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INTRODUCTION

Systematic SAXS studies have been performed at the LURE Synchrotron
facilities using a beam of point-like cross-section at A = 1,55 R to obtainm
detailed informations about the kineties and the effects of the different
S teps of the sol + humid gel + dry gel - Si0, glass transformation. The SAXS
intensity at high angles have been analysed in term of power law in 1log -log
Plots: 1(qQ) ~ AQ™® and the mean radius of gyration Rg has been determined
Erom the relation I{(Q) ~ A exp(-1/3 REQ?) using log 1(Q) vs 0Q* plots. The

lkkinetics of aggregation was studied in situ in Lindemann capillaries with
samples prepared from TMOS - methanol solutions having 50 vol % TMDS:; wvarious
amounts of bidistilled water, base (pH = 9) or acid (pH = 2) catalysed have

been added in the molar ratio [H,0]/{TMOS]r = 1, 2, 4. Similar sols have been
Let to gel at 55°C in closed Pyrex tube and extensive measurements have been
performed on humid gel (aged or not), aerogels dried by hypercritical solvent
evacuation {p, = 200 bar, Tc - 300°C) and aerogels sintered at fixed tempe-
rature between 530°C and 1080°C.

RESULTS AND DISCUSSION

a) Sol-gel kinetics [1] 3.2
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high Q exceed 3. 1In all TFig. 1 - Log 1(Q) vs log (Q) plot for an acid-
cases the corresponding catalysed sol with r = 2 and increa-
Guinier plots show a marked sing time values t (minutes).
curvature with increase time,

‘The variation of the average radius of gyration Ry calculated from the 1i-
miting slopes indicate that agglomeration seems to be controlled in all cases
by a diffusion process. If the fractal interpretation is adopted the results
indicate that the particles are mass fractals for the acid series with
fractal dimension D = o. For the basic series a transition towards surface
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fractals would have to be admitted for « > 3. On the other hand an interpre-
tation in terms of a polydisperse fractal solution [2| for which the exponent
® = D(3-1), with T being the classic scaling exponent of the mass distribu-
tion law N(M) ~ M™T is also plausible. Admitting the classic values D = 2.5
and T = 2.2 of the percolation theory we found for acid sols o = 2 close to
the experimental final slope and & = 2.2 for basic sols.

b) Humid gel [3]. Acid
catalysed gels exhibit a
linear behavior over a large Q
domain with no cross over,
characteristic of mass fractal 5
build up from small structural
units (< 4 R). The average
fractal dimension is D = 2.3
and decreases as a function of
TMOS concentration in samples :;
with r = 1. For base catalysed
gels (figure 2) the observa- .2
tion of two linear region in- -
dicates that the structures ©
appear mass fractal at low Q oY
values with D = 2.4 almest §
independent of r and the TMOS
concentration ¢, For high Q
values the slopes o, = 2,8 (r=
1), 3.3 for (r = 2) and 3.5
(r = 4) imply that the struc- 2
tural units are mass fractal
at low water content and sur- 1 ! 1 ]

face fraetal at high water -1.7 -.4 -1l -0.8
content. This behavior indi- o
cates the presence of hierar- LOQ'OQ (A™)

chical agglomeration of the
clusters with an average ra~ Fig. 2 - Log I vs log Q for basic - cataly-

dius of the structural primary sed humid gels prepared with C =
units determined from the 50 vol % TMOS and molar ratio
cross-over points of ~ 15 A. [qu]/[TMOSJ r=1, 2 and 4.

Aging of basic gels was found

to decrease their dimensiona-

lity (smoothing effect) and progressively to.supress the fractal nature of
the secondary particles structure. The process of gels formation in a%idic
sols is probably the same but involves much smaller structuralumits (< 4 A).

¢) Aerogels [4]. For low TMOS concentration (c < 60 vol %) two linear
regions are observed with slopes < 3 at low Q and & = 4 at high Q (figure
3), indicating that the structures are also build up by & hierarchical agglo-
meration of clusters consisting of small non fractal structural primary units
of average radii {acid) 7A ~ (neutral) BX < (basic) 12 X and aggregated as a
larger secondary mass fractal structure (RG~ 80 - 200 R) having a dimensio-
nality which decreases as the TMOS concentration increases: D = 2,28 - 1.9
(acid), D = 2.7 - 2.2 (neutral), D = 2.7 - 2.4 (basic) (figure 4&). TEM pic-
tures confirm this interpretation. Model caleculations indicate that the
matrix densities at length scale of ~ 20 A are smaller than fused 5102 den-
sity (2.2 g/cm?) but slightly higher than the apparent aerogels densities.
Aerogels prepared with higher TMOS concentration have sharp interfaces and
exhibit the classical Porod's behavior (o = 4).
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Fig. 3 - Log I vs log Q for aerogels pre- Fig. 4 - Model of aerogel struc-
pared from acidic sols for TMOS ture showing the pri-
concentrations a) 30 wvol %, mary units and the
b) 40 vol %, c) 50 vol %; r =4. secondary particles.

d) Densification of aerogels [5|. The classical Porod’'s behavior (well
defined interfaces) is obeyed during sintering, and no fractal behavior is
observed. This is due to a smoothing effect during the thermal treatment.
For T < B1l0°C the average radius of gyration decreases linearly with time
indicative of a diffusion-controlled shrinkage of the pores. Observation of
an increase of Rg at T > 912°C is probably due to a bloating process due to
expansion of gases in closed pores.
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