
Terrain Guided Multi-Level Instancing of Highly Complex Plant Populations

Andreas Dietrich Gerd Marmitt

Computer Graphics Group, Saarland University ∗

Philipp Slusallek

Figure 1: A panoramic view over a highly complex model of the Puget Sound Area. The ground terrain consists of 134 million triangles. It is
covered with billions of plant instances, where each plant model is made up of several thousand polygons.

ABSTRACT

In this paper we demonstrate how todays ray tracing techniques can
be applied to photo-realistically render extremely huge landscapes
covered with trees and forests, where a user can freely choose be-
tween highly detailed close-up views or flyover scenarios. This is
made possible by mapping a number of square sub-scenes onto a
huge polygonal terrain during run-time. The full plant population
results from the combination of these tiles, which are iterated over
the terrain. This will be demonstrated at the example of a highly
complex, plant covered ecosystem containing trillions of triangles.

CR Categories: I.3.3 [Computer Graphics]: Picture and Image
Generation I.3.7 [Computer Graphics]: Three-Dimensional Graph-
ics and Realism—Ray Tracing I.6.2 [Simulation and Modeling]:
Applications

Keywords: ray tracing, natural phenomena, complex scenes

1 INTRODUCTION

Natural landscapes contain an incredible amount of visual detail.
For example, imagine an observer standing in a forest. Even for
a limited field of view, hundreds of thousands of individual plants
might be visible. Moreover, plants are made of highly complex
structures themselves, e.g., countless leaves, complicated branch-
ings, wrinkled bark, etc. And even if there is only a sparse vegeta-
tion, the underlying ground and rock formations can be equally rich
in detail.

Although computer graphics has seen tremendous advances in
the last two decades, realistic reproduction of such detail in syn-
thetic images still remains a highly challenging problem, especially
in an interactive context. This is because it is difficult to capture
the complexity that can be perceived by the human eye in computer

∗e-mail: {dietrich, marmitt, slusallek}@cs.uni-sb.de

generated images. While it is already possible to produce convinc-
ing impressions for still images, this often requires considerable
hand tweaking, and typically only allows for a small set of different
camera positions without having to reorganize the scene according
to the current viewing parameters. An observer can usually not go
near plants or rocks and look a them closely, neither is it possible to
wander through a complete fully-detailed landscape without having
to make compromises regarding scene complexity.

In this paper we want to show how todays ray tracing techniques
can be applied to get closer to the goal of photo-realistically ren-
dering extremely huge landscapes covered with trees and forests,
where a user can freely choose between highly detailed close-
up views or flyover scenarios. This will be demonstrated at the
example of a highly complex, plant populated terrain more than
80 km× 80 km in size that is covered with billions of plants com-
prising trillions of triangle primitives.

2 DESCRIPTION OF COMPLEX LANDSCAPES

Explicitely storing a digital representation of a natural landscape
with all possible visible detail would result in immense amounts
of data. Even a model spanning only a few square meters could
require dozens or hundreds of gigabytes of memory to represent
all geometry, material and surface information. While an elaborate
description of complex plant communities and terrains typically al-
ready exceeds available secondary storage space, keeping all data
in main memory is hardly possible.

2.1 Implicit Model Description

One method to avoid such excessive memory consumption is to use
procedural scene descriptions, which have the advantage that they
can be evaluated during rendering. Common examples are fractal
functions [22] for generating terrains, or L-Systems [24] to simu-
late plant growth. In addition to generating geometric information,
plant population production algorithms can be applied to simulate a
natural vegetation distribution, i.e., to describe individual plant po-
sitions [10, 11]. Unfortunately, such processes tend to be extremely
compute intensive, and lead to unmanageable computing times that
prevent rendering at interactive frame rates.



2.2 Approximate Instancing

However, it is not necessary to provide each single plant with an in-
dividual appearance. This is because the human eye can be fooled
by sheer geometric complexity such that a scene can appear authen-
tic even if all plants are absolutely identical. Empirical investigation
has shown that individually bent and scaled copies of a few plant
species are usually sufficient to generate a plausible impression of
a complete landscape. This method of using many (slightly altered)
plant copies from few representatives, which are placed throughout
a scene is referred to as approximate instancing [10]. General in-
stancing goes back to Sutherland [29]. An early example where it
was used for the compact representation of complex plant scenes
was given by Snyder and Barr [27]. Instancing for natural objects
has since then been used quite frequently [13, 4, 10]. A detailed
overview of related techniques for botanical models can be found
in [11]. As we will see later on, instancing is a particularly pow-
erful technique when it comes to rendering, especially for a ray
tracer. Instances of geometric object classes can then be efficiently
reused in the model over and over again with little memory over-
head as only transformation matrices and object references need to
be stored.

2.3 Multi-Level Instancing

Instancing can be applied hierarchically. Apart from reusing sin-
gle plants, it is also possible to use this scheme within plant struc-
tures, e.g., for leaf instancing or recursive copies of branching com-
plexes. While this already can significantly reduce geometric data,
it is usually not sufficient for large scale scenes containing millions
of plants.

A dramatic compression of geometry for such cases can be
achieved by forming large plant populations by combining a num-
ber of equal base elements. This not only makes rendering easier,
it additionally decreases the modeling effort. Here a terrain that is
to be filled with plants is subdivided into (typically uniform) square
regions called tiles [11]. A number of small square plant popula-
tions are created that serve as higher-level representatives. Tiles can
then be arbitrarily assigned to these sub-scenes. The full plant pop-
ulation results from the combination of the tiles, which are iterated
over the terrain. Aside from the base geometry used to define a few
plant species, now only the positions of the individual sub-scenes
need to be stored. Production of an authentically looking tiling,
however, is not a trivial task. A popular method that allows for the
production of plausible vegetation patterns by creating an aperiodic
tiling are Wang tiles [5, 33, 34] , which will be introduced in more
detail in Section 5.2.

3 RENDERING OF COMPLEX LANDSCAPES

Countless techniques have been proposed regarding the problem of
visualizing complex natural scenes. Current landscape rendering
approaches can be categorized into three principle domains: level-
of-detail (LOD) techniques, image-based representations, and ray
tracing. Most of todays systems typically use a combination of
these methods and perform a tradeoff between interactivity and vi-
sual realism.

3.1 Level-Of-Detail

Level-of-detail has already been used in early computer animations.
For example, in 1985 Reeves and Blau [25] represented trees us-
ing collections of disks in order to reduce the complexity of the
foliage. Hand-tweaked colors and shadowing effects resulted in
very esthetic images. Approximation of trees by points and lines
was later proposed by Weber and Penn [35]. They represented the
foliage by sets of points, which were placed inside agglomerated

leaves. Tree skeletons were approximated by lines. This principle
of replacing complicated polygonal geometry with simpler primi-
tives like points has received a lot of attention, recent work in this
area includes [28, 32, 9, 6].

Another common approach to realize level-of-detail are polygo-
nal simplification algorithms, where the amount of geometry is re-
duced by decimating the number of polygons that represent a single
object. Much research has been done in this field, and an extensive
amount of literature exists. For an overview see, e.g., [18]. How-
ever, polygonal simplification algorithms are difficult to apply for
plants because of their complex topology, which easily can lead to
a change in overall appearance.

3.2 Image-Based Representations

Image-based methods approximate complex geometry by using
image-based entities, so-called impostors, as alternative represen-
tation. The simplest variant are billboards, where a number of tex-
tured, partly transparent polygons serve as impostors for distant ob-
jects. Consequently, they can only be used in the background, as
otherwise parallax distortion would be noticeable. A better approx-
imation can be achieved by using volumetric representations. For
instance, sets of parallel billboards can represent trees, as done by
Jakulin [14]. However, the parallel orientation results in visible ar-
tifacts. A related approach was followed by Neyret [20], who con-
verted plants into volumetric textures, which were then ray traced.
MIP maps were employed to reduce texture data, and to generate
samples from distant trees. While high-quality images could be
produced in a few minutes, the method was not applicable in an
interactive context. In 2004 the system was adapted to graphics
hardware [7]. However, an efficient level-of-detail mechanism was
necessary to cope with the enormous amount of textures needed to
describe large scenes.

More recently Behrendt et al. [2] presented a framework that
makes use of a similar technique to render larger background parts
of a scene. Here shell textures – a set of textured slices that are
offset surfaces of the underlying terrain surface – approximate the
plant layer. Trees visible at intermediate distances are displayed
as billboard clouds [8], where a geometric model is represented by
a set of arbitrarily oriented billboards. Behrendt et al. describe a
clustering algorithm on the basis of the model vertices that allows
for finding good, hierarchical billboard approximations. Moreover,
their system incorporates spherical harmonics [26], which allow for
realistic illumination. The system is able to render mid-sized scenes
of a few ten thousand trees at interactive frame rates. However, ac-
curate lighting can only be done locally per plant; global lighting
effects like shadows from one object to another are not included.

3.3 Ray Tracing

Ray tracing of natural scenes has been done for over twenty years
now, early examples include [15] and [27]. In order to handle
scenes of a more realistic complexity, Pharr et al. [23] have pro-
posed a caching and reordering mechanism that reorders the rays
in a way that minimizes disk I/O. Though this allows for efficiently
ray tracing datasets much larger than main memory, it is difficult
to employ in an interactive context. A system specifically de-
signed for high-quality rendering of natural ecosystems, presented
by Deussen et al. [10], made use of a number of different techniques
like approximated instancing, sub-scene compositing, and memory-
coherent ray tracing. The system could render models with thou-
sands of plants, built out of several million polygons. However, it
has been exclusively used for offline rendering.

Interactive ray tracing has so far mainly found its application
in visualization of highly complex CAD databases. The OpenRT
real-time ray tracing engine [30, 31] has been shown to be capable



(a) (b) (c)

Figure 2: Populating a terrain with plant tiles. (a) Ground terrain subdivided into 4×4 cells. (b) Assigning a small plant sub-scene to each of
the cells, where the plant z-position is defined by the underlying height field. (c) The used sub-scene containing five instances of one tree type.

of processing large outdoor scenes containing several million tri-
angles in real-time. Additionally, it incorporates physically correct
and global lighting, and features interactive placement of geomet-
ric parts. An extended framework was later shown to handle more
realistically sized natural ecosystems with far more plants and veg-
etation layers [12]. The system incorporates advanced shading and
lighting, including high dynamic range illumination from environ-
ment maps. It is capable of directly rendering scenes with hundreds
of thousands of plants without simplification at interactive rates on
a cluster of commodity PCs. However, the largest rendered model
so far was still only 300 m×300 m in size.

4 RAY TRACING TILE-BASED LANDSCAPES

We will demonstrate in the following sections how to harness ray
tracing techniques to render landscapes that contain almost five or-
ders of magnitude more plants than shown in [12]. This can be
done without any kind of model simplification due to the logarith-
mic time complexity of ray tracing with respect to scene size. No
image-based representations will be involved except for textured
plant leaves, a ground-layer texture, and an environment map for
the sky.

The basic idea we follow is applying hierarchical multi-level in-
stancing methods as described in Section 2, where a small number
of fully-detailed sub-scenes are mapped onto a huge polygonal ter-
rain. An illustration of the principle can be seen in Figure 2. The
terrain displayed in Figure 2a is subdivided into 4×4 cells. These
cells are then filled with tiles representing plant populations (Fig-
ure 2b). In this case the simple sub-scene depicted in Figure 2c
is iterated over the terrain. The sub-scene itself is constructed out
of five plant instances of one single tree model, which needs to be
stored only once.

Basically, such a structure involves a hierarchical three-level spa-
tial index, which is required to allow for fast ray traversal while
avoiding unnecessary ray-polygon intersection tests. The next sec-
tions will provide a closer look into how this works.

4.1 Top-Level Terrain Traversal

Finding the cells that lie on a ray’s path is a classical terrain ren-
dering problem, as this is effectively a 2D traversal of a height field
(i.e., a function z = f (x,y)). Although our cells are volumetric and
can contain arbitrary geometry, it can for the targeted model type
not happen that cells are above others. Therefore, a ray only needs
to be tested for intersection with the top surface layer formed by the
surfaces of the cells.

The cells can be seen as a 2D grid containing minimum and max-
imum z-values for each cell bounding box. A simple grid traverser
only needs to step through the grid, performing some kind of 2D
line drawing algorithm. In each step minimum and maximum z-
value of the visited cell are compared against the z-value of the cur-
rent ray. If both, the ray’s entry and exit z-values lie above the box
maximum z (or below the box minimum z) the cell is not pierced
(as can, e.g., be seen in Figure 3 for cell 2, and entry and exit points
z2 and z3).

Rather then using a 2D grid we implemented a 2D kd-tree [3],
which allows for hierarchically skipping larger parts of the terrain.
The leaves of the kd-tree simply contain the minimum and maxi-
mum z-values of the respective cells. The minimum and maximum
z-values of the inner nodes are then the combined values from their
children (dashed and dotted lines in Figure 3). This way, in a top-
down kd-tree traversal, children can be skipped if a ray lies above
(below) the top (bottom) bounding surface of an inner node. For
example, in Figure 3 z3 and z5 are above the maximum z-value
of cells 3 and 4. For sake of simplicity spatial subdivision, i.e.,
the placement of kd-tree splitting planes, is performed straightfor-
ward. During kd-tree construction bounding boxes are simply split
in the middle of the longest dimension. It should, however, be eas-
ily possible to include more elaborate algorithms, like using surface
area heuristics (SAH) [19] as cost prediction functions to determine
good splitting plane positions. This has been done for the two re-
maining hierarchy levels (see below).

Before a kd-tree can be built, we need to determine the minimum
and maximum z-values for each cell. Here we have to take the

z1

z3

z4

z2

5z

1 2

3
4

Figure 3: Top-level terrain kd-tree traversal. Dashed and dotted
lines indicate how min/max z-values of kd-tree leaf nodes can be
recursively combined to form min/max z-values for inner nodes.



extensions of the sub-scene into account that is to be mapped to
the cell. This is illustrated in Figure 4. If the plants are aligned
to the ground plane so that roots have negative coordinates, then
the min/max z-values of the plant bounding box (zp

min and zp
max)

simply have to be added to the min/max values (zg
min and zg

max) of
the ground terrain in that cell, i.e.,

zmin = zg
min + zp

min, zmax = zg
max + zp

max. (1)

Obviously, this estimation can lead to over-conservative cell
bounding boxes. This could be avoided by calculating zmin and zmax
based on the actual plant z-positions in the respective cell. However,
a correct calculation would require testing of potentially billions of
plant instances. Of course, handling of negative coordinates can be
neglected if it is guaranteed that the camera does not move below
the ground.

This leaves us with the question how intersection tests inside a
cell are being handled once a ray has been found to cross a ter-
rain cell. Clearly, ground and the respective plant sub-scene that
are contained within a cell have to be intersected separately. In
our setup the ground terrain is a polygonal mesh generated from a
2D digital elevation map (DEM) since no fully-detailed geometric
ground model was available. While it would have been possible to
directly ray trace the original 2D height map, the intention behind
using polygonal data is to allow for more complicated ground struc-
tures, e.g., overhanging rocks or ground covered with sand, stones,
snow, etc.

The ground terrain itself is stored as a separate sub-scene and
maintains its own three-dimensional SAH-based kd-tree to enable
efficient ray-polygon intersection. Instead of splitting the ground
into single patches that are stored independently inside the top-level
cells, we use one large ground object. Before traversal of the top-
level 2D kd-tree is started (see above), a ray is first tested against the
complete ground object. If a hitpoint can be found, its distance from
the ray origin is set as the new maximum ray distance. This way we
can avoid having to switch between two traversal operations each
time a ray enters a cell.

4.2 Lazy Two-Dimensional kd-Trees

As soon as a ray enters a top-level terrain cell, the plant tile assigned
to the respective cell needs to be traversed. Each such a sub-scene
incorporates a two-level kd-tree hierarchy. Here individual geo-
metric objects (i.e, the plant species) maintain their own 3D SHA
kd-tree, while the bounding boxes of the objects are themselves or-
ganized in a 2nd-level kd-tree. The 2nd-level kd-tree allows for in-

zmin

zmax zmax

zmax

zmin

zmin

zmin zmin zmin

zmax zmax

0 0

p

p

g

= + p

= + p

g

zmax
g

g

(a) (b)

Figure 4: Approximate calculation of the min/max z-values of terrain
bounding boxes. (a) Bounding box of a plant sub-scene. (b) The
ground bounding box extended by the sub-scene bounding box.

original BB

extended BB

Figure 5: Sub-scene 2D kd-tree. Grey boxes indicate the extended
object bounding boxes before kd-tree construction. During rendering
the sub-scene bounding box is extended according to the terrain cell
height. Trees can than be moved in z-direction within this range.

stantiation of plants by simply keeping references to the geometric
objects in conjunction with corresponding transformation matrices.

The problem that now arises is that the sub-scene needs to be
mapped onto an uneven ground terrain. As a consequence, we can-
not simply build a static three-dimensional 2nd-level kd-tree, since
one and the same sub-scene can be used over and over again, and
can potentially be mapped to any part of the terrain. Luckily, we
can take advantage of the fact that all plants only need to be shifted
in z-direction depending on the height map elevation. Thus, instead
of building a full 3D 2nd-level kd-tree, we build a two-dimensional
SAH tree by simply placing splitting planes only vertically, parallel
to the x- and y-axes (see Figure 5). This can be easily accomplished
by extending all plant bounding boxes in z-direction up to the up-
per sub-scene bounding box maximum before the 2nd-level kd-tree
is constructed. During traversal we then only have to extend the
upper bounding box zp

max value by zg
max − zg

min, which will not af-
fect the vertical splitting planes. When a ray enters a leaf voxel
of the 2nd-level kd-tree, the boxes of the contained plant instances
are then moved in z-direction according to the height map value at
the plants’ x-, y-positions. The ray is then sequentially transformed
to each plant’s object space, where it is tested against the object
bounding box, and traversed through the object’s 1st-level 3D kd-
tree if necessary.

An optimization of this scheme would be to extend each plant
bounding box by the value of its possible elevation range. This
would allow for building a three-dimensional kd-tree including hor-
izontal splitting planes. This, however, is only applicable if we
place the sub-scene where the altitude of the ground terrain does
not vary much. A disadvantage is that in such a case it is not possi-
ble to arbitrarily change the positions of plant tiles during run-time.

4.3 Adaptive Plant Density Reduction

Freely mapping a number of sub-scene tiles to a ground terrain al-
lows for giving our landscape a natural look, but in practice this can
require a great number of tiles. For a realistic appearance it is nec-
essary to take into account how the plant density changes depending
on local terrain conditions. For example, the population density de-
creases with increasing ground altitude. Instead of defining many
small tiles with a large range of different densities and vegetation
transitions, there is a much simpler way: During ray traversal of a
sub-scene we already have to read the altitude for every plant from
the height map. At this point we can calculate a certain probability,
whether a plant can grow in this altitude or not, and can then simply
exclude the respective instance from further intersection tests, thus
effectively thinning out the vegetation.



More precisely, in the simplest variant we calculate a pseudo
random value p ∈ [0,1] for each instance, based on the current tile
ID and instance ID, for example:

p =
a · (idinst + idtile) mod m

m−1
. (2)

For our examples we chose a = 47 and m = 256. If p is larger
than some density threshold d ∈ [0,1], we just omit the instance,
and do not intersect its object kd-tree. To determine d, we can use
a linear attenuation between a lower and higher tree line:

d = dmin +
(z−hmin) · (dmax−dmin)

hmax−hmin
, (3)

where z is the plant altitude, and dmin and dmax refer to the densi-
ties at a lower and higher tree line height (hmin, hmax), respectively.
Additionally, we read the ground texture map at the plant’s coordi-
nates, and can decide from the color how the plant is stochastically
skipped, e.g., in snow fields or desert areas.

5 ENHANCING REALISM

This section will sketch some techniques that were incorporated to
make the visual appearance of the landscape more realistic. We
will describe them only briefly, more information can be found in
the indicated literature.

5.1 Environmental Lighting and Interleaved Sampling

In outdoor scenes illumination strongly depends on the incident
light coming from the sky and distant environment. To take such
effects into account, lighting can be based on high dynamic range
environment maps. We perform shading and lighting calculations
largely as described in [12]: A high dynamic range environment
map is discretized, and the resulting regions are then approximated
by a large but fixed set of virtual directional light sources in the
spirit of [1, 17].

However, during camera motion, we only fire a single shadow
ray towards the sun to allow for fast walkthroughs. As soon as
the observer stops, we perform progressive improvement of image-
quality by computing successive images from the same viewpoint
with new random samples – using different virtual directional lights
– and accumulate the resulting images.

A serious matter when dealing with scenes of the extreme com-
plexity and sparse occlusion of outdoor environments is aliasing
that results from the many small structures, like leaves or branches.
To make best use of a given ray budget, it is advantageous to com-
bine anti-aliasing of geometry and illumination by interleaved sam-
pling [16]. Rather than using the same set of virtual directional
lights for every primary ray, we can break them up into subsets,
each of which applies to a different set of primary rays. Thus, the
number of light samples can be increased while simultaneously im-
proving pixel-anti-aliasing.

5.2 Aperiodic Tiling

Unfortunately, just iterating a number of sub-scenes over a large
terrain will result in an artifical look, as the human eye is very sen-
sitive in recognizing repeating patterns. In order to avoid repetition
and aliasing artifacts (which are visible in grid-like structures), we
used a Wang-tiling algorithm for the generation of our tiles. Wang
tiles are square regions with color-coded edges. Tiles can only be
connected to other tiles where adjacent edges share the same color.
Placing tiles stochastically – while keeping colored edges matched
– leads to a simple aperiodic tiling. Figure 6a and 6b show an ex-
ample tile set and tiling. During the construction of the vegetation

of a tile special care must be taken in a way, that plants that are
placed near an edge must also be added to all matching tiles in case
the plant extends over the edge. This means that sub-scenes must
typically be defined larger than terrain cells in order to also include
replicated plants (Figure 6c). For more details on how to construct
plant populations using tiling algorithms see [5, 33, 34].

6 RESULTS

As mentioned in the previous section, our landscape scene consists
of a polygonal ground terrain, and a number of plant tiles that are
mapped onto the terrain. As source data for the ground model we
used a digital elevation map of the Puget Sound Area, obtained
from the Georgia Institute of Technology‘s Large Geometric Mod-
els Archive [21]. From the original height map we extracted a sub-
set of 8193×8193 samples. Assuming a 10 meter inter-pixel spac-
ing, this results in a terrain spanning 81.92 km×81.92 km. The ele-
vation map was then regularly tessellated, yielding a polygon mesh
consisting of 134,217,728 triangles. Including kd-tree information,
the complete dataset for the ground model is roughly 21 GByte in
size. In addition, a ground texture (8193×8193 texels, 193 MByte)
was mapped onto the terrain.

For our test setup we created 18 different Wang tiles, i.e., sub-
scenes with a complexity of approximately 82,000 plant instances
per tile. The plant species themselves are highly complex alpha-
textured polygonal objects, made of around 1,000 triangles for
smaller plants, and up to 100,000 triangles for larger trees. On
average, we have a total of around 454,000,000 triangles per tile.
Due to the use of instances, the memory consumption for storing
geometry data and kd-trees for the plant models can be kept low,
and is only around 1 GByte of memory.

6.1 Rendering Performance

As hardware platform for all our experiments we utilized a shared-
memory PC system, fitted with 8 dual-core 2.0 GHz AMD Opteron
870 CPUs, running Linux. A maximum of 64 GByte was available,
which allowed us to fully keep all geometric and kd-tree data in-
core.

An objective of this project was to test how scenes with excessive
visual complexity affect ray tracing performance, and if a near in-
teractive visualization is feasible with a moderate number of CPUs.
We therefore subdivided the landscape into cells using a number of
different resolutions ranging from 64× 64 up to 512× 512 terrain
cells. At the highest resolution of 512×512, all terrain cells have an
edge length of 160 m. With the above given plant density, this leads
to a total amount of more than one hundred trillions potentially vis-

3

2

4

1

1

346

5 4

8

5 8 7

5

8

2

1

8
1 4

6

7 8

5

1

(a) (b) (c)

Figure 6: Wang tiling scheme used to cover the ground terrain with
sub-scene plant tiles. (a) Example tile set with eight tiles and two
horizontal and two vertical colors. (b) Resulting stochastic aperiodic
example tiling. (c) Plants that extend over an edge need to be
replicated for adjacent tiles.



ible triangles. If the adaptive plant density reduction mechanism is
activated, roughly 24% of the plants (and triangles) are culled.

Table 1 lists the different cell grid resolutions and the corre-
sponding scene complexity (considering adaptive plant culling). It
is important to note that we did not create specific sub-scenes for
lower grid resolutions. This means that for such cases the geometric
size of terrain cells and sub-scenes are not conform, i.e., the plant
to terrain relation is not correct. The frame time is measured for
640× 480 pixels, with one primary ray per pixel and one shadow
ray per primary ray (for the viewpoint of Figure 1). Please note that
because of the alpha-textured leaves, often several secondary rays
need to be spawned until a final hitpoint can be found.

Grid Resolution Triangles Frame Time (sec)
64×64 1.4 ·1012 19.85

128×128 5.7 ·1012 19.02
256×256 22.6 ·1012 18.75
512×512 90.5 ·1012 18.83

Table 1: Rendering performance for different terrain grid resolutions
and scene complexities.

Interestingly, for such a high number of primitives, a linear scal-
ing of scene size has almost no impact on rendering time, which
is due to the logarithmic scaling property of the employed spatial
index structures. That rendering gets actually faster sometimes is
probably due to the different plant positions, but also because the
trees are larger in relation to the ground for smaller grid sizes. Al-
though we are not interactive at this resolution, it should be stressed
that we are using a pure software implementation and only 16
CPUs. For smaller resolutions it is possible to quickly navigate to
a desired position, and then render a high-quality image at a larger
resolution.

7 CONCLUSIONS AND FUTURE WORK

In this paper we have demonstrated how multi-level instancing in
combination with ray tracing can be applied to photo-realistically
render extremely huge, plant populated landscapes. By mapping
a small number of individual sub-scenes repeatedly onto a large
terrain, highly complex natural scenes can be formed, containing
billions of single plants, formed by trillions of potentially visible
triangle primitives. Parallel rendering on a shared-memory PC al-
lows for near interactive frame rates, without any kind of model
simplification or approximation, even under complex lighting con-
ditions.

While we do not reach the same high frame rates as current
state-of-the-art rasterization-based landscape rendering systems,
e.g., [2], the presented framework is able to display scenes that are
larger by several orders of magnitude, even with advanced lighting
effects.

The shown methods should primarily seen as a motivation to
further spur research in the combination of procedural run-time
scene generation and photo-realistic rendering. A promising di-
rection of future research will be to investigate how plants can be
placed fully procedurally during run-time without having to rely
on pre-constructed tiles. This problem is closely related to the fast
construction of spatial acceleration structures, in particular for dy-
namic ray tracing applications. Another problem that needs to be
addressed is the frequently appearing geometric aliasing artifacts
caused by the large number of primitives and sparse occlusion in
natural scenes. Standard level-of-detail methods are here difficult
to employ because of the intensive use of object instances and the
extreme scene size, which makes complicated preprocessing im-
practical.

ACKNOWLEDGMENTS

We would like to thank Javor Kalojanov for his help as well as
Carsten Colditz and Oliver Deussen for providing the plant models,
and for help with related literature. The height map of the Puget
Sound Area was provided by the Georgia Institute of Technology’s
Large Geometric Models Archive. All plant models were created at
the University of Konstanz using the Xfrog modeling software.

REFERENCES

[1] Sameer Agarwal, Ravi Ramamoorthi, Serge Belongie, and Hen-
rik Wann Jensen. Structured Importance Sampling of Environment
Maps. In ACM Transactions on Graphics (Proceedings of ACM SIG-
GRAPH), pages 605–612, 2003.

[2] Stephan Behrendt, Carsten Colditz, Oliver Franzke, Johannes Kopf,
and Oliver Deussen. Realistic Real-Time Rendering of Landscapes
Using Billboard Clouds. In Computer Graphics Forum, pages 507–
516, 2005. (Proceedings of Eurographics).

[3] Jon Louis Bentley. Multidimensional Binary Search Trees Used for
Associative Searching. Communications of the ACM, 18(9):509–517,
1975.

[4] Andrew Brownbill. Reducing the Storage Required to Render L-
System Based Models. PhD thesis, University of Calgary, 1996.

[5] Michael F. Cohen, Jonathan Shade, Stefan Hiller, and Oliver Deussen.
Wang Tiles for Image and Texture Generation. In ACM Transactions
on Graphics (Proceedings of ACM SIGGRAPH), volume 22, pages
287–294, 2003.

[6] Carsten Dachsbacher, Christian Vogelgsang, and Marc Stamminger.
Sequential Point Trees. In ACM Transactions on Graphics (Proceed-
ings of ACM SIGGRAPH), volume 22, pages 657–662, 2003.

[7] Philippe Decaudin and Fabrice Neyret. Rendering Forest Scenes in
Real-Time. In Rendering Techniques 2004 (Eurographics Symposium
on Rendering), pages 93–102, 2004.

[8] Xavier Décoret, Frédo Durand, François X. Sillion, and Julie Dorsey.
Billboard Clouds for Extreme Model Simplification. In ACM Trans-
actions on Graphics (Proceedings of ACM SIGGRAPH), volume 22,
pages 689–696, 2003.

[9] Oliver Deussen, Carsten Colditz, Marc Stamminger, and George Dret-
takis. Interactive Visualization of Complex Plant Ecosystems. In IEEE
Visualization 2002, pages 219–226, 2002.

[10] Oliver Deussen, Pat Hanrahan, Bernd Lintermann, Radomı́r Měch,
Matt Pharr, and Przemyslaw Prusinkiewicz. Realistic Modeling and
Rendering of Plant Ecosystems. In Computer Graphics (Proceedings
of ACM SIGGRAPH), pages 275–286, 1998.

[11] Oliver Deussen and Bernd Lintermann. Digital Design of Nature –
Computer Generated Plants and Organics. Springer, 2005. ISBN
3540405917.

[12] Andreas Dietrich, Carsten Colditz, Oliver Deussen, and Philipp
Slusallek. Realistic and Interactive Visualization of High-Density
Plant Ecosystems. In Natural Phenomena 2005, Proceedings of the
Eurographics Workshop on Natural Phenomena, pages 73–81, 2005.

[13] John C. Hart. The Object Instancing Paradigm for Linear Fractal Mod-
eling. In Proceedings of Graphics Interface ’92, pages 224–231, 1992.

[14] Aleks Jakulin. Interactive Vegetation Rendering with Slicing and
Blending. In Eurographics 2000 (Short Presentations), 2000.

[15] Timothy L. Kay and James T. Kajiya. Ray Tracing Complex Scenes.
In Computer Graphics (Proceedings of ACM SIGGRAPH), pages
269–278, 1986.

[16] Alexander Keller and Wolfgang Heidrich. Interleaved Sampling. In
Rendering Techniques 2001, pages 269–276, 2001. (Proceedings of
the 12th Eurographics Workshop on Rendering).

[17] Thomas Kollig and Alexander Keller. Efficient Illumination by High
Dynamic Range Images. In Rendering Techniques 2003, pages 45–50,
2003. (Proceedings of the 14th Eurographics Workshop on Render-
ing).

[18] David P. Luebke. A Developer’s Survey of Polygonal Simplification
Algorithms. IEEE Computer Graphics and Applications, 21(3):24–
35, 2001.



Figure 7: Some example screenshots from different areas of the landscape. Note the high geometric complexity that is visible for close-up views.

[19] J. David MacDonald and Kellogg S. Booth. Heuristics for Ray Tracing
using Space Subdivision. In Proceedings of Graphics Interface ’89,
pages 152–163, 1989.

[20] Fabrice Neyret. Modeling Animating and Rendering Complex Scenes
using Volumetric Textures. IEEE Transactions on Visualization and
Computer Graphics, 4(1):55–70, 1998.

[21] Georgia Institute of Technology. Large geometric models archive.
http://www.cc.gatech.edu/projects/large models.

[22] Heinz-Otto Peitgen and Dietmar Saupe (eds.). The Science of Fractal
Images. Springer, New York, NY, USA, 1988.

[23] Matt Pharr, Craig Kolb, Reid Gershbein, and Pat Hanrahan. Rendering
Complex Scenes with Memory-Coherent Ray Tracing. In Computer
Graphics (Proceedings of ACM SIGGRAPH), pages 101–108, 1997.

[24] Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The Algorith-
mic Beauty of Plants. Springer, New York, NY, USA, 1990. ISBN
0387946764.

[25] William T. Reeves and Ricki Blau. Approximate and Probabilistic
Algorithms for Shading and Rendering Structured Particle Systems. In
Computer Graphics (Proceedings of ACM SIGGRAPH), pages 313–
322, 1985.

[26] Peter-Pike Sloan, Jan Kautz, and John Snyder. Precomputed Radiance
Transfer for Real-Time Rendering in Dynamic, Low-Frequency Light-
ing Environments. In ACM Transactions on Graphics (Proceedings of
ACM SIGGRAPH), pages 527–536, 2002.

[27] John M. Snyder and Alan H. Barr. Ray Tracing Complex Models Con-
taining Surface Tessellations. In Computer Graphics (Proceedings of
ACM SIGGRAPH), pages 119–128, 1987.

[28] Marc Stamminger and George Drettakis. Interactive Sampling and
Rendering for Complex and Procedural Geometry. In Rendering Tech-
niques 2001, pages 151–162, 2001. (Proceedings of the 12th Euro-
graphics Workshop on Rendering).

[29] Ivan E. Sutherland. Sketchpad – A Man-Machine Graphical Commu-
nication System. In Proceedings of the Spring Joint Computer Con-
ference (AFIPS), pages 328–346, 1963.

[30] Ingo Wald. Realtime Ray Tracing and Interactive Global Illumina-
tion. PhD thesis, Computer Graphics Group, Saarland University,
2004. Available at http://www.mpi-sb.mpg.de/∼wald/PhD/.

[31] Ingo Wald, Carsten Benthin, Andreas Dietrich, and Philipp Slusallek.
Interactive Ray Tracing on Commodity PC Clusters – State of the Art
and Practical Applications. In Euro-Par 2003. Parallel Processing, 9th
International Euro-Par Conference, 2003. Proceedings, pages 499–
508, 2003.

[32] Michael Wand, Matthias Fischer, Ingmar Peter, Friedhelm Meyer
auf der Heide, and Wolfgang Straßer. The Randomized z-Buffer Algo-
rithm: Interactive Rendering of Highly Complex Scenes. In Computer
Graphics (Proceedings of ACM SIGGRAPH), pages 361–370, 2001.

[33] Hao Wang. Proving Theorems by Pattern Recognition. Bell Systems
Technical Journal, 40:1–42, 1961.

[34] Hao Wang. Games, Logic, and Computers. Scientific American, pages
98–106, 1965.

[35] Jason Weber and Joseph Penn. Creation and Rendering of Realis-
tic Trees. In Computer Graphics (Proceedings of ACM SIGGRAPH),
pages 119–128, 1995.



Figure 8: Example close-up views on some of the trees. All leaves are modeled as alpha-textured polygon meshes, which result in a high number
of transparency rays. The scene is fully ray traced each frame, without any kind of precomputation, and without geometric simplification.


