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Abstract— Diffusional flow of a polycrystal is classically treated as a continuum diffusion problem : its rate is
calculated by solvingfor the diffusional flux of matter through or around each grainin a polycrystal, driven by
the stress acting on it. Many, but not all, experimental observations are adequately explained by this model.
Progressinunderstanding the discrepancies can be made by considering the microscopic processesinvolved in
diffusional flow ; the detailed nature, and number, of sinks and sources in the grain boundaries; and their
mobility. This paper treats these problems, and derives expressions for the rate of difusional flow when the
density of sinks and sources becomnes small, and when their mobility is limited by impurities, solutes, or
precipitates. The results become identical with those of the classical treatment in the appropriate lmits.

Résumé— On traite classiquement ’.coulement diffusionne! d*un polycristal comme un probléme de diffusion
continue : on calcule sa vitesse en trouvant la solution pour un flux diffusionnel de matiére a travers ou autour
de chaque grain d’un polycristal, mii par la contrainte qui lui est appliquée. De nombreuses observations
expérimentales, mais pas toutes, sont bien expliquées par ce modéle. On peut progresser dans la
compréhension de ces différences en étudiant les phénoménes microscopiques impliqués dans le flux
diffusionnel ; la nature précise et le nombre des piéges et des sources intergranulaires, ainsi que leur mobilité.
Cet article traite ces problémes et nous obtenons des expressions pour la vitesse du flux diffusionnel lorsque la
densité des piéges et des sources devient petite et lorsque leur mobilité est limitée par des impuretés, des atomes
de soluté ou des précipités. Les résultats deviennent identiques & ceux du traitement classique dans les limites
appropriées.

Zusammenfassung—Das DiffusionsflicBen eines Polykristalles wird klassisch als ein Problem der Diffusion
im Kontinuum behandelt: die FlieBgeschwindigkeit wird berechnet, indem der Materie-Diffusionsflull
durch ein jedes Korn hindurch und daran vorbei ermnittelt wird. Dieser Diffusionsfiu wird verursacht
von Spannungen auf die Komer. Viele, allerdings nicht alle experimentelle Beobachtungen k&nnen mit
diesem Modell erkldrt werden. Das Verstindnis der verbleibenden Diskrepanzen kann verbessert werden,
wenn die beim Diffusionsfliefen ablaufenden m}krnskoplschen Prozesse berticksichtigt werden. Hierzu
gehoren genaue Natur und Zahl von Senken und Quellen in den Korngrenzen, und die Beweglichkeit. In
dieser Arbeit werden diese Probleme behandelt. Es werden Ausgriicke fiir die Geschwindigkeit des
DiffusionsflieBens fiir die Fille abgeleitet, daB die Dichte von Senken und Quellen klein wird, und daB die
Beweglichkeit durch Verunreinigungen, Leglerungsatome und Ausscheidungen bestimmt ist. Die Er-
gebnisse gehen fiir entsprechende Uberginge in solche der kalssischen Behandlung {iber.
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L. INTRODUCTION

1.1. Theneed for an atomistic model for diffusional creep

When stressed, a polycrystalline solid can deform
plastically by the diffusion of single ions from one set of
grain boundaries to another. When lattice diffusion
controls the rate, the deformation is known as
“Nabarro—Herring creep” ; when, instead, transport is
predominantly by grain boundary diffusion, it is
common to call it “Coble creep”. In fact, the two
diffusional paths contribute simultaneously to the
creep, and it is best to think of the combination as a
single mechanism of deformation, which we will simply
call diffusional creep.

The standard treatments of dll'fusmnal creep (cited
below)are continuum calculations ; a grainis treated as
havinga certain diffusive conductance {described by the

“lattice diffusion coefficient D,) surrounded by a
boundary layer of thickness  with a higher diffusive
conductance {described by the boundary diffusion

coefficient D,). Matter flows via these two paths from
points of the grain surface on which compressive
tractions act to points where the tractions are tensile
(Fig. 1, left hand side). A basic unstated assumption is
that the entire grain boundary surface is a perfect sink or
source for matter. Then the rate of flow is determined
only by the rate of diffusive transport from one part of
the boundary to another.

This continuum treatment is remarkably successful.
The constitutive law it predicts is in good agreement
with many experiments on pure metals [1, 2]. But there
exists a body of observations on pure metals and
ceramics (Section 4.1), on impure metals and solid
solutions {Section 4.2) and on alloys containing a fine
dispersion of a second phase (Section 4.3) which cannot
be explained by the theory as it stands. These include:
creep-rates which are much siower than the continuum
calculation predicts; a non-linear stress dependence of
the creep-rate ; activation energies which are too high;
an unexpected dependence of creep-rate on grain size;
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Fig. {. The continuum model (left) contrasted with thediscrete
sink and source model (right).
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and threshold stresses below which no detectable creep
OCCUTS.

The explanation of at least some of these
discrepancies must lie in the details of how a grain or
phase boundary acts as a sink or source for matter.
Recent models for the structure of grain boundaries [ 3—
8] suggest a fairly well defined structure that would be
disrupted if atoms were removed from or added to it.
This led to the suggestion [9-11] that the boundary
surface as a whole does not act as a sink or source for
matter, but that a divergence of the diffusive flux of
matter can occur only at boundary dislocations which
then move in a non-conservative way in the boundary
plane (Fig. 1, right hand side). Electron microscopy [12,
13] reveals dislocations of the appropriate kind, in
densities which vary with stress, up to about 107 m/m?,
Their Burgers' vectors are not lattice vectors, and
therefore they are constrained to remain in the
boundary when they move.

The continuum model of diffusional flow must now
be modified in two ways. First, one must ask how the
rate of diffusional creep is altered by the presence of
discrete sinks and sources, and by their density (Section
2). And second—since the sinks and sources move
during creep—one must ask how their mobility
influences the creep-rate (Section 3).

The symbols used in the development are listed in
Table 1.

1.2. The continuum solution

Before proceeding to the microscopic models, we cite
the generally-accepted continuum solution for the rate
of diffusional creep [ 14-19].If the grain boundaries act
as perfect sinks and sources so that creep is diffusion
controlled, then a shearstress o, produces a shear strain-
rate Y given by
CQD

kTd °*
Here C is a constant equal to about 40, Q is the atomic
or molecular volume, 4 the grain size, k is Boltzmann’s
constant, T the absolute temperature and D, is an
effective diffusion coefficient given by

oD,
D =D,
eff Dt( d.Dl, ) (2)

7= (1)
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Table 1. Table of symbols

d grain size (m)

Ty melting temperature (K)

G shear modulus (N/m?)

Q atomic volume (m?)

D, lattice diffusivity (m?/s)

1) boundary thickness (m)

D, grain boundary diffusivity (m?/s)

D, diffusivity in particle boundary (m*/s)

D¢ effective diffusivity for diffusional creep (eq. 2}
(m?/s)

D, diffusivity of solute or impurity atoms (m?/s)

b Burgers’ vector of lattice dislocation (m)

by Burgers’ vector of grain boundary dislocation {(m)

b, component of b, normal to the boundary plane {m)

N, number of particles per unit area of grain boundary
(m™2)

Ny, number of particles per unit volume (m™3)

r particle radius (m)

! spacing of dispersed particles {=1 /«/ ) {m)

A shear strain, shear strain rate (—,s™ )

£ & tensile strain, tensile strain rate (— s7h

a5, 0, shear stress, threshold stress in shear (N/m?)

a, 0y tensile stress, threshold stress in tension (N/m?)

Oy normal traction acting on grain boundary (N/m?)

6, equilibrium stress at ith grain boundary
dislocation (N/m?)

U chemical potential (J)

Vais velocity of grain boundary dislocation (m/s)

N number of grain boundary dislocations per grain
face

P surface density of grain boundary dislocation
= N/d{m~*

E, self energy of dislocation per unit length (J/m)

M mobility of grain boundary dislocation (m?/Ns)

M; mobility of gb-dislocation in particle/matrix
interface {m?/Ns)

ng number of solute atoms per unit length of
dislocation (m ™ 1)

' infinitesimal length change per unit advance of gb-
dislocation in pure malterial

i) segregation coefficient for solute atoms around a
dislocation

Co solute concentration

Cb CZ}
constants of order 1

Ca, Cq,

n, number of particles, per unit length of dislocation,
that are by-passed by climb/glide in the particle/
matrix interface fm 1)

| number of particles per unit length of dislocation

(=1/(m™")

where D, is the diffusion coefficient for mass transport
through the lattice, and 4D, the boundary thickness
times the diffusion coefficient for mass transport in the
grain boundary. For simple tension, this constitutive
law becomes

e 3
where ¢ is the tensile strain-rate and ¢ the tensile stress.

2. THE DISCRETE SINK AND SOURCE MODEL:
DIFFUSION CONTROL

Figure 2 shows a square grain acted on by equal,
opposite,normal tractions o, at a temperature at which
self-diffusion can occur rapidly. The grain boundaries
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Fig. 2, Model of a grain under stress, showing the boundary
dislocations which climb as creep takes place.

contain an array of straight, parallel grain boundary
dislocations of spacing i. The array extends to infinity
(or to the samplesurfaces). When the boundaryactsasa
sink or source of matter, the dislocations climb in the
boundary; if one is lost at one grain corner (at steady
state), another is gained at another, so that the number,
per grain face, remains constant. Matter can be released
or absorbed only at the cores of the boundary
dislocations. In this section we consider how the
discrete nature of these sinks and sources changes the
creep rate—assuming that their mobility is high. In
Section 3, we consider what happens when their
mobility is limited.

2.1. Grain boundary diffusion

‘When transport is by boundary diffusion—the most
important case—the problem, given certain assump-
tions, can be solved exactly, We assume, first, that the
core ofa boundary dislocationisa perfect source orsink
for matter ; that is, that the chermical potential of matter
in the immediate vicinity of adislocation is that which is
in equilibrium with the core of a straight dislocation,
acted on by the local boundary traction, ¢,. Using the
same definitions and symbols as Herring [15] we have
that

(u—p,) = pto— 0,0 4)
where u is the potential of matter, g, that of vacancies
and pg that of matter in a standard, stress-free crystal. It
is gradients of (u— ) which drive the diffusive flux of
matter. Figure 3 shows schematically the distribution
of (u—p,) in a boundary: it varies linearly between
dislocations because there are no sources or sinks there.
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Fig. 3. The variation of chemical potential with positien across
one grain facet when transport is by boundary diffusion.
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Second, we assume that the dislocations are evenly
spaced, so that they all climb at the same speed. In the
infinite array of dislocations of which Figs 2 or 3is a
part, a dislocation which is out of place experiences a
force tending to restore the even spacing. Local barriers
to dislocation movement-—precipitates, for instance —
may disturb it, but we postpone discussion of this to
Section 3.

Consider the motion of the ith dislocation of Fig. 3.
Its velocity of climb, vy;, is determined by the difference
in the current of matter (atoms/unit length/second}
arriving at its core from its left, I,, and leaving on its
right, I'y. Then

Ip—1.)03
b = A 5
where b, is the component of the Burgers’ vector of the
grain boundary dislocation normal to the boundary
plane. The current to the right is given by

DB Dy (0121Q— 00
=Yy = 6
I =iz VA QkT( h ©)
and that from the left is
Dbé UgQ'—'G,‘_IQ X
I""QkT( h ) )

where o, ¢tc. are thelocal normal tractions acting on the
bhoundary at the site of the ith dislocation.
Assembling these results gives, fori =2to N—1,

_(SDbQ a."+I‘—'20-i+Ji_1 (8)
Pais = 5 kT /N
where N = d/his the number of dislocations in a single

grain wall.

If the first dislocation is a distance oh from the grain
corner, and the last is a distance (1 —a)h {rom its corner,
then equilibrium requires that

N1 140 2—u
)y Ut"“‘ﬁ( )'HTN( )“%N- (S)
2 2 2
By symmetry, the chemical potential at the grain

corners must be zero, and all the dislocations move at
the same velocity, which requires that

1 1
g _01(1+ ):UN_I“O-N(I_'-_]..“:E) (10)

and
1
G'H.l«—zcr,-—!-O’;_l "—-0-2—’0'1(1"_;). (11)
The solution to this set of equations is
o, = Ai*+Bi+C
where
_ 6a,
T 1—N?—6a+ 602
B — 60, (N —2u+2) (12)
~ 1—N?— 6o+ 602
C 60,[20* —(N +3)x+ N +1]
"1 — N2 — 6o+ b
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Fig. 4. Plot of equation (12) showing the variation ofchemi.cal
potential with distocation number N. The limitat N = ocisa
parabola, in agreement with the continuum model.

In the continuum limit of large N, the discrete
variable (ih) is replaced by the continuous variable x,

such that
o(x) = é{;—(l - -Z—) T,

giving a parabolic stress distribution at steady state (in
agreement with the result of Lifshitz [16] and Raj and
Ashby [19]). But as N becomes small, it is necessary to
describe the stress distribution by the discrete series
given by equation (12). It is shown in Fig. 4.

The dislocation velocity is given by substituting
equation (12) into equation (8). The result is

{13)

DA N 12, 14
Pdis = T d \N?—1+62—602)
Ttis a minimum when o = 4. The creep rate £, (Fig. 2)is
. pbnvdis
= POnbais 15
T (1)

where p is the surface density of boundary dislocations
(p = N/d). Inserting the minimum value of equation
(14) and noting that, for the stress state of Figs 1 and 2,
g, = 0, and y = 2§, we find

. 245D,00,{ N
[ TR Y

In the continuum limit (N large) the term in curly
brackets reduces to unity, and the expression is almost
identical with the classical Coble creep equation. The
only difference is the constant, 24 ; the calculations cited
earlier predict about 40. This difference is a con-
sequence of the idealised grain shape used here (which
permits no sliding) and our definition of grain size. The
important termis that in curly brackets : it describes the
slowing-down process of diffusional flow caused by a
limited number (N per grain) of discrete sources and
sinks. It is plotted in Fig. 5.

(16)

2.2. Lattice diffusion

When lattice diffusion contributes, the problem
becomes more complicated. Even when boundary
diffusion is not the dominant transport mechanism, it
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Fig. 5. Plotofequation (21) showing the reductionin creep rate
caused by a low density of boundary dislocations.

still smears out the localized character of the sinks and
sources. Instead of a point source (in the two-
dimensional picture of Fig, 2) each dislocation becomes
a line source broadened in the boundary plane. If these
lines overlap, the discrete nature of the sources and
sinks is lost.

The breadth, Z, of the boundary sources is the mean
free path of an atom in the boundary before leaving it
and entering the bulk of the crystal. It is given by [20]

AQ Ty
Z= \/ia exp (T{TT; ~rF>

where AQ = Q,—Q, and Q,is the activation energy for
lattice diffusion and Q, that for boundary diffusion ; ais
the atom size. The dimensionless quantity AQ/RT,, has
avalue between 6 and 10 for almost all the materials for
which data are available [21]. Taking 8 as typical, the
broadening Z/a decreases from 107 (or Z ~ 2 mm) at
0.5 Ty to 4 x 10% (or Z ~ 1 um) at the melting point.
This means that, unless N is small, the boundary will act
as a nearly perfect sink and source for lattice diffusion
at all but the highest temperatures.

(17

2.3. Threshold stresses in pure metals and ceramics

A boundary dislocation (like a lattice dislocation)
cannot end within the solid, It must either be
continuous, or link, at nodes, to one or more other
dislocations such that the sum of the Burgers’ vectors
flowinginto the nodeis zero. If this continuous line now
tracks across the irregular surface making up the
boundary between grains (Fig. 6) its overall length
fluctuates, and the nodes move along the length of the
dislocation line.

_— BOUNDARY
DISLOCATION

- DISSOCIATION
Fig. 6. A boundary dislocation on a grain boundary surface.
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Let the self energy, per unit length, of a boundary
dislocation be

Gb}

E, g —= (18)
where b, is the magnitude of the Burgers’ vector of the
boundary dislocation. If the dislocation segment of
length d moves a distance d over the grain surface, its
length fluctuates (and the nodes move) by a distance
which is proportional to d; let this be a,d (where
% & 0.2). Then, equating the work done by the applied
stress o, to the energy change for a length d of
dislocation gives
2

Opby— = aydE, (19)
This process occurs on both the source-boundaries and
those which act as sinks. The result is a threshold stress
in simple tension of

_ 2 ZCCObe

Tp 7 (20

(where we haveset b, /b, = ﬁ As avalue for b, we take
one third of a lattice dislocation Burgers’ vector). It has
magnitude for 10 pm grains, of roughly o,/G =~ 107°,
Data for threshold stresses are tabulated in Section 4.
They are of this general magnitude in pure metals.

An expression with the same form as equation (20)
was derived by Burton [22] using the idea that a spiral
boundary source,in operation, must acquire a radius of
curvature equal to half the grain size.

2.4. Conclusions : influence of discrete sinks and sources
on diffusional creep in pure materials

When the discrete nature of sinks and sources is
allowed for in calculating the rate of diffusional creep, it
is found that a correction factor must be applied to the
usual constitutive law [equations (1) or (3)]. This factor,
for boundary-diffusion control, is

2
o= (Nl;ll)
2

where N is the number of boundary dislocations per
grain face. Unless this number is very low (N =z 1), the
correction is close to unity {Fig. 5). For lattice-diffusion
control, diffusive broadening makes the factor even
closer to 1.

This is probably why measurements of diffusional
flow in pure materials are often well described by the
continuum equation (1) or (3). But the presence of line
defects which move when the boundary actsasa sink or
source has one important consequence: because the
defects move, their line length (and the associated
energy) fluctuates; this fluctuation leads to a lower-
limiting threshold stress for diffusional flow which, in
simple tension, is about

21

Gb,

d

g, ~

(22)
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3. THE INFLUENCE OF DISLOCATION MOBILITY
(THE “INTERFACE REACTION”)

When boundary dislocations move easily, diffusion
determines the creep-rate. But if a viscous drag, or a
friction, or a pinning force, opposes the motion of the
dislocations, then the material may creep more slowly.
When this is so, the creep is said to be “mobility-
limited” or “interface-reaction controlled” because its
rateis determined by local processes taking place at the
interface (the grain boundary) rather than by the
kinetics of long-range diffusion. Aspects of this idea
have been developed by Ashby [9, 107, Greenwood
[23], Burton [22, 24], Harris [25], Burton and Beeré
[26, 27] and Clegg and Martin [28], but no com-
prehensive treatment is available.

3.1. General rate-equation for diffusional creep with
limited dislocation mobility

When mobility is limited, creep involves two
dissipative processes: the motion of the dislocations
against a drag force, and the diffusive transport of
atoms across the grain. These are not alternative
processes ; both are necessary. Therate-equation can be
derived by equating the external work-rate (¢ per unit
volume) to the sum of the powers dissipated in the two
processes. This is equivalent to forming the harmonic
mean of the strain-rates of each, acting alone

11 1
=+ . (23)

&  Lairr  Emobility

For simple tension &4 is given by equation (3). The
dislocation velocity is related to the force F = a,b, per

unit length acting on it, and to its mobility M, by
vdl's = MF. (24)

Using equation {15) and converting to simple tension,
we obtain

2 Mpb?c

Emobility & 3 d

(25)

where p is the density of boundary dislocations. The
resulting rate-equation for simple tension is

CQDeffo-

) 3kTd?
£ = . (26)

CQDeﬂ'
T+ s
| 2kTMpb;d
This is the basic rate-equation for diffusional creep
including the effect of the interface reaction [9]. To

proceed further, we must develop explicit expressions
for M.

3.2. Solid solution strengthening in diffusional creep

A solid solution, or dissolved impurities, influence
diffusional creep in two ways. First, the proper diffusion
coefficient for mass transport depends on the
concentration and diffusion coefficients of the
components. When the stress is first applied,
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components with different mobilities move at different
rates, so that concentration gradients appear across
grains. In ionic solids, even a slight difference in
mobility between cation and anion causes charge
separation : the resulting field slows the faster moving
species and speeds up the slower until, at steady state,
all move at the same speed. In metallic alloys, the
concentration gradients may be larger, but their effectis
the same: at steady state all species move at the same
speed. The general expression for the steady-state flux
of an atomic species in a solid containing n species is
given by Lazarus [29]. In a solution containing atom
fractions C, and Cg of components A and B, the
diffusion coefficient for mass transport is

DADE
D, = Il S
C DB+ CyD}

where D/t and D? are the tracer diffusion coelficients of
the individual species. An analogous expression holds
for the grain-boundary diffusion coefficient.

But a steady-state may not be reached. Il grain
boundaries migrate into fresh crystal as diffusional
creep progresses, leaving a zone of changed compo-
sition in their wake, then faster creep, at a rate largely
determined by diffusion of the faster moving species,
becomes possible [30]. The appropriate diffusion co-
efficient is then

(27)

D, = C, D+ CyDE. (28)

An analogous expression holds for the grain boundary
diffusion coefficient.

The second, and more important, influence of a solid
solution is a consequence of the dislocation-like
character of the sinks and sources. Solute or impurity
atoms that differ from the host atoms in size,
compressibility, or charge, will redistribute themselves
in the strain field of each dislocation, as illustrated in
Fig. 7. The segregant exerts a drag on the dislocation,
limiting its mobility.

Let the excess number of impurity or solute atoms,
per unit length, be ng; and let vy, be the steady state
velocity of all dislocations, and F, be the force exerted
by a dislocation on a single solute atom. Then if the
solute moves with the dislocation, the force F, must
satisfy the Einstein mobility equation

D

Dajs = -I-(TT_ Fs (29)

e

// g O o

o~ MV
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\ o K O
O ~

Q-—=
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SEGREGATED
SOLUTE CONC €

Average Conc Co o °

Fig. 7. Impurities or solute around a grain boundary
dislocation. For modest binding energies, U, the segregated
zone is within a radius of a few b of the dislocation core.
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where D, is the diffusion coefficient for the solute (D /kT
is the solute mobility). Each solute atom exerts an equal
but opposite force on the dislocation so that

F = n.F, (30)
and the dislocation velocity v is
D
o= * \F 31
Vais (ans) ( )

The term in brackets is the dislocation mobility, M.
Calculation of n, are given by Cottrell and Jaswon
[31] and Cottrell [32]. Their calculations, much
simplified, indicate that the segregation s localised to a
cylinder of radius of a few b, within which the local
concentration C, is
U
c,=C — 32
d o €Xp kT (32)
where C, is the overall solute concentration and U is
the binding energy per atom. Then n, is given by
by bs

U
ns%——C(,::—CO expﬁ.

Q Q (33)

The binding energy U at 1000°C is typically [33] I to
3 kT giving

pbiCo
~ 34
ny = (34)
where f is between 3 and 20. We then find
M= D (35j
~ BkTBHIC,’

The dislocation mobility increases with purity (an
upper limit at C, = 0 is set by the intrinsic mobility
D,b/kT). 1t is severely restricted when C, is large.

To proceed further, we need an expression for the
boundary dislocation density, p. It is generally
proposed [34, 22] that

Co

=G5 (39)

p

where C, ~ 0.5 (this being the planar equivalent of the
equation p = C,0%/G*b* describing the dislocation
density within the grains). Then the creep-rate,
equation (26), becomes
CQDCNU
3kTd?

(1 G Day

§ = (37)

2C, do D,

In the diffusion controlled limit, this reduces to the
continuum equation (3) ; but in the mobility-controlled
limit, it becomes the equation for solute-drag limited
diffusional creep

. 2C Qo D,

S obility = S, 38
rmubx]ny 36kachod ( )
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Then the creep-rate varies as 0 and inverselyas d. Note
that this limit is the important one when

CB CyGby D
2C, do D,
that is, when impurity levels are high, grains are small,

and when temperatures are relatively low. When it is,
the activation energy is that for solute diffusion.

>1 (39

3.3. Particle hardening in diffusional creep

Several theories of the influence of particles on
diffusional creep have been put forward, but none has
gained general acceptance. Because diffusion rates are
notaffected by a small volume fraction of inert particles,
attention has focussed on the vacancy absorption and
emission on grain boundaries (the “interface reaction™).

Harris [25] assumes that vacancies are deposited
and emitted only at the grain boundaries but not in the
particle/matrix interface. The stress in the interface
increases until the nucleation of dislocation loops
relaxes it. This leads to a threshold stress, given by

=221 (40)
where b is the lattice Burgers’ vector, f the volume
fraction of particles and r their radius. Such punching
seems unlikely at the high temperatures of diffusional
flow (and loops have not been observed), Other ways of
relaxing the stress at the particles are discussed by
Burton [24], and Burton and Beeré [26]. The
alternative explanation [9, 10] is that vacancies can be
absorbed and emitted only at grain boundary
dislocations; particles pin the grain boundary
dislocations (just as they do within the grain), and a
threshold stress must be exceeded to make them move.

Consider a boundary surface which contains stable
particles, or voids, or other discrete obstacles (Figs 8and
9. In general, a boundary dislocation will interact with
discrete obstacles which have a modulus, or lattice
parameter, or chemical composition which differs from
that of the matrix. The interaction energy can be
negative (as with a void) or positive (as with a hard
particle); in either case, the energy of the dislocation
changes as it by-passes the obstacle, which therefore
exerts a pinning force K (equal to the derivative of the

GRAIN BOUMDARY
- SURFACE -~ -~

BOUNDARY —7 \ 1"
EISLOCATIONS
o [ ;
”&“

Fig. 8. Boundary dislocations interacting with discrete
obstacles in a grain boundary, single dislocations (left) and
dislocation pile-ups (right).
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LOOPING

Fig. 9. The details of the interaction of Fig. 8.

energy with respect to distance) on it. This force must be
overcome if the dislocation is to move, and leads to the
true threshold stress below which diffusional creep
stops. If the intrinsic mobility of the dislocation in the
particle/matrix interface is high, then the pinning force
can be calculated. The calculation requires the
adaptation to high temperatures and to grain
boundary dislocations of the classic Orowan calcu-
lation of the pinning of lattice dislocations by hard
particles. It gives the stress required to break a
dislocation free of particles of spacing [ as

C,Gb
I

Cor = (41)
where C5 ~ 0.8. The adaptation to high temperatures
(when climbis possible) has been treated numerically by
Shewfelt and Brown [36] and analytically by Arzt and
Ashby [37]. Theresult is simple: it is that the particles
introduce a threshold stress which is less than the
Orowan stress by a factor of about 0.4. We thus have,
for boundary dislocations, the threshold stress in shear
of

0.3Gb,
o, .

!

(42)

This o, is roughly a factor of 10 smaller then og,
because b, ~ 3b

But this alone does not account for the observed
effect of particles on diffusional flow. There is evidence
for a second effect. When a dislocation moves ina grain
boundary, its local or intrinsic mobility is determined
by the kinetics of atom rearrangement in the boundary,
and can be calculated [10]; it is

M=—17

(43)
(in unit of m?/sN) where C,, is a constant of about unity,
When dislocationsclimbin clean grain boundaries, this
intrinsic mobility is so great that it does not limit the
creep rate, which is controlled, instead, by Jong-range
diffusion across the grains. But when the dislocation
moves in the particle-matrix interface, it appears that
its local mobility is limited by the kinetics of atom
rearrangement in the particle or the matrix whichever is
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Fig. 10, The influence of grain boundary particles on the stress
dependence of diffusional creep, as prediced by equations
(A5){AR). The parameter shown is @/RT, where @, is the
activation energy for interfacial motion of a dislocation, d is
the grain size, &, is the continuum solution. (a} Linear plot,
{b) double logarithmic plot, where power-law creep is included
at high stresses.

slower. It is given by

T 44)

where D; is a coefficient characterising atom
rearrangement in the particle-matrix interface.
Measurements of particle-motion in a force-field ; of
particle-dragging by grain boundaries [38] and of
diffusional creep in dispersion-hardened materials (see
Table 4) all show anomalous activation energies and
temperature-dependent thresholds, which can be
rationalised in this way. It makes physical sense: a
dislocation which moves by climb-plus-glide in the
interface between two dissimilar crystals (or a crystal
and an amorphous solid such as silica) will do so at low
stresses only if the atoms in both phases undergo small
diffusive rearrangements as it passes.

This problem is analysed in the Appendix where it is
shown that when the mobhility of the dislocation in the
particle-matrix interface is very restricted (so that all
particles act at strong pinning points) the threshold
stress increases to the “Orowan” stress [equation (41)]

ARZT et al: INTERFACE CONTROLLED DIFFUSIONAL CREEP

for boundary dislocations

0.8Gb,
T

But M depends on temperature [equation (44)] so that,
over a range of temperature, M is neither high nor very
restricted. Then the strain rate depends on stress and
temperature in a complicated way (Appendix).

Theresults are illustrated in Figs 10and 11. Whenno
particles are present, creep follows the continuum
equation [equation (3)]. With particles, the material
behaviour at low stresses depends on the value of
QJ/RT. When T is low or Q; large, the dislocation
cannot move in the particle-matrix interface ; then the
Orowanthreshold [equation (45)] must beexceeded for
creep to occur. If, instead, Q;/RT is very small, motion
in the interface is easy and the lower threshold
[equation (42)] applies. In cither limit, the material
behaves like a Bingham solid, such that

(45}

Ty =

& oC (o —a,,) (46)

For intermediate values of Q,/RT the curves are non-
linear and lie in between the two limits approaching the
lower one at high stresses.

The expected temperature dependence of the creep
rate is shown in Fig. 11. With decreasing temperature
the activation energy changes from that for diffusion to
thatfor motion in the interface. Atlow temperatures the
activation energy is very sensitive to the applied stress,
because the stress determines the number of particles
which have to be bypassed by interfacial motion, which
is the rate-controlling step at all but the highest
temperatures.

Thereis one further complication. As creep proceeds,
particles tend to accumulate on the boundaries from
which matter is removed—those under compression
[24, 39]. A strain y = 2e removes a volume (y/2)d from
these boundaries. All the particles previously contained
in this volume, plus those with centres lying within the
particle radius r on either side of the boundary plane,

09 08
1 ]

1 | 1 |
1000 900 800 700

>t

TTC

ET/a
[m2K/sN] 107

0

Fig. L1. The influence of grain boundary particles on the

temperature dependence of diffusional creep, as predicted

by equations (AS)-{A8), The parameter shown is the stress
in MNm~™2,
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Table 2. Apparent threshold stresses for creep in pure metals

Material ~Grain size (qm)* Temperature (K) o, (MN/m?)° o,/ G References

Cd 80 — 300 300 0.2 7.5 x 10™¢ Crossland [40]

Mg 25— 170 425 - 596 0.88 — 0.09 6x 1073—6 x 1075 Crossland and Jones [41]
Ag 40 - 220 473 > 623 1.0-03 4% 1079 -+1.3 x 1075 Crossland [42]

Cu 35 523 - 573 0.6—+04 1.5x 1073 =1 x 107°  Crossland {42]

Ni 130 1023 0.2 3.5x107° Towle [43]
a-Fe 53 -89 758 — 1073 0.3 - 0.05 6x 1071 x 10"% Towle and Jones [44]
B-Co 35 - 206 773 = 1113 14— 0.6 9 x 1078 1.7 x 103 Sritharan and Jones [45]

* Grain size = 1.65 x mean linear intercept.

® Threshold stress in shear (g, = ao/\/ﬁ when the tensile threshold ay, is given).
¢ Shear moduli at the test temperature calculated from data listed by Frost and Ashby [46].

intersect it. The number of obstacles per unitarea, N 4 is

then
d

where N is thenumber of particles per unit volume ;if f
is their volume fraction, then
I

V —3
43

(47)

(48)
so that

_ 3pd+4n)f

N
4 8nrd

(49)

The mean spacing is now given by
PSR P
If(yd +4r)

This leads to a creep rate which decreases as defor-
mation proceeds.

(50)

4. COMPARISON WITH EXPERIMENT

4.1. Pure materials

Data for diffusional creep in pure metals and
ceramics are often well described by the continuum
equation with which this paper started [equation (3)];
discrepancies can usually be explained by the difficulty
of measuring d accurately, and by poor data for 8D,
This agreement is consistent with the model developed
here: when the dislocation density is adequate, and
their mobility is high, the rate-equations all reduce to
that of the continuum model.

The model does, however, predict a threshold stress
of general magnitude [equation (22}]

1 by
Og =~ 37 G.
Data for threshold stresses in nominally pure materials
are assembled in Table 2, They are generally small, of
order 107 % G. If b, is set equal to 1b (the Burgers’ vector
of the crystal) then the threshold siresses predicted by
this equation are about right.

4.2. Solid solutions

The diffusional creep of solid solutions is described
by equations (37) and (38), and illustrated by Figs 12

2
T NICKEL
T=848K
d=2Lpm
m—zz...Dam by Crossland
{1873}
o pure Ni
e impure Ni
© 10%%
& Cobfes=0
-
-
1060 /
25|
10
CoBfc,=5x10™
CoB/e, =507
26 i
101 1 10

STRESS, MN/m?

Fig. 12. The influence of solute on the stress dependence of
diffusional creep, as predicted by equation (37)(C, is the solute
concentration) ; experimental data by Crossland [42].

and 13. When solute drag limits the mobility of the
boundary dislocations, the stress exponent increases
from 1 to 2 (Fig. 12}, and the activation energy, evenin
the regime of Coble creep, reflects solute diffusion in the
lattice rather than boundary diffusion (Fig. 13). At low
temperatures and stresses, the creep rate can be
extremely sensitive to impurity concentration (Fig. 13).

T.%c
1000 730 500
T T

NICKEL
1MN/m?

1400
W0

a
[TI—

-9
2.0 s 20 25

Fig. 13, The influence of solute on the temperature dependence

of diffusional creep, as predicted by equation (37) (C, is the

solute concentration). Lattice self-diffusivity was used for the
solute diffusivity.
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This is in broad agreement with experiments.
Crossland {427 and Burton et al. [47] studied the effect
of impurities on diffusional flow in nickel. They found
that creep rates in commercial purity (99.5%;) nickel
were two to three orders of magnitude smaller than in
high-purity nickel. The stress exponent, 1 in the high
purity material, changed to 2, the activation energy
from 120kJ/molto 280 kJ/mol (compared with 115and
284 kJ/mol for grain boundary and lattice diffusion,
respectively [46]).

If the parameter Cof8/C; of equation (37) is set
equal to 0.005, corresponding to an impurity content
Cy= 0.5% with reasonable values for § and C), good
agreement is found (Fig. 12). The temperature
dependence shown in Fig. 13, too, is qualitatively
confirmed by the results of Burton et al. [47]. Similar
behaviour is found in zircaloy 1I, which, under
conditions favouring grain boundary diffusion in pure
zirconium, exhibits a temperature dependence charac-
teristic of lattice diffusion [48].

The theory predicts a change in the grain size
dependence of the creep rate from ¢ oc(1/d?) or 1/d* to
£oc{1/d) with increasing solute content. Such behav-
jour is observed in AlL,O; containing Ti and Mg as
impurities [497]. It also appears to be typical of
superplastic materials. Superplasticity occurs generally
in fine-grained two-phase alloys, each phase containing
a saturated solution of the other. In their rather
complicated mechanical behaviour it is difficult to
isolate the influence of the solute atoms, but for many
superplastic alloys the strain rate §is proportional to o2
[50-52); and many show £oco?/d as equation (38)
predicts: examples are Al-33% Cu [53], Pb—Sn [54],
Al-Zn [55], Sn—5%, {56], the last three of which were
replotted by Raiand Grant [53] onaxes of o vs(éd)'/* to
demonstrate this.

In summary, the idea that a solute or impurity drag
limits the mobility of grain-boundary dislocations
seems to have merit. In particular, it explains the
observation that, for many alloys, é cco¥/d and that
the strain rate can be very sensitive to impurity
content.

4.3. Materials containing dispersed particles

Particles increase the apparent threshold for
diffusional flowt (Table 3), and increase the apparent
activation energy (Table 4). The apparent stress
exponent rises, and can be come very large (e.g. 40).

The earliest reports of an influence of particles on
diffusional flow are on a two-phase hydrided Mg-0.5%
Zr alloy subjected to low stresses [66]; particle-free
zones were found on grain boundaries normal to the
applied stress and particle accumulations on longitu-
dinal grain boundaries. (Harris and Jones [67]
subsequently showed that the strain rates could be
inferred from the width of the precipitate-free zones.)

TIt is often difficult, in these materials, to distinguish
diffusional flow from power-law creep. The most reliable
indication of diffusional flow is the grain-size dependence.
We have selected data for which there was evidence of
diffusional flow.

Table 3. Apparent threshold stresses for creep in alloys and ceramics

Reference

Temperature (K) a, (MN/m?)? ¢, /G

Grain size (um)

Vol. FR (%}

Material

1365
1365
1365

1.3/25
1507490
120/1200

Ni-Cr-Al-ThO,
Ni-Cr-Al-ThO,

Ni-ThO,
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Crossland and Clay [62]
Evans and Knowles [63]

2x 107745 x 1073
6x107+—8x 1074

14

0.3
~5

Stainless Steel-Nb (C, N)

Stainless Steel-TiN

UO,-voids

3107 o1 x107%

Burton and Reynolds {64]
Karim and Backofen [65]

2-+85
0.5 39 x 10°°

1523 =+ 1723
723

Mg-ZrH,

® Shear moduli at the test temperature calculated from data listed in Frost and Ashby [46].

*Threshold stress in shear {c,, = oﬂ/ﬁ when the tensile threshold o, is given).
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Table 4. Activation energies in dispersion-strengthened materials

Q for Q for
pure material DS-material
Material {kJ/mol) (kJ/mol) Relerence
Cu + AlL,O, 200 ~500 Burton [11]
{(Nabarro—Herring creep)
Cu + Si0O, 105 ~277 Clegg and Martin [28]
{Coble Creep)
Stainless steel + TIN 280 ~400 Evans et al. [72]
Mg~MgO (sintered) 134 ~400 Vickers and Greenfield {70]
Al + Al Fe 145 ~600 Barrett et al. [13]
Fe-3%81 + Al;O4 220 ~ 600 Stang and Barrett [74]

The hydride particles reduced creep rates by up to two
orders of magnitude [39, 68]. In sintered magnesium
and Mg alloys containing MgO [69, 70, 397 the creep
rates were reduced by up to seven orders of magni-
tude and the activation energy increased up to 250—
400 kJ/mol, compared with 300 kJ/mol for diffusion of
O in MgO [71].

All these observations are qualitatively consistent
with the model. Note particularly the apparent
suppression of diffusional creep (dotted line in Fig. 10b)
as observed [397] in Mg-Zr H,.

Stangand Barrett [ 74] found creepin P.M. Fe-39, 51
containing | wt% Al,O; to be slower than in single
phase Fe-3%, Si by about an order of magnitude. The
inhibiting effect was strongly temperature dependent,
withan apparentactivation energy ofabout 600kJ/mol
(instead of 220 for single phase material) and a stress
exponent slightly greater than 1. These facts can be
qualitatively explained by the model. A similar
reduction of creep rate was found [73] in Al +0.5%; Fe.

A threshold stress for diffusional creep was observed
by Sautter and Chen [61] in Au containing dispersed
Al,0, particles. Figure 14 shows that the model can
account for their results very well; only the activation
energy Q; for interfacial motion had to be adjusted,
giving Q; = 355 kJ/mol (which compares with 380 kJ/
mol for boundary diffusion of the oxygen ion in Al,O3
[46]). We have been less successful in explaining

10
£210° 7 AU/AI-Z 03
Data by Soutter and Cheniigeg)] 1=6.1%
o f =61%
8 o f :7-'9_:/1‘

0

0 05 1
STRESS, MN /m?

Fig. 14. Theory vs experimental results of Sautler and Chen
{613 on Au/Al,O; (T = 1223 K, d=40 ym, r = 0.5 pum,
Q; = 355 kJ/mol).

quantitatively the creep behaviour of Cu/Al;O; as
measured by Burton [11}; if the grain size is stated
correctly, the creep rates of Cu/Al,O; at the high
stresses seem to exceed those of pure copper.

In oxide-dispersion-strengthened (ODS)superalloys
the inhibiting effect of inert particles on diffusional
creep is very pronounced. Whittenberger [57, 58]
for instance, found threshold stresses of the order of
10 MN m~? in ODS Ni-based superalloys (see Table
3). In these mechanically alloyed materials the particle
spacings are typically 0.15 pm [75]. These thresholds
are well within the range predicted by the model
(assuming the mobility in the interface to be very
restricted)

0.8Gb,
T
At stresses lower than the threshold stress, creep
degradation due to the formation of dispersoid-free
zones along grain boundaries normal to the applied
stress, is suppressed [76]; clearly an understanding of
thrashold stresses in ODS alloys could be of practical
importance.

Several studies report threshold stresses which
depend strongly on temperature (e.g. Burton [11];
Clegg and Martin [28]). An explanation for this
behaviour may be found in Fig. 10(a). At very low strain
rates the creep curves show pronounced curvature; if
these slow rates cannot be measured, then a linear
extrapolation to low stresses gives the false impression
of a temperature-dependent threshold stress. It still
remains difficult to explain why the threshold stress is
sometimes observed to dropto zero at the melting point
[11]. Quantitative agreement with experimental data
on Cu/Si0, 28] could only be obtained by using a
threshold stress which was an order of magnitude lower
than the measured particle spacing would imply.
Neither inaccuracy in measuring the particle spacing,
nor particle coarsening can provide an explanation. It
may be that pile-ups of grain boundary dislocations
form at the higher temperatures: il a pile-up of N
dislocations forms between each opaque gate (Fig. 8,
right) then the threshold stress can be reduced by a
factor 1/N. Such pile-ups have been invoked by Clegg
and Martin [28] whose model resembles that
developed here for the case of negligible threshold
stresses. ‘

~ 30 MNm™2

oy
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In summary, creep retardation and threshold
stresses in particle-strengthened materials can be
understood in terms of the pinning of grain boundary
dislocations. Qualitative agreement of the theory with
experimental results was obtained, but the comparison
seems to indicate that in some cases the threshold
stresses can be lower than predicted by the theory.

5. SUMMARY AND CONCLUSIONS

The theory of diffusional low (“Nabarro-Herring—
Coble creep”) is extended to include the details of the
dislocation-like defects which act as the sinks and
sources for matter. It is shown that the rate of creep
depends on the density and mobility of these defects.
Constitutive laws for the deformation are developed.

In the limit of pure materials of normal grain size, the
laws all reduce to the classical equation for diffusional
flow. But when impurities or solutes exert a drag on the
defects, or particles pin them, the characteristics of the
deformation change: the stress dependence becomes
stronger; threshold stresses may appear below which
creep rates become negligible; and the apparent
activation energy for creep may increase.

These effects are analysed in detail, and wherever
possible, compared with experimental data. Good
qualitative agreement is found. The model appears to
olfer an explanation of many confusing experimental
observations, although some still remain unexplained.
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APPENDIX

BY-PASSING OF BOUNDARY PARTICLES

We treat the problem using the general ideas of Shewfelt and
Brown [36, 60] which we simplify and adapt for boundary
dislocations. Consider unit length of boundary dislocation,
traversing a boundary, and interacting with obstacles (which
we think of as hard, inert particles) as it moves (Fig. 8). If the
stress were sufficiently high, the dislocation could bow
between, and by-pass all the obstacles without climbing over
any of them. This stress (the “Orowan Stress™) is

C3Gbh
Gop = 31 b

(Al)

where C; = 0.8 (see, for example, Kocks [35]). The number of
particles per unit length of the dislocation is

1
ot (A2)

T C,Ghy

Let the stress be less than e, Then creepis possible only if the
dislocation climbs over some of the obstacles, allowingit to by-
pass the remainder. The number it can by-pass is

a
*

n C.Gh, (A3)
leaving at least (n —n*) particles which must be by-passed by
climb if the dislocation is to move indefinitely. If climb is
rapid—that is, the mobility in the interface is high-—the strain
rate may be higher if the dislocation climbs over a larger
number of particles, because looping then occurs at a reduced
Orowan stress oo(l—n,/n). The following consideration
allows this effect to be incorporated.

Let the number of particles per unit length which are by-
passed by climb be n, Equate the work done by the remote
stress o,, acting on unit length of dislocation, to n, times the
changein elasticenergy ol the dislocationasit rider up over the
particle, plus n, times the viscous work done against its
restricted mobility in the particle matrix interface, plas
(1 —-n,/n) times the work done in pushing the dislocation
between (1 —n_/n) particles, plus the energy required to drive
long range diffusion across the grain. If the dislocation
advances by dx then

2rp* n\% y
5t béx{ 1— =) + —abéx.
M, )n¢+am x( n) +3}C¢rs x
{(Ad)

Here diis theincreasein line length as a segment of dislocation
rides up over one particle of diameter 2r, E is the elasticenergy
perunitlength (roughly GbZ/2),v(= 8x/8t)is the velocity of the
dislocation, and &t is the time taken to move through dx. The
last term (abdxj/7.) is the work required to drive long-range
diffusion, where ¥, is the continuum limiting strain rate given
by equation (3). Rearranging, and using y = 2pb,v/d gives

n n.\?
ool 45 +(1-%)]

P Oy + ‘);CBGOrnc/n

o.béx = (E5+

(A3)
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where

(A6)

A= /2c
B dx/ 3

and

B = rd/C M bipG

and di/dx measures the climb-stiffness of the obstacle ; it hasa
mean value of 0.77 for spherical particles [ 37]. This strain rate
is a maximum when the fraction of particles that are by-passed
in the interface is

%ﬁ = s+ P —(A+7.B)s —s (AT)

where

§ = 0./607.B. (A8)

{The values of n/n must, of course, be limited to the range

[0.11)

If the mobility in the interface islow (B — cc}then equation
(A7} reduces to
n; _ O-Or_a:)”z
n_ Cor

which is close to, but always higher than the minimum number
required to sustain looping, 1 —n*/n. If, on the other hand, the
mobility is high (B = 0), then

n, 2—A

e (A10)

which is independent of stress. Note that in all cases, finite
mability (B < oo) implies that even above the Orowan stress,
some particles will be by-passed by climb, because the strain
rate is higher than it would be only for looping.

Equations {A5-AB8) predict the shear strain rate, as a
function of shearstress, when grain boundary dislocations can
by-pass particles by looping as well as climb/glide in the
particle/matrix interface. This set of equations

(A9)

(a) reduces to the continuum limit, equation (3):

V=7 (A1D)
when the particles are removed (o5, = 0);
(b) predicts a maximum threshold stress
U‘" ] a’or (Alz)

when mobility in the interface is very low (B — oo,n, =0,
B:nr,—0);
(c) predicts a lower threshold stress, typically

Tor (A 13)

when the mobility at the interface is high;
(d) predicts a high activation energy when the interfacial
motion is rate controlling

[

~
alr -

(Al4)

{e) predicts maore complicated behaviour, illustrated in
Fig. 10, when the mobility in the particle-matrix interface
is limited. This last case can have the characteristics of a
temperature~-dependent threshold stress, thoughitisnotatrue
threshold.



