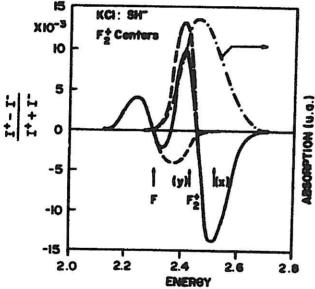
BIREFRINGRNCE AND MAGNETO-OPTICAL PROPERTIES OF F; CENTER IN KC1

D. Donatti and M.A. Aegerter
Instituto de Física e Química de São Carlos, Universidade
de São Paulo, São Carlos (SP) 13560 Brasil


The basic optical properties of the F_2^+ center in KC1 have been studied in detail several years ago by Aegerter and Lüty¹⁾. More recently, with OH or SH dopped crystals Gellerman et al²⁾ were able to create high concentrations of these defects, thermally stable till --30°C; in KC1:SH it was even possible to obtain F_2^+ centers in a sample almost free of F and F_2 centers and to observe the main π absorption bands $1 \log + 2 p \pi_{\chi}$ at 493nm and $1 \log + 2 p \pi_{\chi}$ at 509nm without interference with the usually underlying F and F_2 bands. The details of the F_2^+ creation are not yet known. This open the way to study by direct methods other fundamental optical properties which where impossible to obtain before.

The creation of F_2^+ centers in KCl:SH was made following a receipt given by Gellerman et al²: the samples³) have been X-rayed at --40°C and bleached under F light at the same temperature. Light irradiation in the π bands for T > 30 K allows the F_2^+ to reorient along the (110) directions. We found that during this procedures, the crystal become strongly birefringent: a linear polarized light impinging on it comes out elliptically polarized; with a non isotropic F_2^+ center system the tensor of the refractive indices become anisotropic and the amplitudes a[011] and a[011] of the emerging light have a phase difference given by $\delta = 2\pi d/\lambda [n[011] - n[011]]$; they combine to give an elliptically polarized light. The dispersion spectra of the F_2^+ center will be reported for 400 < λ < 1600 nm. The high sensitivity of the measurements shows that in KCl:SH, the F_2^+ centers still reorient at 4.2 K.

The magnetic circular dichroism, MCD, of the F_2^+ center, measured in absorption under high field 0 < B < 5T and for 1.4 < T < 50K will be reported. The figure shows a typical result for the π transitions obtained at 3.44 T and 1.4K with unaligned defects. The σ transition shows a very weak negative MCD of the order of 10^{-5} . Extreme care should be taken in

order to not perturb the population equilibrium of the defects; slight variation induces much stronger dichroism due to the birefringent effect which can be easily observed at zero field.

MCD measurements in emission and absorption with aligned F_2^{\dagger} centers under various geometry are underway in order to study directly the contribution of each π transitions. Optical detection of EPR is also planned and will be reported.

Absorption (.-.-.) and MCD measurements (-----) of unaligned F_2^* centers in KCl:SH at 1.4K and 3.44T. Full curve is decomposed into the F and F_2^* components respectively (- - -).

ACKNOWLEDGEMENTS: Work performed under financial grants from FAPESP, CNPq and FINEP.

REFERENCES

- M.A. AEGERTER and F. LUTY, Phys. Stat. Sol.(b) 43, 227 (1971)
 M.A. AEGERTER and F. LUTY, Phys. Stat. Sol.(b) 43, 245 (1971)
- 2. W. GELLERMAN, F. LÜTY, K.P. KOCH and H. WELLING, Optics Commun. 35, 430 (1980).
- 3. The samples have been kindly supplied by Prof.Dr. F. Lüry.