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Abstract—The analysis of auditory brainstem responses
(ABRs) is accepted to be the most reliable method for the
objective diagnosis and quantification of hearing loss in new-
borns. However, in currently available setups, a large number of
sweeps has to be averaged to obtain a meaningful signal at low
stimulation levels due to a poor signal-to-noise ratio.

In this study, we present a new approach to the detection of
wave V in ABRs using a smart single sweep analysis system, A
small number of sweeps is decomposed by optimized tight frames
and evaluated by a kernel based novelty detection machine. This
hybrid supervised learning scheme is combined with an inter-
sweep dissimilarity tracing for the final decision making,

At the challenging stimulation level of 30 dB, our system
reached a reasonable specificity and sensitivity for the detection
of wave V in a fraction of the measurement time of conventional
schemes,
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L. INTRODUCTION

The detection of wave V in auditory brainstem response
(ABR) measurements is the standard method in the objective
diagnosis and quantification of hearing loss in children, Due
to a lack of cooperation in young children, often a sedation
Or a narcosis is necessary to obtain reliable measurements, As
the diagnosis and treatment of pediatric hearing loss has to be
done as early as possible in order to avoid a serious delay in
speech and intellectual development [1], [2], the examination
of hearing under narcosis has often to be applied in very young
children, As these children are often neonatal intensive care
unit patients, there is an increased risk of complication due to
the general anesthesia,

A large number of universal newborn hearing screening
(NHS) programs has been established so far [3], [4]. The
screening methods that are currently available include otoa-
coustic emissions [4] and ABR measurements [5] at a fixed
stimylation level (35 dB HL). Due to methodological (otoa-
coustic emissions) and cost problems (ABR measurements),
only the exclusion of a hearing loss and not the determination
of a given hearing threshold is possible using these methods,
Also the specificity of these methods is less than 100 %.
Therefore NHS programs are mostly organized as 2 or 3
stage procedures which causes the problem that many children
get lost to follow up, resulting in a loss of effectiveness
of these programs. An automated and objective audiological

method able to quantify the hearing threshold within a short
measurement time (less than 2 or 3 minutes) without the need
of sedation or general anesthesia would be able to drasti-
cally reduce the number of audiological examination under
anesthesia that have to be performed. Also the determination
of the auditory threshold could be done in the first stage of
screening programs. Therefore such a method would make a
second or third stage unnecessary, reduce the cost of universal
hearing screening programs, and would thus help to increase
the effectiveness of NHS—programs.

In this paper, we present a new approach to the fast detection
of wave V in ABRs employing a smart single sweep analysis
system which is based on adapted signal decompositions,
machine learning, and single sweep dissimilarity tracing,

II. METHODOLOGY

Our scheme consists basically of 4 major stages: (1) data
acquisition, (2) feature extraction, (3) novelty detection, and
(4) dissimilarity tracing. These steps are summarized below
and finally assembled at the end of the this section,

Methodically, stage (2) and (3) can be summarized as
hybrid tight frame—kernel machine proposed in [6] as general
approach for biosignal recognition. This scheme is just shortly
sketched below, adjusted to our problem, For details we refer
to [6], [7].

A. Data Segments

The study group consisted of 16 normal hearing probands
(threshold <10dB HL between 0.5kHz and 6kHz). This group
was decomposed into a learning group of 6 probands and an
independent test group of 10 probands. For the final perfor-
mance assessment of our system, the test group is extended
by 10 deaf subjects.

Auditory evoked potentials were obtained using a commer-
cially available device (Evostar, Pilot-Blankenfelde, Berlin,
Germany) in a sound-proof chamber, In each measurement,
15 clicks per second were presented monaurally at an intensity
of 30, 40, 50, and 70 dB (HL) with an inter-stimulus interval
of 60ms. Artifacts were cxcluded from the analysis by (he
internal artifact filter of the system.

Single sweeps, i.c., the responses to individual clicks, were
recorded using electrodes placed at the neck, the verlex
and the upper forehead, respectively, Electrode impedances
were below 5 k) in all measurements (filter: 0.15kHz-3kHz,
sampling frequency: 20kHz),
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B. Feature Extraction in Single Sweeps

A hybrid wavelet-support vector classification has been
introduced in [7] which employs lattice structure based wavelet
and frame decompositions for feature extraction tasks in wave-
forms which are tailored for support vector classifiers with
radial kernels. In particular, it provides a feature extraction
which allows for an inclusion of a priori knowledge and leads
{0 a maximal margin of the scheme and is thus conform with
the maximal margin theorem [8] of statistical learning theory.

Our objective in this paper is novelty detection instead
of binary classification as it is better suited for abnormality
delection [9]. Nevertheless, the feature extraction stage is
closely related to classification.

The original wavelet-support vector classifier as proposed
in [7] relies on maultilevel concentrations. £() = || * Ilfs
(L < p < o) of coefficient vectors of adapted wavelet or
frame decompositions as feature vectors, i.e, scale features.
These feature vectors incorporate the information about local
instabilities in time as a priori information, For the classifica-
tion of ABRs, we also include the morphological information
of the waveforms as features as the discriminant information
which separates the physiological and pathological sweeps is
also reflected in the transient evolution of ABRs.

Since we are interested in a shift-invariant classification
scheme, we may only evaluate the morphology of ABRs as
a whole and not the exact latency of transient features. A
possible way to realize this is by the use of entropy which
is already employed (o evaluate the subbands of wavelet
and wavelet packet decompositions for the purpose of signal
compression, see [10] and [11]. When using an appropriate
enlropy in connection with the tight frame decompositions, it
is invariant to shifts of the sweeps. We define the entropy of
a sequence x € £* by
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Note that E(-) is also the well known Shannon entropy
{12] but one where the probabilistic events are replaced by
normalized energies of the samples, i.e., we do not deal with
the probabilistic concept of the entropy here.

For a fixed ABR sweep x, we define the function

@) = (D). 5 (D)
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and set ¢i(8) 1= (¥ () (i =1,..., M), Here dj denotes the
coefficients of a shift—invariant lattice structure hased octave—~
band tight frame decomposition, parameterized by the angle
vector U, see [7]. The number J is the decomposition depth.
The first J elements of this feature vector carry multilevel
concentration of the subbands in €', i.e., a scale information,
The second J elements carry the morphological information
reflccted in the entropy as defined in (1). Note that ¢;(9) is
totaily invariant against shifts of the individual sweeps. We
used decomposition level 2 to 5 in this study as these levels
carried the substantial signal information.

C. Novelty Detection

. Suppose we are given a set of A/ samples and a description
is required. We try to find sphere with a minimum volume,
containing all data in the hard case (no outliers in learning
set) and most of the data in the soft case (the learning set
may contain outliers). Instead of constructing this sphere in the
original space, we construct it in a high dimensional feature
space which is induced by a kernel of a reproducing kernel
Hilbert space [13], All patters which lay outside the sphere
are detected as novel instances which do not correspond to the
Jearned class [9], [14]. The minimal sphere can be obtained
by the following optimization problem:

M
: ae;rx,glelg,ueRMRHJM;u" @)
subject fo
|B(¢;(0) -2 < R4u (i=1....M), O
w > 0 (i=1,...,M).

where the ® : & ¢ RY — F C {* denotes the feature map
from the pattern space to kernel feature space, a is the center
of sphere [9].

For the embedding of the feature extraction in the minimal
sphere approach above, the objective is now to find optimal
lattice angels 9 such that a learning set of M sweeps A(d) =
(@) e i=1,.. , M} is as compact as possible in the
feature space, i..,

M
9= argéléi?glz {Z “@(C(ﬁ» - 5“5—1} :
j=1

where P2 denotes the lattice parameter space for filters of
order 5 (see [7] for details of the lattice paramelerization) and
= the feature center, For radial kernels of the SVM, problems
of this type can be transformed from the feature to the original
space and solved by genetic algorithms, see [71.

D. Single Sweep Dissimilarity Tracing

Our single sweep dissimilarity tracing in based on the
fact that ABRs are due to meural synchronizations of the
spontaneous brain activity [15]. This can be scen as transition
from a disordered or high entropy state (the spontaneous
activity) to an ordered or low entropy state (the neural response
upon the auditory stimulation), a fact that was exploited in [16]
for the final analysis of averaged responses in view of binaural
interaction,

Such entropy considerations imply that we have a high
decorrelation of the individual sweeps in the pathological case.
On the other hand, a sequence of sweeps exhibit an inner
correlation due to the neural synchronization as response to
the auditory stimulation in the physiological case.

To take this into account, we determine the degree of dissim-
ilarity between the feature vectors of consecutive sweeps. The
dissimilarity analysis of the feature vectors has the following
advantage: additionally to the high-frequency noise filtering,
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latency jitters of the responses can be excluded from the
analysis due the shift-invariance of the feature vectors. Both
factors corrupt also physiological responses,

As dissimilarity measure, we apply the J-Divergence [17]
of consecutive sweeps which is the symmetric version of
the cross—entropy. Mathematically more precisely, for a fixed
d two feature vectors ¢*(9) and ¢™1(d) of consecutive
sweeps x; and x;11 are normalized in £*, and the degree of
dissimilarity is determined by

Do (¢'(9), ¢ (9 Z Hfﬁ) o)
)
1+1 (19)
H—l 1
+;C )log L= o)
with the convention log 0 = ~co, log(y/0) = oo for y > 0,

0 (%o0) =0.

E. The Assembled Detection Scheme

The assembled recognition scheme in shown in Fig. 1. There
are two additional averaging stages. The partial averaging
stage after the adapted tight frame feature extraction improves
the robustness of the scheme by averaging a small number
of feature vectors to one. The averaging stage after the
dissimilarity evaluation computes the mean dissimilarity of
the sweep sequence which is used for the decision making
in this stage, If the mean dissimilarity is below a predefined
threshold rp we have a physiological detection here and a
pathological output otherwise, This threshold can be defined
from the learning set by setting T equal to the maximal
dissimilarity in the learning set plus its standard deviation.

The output of the novelty detector is physiological if 90%
of the partially averaged feature vectors are within the sphere,
ie., detected as normal instances.

The outputs of the dissimilarity evaluation and the novelty
detector have both to be physiological in order to get a final
physiological decision. This optimizes the system with respect
to the sensitivity which is indispensable for its use in screening
programs.

single sweeps

feature extraction

partial averaging
A 4
3 dissimilarity
novelty detector
averaging
phys.
path, . jphy s path.
y JY
pathological physiological pathological
Fig. 1, The assembled detection scheme.

ITI. RESULTS

In Fig. 2 we have shown a single sweep sequence of 1000
sweeps, partially averaged over 10 sweeps to illustrate how
traces of wave V look at an stimulation level of 30 dB. In
Fig. 2 (top) we have an physiological example and in Fig, 2
(bottom) an pathological example, The trace of wave V for
the physiological example is clearly noticeable in this figure
as well as the decorrelation of the sweeps in the pathological
case.

trace of wave V

0. 10.0ms

0.0ms

§.0ms 10.0ms

Fig. 2. The single sweep traces for a phys1olog1cal (top) and a pathological
(bottom) example. The normalized amplitude is coded in colors ranging from
black (0) to white (1),

In Fig. 3 we have shown how the clustering in the feature
space depending on the lattice angles. Only the black regions
correspond to an effective frame decomposition which results
in a compact representation in the feature space.

For the performance evaluation, our system was initialized,
i.e., adapted and learned, with 250 sweeps from each of the
6 probands of the learning group using a Gaussian kernel
with a standard deviation of 1.0 (determined by validation)
for the construction of the novelty detector. For the testing,
our initialized system was applied to a total of 200 sweeps
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of each of the 20 data segments in the independent test set
(10 physiological and 10 pathological data sets). A number
of 10 feature vectors were partially averaged after the fea-
ture extraction such that 20 patterns of each data segment
were supplied to the novelty detector and the dissimilarity
evaluation. For the discrimination of the physiological and
the pathological sweep sequences, our system achieved 100
% sensitivity and 90 % specificity based on just 200 sweeps
from each data segment at the most challenging simulation
level of 30 dB. In conventional systems, a number of 2000
sweeps is usually averaged to obtain a meaningful signal used
for the further analysis [15]. Consequently, with the proposed
system, just 10 % of the conventional measurement time is
necessary to obtain a final machine based decision making
which is complete automated and truly objective. It is worth
to emphasize that an automated detection of wave V in ABRs
at a stimulation level of 30 dB is very challenging, even with
2000 sweeps for conventional schemes.

0

8, 72

0 1/2 LS
%A

Fig. 3. The clustering the feature space depending on the lattice angles
9 = (w_o,z,al). The normalized clustering is coded in colors ranging from
black (high clustering) to white (low clustering).

IV. DiscussioN AND CONCLUSIONS

We have presented a new approach to the detection of
wave V in ABRs using a smart single analysis system. Our
scheme is based on an adapted feature extraction in single
sweeps by tight frames, a kernel based novelty detector, and
a dissimilarity tracing of sweep sequences, taking the larger
entropy in the pathological case into account.

Using this system, a discrimination of physiological from
pathological probands by the detection of wave V was possible
with 100 % sensitivity and 90 % specificity. Compared to
conventional schemes, just 10 % of the measurement time is
needed to get this result in a completely automated manner.

The clinical use of this method, able to quantify the hearing
threshold within a short measurement time, without the need
of sedation or general anesthesia would drastically by reduce
the number of audiological examination under anesthesia that
have to be performed in newborns.

Nevertheless, improvements seem still to be possible. For
instance, the realization of a patient adapted system seems also
fo be implementable with formalism below. In this case, the
system is initialized with the spontancous brain activity, i.e.,
without clicks, and every response (o a click is detected as
novel instance. Such a system seems to be more robust as it
has not to overcome the inter-patient variability. The authors

also follow this way.
Tt is finally concluded, that a very fast detection of wave V

in ABRs at low stimulation Jevels can be implemented by the
proposed system and might be a further step to improve the
effectiveness of NHS—programs.
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