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Abstract—The densification of spherical powders by cold compaction, hot-isostatic pressing and sinter-
ing can be described in terms of the shrinkage of the Voronoi cells associated with the initial packing of
the powder particles, The shape of the average cell is determined by the radial distribution function of a
‘random dense’ packing of spheres. The advantage of this approach lies in its ability to explain quantitat-
ively the continuous formation of new neighbours (increase in particle “coordination’). Using simple
constitutive relations for low temperature plasticity, diffusion, and power-law creep, the efiects of an
increasing coordination on densification by these mechanisms are assessed. The results show that in
pressing operations, with negligible contribution from diffusion, densification becomes increasingly more
difficult than would be expected on the basis of constant coordination; that in sintering, on the other
hand, densification rates are underestimated by two-sphere models,

Résumé—On peut décrire la densification de poudres sphériques par compactage & [roid, formage
isostatique & chaud et frittage & partir du rétrécissement des cellules de Voronoi associées 4 la configur-
ation initiale des particules de la poudre. La taille de la cellule moyenne est déterminée par la {onction
de répartition radiale d'un empilement “aléatoire dense™ de sphéres. L'avantage de cette approche réside
dans la possibilité d’expliquer quantitativement la formation continue de nouveaux voisins (augmenta-
tion de la “coordination” des particules). En utilisant des des relations de constitution simples pour la
plasticité & basse température, la diffusion et le Auage selon une loi en puissance, nous avons vérifié les
effets d’un accroissement de la coordination sur la densification par ces mécanismes. Nos résultats
montrent qu'an cours du formage avec une contribution négligeable de la diffusion, la densification
devient plus difficile gu'onne s'y attendrait sur la base d'une coordination constante; D'autre part, ils
montrent également qu'au cours du fluage les vitesses de densification sont sous-estimeées par les modéles
4 deux sphéres.

Zusammenfassung—Die Verdichtung sphiirischer Pulver durch Kaltpressung, isostatischer Warmpress-
ung und Sintern kann mit der Schrumpfung von Voronoizellen, die mit der Anfangspackung der Pulver-
teilchen zusammenhiingen, beschrieben werden. Die mittlere Zellform wird bestirnmt durch die radiale
Verteilungsfunktion eiper ‘zufillig-dichten’ Packung von Kugeln, Der Vorteil dieser Niherung liegt
darin, daB die kontinuierliche Bildung neuer Nachbarn (Anstieg der Teilchen-*Koordination’) quantitat-
ive erkldrt werden kann, Mit einfachen Grundgleichungen [iir die Niedertemperaturplastizitit, die Dil-
fusion und das Potenzgesetzkriechen werden die Effekte einer zunehmenden Koordination bei der
Verdichtung abgeschitzt. Es zeigt sich, daB die Verdichtung ohne einen wichtigen Beitrag durch Dif-
fusion immer schwieriger wird verglichen mit konstant bleibender Koordination. Andererseits werden
beim Sintern die Verdichtungsgeschwindigkeiten im' Zweikugelmodell unterschitzt,
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1. INTRODUCTION

Most theories of the densification behaviour of
powders subjected to high temperature (as in sinter-
ing) and/or pressure (as in hot and cold compaction)
deduce the shrinkage from the linear densification
between two spherical particles in a regular packing.
This approach neglects the peculiarities arising from
the fact that the particle structure is never regular and
changes continually during densification. As the aver-
age particle distance decreases, the particles are
squeezed together and form contact areas, During this
process the average number of contacts per particle
(“coordination number™) increases steadily. This im-
plies that in pressing operations the forces acting on
the particle contacts diminish continuously, because

the external pressure is shared among an increasing
number of contacts. In sintering the opposite effect
occurs; the densification rate is roughly proportional
to the number of contacts per unit volume. In both
cases the geometry of the particle packing may there-
fore influence the densification; to what extent
remains to be seen.

Sphericity of particles is a convenient, and (in view
of the increasing technological importance of spheri-
cal powders) realistic model assumption. The two-
sphere approach has been criticized on the grounds
that it fails to account for processes observed in
model experiments, particularly particle rearrange-
ment and pore opening [1]. It has recently been
shown [2], however, that numerical simulations of the
shrinkage behaviour of three-dimensional particle
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structures give results close to the two-sphere model.
The remaining slight discrepancy has been explained
by invoking the formation of new contacts, It can
therefore be expected that a quantitative treatment of
contact formation could fill an important gap in our
understanding of powder densification.

This paper describes how the change in coordin-
ation can be accounied for quantitatively by assuming
the particle structure to be a ‘random dense’ sphere
packing with a simple radial distribution function. We
derive analytic expressions for contact number and
contact area as functions of relative density. On this
basis, the influence of the coordination number on the
processes of hot and cold compaction and on sinter-
ing will be discussed. The symbols used are listed in
the Table,

Table of symbols

G(r) cumulative radial distribution [unction (RDF) of
the particle packing
C slope of linearized G(r) ol a random dense pack-
ing (see Fig. 1)
R initial particle radius (taken as 1)
Z  average coordination number
Zy  average coordination number at start of densifi-

cation
a average contact area (measured in units of R?)

D relative density of compact
Dy relative density at start of densification
R’ fictitious sphere radius after densification (see
Fig. 3)
R" RY,. particle radius after material redistribution (see
Fig. 3)

p external pressure in cold compaction and hot-
isostatic pressing

P, ‘“effective pressure” (pressure acting on an aver-
age contact face)
én og  power-law creep material parameters (see equa-

tion 22)

2, THE POWDER AS A RANDOM PACKING

The initial densification of a powder may be due to
the relative motion of particles by sliding. In spherical
powders this process is confined to the very beginning
of densification, even if a pressure is applied [3]. Dur-
ing pressureless sintering, rearrangement of particles
may take place owing to the presence of asymmetrical
necks[1]. In three-dimensional packings with usual
fill densities, however, this movement will be strongly
impeded by neighbouring particles. Any kind of re-
arrangement could of course affect the evolution of
contact number and contact area, but we will neglect
these mechanisms in the present treatment.

In a packing without sliding, densification can be
brought about only by centre-to-centre approach of
particles, During shrinkage new particle pairs will be
brought close enough to form additional contacts. A
study of the geometrical changes during cold compac-
tion of a spherical powder [3] has shown this to be a
continuous process: the coordination number, about
7.3 in the original packing, increases steadily (and
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faster than the density) as densification proceeds. A
regular lattice-type packing cannot account for this
behaviour. Therefore the change in coordination is
neglected in current two-particle theories.

A continuous increase in coordination can be
modelled by assuming a ‘random’ particle structure
with a continnous distribution of centre-to-centre dis-
tances. Whether a particular sphere of the packing is
likely to form a new contact at a certain stage of
densification depends upon the distribution of par-
ticles in its immediate vicinity. The arrangement of
near-neighbours of a representative reference sphere
can be characterized by the distribution of centre dis-
tances {‘radial density function’, RDF), or—more con-
veniently in the present Comtext—by its intepral, the
cumulative radial distribution function, G(r). G(r)
states the number of particle centres within a fictitious
sphere of radins r around the reference sphere.
Scott [4] and Mason [5] have published RDFs of a
‘random dense’ packing (Fig. 1). Their results show
that, in the narrow range of interest (r < 2.8 R) G(r)
can be approximated by

Gir)=0
Blr) = 24 C(z—rfz - 1)

where Z, = 7.3 is the average coordination number
of the packing, C = 15.5 is the slope of the RDF, and
R the particle radius. This approximation neglects a
slight curvature of G(r) in the range 2R <1 < 2.1 R,
which must be of little importance, as the linearly
extrapolated value (Z, = 7.3) coincides with the aver-
age coordination number of a sieved spherical
powder [3]. Also, the relative density of a random
dense packing (Dg = 0.64) corresponds closely to the
tap density of the same powder, We therefore feel
justified to regard the random dense packing with a
linearized G(r) as a realistic model for the geometric
structure of a spherical monosize powder,

for r<2R

(1)
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Fig. 1. The cumulative radial distribution function (RDF)

of a random dense packing, obtained by Mason [5] from

data by Scott [4]. Broken line: linear approximation used
in calculations.
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Fig. 2. Two-dimensional schematic of the division of the

powder bed into Voronoi cells, The non-contacting neigh-

bours sharing a cell wall will form contacts as densification
proceeds.

3. DENSIFICATION OF A RANDOM
DENSE PACKING

During densification each particle changes its shape
by forming contact areas with its neighbours until, at
full density, the sphere packing has been converted
into a space-filling stack of irregular polyhedra. If, as

it is assumed here, the densification has been homo--

geneous, then these polyhedra are identical in shape
with the Voronoi polyhedrat of the original packing
(Fig. 2). Densification can be visualized as the shrink-
age of these polyhedra; the deformation of the par-
ticles can be regarded as imposed by the walls of the
shrinking cells,

At any given moment the coordination number is
equal to the number of Voronoi faces in contact with
the particle surface. The average contact area can be
calculated from the amount of Aattening the reference
particle has undergone.

Now we combine the concepis of the RDF and the
Voronoi polyhedra, The distribution of the distances
from the faces to the centre of an average Yoronoi
polyhedron is identical with the RDF, equation 1
(apart from a factor 2: the number of initial neigh-
bours, for instance, is equal to the number of faces at
the distance of one particle radius). Suppose that dur-
ing densification, the centres and the polyhedra
remain fixed, so that the RDF stays invariant. Densi-
fication is modelled by the concentric growth of the
spherical particles. The new (fictitious) particle radius
R’ is obtained by noting that in our model system, the
apparent volume of N particles is independent of den-
sity

4nR® _  4mR"

= = 2
N 3Dg iD @)

+The Voronoi polyhedron [6] or Dirichlet cell[7] of a
particle in a packing is the set of all points in space which
are. closer to its centre than to any other particle centre.
The boundaries of this polyhedron are obtained by placing
perpendicular bisecting planes on all centre-to-centr3 con-
nections. In the present context it is important to note that
the faces of the Voronoi polyhedra contain all the contact
Areas.
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Dy = 0.64 is the relative fill density of a random
dense packing, D the current relative density, R the
original particle radius, which we take to be 1. Hence

1/3
R'(D) = (g—) ; {(3)

0

After the spheres have grown to this new radius, some
of them overlap, ie. they reach into neighbouring
polyhedra at cell faces whose distance from the centre
r<R' (Fig. 3 1I). According to equation 1, the
number of these overlaps is

ZD)=GRR' D)) =2Zp +C(R"—1)r (4}

This simple equation describes the increase in co-
ordination due to the reduction of particle distances,
Since new contacts may also form as a result of the
change in contact geometry (especially at later stages),
equation 4 represents a lower bound for the average
coordination number. The total sphere volume cut off
by the Voronoi faces (‘excess volume’, shaded in Fig. 3
II) can be determined by integration over initial and
newly-formed contacts (Appendix)

B, = ’_;zo(R' S1R(@2R + 1)

+ % (R = 1P*@BR' + 1). (9)

This excess material is in reality transported away
from the contact zone by plastic flow, diffusion or
creep. In terms of the model, the shape accomodation

Ia b

COMPACTION SINTERING

Fig. 3. The geometry of the model: starting from an aver-
age particle, with an average Voronoi cell (), densification
is modelled as concentric growth of the particle, beyond
the stationary walls of its cell (new particle radius R’} (II).
The excess volume outside the polyhedron (shaded) is
redistributed either (2) evenly across the free surface of the
sphere; this produces a truncated sphere of radius R"
(‘compaction’ case, I[IIa), or (b) near the contact region,
forming necks (‘sintering’ case, I1Ib), Then the average area
of contact between the particle and the cell walls are calcn-
lated in each case. The coordination numbers are given by
the RDF of the packing: G(2R") and G(2R'), respectively,
An iteration step replaces R” with Ry, (see text).
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is achieved by redistributing the excess material
within its own Voronoj cell. Depending on the mech-
anism, it will stay more or less in the vicinity of the
contacts. Since it is difficult to describe the geometry
of the contacts accurately by analytical expressions,
we will consider two tractable limiting cases:

(i) Long-range redistribution: the excess material is
deposited evenly across that portion of the sphere sur-
face which has remained within the cell (Fig. 3, ITla).
This assumption will lead to a lower bound for the
size of the contacts and an upper bound for the co-
ordination number. The assumed contact geomeiry
resembles that after pressure densification, with little
or no contribution from diffusion.

(ii) Short-range redistribution: the excess material
stays in the vicinity of the contact and is used to form
‘necks’ between the particles (Fig. 3, IIIb). In this case
an upper bound for the contact areas and a lower
bound for the coordination numbers will result. The
formation of a distinct neck is characteristic of densi-
fication by diffusion, as in pressureless sintering.

3.1 Long-range redistribution (approximation Jor press-
ure densification)

If the excess material V,, is distributed evenly
across the free spherical surface of area §, truncated
spheres of a new radius R" are created. Conservation
of volume requires

%(R"s ~ R g 2 (R" = R)S =V (6}

S is the surface of the sphere of radius R, reduced
by the areas of contact. At the beginning of redistri-
bution (Appendix)

S = 4nR"? — 2ZymR'(R' — 1) = CaR'(R' — 1)%. ()

Combining equations (5), (6) and (7), R” can be
determined
Ru = Rl

4ZHR' —1P@QR' + 1)+ C(R' = 1’(3R" + 1)
12R'[4R’ — 2Zy(R' — 1) — C(R' — 1)*]

1

(@)

The average contact area is obtained by averaging
over all existing contacts: Z,; contacts of maximum
size (initial contacts) and some progressively smaller
ones (newly-formed) (Appendix). This average area, in
units of R?, is

f|4

4= 3zr?

[3(R** — 1)Zy + R"(@2R" —3)C + C]. (9)

So far we have neglected the fact that sphere
growth and material redistribution oceur simul-
taneously; that additional excess material is created at
new contacts; and that the free surface S available for
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material deposition decreases continuously. These are
second-order effects which will exert much influence
on the evolution of contact numbers only at high
densities. Incorporating them in our theory would
require an iterative procedure. Analytical tractability
can be preserved if we perform one single iteration
step which leads to a reasonable approximation for a
corrected R” (Appendix)

Reor = R
4ZyR' — 1*2R' + 1) + C(R" — 1)*(3R" + 1)
12[4R'? = 2Z,R'(R’ — 1) — CR"(R" — 1)*]

(10)

where R’ is obtained from equation 3, and R” from
equation (8).

The coordination number is equal to the value of
G(r)at r = 2R,

Z (D)= G (2R¢) = Zo + C(Re, — 1) (1)

While equation (4) took account of the increase in
coordination only due to reduced particle distances,
equation (11) allows for an additional change result-
ing from the contact deformation. Note that we have
not inserted R4, in equation (9); at the stage when
this correction becomes significant, the growth of con-
tact areas is impeded by the mutual impingement of
neighbouring contacts (as discussed by Fischmeister
and Arzt [8]). From then on the model is no longer
strictly valid.

3.2 Short-range redistribution (approximation for pres-
sureless sintering)

In this case, it is assumed that the excess material at
each cell face forms a neck between the particle and
its neighbour at that face. We neglect any other con-
tributions to neck growth, e.g. diffusion from surface
sources, evaporation—condensation, etc. The neck
surface is usually modelled as a torus surface; the
contact area is then given by an implicit function [9]
of the relative centre approach ii/R. For this relation-
ship, we will use the following approximation

a= 11h/R. (12)

Translating into the present model geometry, we

get for thé contact area at a cell face at a distance r
from the cell centre

a(r) = 11 (1 - };—)

Hence, the average contact area is (Appendix)

(13)

11
a= ﬁT[zG(R' s Y %(R' - 1)2] (14)

It has been assumed that the material redistribution
affects only the immediate neighbourhood of the con-
tacts and not the parts of the sphere surfaces between
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Fig. 4. Average coordination number vs relative density,

Upper curve is G[2R%,, (DY], centre curve G[2R" (D}], and

lower curve G[2R' (D}). Solid circles are data from com-

pacted bronze powder [3], open circles results of computer
simulations [2].

contacts where formation of new contacts is most
likely. The increase in coordination must therefore be
described by equation (4), at least until contact faces
start to impinge on the particle surfaces. According to
the model, this happens at a relative density of about
90%,. From then on material redistribution will con-
tribute to the formation of new contacts in a similar
way as in long-range redistribution. The coordination
number will approach the curve corresponding to the
pressing limit, while the exact path taken will depend
on the densifying mechanism.

The results of the calculations are shown in Figs 4
and 5. Coordination numbers according to equations
(4) and (11) are compared with values measured on
pressed specimens. At first, the points conform rather
to the lower curve (sintering limit), which is a reflec-
tion of the fact that also in pressing the contact
material tends to stay at first in the vicinity of the
contact, At higher densities the agreement with the
upper curve is good, and the final coordination, pre-
dicted as 13.69, coincides with the results of numerous
experimental and theoretical studies [10, 11, 12]. Also
included in Fig. 4 are the coordination numbers
obtained from computer simulations by Ross et

o
53

CONTACT AREA/R?
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Fig. 5. Average contact area vs relative density. Centre

curve uses Z for pressing limit (see text). Experimental

data: open symbols, compacted powder (O Copper [19], ¢

Lead [18], Zinc[19], & Aluminium [19],

Bronze [3]); solid symbols, sintered powder (@ Copper [9],

B Glass [9]). A average contact area in a stack of equal
tetrakaidekahedra.
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al. [2]. These data, being based on perfectly monosize
spheres, reflect the initial curvature of the RDF,
which we have ignored in equation 1. After elimin-
ation of about 2%, porosity the values show the same
slope as predicted, but are generally somewhat higher.

For contact areas, data from both sintered and
compacted specimens, and from model experiments
with particle pairs, are available (Fig. 5). They show
that there is a clear, predictable distinction in the evo-
lution of contact area depending on whether contact
growth is predominantly by diffusion or by plasticity.
The two ‘sintering’ curves show that towards full den-
sity the choice of the coordination number, Z, in
equation (14) becomes important. If, because of the
impingement mentioned above, we use Z for the
pressing limit, equation (11), then the centre curve in
Fig. 5 is obtained. This curve makes sense, because at
full density it intersects the ‘compaction’ curve at an
area value which corresponds to the average face area
of a tetrakaidekahedron. If, on the other hand, Z from
equation (4) is used, then the upper curve results, pre-
dicting unrealistically large contact areas at high
densities.

4. APPLICATIONS

The foregoing considerations have shown how the
assumption of a random packing allows both the
growth of contact areas and the increase in coordin-
ation to be described. Being purely geometric they
apply regardless of the particular mechanism by
which a centre-approach is achieved. For the appli-
cation of the model to actual densification processes,
these results have to be combined with the appro-
priate constitutive equations. This will be done for
cold compaction, hot pressing and pressureless sinter-
ing.

For our purposes, the following approximate ex-
pressions (obtained for Z; =73, C=155 and
Dy = 0.64) are useful. The coordination number in
the sintering limit, equation (4), is

D—Do .D'_‘.[}o2
=Z s — |, (s
Z 0+C’[ ibg (BDU )-i- (15)

Neglecting all terms in this series except the first
one gives a maximum deviation from equation (4) of
4% including the second term improves accuracy to
1%.

The coordination number in the pressing lmit
[equation (11)] is

Z=2Zy+ 95(D — Dy) for D < 0.85
(16)
Z=2Zy+ 2+ 95(D — 085)
+ 881(D — 0.85)% for D > 0.85

with a maximum error of 2%,
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The average contact area in the sintering limit
(equation 14) is

a=55(D — Dg)[1 —(D— Dg)] + 4%. (17N

The average contact area in the pressing limit
(equation 9) is

a=3(D— Do)+ 8% (18)

(maximum deviation in the 07 <D

< 0.95: 4%).

range

4.1 Cold compaction

When a pressure is applied to a powder at room
temperature, the densification is by (low-temperature)
plastic flow at the particle contacts, Locally the fol-
lowing yield criterion must be satisfied (indentation
solution) [13]

ol

= 3op (19)
where f/a is the ‘effective pressure” which acts on an
average particle contact, a the contact area, and o,
the flow stress of the material.

For isostatic compression of a random sphere
packing the correlation between local contact force f
and the external pressure p is [14]

47

f=3p5P (20)

{for die compression, where pressure is dissipated by
die-wall friction, p would have to be replaced by the
local pressure). The effective pressure is then

f__ _4=p 1)

P =% = 2Dyz0)D

By combining equations {19) and (21) and allowing
for a density-dependent flow stress (because of work
hardening), a complete theory of isostatic cold com-
paction has been developed, which is in good apree-
ment with experimental results [8].

It is important to note that in this model for cold
compaction only the product a-Z (ie. the total con-
tact area) enters the equations. In Fig. 6 the correc-
tion factor by which the effective pressure is changed
(with regard to calculations assuming constant co-
ordination) is plotted as a function of relative density
{curve marked ‘cold compaction’).

4.2 Hot isostatic pressing (HIP)

In hot pressing, the instantaneous densification is
again due to rate-independent plasticity, When yield-
ing stops, the contact regions continue to deform by
power-law creep and/or diffusional flow, Because pro-
cess cycle times are of the order of hours, these time-
dependent mechanisms usually supply most of the
densification,
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If the powder material exhibits power-law creep

according to
- . a
€E=€g|—
Go

(where &5 and o, are material properties) then the
densification rate caused by power-law creep alone is

[13]
Q - 5.3(D2D°)”3é0\/§ P.,rr Jt
dt s 30'0

where P, is given by equation (21) (we ignore surface
tension as a driving force because it is usually
insignificant in HIP),

From equations (23) and (21) it follows that

o Ja

dat “ (azy”

(22)

(23)

(24)

Figure 6 shows the error introduced by neglecting
the increase in coordination for a material with n = 3
{curve marked ‘HIP-Creep n = 3°).

Diffusional creep supplies a densification rate which
can be obtained by equating the rate of volume
deposition by diffusion [16, 17] to the rate of excess
volume removal (the derivative of equation (5) with
respect to time). The result is [15]

dD _ 12D? (8D, + pD,)Q
dr  Dg kTR?

ZP:l'I'

x I (25)

Zo(R? - 1)+ %(R‘2 — 1)?

where D, and D, are the grain boundary and lattice
diffusivities and p the neck curvature (and the absolute

Y5 SINTERING

&
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&
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o2 €OLO COMPACTION
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O o5l
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I ! i i
05Ok E] 59 *
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Fig, 6. Ratios (present calculations/calculations assuming

constant coordination). In ‘cold compaction’, effective

pressures are compared (equation 21); in all other cases,
approximated densification rates (equations 28, 26, 24).
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value of R enters because it determines the diffusion
distances). In this case

dpD P |

—d‘}' oc PefF oC E ‘
The rate of densification is inversely proportional to
the average contact area. Therefore, one would expect
that a larger number of small contacts will lead to
faster densification than a smaller number of larger
ones, a+ Z being equal. This is again illustrated in Fig.
6, where the error made by assuming a constant co-
ordination is plotted as a function of relative density
{(curve ‘HIP-Diffusion’).

Based on these and similar equations, mechanism
maps can be constructed which predict the extent of
densification and identify the dominant mechanism
during hot-isostatic pressing [15].

(26)

4.3 Pressureless sintering

In pressureless sintering driving forces for densifica-
tion appear only at particle contacts (unlike pressure
densification, where the driving force is supplied by
the external pressure and is consumed by the con-
tacts). New contacts therefore introduce additional
driving forces; and a stronger dependence of densifi-
cation rates on coordination is expected.

An expression for the densification rate due to dif-
fusion may be obtained from equation 25 by identify-
ing P with the capillary stress (which is insensitive

to changes in Z)
G-3)
‘}l ———
p X
I

x = @7)
Zo(R? — 1) + - (R — 1)

dD _ 12D* (8D, + pD,)NZ
dr Dy kTR?

where y is the surface energy and x = ./a/n the
average contact radius. Hence, densification is deter-
mined roughly by the number of contacts per volume
of compact

dp ZD
—_ 28
dt  R? (28}
The increase in coordination should therefore be di-
rectly reflected in the densification rate. From Fig. 6
(‘sintering’ curve) it is clear that pressureless sintering
is most sensitive to changes in coordination.

5, DISCUSSION AND CONCLUSION

It has been shown that the assumption of a random
dense packing as a model for the initial particle struc-
ture allows a more precise prediction of the particle
peometry during densification by plastic flow and
creep. All geometric elements have been supplied for
modelling the usual powder metallurgical production

E
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route (comprising cold compaction and subsequent
sintering), and hot-isostatic pressing.

Particle rearrangement and the possibility of in-
homogeneous densification have been ignored in the
present treatment, because these mechanisms are diffi-
cult to model. The theory does not claim to cover
‘low-coordination® arrays in the sense of Ross et
al.[3]. The calculations show that the increase in co-
ordination is slow at first: this justifies the assumption
of constant coordination for ‘stage 1' models, A dra-
matic change in coordination occurs only at densities
above about 90%, when contacts have impinged [8].
At that stage the present model, which assumes unin-
hibited growth of contact areas, is no longer strictly
valid. The iteration step introduced in equation (11)
happens to lead to a reasonable final coordination,
however, and the contact area at full density corre-
sponds closely to the average contact area in a stack-
ing of equal tetrakaidekahedra. These observations,
and the agreement with experimental data (Figs 4 and
5), support the model strongly even at high densities,
at which most theories resort to representing the
pores simply by spherical cavities.

The information about both the average contact
area and the coordination number (and not only the
total contact area) can be important for calculating
the effective pressure and densification rates (Fig. 6).
In cold pressing, new contacts reduce the average
contact force and compaction becomes increasingly
more difficult than would be expected on the basis of
constant coordination. This ‘geometric hardening’
effect is even more pronounced when the densification
occurs mainly by power-law creep of the powder
material (as in hot-isostatic pressing, in certain tem-
perature-pressure regimes [15]): in a material with the
power-law exponent n = 3, for instance, the rate of
densification may drop by a factor of up to three only
as a result of the increase in coordination (Fig. 6).

When diffusion is the dominant densifying mechan-
ism (as in pressureless sintering, or hot-isostatic press-
ing), new contacts, owing to their higher neck curva-
ture, will tend to speed up densification, or rather,
slow down the inevitable decrease of sintering rates
due to the continuous reduction of the capillary stress
at the growing contacts, Therefore, densification rates
are always higher than for a particle packing with
constant coordination (Fig. 6). As expected, the ‘accel-
erating' effect is most prominent in pressureless
sintering.

One limitation of the present model is quite
obvious: the interactions of different neighbours of
one sphere are not taken into account explicitly. New
contacts, even if they tend to bring about faster centre
approach, will always be constrained by neighbouring
particles. This leads to a complicated stress state.
Overall densification will not be determined by the
size of the largest contacts, nor by the smallest ones.
This model is a compromise: it likens shrinkage of
the powder bed to the densification experienced by a
representative particle with the average number of
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average-size contacts, surrounded by an “average”
Voronoi cell. We suggest this approach, which is
still amenable to an analytical treatment, as a
step towards a more realistic description of powder
densification.
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APPENDIX
Caleulations

The excess volume created at an initial contact is the
volume of a spherical cap of height (R — 1)

By %(R' — 1QR' + 1). (A1)

At a polyhedron [ace at a distance r [rom the cell centre

Vilr)= E(R‘ = r)*2R' +r} (A2)

Remembering that according to equation (1) an infinites-
imal increase in comtact number is dN = Cdr, the total
excess volume is

R
V, = VgrZyg+ C _[ V,(r dr (A3)
r=j

from which follows equation (5).

ARZT: DENSIFICATION OF SPHERICAL POWDERS

The portion of the sphere surfnce available for material
deposition is the total spherc surface minus old and new
contact areas. One initial contact occupies an area

So = 2mR(R" - 1) (Ad)
a new contact
Si{r) = 2aR(R" —r). (AS)
The [ree surface is then
R
S=4rR? - S+ Zy — C f S () dr (A6)
r=1

which, evaluated, yields equation (7).
The average contact area is a [unction of R” (equation
(9)). For initial contacts

ag = (R"* — I)m, (A7
Newly-formed contacts have smaller contact areas
uylr) = (R"* — ). (AB)

The average contact area (equation (9)) is then obtained
from

i R
0= —=|tgZy+C f a (r)dr] (A9
ZR2|: 0o - 1 }

(where the factor 1/R'? normalizes the result to the original
particle radius R = 1).

Having so far neglected all contacts that are formed
during material redistribution, we can improve the result
by treating R” (from equation (8)) as a new R'. Then the
additional excess volume is

Vo) = g(R" — PER" + 1) = V(). (A10)
The additional surface area occupied is
8;(r) = 2=R"(R" — ») — §,(r). (Al1)

From the balance of volumes

R' R
(Reor — R')(S -C Sa(r) df‘) =V,+C f Va(r)dr
1 r=l

(Al2)

r=

cquation (10) follows immediately.

The avernge contact area for the case of short-range
redistribution is obtained by integrating equation (13) as in
equation (A9)

= i ZolR' = 1} CJRI R —r)dr Al3
G‘EI_Q‘-[ ol + r‘:]( (Al3)
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, c,, 3
= ER-,—[ZD(R - 1)+ E(R — 1)2]. (Al4) = (14)



