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1. Introduction

Tayloring of specific material properties has become a very impor-
tant® task for new material developments. Especially in the field
of ceramics where the final properties are obtained by high
temperature processes, structural and microstructural control are
a desirable means for proper tailoring. In this connection, it is
of interest how far structures of ceramics can be "prefabricated"
during low temperature processing steps e. g. by use of nanosized
precursors [1] or molecular design of structural units. As shown
by Hirano [2] and Payne [3], structures built up by wet chemistry
can affect processing and final material properties substantially,
even if the basic structure cannot be maintained from the precur-
sors (molecular building blocks, double or multiple alkoxides)
into the final crystalline state. Conventional wet sol-gel pro-
cessing does not lead to completely densified polycrystalline
materials usable for ceramic parts, and high temperature densifi-
cation steps have to employed. As a rule, during the high tempera-
ture treatment, organic components still present in the gel are

decomposed or oxidized.

In [3], organics play the role of a structure controlling element,
enabling the precursor to build up a very special structure. But
they do not play any role in the final product. If they are used,
however, for the reduction of the network connectivity, the gels
can be densified at low temperatures as shown in [4 - 6]. The
organics can play a manifold role if they remain within the struc-
ture. They can provide special functions, e. g. acids and bases,
reactive groups for polymerization, polycondensation or polyaddi-
tion or act as 1ligands for complex formers. Moreover, they can
vary the matrix properties in many directions, e. g. hydrophilic
or hydrophobic, and thus influence the permeation and diffusion

properties of small molecules. Meanwhile, a lot of inorganic-



organic sol-gel materials have been developed, and it has been
shown that the ORMOCER system (organically modified ceramics) has
an interesting potential for applications, too [7 - 9]. Due to the
1ow temperature processing which is necessary not to destroy the
organics, structures are built up during the sol to gel transition
which, with a few exceptions, can be maintained completely in the
final material. That means, the potential of molecular chemistry
to tailor structures can be used advantageously for ORMOCER

processing.

2. Btructural Principles

The schematics for ORMOCER synthesis are given in fig. 1:
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Fig. 1: Principles of ORMOCER sol-gel synthesis

Generally, the inorganic backbone is synthesized by the sol-gel
Process. The link between organic grouping and the inorganic back-
bone is very important. Covalent bonds, ionic bonds and coordina-
tive bonds can be used, as shown in fig., 2%



General principles for “links™

=Me-C= =Si-C-R £Sn-C-R
; o) a) covalent
=Me-0-C= ESi—O—(':—R ':'P—CI—R
P
7 —0-Cu=NH-R
D ] _%\_ ~0-Ni ~NH-R
, S '
T
. H 5 ] |
S 5 ~~Si€ RO D-C bl complex,
Cu m E—R chelate,
SgiAn Sl b ~SiE RO =C/ TT-complex
H H I |
9]
R
" e T B 5 i
=Me "0C-R  =Zr'70C-C=CH, 7r 6)C-C=CH, ¢} ionic
] ] /I\d./
0 0

Fig. 2: Examples for linking organics to inorganic backbones

The type of "-R", of course, determines the material properties to
a great deal. One can distinguish between different types:
Indifferent groups as alkyl or unsubstituted aryl (e. g. “CaHyn41s
-CgHg) y functional groups (e; g. -NH,, -COOH, -B-dicarbonyl and
other chelate 1ligands, -CHO, -SH, -CN, chromophores) and polyme-
rizing groups (e. g. epoxy, methacryl, vinyl, allyl or other

olefines).

In addition to that, based on the solubility of organic molecules
non-crosslinked components as organic dye molecules or polymeric
chains can be entrapped within the inorganic backbone. In fig. 3,
the wvariation possibilites of the structure are shown sche-

matically:
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Fig. 3: Schematics of the variability of ORMOCER networks.

3. Bynthesis Principles

The synthesis of ORMOCERs follows the rules of sol-gel synthesis,
at least with respect to the inorganic backbone. The problems of
reaction rate control in multicomponent systems are similar to
those of precursors leading to pure inorganic materials. It has
been described elsewhere that hydrolysis rates of organically
substituted silanes increase in the case of acid hydrolysis with
an increasing number of substituting ligands and increasing chain
length [10], e. g. Si(OR), < (RO)4;SiR' < (RO),'SiR,' < ROSiR3' and
(RO) 58iCH4 < (RO) 38iC,Hg. Thus, in mixtures of TEOS, substituted
silanes and other alkoxides, one has to take care of avoiding
negative effects of the rate differences on homogeneity. Molecular
tailoring only works well if the crosslinking of the different
components is controlled. One example, as described in [11] and
[4], shows an effective route for chemical tailoring. As shown by
the theory of Livage [12], the condensation of =MeOR + HOMe= is
preferred to the reaction =MeOH + HOMe= and increases with
increasing positive charge of the metal in the =MeOH grouping. In
[4], the three componént system from Ti(OR),, (RO)3Si(CH2)3OCH2¥
CH-CH, and sio,, it is favorable to generate reactive (RO),TiOH



groupings subsequently reacting with =MeOR dgroups according to
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The only prerequirement is to generate the water necessary for
hydrolysis very homogeneously within the reaction mixture in order
to avoid precipitation of TiO0,. Thus, it is possible only by
hydrolysing one OR group per Ti(OR)4 to fix the fast reacting
Ti(OR), completely to the ~silanes. After this reaction is
finished, exess water can be added to the system without causing
any precipitation. It is possible to produce coatings with homoge-
neitiex suitable for optical applications, e. g. coating of eye

glass lenses.
In addition to the sol-gel reaction, the chemical reactivity of

organic groupings can be used in a variety of reactions. Some

examples are shown in fig. 4a-d.



Fig.

alkene R—\ R

methacrylole \\—COOC3HESi C00C 3 Hg Si

R- R
\ polymerisation

o

- .

SiC3 Hg OOC—\ SiC3Hg 00C
N R
= =CH=C{Me)- polyethylen
R =e.g. COOMe chain

COOCH; CHCH,-0

ESiCy Hg UCHZX =SiC3Hg OCH4

0]
< S
0
b polyaddition
R ~ 'R
0
epoxysilane qy
CH 20(:3 HGSI_

organic b
epoxide R R

polyethyleneoxide

CH,0C; Hg Siz

R:e.g. CHZ =C(ME)CDUCH2_

4a - b: Examples for reactions of organic groupings in

ORMOCERS.
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Fig. 4c - d: Examples for reactions of organic groupings in

ORMOCERSs.



gince a large variation of organic groups is possible, an almost
unlimited number of organic reactions can be carried out. A gene-
ral reaction scheme is given in fig. 5.
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Fig. 5: General reaction scheme for the combined sol-gel and orga-
nic synthesis of ORMOCERs.

Fig. R is a polymerisable 1igand, various polymerization mecha-
nisms can be applied, e. g. ionic mechanisms or radical mechanisms
(photo or thermal initiated). Moreover, the sol-gel process can be
affected by ionic mechanisms if initiators are used which create

protons in the system catalyzing hydrolysis or condensation [13].

Another example of molecular tailoring is shown in fig. 6, where
the incorporation of Zr0O, into a PMMA polymer is shown. The ten-
dency of aggregation of Zr0, particles (sol) can be stopped by
fixing them to methacrylic acid and form polymeric chains from

methacrylic acid and MMA.
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The incorporation of complexed transition metals can be used as a

structure forming element, as shown in fig. 7.
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In this case, the coordination of the Cu by aminosilane groups
jeads to blue flexible polymers which, in case of doping with pro-
tons, can act as protonic conductors. These few examples show the
possibility' of material tailoring by molecular design of struc-

tures by chemistry.

4. Material Developments

The synthesis principles shown above allow a wide range of mate-
rial‘developments. In fig. 8, a survey over the basic features is

given.

H,0 BARRIERS HOMOGENEITY

INITIATORS

FUNCTIONAL
f@@ 5AZFESEU DOPANTS REACTIVE GROUPINGS
BILITY ) ACTIVE SOL-GEL ORGANIC

PASSIVE

REACTIVE

HARDNESS;

ggggtgsv INORGANICS;
WETTING WEAR RESISTANCE

NETWORK
STIFFNESS
INORGANIC
FUNCTIONAL
ORGANIC

LOW H,0 CONTENT
HYDROLYTIC
ATTACK

UNPOLAR ORGANICS

DEFECT STRUCTURE
CONDUCTIVE PATHS
DOPANTS

Fig. 8: Survey over the material development possibilities

4.1 Hard and Scratch Resistant Coatings

Mechanical protection is provided mainly by systems containing Ti,
Zr, Al and polymerizable silanes with epoxy or methylmethacrylate
groups [4, 14]. The low temperature required for the curing of the
materials can be used for conventional céating processes and
coatings on CR 39 (commercialized), brass (commercialized), PC,
PET, Al and others. '



4.2 Conductive Materials

Ti-containing materials within special polymeric ORMOCER matrices

(e. g. PEO) show electronic conductive properties (= 1074 - 1075 )

[15]. Proposed mechanisms (defect structure transported by chain

moving) is shown in fig. 9a and b.
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Fig. 9a and b: Suggested mechanisms for electronic conductivity in

ORMOCERs with Ti.

Protonic conductivity can be obtained by doping condensates from

(RO)BSi(CH2)3NH2 with strong acids [16] or by forming coordination

polymers as shown in fig. 7.



3 pielectric Materials

pow H,0 take up low ¢ materials with heat resistances up to 300 °C

can be obtained by the basic reaction shown in fig. 4b [17]. They

have been developed for photo lithography and direct laser writing

(18] -

4.4 Porous Materials

'High contents of inorganic backbones can lead to porous materials
with® special mechanical properties ([19], e. g. for abrasive uses
in mechanical applications or as selective adsorption materials in

gas adsorption or adsorption from liquids [20, 21].

4.5 Adhesive Materials

They are mainly based on materials containing short chains of

phenyl/silane based units (fig. 10)
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Fig. 10: Structural unit for hot melt adhesives

units with controlled =SiOH contents and can be used for a variety
of sealing processes [22]. They can be combined with other groups,
e. g. photo curable =Si vinyl or =Si methacryl groups, and be used

for sealings with glass [23].

4.6 Barrier Coatings

Based on the inorganic backbone, low permeation for hydrocarbons
were found. In fig. 11, the permeation behaviour of coated and
uncoated HDPE (high density polyethylene) is shown.
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The incorporation of pigments (e. g. mica) can be used for low
permeation coatings, e. g. for passivation in electronics or
protection of medieval stained glass windows [6]. The reduction of

H,0 permeation by mica is shown in fig. 12.
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Fig. 12: Comparison of filled and unfilled mica coatings. The
coatings were used on cellophane as substrates.



] Functional materials

addition of fluorescent dyes to ORMOCERs 1leads to fluorescent
coatings [24]. It depends strongly on the dye molecule which
function will be obtained (e. g. photochromic effects) (fig. 13).

other molecules of interest are lasing dyes or y2-molecules.
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Fig. 13: Effect of photochrome dyes in ORMOCER coatings:
upper curve not irradiated; lower curves: UV radiated.

In fig. 14, some examples for other functional coatings are given.

The S0, sensor is based on the complex formation of S0, with
amines and the change of capacity within the ORMOCER [25].
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Fig. 14: Antiwetting and sensor applications of ORMOCERs.



4.8 Photocuring Materials

This type is characterized by groupings which can react with thep-
selves or with monomers in order to perform a curing process baseq
on the well known mechanisms known from organic polymerization

chemistry. The application of these methods allows to develop fast
laser writing ang

curing processes for films,

photolithography,

embossing processes for micropatterning (fig. 15 a - b).
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combined with functional properties and molecular design of the
pmaterials, these techniques offer interesting opportunities for

new and interesting applications.

5. Summar

The sol-gel process offers the possibility of incorporating orga-
nic functions into basically inorganic materials. This leads to a
variety of different types of materials and, in addition to this,
to a variety of processing techniques, too. Since the structure of
complex precursor units can be maintained during the processing,
it is possible to apply molecular tailoring processes. The incor-
poration of new functions allows the synthesis of smart materials,

too.
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