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Abstract 

The climbing abilities of geckos have inspired many researchers to develop reusable, reversible 

adhesives. The fabrication of such synthetic adhesives has been well investigated. However, a 

full theoretical description is still lacking.  

The objective of the thesis is to improve the theoretical understanding of the mechanics of 

fibrillar adhesion and also to uncover the various factors influencing the adhesion of the 

compliant fibrils adhered to a rigid surface using finite element analysis. The effect of fibril 

geometry on the adhesion was examined. Straight punch and mushroom fibrils were examined 

numerically and it was found that mushroom fibrils show better adhesion compared to straight 

punch. Mushroom fibrils with higher stalk to cap ratio and smaller flap height show better 

adhesion when the corner singularity is considered as driving force for delamination. For these 

fibrils the detachment will begin from centre instead of corner. Some other shapes were also 

studied by introducing a fillet radius at the corner joining stalk and the cap. 

We propose a novel composite fibril with a stiff stalk and a softer tip to replicate the benefits 

shown by mushroom fibrils but with reduced manufacturing complications. The influence of 

Young’s modulus and tip height were studied along with different interfacial shapes joining the 

stiff stalk and soft tip. It is found that higher Young’s modulus ratio and smaller soft tip height 

result in higher adhesion strength. The results support the rational optimization of synthetic 

micropatterned adhesives. 
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Kurzzusammenfassung 

Geckos besitzen die Fähigkeit sich auf glatten sowie rauen Oberflächen fortzubewegen. Davon 

inspiriert sind wiederverwendbare, reversibel haftende Haftoberflächen Gegenstand aktueller 

Forschung. Die experimentelle Herstellung und Untersuchung solcher Haftoberflächen wurden 

zahlreich belegt, allerdings mangelt es an einer vollständigen theoretischen Beschreibung der 

zugrunde liegenden Haftmechanismen. 

Ziel dieser Arbeit ist es, das theoretische Verständnis über die Kontaktmechanik fibrillärer 

Haftstrukturen zu vertiefen und den Einfluss der Gestaltung des Kontaktbereichs sowie die 

Variation von Materialeigenschaften auf die Adhäsion zu untersuchen. Hierfür wurde ein 

numerisches Modell entwickelt, um die Spannungsverteilung in der Kontaktfläche von 

elastischen Fibrillen auf einem steifen Substrat zu untersuchen. Es konnte festgestellt werden, 

dass Fibrillen mit einem verbreiterten Kontaktbereich, sogenannte Mushroom-Fibrillen, eine 

bessere Haftung im Vergleich zu Fibrillen ohne Verbreiterung aufweisen. Alternativ zur 

Querschnittsverbreiterung im Kontaktbereich wurde in dieser Arbeit eine neue Verbundfibrille 

entwickelt, die aus zwei unterschiedlich elastischen Materialien besteht. Der Einfluss des 

Elastizitätsmoduls und die Dicke der Schicht im Kontaktbereich wurden zusammen mit 

verschiedenen Grenzflächenkrümmungen, die das steifere mit dem weicheren Material 

verbindet, untersucht. Es wurde festgestellt, dass höhere Elastizitätsmodulverhältnisse und 

dünnere weiche Schichten im Kontaktbereich zu höheren Haftfestigkeiten führen. Die 

Ergebnisse dieser Arbeit unterstützen insgesamt die Optimierung von synthetischen 

mikrostrukturierten Haftoberflächen. 
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1 Introduction & motivation 

Nature is a good source of knowledge and innovation: many researchers these days are getting 

inspired by the animals, birds and plants. The interest in developing biomimetic structures has 

enormously increased in the past fifteen years; this can be prominently seen in the fields of 

biology, materials science and robotics. A group of researchers from Massachusetts Institute of 

Technology (MIT) got inspired by the Cheetah’s capability to run fast and adapt its spine 

according to the speed and body motion. They developed a moving four armed robot weighing 

33 kg which can run at the speed of 22	km/h (Seok et al., 2015). Researchers from Virginia tech 

got the motivation from Moon Jelly and developed a robot which is capable of swimming by 

using its artificial muscles powered by a renewable energy source (Alex et al., 2013). MIT and 

RWTH Aachen improved the efficiency of a solar plant by 20% by changing the geometry of the 

solar panels similar to the layout of sunflower florets (Noone et al., 2012). The hydrophobicity or 

famously called lotus effect of several plant leaves caught the interest of researchers to develop 

water repellent coatings or sprays (Guo et al., 2008; Guo et al., 2005; Lafuma and Quere, 2003; 

Neinhuis and W., 1997). 

Recently, much interest has been focused on the development of reusable, reversible adhesives 

using the physical mechanisms deployed on the feet of animals (beetles, flies, spiders and geckos 

etc.). Geckos have been at the centre of research on adhesion for two reasons; the first one is that 

geckos are the heaviest among the category of animals which can adhere to different surfaces. 

The heavier the animals are, the smaller are the setae which will allow them to increase the 

contact area, hence increasing the adhesion (Arzt et al., 2003). The second is that they have dry 

adhesion which means they leave no traces on the adhered body after detaching from the surface. 

Such natural dry adhesives consist of millions of hierarchically structured hairs and fibrils with 

sizes ranging from millimetre to nanometre, which enable them to adhere to a wide range of 

surfaces (Autumn et al., 2000). Arzt et.al (Arzt et al., 2002; Arzt et al., 2003), Jagota et.al (Jagota 

and Bennison, 2002; Jagota et al., 2000; Jagota and Hui, 2011) Autumn et.al (Autumn et al., 

2006a; Autumn et al., 2000; Autumn et al., 2006b; Autumn and Peattie, 2002; Autumn et al., 

2002) and others have done extensive research on this topic to understand the mechanism behind 

the gecko adhesion. Experiments revealed that either inter-molecular van der Waals forces 
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(Autumn et al., 2002) or surface capillary forces (Huber et al., 2005b) or both play a major role 

in the adhesion mechanism. Adhesion varies depending on several parameters like structural 

instabilities, misalignment of loads, tip geometry and backing layer thickness etc. Due to the 

flexibility shown by Polydimethylsiloxane (PDMS) in adapting to different surfaces it has 

frequently been used in the fabrication of the structures. The fabrication of such synthetic 

adhesives on the micrometre and nanometre scale is well established and different parameters 

such as structure aspect ratio, radius or cap shape are well investigated. Experimental 

investigations revealed that the patterned surfaces (Hui et al., 2004; Sitti and Fearing, 2003; 

Yurdumakan et al., 2005) exhibit better adhesion strength when compared to the unpatterned 

surfaces when tested against same glass substrate. The geometry of the fibril cap contributes 

most to the adhesion, which is dominated by mushroom caps (del Campo et al., 2007) followed 

by spherical and flat caps. The dimensions and the aspect ratio of fibrils play an important role in 

controlling the adhesion strength (Greiner, 2008; Greiner et al., 2007).  

However, there is still a gap in theoretical models which is required for a better understanding of 

the adhesive interactions. Some researchers have developed analytical models to understand the 

mechanics of the gecko adhesion (Gao et al., 2005; Glassmaker et al., 2004; Glassmaker et al., 

2005; Hui et al., 2004; Yao and Gao, 2006). Numerical simulations help us to improve the 

understanding and thanks to the modern computers have paved the way to computationally 

examine the complicated problems. There were some efforts by researchers to model the gecko 

adhesion: Spuskanyuk et.al (Spuskanyuk et al., 2008) presented the influence of shape on 

adhesion and detailed the reason for mushroom tips for showing better adhesion. Aksak et.al 

(Aksak et al., 2011) demonstrated the influence of aspect ratio on adhesion and in another study 

they  presented on how the edge angle of the mushroom fibril caps influence the adhesion by 

using Dugdale cohesive zone model (Aksak et al., 2014). Carbone and Pierro (Carbone and 

Pierro, 2012) studied different mushroom cap geometries and suggested an optimal shape for 

better adhesion.  

The aim of the thesis is to understand the influence of contact geometry and materials properties 

in improving adhesion. We use finite element analysis to solve for stresses, strains and 

deformations in compliant fibrils attached to a rigid substrate. The major findings of the thesis 

are discussed in the results section as mentioned below in the following format: In Chapter 2, the 
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basic concepts related to thesis are explained. In Chapter 3, a discussion on the influence of 

mushroom cap geometry (thickness and width) on stress singularity along the interface of the 

compliant fibril and the rigid substrate is presented. The remote stress ߪ஺ was applied on the free 

end of the fibril and the stress distribution along the interface was calculated for straight punch 

(reference) and for mushroom fibrils. Abaqus V 6.11 (Abaqus6.11, 2011) was used for all the 

numerical simulations. In Chapter 4 we propose a new concept of using composite fibrils made 

of two materials with a stiff and a soft elastomer layer. It reduces the manufacturing difficulties 

involved in making of the mushroom fibrils as an alternative to enhance adhesion strength. Three 

different interfacial joining shapes of the stiff and soft elastomer within the composite structure 

were examined which includes flat, circular and elliptical interfaces. We have also checked the 

influence of Young’s modulus ratio and thickness of each composite layer on adhesion. Finally, 

a comparison is made with some of the recent experimental results. 
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2 Theoretical background 

2.1 Stress-strain relations 

When structures or components are subjected to external forces (static, continuous, impact, 

fatigue and fluctuation etc.) internal forces will be generated. These loads will result in two 

important parameters called stress and strain. Depending on the type of loading, it can either be a 

tensile, compressive or shear loading. The strain which does not involve an angle change is 

called normal strain ሺߝሻ and the corresponding stress as normal stress ሺߪሻ. When the normal load 

is replaced with tangential load it results in shear stress ሺ߬ሻ and shear strain ሺߛሻ. The material is 

said to be elastic when it returns to its original shape upon removal of the load. Stress is 

proportional to strain in this elastic regime. This linear relation between stress and strain is 

described by Hooke’s law. The simplest form of Hooke’s law can be represented as follows. 

ߪ ൌ .	ܧ 2.1 ߝ

where ܧ is Young’s modulus.  

If a three dimensional ሺ3ܦሻbody is subjected to normal load simultaneously in ݔ, ݕ  and ݖ 

directions, the resultant strains are represented as: 

௫ߝ	 ൌ 	
1
ܧ
௫ߪൣ െ ௬ߪ൫ߥ ൅  ௭൯൧ߪ

2.2

௬ߝ	 ൌ 	
1
ܧ
௬ߪൣ െ ௫ߪሺߥ ൅ 	௭ሻ൧ߪ

2.3

௭ߝ ൌ 	
1
ܧ
ሾߪ௭ െ ௫ߪሺߥ ൅ 	௬ሻሿߪ

2.4

where ν is the Poisson’s ratio, it is defined as the ratio of the transverse contraction to the 

longitudinal elongation when subjected to an external load with in the elastic limit. 

These equations are valid for all the three-dimensional ሺ3ܦሻ solids or bodies. It is very expensive 

to treat all bodies in 3ܦ either analytically or computationally. In order to reduce the complexity 
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of the problem it is possible to reduce the 3ܦ solid in to a two-dimensional ሺ2ܦሻ solid, which in 

turn saves time and resources.  

 

2.2 Fracture mechanics 

Fracture is a complicated procedure, which is a combination of material response to defects 

(cracks, voids etc.) ranging from micro to macro scale. Defects are one of the major setbacks 

which reduce the material strength under load; these defects can be formed for several reasons 

such as manufacturing defects, material impurities, surface defects, interfacial defects and 

mechanical defects etc. Fracture mechanics answers several questions about fracture and its 

dependency on material properties, external loading conditions etc. Applied stress, flaw size and 

fracture toughness are the three important variables in the fracture mechanics approach. The 

material offers resistance, which assists in restricting the extension of a crack. The crack will be 

arrested till the energy available for its growth reaches a certain value. There are two approaches 

to study the fracture, one is energy approach and the other is the stress intensity approach.  

2.2.1 Energy approach  

The energy approach was introduced in 1921 by Griffith (Griffith, 1921) which was further 

modified in 1956 by Irwin (Irwin and Naval Research Lab, 1956) to develop the concept of the 

energy release rate ܩ. For a linear elastic material the change in potential energy in accordance 

with the crack is called the energy release rate. Let us consider an infinite plate under the 

influence of tensile load with a crack whose length is 2ܽ as shown in Figure 2.1. The energy 

release rate is then given as follows: 

ܩ ൌ
஺ߪߨ

ଶܽ
ܧ

 2.5

஺ߪ 	ൌ remotely applied stress,  

ܽ ൌ half crack length, 

ܩ ൌ Energy release rate, 
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஼ܩ ൌ Critical Energy release rate 

At ܩ ൌ  .஼ the above equation gives the critical combinations of stress and crack size for failureܩ

஼ܩ ൌ
௙ߪߨ

ଶܽ஼
ܧ

 
2.6

When ܩ஼	is constant the failure stress ߪ௙ is dependent on crack length and changes with 1 ⁄ √ܽ  

 

Figure 2.1: Penny crack in an infinite plate subjected to remote tensile load (Shi and 

Polycarpou, 2005). 

From the strength of materials point of view which considers the relation between the load, 

stresses and materials parameters such as yield stress etc., the applied load will generate stresses 

in the body and will act as the driving force for the crack. In the fracture mechanics point of 

view, the energy release rate ܩ is considered as the driving force for fracture, where ܩ஼ is the 

resistance offered by the material to fracture. In fracture mechanics, it is defined that the fracture 

toughness is a measure of critical energy release rate ܩ஼  and is independent of the size and 

geometry of the crack or the size of the body. The entire process is controlled by the driving 

force ܩ as long as this assumption is valid. Only when the material is linear-elastic, it obeys the 

similitude assumption. 
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2.2.2 The stress intensity approach: 

The work of Westergaard inspired Irwin to develop a single parameter which gives the relation 

between the stress and displacement near the crack tip. This parameter is now well known as 

stress-intensity factor ‘ܭூ’. In Figure 2.2, the analysis of the crack tip along with the in-plane 

stresses acting on it is shown. All these stress components are proportional to ܭூ  and can be 

characterized for a linear elastic material. The total stress distribution close to the crack tip can 

be calculated by using the equations: 

௫ߪ ൌ
ܭ

ݎߨ2√
ݏ݋ܿ

ߠ
2
൤1 െ ݊݅ݏ

ߠ
2
݊݅ݏ

ߠ3
2
൨ 

2.7

σ୷ ൌ
K

√2πr
cos

θ
2
൤1 ൅ sin

θ
2
sin

3θ
2
൨	

2.8

௫௬ߪ ൌ
ܭ

ݎߨ2√
sin

ߠ
2
൤cos

ߠ
2
ݏ݋ܿ

ߠ3
2
൨	

2.9

 

 

Figure 2.2: Stresses near the tip of a crack in an elastic material (Shi and Polycarpou, 2005) 
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Under the consideration that the material fails locally, the material has to fail at critical values of 

stress and strain. The point at which the material fails is called as critical stress intensity ‘ܭூ஼’ 

and this can be correlated with the fracture toughness. 

ூܭ ൌ 2.10 ܽߨ√ߪ

In other words, one can say that fracture occurs when ܭூ ൌ  ூ஼ and a similar analogy can beܭ

drawn for driving force ܩ and material resistance	ܩ஼ to cracking as in energy approach for the 

stress intensity approach. In the stress intensity approach, the driving force is ܭூ  and the 

resistance offered by the material is ܭூ஼. It is assumed that ܭூ஼ is a material property which is 

independent of size. A comparison can be drawn between the energy approach ܩ and the stress 

intensity approach ܭூ to obtain the relation between them. By comparing equations 2.5 and 2.10 

it can be implied that  

ܩ ൌ
ூܭ
ଶ

ܧ
 

2.11

The critical energy release rate ‘ܩ஼	’and the critical stress intensity ‘ܭூ஼’ also follow the same 

relation as the energy release rate ‘ܩ	’and stress intensity ‘ܭூ’. For linear elastic materials, the 

energy approach and the stress intensity approach are equivalent. It is possible to predict the 

critical crack size which is necessary to disrupt the materials ability to withstand loads or in other 

words the crack size necessary to cause the complete failure of material. A safety factor can be 

employed to define the maximum allowable crack length. 
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2.3 Introduction to the finite element method (FEM) 

Differential or integral equations are used to solve a lot of interesting engineering issues. It is not 

an easy task to find exact solutions to complicated models but approximate solutions are 

achievable in reasonable time by finite element methods (FEM) (Bathe, 1996; Chandrupatla and 

Belegundu, 2011; Reddy, 2005; Zienkiewicz and Taylor, 2000). FEM as the name suggests 

discretizes the continuum body into finite domains or small elements which are joined by nodes. 

Shape functions use algebraic expressions to interpolate the field variables within the element. 

Every such element is defined using a group of equations and each element has a finite degree of 

freedom. Combining such information of all the individual elements in the domain gives rise to 

the expressions for the global domain which has infinite degrees of freedom. The element size 

can be varied accordingly based on the amount of information necessary for the system. It is also 

possible to vary the size of the element (which is also called mesh size) within the domain so that 

more information can be extracted from the area of interest and computational time is saved 

without affecting the accuracy of the results. The elements can be chosen based on the 

complexity of the geometry and also whether the model is 2 dimensional ሺ2ܦሻ or 3 dimensional 

ሺ3ܦሻ. Due to the advantages that FEM offers and the availability of computational power one 

can solve complicated engineering problems. Modern commercial FEM softwares have a user 

friendly graphic user interface and most of the steps can be performed automatically without 

much effort. Apart from dealing with linear problems it is also possible to solve nonlinear 

problems, for example large deformations, buckling and material non linearity etc. 
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2.4 Plane strain approximation 

There are two different basic approximations in order to reduce the three-dimensional model to a 

two-dimensional one. They are plane strain and plane stress (Chandrupatla and Belegundu, 2011; 

Quek and Liu, 2003). I will be discussing only the plane strain approximation in this thesis. 

Plane Strain: This model is valid in case of a thick body where one dimension is very much 

larger than the other. For example a three dimensional ሺ3ܦሻ  body, e.g. a cylinder, can be 

simplified by using a plane strain model. The body is cut by an imaginary section plane as shown 

in Figure 2.3 and that plane is considered as the newly simplified two dimensional ሺ2ܦሻ model. 

This model works with certain approximations such as that the forces will not be acting normal 

to the section plane and the second assumption is that no strains will be developed normal to the 

simplified 2ܦ plane. 

 

Figure 2.3: Plane strain approximation to simplify the three dimensional body (left) to a two 

dimensional body (right). 
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It is defined as a state of strain in which the strain normal to the ݔ െ  and the ݖߝ plane, strain ݕ

shear strains ߛ௭௫  and ߛ௬௭  are assumed to be zero. The plane strain analysis is a little more 

complex than the plane stress. Substituting ݖߝ ൌ 	0 in the 3ܦ Hooke’s law gives an expression 

for ߪ௭: 

௭ߪ ൌ ௫ߪሺߥ ൅ ௬ሻ 2.12ߪ

This can be substituted into the first two equations of the 3ܦ Hooke’s law to give expressions 

involving	ߪ௫ and ߪ௬	only. The first equation of Hooke’s law is simplified as  

௫ߝ ൌ
1
	ᇱܧ

ሺߪ௫ െ ௬ሻ 2.13ߪᇱߥ

௬ߝ ൌ
1
	ᇱܧ

ሺߪ௬ െ  ௫ሻߪᇱߥ
2.14

௭ߝ ൌ 0 2.15

where ܧ′ ൌ ሺ1/ܧ െ ′ߥ ,ሻ	ଶߥ ൌ ሺ1/ߥ െ  .ሻߥ

The absence of forces in normal direction to the section plane will lead to zero force in the ݖ 

direction i.e. shear strains ߛ௬௭ ൌ ௭௫ߛ ൌ 0. This means that the shear strain in ݕݔ plane (ߛ௫௬) is 

non-zero is given as follows: 

௫௬ߛ ൌ
1
ܩ
߬௫௬ 2.16

2.5 Aim of the thesis 

Fabrication of the artificial adhesive structures has been experimentally investigated for many 

years by researchers and is very well established. Analytical models explain to some extent the 

mechanics behind the adhesion and the numerical studies improved this understanding but there 

is still some gap left. The aim of the thesis is to uncover the facts on how the adhesion strength is 

dependent on the geometry and material properties and how it can be improved by modifying the 
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geometry and the material properties of the fibrils. There is still a gap between the experimental 

results and the theoretical results. Some of these questions are explained in the following 

chapters: 

In Chapter 3 we address the issue as to why the adhesive performance of a mushroom fibril is 

better than a straight punch. 

 Why does the mushroom fibril adhere better than the straight punch? 

 How does the height of mushroom cap influence the adhesive strength? 

 How does the width of the mushroom cap influence the adhesive strength? 

 How is the stress distributed along the mushroom cap? 

It is also important to uncover the influence of the material properties on adhesive strength. In 

Chapter 4 the following questions are addressed: 

 Can composite fibrils replicate the effect of mushroom fibril to improve adhesion 

strength? 

 Do composite fibrils pave an alternative way to overcome the difficulties involved in the 

manufacturing process of mushroom fibrils? 

 Does a gradient in Young’s modulus have any influence on improving contact and 

adhesion strength? 

 Does the tip height of soft elastomer influence the distribution of the stress and adhesion 

strength?  

 Does the shape of the joining interface of the composite fibrils influence the adhesion 

strength? 

In Chapter 5 a summary of the thesis will be provided. 
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3 Numerical simulation of the edge stress singularity and the adhesion 
strength for compliant mushroom fibrils adhered to rigid substrates1 

3.1 Introduction 

Animals in nature possess different hairy contact structures such as straight punches, spherical 

and conical caps, toroidal suction cups, etc. The climbing abilities of geckos have inspired many 

researchers to develop reusable, reversible adhesives. Gecko feet are covered with millions of 

hierarchically structured hairs or setae with sizes ranging from millimetres to nanometres 

(Autumn et al., 2000; Gorb, 2007; Hiller, 1968). The smallest level of hierarchical structure is 

patterned with finer fibrils; these observations suggest that finer fibrils are associated with better 

adhesion (Arzt et al., 2003). This insight has led to formulation of the concept of “contact 

splitting” (Arzt et al., 2003). The present group (Huber et al., 2007; Huber et al., 2005a; Huber et 

al., 2005b; Huber et al., 2008; Orso et al., 2006), as well as Autumn et al. (Autumn et al., 2006a; 

Autumn et al., 2002; Jin et al., 2012) and Jagota et al. (Jagota and Bennison, 2002; Jagota et al., 

2000) have done extensive research on this topic to understand the mechanism behind gecko 

adhesion. Experiments reveal that either intermolecular van der Waals forces (Autumn et al., 

2002) or capillary forces (Huber et al., 2005b) play a major role in the adhesion mechanism.  

Polydimethylsiloxane (PDMS) is one of the most widely used materials for the fabrication of 

gecko inspired adhesives. PDMS has a Poisson’s ratio close to 0.5 and a Young’s modulus 

ranging from approximately 100 kPa to approximately 10 MPa, depending on the amount of 

crosslinking. It is chemically inert, non-toxic and during preparation hardens quickly at elevated 

temperatures. It has been experimentally proven that PDMS surfaces patterned with fibrils offer 

                                                 

1 This chapter was published as a paper: R.G. Balijepalli, M.R. Begley, N.A. Fleck, R.M. McMeeking, E. Arzt, 
Numerical simulation of the edge stress singularity and the adhesion strength for compliant mushroom fibrils 
adhered to rigid substrates International Journal of Solids and Structures 85–86, 160-171. 
http://dx.doi.org/10.1016/j.ijsolstr.2016.02.018 
The contributions of the authors were as follows: 
- I have participated in planning the project, performed all simulations and wrote the paper. 
- R. M. McMeeking was involved in planning the project, gave valuable support throughout the work. 
- M.R. Begley provided his valuable feedback to the contents.  
- Prof. N. Fleck has contributed to an improvement of the paper and his valuable insights on corner singularity. 
- Prof. E. Arzt as the supervisor of my thesis, participated in planning, discussing results and writing the paper. 
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better adhesion against a stiff smooth substrate than an unpatterned PDMS surface (Greiner et 

al., 2007; Hui et al., 2004; Sitti and Fearing, 2003; Yurdumakan et al., 2005).  

Experiments with artificial patterned structures have shown that contact cap shape plays an 

important role in improving adhesion; compared to several different contact geometries, the 

mushroom fibril has generally been found to adhere best (del Campo et al., 2007; Gorb et al., 

2007b; Greiner et al., 2007; Kim and Sitti, 2006). Adhesion also depends on other phenomena 

such as structural instability due to fibril buckling when they are compressed axially (Paretkar et 

al., 2013), misalignment of the adhering surfaces , surface roughness (Canas et al., 2012; Huber 

et al., 2007; Persson and Gorb, 2003; Persson and Tosatti, 2001) and backing layer thickness 

(Kim et al., 2007; Long et al., 2008). In most of the experiments exploring the adhesion of such 

patterned surfaces, compliant fibrils are pressed against a stiff spherical substrate and adhesive 

strength is measured during subsequent tensile loading. The fabrication and experimental 

exploration of such synthetic adhesives at the micrometre and nanometre scale are well 

established in the laboratory setting, and different parameters such as structure aspect ratio, fibril 

size and cap shape are well investigated. However, there is still a lack of theoretical models 

required for a better understanding of the adhesive interactions. The purpose of the present paper 

is to fill some of the gaps.  

There have been on-going efforts by several researchers in the past years to understand the 

details of gecko adhesion through the development of various analytical models (Gao et al., 

2005; Glassmaker et al., 2004; Glassmaker et al., 2005; Hui et al., 2004; Yao and Gao, 2006) and 

numerical simulations (Aksak et al., 2011; Aksak et al., 2014; Carbone and Pierro, 2012; 

Khaderi et al., 2015; Spuskanyuk et al., 2008). Spuskanyuk et al. (Spuskanyuk et al., 2008) 

addressed the influence of shape on adhesion and detailed the reason why mushroom fibrils show 

better performance than simple punch shapes. Aksak et al. (Aksak et al., 2011) demonstrated the 

influence of mushroom aspect ratio on adhesion, and Aksak et al. (Aksak et al., 2014) used a 

Dugdale cohesive zone model for mushroom like fibrils to predict the optimal shape for 

adhesion. They found that adhesion depends on the edge angle and the ratio of stalk radius to the 

outer fibril radius. Carbone and Pierro (Carbone and Pierro, 2012) have calculated the 

dependence of adhesive performance on the mushroom cap geometry and suggested an optimal 

shape for adhesion. Khaderi et al. (Khaderi et al., 2015) provided a detailed analysis of the corner 
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stress singularity at the edge of the fibril, its influence on the stress intensity factor for a small 

interface detachment near that edge, and the resulting influence on the detachment strength for a 

single compliant flat bottomed cylindrical fibril attached to a compliant or a rigid substrate.  

In this work, we consider the corner stress singularity at the edge of a perfectly bonded 

compliant mushroom fibril on a rigid substrate where sliding of the fibril relative to the substrate 

is forbidden. In particular, we investigate how the mushroom cap geometry, including its 

thickness and diameter, influences the adhesive strength. We follow the approach introduced by 

Akisanya and Fleck (Akisanya and Fleck, 1997) to describe the corner stress singularity to 

explore the mechanics of detachment of 2ܦ and 3ܦ fibrils, thus extending the work of Khaderi 

et al. (Khaderi et al., 2015) to mushroom caps. To evaluate the parameters of the corner stress 

singularity, we use finite element analysis, utilizing the commercial finite element software 

Abaqus (Abaqus6.11, 2011), to solve for the stresses, strains and deformations in compliant 

fibrils adhered to a rigid substrate as shown in Figure 3.1. 

3.2 Analytical solution for the corner singularity 

We consider a compliant fibril adhered to a rigid substrate without any interfacial crack. The 

fibril is treated as an incompressible, isotropic elastic solid, and the edge of the fibril always 

meets the substrate at right angles. The fibril material is forbidden to slide on the substrate at the 

interface between them. The boundary condition on the compliant material at the interface with 

the substrate is therefore one where the displacement is zero. When a tensile load is applied to 

the fibril as shown in Figure 3.1, there will be a stress singularity at the fibril edge where it 

touches the substrate (Akisanya and Fleck, 1997). We treat both a straight punch fibril without 

(Figure 3.1 (a)) and with a mushroom cap (Figure 3.1 (b)). In the current paper we focus on this 

corner stress singularity to determine its strength and amplitude for the fibrils (straight punch and 

mushroom shape) shown in Figure 3.1. Studies have been performed both for plane strain 

ሺ2ܦሻ	and axisymmetric cylindrical ሺ3ܦሻ geometries. In addition, we provide a few results for a 

variation on the shape shown in Figure 3.1. 
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Figure 3.1: Schematics of (a) a straight punch shaped fibril without a mushroom cap and (b) a 

fibril with a mushroom cap, both adhered to a rigid substrate. 

We adopt the method of Akisanya and Fleck. (Akisanya and Fleck, 1997) and Khaderi et 

al.(Khaderi et al., 2015). The most singular terms in the asymptotic normal ሺߪଶଶሻ and shear ሺߪଵଶሻ 

stress components along the interface between a compliant fibril and a rigid substrate (Khaderi et 

al., 2015) are 

ଶଶߪ ൌ ଴.ସ଴଺  3.1ିݎଵܪ

ଵଶߪ ൌ ଴.ସ଴଺  3.2ିݎଵܪ	0.505

where ݎ is the distance from the fibril edge, and the directions ଵܺ and ܺଶ are shown in Figure 

3.1. The amplitude ܪଵ can be written in terms of the applied stress and one relevant dimension of 

the fibril. We choose the average stress,	ߪூ, on the interface between the fibril and the substrate 
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as the measure of the applied stress and the width or diameter,	ܦ௙, of the mushroom flange as the 

relevant dimension and obtain  

ଵܪ ൌ ௙ܦூߪ
଴.ସ଴଺ ෤ܽ 3.3

where ෤ܽ  is a dimensionless calibration parameter that depends on the geometry of the fibril, 

including whether it is plane strain or axisymmetric. The amplitude of the singularity scales 

directly with ෤ܽ as shown in Equation 3.3. We will show that ෤ܽ controls detachment processes at 

the edge of fibril and that a low value is beneficial for good adhesion. For a mushroom cap fibril, 

the average interface stress, ߪூ , is written as ߪூ ൌ ௙ܦ/ܦ	஺ߪ  for a plane strain slab and ߪூ ൌ

௙൯ܦ/ܦ൫	஺ߪ	
ଶ
 for axial symmetry, where ߪ஺ is the stress applied to fibril stalk. Note that when the 

fibril is a plane strain slab, ܦ௙ is the width of the mushroom cap and D is the width of the stalk, 

whereas in the axisymmetric cylinder case ܦ௙ is the diameter of the mushroom cap and ܦ is the 

diameter of the stalk. For convenience we will refer to these parameters throughout as the 

diameter of the mushroom flange and the stalk even when discussing the plane strain results. We 

note that in the case of a straight punch without a mushroom cap, ܦ௙ ൌ ூߪ ,ܦ ൌ ஺ and ෤ܽߪ ൌ ܽଵ, 

where the straight punch is illustrated in Figure 3.1(a), and ܽଵ  is the calibration parameter 

utilized by Khaderi et al. (Khaderi et al., 2015). 

In order to verify our computational methods, we repeat the calculations of Khaderi et al 

(Khaderi et al., 2015) for the straight punch attached to a rigid substrate. For the finite element 

mesh we use a total of 123374 and 100501 linear quadrilateral hybrid elements for plane strain 

(Abaqus terminology element CPE4RH) and axial symmetry (Abaqus terminology element 

CAX4RH), respectively. A very fine mesh was used close to the corner of the compliant fibril to 

increase the accuracy of the results there. The finite element results for the normal and shear 

stress at the interface are plotted in logarithmic form (base 10) in Figure 3.2 for both the plane 

strain and axisymmetric cases and marked “FEM”. According to Khaderi et al. (Khaderi et al., 

2015) ܽଵ ൌ 0.331  for the plane strain punch and ܽଵ ൌ 0.278  for the axisymmetric one. In 

logarithmic form (base 10), the asymptotic solutions for the plane strain case is thus 

log	ሺߪଶଶ/ߪ஺	ሻ ൌ െ0.480 െ   ሻܦ/ݎሺ	݃݋݈	0.406
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and 

log	ሺߪଵଶ/ߪ஺	ሻ ൌ െ0.777 െ 0.406	log	ሺܦ/ݎሻ.  

For axial symmetry it is  

log	ሺߪଶଶ/ߪ஺	ሻ ൌ െ0.556 െ 0.406	log	ሺܦ/ݎሻ  

and  

log	ሺߪଵଶ/ߪ஺	ሻ ൌ െ0.853 െ 0.406	log	ሺܦ/ݎሻ 

These 4 results are plotted in Figure 3.2 (a) for plane strain and Figure 3.2 (b) for axial symmetry 

and marked “asymptotic stress.” It can be seen that our finite element results agree very well 

with the asymptotic solution, thereby verifying the accuracy of our computational method. 
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Figure 3.2: Normalised normal ሺߪଶଶሻ and shear ሺߪଵଶሻ tractions for the straight punch (corner 

to centre) for (a) plane strain and (b) axial symmetry. The remote applied stress is denoted by 

  .஺ߪ

With our computational method verified, we concentrate on the corner stress singularity for 

mushroom fibrils. With the mushroom cap diameter, ܦ௙, held fixed we vary the diameter, ܦ, of 

the fibril stalk to ascertain the influence of the ratio	ܦ௙/ܦ. By proceeding in this way we are able 

to maintain element structure and size in the finite element mesh adjacent to the interface with 

the rigid substrate, where the accuracy of the results is most important. The same element types 

are used for mushroom capped fibrils as are utilized for the straight punches, and between 

100,000 and 500,000 elements are used in the finite element models. For each value of ܦ the 

thickness, ݄, of the mushroom cap is varied and more than 100 geometric configurations are 

studied through finite element solutions to quantify the amplitude,	 ෤ܽ, of the corner singularity in 

each case. The mesh close to the edge of the fibril is always very fine, ensuring the accuracy of 

the information there in the finite element solutions. 
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3.2.1.1 Predicting the adhesive strength 

We now postulate that there is a small detachment or defect of length ݈ at the edge of the fibril as 

seen in Figure 3.3 such that the corner stress singularity controls its behaviour.  

 

Figure 3.3: Schematic of a small crack along the interface at the corner of the contact. 

This detachment can represent in an approximate manner the presence of an edge radius on the 

fibril due to the shape of the mould in which the fibril is formed. Such a detachment is equivalent 

to an interface crack having a stress singularity at its front, characterized by Mode I and Mode II 

stress intensity factors, ܭூ  and ܭூூ  respectively, such that on the interface ahead of the 

detachment tip the leading order asymptotic stresses are given by 

ଶଶߪ ൌ
ூܭ

ඥ2ߞߨ
	and	ߪଵଶ ൌ

ூூܭ
ඥ2ߞߨ

 
3.4

where ߞ is the distance from the crack tip as shown in Figure 3.3. The constants necessary to 

compute the stress intensity factors are adopted from Khaderi et al. (Khaderi et al., 2015) and 

result in 
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ூܭ ൌ ଵ݈଴.଴ଽସܪ2.6 ൌ ௙ܦூߪ2.6
଴.ସ଴଺ ෤݈ܽ଴.଴ଽସ 3.5 

ூூܭ ൌ ଵ݈଴.଴ଽସܪ0.8 ൌ ௙ܦூߪ0.8
଴.ସ଴଺ ෤݈ܽ଴.଴ଽସ  3.6

We thus see that at a given location ahead of the detachment, the normal stress is 3.25 times the 

shear stress, showing that the detachment process is dominated by tension and is therefore almost 

a Mode I phenomenon. Upon detachment, the energy release rate is 

ܩ ൌ
1 െ ଶݒ

ܧ2
	ሺܭூ

ଶ ൅ ூூܭ
ଶሻ ൌ

3
ܧ8

ሺܭூ
ଶ ൅ ூூܭ

ଶሻ ൌ
ூߪ2.8

ଶܦ௙
଴.଼ଵ݈଴.ଵଽ ෤ܽଶ

E
 3.7

where ܧ  is Young’s modulus and ߥ  is Poisson’s ratio, equal to 0.5 consistent with 

incompressibility. For detachment initiated at the edge to occur, the energy release rate must be 

equal to the adhesion energy, ܹ. The value of the latter should be chosen to be consistent with 

the mode mixity, i.e. the ratio	ܭூூ/ܭூ; however, the mixity is the same for all shapes and sizes of 

fibrils, so the dependence of the adhesion energy on mode mixity will not affect the relative 

adhesion strength of fibrils having different configurations. Furthermore, since detachment is 

nearly Mode I, it will be reasonably accurate to use the adhesion energy for purely tensile 

detachment as the value for	ܹ. When we set ܩ ൌ ܹ in equation 3.7, the stress, ߪூ, is then equal 

to the interface strength, ܵூ, for edge initiated fibril detachment. This strength is thus given by 

ܵூ ൌ
ܹܧ√0.6

௙ܦ
଴.ସ଴଺݈଴.଴ଽସ ෤ܽ

 3.8

The ratio of strengths of fibrils having the same diameter of mushroom cap and the same edge 

detachment length is therefore inversely proportional to the ratio of amplitudes of their stress 

singularities at the fibril edge. Specifically, when a straight punch fibril of diameter ܦ ൌ  ௙ isܦ

compared ceteris paribus with one having a mushroom cap of diameter ܦ௙, their strength ratio for 

edge initiated detachment is given by 
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ܵூ

ܵ௣௨௡௖௛
ൌ
ܽଵ
෤ܽ

 3.9

where, as noted above, ܽଵ is the calibration parameter quantified by Khaderi et al.(Khaderi et al., 

2015) for the straight punch and ܵ௣௨௡௖௛ is the adhesive strength of the straight punch. 

 

3.3 Results  

3.3.1 Mushroom fibril 

Figure 3.4 depicts the stress distributions at the interface between a rigid substrate and a fibril 

with a mushroom cap where the cap diameter is twice that of the stalk ሺܦ௙/ܦ ൌ 2ሻ and the ratio 

of the mushroom cap thickness to its diameter ሺ݄/ܦ௙ሻ is 0.008. Results are shown both for plane 

strain (Figure 3.4 (a)) and axial symmetry (Figure 3.4(b)). It is seen that the stresses at the corner 

are reduced compared to the results in Figure 3.2 at the same distance from the corner, while 

higher stress magnitudes now appear close to the centre of the fibril. This latter feature is 

somewhat misleading as the region near the corner has a stress singularity and thus there are 

extremely high stresses there, but not apparent on the scale encompassed by Figure 3.4. 

Nevertheless, the fact that the stresses at the fibril centre appear to be the largest present when 

Figure 3.4 is considered emphasises that the mushroom cap has reduced the amplitude of the 

corner singularity considerably. Again good agreement with the asymptotic analytical solution is 

found, except near the fibril centre where the numerical stresses deviate strongly. This indicates 

that the corner singularity is not dominant at the fibril centre. The calibration coefficient,	 ෤ܽ, is 

extracted from the finite element stress solutions for the normal stress, ߪଶଶ, by fitting it to the 

asymptotic formula in logarithmic (base 10) form ݈݃݋ሺߪଶଶ/ߪூሻ ൌ ݃݋݈ ෤ܽ െ 0.406log	ሺܦ/ݎ௙ሻ. The 

particular mushroom fibril shape shown in Figure 3.4,has calibration coefficient of ෤ܽ ൌ 1.3 ൈ

10ିଵ଴ for a 2ܦ plane strain fibril and ෤ܽ ൌ 1.6 ൈ 10ିଵ଴ for the 3ܦ axisymmetric fibril. 
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Figure 3.4: Comparison of the finite element results and the theoretical asymptotic results for 

the normal and shear tractions on the interface between the substrate and a specific mushroom 

capped fibril. The results are plotted from near the edge (left) to the fibril centre (right) for (a) 

plane strain and (b) axial symmetry. 
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3.3.1.1 Varying the mushroom stalk diameter ࡰ 

Figure 3.5 shows the results for the influence of the mushroom cap diameter, ܦ௙, relative to the 

stalk diameter, ܦ, when	݄/ܦ௙ ൌ 0.008 for plane strain (Figure 3.5 (a)) and axisymmetric fibrils 

(Figure 3.5 (b)). In the calculations, the mushroom diameter ܦ௙ (which defines the contact area) 

is kept constant and ܦ is varied to obtain a range from ܦ௙/ܦ ൌ 1.09 to 2. Even for the smallest 

mushroom cap a significant reduction of the corner stress singularity over the straight punch is 

found. As the mushroom cap diameter is increased, the magnitude of the corner stress 

diminishes. Further increases in the mushroom diameter beyond twice the stalk diameter result in 

further reductions of the corner stress over many orders of magnitude. 
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Figure 3.5: Tensile stress along the interface between the substrate and a fibril having a 

mushroom cap for (a) plane strain and (b) axial symmetry for various values of the mushroom 

cap diameter, ௙ܦ	 , divided by the diameter, ܦ , of the fibril stalk. Results are shown for a 

mushroom cap that has a thickness, ݄, equal to 0.008 times its diameter. 

 

3.3.1.2 Varying cap thickness ࢎ 

The influence of the mushroom cap thickness ݄ is reported for ten different values for plane 

strain fibrils Figure 3.6(a) and axisymmetric fibrils in Figure 3.6(b) when ܦ௙/ܦ ൌ 2. Again, the 

mushroom diameter is kept constant and ݄ is varied. It is observed that the amplitude of the 

corner stress singularity decreases when 	݄/ܦ௙ decreases. The corner stress for thin caps, e.g. 

௙ܦ/݄ ൌ 	0.008, is very low and the maximum stress visible in the plots lies close to the centre of 

the fibril. Any increase in ݄/ܦ௙ increases the corner stress, which approaches that of a straight 

punch as ݄ increases. 
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Figure 3.6: Tensile stress along the interface between the substrate and a fibril having a 
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mushroom cap for axial symmetry for various values of the ratio of the cap thickness to its 

diameter	݄/ܦ௙. Results are shown for a fibril having a mushroom cap whose diameter is twice 

that of its stalk. 

Figure 3.7 shows the calibration coefficient ෤ܽ plotted versus ݄/ܦ௙ for various values of ܦ௙/ܦ for 

plane strain (Figure 3.7(a)) and axisymmetric (Figure 3.7(b)) mushroom fibrils. In addition, the 

results for straight punch fibrils are shown on the plots as horizontal dashed lines. On increase of 

the stalk diameter D and the mushroom cap thickness ݄ the calibration coefficient ෤ܽ increases 

and approaches the value for that of a straight punch, i.e. 0.331 for plane strain and 0.278 for the 

axisymmetric case.  
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Figure 3.7: Calibration coefficient, ෤ܽ , plotted as a function of the ratio of mushroom cap 

thickness to diameter, ݄/ܦ௙, for various ratios of fibril mushroom cap diameter to fibril stalk 

diameter ܦ௙/ܦ  for (a) plane strain and (b) axial symmetry. The dashed horizontal lines 

indicate the value of the calibration coefficients ܽଵ for a straight punch. 

Figure 3.8 similarly depicts the calibration coefficient ෤ܽ as a function of the thickness, ݄, for 

fibrils having mushroom caps for axial symmetry, but now up to cap thicknesses that are 

comparable to the diameter of the mushroom cap. The result for a straight punch is also shown as 

the horizontal dashed line. This plot clearly shows that as the mushroom cap becomes very thick, 

and therefore the lower segment of the fibril becomes indistinguishable from a straight punch, 

the behaviour reverts to that of the straight punch.  

We have compiled all values of the calibration coefficients from our results and presented them 

in Table 3.1 and Table 3.2. 
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Figure 3.8: Calibration coefficient ෤ܽ plotted as a function of the ratio of mushroom cap 

thickness to diameter, ݄/ܦ௙, for 3 values of the ratio of fibril mushroom cap diameter to fibril 

stalk diameter ܦ௙/ܦ for axial symmetry. The dashed horizontal lines indicate the value of the 

calibration coefficient ܽଵ for a straight punch. The plot is extended to	݄/ܦ௙ 	ൌ 	1 to show how 

the results for the mushroom capped fibril converge to that of the straight punch as the 

mushroom cap is thickened. 

 



 

30 

 

 

Table 3.1: Calibration coefficients ෤ܽ for plane strain fibrils having a mushroom cap of width ܦ௙ 

and thickness ݄. The width of the fibril stalk is ܦ. 

 

Table 3.2: Calibration coefficients ෤ܽ  for axially symmetric fibrils having a mushroom cap of 

diameter	ܦ௙, and thickness ݄ where ܦ is the diameter of the fibril stalk. 
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3.4 Adhesion strength 

The adhesion strength controlled by edge initiated detachment for fibrils having mushroom caps 

was next calculated by using equation 3.9 so that the strength is normalised by that of a straight 

punch where both the fibril with the mushroom cap and the straight punch have the same 

diameter where they contact the substrate, the same detachment length, ݈, at the corner, the same 

Young’s modulus and the same adhesion energy,	ܹ. That is, the diameter of the mushroom fibril 

cap is the same as the diameter of the straight punch. We note that the detachment length ݈	is 

small (݈ ≪  ௙ሻ so that its behaviour is controlled by the corner singularity. The results forܦ

adhesion strength are shown in Figure 3.9 for both plane strain (Figure 3.9(a)) and axisymmetric 

(Figure 3.9(b)) fibrils, and are shown as functions of ݄/ܦ௙  for various values of	ܦ௙/ܦ . The 

results for straight punches are shown as horizontal dashed lines. 

It is observed that the fibril cap geometry plays an important role in promoting adhesive strength. 

As the mushroom cap diameter is increased and as the cap thickness is decreased, the adhesive 

strength rises. Therefore, both a thin mushroom cap and one with a large diameter enhance the 

adhesive strength of the fibril when strength is controlled by detachment from a defect at the 

corner. In fact we observe that the adhesive strength can be enhanced by 10 orders of magnitude 

over the straight punch strength ܵ௣௨௡௖௛ when the mushroom cap diameter is twice that of its 

fibril stalk and its thickness is less than 1% of its diameter. 
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Figure 3.9: Adhesion strength for edge initiated detachment for a fibril having a mushroom 

cap of thickness ݄ and diameter	ܦ௙ is shown for (a) plane strain and (b) axial symmetry. The 

adhesion strength, ܵூ, of the fibril with the mushroom cap is given in terms of the average 
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stress on the interface and is normalised by the adhesion strength, ܵ௣௨௡௖௛ of a straight punch 

fibril having the same diameter as the mushroom cap, with Young’s modulus, adhesion energy 

and edge detachment length, ݈, the same for all fibrils.  

We note, however, that the benefit from the mushroom cap is limited by 3 sources. One source 

of the limitation is the inherent strength of the bond between the fibril and the substrate, which 

can lead to detachment commencing near the centre of the fibril rather than at the edge. The 

second source is that weak areas of bonding or of no bonding at all may be present near the 

centre of the fibril, representing adhesion defects that may initiate detachment. The third source 

of limitation is the strength of the fibril material itself, which may lead to the stalk of the fibril 

rupturing, since the mushroom shape leads to a stress in the stalk that is higher than the average 

stress at the interface with the substrate. In the current work we have not addressed the material 

strength. Therefore, we cannot qualify our results with quantified limits from this source. 

However, the inherent strength of the bond between the fibril and the substrate can be addressed 

based on the following consideration. We observe from Figure 3.5, Figure 3.6 and others that the 

stress at the interface for the mushroom fibril is almost uniform under the stalk. When the stress 

at that location reaches a critical value, ܵ஼, we assume that the cohesive strength of the bond has 

been reached and detachment of the fibril occurs, if it has not already occurred through an 

alternative mechanism, such as propagation of the defect at the edge of the contact. Furthermore, 

detachment motivated by an adhesion defect at or near the centre of interface between the fibril 

may be considered explicitly and this is addressed below; in this case we consider an adhesion 

defect located at the peak stress visible in Figure 3.4 and Figure 3.5 just below the edge of the 

stalk of the fibril. 

We now assume that detachment can occur by one of the three failure modes just described, 

namely that triggered when stress at the interface under the stalk reaches the critical value ܵ஼. In 

Figure 3.10 for comparison with this critical stress the adhesion strength, ܵௌ, for fibrils having 

mushroom caps is shown in terms of the average stress on the mushroom fibril stalk instead of 

the average stress on the interface. The results are normalised by the adhesion strength of a 

straight punch fibril, ܵ௣௨௡௖௛, having the same diameter as the mushroom cap, and the same edge 

detachment length, Young’s modulus and adhesion energy, and are shown for plane strain in 
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Figure 3.10(a) and for axial symmetry in Figure 3.10(b). Results for straight punches are shown 

as full horizontal lines. The detachment strength associated with the stress under the stalk 

reaching the critical level ܵ஼ is shown as a horizontal dashed line marked “Cohesive Strength 

ܵ஼” in the figure legend. The location of this dashed line on the ordinate is arbitrary as we do not 

select a specific value of the cohesive strength for any given interface. Thus the line can be 

adjusted up or down to represent the cohesive strength in any given case; however, in plotting 

the dashed lines in Figure 3.10 we have assumed that the cohesive strength of the interface 

exceeds the strength of straight punches when detachment in that case initiates at the corner. The 

dashed line in Figure 3.10 is to be used in the following manner. The detachment strength for 

mushroom fibrils cannot exceed the value represented by the dashed line; therefore, for any 

given combination of mushroom cap diameter and thickness, the detachment strength is given by 

the lower of the dashed line and the line representing the fibril detachment strength when 

detachment initiates at the corner of the mushroom cap. We conclude, therefore, that given our 

assumption regarding the cohesive strength behaviour, fibrils with very thin, large diameter 

mushroom caps will experience detachment that initiates near the centre of the fibril, and will 

have a detachment strength predicted approximately by the horizontal dashed lines in Figure 

3.10. In contrast, fibrils having thick, small diameter mushroom caps will experience detachment 

that initiates at the edge and their adhesive strength will be predicted by the full lines in Figure 

3.10. 
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Figure 3.10: Adhesion strength, ܵௌ  (full lines), for edge initiated detachment fibrils having 

mushroom caps of thickness ݄ and diameter ܦ௙  is plotted for (a) plane strain and (b) axial 

symmetry. In this case the adhesion strength is given in terms of the average stress applied to the 
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mushroom fibril stalk of diameter ܦ and is normalised by the adhesion strength, ܵ௣௨௡௖௛, for a 

straight punch fibril having the same diameter as the mushroom cap, with Young’s modulus, 

adhesion energy and edge detachment length, ݈, the same for all fibrils. The detachment strength 

associated with the stress under the stalk reaching a critical value ܵ஼
ௌ  is represented by the 

horizontal dashed lines, marked “Cohesive Strength ܵ஼
ௌ.” The dashed line for Cohesive strength 

ܵ஼
ௌ is exemplary with an arbitrary position. 

When we inspect Figure 3.5 and Figure 3.6 we note that there is a peak in the normal traction at 

the interface that is located approximately under the edge of the fibril stalk. It is possible that the 

high stress under the edge of the fibril stalk will exceed the cohesive strength of the interface and 

therefore can initiate fibril detachment. Furthermore, if a detachment defect in the form of a 

region that is not adhered is located there it is possible that fibril detachment will initiate due to 

that defect. To further characterise this possibility, in Figure 3.11 we have plotted the ratio of the 

peak stress,	ߪ௉௘௔௞, to the average interface stress ߪூ, as a function of	݄/ܦ௙, for various values of 

ܦ/௙ܦ  for axially symmetric fibrils having mushroom caps. It is convenient at this point to 

introduce the notation of a stress concentration factor for the stress at the interface under the edge 

of the fibril stalk as ݇ ൌ   .ூߪ/௣௘௔௞ߪ

We note that as the mushroom cap is made thinner or its diameter is made larger the peak in 

stress under the edge of the fibril stalk becomes more pronounced, and is more likely to promote 

fibril detachment. Therefore, the influence of this peak in stress on the likelihood of fibrillar 

detachment runs counter to that of the effect of the mushroom cap on edge detachment, whose 

likelihood is diminished by a thin, large diameter mushroom cap. 

The influence of the peak in stress plotted in Figure 3.11 may be investigated as follows. As a 

rudimentary treatment of the relevant fracture mechanics, we may consider a small detachment 

of length or diameter 2ܽ at the location of the peak stress. There will be a stress singularity 

around the edge of this detachment that will control the tendency for it to spread. As an 

approximation we may estimate this stress intensity factor as if the detachment were present in 

an infinite body subject to a stress equal in magnitude to the peak in stress plotted in Figure 3.11. 

The resulting value is 
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ூܭ ൌ 3.10 ܽߨ√௣௘௔௞ߪ

Note that we have not attempted to estimate a shape factor that would multiply the right hand 

side of equation 3.10 but instead have simply assumed that this factor is unity. As our treatment 

is highly approximate, we consider this to be satisfactory. With ܭூூ  assumed to be zero, we 

compute the energy release rate according to the first and second results on the right hand side of 

equation 3.7 and set it equal to the adhesion energy to predict fibril detachment initiated as such 

a defect. The predicted strength, ܵ௉, in terms of the average interface stress, for fibril detachment 

initiated at a defect at the location of the peak stress is then 

ܵ௉ ൌ
1
݇
ඨ
ܹܧ8
ܽߨ3

 3.11

where k is the stress concentration factor for the peak stress as introduced above in connection 

with Figure 3.11. 
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Figure 3.11: The magnitude of the local peak stress ߪ௣௘௔௞ near the centre of the fibril as depicted 

in the plots of interface stress in Figure 3.5 and Figure 3.6. The peak stress is normalised by the 

average interface stress ߪூ and is therefore given as the stress concentration factor ݇. The result 

is shown as a function of ݄/ܦ௙ for various values of ܦ௙/ܦ. Note that a thin mushroom cap and a 

thin stalk will promote detachment at the centre by raising the local peak stress there. 

The competition between detachment initiated at the edge of the mushroom cap and that initiated 

at a defect at the location of the peak stress under the edge of the fibril stalk is explored in Figure 

3.12 as follows. The non-dimensional strength for edge detachment follows directly from 

equation 3.8 as  

ܵ̅ூ ൌ
ܵூܦ௙

଴.ସ଴଺݈଴.଴ଽସ

ܹܧ√0.6
ൌ
1
෤ܽ
 

3.12

From equation 3.11 the strength for fibril detachment initiated at a defect located at the peak 

stress under the edge of the fibril stalk is now expressed in this non-dimensional form as 
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ܵ̅௉ ൌ
ܵ௉ܦ௙

଴.ସ଴଺݈଴.଴ଽସ

ܹܧ√0.6
ൌ
௙ܦ
଴.ସ଴଺݈଴.଴ଽସ

ܽߨ1.5√0.3݇
 

3.13

A comparison of ܵ̅ூ and ܵ̅௉ is plotted in Figure 3.12. The curves for ܵ̅௉ are marked “Detachment 

caused by a defect at the location of high stress under the edge of the fibril stalk.” Note that for 

illustration we have chosen three different values for 3.3ܦ௙
଴.ସ଴଺݈଴.଴ଽସ/√1.5ܽߨ  namely 

50, 100	&, 200, representing the relative sizes of the two defects of length ݈	and 2ܽ respectively 

and the diameter, ܦ௙, of the mushroom cap. These curves are marked in Figure 3.12 by their 

values 50, 100	&, 200 respectively. These choices of 50, 100	&, 200 are somewhat arbitrary and 

the reason for them will become clear below.  

Figure 3.12: Adhesion strength for a fibril having a mushroom cap predicted for detachment due 

to a defect at the edge of the mushroom cap ሺܵ̅ூሻ and for detachment due to a defect at the 

location of high stress under the edge of the fibril stalk ሺܵ̅௉ሻ. The ratio of fibril mushroom cap 
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diameter to fibril stalk diameter ܦ௙/ܦ ൌ 1.41 and the fibril is axisymmetric. The defect sizes are 

plotted for three different values of ሺ3.3ܦ௙
଴.ସ଴଺ ݈଴.଴ଽସሻ/√1.5ܽߨ ൌ 50, 100, and 200 where ݈  is 

the size of the defect at the mushroom cap edge and 2ܽ is the size of the defect at the location of 

the high stress. These curves are marked accordingly as 50, 100 and 200. 

In Figure 3.12 the curve for ܵ̅ூ is marked “Detachment caused by a defect at the edge of the 

mushroom cap.” It can be seen that with the chosen relative sizes of the defects the plot for edge 

initiated detachment, within the domain of the figure, intersects with the plots for detachment 

commencing at the location of the peak stress. This is the reason for choosing the values 

௙ܦ3.3
଴.ସ଴଺݈଴.଴ଽସ/√1.5ܽߨ ൌ 50, 100	&	200 as the resulting intersections enable us to illustrate the 

relevant situation, which is as follows. For this explanation we focus on the case where either 

edge initiated detachment takes place or detachment occurs commencing at the location of peak 

stress with flaw sizes such that 3.3ܦ௙
଴.ସ଴଺݈଴.଴ଽସ/√1.5ܽߨ ൌ 	200 . In this case, the adhesive 

strength of the fibril is predicted by the lower of the curve for the latter and the curve for edge 

initiated detachment in Figure 3.12. This implies that for small values of ݄/ܦ௙ detachment will 

be initiated at the defect under the peak in stress at the edge of the fibril stalk, whereas for large 

values of ݄/ܦ௙ detachment will be initiated at the edge of the mushroom cap. The reason for 

choosing the three different values 3.3ܦ௙
଴.ସ଴଺݈଴.଴ଽସ/√1.5ܽߨ ൌ 50, 100	& 200 in Figure 3.12 is to 

illustrate how the domains of edge initiated detachment and detachment initiated at the peak 

stress location vary as the relative sizes of ܽ, ݈  and ܦ௙  change. It can be seen that as 

௙ܦ3.3
଴.ସ଴଺݈଴.଴ଽସ/√1.5ܽߨ becomes larger, the domain in which edge initiated detachment occurs 

becomes more extensive; this outcome is a consequence of the fact that 3.3ܦ௙
଴.ସ଴଺݈଴.଴ଽସ/√1.5ܽߨ 

becomes larger as a consequence of ܽ diminishing, so that detachment caused by a defect at the 

location of the peak stress at the edge of the fibril stalk is less likely. 
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3.5 Discussion 

Spuskanyuk et al. (Spuskanyuk et al., 2008) provided the initial study on how the corner stress 

singularity varies from a straight punch to a mushroom fibril for frictionless and sticking friction 

conditions. In the course of the work just described we have repeated their simulations and our 

results are in good agreement with theirs. They also reported how the stress varies along the 

substrate interface for the straight punch and the mushroom fibril, and a similar behaviour can be 

observed in our results in Figure 3.2 and Figure 3.4 respectively. The straight punch exhibits 

lower adhesive strength when compared to mushroom fibrils because the corner stress singularity 

acts as the driving force to initiate detachment. In the case of the mushroom fibril, the extra 

material present on either side of the stalk evidently reduces the corner singularity, which in turn 

improves the adhesive strength of the fibril. The results in Figure 3.5 and Figure 3.6 show that 

there is a zone of higher stress at the centre of the fibril under the edge of the stalk, from where 

detachment could now initiate. Experimentally, such a behaviour was found by Hossfeld et al. 

(Hossfeld et al., 2013) and by Micciché et al. (Micciché et al., 2014), who observed that 

detachment of mushroom fibrils started from close to the centre. We have only investigated this 

issue in a preliminary manner as we have not quantified the strength of the adhesive bond 

between the fibril and the substrate for any specific combination of materials. However, we have 

provided illustrative results that indicate the trade-off between detachment initiated near the 

centre of the fibril and that commencing at the edge of the mushroom cap. 

The most systematic experimental study on how the contact shape of a compliant PDMS 

(polydimethylsiloxane) fibril adhered to a glass probe affects adhesion was published by del 

Campo et al. (del Campo et al., 2007). They examined different geometries such as the straight 

punch, the spherical cap, the spatula cap, the straight cap with rounded edges, the mushroom cap 

and the concave cap. Mushroom fibrils showed superior adhesion when compared to other 

shapes. The adhesive strength of the straight punch and the mushroom fibril varied from 

approximately 30 to 60 kPa depending on the fibril radius and preload. For a mushroom fibril 

with ܦ௙/ܦ ൌ 1.29, the adhesive strength varied from 30 to 185 kPa.  

Carbone and Pierro (Carbone and Pierro, 2012) have calculated the dependence of adhesive 

performance on the mushroom cap geometry and suggested an optimal shape for adhesion. They 
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erroneously assumed that the corner stress singularity involves inverse square root behaviour, a 

result that cannot be justified as it disagrees with the analysis of Khaderi et al. (Khaderi et al., 

2015) and our results. Therefore, their interpretation of their results cannot be deemed to be 

reliable, as they used the wrong order of singularity throughout their analysis. However, Carbone 

and Pierro (Carbone and Pierro, 2012) show results for stress at the interface between the fibril 

and the substrate that can be used in principle to deduce the adhesive strength of mushroom 

shaped fibrils, albeit of a different design from the ones we have considered. On the other hand, 

the mushroom caps that Carbone and Pierro (Carbone and Pierro, 2012) consider in their analysis 

are very large in diameter, with the smallest one having a diameter twice as large as that of the 

fibril stalk. As we have shown that mushroom fibrils having cap to stalk diameter ratios much 

less than 2 are very effective at raising fibril adhesive strengths, the designs contemplated by 

Carbone and Pierro (Carbone and Pierro, 2012) are somewhat unrealistic and unnecessary. 

Aksak et al. (Aksak et al., 2014) have presented a computational study on how the geometry of a 

wedge or conical shaped mushroom cap influences fibrillar adhesion by varying the angle (from 

25° to 80°) at which the wedge shaped mushroom cap meets the substrate. Using a Dugdale 

cohesive zone to model the detachment process, they found that the strongest adhesion was 

associated with a mushroom cap that meets the substrate at 45°	and (in our notation) ܦ௙/ܦ ൌ

1.1	or	1.2. In addition, they assumed a thin disc of material appended to the tip with the same 

diameter as the fibril tip; this was found to compromise the adhesive strength of the fibril. 

To make a direct comparison with the work of Aksak et al. (Aksak et al., 2014) we have chosen a 

mushroom fibril with wedge angle 45° and a thin disc of thickness 0.01	ܦ	appended to it. Two 

cases were examined with different ratios of mushroom cap diameter to stalk diameter: ܦ௙/ܦ ൌ

1.09	and	1.2. The comparison of the stress distributions for wedge shape (as in (Aksak et al., 

2014)) and mushroom shape (as in the present study) can be seen in Figure 3.13. The calibration 

coefficients and adhesion strength values are listed in Table 3.3. The range of values 1.2 to 35 

and 1.63 to 1242 corresponds to the respective ݄/ܦ௙. It can be observed from Figure 3.13 and 

Table 3.3 that the mushroom fibrils (from the current study) have the capability to perform 

better, provided detachment does not occur earlier with a different mechanism. The stress peak 

close to the centre of mushroom fibrils seen in Figure 3.13 can act as a crack initiation point, but 
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the peak can be removed by improving the design which will be discussed in section 3.5.1. 

Therefore, it is relatively straightforward to design mushroom shaped fibrils to outperform 

wedge shaped ones. 

Figure 3.13: Comparison of published fibril shapes and present study: Tensile stress along the 

interface for a straight punch, a mushroom fibril (as in the current paper) and a wedge shaped 

mushroom cap (as in (Aksak et al., 2014)), all for the axisymmetric case. Adhesion controlled by 

edge detachment is superior for the mushroom shaped fibrils compared to that of the wedge 

shaped ones. 

 

 

Table 3.3: Calibration coefficients ෤ܽ and normalised adhesion strength for axisymmetric fibrils 

with wedge shaped mushrooms as assumed by Aksak et al. (2014) (ܵூ/ܵ௣௨௡௖௛	ܹ݁݀݃݁). For 

comparison, we list the adhesion strength of mushroom cap fibrils (ܵூ/ܵ௣௨௡௖௛ ) used in the 

current paper. The range of ܵூ/ܵ௣௨௡௖௛ values refers to the mushroom fibrils with different ݄/ܦ௙. 
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3.5.1 Improved shape for a fibril having a mushroom cap 

As noted above, the results in Figure 3.5 and Figure 3.6 show that there is a peak in the normal 

traction at the interface between the fibril and the substrate that is located immediately under the 

edge of the fibril stalk. We have explored designs that will eliminate this elevation in the stress, 

and have found that it disappears when there is a fillet radius, as in Figure 3.14, smoothing the 

transition from the fibril stalk to the mushroom cap. As an example of this improvement in the 

design, we carry out simulations for the stress at the interface between the substrate and fibrils 

having ܦ௙/ܦ		 ൌ 1.41 and a fillet radius, ܴ, such that ܴ/ܦ௙ ൌ 0.083. The results for the normal 

traction at the interface are shown in Figure 3.15 for various values of ݄/ܦ௙ for axial symmetry. 

It can be seen that the stress elevation visible in Figure 3.5 and Figure 3.6 is absent in the results 

in Figure 3.15. In this case the maximum normal traction under the fibril, other than at the edge 

of the cap, is simply twice the average stress on the interface. 

 

Figure 3.14: Schematic of a mushroom fibril with a fillet of radius ܴ where ܴ/ܦ௙ ൌ 	0.083.  
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Figure 3.15: Tensile stress along the interface between the substrate and an axisymmetric 

mushroom cap fibril having a value of the radius of the fillet, ܴ, that is effective at eliminating 

the high stress under the edge of the fibril stalk. Results are shown for a fibril having a 

mushroom cap whose diameter is 1.41 times that of its stalk and for various values of the 

ratio of the cap thickness to its diameter ௙ܦ/ܴ ௙. The fillet radius is such thatܦ/݄ ൌ 	0.083. 

The calibration coefficient for the edge singularity is extracted from the results in Figure 3.15 by 

fitting the plots to the asymptotic solution as before. The results, designated ෤ܽ௙௜௟௟௘௧, are shown in 

Figure 3.16 and are listed in Table 3.4, as are the calibration coefficients, ෤ܽ, for fibrils having 

mushroom caps without the fillet radius. It can be seen that the introduction of the fillet radius 

has increased the amplitude of the edge singularity compared to that prevailing in the absence of 

the fillet radius. It follows that the mushroom fibrils with the fillet radius will be more prone to 

edge detachment than the equivalent design lacking a fillet radius. However, the fillet radius, by 
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eliminating the peak in stress that would otherwise occur under the edge of the stalk, diminishes 

the likelihood of detachment commencing near the centre of the fibril. 

 

Figure 3.16: Calibration coefficients, ෤ܽ, for mushroom fibrils without fillet radii and, ෤ܽ௙௜௟௟௘௧, 

for mushroom fibrils with fillet radii, both plotted as a function of the ratio of mushroom cap 

thickness to diameter, ݄/ܦ௙ , for a ratio of fibril mushroom cap diameter to fibril stalk 

diameter ܦ௙/ܦ ൌ 1.41 for axisymmetric fibrils. The fillet radius is such that ܴ/ܦ௙ 	ൌ 	0.083. 
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Table 3.4: Calibration coefficients ෤ܽ  for axisymmetric fibrils having a fillet radius that is 

effective at eliminating the high stress under the fibril stalk for mushroom caps with ܦ௙/ܦ ൌ

1.41	 where ܦ௙ and ܦ are the diameter of mushroom cap and the stalk respectively and ݄ is the 

thickness of the mushroom cap. The fillet radius ܴ/ܦ௙ ൌ 0.083. 

In Figure 3.17 we have replotted the results in Figure 3.16 to represent ܵூ/ܵ௣௨௡௖௛, the ratio of 

the adhesive strength of a fibril having a mushroom cap to that of a punch shaped fibril. One 

curve, marked “With fillet radius” gives the results for fibrils with the fillet radius connecting the 

mushroom cap and the stalk, while the results marked “Without fillet radius” are for the fibrils 

lacking the smooth transition from stalk to mushroom cap. It can be seen that the adhesive 

strength of the fibrils having a fillet radius is somewhat poorer than that for fibrils in which the 

fillet radius is absent. However, that conclusion is associated with detachment that commences at 

the edge of the mushroom. Due to the lack of a peak in the stress under the fibril stalk when there 

is a fillet radius present, the situation will be reversed when detachment commences near the 

centre of the fibril. In the case of the fibrils used for the calculations with results presented in 

Figure 3.17, the adhesive strength for detachment commencing at the centre of the fibril, 

measured in terms of ܵூ , i.e. the average stress on the interface, will be ߪ௢/2, where ߪ௢  is 
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representative of the cohesive interaction strength between the fibril and the substrate. If we 

assume that this interaction is of the Dugdale type, ௢ߪ	  will be equal to the cohesive stress 

attracting one surface to the other.  

 

Figure 3.17: Adhesion strength for fibrils with and without fillet radii plotted versus ݄/ܦ௙ for 

a ratio of fibril mushroom cap diameter to fibril stalk diameter ܦ௙/ܦ ൌ 1.41  for 

axisymmetric mushroom fibrils. Detachment in these cases is initiated at the edge of the 

mushroom cap. The adhesion strength is normalised by that for a punch shaped fibril.  The 

fillet radius is such that ܴ/ܦ௙ 	ൌ 	0.083. 

In fact, we can assume that a fillet radius can be introduced in all cases to smooth the transition 

from the fibril stalk to the mushroom cap no matter the values of the ratios ܦ௙/ܦ and ݄/ܦ௙. 

Designs can then always be found with a sufficiently effective fillet radius such that detachment 

will commence near the centre of the fibril, and this will occur at a strength, measured in terms 

of the average stress at the interface, given by  
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ܵூ ൌ ቆ
ܦ
௙ܦ
ቇ
ଶ

 ௢ߪ	
 

3.14

Thus the best strength is achieved with the smallest possible mushroom cap diameter that 

eliminates edge detachment and therefore leads to a strength quite close to the cohesive stress. 

 

3.6 Conclusion 

In the current work we focus on the corner singularity for a mushroom fibril that is assumed to 

be perfectly bonded to a rigid substrate so that no sliding can occur at the interface between the 

fibril and the substrate to which it is attached. The mushroom cap and stalk dimensions are 

varied and the calibration coefficient and the adhesive strength are calculated for the resulting 

combinations of mushroom cap geometry. In total, more than a hundred different combinations 

of fibril geometry are analysed in this study. The following conclusions can be drawn:  

 In agreement with earlier work, straight punch fibrils exhibit a corner stress singularity. This 

explains the tendency of straight fibrils to detach from a corner location. 

 In mushroom fibrils, the corner stress is reduced to a level that may preclude detachment 

initiating at that location. Instead, the stress near the centre of the fibril may initiate 

detachment there. 

 The mushroom geometry strongly influences the stress distribution. The corner stress 

singularity amplitude is minimized for small cap thicknesses and small fibril stalk diameters. 

 Optimisation of fibrillar adhesives will require mushrooms caps with minimum thickness and 

minimum stalk diameter, but limited by the tendency for detachment to occur near the centre 

of the fibril and by the material strength. 

 Introduction of a fillet radius to smooth the transition from the fibril stalk to the mushroom 

cap was successful in removing the stress peak that otherwise occurs in mushroom fibrils on 
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the interface immediately below the edge of the fibril stalk. However, the adhesive strength 

controlled by the edge singularity is reduced, which is a drawback. However, the adhesive 

strength associated with detachment commencing near the centre of the fibril is improved. 

The results suggest that an adhesive strength close to the cohesive stress at the interface can 

be achieved with careful design of the mushroom cap and the fillet radius. A detailed analysis 

is necessary to establish the best design. 
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4 Adhesion and stress singularities for composite fibrils with soft tip layers 

4.1 Introduction 

Nature provides many concepts for temporary and reversible adhesion to various substrates, e.g. 

on plants and animals (Gorb, 2007; Gorb, 2008). Geckos and insects use hairy structures whose 

adhesion is due to intermolecular forces (Arzt et al., 2003; Autumn et al., 2000; Autumn et al., 

2002; Gao et al., 2005; Huber et al., 2005a). Transferring nature’s solution into artificial 

structures that may eventually find technological applications is the current objective of research 

and development efforts (Boesel et al., 2010; Kamperman et al., 2010; Menon et al., 2004; 

Purtov et al., 2015; Sathya et al., 2013). Many reversible attachment systems (Paretkar et al., 

2011) based on micropatterns (del Campo and Arzt, 2011) have been investigated in the 

literature (Arzt et al., 2002; del Campo and Arzt, 2007; Greiner et al., 2009; Mengüç et al., 2012; 

Spolenak et al., 2005).  

Recent modelling studies have pointed to the importance of optimizing the distribution of 

interfacial stresses in order to realize high adhesion. Following biological examples, fibrils with 

spatula and mushroom-shaped tips have repeatedly been demonstrated to exhibit superior 

adhesion performance (del Campo et al., 2007; Gorb et al., 2007a; Greiner et al., 2007; Kim and 

Sitti, 2006). Numerical simulations have suggested that the main reasons for improved adhesion 

is the reduction of the stress magnitudes associated with the corner singularity, which is likely to 

act as a crack initiation point in straight punch fibrils (Khaderi et al., 2015). Spuskanyuk et al. 

(Spuskanyuk et al., 2008) showed numerically that in mushroom fibrils the edge stresses were 

significantly reduced when compared to those of straight punches and other shapes. Based on 

earlier work by Akisanya et al. (Akisanya and Fleck, 1997) and Khaderi et al. (Khaderi et al., 

2015) on the corner stress singularity, we have recently addressed the stress distributions of 

mushroom fibrils by Balijepalli et. al. (Balijepalli et al., 2016). In an extensive parametric study, 

we showed that such structures benignly distribute tractions along the interface and reduce the 

magnitude of the stresses associated with the singularity at the corner. This is suggested to be the 

main cause of the higher adhesion of mushroom structures while the onset of detachment is 

shifted away from the corner to the centre of the interface (Aksak et al., 2014; Balijepalli et al., 

2016; Carbone and Pierro, 2012). 
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Mushroom tips are often manufactured by manual inking of previously made microstructures in 

a prepolymer and subsequent curing in contact with a smooth counter surface (Fischer et al., 

2016b; Greiner et al., 2007; Murphy et al., 2009; Varenberg and Gorb, 2007). Tip and stalk 

material can be identical, but choosing a softer tip layer can further increase adhesion, especially 

to rough and deformable surfaces such as skin (Bae et al., 2013b; Kroner et al., 2012b; Kwak et 

al., 2011). Depending on the packing density and the amount of prepolymer used for the inking, 

not only isolated tips can be achieved but also connection among several or all fibrils (Liu et al., 

2009; Vajpayee et al., 2009). Despite these benefits, mushroom structures suffer from the 

drawbacks that their fabrication is complicated, does not always lead to reproducible results and 

can hardly be scaled up to larger areas. 

An alternative way to manipulate the interfacial stresses is to create fibres with gradients in 

mechanical properties (Bae et al., 2013a; Minsky and Turner, 2015; Scholz et al., 2008; Yoon et 

al., 2011). The ladybug has recently been shown to exhibit attachment hairs with at least two 

property levels, i.e. a soft tip layer with a modulus of about 1.2 MPa attached to a stiff stalk with 

a modulus of about 6.8 GPa (Peisker et al., 2013). According to Gorb and Filippov (Gorb and 

Filippov, 2014) such structures tend to enhance adhesion properties, especially against substrates 

with unpredictable roughness.  

In this chapter, we propose, as an alternative, a novel two-material composite fibril with a sharp 

transition in modulus. For modelling the stress singularities, the fibril was assumed to have a 

straight punch shape, but to consist of a comparatively stiff stalk and a soft layer at its tip. A 

detailed numerical study is presented of the stress distributions along and near differently shaped 

interfaces between the two materials, as shown in Figure 4.1. The system parameters are the 

Young’s moduli ሺܧଵ, ,ଵܮଶሻ and the thicknesses ሺܧ  ଶሻ of, respectively, the stalk and the soft tipܮ

layer. For comparison, adhesion experiments to glass were performed with single macroscopic 

composite fibrils.  
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Figure 4.1: Schematic of different composite fibril interfaces, namely a flat interface, two 

circular interfaces ሺܴ ൌ ܴ	݀݊ܽ	ܦ ൌ 2ሻ/ܦ  and an elliptical interface (where major axis is 

double the diameter) considered in the current work. The parameter ܴ is the radius of curvature 

of the interface, ܦ is the fibril diameter, ܮ is the total height of the composite fibril,	ܮଵ and ܮଶ 

are the thicknesses of the stiff stalk (#1, with modulus ܧଵ) and the soft layer (#2, with modulus 

 ஺ߪ	ଶ) respectively. The composite fibrils adhere to a rigid substrate. For a remote tensile stressܧ

applied on the free end, the normal stress distribution is calculated along the fibril/substrate 

interface. 

 

 

4.2 Numerical and experimental methods 

4.2.1  Numerical simulations 

A compliant composite fibril, with diameter ܦ and length ܮ, was assumed to adhere to a rigid 

substrate with no defects (interfacial cracks) along the interface. The ratio of ܮ to ܦ was 2 for all 

the simulations and the experiments. The fibril was considered to be an isotropically elastic and 

incompressible solid. The boundary condition was assigned to be sticking friction which totally 

suppressed sliding of the fibril against the substrate. A remote stress ߪ஺	was applied on the free 
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end of the fibril (Figure 4.1), which results in a stress singularity at the fibril-substrate interface 

(Akisanya and Fleck, 1997). The corner singularity method was adopted from Akisanya and 

Fleck (Akisanya and Fleck, 1997) and Khaderi et al. (Khaderi et al., 2015). The treatment 

follows that of our earlier work on mushroom-shaped fibrils (Balijepalli et al., 2016). The 

singular terms in the asymptotic normal stress ሺߪଶଶሻ and shear stress ሺߪଵଶሻ components are given 

by equations 3.1 and 3.2: 

The calibration coefficients of a straight homogeneous punch are ܽଵ ൌ 0.331 for the plane strain 

and ܽଵ ൌ 0.278 for the axisymmetric case according to Khaderi et al.(Khaderi et al., 2015). The 

asymptotic stress solutions for the plane strain case in logarithmic form were listed in Chapter 

3.2. 

The resulting normal and shear stress along the interface of a straight punch and a rigid substrate 

for plane strain and axisymmetric fibrils are shown in Figure 3.2 (a) and (b) respectively. In 

order to predict the adhesive strength of the fibril, we assume a small detachment length ݈ at its 

edge where the corner singularity controls the detachment behaviour. A detailed analysis was 

provided in Chapter 3.2. The stress distribution near the crack tip can be described by equation 

3.4 and the Mode I and Mode II stress intensity factors, ܭூ and ܭூூ, are given by equations 3.5 

and 3.6. The energy release rate during detachment of a composite fibril seen in Figure 4.1 is 

given by 

ܩ ൌ
1 െ ଶݒ

ଶܧ2
	ሺܭூ

ଶ ൅ ூூܭ
ଶሻ ൌ

3
ଶܧ8

ሺܭூ
ଶ ൅ ூூܭ

ଶሻ ൌ
஺ߪ2.8

ଶܦ଴.଼ଵ݈଴.ଵଽ ෤ܽଶ

ଶܧ
 4.1

where ܧଶ is Young’s modulus of the soft layer in contact with the rigid substrate and ߥ is the 

associated Poisson’s ratio, equal to 0.5 consistent with incompressibility. For detachment to 

occur, the energy release rate must be equal to the adhesion energy, ܹ. The adhesion energy of 

the composite fibril ܵூ can be expressed as 

ܵூ ൌ
0.6ඥܧଶܹ
଴.ସ଴଺݈଴.଴ଽସܦ ෤ܽ

 4.2

We define a normalised adhesion strength by dividing by the value for the straight punch ܵ௣௨௡௖௛, 

which is assumed to have the same initial crack length:  
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ܵூ

ܵ௣௨௡௖௛
ൌ
ܽଵ
෤ܽ

 4.3

The resulting adhesion strength was calculated using equation 4.3. 

Following the expectation that the interfacial stress distribution would be modulated by the 

geometry of the interface, four different interface shapes were considered, i.e. flat, two circular 

and elliptical as shown in Figure 4.1. Calculations were performed for plane strain ሺ2ܦሻ and 

axisymmetric ሺ3ܦሻ conditions. Only 3ܦ results will be discussed in the main thesis while the 2ܦ 

results are presented in Appendix B. For each interface shape, we have examined six different 

thickness ratios ( ܮ/ଶܮ ൌ 0.25, 0.20, 0.15, 0.10, 0.05  and 0.005ሻ	 and five different Young’s 

modulus ratios (ܧଵ ⁄ଶܧ ൌ 2, 10, 10ଶ, 10ଷ	and	10଺) for all axisymmetric ሺ3ܦሻ fibrils. For plane 

strain ሺ2ܦሻ  fibrils only five different thickness ratios ( ܮ/ଶܮ ൌ 0.25, 0.20, 0.15, 0.10  and 

0.05ሻ	and four different Young’s modulus ratios (ܧଵ ⁄ଶܧ ൌ 2, 10, 10ଶ	and	10ଷ) were considered.  

A mesh validation study was performed to identify the optimum mesh density and the element 

size along the interface was chosen such that further mesh refinement did no longer influence the 

results (within 0.5 % in the stress values). We used linear quadrilateral hybrid elements for plane 

strain (Abaqus terminology element CPE4RH) and axial symmetry (CAX4RH) (Abaqus6.11, 

2011). The total number of elements varied accordingly from 100,000 to 600,000 for different 

investigated geometries. The mesh along the interface was much finer than elsewhere to extract 

more precise information from this region. 

4.2.2 Fibril fabrication2 

In addition to the numerical simulations, adhesion was tested in selected experiments on 

composite fibrils with macroscopic dimensions (diameter 2	mm, height ca. 4	mm and varying 

soft layer thickness). The fibrils consisted of a stiff stalk; for this, poly(ethyleneglycol) 

dimethacrylate (PEGdma, Sigma-Aldrich, St. Louis, MO, USA; elastic modulus of about 350 

MPa) or polydimethylsiloxane (PDMS, Sylgard 184, Dow Corning, Midland, MI, USA; elastic 

modulus of about 2 MPa) were used. The softer tip layer consisted of polyurethane Polyguss 

74 െ 41 (PU, PolyConForm GmbH, Duesseldorf, Germany) with an elastic modulus of about 

                                                 

2 Experimental work was performed by S. C. L. Fischer. 
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900 kPa. The fibrils were fabricated using a two-step moulding process as illustrated in Figure 

4.2. Thus, composites fibril structures with an elastic modulus ratio of stiff to soft of about 350 

and 2, and three interface geometries, flat, circular (ܴ ൌ  and elliptical, were generated. As (2/ܦ

straight-punch control samples, fibrils consisting entirely of PU were manufactured.  

The fibrils were fabricated in a two-step moulding process as shown in Figure 4.2. In a first step, 

the stalk of the composite fibril was generated using a custom-made aluminum mould as shown 

in the optical micrograph in Figure 4.2a. The soft layer was added to the fibril in the second 

molding step (Figure 4.2b): The second pre-polymer, PU, was applied on top of the fibril and the 

superfluous polymer was removed. To realize different thicknesses of the soft material, spacers 

with different thickness were used. The fibril top face was further covered with a smooth Teflon 

film covered glass slide. Upon curing, the composite fibril was gently demoulded. Cross-sections 

of the final fibrils are shown in the optical micrograph in Figure 4.2b.  

  

Figure 4.2: Two-step manufacturing process of macroscopic composite fibrils. (a) The 

fibril stalk is manufactured by filling a prepolymer into a mould with a flat or curved 

bottom; after the backing layer is flattened using a razor blade, the material is crosslinked. 

Optical micrographs show exemplary stalk structures. (b) A softer layer is added in a 

second mould (flat interface). The layer thickness is determined by spacers (in black). The 

prepolymer of the soft material is covered with a Teflon coated glass slide (in grey) to 

obtain a flat surface after crosslinking. Optical micrographs show cross sections of final 

structures. For a more detailed description see (Fischer et al., 2016a). 
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4.2.3 Adhesion experiments3 

Normal adhesion experiments were performed using a custom-built, slightly modified setup 

following Kroner et al. (Kroner et al., 2012a). A nominally flat glass substrate was used as a 

probe and the specimen was aligned by optical inspection. During the adhesion measurements, a 

constant velocity of 5		μm/s was maintained. Sample and substrate were brought towards each 

other until a maximum force, i.e. the preload force, was reached and then moved apart until the 

sample detached from the substrate. Two different characteristic forces were determined: The 

pull-off force indicates the maximal force that has to be applied to cause full detachment. 

However, a crack can propagate in a stable manner along the interface or further cracks can be 

initiated before delamination takes place. Therefore, the force necessary to initiate the first crack 

was also determined. 

For each sample, five different preloads between 40 to 150 mN were applied and all pull-off 

forces obtained were averaged. The adhesion measurements were repeated at two different 

positions on the substrate. 

4.3 Results 

4.3.1 Numerical results 

4.3.1.1 Flat interface 

The results for axisymmetric (3ܦ) composite fibrils with a flat interface, where the total height 

of the fibril is twice that of the diameter (ܮ ⁄ܦ ൌ 2), will be presented in this section. The effects 

of variations in Young’s modulus at constant soft layer thickness (ܮଶ/ܮ ൌ 0.05) are reported in 

Figure 4.3a. The normal stress along the fibril-substrate interface, normalised by the remote 

stress, is plotted against the normalised distance from the corner, ܦ/ݎ. It is seen that an increase 

in ܧଵ/ܧଶ  from 1  to 10଺  leads to a progressive decrease in the magnitude of the corner 

singularity; at the same time, the stress values at the centre of the fibril increase and reach a 

maximum value of about 0.3. Further increase beyond the ratio of 1000 no longer affects the 

                                                 

3 Experimental work was performed by S. C. L. Fischer. 
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stress behaviour significantly, at least for fibrils with ܮଶ/ܮ ൌ 0.25 to 0.05. By comparison with 

the solution for the straight punch fibril (shown as a dashed line), all composite fibrils exhibit 

lower corner stresses, at the expense of higher centre stresses. The results for plane strain fibrils 

are reported in Figure B1 in Appendix B. 

Figure 4.3b depicts the influence of the thickness ܮଶ of the softer material at a constant Young’s 

modulus ratio ܧଵ/ܧଶ 	ൌ 	10଺. It can be seen that ܮଶ exerts a strong influence on the calculated 

stress distribution: smaller thicknesses reduce the corner stress more significantly and, again, the 

centre stresses increase until a maximum value of about 0.3 is reached. The plane strain case is 

again reported in Figure B1 in Appendix B. In order to explain the increase of the centre stress, 

an asymptotic stress analysis was performed (Appendix A). We consider an axisymmetric 

cylindrical fibril of diameter ܦ adhering to a rigid flat substrate. The fibril is also rigid other than 

an infinitesimally thin layer of compliant material at the tip where the fibril adheres to the 

substrate (i.e., ܧଵ/ܧଶ 	→ 	∞ and ܮଶ/ܮ → 0). The solution shows that the tensile stress along the 

fibril-substrate interface varies with ݎଶ (equation A 31 in Appendix A) and is therefore greatest 

at the centre of the fibril. Furthermore, the analysis predicts that the tensile stress at the centre is 

twice as high as the applied stress (equation A 34 in Appendix A), which is in good agreement 

with the numerical solution (log ଶଶߪ ⁄஺ߪ ൎ 0.3) obtained for high Young’s modulus ratios and 

very thin soft layers.  
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Figure 4.3: Analysis of a composite fibril with flat interface (axisymmetric case). (a) 

Normalized tensile stress ߪଶଶ/ߪ஺	along the fibril-substrate interface for different Young’s 

modulus ratios ܧଵ/ܧଶ at constant ܮଶ/ܮ ൌ 0.05. (b) Plots for different combinations of ܮଶ/ܮ at 

constant ܧଵ/ܧଶ ൌ 1000000. (c) Calibration coefficient for different combinations of ܮଶ/ܮ 

and ܧଵ/ܧଶ . The dashed black lines represent the straight homogeneous punch (SHP) results. 

 

The results shown in Figure 4.3a and 3b were fitted with the asymptotic stress solution from 

equation 3.3 to find the calibration coefficients ෤ܽ	for different combinations of ܧଵ/ܧଶ and ܮଶ/ܮ 

(Figure 4.3c and Table 4.1). Plane strain results are reported in Figure B1 and Table B1 in 

Appendix B. 
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Table 4.1: Calibration coefficients ෤ܽ for flat interface for the axisymmetric case.  

 

4.3.1.2 Circular interfaces 

The normal stress distributions and the calibration coefficients for the two circular interfaces for 

ܴ ൌ  .can be seen in Figure 4.4 and Figure 4.5 respectively for the axisymmetric case 2/ܦ	and	ܦ

The corresponding plain strain results are presented in Figure B2 and Figure B3 in Appendix B. 

The calibration coefficients are provided in Table B2 in Appendix B for the plane strain (Table 

B2(a)) and axisymmetric case (Table B2(b)). 
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Figure 4.4: Tensile stress ߪଶଶ	along the fibril and substrate interface for a composite fibril with a 

circular interface ሺܴ ൌ  and layer	ଶܧ/ଵܧ ሻ for different combinations of Young’s modulus ratioܦ

thickness ratio ܮଶ/ܮ. The results are reported for the axisymmetric case. The dashed black lines 

represent the straight homogeneous punch (SHP) results. The colours and symbol shapes reflect 

the varying parameters ܧଵ/ܧଶ and ܮଶ/ܮ. 
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Figure 4.5: Tensile stress ߪଶଶ	along the fibril and substrate interface for a composite fibril with a 

circular interface ሺܴ ൌ  ଶ, layerܧ/ଵܧ 2ሻ for different combinations of Young’s modulus ratio/ܦ

thickness ratio ܮଶ/ܮ and the corresponding calibration coefficients. The results are reported for 

the axisymmetric case. The dashed black lines represent the straight homogeneous punch (SHP) 

results. The colours and symbol shapes reflect the varying parameters ܧଵ/ܧଶ and ܮଶ/ܮ. 

 

4.3.1.3 Elliptical interface 

In this section the results of an elliptical interface will be presented where the major axis is equal 

to twice the diameter	ܦ. The influence of the normalised height ܮଶ/ܮ and Young’s modulus ratio 

 ଶ isܧ/ଵܧ ଶ affects the stress pattern along the interface as can be seen in Figure 4.6. Whenܧ/ଵܧ

increased and ܮଶ/ܮ  is decreased, the magnitude of the singularity decreased for all studied 

combinations of elliptical interface; a similar behaviour was found for the flat and the circular 

interface. The plane strain ሺ2ܦሻ results for different ܧଵ/ܧଶ and ܮଶ/ܮ are reported in Figure B4 in 

Appendix B. The calibration coefficients and adhesion strengths are provided in Table B3 in 

Appendix B for the plane strain (Table B3(a)) and the axisymmetric case (Table B3(b)). 
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Figure 4.6: Tensile stress ߪଶଶ	along the fibril and substrate interface for a composite fibril with 

an elliptical interface where the major axis length is twice the diameter ܦ  for different 

combinations of Young’s modulus ratio ܧଵ/ܧଶ, layer thickness ratio ܮଶ/ܮ and the corresponding 

calibration coefficients. The results are reported for the axisymmetric case. The dashed black 

lines represent the straight homogeneous punch (SHP) results. The colours and symbol shapes 

reflect the varying parameters ܧଵ/ܧଶ and ܮଶ/ܮ. 

 

A comparison for the different interface shapes at a constant ܧଵ/ܧଶ ratio of 1000, but for two 

different ܮଶ/ܮ ratios of 0.25 and 0.05, is given in Figure 4.7; the corresponding plane strain 

comparison can be seen in Figure B5 in Appendix B. It can be observed that for ܮଶ/ܮ ൌ 0.25 the 

influence of interface shape is insignificant as all curves collapse and approach the straight 

homogeneous punch (SHP) case. For thinner soft layers (e.g., ܮଶ/ܮ ൌ 0.05), interface shape 

strongly influences the distribution of stress along the interface: In the case of ܴ ൌ ܦ  and 

ܮ/ଶܮ ൌ 0.05, the centre stress is 2.9 times the applied stress (Figure 4.7) which is similar to the 

value of 3.3 calculated analytically (equation A 37 in Appendix A). For even thinner soft layers 

ܮ/ଶܮ) ൌ 0.005), the centre stress rises up to 14.1 and 15.2 times the applied stress in the 

numerical solution (Figure 4.4) and the analytical solution (equation A 37 in Appendix A), 

respectively. Hence, thinner soft layers create higher centre stresses. By increasing the radius of 
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the interface curvature, the corner and the centre stress are slightly reduced. The flat interface is 

most efficient in reducing both the corner stress and the centre stress. 

 

 

Figure 4.7: Normalized stress ߪଶଶ/ߪ஺ along the fibril-substrate interface for fibrils with 

different interface shapes, ܧଵ	/	ܧଶ ൌ 1000 and ܮଶ/0.25 = ܮ (a) and 0.05 (b) (axisymmetric 

case). The dashed black lines represent the straight homogeneous punch (SHP) results. 
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4.3.2 Adhesion strength 

The normalized adhesion strength ܵூ/ܵ௣௨௡௖௛	was calculated by using equations 4.2 and 4.3. The 

results for flat and circular interfaces and various ܮଶ/ܮ	and ܧଵ/ܧଶ ratios are shown in Figure 4.8 

and Table 4.2. The corresponding plane strain results are given in Figure B6 and Table B4. It is 

seen that both parameters, which are design parameters for composite fibrils, affect adhesion: 

smaller layer thicknesses and higher Young’s modulus ratios result in higher adhesion strength. 

Close inspection shows that the interface curvature becomes important only for very thin soft 

layers (ܮଶ/ܮ ൏ 0.05), where the flat interface showed highest adhesion. 
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Figure 4.8: Calculated influence of Young’s modulus ratio on adhesive strength, normalized 

to that of a flat punch, with the following interface shapes: (a) flat, (b) circular with radius 

ܴ ൌ ܦ , (c) ܴ ൌ 2/ܦ  and (d) elliptical. The dashed black lines represent the straight 

homogeneous punch (SHP) results. The different Young’s modulus ratios are ܧଵ/	ܧଶ ൌ 2 

(orange, circles), 10  (grey, triangles), 100  (gold, squares), 1000  (green, diamonds) and 

1000000 (blue, dashes). 
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Table 4.2: Adhesion strength values for different interfaces which include flat ሺܫܨሻ, circular 
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ሺܫܥሻ for two different radius ܴ ൌ ݀݊ܽ	ܦ  ሻ represented as adhesion ofܫܧand elliptical ሺ 2/ܦ

composite fibrils normalised by that of a straight homogeneous punch. 

 

4.3.3 Experimental results4 

While the stress distribution along the substrate-fibril interface is not directly accessible in 

experiments, the adhesion strength was defined as the normal pull-off force divided by the total 

apparent contact area of ܣ ൌ 3.14	mmଶ. The adhesion performance of a straight punch fibril and 

one with a flat interface and a circular interface (ܴ ൌ  for two elastic modulus ratios (2/ܦ

ଶܧ/ଵܧ ൌ 2	and	350 were studied. By dividing the adhesion strengths of the composites by those 

of the straight punch fibril, a normalization was achieved for direct comparison with the 

numerical results. 

The normalized adhesion strengths for flat and circular interface structures are shown in Figure 

4.9 along with the predictions from the numerical simulations for very similar Young’s modulus 

ratios. Each point in the graph represents the average value of all measurements performed with 

one sample, the errors being smaller than the symbol size. The absolute pull-off forces measured 

for the composite fibrils were always higher than for the reference fibril made entirely from the 

soft material (i.e., the straight punch case). Two regimes of the experimental data can be 

distinguished: 

i) Regime of large soft layer thickness: Provided ܮଶ/ܮ ൐ 0.06  for ܧଵ/ܧଶ ൌ 350 and ܮଶ/ܮ ൐

0.03 for ܧଵ/ܧଶ ൌ 2, the measured adhesion strength increased with decreasing ܮଶ/ܮ ratio for 

both interface shapes. In this regime, the increase in adhesion was found to be higher for the flat 

interface than for the curved interface. This trend is reflected in the simulations. Optical 

microscopy of the interfaces showed that cracks were always initiated at the contact edges and 

propagated to cause fast delamination. Therefore, no differences between pull-off and crack 

initiation forces were observed. 

                                                 

4 Experimental work was performed by S. C. L. Fischer. 
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ii) Regime of small soft layer thickness: For soft layers with ܮଶ/ܮ  ratios smaller than 0.06 

ଶܧ/ଵܧ) ൌ 350ሻ or than 0.03 (ܧଵ/ܧଶ ൌ 2), detachment occurred by a different mechanism and 

seemed to depend on interface shape. For flat interfaces (Figure 4.9a), a drop in adhesion 

strength was observed. The detachment mechanism changed from single edge crack to several 

finger-like cracks which propagated radially towards the centre of the fibril; this detachment 

mechanism is reminiscent of earlier studies on thin soft films (Nase et al., 2008). By contrast, the 

fibrils with the circular interface (Figure 4.9b), showed a steady increase of the adhesion strength 

with decreasing ܮଶ/ܮ ratio. Here, a transition from edge to centre cracks could be observed. 

Interestingly, the primary crack did not cause fast detachment, but grew in a stable manner up to 

a critical diameter of more than half of the total diameter. Therefore, the pull-off forces were 

much larger than the crack initiation forces as is indicated by the arrows in Figure 4.9b. 

4.4 Discussion 

A novel concept for designing bioinspired dry adhesives was introduced in this chapter: 

comparatively stiff fibrils with a thin soft material layer on the terminal face. Numerical results 

demonstrated that such composite fibrils have reduced stress singularities at the contact edges, 

which typically control the detachment of flat punch fibrils from substrates (Akisanya and Fleck, 

1997; Khaderi et al., 2015). Stronger adhesion is achieved by reducing the corner stresses; this is 

similar to the findings previously reported for mushroom fibrils, where the gradually widening 

terminal face results in a more uniform stress distribution and strongly enhanced adhesion 

(Balijepalli et al., 2016; del Campo et al., 2007; Gorb et al., 2007b). Our composite fibril design, 

by contrast, exhibits a uniform axial cross-sectional area with several possible advantages: fibrils 

without re-entrant corners are easier to fabricate and will be less prone to elastic collapse, which 

is known to counteract adhesion. 

Our parametric study reveals a counter-intuitive trend: thinner soft layers (with smaller ܮଶ/ܮ) 

create substantially better adhesion. The reason is that, for all Young’s modulus ratios, a smaller 

layer thickness results in a decreased corner stress while the stress at the centre is increased. 

Recently, a similar trend was found by Minsky and Turner (Minsky and Turner, 2015), who 

studied a different, but related fibril geometry. A stiff fibril stalk, when fully coated with a thin 

soft polymer layer, exhibited improved adhesion, based on a cohesive zone model. However 
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their results were limited to only one elastic modulus ratio. In our work, the variation of that ratio 

also affects the tensile stress distribution along the fibril-substrate interface, with higher ratios 

leading to significantly better adhesion. However, when ܮଶ/ܮ ൐ 0.05, the effect decreases for 

higher ratios and disappears for a Young’s modulus ratio exceeding three orders of magnitude. 

Interestingly, the composite fibrils of ladybugs (Peisker et al., 2013) exhibit a modulus ratio of 

such a magnitude, and not more. 

Out of the different interface shapes examined, the adhesion of a composite fibril with a flat 

interface shows the lowest maximum stress at the corner and the centre along the fibril-substrate 

interface. The simulations indicate that higher curvatures of circular interfaces lead to higher 

stresses at the centre and the edge compared to the flat interface. 

It is instructive to examine more closely the correlation between our numerical results and the 

experimental measurements on single macroscopic composite fibrils. While the agreement is not 

perfect, the trend to higher normalized adhesion strength with decreasing layer thickness is also 

found in the experiments (Figure 4.9). What is not found in the calculations is the drop in 

adhesion strength seen in the flat interface fibril for small ܮଶ/ܮ ratios. It is very likely that this is 

caused by an alternative detachment mechanism not considered in the model, i.e. finger-like 

crack growth starting from the edge as observed in Figure 4.9a. Such a behaviour is well known 

in interface mechanics as the Saffman–Taylor instability (Derks et al., 2003; Nase et al., 2011; 

Shull and Creton, 2004). Interestingly, the transition from single-edge crack propagation to 

delamination by instabilities depends on the stiffness of the stalk.  

In the case of the circular interfaces, a drop of adhesion strength was not found in the 

experiments although a change in detachment mechanism initiated by centre cracks occurred 

(Figure 4.9b). The mechanism change is in agreement with the numerical calculations, which 

predict a strong increase of the centre stress when the soft layer becomes thinner. Why the 

presence of centre cracks still leads to increasing adhesion strengths is a matter of conjecture. A 

possible explanation lies in the steep decrease of the stress from the centre to the edges (see 

Figure 4.7), which may induce stable crack propagation. Incorporation of this additional 

mechanism into the numerical calculations would be possible (see, for instance, (Balijepalli et 

al., 2016)), but is beyond the scope of the present study.  
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Figure 4.9: Comparison of normalized adhesion strengths from experiments (symbols) and 

numerical calculations (lines) for composite fibrils with (a) flat interface and (b) circular 

interface ሺܴ ൌ ଶܧ/ଵܧ 2ሻ for/ܦ ൌ 2 and 350. The lines refer to calculations for a straight 

homogeneous punch (black, dashed), and a composite fibril with ܧଵ/ܧଶ ൌ 2 (orange, dashes 

and dots) and 350 (red, solid). Light green circles represent experiments with ܧଵ/ܧଶ ൌ 2 and 

dark green stars with ܧଵ/ܧଶ ൌ 350. Filled symbols represent pull-off forces, empty symbols 

crack initiation forces. Arrows indicate the samples for which the two forces differ 

significantly. Optical micrographs represent the characteristic detachment mechanisms that 

were observed for (a) flat and (b) circular interfaces depending on the soft layer thickness. 

The crack fronts are highlighted by red lines. 

Overall, we believe that our research provides an promising alternative for straight homogeneous 

punch or mushroom-type fibrils. The more benign stress distribution of the composite fibrils is 
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reminiscent of the effect found in previous studies for mushroom fibrils while reducing the 

manufacturing complexity. Additionally, our geometry allows for the use of softer materials, as 

the stiffer stalk will stabilize the fibrils against collapse or clustering. The combination of 

numerical calculations with model experiment has hence provided us with new insight which 

will be valuable for the optimization of micropatterned dry adhesive surfaces. A more detailed 

experimental study of these composite fibrils is currently underway (Fischer et al., 2016a). 

4.5 Conclusion 

In this investigation, we demonstrated the potential of composite fibril structures that combine 

relatively stiff stalks with very soft tip layers. With this design, high aspect ratio structures with 

straight sidewalls can be manufactured without the risk of thin flaps collapsing. The soft material 

forming the tip of the microstructures provides a benign stress distribution and high adaptability 

to the substrate while the stiffer underlying material ensures mechanical stability. The following 

conclusions can be drawn: 

 The adhesion of composite fibrillar structures can be tuned by varying the Young’s modulus 

of the two material components, by manipulating the curvature of their interface, and by 

changing the soft layer thickness. 

 Thinner soft layers (smaller ܮଶ/ܮ) are found to result in higher adhesive strength. 

 Higher Young’s modulus ratios (ܧଵ/ܧଶ ) increase the adhesive strength provided that 

detachment is controlled by the corner singularity. 

 Flat interfaces lead to better adhesion than curved interfaces for the case of edge crack 

detachment. For very thin soft layers, the experimentally observed detachment is different 

and depends on the interface curvature. Thus, detachment from the centre provoked by a 

curved interface may result in better adhesion.  

 The experimental results can be explained reasonably well by the numerical simulations as 

long as detachment occurs by edge cracks. Below a certain limit of ܮଶ/ܮ ratios a transition 

from edge crack to centre crack or finger cracks occurred in the experiments; these 

mechanisms are not yet part of the calculations. 
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Appendix A: Asymptotic analysis of the stress in a stiff adherent axisymmetric 

cylindrical fibril with a thin compliant layer at its tip 

 

We consider a circular cylindrical fibril of diameter D adhering to a rigid flat substrate. The fibril 

is also rigid other than a thin layer of compliant material at the tip where the fibril adheres to the 

substrate. The geometry is axisymmetric. The compliant material is incompressible and linear 

elastic with shear modulus ߤ. The relevant equilibrium equations are 

 A 1

where the stress components are given in cylindrical polar coordinates and  are those 

cylindrical polar coordinates. The elasticity relationships are 
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 A 2

where  and  are the axial displacements and  is the pressure, i.e. 

the negative of the hydrostatic stress. Incompressibility is embedded in equation A 2 but can also 

be stated as 

 A 3

The boundary conditions are  
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 on  A 4

and 

  on   A 5

where   is the upward displacement of the rigid segment of the fibril and  is the 

interface between the complaint layer and the rigid segment of the fibril. We assume that 

 so that the complaint layer is thin compared to the diameter of the fibril. The traction 

boundary conditions are 

 and  A 6

Now define the parameter ߟ  such that . It follows that D   and thus 

2 / 1D    is a small parameter. Now normalize lengths such that , , and 

the displacements are such that  and . It follows that uz , r and z are O 1  . We 

normalize the stresses by  , to be determined, such that . However, we specify that 

 zz  is O 1  , so that   is the order of the stress applied to the fibril. As a result of the 

normalizations, the equations become as follows. For equilibrium we have 

  rr

r
  rr 

r

 rz

z
 0


 rz

r


 rz

r

 zz

z
 0

 A 7

For elasticity we deduce that 
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 A 8

where , incompressibility becomes 

 ur

r
 ur

r

uz

z
 0 A 9

and the boundary conditions are 

ur  uz  0 on z 0 A 10

ur  0 on  A 11

uz  1 on  A 12

and 

 rr 1,z   0 and  rz 1,z   0 A 13

From the set of equations above we deduce that to satisfy incompressibility ur  must be O 1/  , 

i.e. much bigger than uz . The first of equation A 7 shows that  rz / rr  is O    and we assume 

that  zz and  rr  are the same order of magnitude. Therefore  rz is O   . Inspection of the last 

of equation A 8 then allows us to deduce that /  and /   are of the same order. 

Therefore, we write 2/    . As a consequence, equation A 8 becomes 
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 3 ur

r


1

2
 rr  p 

 3 ur

r


1

2
  p 

 2 uz

z


1

2
 zz  p 

 3 uz

r
 2 ur

z
 rz

 A 14

This immediately tells us that the deviatoric stresses are no greater than O   . Therefore, we 

deduce that we can expand the stresses asymptotically as 

p  p 0   p 1  O  2 
 rr  p 0    p 1   2 rr

2  O  3 
  p 0    p 1   2

2  O  3 
 zz  p 0    p 1   2 zz

2  O  3 
 rz   rz

1  O  2 

 A 15

where the terms with the parenthetical superscripts are O 1  . We have therefore assumed that 

the stresses are hydrostatic to leading order and that deviatoric stress terms are O   . This 

means that the applied load in the thin layer is supported to leading order by the hydrostatic 

stress, arising because of the incompressibility of the material. Similarly, we expand the 

displacements as 

ur 
1


ur

1   ur
o  O  

uz  ur
o   ur

1  O  2 
 A 16

which is consistent with our deductions above.  

We substitute equation A 15 into equation A 7 and obtain to leading order for equilibrium 
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
p 0 

r

 1 

rz

z
 0


p 0 

z
 0

 A 17

The stress strain relationships to leading order become 
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 A 18

Incompressibility to leading order is then 

ur
1 

r


ur
1 

r

uz

0 

z
 0 A 19

Since there is no equation in which p 1   appears, we conclude it must be zero. 

We now proceed to solve the equations, A 17, A 18 and A 19. The 2௡ௗ of equation A 17 tells us 

that p 0  is independent of ݖ and thus 

p 0   p 0  r  A 20

 

The 1௦௧ of equation A 17 thus gives us 

 1 
rz

z


dp 0  r 
dr

 A 21

which can be integrated to give 
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 1 
rz   r   z

dp 0  r 
dr

 A 22

where  r   is the as yet unknown value of the normalized shear stress at the interface with the 

substrate. The result from equation A 22 may be inserted into the 4௧௛ of equation A 18 to give 

ur
1 

z
  r   z

dp 0  r 
dr

 A 23

This integrates to give 

ur
1   z r   1

2
z2 dp 0  r 

dr
 A 24

where the boundary condition equation A 10 has been used. The boundary condition equation A 

11 gives us from equation A 24  

h r  r   1

2
h2 r dp 0  r 

dr
 0 A 25

where . We use equation A 25 to eliminate  r  in favour of dp 0  r  / dr  and then 

incompressibility in the form of equation A 19, with results from equation A 25 inserted, to give 
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 0 A 26

We then integrate this to obtain 

uz
0  

1

4
z2 d

dr
h r  dp 0  r 

dr




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1

4
z2h r  dp 0  r 

rdr


1

6
z3 d2 p 0  r 

dr 2 
1

6
z3 dp 0  r 

rdr
 A 27

where we have used the boundary condition equation A 10 at ݖ	 ൌ 	0. Now use equation A 12 

and we deduce that this leads to 
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d

dr
rh3 r  dp 0  r 

dr









  12r  A 28

We integrate this once and obtain 

dp 0  r 
dr


6r 2  c1

rh3 r 
 A 29

where c1  is a constant. We confine ourselves to cases where h 0   is finite, and conclude that 

this leads to c1  0 , since otherwise the gradient of p 0  diverges. As a consequence, integration 

of A 29gives us 

p 0   6
d

h3  1

r

  A 30

where we have used the 1st of the boundary conditions in equation A 13as it gives p 0  1   0. 

Examples:  

 

(1) Layer of uniform thickness. 

 

In this case h r   1 and equation A 30 becomes 

p 0  r   3 r 2 1  A 31

which, through equation A 21 leads to 

 1 
rz  3r 2z1  A 32

Therefore, we have all the leading order stresses since 

 rr
0   

0    zz
0   p 0   3 1 r 2  A 33
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The tensile stresses are therefore greatest at the centre of the fibril. Note that the shear stress in 

equation A 32 is not zero at ݎ	 ൌ 	1, violating the 2௡ௗ boundary in equation A 13. However, the 

boundary condition is satisfied in an average sense since the integral of equation A 32 with 

respect to z from zero to 1 is zero. Since the shear stresses are lower order, this discrepancy is 

not significant. It would have to be fixed by a boundary layer, which the St. Venant principle 

shows would only affect the solution over a radial distance comparable to the thickness of the 

layer. 

The results in equations A 32 and A 33 are normalized. We obtain the physical results by 

restoring the factors by which normalization took place. This gives 
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 A 34

where ݄ is the thickness of the compliant layer. It can be seen that the shear stress is much 

smaller than the direct stresses. The error in all stresses is small compared to the magnitude of 

the shear stress. 

As a result of equation A 34 the highest tensile stress on the interface is 

   2 3 2 33 / 4 / 4D E D     , where E is Young’s modulus. This is the stress at the centre of 

the fibril that will cause detachment if failure at the corner singularity is suppressed. Note that 

the solution in equation A 34 gives no information about the corner singularity as it represents a 

boundary layer at the edge of the fibril. We note that the maximum tensile stress at the interface 

is twice as high as the average stress on the interface. 

 

(2) Layer with quadratic shape 

 

This case can represent the rigid segment of the fibril having a circular shape where, following 

Hertz, we approximate these shapes by recognizing that the layer thickness is smaller than the 
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diameters of the circle. However, the slope of the curved interface must remain small throughout 

its extent for the asymptotic analysis to be valid. This rules out the caser of ܴ	 ൌ  though ,2/ܦ	

the case of ܴ	 ൌ  .may be admissible (see Figure 4.1) ܦ	

The shape of the thin layer is 

h r   ho  1 ho r 2  A 35

where /o oh    with  and therefore is the narrowest segment of the thin layer. 

Integration of equation A 30 then gives us 

p 0  
1

4 1 ho  1
1

ho  1 ho r 2 
2












 A 36

and then  

 rz
1  

3r 2z1 
ho  1 ho r 2 

3
 A 37

These normalized values can be converted to physical values by multiplication by the 

appropriate factors as was carried out to obtain equation A 34, in this case, the maximum stress, 

which is at , is  times the average stress on the interface. We 

note that this result is valid for the flat interface, and predicts that the maximum stress rises 

above twice the average stress when the interface is curved, consistent with the results in Figure 

4.7. 
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Appendix B: Plane strain and axisymmetric results 
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Figure B1: Analysis of a composite fibril with a flat interface for plane strain. Tensile stress 

 along the fibril and substrate interface for different combinations of (a) Young’s modulus	ଶଶߪ

ratio ܧଵ/ܧଶ	of the top and bottom part of the fibril respectively for a constant ܮଶ/ܮ ൌ 0.05, 

and (b) height of the soft portion ܮଶ normalised by total height ܮ and constant ܧଵ/ܧଶ ൌ 1000. 

(c) Calibration coefficient for composite fibrils for different combinations of the ratio of 

height ܮଶ/ܮ  and Young’s modulus ܧଵ/ܧଶ . The dashed black lines represent the straight 

homogeneous punch (SHP) results. The colours and symbol shapes reflect the varying 

parameters ܧଵ/ܧଶ and ܮଶ/ܮ. 
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Figure B2: Tensile stress ߪଶଶ	along the fibril and substrate interface for a composite fibril 

with a circular interface ሺܴ ൌ /ଵܧ ሻ for different combinations of Young’s modulus ratioܦ

 and their respective calibration coefficients. The results are ܮ/ଶܮ and layer thickness ratio	ଶܧ

reported for the plane strain case. The dashed black lines represent the straight homogeneous 

punch (SHP) results. The colours and symbol shapes reflect the varying parameters ܧଵ/ܧଶ 

and ܮଶ/ܮ. 
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Figure B3: Tensile stress ߪଶଶ	along the fibril and substrate interface for a composite fibril with 

a circular interface ሺܴ ൌ ଶܧ/ଵܧ 2ሻ for different combinations of Young’s modulus ratio/ܦ , 

layer thickness ratio ܮଶ/ܮ  and their corresponding calibration coefficients. The results are 

reported for the plane strain case. The dashed black lines represent the straight homogeneous 

punch (SHP) results. The colours and symbol shapes reflect the varying parameters ܧଵ/ܧଶ and 

 .ܮ/ଶܮ
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Figure B4: Tensile stress ߪଶଶ	along the fibril and substrate interface for a composite fibril with 

an elliptical interface where the major axis length is double the diameter ܦ by varying ܧଵ/ܧଶ 

(a) and ܮଶ/ܮ. (b) and the corresponding calibration coefficients (c). The dashed black lines 

represent the straight homogeneous punch (SHP) results. The colours and symbol shapes 

reflect the varying parameters ܧଵ/ܧଶ and ܮଶ/ܮ. The results are for plane strain ሺ2ܦሻ. 
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Figure B5: Normal stress ߪଶଶ	along the fibril and substrate interface for fibrils with different 

interface shapes and with ܮଶ/ܮ ratio 0.05 for the plane strain case. The dashed black lines 

represent the straight homogeneous punch (SHP) results. 
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Figure B6: Adhesion strength values for composite fibrils for different interfaces, and 

different combinations of height ratio ܮଶ/ܮ  and Young’s modulus ܧଵ/ܧଶ . The results are 

shown for a composite fibril with (a) flat interface, (b) circular interface where the radius ܴ 

is equal to the diameter ܦ	of the fibril, (c) circular interface where the radius ܴ is equal to 

half of the diameter and (d) elliptical interface with major axis is double the diameter ܦ. The 

dashed black lines represent the straight homogeneous punch (SHP) results. 
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Table B1: Calibration coefficients ෤ܽ for a flat interface for the plane strain case. 
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Table B2: Calibration coefficients ෤ܽ for a circular interface ሺܴ ൌ ,ܦ ܴ ൌ  2ሻ for the plane/ܦ

strain (a) and the axisymmetric case (b). 
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Table B3: Calibration coefficients ෤ܽ for an elliptical interface (a) plane strain (b) axisymmetric 

cases. 
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Table B4: Adhesion strength ܵூ/ܵ௣௨௡௖௛ for the flat and circular interfaces ሺܴ ൌ ,ܦ ܴ ൌ  2ሻ/ܦ

for the plane strain case. 
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5 Summary 

In the past decade numerous researchers have concentrated on developing reusable, reversible 

dry adhesives. They were successful in fabricating such structures and the patterned structures 

performed better than the unpatterned structures. Different shapes of tip endings such as straight 

punch, spherical, spatular and mushroom fibrils were examined and mushroom fibrils were 

showing better adhesion compared to other examined surfaces. There were continuous efforts by 

theoreticians to understand the mechanics of fibrillar adhesion by analytical and numerical 

studies but still some unanswered questions remain. Two such questions are addressed and 

discussed in detail in this thesis. First part focusses on examining how the mushroom cap 

geometry influences the stress distribution along the interface (where fibril comes in contact with 

probe) and adhesion strength. We have also suggested a way to improve the geometry to 

distribute the stresses more uniformly, which might help the fibril to increase adhesion. In the 

second part we have explored whether there is an alternative way to replicate the behaviour of 

the mushroom fibrils by varying the material modulus. The aim of the thesis was explained in 

detail in Chapter 2.5. 

In Chapter 3 we discussed how the adhesion strength of mushroom fibrils is dependent on the 

shape of the fibril terminal. The adhesion strength is predicted based on the assumption that the 

detachment will occur from edge. It is assumed that the interface is perfectly bonded to a rigid 

substrate and no sliding can occur at the interface between the fibril and the substrate to which it 

is attached. Straight punch fibrils show lower adhesion strength when compared to mushroom 

and composite fibrils. Corner stress singularity is one of the main reasons for the early 

detachment of the straight punch and this behaviour can be observed in the normal stress along 

the fibril and rigid substrate interface in Figure 3.2. Due to the corner stress singularity, the 

detachment might be initiated in this area and this area might be prone to detachment under the 

assumption that there is no other defect along the interface. Experimental results also suggest 

that straight punch detaches from the edge and abruptly loses contact once the detachment is 

initiated. 

In case of the mushroom fibrils, we have investigated and reported more than 100 different fibril 

geometry combinations i.e. for ܦ௙/ܦ and ݄/ܦ௙. It is observed that the mushroom cap geometry 
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strongly influences the stress distribution along the interface. Even the smallest mushroom cap 

results in reduction of the amplitude of stress singularity when compared to the stress distribution 

of a straight punch. Further increase in ܦ௙/ܦ and decrease in ݄/ܦ௙ results in further reduction of 

amplitude of the stress singularity and at the same time the stress close to centre of the fibril is 

increased. The increase of stress close to centre might act as a crack initiating point and the edge 

crack is suppressed and this is only true when stress causes the failure when the fibril is not 

detached by a different mechanism for example: manufacturing or bonding defects. This claim is 

also supported by the experiments where the detachment of mushroom fibrils initiated close to 

the centre and propagated radially towards the edge.  

Based on this analysis the optimum geometry of the mushroom fibril needs to have a mushroom 

cap with minimum thickness and minimum stalk diameter to suppress the edge detachment and 

initiate the centre detachment. This behaviour is limited by the tendency for detachment to occur 

near the centre of the fibril and, eventually, by the material strength.  

In Figure 3.5 and Figure 3.6 one can observe a stress peak close to centre and we made efforts to 

improve the design to eliminate these stress peaks. We have introduced a fillet radius to 

smoothen the transition between fibril stalk and the mushroom cap; we were successful in 

eliminating the stress peak (which was seen in Figure 3.5 and Figure 3.6) close to centre and 

results can be seen in Figure 3.15. This inclusion has resulted in reduction of the adhesive 

strength of fibrils where it is controlled by the edge singularity. However, the adhesive strength 

associated with the detachment commencing near the centre of the fibril is improved. The scope 

of the work did not allow us to treat it further but a detailed study is necessary to identify the 

combination of the mushroom cap and the fillet radius to achieve the adhesive strength close to 

the cohesive stress at the interface. 

As mentioned in Chapter 2.5 one of the other major questions tackled in this thesis was to 

explore if there was an alternative way to replicate the adhesive strength of mushroom fibrils by 

changing the material properties to overcome the difficulties and limitations in manufacturing 

mushroom fibrils. In Chapter 4 we have come up with a novel method of using composite 

structures as an alternative of mushroom fibrils which was discussed. The composite geometry 

has two materials where the stalk is stiffer and the tip is softer. The stiffer stalk gives the 
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structures mechanical stability and hence high aspect ratio fibrils can be manufactured by 

avoiding the fibril collapse. The softer tips will give high adaptability to the substrate. From the 

numerical and experimental investigations, it is evident that the concept of composite helps in 

reducing the amplitude of corner singularity and increases adhesive strength. The influence of 

two different parameters were studied, they are as follows: 

 The effect of Young’s modulus ratio (ܧଵ/ܧଶ) of stiff and soft tip. 

 The influence of height of soft tip ሺܮଶ/ܮሻ by keeping the total height constant.  

 The influence of different joining interfaces for soft tip and stiff stalk. 

It was shown higher Young’s modulus ratios (ܧଵ/ܧଶ) and smaller height ratios ሺܮଶ/ܮሻ lead to 

lower amplitudes of the corner singularity (Figure 4.7) and higher adhesive strength (Figure 4.8) 

when the detachment is controlled by the corner singularity. The experimental results show that 

the detachment mechanism for a thin soft layer results in fingering like cracks which lead to 

abrupt detachment. 

When a curvature was introduced along the joining interface, the amplitude of the corner 

singularity increased and if the radius was changed from radius ܴ ൌ ܦ	  to 2/ܦ , the corner 

singularity further increased. The experimental results for ܴ ൌ  show that the detachment 2/ܦ	

mechanism for a thin soft layer is changed and centre detachment is provoked. There is a change 

in the crack initiation and the final detachment which might increase the final adhesive strength. 

Below a certain limit of ܮଶ/ܮ ratios a transition from edge crack to centre crack or finger cracks 

occurred in the experiments; these mechanisms are not yet part of the calculations. 

The results show that the composite structures have the capability to be an alternative to the 

mushroom cap fibrils with higher adhesive strength. Mushrooms fibrils currently still show 

better adhesion than the composite fibrils but more detailed experimental investigations of 

composite fibrils are necessary to find their optimum. It can be concluded that the shape and 

material properties play an important role in achieving better adhesive strength. 
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