclusion
confirms earlier findings based on different model
calculations [12].

4, The existence of a well-defined thresholds stress
for creep of dispersion strengthened materials is
clearly incompatible with the current model. Only a
small threshold stress is predicted for equilibrium
climb which is of no practical significance. Low
volume fractions of small non-interacting particles
are thus incapable of producing significant threshold
stresses at high temperatures,
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APPENDIX

Calculations

Consider an edge dislocation in a positior as shown in Fig.
2. The chemical potential p,y along AB is defined as the
energy change in the system when one vacancy is inserted
at AB. We subtract the work done by the applied stress
when the dislocation advances by dy, from the new line
energy created along BD, and divide by the number of
vacancies required for this advance

dl
73 e dy — 'I.'lb d
= (ﬂy ) Aep ¥ d

—dd4
2. Can

v

Hap = (A1)
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The line length differential is evaluated with the boundary
condition of constant area under the segment BD, where no
vacancies are added. Taking the derivative and rearranging
pives a lengthy expression which depends only on (z,/x,) and
is well approximated by the following fit equation

(ﬂ> = tanﬁI:I — (l - ﬁ)m].
dy Amn Xo,

The increase in area under the segment AB is easily obtained
for the simple particle geometry assumed in the model

(A2)

Ay = tan fody. 3
By combining these equations, we get the expression for g,
given by equations (6) and (7) in the text.

The chemical potential pyp, along BD is obtained similarly
by expressing the infinitesimal energy change on inserting a
vacancy along BD

Hpp = . (Ad)

Now the line length differential is evaluated for fixed z,
because the segment AB stays in place. The area under the
segment BD), projected on a plane normal to the Burgers
vector, is tedious to evaluate analytically, We therefore take
into account only the initial angle 6 between the dislocation
and the y-direction at B, for which

1 —{t/m)%

Solving for the line length differential and correcting the
result for the projection effect as before, we get

( m) 1 1
04w/ P /T=(z/zo)

where p is given by equation (9) in the text. Equation (8)
then results for pgn.

Next we caleulate the increment in the area A ,pp under the
climbing dislocation segment AD as the dislocation ad-
vances by dy, projected onto a plane perpendicular to the
Burgets vector (which lies parallel to the y axis). The result
is required for computing dislocation velogities according to
equation (3).

We separate 4, in the following way

Appp = App + 4dup /1 — (z/70) (A7)

where A,y is the area under AB and 4, the area under BD,
with the square root factor accounting approximately for
the projection, as before.

From simple geometry we get

sinf = (A5)

(A6)

d
Apn=707 (AB)
and
XoZo | Xg [Xh
Ao =2070, "0
oD 2 4 (zo * zﬂ)
1/x} 2 2x,2,
—— = . in———. (A9
8(20 +zo) arcs:nx%+z5 (A9
Differentiation is now carrivd out as follows
dAjnp _ dAAB+ 04pp) dx,
dzy  dg éxy /5, dzg
04
+< az“") V1= (t/taf (Al0)
4]

where dx,/dz, is obtained from differentiating equation (10)
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in the text. The result for the area differential to be inserted
in equation (3) is then

dAABD dAADD
~LABD . —ABD an g,
i,

Ly

(Al11)

The final expression is complicated but still analytical and
numerical values of the dislocation velocity according to
equation (3) are easily calculated with a computer.

For restricted climb, the radius of dislocation curvature is
p. as piven by equation (14) in the text (see also Fig. 5). p,
must be substituted for p in equation (8) to give pfp To
obtain the chemical potential along AB, the line length
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differential in equation {A 1) must be evaluated subject to the
condition that x; is fixed. Taking the appropriate derivatives
again leads to an extremely complicated expressions for
which the following fit equation has been obtained

ary xﬂ““+ z ;

= = — anj.

. 2z, xp™ p
The resulting approximate expression for ply is given in
equation (13) in the text. The area increment dA,po/dy is

calculated for the new boundary conditions and incor-
porated in the numerical evaluntion of equation (3).

(Al12)



