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THRESHOLD STRESSES FOR DISLOCATION CLIMB
OVER HARD PARTICLES: THE EFFECT OF
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Abstract—We present a madel for the effect of an attractive interaction between dislocations and hard
spherical pa_rlicles on the process of dislocation bypass by local climb. The interaction is treated by
assigning a line tension to the dislocation which is lower in the vicinity of the particle than in the matrix.
We find that even for very modest interactions, the strongest barrier to dislocation bypass is no longer
provided by the climb obstacle, but rather by the detachment of the dislocation from the particle after
climb over the particle is complete. The model provides a possible explanation for some experimentally
observed dislocation configurations in crept ODS superalloys and for the creep thresholds which are
typical of such alloys.

Résumé—Nous présentons un modeéle pour I'influence d'une interaction attractive entre des dislocations
et des particules sphériques dures sur le contournement par montée locale. Nous traitons interaction en
assignant 4 le dislocation une tension de ligne qui est plus petite au voisinage de la particule que dans
ln matrice, Méme pour des interactions trds modestes, la plus forte barridre av franchissement de la
particule par In dislocation n'est plus fournie par obstacle de montée, mais plutdt par le détachement
de la dislocation et de ]a particule lorsque Ia montée est terminée. Le modéle fournit une explication
passible pour quelques configurations de dislocations que I'on a observées expérimentalement dans des
superallinges aprés fluage et pour les contraintes de fluage typiques de tels alliages.

Zusammenfassung—Das lokale Klettern von Versetzungen iiber harte kugelférmige Teilchen wird fiir den
Fall cincr anziehenden Wechselwirkung zwischen Versetzung und Teilchen modeliméiBig beschrieben. Die
Wechselwirkung wird beriicksichtigt, indem der Versetzung in der Niihe des Teilchens eine erniedrigte
Linienspannung zugeschricben wird. Es zeipt sich, daB schon bei geringfiigiger Wechselwirkung das
enischeidende Ereignis nicht mehr der Kletterschritt, sondern das Ablésén der Versetzung vom Teilchen
nach Beendigung des Uberkletterns ist. Das Modell gibt eine mogliche Erklirung fiir experimentell
beobachtete Versetzungskonfigurationen in kriechbeanspruchten ODS-Superlegierungen und fiir bei
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solchen Legierungen typische Kriechschwellspannungen.

1. INTRODUCTION

The creep rates of dispersion strengthened alloys are
commonly found to be highly stress-sensitive, which
suggests the cxistence of a threshold below which the
creep rates become negligible. Available experimental
data, e.g. [1-5], indicate that these threshold stresses
are generally about half the Orowan stress, which is
given in shear, by the following approximation

Gb

Ty = 0.84m M

where @ is the shear modulus of the material, b the
Burgers vector of a lattice dislocation, r the average
radius of the particles and 24 their mean planar
spacing. There is disagreement in the literature over
the exact form of cquation (1), but at least two studies
[1, 3] have shown conclusively, by normalization with
respecl to room temperature strength, that the cresp
threshold lies below the Orowan stress.
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Explanations for this threshold must therefore
invoke the possibility that, at creep temperatures,
dislocations can “avoid” hard particles by climbing
around them. This process has been modelled by
Brown and Ham [6] and by Shewfelt and Brown [7],
assuming that dislocation climb is localized at the
particles. This means that only the portion of the
dislocation which, although still a lattice dislocation,
remains in close proximity with the particle-matrix
interface undergoes climb; the portion of the dis-
location not in contact with the particle remains in
the glide plane. This is illustrated in Fig. 1. Since the
dislocation line length increases as the dislocation
climbs, extra energy must be supplied by the applied
stress: this is the origin of the threshold stress. A
computer simulation of this process in a random
array of hard particles of low volume fraction by
Shewfelt and Brown [7] has resulted in a relationship
for the threshold stress given by -

7l =0.32 L
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Fig. 1. The mechanism of local climb of a lattice dislocation
over and under hard spherical particles of spacing 24: (a)
perspective view, (b) side view.

which is in reasonable agreement with the experi-
mental data, Arzt and Ashby [8] subsequently arrived
at a similar result using a simple analytical model.

The primary criticism levelled at these models has
involved the assumption of local climb, Lagneborg [9]
has argued that the sharp dislocation curvatures at
the point of particle contact (marked “P” in Fig. 1),
which are necessary for local climb to occur, cannot
be sustained. Rather a vacancy flux is generated
which leads to more extensive (“‘general”) climb of
the dislocation. Lagneborg’s model for this process
leads to a back stress which however scales as the
applied stress, and does not therefore predict a true
threshold. It is now recognized that a small, but finite
threshold does exist, even for general climb. Tt arises
because in order to pass through a random array of
particles a dislocation has to adopt a certain mini-
mum curvature {4, 7, 8, 10, 11]. For volume fractions
of less than about five percent, -this threshold is
approximately an order of magnitude lower than that
for local climb and therefore well below the bulk of
the experimental data. ;

Hence we need to explain why, even in tests
conducted at very low strain rates, the lower thresh-
old is not observed. One potential explanation is
related to the details of the dislocation-particle inter-
action at high temperatures. Srolovitz et al, [12, 13]
have recently modelled the effect of a particle~matrix
interface which is unable to sustain shear tractions,
on a dislocation, They show that an attractive inter-
action can result as the dislocation at -the interface
relaxes part of its strain field. In addition, TEM
work on crept oxide-dispersion strengthened super-
alloys [14] and, in particular, more recent weak-beam
studies [15] have revealed dislocation—particle con-
figurations which suggest indeed that such an attrac-
tive interaction may exist. However, the cores of the
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dislocations residing near the interface still produce
good contrast, suggesting that they have not fully
relaxed. What is apparent [rom the micrographs is
that the dislocations remain bound to the particles
over which they have just climbed. Thus the detach-
ment process may prove to be a stronger barrier to
dislocation bypass than the climb barrier itself, and
can provide an additional mechanism for a threshold
stress.

In this paper we consider the effect that such an
attractive interaction would have on the climb behav-
iour of a dislocation. In particular we have calculated
the stress necessary to maintain the dislocation in
equilibrium at any given point in the climb process,
including the point of detachment from the particle.
The maximum value of this stress is the threshold
stress for creep.

2, THE MODEL

We consider the passage of a dislocation through
a uniform array of spherical hard particles of radius
r and spacing 21. The dislocation is assumed to
overcome the obstacles by means of local climb. The
non-climbing portion of the dislocation has a line
energy per unit length E, which is given to a reason-
able approximation by

Gb?

B sy (3)
The attractive interaction between particle and dis-
location is modelled by assuming that the line energy
of the dislocation is relaxed at the particle interface
to a value given by E’ =k E. The parameter k can
be thought of as a relaxation parameter, and takes on
values between 0 and 1. When & = 1, no attractive
interaction with the particle occurs. For k=0, a
maximum attraction results, with the interface behav-
ing as if it were the surface of a void. This approach
neglects, of course, any long-range interactions,
which are much more difficult to handle.

The calculation is performed on a segment of
dislocation of length 24, centered on a particle. The
glide plane is assumed to lie a distance b above the
equator of the particle. The geometry is shown in Fig.
2. The trajectory of the climb segment is given at any
point by the great circle which joins the two points
of particle contact (this being the shortest trajectory
over a spherical surface). The non-contacting portion
maintains an equilibrium configuration, in which the
radius of curvature is

Gb
R= 5 4
T being the applied shear stress,

We first calculate the energy U of the dislocation

segment at any position

U=s, E'+ s, E. &)
Here the arc length in contact with the particle is

5,=2r +sin~! (E) | (6)
r
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glide
plana

Fig. 2. The geometry of particle-dislocation interaction

during local elimb: (a) side view, (b) plan view. The dis-

location, moving from left to right, is shown in three

positions in (b): at “1” it is still on the arrival side, “2” is

a typical configuration on the departure side (as it is also

observed experimentally [15]), *3" is at the point of detach-
ment.

where

a=./rt—h*—x?

™

is the distance between the two points at which the
dislocation contacts the particle. The arc length not
in contact with the particle is
A—a
7 )"

In order to determine the stress resisting the progress
of the dislocation at any given position we allow the
dislocation segment away from the particle to move
forward by a virtual displacement dP. In so doing the
points of contact move in the glide direction by dx.
We then equate the work done by the dislocation dW
with the change in energy of the dislocation segment
dU. The former is simply :

5, =2R -sin~! ( ®)

dW = 2tb (1 —a) dP. 9)
The change of energy of the dislocation segment is
] d ¥
du=—3‘f£——z—§+2RE-d¢ (10)
-0 f
r
where
' f da

T[Ty
A= = —. (11)
¢ l-Gryd=a. =
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Here 1, is a normalizing stress equal to
Gb 12
=T
"2l —a) (2

The two displacements are related by simple geome-
try, such that

dP =dx + R-sin¢ -d¢, (13)

By equating dU and dW, and after some manipu-
lation, one finds the following implicit equation for
the resistance 1

T X k x T\
it o
;

This can be readily solved to yield two possible
solutions

X
: 7l g K
’1 2
TG O
rot a r
x VY kT
1+ =)l -—
+ + (a) (a)2 (15)
g
=
where 7, is the “nominal” Orowan stress, i.e.
Gb
Ty = m . {1 6)

Further examination of equation (15) reveals that
only the solution containing the + sign is physically
significant.

3, DISCUSSION

Equation (15) determines the stress necessary for
local dislocation climb to continuc at any given point
in the particle/matrix interface. Two limiting cases
are worth noting. First when x =0, at the pole of the
particle, the stress is also zero, as must be the case;
in fact the solution is- antisymmetric with respect to
the origin. Second, at the point of detachment of the
dislocation from the particle (@ =0, x > 0) the stress
is given by

Gb :

Te =77 1"—kl.,

2 | (a7)
This is the same result as derived previously by
Russell and Brown [17] to describe the strength
imparted by shearable particles whose elastic modu-
Jus is lower by a factor % than that of the matrix.
(Their additional expression for weak obstacles gives
only slight deviations from this solution for k close to
one ‘where, as will be shown below, the detachment
threshold is usually not controlling. We therefore use
the strong obstacle approximation throughout this
paper.) This detachment stress is determined’ by the

_energy balance at.the point where the length of

dislocation line in contact with the particlf_: shrinks to
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Fig. 3, The normalized shear stress vs dislocation position
for different values of the relaxation parameter k, in the
limiling case of zero volume fraction: (&) Afr = 0.05, (b)
hir =05,

zero. The result is therefore independent of the
process by which the dislocation moves over the
particle, whether it be local or general climb. It is also
independent of particle size,

-In general, the stress resisting dislocation climb
does depend on the particle volume fraction Jos
through the parameter A/r, The geometric parameters
x and a enter only as quantities normalized with
respect to the particle radius. Particle size as such is
therefore irrelevant for the creep threshold as long as
it is small compared to the particle spacing. This of
course applies only to the energetics of particle climb
considered here, and not to the kinetics of the
process, as will be discussed elsewhere [e. .

For reasons that-will become clear, the résults are
most easily understood by first considering the case
of low volume fraction, corresponding to Alr =12, 1e.
Jy < 13%, This limit includes all the data on creep
threshold stresses in the literature for oxide
dispersion-strengthened systems,

3.1. Low volume fraction, f,< 13% (A > 2)

In the limit as the volume fraction approaches zero
(ie. r«2), the first term in equation (15) approxi-
mates to one. The results for this limit are shown in
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Fig. 4. The normalized shear stress vs dislocation position
for different values of k at low volume fraction f, =8.4%
(Ajr =2.5) and hi/r = 0.05,

Fig. 3, in which the stress is plotted as a function of
dislocation position x/r, for a range of values of the
relaxation parameter k, and two values of A/r. When
k =1, the case of no attractive interaction, the stress
resisting the progress of the dislocation rises as the
dislocation climbs to the top of the particle, then
becomes negative on the departure side. As & de-
creases, the stresses on the arrival side decrease, while
those on the departure side increase. This reflects the
effect of the changing energy balance as matrix
dislocation is exchanged for climbing dislocation of
different arc length and line tension. If k& is low
enough the stress is entirely negative on the arrival
side. This means that the dislocation is pulled up to
the top of the particle, and must then do work on the
departure side to leave the particle.

Figure 3 shows that the maximum stress occurs
either on the arrival side during climb or at the point
of departure, depending on the values of k and hfr.
The former leads to a climb barrier for dislocation
bypass, while the latter results in a detachment
barrier.

Figure 4 shows the stress as given by equation (15)
for a small but finite volume fraction (f,=8.4%)
corresponding to 1/r =2.5. While the shapes of the
curves are somewhat different from the zero volume
fraction limit, the general features are unaltered. Tt is
clear that as the volume fraction of second phase
particles increases the size of the climb barrier in-
creases relative to the detachment barrier. This results
because the climb barrier scales roughly with
1/(2 —r) while the detachment stress depends only
on 1fA.

Whereas the detachment stress, given by equation
(17), does not depend on the height-of-intersection of
the glide plane at the particle, the maximum climb
resistance is a function of //r, as shown in Fig, 5. In
a real particle dispersion, a given glide plane inter-
sects the individual particles at random values of h/r.
In order to determine the average value of the climb
threshold, the following approximate relationship for
7. as & function of & and A/r was generated by
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0.2

o

numerical fitting

’E,:='£n(k —fl) when - <k
r r
(18)
h
T, =0 when " =k

where n = 3/2. This fit results in maximum errors for
7./ty of +0.1. By assuming that the glide planes are
equally distributed over all values of #/r, the average
climb threshold is obtained by integration of equa-
tion (18), to give

(T e = 0'4k5121:0‘ (19)

This is also plotted as a function of k in Fig. 5. For
k =1, the average climb resistance is equal to 0.47,,
which is very similar to the results obtained by
Shewfelt and Brown [7] and by Arzt and Ashby [8].
It should be noted, however, that this result is
obtained assuming a uniform particle distribution on
the glide plane whereas Shewfelt and Brown simu-
lated the case of a random distribution. It would
therefore appear that the factor of 0.4 is due to the
statistics of //r only and is not sensitive to assump-
tions about the distribution of the particles in the
glide plane.

The overall threshold stress for dislocation bypass
is simply the largest value of the resistance stresses
given by equations (17) and (19). The results are
plotted in Fig. 6 for the limit of zero volume fraction,
The critical value of k below which dislocation bypass
becomes detachment controlled is 0.94. It depends
only weakly on A/r, and falls to 0.85 at £, =13%
(A/r = 2). Therefore only a rather weak attractive
interaction is required before the barrier governing
the threshold stress changes from climb on the arrival
side of the particle to the detachment process on the
departure side. The weak dependence of the critical
value of &, k,;, on r/A can be fit to a good approx-
imation by : '

rit s

r 0,073
ooy = 0.940(1 - I) ,

(20)
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The transition would be shifted to even higher k-
values if the climb process was “general” instead of
“local™.

The model predicts that dislocations trapped at
attractive particles are most likely to be found on the
departure side where the resistance is greatest, in a
configuration in which the dislocations are bowed
away from the particles [Fig. 2(b), dislocation “2"]
Such configurations have indeed been observed in
ODS superalloys [14, 15]. Using the model, it is
possible in principle to estimate the actual value of
the relaxation parameter & [16].

3.2. Large volume jractions, f,>13% (A/r <2)

Figure 7 shows the stress resisting climb for
A/r =1.1 (corresponding to a volume fraction of
0.43). For such a large volume fraction the nature of
the climb process is quite different. The length of the
extra dislocation line which must be produced during
climb is proportionately much greater than at low
volume fraction. As a result, the detachment stress is
much less important. Moreover the maximum climb
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Fig, 7. The normalized shear stress vs dislocation position
for different values of k at high volume fraction f,=43%
(A/r =11) and hfr=0.05,
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resistance may be found either on the arrival or the
departure gide of the particle. We find also that once
Afr is less than 2, the approximate equations derived
for the ¢climb stress given by equations (18) and (19)
are no longer valid, The model itself is also of little
practical significance since attractive interactions of
the type postulated here will only be produced at
incoherent interfaces, for example in dispersion
strengthened materials in which volume fractions are
typically less than 10%.

4, CONCLUSIONS

1, The effect of an attractive interaction between a
hard particle and a lattice dislocation climbing “lo-
cally” around it can be modelled to give an analytic
expression which determines the stress necessary for
climb to continue. At small volume fractions
(< 13%) corresponding to A/r >2, the threshold
stress for climb over particles which are randomly
intersected by the glide plane is given (to a good
approximation) by

(T“c)nvu = 04]‘: 51‘21:0

where 7, is the “nominal” Orowan stress and k the
factor by which the dislocation line tension is lowered
in the vicinity of the particle.

2. The attractive interaction causes an additional
threshold stress which must be exceeded in order to
detach the dislocation from the particle after ¢limb is
completed

This threshold applies irrespective of whether the
preceding climb process was “local™ or “general”,

3. Unlike the climb threshold, which scales as the
Orowan stress and therefore as 1/(1 — r), the detach-
ment threshold depends only on 1/ and not on
particle size.

4. Only a very modest atiractive interaction be-
tween dislocations and particles is required in order
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for dislocation detachment to become the strength-
controlling process. This conclusion is supported by
TEM observations of dislocation configurations
around particles in ODS superalloys. One might
also expect that other dispersion-strengthened alloys
derive their high temperature slrength from a
resistance to dislocation detachment,
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