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fundamental aspects of the compaction

of metal powders

E. Arzt, H, Fischmeister {*)

Communication présentée au collogue sur la compression des poudres métalligues (Paris, 15 mars 1979).

The search for mathematical methods of predicting the mcrease n density of a metal powder during
compaction has attracted numerous scientists, as it is both a technologically interesting and a scientifi-
cally challenging problem. This review outlines the way from simple curve fitting approaches to first

attempts at constructing physical models which might form a rational basis for the improvement of
powder compactibility or compaction procedures.

The models described range from considerations of the deformation of a single spherical pore to

reasoning in terms of the deformation behaviour of spherical particles in regular and - more recently, -
random packings.

This paper will not deal with the way in which friction affects the distribution of pressure and
density in a compact, nor with the effects of lubricants,

La recherche des méthodes mathématiques pour calculer la densification d'une poudre métallique
pendant la compression a attiré de nombreux chercheurs, car elle est intéressante aussi bien pour la tech-
nigue que pour la science. Cet exposé montre U'évolution des « curve fitting » aux premiers essais de cvéa-

tion des modéles physiques qui pourraient devenir la base d'ume amélioration de la compacité ou du
processus de compression.

Les modéles décrits ici vont de l'idée selon laquelle la déformation d’'un seul pore sphérigue est re-
présentative du comportement global d'un corps poreux aux investigations de la déformation des par-
ticules sphériques dans un empilement régulier et — plus récemment — désordonné.

Cette étude n'examine pas linfluence du frottement sur la distribution de la pression et de la densité
dans Uéchantillon, ni les effets de la lubrification.

INTRODUCTION material could not be achieved in a single cold
compaction step: the compression curves of all

powders approach the theoretical density D_ in an

The compaction behaviour of powders is charac-
terized by an increasing resistance to compression.
Starting from the fill density D, of the powder in
the die, densification proceeds rapidly at first, but
continues at a steadily decreasing rate. Early in the
history of powder metallurgy, It was accepted that
the full or «theoretical » density of the powder

(*) Université des Mines, Leoben, Autriche.
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asymptotic manner (fig. 1).

Attempts at a general description of powder
compression have been of three kinds, which we
shall review in turn:

- curve fitting with mathematical expressions
designed for good adaptability but without
regard to physical understanding of the process,
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Figure 1. — Typical compaction curve
{spherical bronze powder),

— physical models based on considerations of the
pores in the powder,

— physical models based on the behaviour of the
particles.

Ideally, the two last approaches should be identical,
but in fact the necessary simplifying assumptions
make them very different.

The degree of compression can be characterized
either by the density achieved, D(p), or by the
remaining porosity, U(p), both as a function of the
pressure p. Recalling the relation

D
U=1 — — [1]
D i==]
we will as a rule consider only porosity, i.e. the
volume fraction of interparticle voids.

Comprehensive reviews of powder compaction
have been published by Bockstiegel & Hewing (1)
and by James (2).

CURVE FITTING

Walker (3} and Balshin {4) adopted a logarithmic
expression of the following form :

1 B
———— = — Giln p + G

1 — U(p) (2]
(Ci, C; = adjustable constants).

It Is not surprising that this expression has a narrow
range of agreement with experiment, since it cannot
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reproduce the finite porosity Uo before the onset
of compression, nor the asymptotic approach to
zero porosity. Correct behaviour at p = 0 and for
p— o« Is obtained with an expression suggested
independently by Konopicky (5) and Shapiro and
Kolthoff (6) (out of context with powder me-
tallurgy) :

Ulp) = Uo exp (— Csp) [3]

This expression reflects the intuitively appealing
concept that compressibility at any moment is
proportional to the remaining porosity :

du
_— =0C;.U [4]
dp

Considered in these terms, one would assume C;
to be somehow related to the yield strength, o, of
the powder material. The first physical model to be
suggested (Totre (7)) led to an identical expression,
which also Included a relation between C; and oy,
It was based on the consideration of the shrinkage
of a single spherical pore. This conceptual back-
ground lent some credibility to the KSK-formula [3],
and its satisfactory agreement with experiment over
the range of interest for technical pressing (at least
when both constants are treated as adjustable
parameters) has made it very popular.

When plotted in the form
In (1/U) = In (1/Us) + Cs.p [5]

as in figure 2, the KSK-relation predicts a linear plot
whose slope is GC;. Most compression curves,
plotted in this way, exhibit such a linear portion
at intermediate pressures, bhut at low and high
pressures the KSK-relation underestimates the real

porosity (fig. 2). This will be discussed further
below.
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Figure 2. — Variation of In (1/U) with compacting

pressure for Atomer 28 iron powder
(after Hewitt, Wallace and de Malherbe).
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Kawakita (8] suggested a compaction equation
which has proved applicable to many soft powders :

Do Cs.p
1 — = G ———— [6]
D Cs(p+ 1)

C4 can be identified as the initial porosity U while
Cs, according to Brackpool (in James (2)) can be
empirically correlated with the microhardness, HM,
and the strain hardening behaviour of the powder
material as characterized by the Meyer hardness-
load-exponent v
G4
HM.y = C¢. —m——rr [7]
Cs (1 — Ga)

While these correlations suggest a physical
background for the constants of the Kawakita for-
mula, this has not been elucidated in terms of a
model, and really satisfactory curve fitting requires
both constants to be treated as adjustable para-
meters. Vdovic (8) suggested a still more adaptable
formula :

Ulp) = Uo [(1 + Cs] p) - Cs {8l

In the authors’ opinion, efforts to further improve
curve fitting formulae are hardly Justitied. As will
be shown beilow, powder compression is now
recognized as a multi-stage process, with different
mechanisms governing the various stages. In this
light, the description of the whole compaction curve
by a single expression is simply not meaningful.

THREE STAGES OF COMPRESSION

In 1946, Seelig & Wulff (10), later Donachie &
Burr (11), Kunin & Yurchenko (12), and Heckel {13)
suggested that three stages of compaction should
be distinguished, as proposed by the ranges of
invalidity cf the KSK-formula (fig. 2). In the first
stage, at low pressures, the reduction of porosity
was ascribed to deformationless restacking of the
particles. At intermediate pressures they postulated
a second stage where the packing is stabilized and
further compaction is possible only by deformation
of particle contacts. In the final stage, at high
pressures, bulk deformation was assumed to occur,
the densification rate being determined by the
strain hardening of the particle material.

Evidence for the restacking of particles has been
summarized by James (2). The effect has been
demonstrated, e.g., for beds of glass spheres,
whose porosity could be reduced by 1.5 % without
any fragmentation (Kakar & Chaklader (14)).

The occurrence of strain hardening has been
demonstrated by Hewitt, Wallace & Malhetbe (15)
by means of X-ray line broadening measurements on
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sections of compacts, and by Heliwell & James (16),
who measured the microhardness of individual par-
ticles in polished sections of compacts produced
with various pressures. Sundstrém & Fischmeister
(17} emphasized the importance of « geometrical
strain hardening », an increase in densification
resistance which is due to the increase in contact
area between the particles, and which they consi-

dered more dominant than ordinary « metallurgical »
strain hardening.

One has to expect more or less extensive regimes
of overlap between the three stages. In a study on
particle sliding and deformation in a spherical
bronze powder, Fischmeister, Arzt & Olsson (18)
showed that at least for an easily deformable metal
powder, restacking and contact deformation proceed
concurrently until about half the initial porosity has
been eliminated ; at this point, particle sliding has
become insignificant for further densification. Des-
pite these overlaps, restacking as a contributing
mechanism of initial densification, and strain
hardening (metallurgical and geometrical) as an
obstacle to final densification must be accepted as
essential parts of our understanding of powder
compression.

CHANGES OF PORE GEOMETRY
DURING COMPACTION

Torre (7) replaced the pore network by a single
spherical pore surrounded by a rigid - perfectly
plastic shell. Adopting the Tresca yield criterion,
he calculated the pore volume as a function of
hydrostatic pressure. The result is not only
formally the same as the KSK-equation, it also
predicts a value for the second constant:

3

C: = gy = vyield stress [9]
20y

However, comparison with experiment shows this
to be too high for most powders. In fact, Heckel
(13) established an empirical expression for this
relationship :
. 1
G = [101
3oy

This is about a fifth of the value predicted by Torre.
Also, the Torre model has been criticized by
Bockstiegel (1)} on the grounds that the derivation
neglects the compatibility equation. Bockstiegel (19)
derived a threshold pressure pmin(r) below which
plastic deformation of a shell with inner and outer
radius ri, ro, IS not achievable :

2 r3 —r?

Pmin = — Oy m———————— [11]
3 r3
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This indicates that an isclated large pore should
start to shrink at a lower stress than a smaller
pore contained in an equal volume. Since it is based
on Hooke's law, this reasoning applies only as long
as plastic deformation does not actually occur.
Furthermore, as pointed out by Sundstréom & Fisch-
meister (17), the extension of a single pore modal
to a multisize system is not trivial. E.g,, in a regular
array of pores of different sizes, adjacent pores
must interact during the deformation to uphold the
continuity of the system. Higher stress concentra-
tions will develop at pores with small radii of
curvature. This might well invalidate Bockstiegel's
conclusion that larger pores should always yield
first. Nevertheless, Bockstiegel's experiments sho-
wed that the larger pores do disappear preferentially
from the distribution, which he determined by linear
intercept measurements. The shape of the pore size
distribution was found to remain unaltered through-
out compaction; only the upper cut-off point is
shifted to smaller pore sizes as compaction
proceeds - an interesting observation that so far
lacks a reasonable explanation.

Hewitt, Wallace & Malherbe (20) modified the
Torre model to allow for strain hardening in the
spherical shell. By numerical integration of the
Prandtl-Reuss equations for a rigid-plastic material,
they showed that even small amounts of strain
hardening appreciable influence on the slope of the
KSK- (or Torre-) plot, and they were able to obtain
good agreement between calculated and measured
slopes for an atomized iron powder and for aluminium
powder. Sundstrém & Fischmeister (17} modelled
the compression of a concave pore formed between
four particles of Initially circular cross section,
using two-dimensional finite element calculations.
They found that the pore kept its symmetry even
under uniaxial compression. Despite the simplifica-
tion from three to two dimensions, they obtained
good agreement with experimental densification
curves for iron powder when incorporating linear
strain hardening (de/de = E/200), which is a fairly
realistic approximation for the plastic behaviour of
iron,

While the work of Hewitt, Wallace & Malherbe
(20) demonstrated that the Torre model could not
be made to reproduce the increased densification
resistance in the third stage by including any
degree of ordinary strain hardening (neither could
it be explained by entrapped air), the model of
Sundstrom & Fischmeister (17) gave satisfactory
agreement with third stage behaviour thanks to the
incorporation of geometrical strain hardening (the
finite element calculations vyield simultaneously
the pore shape and pore size, i.e. porosity, for any
given pressure, cf. fig. 3).

Cooper & Eaton (21) approached the problem of
the gradual elimination of pores by two different
mechanisms : larger pores are likely to be filled by
restacking, while small pores can only be eliminated
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Figure 3. — Pore shapes at different porosities:

A=137%,B = 73%, C = 16%
(after Sundstrom and Fischmeister),

by plastic deformation or fracture of the particles.
They assumed intuitively that the probability of the
disappearance of large pores would diminish ex-
ponentially with increasing pressure, and that a
similar function with different parameters would
describe the filling-in of the smaller pores :

Ulp) = Cv exp (—Cuw/p) + Cu exp (— Ci/p)
f12]

However, neither the type of the function nor its
constants can be stringently derived from physical
principles, which brings this expression back to the
level of a (unnecessarily flexible) curve-fitting
formula.

Before leaving the topic of - pore-governed com-
paction models, mention should be made of the
continuum mechanical theories of compaction of
presintered powder preforms (Kuhn et al. (22), (23),
Green (24), Oyane et al. (25)), which concentrate
on the relation between multiaxial deformation and
densification, leaving the question of flow stress or
pressure largely open.

MODELS BASED ON THE GEOMETRY
OF PARTICLE CONTACTS

Recently, some researchers have turned thelr
interest towards the deformation of particles in
contact. To make the problem tractable, only sphe-
rical particles of uniform size are considered. This
restriction is no longer unrealistic, since spherical
powders are beding processed technologically in
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rapidly increasing quantities. The extension from
monosize systems to powders with realistic size
distributions should pose no principal problems.

A theory based on particle deformation could
hope to encompass the second and third stages of
compaction. At the beginning of stage I, a given
particle has a certain number of nearest neigh-
bours. As the external pressure increases, forces
are transmitted into the powder mass which
squeeze the particles together, widening the point
contacts into contact areas. As compression
proceeds, further neighbours are brought close
enough to form additional contacts. At any given
moment, the resistance to densification will be
determined by the number and size distribution of
the contact areas. It follows that the elements of
a model for the compression of spherical powders
must be :

1) The transmission of an externally applied
pressure (uniaxial or isostatic) to the particles,
to be expressed as a relation between applied
pressure p and contact force f:

f= f(p).

At any given pressure, there will in fact be a
distribution of contact forces, but for a simplified

theory one could use the average contact force, f.

2) The force carried by a given contact area is
determined by the flow stress of the material
and a constant of proportionality which depends
on the deformation geometry :

f=C.cr.a a = contact area.

3) The contact surface is related in a complicated
manner to the residual porosity; this depends
upon the change in particle shape when material
is squeezed out from the contact zone (cf. fig. 3).
If we know this change in particle geometry, we
can establish the relation

a = a(U)

4) To conclude the treatment of stage I, we need
to know the evolution of the number of actual
particle contacts

Z = Z(U).

This will be determined by the original center-
to-center distances in the particle packing, which
can be described by the radial distribution
function (RDF) of the packing. Such RDF's are
known, e.g. for the atoms in a liquid, or for
spheres randomly thrown into a box. For our
purpose, it appears sufficient to know the RDF
over a very narrow interval, e.g. from one to
one-and-a-half particle diameters, and we hope
that this could be covered by one single para-
meter.
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5) Finally, to model the complete course of the
compaction curve, we would have to know the
contribution of particle restacking to initial
densification. This could be expressed by making
the RDF porosity-dependent.

The first problem, force transmission, has been
considered by Molerus (26), who gives a stringent
derivation of the transmission of pressure in a
random sphere packing. Assuming an isotropic
normal force distribution at the contact points, the
contact forces ean be regarded as equal for any
orientation. It is now possible to sum up the con-
tributions of the contacts to the propagation of
stresses through an arbitrary plane. The result of
this calculation is a relation between applied
pressure and the average contact forces :

4 R

f=p, — [13]
Z(1—U)

This equation should be valid until the contact
flats on the sphere surface impinge on each other.
From then on, the normal contact force will not be
the only component, and further densification will
be due to a different stress distribution.

Another important contribution to the problem of
force transmission is due to Davis & Deresiewicz
(27). They used a discrete probabilistic model for
predicting the compressibility of and the force dis-
tribution in a two-dimensional random packing. Even
if their treatment is limited to the elastic range, the
relation between force and the corresponding
sphere compression being given by the Hertz equa-
tions, it Is instructive to follow their reasoning and
results.

Only normal forces are considered at the contacts,
the packings are assumed to be in a geometrically
stable configuration (no restacking). The problem
is formulated as one of structural analysis; the
sphere centers correspond to the nodes of the
structural graph, and the contacts, to its branches.
The authors state that a probabilistic model for
ganerating an ensemble of dense random packings
does not yet exist. Consequently, they transfer the
randomness of particie distances to the matrix of
contact stiffnesses. The random packing is thus
replaced by a regular one whose stiffness moduli
are produced by computer randomization, and whose
distribution simulates the porosity, average coordi-
nation and internal-angle distribution of the actual
sphere packing. The authors obtain distributions of
contact forces ranging from zero to many times the
average contact force; a significant traction of the
contacts (about 20 %) support no load at all.

The third problem, which concerns the relation
of particle deformation to porosity, was first treated
by Kakar & Chaklader (14). They considered regular
packings of monosize spheres, such as the simple
cubic, orthorhombic, body centered cubic, tetra-
gonal, and rhombohedral packing.
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They assumed the packing to be stable, maintain-
ing its symmetry under a hydrostatic pressure (no
restacking). Further they assumed that the mate-
rial at the faces spreads evenly across the free
surface of each sphere. The authors calculated the
resulting increase in particle radius R as a function
of the contact area, a, from the condition of constant
volume. 1t turns out that R increases very slowly
until the contact radius comes to equal on quarter
of the particle radius; this happens at a porosity
of the order of 30 %. (The authors limited their consi-
derations to the porosity range above this point.)
— The porosity is equal to the volume fraction of
unfilled space in a unit cell of the sphere packing :

3 a
Ufa) = Up—— (1 — Up) .
2 ©R?

[14]

where U, depends on the packing type.

Experiments with lead and hot-compacted sapphire
spheres agreed fairly well with the prediction for
the orthorhombic packing, except for a faster de-
crease of porosity which was attributed to the
gradual Increase of coordination number during
compaction.

In 1968, Kakar & Chaklader (28) combined their
geometrical formula with a consideration of the
contact forces, touching upon the second of our
problems. On the basis of theoretical work by
Hencky (29) and Ishlinsky (30) and of experiments
by Tabor (31), they assumed the force for plastic
yielding to be related to the contact area in the
same manner as for a Brinell hardness impression :

f=8.0,.4 [15]

This holds as long as the deformed zones are
small compared to the particle size, and strain
hardening is negligible. The authors observed that
the radius of the contact flats between the particles
-and the punch surface was approximately twice the
average contact radius inside the compact. A balance
of forces then yields

a
p="720.

(18]
nR2

and substituting in equation [14], they obtain a
porosity-pressure relation

1"‘"—'Uo
U = Uu —_— . P [17]
48 .0y

This formula is only valid in the limited range
considered by Kakar & Chaklader, i.e. for porosities
above 30 percent. Good agreement is reported with
experiments on spheres of lead, K-monel and
sapphire.

E. ARZT . H. FISCHMEISTER

The Kakar-Chaklader model is only a first indica-
tion of how prablems 2 and 3 in our list could be
solved. Il has two severe weaknesses : first, the
limitation to very early stages of compaction (where
densification is probably governed by restacking
rather than by particle deformation, so that the
agreement between calculations and experiments
must in fact be held to be fortuitous) ; and second,
the assumption that the material squeezed out from
the contact zone is evenly distributed across the
remaining surface of each sphere. It seems pro-
bable that the displaced material is preferentially
deposited in the vicinity of the contact zone. The
description of the deformation of sphere-to-sphere
contacts will have to be tested experimentally, and
a refined mathematical treatment may prove
necessary.

This still leaves the fourth problem in our list, a
descrintion of the change in coordination number.
Our own exveriments as well as those of other
authrrs indicate that the so-ralled « random dense
packind », which is a pooular model for mono-
atomic fluids, reproduces very closely the porosity
and averane cnordinatinn numher (Z = 7) ohservad
in nackinas of snherical powder particles. Its RDF,
in the ranae of interest, can be anoroximated hv a
straiaht line. This allows a simnle descrintion of the
incrrase in coordination as mare and more heiah-
bourina spheres are hrouoht to touch the « renre-
sentative » particle. Based on this simnlification of
the RDE, our own calculations were made to take
this aradual chanae of coordination into account,
leading to a function of contact area vs. porosity,
whirh is in verv aond ancreement with measiremants
(« random model » in fia. 4). Thus the Kakar-Chak-
lader solution of problem 3 can be carried a step
further.

It remains to be seen whether a complete model
of the compaction process can be evoived along
these lines. One important conclusion which emerges
at the present stage of the work from observations
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of the change in coordination towards the end of
compaction is that the third stage seems to be cha-
racterized by severe deformation of a few particles
which are squeezed into the remaining gaps of un-
filled coordination shells. This could explain the
strong increase in densification resistance as full
density is approached.
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They assumed the packing to be stable, maintain-
ing its symmetry under a hydrostatic pressure (no
restacking). Further they assumed that the mate-
rial at the faces spreads evenly across the free
surface of each sphere. The authors calculated the
resulting increase in particle radius R as a function
of the contact area, a, from the condition of constant
volume. 1t turns out that R increases very slowly
until the contact radius comes to equal on quarter
of the particle radius; this happens at a porosity
of the order of 30 %. (The authors limited their consi-
derations to the porosity range above this point.)
— The porosity is equal to the volume fraction of
unfilled space in a unit cell of the sphere packing :

3 a
Ufa) = Up—— (1 — Up) .
2 ©R?

[14]

where U, depends on the packing type.

Experiments with lead and hot-compacted sapphire
spheres agreed fairly well with the prediction for
the orthorhombic packing, except for a faster de-
crease of porosity which was attributed to the
gradual Increase of coordination number during
compaction.

In 1968, Kakar & Chaklader (28) combined their
geometrical formula with a consideration of the
contact forces, touching upon the second of our
problems. On the basis of theoretical work by
Hencky (29) and Ishlinsky (30) and of experiments
by Tabor (31), they assumed the force for plastic
yielding to be related to the contact area in the
same manner as for a Brinell hardness impression :

f=8.0,.4 [15]

This holds as long as the deformed zones are
small compared to the particle size, and strain
hardening is negligible. The authors observed that
the radius of the contact flats between the particles
-and the punch surface was approximately twice the
average contact radius inside the compact. A balance
of forces then yields

a
p="720.

(18]
nR2

and substituting in equation [14], they obtain a
porosity-pressure relation

1"‘"—'Uo
U = Uu —_— . P [17]
48 .0y

This formula is only valid in the limited range
considered by Kakar & Chaklader, i.e. for porosities
above 30 percent. Good agreement is reported with
experiments on spheres of lead, K-monel and
sapphire.
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The Kakar-Chaklader model is only a first indica-
tion of how prablems 2 and 3 in our list could be
solved. Il has two severe weaknesses : first, the
limitation to very early stages of compaction (where
densification is probably governed by restacking
rather than by particle deformation, so that the
agreement between calculations and experiments
must in fact be held to be fortuitous) ; and second,
the assumption that the material squeezed out from
the contact zone is evenly distributed across the
remaining surface of each sphere. It seems pro-
bable that the displaced material is preferentially
deposited in the vicinity of the contact zone. The
description of the deformation of sphere-to-sphere
contacts will have to be tested experimentally, and
a refined mathematical treatment may prove
necessary.

This still leaves the fourth problem in our list, a
descrintion of the change in coordination number.
Our own exveriments as well as those of other
authrrs indicate that the so-ralled « random dense
packind », which is a pooular model for mono-
atomic fluids, reproduces very closely the porosity
and averane cnordinatinn numher (Z = 7) ohservad
in nackinas of snherical powder particles. Its RDF,
in the ranae of interest, can be anoroximated hv a
straiaht line. This allows a simnle descrintion of the
incrrase in coordination as mare and more heiah-
bourina spheres are hrouoht to touch the « renre-
sentative » particle. Based on this simnlification of
the RDE, our own calculations were made to take
this aradual chanae of coordination into account,
leading to a function of contact area vs. porosity,
whirh is in verv aond ancreement with measiremants
(« random model » in fia. 4). Thus the Kakar-Chak-
lader solution of problem 3 can be carried a step
further.

It remains to be seen whether a complete model
of the compaction process can be evoived along
these lines. One important conclusion which emerges
at the present stage of the work from observations
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Figure 4. — Comparison between experimental values
and theoretical predictions of average contact area
vS. porosity.
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of the change in coordination towards the end of
compaction is that the third stage seems to be cha-
racterized by severe deformation of a few particles
which are squeezed into the remaining gaps of un-
filled coordination shells. This could explain the
strong increase in densification resistance as full
density is approached.
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discussion

M. ACCARY (Université de Clermont-Ferrand H). — Nous
avons eu l'occasion de constater que « l'approximation
sphérique » donnait une description étonnamment bonne
des phénoménes de frittage. Avez-vous eu !'occasion de
juger de cette valeur dans vos expériences ?

M. FISCHMEISTER. — Nous pensons aussi que le modéle
sphérique constitue une bonne approximation pour la com-
pression de poudres non sphériques. Mais, malgré les
nombreuses Indications sur |a valeur du modgle sphérique
pour des particules de poudres orientées au hasard, nous
devons étre trés prudents jusqu'a une meilleure compré-
hension du comportement des poudres irréguliéres. Les
travaux en cours sur la géométrie des contacts de pou-
dres irrégulidres, & la Chalmers University, peuvent nous
aider & améliorer notre compréhension.

M. ACCARY. — Quel est le role des états de surface
(oxydes superficiels) ?

M. FISCHMEISTER. — Des variations de I'état de surface
{films d'oxydes) influent sur les possibilités de glisse-
ment des particules, en jouant sur le coefficient de frotte-
ment et sur les pressions de contact ol le « soudage &

froid » met un point d'arrét au mouvement des particules.
Nous n'avons pas encore de résultats d'observation, mais
il parait facile d'étudier ce phénomene avec des méthodes
semblables a celles que nous utilisons présentement.
Nous prévoyons d'étudier une poudre «fraiche » a com-
pressibilité en vrac constante — avec divers revétements
entrainant divers comportements de surface.

M. CHERMANT (ISMRA, Université de Caen). — Je vou-
drais ajouter un commentaire a |'exposé de M. Fischmeis-
ter: & l'heure actuelle il est trés important, pour misux
comprendre les mécanismes qui interviennent au cours
de la compression des poudres avant frittage, de pouvoir
atteindre toute information relative au nombre de con-
tacts, a la surface de contact, aux glissements aux inter-
faces... Certaines de ces informations peuvent &tre obte-
nues par analyse métallographique quantitative, mais sont
longues et laborieuses (les méthodes présentées é&tant
manuelies), et dans le cas des surfaces de contact, il est
absolument nécessaire que la valeur moyenne mesurée
soit réellement la valeur caractéristique du matériau. I
semble que maintenant de nouvelles méthodes automati-
ques, basées sur la morphologie mathématique, soient
applicables.



