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Absorption and emission measurements of the ‘A ,-’E transitions of Cr3* in GdAlO; at
T <4.2 K, in magnetic fields up to 6 T parallel to the easy axis, are consistent with a
magnetic Franck-Condon principle for which the energy difference between the absorp-
tion and emission lines arises mainly from the spin relaxation, rather than the neigh-
boring ion space coordinates around the impurity. The Cr-Gd exchange-coupling con-
stant changes with the applied magnetic field from J=2.1 cm™ at H= 0 to J;,, = 1.46

cm™! at high field.

PACS numbers: 78.50.Ec, 75.50.Ee, 78.55.Hx

The Franck-Condon principle for magnetic
states was recently introduced' to remove an in-
consistency in interpreting the ?E-*A, lumines-
cence spectra of Cr®” in the antiferromagnet
GdAlO, (T'y=3.89 K). In this matrix, a Cr®" ion
replaces A1®" at the center of a slightly distorted
cube formed by the eight nearest Gd ions, here
called the G&®" cluster. Luminescence spectra
in the absence of magnetic field have been meas-
ured by Murphy and Ohlman® and by Blazey and
Burns,® and by our group* in magnetic fields up
to 6 T. The value |J| =2.1 cm™* of the effective
exchange-coupling constant between the % spin of
the ‘A, ground state of Cr®” and the % spin of a
nearest-neighbor Gd** was obtained from the
fluorescence-line splitting measured above 7'y in
absence of external magnetic field.2® J decreases
with increasing field down to a saturated (mini-
mum) value 1.46+0.06 cm™ !, AsJ in any case is
more than one order of magnitude larger than the
antiferromagnetic Gd-Gd exchange /=0.1 cm™*,°
below Ty the Gd spins in the cluster ought to align
in the Cr-spin direction, thus inducing a larger
splitting in the fluorescence.® Surprisingly, the
splitting decreases with decreasing temperature
for T < Ty, indicating that antiferromagnetic or-
der prevails. A magnetic Franck-Condon effect
was recently proposed* to solve this “puzzle.” We
report on absorption and emission line energies
as a function of magnetic field, which confirm
this concept.
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Previous work®? estimated a value J' for the
excited Cr®* 2E level in the range 3.2~4.3 cm™*
from the splitting of the absorption line assumed
to arise from exchange. This splitting (~ 30 cm™)
does not change with temperature practically up
to 77 K27 Thus we assume here that the 2E level
is split by a crystal field and that the Cr-Gd ex-
change-coupling constant J’ in the %E excited Cr®"
ion is much smaller than that in the ‘A, ground
state. Thus, the G&®" cluster around an excited
Cr®’ is antiferromagnetically ordered for T <Ty.
A Franck-Condon principle applied to magnetic
states keeps frozen the antiferromagnetic order
of the Gd®" cluster during the fluorescence transi-
tion,® so that the splitting €, observed in fluores-
cence results from the interaction between Cr®*
and the unrelaxed antiferromagnetically ordered
Gd" cluster. Eventually, the cluster relaxes
towards the more stable ferromagnetic state lead-
ing to an enhanced relaxed ground-state splitting
€;, as illustrated in Fig. 1(a) for J’ =0. The Gd®"
cluster ferromagnetic state, higher in energy by
E, in the absence of chromium, is stabilized by
the energy — §€ ; coming from the Cr-Gd exchange
interaction. Analogously, during the absorption
transition, the G cluster remains ferromag-
netically ordered. Afterwards, since J’ is small,
the cluster relaxes much faster than the lumines-
cence lifetime, to an antiferromagnetic state, re-
leasing the excess energy E,. It is apparent from
Fig. 1(a), that E,, cancels out and the energy dif-
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FIG. 1. Energy levels and optical cycle describing
the mangetic Franck-Condon principle. (a) For H=0,
(b) for H>5 T (saturation of the cluster magnetization).
The magnetic order of the Gd** cluster remains frozen-
in during vertical optical transitions; the relaxation of
Gd3* cluster spin coordinates occurs in the 2E excited
states (ferromagnetic to antiferromagnetic order) and
in the ‘4, ground states (antiferromagnetic to ferromag-
netic order).

ference between the absorption and fluorescence
lines Afc, when E,,< Apc, is given by

Apc=%(e;-€,). (1)

An external magnetic field tends to align the
cluster spins along the field direction lowering
the energy of the cluster by a certain amount £ 5.
As the magnetic field is increased, the magnetic
order of the cluster in the excited and ground
states is mainly determined by the magnetic field
rather than by the exchange interactions; when
the field is high enough to saturate the cluster
magnetization, spin relaxation in the Gd®" cluster
states no longer exists, and the Stokes shift Ap¢
vanishes [Fig. 1(b)].

The GdAlQ,;:Cr®" crystal was grown from high-
temperature solutions as described elsewhere.”
Absorption and emission energies were measured
at 1.5 K as a function of magnetic field applied
along the easy a axis. Figure 2 shows the fluores-
cence and the lowest-energy absorption lines.

The jumps at about 1.2 T reflect the antiferromag-
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FIG. 2. Emission and lowest absorption energies of
the ‘A ,~’E transition measured as a function of the ap-
plied magnetic field at 7 = 1.5 K. Open circles emis-
sion; solid circles, absorption.

netic spin-flop (AF-SF) phase transition as pre-
dicted from the pure GdAlQO, phase diagram.®®
Above ~ 5 T, the absorption and the highest-ener-
gy fluorescence lines have the same energy,
showing that lattice or spin relaxations do not con-
tribute to the fluorescence shift. Absence of the
usual Franck-Condon effect agrees with the Cr®*
results in nonmagnetic hosts such as ruby.!° The
magnetic-field dependence of the average values
€, of the three slightly different splittings ob-
served in fluorescence and the shift Arc are
plotted in Figs. 3 and 4. Calculation of the Stokes
shift Arc requires knowledge of the splittings €,
and €, of the relaxed and unrelaxed *A, ground
states, respectively. As no data are yet available
for €;, we shall roughly estimate Arc from the
knowledge of €, alone. As the ordering effect of
the Cr®" ion on the G&®" cluster can be described
by an effective Weiss field, the splitting of the
relaxed ground state at zero field, €,(0), origi-
nates mainly from polarization of the cluster due
to this Weiss field. From the measured value
Apc=28 cm™! and Eq. (1), we find €,(0) =32 cm™".
The Weiss-field size can now be estimated by
comparing €4(0) with €,(H4) measured in fluores-
cence under external field, since in this case the
cluster polarization is mainly produced by the ex-
ternal magnetic field. According to Fig. 3, this
occurs for A,=2.4 T, certainly an upper limit for
the effective field produced by chromium on the
Gd®" cluster since part of the splitting is due to
Cr-Gd spin correlations. Neglecting correlations
and the AF-SF transition effect of the second
neighbors on the cluster, we can approximate

205



VoLUME 50, NUMBER 3

PHYSICAL REVIEW LETTERS

17 JANUARY 1983

50 T T T T
0-1.00
—40F i
€
L
o o o
30k . -o7s
=
= o
= o
"
© 20k Hoso
2
5 o
>
o o
o
10 |- —0.25
1 1 1 | (0]
oO | 2

3 4
magnetic field (T)

FIG. 3. Average fluorescence splitting €, of the £~
14, transitions of Cr®" measured as a function of the
applied magnetic field at T = 1.5 K (open circles). The
solid line is the magnetization of the pure GdA10; ma-
trix at 1.5 K. Taken from Ref. 9.

€4(H)=€,(H +2.4). Replacing €; in Eq. (1), we
find the result for Arc shown by the solid line in
Fig. 4. Vanishing Apc at high fields is the main
evidence for the proposed magnetic Franck-Con-
don effect governing the optical cycle. This is
further corroborated by the close resemblance of
the observed and calculated Ap ¢ at all fields.

The Weiss field #, can be written in terms of
J as H=%J/gui, where g =2 is the g factor of
Gd®*, Wy the Bohr magneton, and § stands for
the Cr®" spin in the ground state. Using the pre-
viously reported value* of J=2.1 cm™! gives a
Weiss field H,=3.37 T, inconsistent with the 2.4
T obtained above. Here, J was adjusted to fit the
experimental fluorescence splitting in the para-
magnetic region and in absence of external mag-
netic field. On the other hand, at 1.5 K and for
H> 4T, the cluster magnetization is practically
saturated (solid line in Fig. 3). In such a case,
the splitting is given by €,=J(8S + %), where S=%
stands for the Gd spin.' Thus, from the observed
saturated value of the splitting €,=41.5 cm™?,
Js2:=1.46+0.06 cm™! can be extracted.

This clearly shows that the Cr-Gd coupling
changes when the Gd cluster is forced into a fer-
romagnetic order, implying that the value of J
and the magnetization of the Gd cluster are some-
how linked. The correlation between these can
be found by fitting at each field the experimental
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FIG. 4. Stokes shift Arc between the lowest-energy
absorption line and the highest-energy fluorescence
line measured as a function of the applied magnetic
field at T =1.5 K: open circles, experiment; solid
line, theory.

splitting* €, measured at 4.2 K by its theoretical
expression.! The J values obtained are plotted in
Fig. 5 as a function of the reduced magnetization
m (H) of the Gd cluster. In a previous report a
good fit was obtained for €, at 4.2 K by use of a
phenomenological theory with a constant J =2.1
cm . The agreement was, however, fortuitous
for two compensating reasons as explained in Ref.
1.

Further experimental evidences for the depen-
dence of the Cr-Gd exchange coupling on magnetic
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FIG. 5. Calculated Cr-Gd exchange-coupling constant
J (solid line) from experimental data of ¢, measured at
4.2 K (open circles) as a function of the Gd cluster re-
duced magnetization m(H). Taken from Ref. 9.
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order exist. From Fig. 3, the reduced magnetiza-
tion at 1.5 K in a field of 2.4 T is approximately
0.7. According to Fig. 5, this corresponds to J

~ 1.6 cm ! leading to a Weiss field of 2.57 T, con-
sistent with #,=2.4 T. On the other hand, J =2.1
cm ! leads to H,=3.3 T at the nearest Gd sites,
almost completely saturating the cluster magneti-
zation at zero applied field and preventing the ob-
servation at 1.5 K of the effect of the spin-flop
transition and the initial rise of Apc (Fig. 4).
Furthermore, the energy E,, necessary to pro-
mote the Gd cluster to a saturated ferromagnetic
order is given approximately by 485%/ =59 cm™*;

it is larger than the Ap ¢ observed, therefore
preventing relaxation in the ground states after
the fluorescence. On the other hand, the smaller
J value accounts for the effects arising from non-
saturation of the relaxed ground state.

The changes in the effective J may reflect the
missing of higher-order terms in the Hamiltonian
or a change in the interatomic distances around
the Cr®" in the %A, state with magnetic field as
there is observed a simultaneous change of the
fluorescence lifetimes and intensities related to
the magnitude of the low-symmetry components
of the local crystal field.
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A resolution to the controversy over the magnitude of the effective short-range Cou-
lomb interaction in molecular conductors is proposed by showing that it depends very
strongly on band filling because of intermolecular correlations.

PACS numbers: 71.70.-d, 72.80.Le, 75.10.Lp

The variety of electronic properties in nearly
one-dimensional organic charge-transfer salts is
remarkably rich. Structurally similar materials,
consisting of chemically similar molecules,
range from Mott insulators! through organic met-
als?'? and superconductors.® Although the sys-
tematics of this behavior have not been fully de-
veloped, there is little doubt that they depend
heavily upon the effective short-range interac-
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tions among conduction electrons.* These inter-
actions, however, remain poorly characterized.
Intense controversy persists over whether they
are large® or small®>® compared with the conduc-
tion bandwidth, and strong experimental evidence
has appeared on each side.?%®

We seek here to resolve that controversy. We
argue that the short-range interactions in these
materials are not fixed, but are self-consistently
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