
Symbolic Reactive Synthesis

A dissertation submitted towards the degree Doctor of Natural Sciences (Dr. rer. nat.) of
the Faculty of Mathematics and Computer Science of Saarland University

Leander T.J. Tentrup

Saarbrücken
2019

Day of Colloquium November 15th, 2019
Dean of Faculty Prof. Dr. Sebastian Hack

Chair of the Committee Prof. Dr. Jan Reineke

Reviewers Prof. Bernd Finkbeiner, Ph.D.
Prof. Dr. Martina Seidl
Prof. Dr. Helmut Seidl

Academic Assistant Dr. Roland Leißa

ii

Acknowledgements

I want to express my deepest gratitude to my advisor Bernd Finkbeiner. In addition to
introducing me to the theory of reactive systems and the intriguing synthesis problem,
he also let me pursue my research, which resulted in my endeavor into QBF solving.

I am thankful for the collaboration during and in-between the numerous coffee
breaks by the members of the Reactive Systems Group at Saarland University: Norine
Coenen, Rayna Dimitrova, Peter Faymonville, Michael Gerke, Christopher Hahn, Jesko
Hecking-Harbusch, Jana Hofmann, Swen Jacobs, Felix Klein, Andrey Kupriyanov, Noemi
Passing, Markus Rabe, Mouhammad Sakr, Christa Schäfer, Malte Schledjewski, Maximil-
ian Schwenger, Hazem Torfah, Alexander Weinert, and Martin Zimmermann. I am glad I
was able to work with Marvin Stenger on many exciting projects, from hyperproperties to
monitoring. I thank the external reviewers Martina Seidl and Helmut Seidl for their time
and effort, as well as their feedback.

I am grateful to the German Research Foundation (DFG) for supporting this work
as part of the Transregional Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS), under the project SpAGAT (FI 936/2-1),
and as part of the Collaborative Research Centers “Methods and Tools for Understanding
and Controlling Privacy” (SFB 1223) and “Foundations of Perspicuous Software Systems”
(TRR 248, 389792660), as well as to the European Research Council (ERC) for supporting
this work as part of the grant OSARES (No. 683300). I am thankful for the funding by the
Saarbrücken Graduate School of Computer Science and the German Academic Scholar-
ship Foundation.

This work would not have been possible without the support and faith of my family
and friends. Special thanks to my parents, who have created the conditions for my studies
through their support and encouragement.

Last, I owe special thanks to my wife, Lisa, for taking this journey together, for her
assistance in difficult times, and her patience with me working late.

iii

Abstract

In this thesis, we develop symbolic algorithms for the synthesis of reactive systems. Synthe-
sis, that is the task of deriving correct-by-construction implementations from formal specifica-
tions, has the potential to eliminate the need for the manual—and error-prone—programming
task. The synthesis problem can be formulated as an infinite two-player game, where the sys-
tem player has the objective to satisfy the specification against all possible actions of the environ-
ment player. The standard synthesis algorithms represent the underlying synthesis game explic-
itly and, thus, they scale poorly with respect to the size of the specification.

We provide an algorithmic framework to solve the synthesis problem symbolically. In con-
trast to the standard approaches, we use a succinct representation of the synthesis game, which
leads to improved scalability in terms of the symbolically represented parameters. Our algorithm
reduces the synthesis game to the satisfiability problem of quantified Boolean formulas (QBF)
and dependency quantified Boolean formulas (DQBF). In the encodings, we use propositional
quantification to succinctly represent different parts of the implementation, such as the state
space and the transition function.

We develop highly optimized satisfiability algorithms for QBF and DQBF. Based on a
counterexample-guided abstraction refinement (CEGAR) loop, our algorithms avoid an exponen-
tial blow-up by using the structure of the underlying symbolic encodings. Further, we extend the
solving algorithms to extract certificates in the form of Boolean functions, from which we con-
struct implementations for the synthesis problem. Our empirical evaluation shows that our sym-
bolic approach significantly outperforms previous explicit synthesis algorithms with respect to
scalability and solution quality.

iv

Zusammenfassung

In dieser Dissertation werden symbolische Algorithmen für die Synthese von reaktiven Sys-
temen entwickelt. Synthese, d.h. die Aufgabe, aus formalen Spezifikationen korrekte Implemen-
tierungen abzuleiten, hat das Potenzial, die manuelle und fehleranfällige Programmierung über-
flüssig zu machen. Das Syntheseproblem kann als unendliches Zweispielerspiel verstanden wer-
den, bei dem der Systemspieler das Ziel hat, die Spezifikation gegen alle möglichen Handlungen
des Umgebungsspielers zu erfüllen. Die Standardsynthesealgorithmen stellen das zugrunde lie-
gende Synthesespiel explizit dar und skalieren daher schlecht in Bezug auf die Größe der Spezifi-
kation.

Diese Arbeit präsentiert einen algorithmischen Ansatz, der das Syntheseproblem symbo-
lisch löst. Im Gegensatz zu den Standardansätzen wird eine kompakte Darstellung des Synthe-
sespiels verwendet, die zu einer verbesserten Skalierbarkeit der symbolisch dargestellten Pa-
rameter führt. Der Algorithmus reduziert das Synthesespiel auf das Erfüllbarkeitsproblem von
quantifizierten booleschen Formeln (QBF) und abhängigkeitsquantifizierten booleschen For-
meln (DQBF). In den Kodierungen verwenden wir propositionale Quantifizierung, um verschie-
dene Teile der Implementierung, wie den Zustandsraum und die Übergangsfunktion, kompakt
darzustellen.

Wir entwickeln hochoptimierte Erfüllbarkeitsalgorithmen für QBF und DQBF. Basierend auf
einer gegenbeispielgeführten Abstraktionsverfeinerungsschleife (CEGAR) vermeiden diese Al-
gorithmen ein exponentielles Blow-up, indem sie die Struktur der zugrunde liegenden symbo-
lischen Kodierungen verwenden. Weiterhin werden die Lösungsalgorithmen um Zertifikate in
Form von booleschen Funktionen erweitert, aus denen Implementierungen für das Synthesepro-
blem abgeleitet werden. Unsere empirische Auswertung zeigt, dass unser symbolischer Ansatz
die bisherigen expliziten Synthesealgorithmen in Bezug auf Skalierbarkeit und Lösungsqualität
deutlich übertrifft.

v

Contents

1 Introduction 1
1.1 Quantified Satisfiability as a Building Block for Synthesis 4
1.2 Beyond Linear-time Specifications . 5
1.3 Contributions . 6
1.4 Publications . 7
1.5 Structure of This Thesis . 9

I Quantified Satisfiability 11

2 Clausal Abstraction 13
2.1 Quantified Boolean Formulas . 16
2.2 Solving QBF with One Quantifier Alternation 19
2.3 Solving QBF with Arbitrary Quantifier Alternations 25
2.4 Function Extraction . 38
2.5 Integrating Partial Expansion . 41
2.6 Experimental Evaluation . 43
2.7 Summary . 46

3 A Proof System for Clausal Abstraction 47
3.1 Definitions . 49
3.2 A Refutation Proof Calculus for Clausal Abstractions 50
3.3 Integrating Partial Expansion . 58
3.4 A Proof Calculus for Satisfiable Formulas 63
3.5 Summary . 65

4 Circuit Abstraction 67
4.1 Circuit Abstraction . 67
4.2 Evaluation . 84
4.3 Solving Formulas in Non-Prenex Form 86
4.4 Summary . 92

5 Fast DQBF Refutation 95
5.1 Dependency Quantified Boolean Formulas 97

vi

5.2 Bounded Unsatisfiability . 99
5.3 Encoding of Bounded Unsatisfiability in QBF 100
5.4 Experimental Results . 102
5.5 Summary . 105

6 Clausal Abstraction for DQBF 107
6.1 Preliminaries . 108
6.2 A Resolution Style Proof System . 109
6.3 Lifting Clausal Abstraction . 115
6.4 Correctness . 125
6.5 Evaluation . 130
6.6 Summary . 131

II Reactive Synthesis 133

7 Synthesizing Reactive Systems 135
7.1 Preliminaries . 136
7.2 Safraless Synthesis . 139
7.3 Encodings of Bounded Synthesis . 145
7.4 Experimental Evaluation . 151
7.5 Summary . 156

8 Synthesis From Hyperproperties 159
8.1 Temporal Hyperproperties . 160
8.2 On the Expressiveness of Temporal Hyperproperties 161
8.3 Deciding HyperLTL Realizability . 165
8.4 Summary . 169

9 Bounded Synthesis from Hyperproperties 171
9.1 Synthesis from Universal HyperLTL . 171
9.2 Bounded Unrealizability . 174
9.3 Synthesis from HyperLTL with Quantifier Alternations 177
9.4 Experimental Evaluation . 182
9.5 Summary . 189

10 Conclusions & Outlook 191

Bibliography 193

Index 213

vii

Chapter 1

Introduction

In this thesis, we develop symbolic algorithms for the synthesis of reactive systems. A
reactive system is a device that continuously interacts with an environment. Examples
include embedded controllers, hardware circuits, and communication protocols. Syn-
thesis, that is the task of deriving correct-by-construction implementations from formal
specifications, has the potential to eliminate the need for the manual–and error-prone–
programming task. In case the specification is unrealizable, that is, there are conflicting
requirements that rule out the existence of any realizing implementation, synthesis al-
gorithms can detect such situations early in the design phase and guide the refinement of
the erroneous specification by providing counterexamples. The synthesis problem is one
of the fundamental problems in the theory of reactive systems, with the first formulation
dating back to Alonzo Church [Chu57] more than 60 years ago. Until now, most research
has focused on synthesis methods based on explicit data structures.

The classic solution to the synthesis problem is based on work by Büchi and Landwe-
ber [BL69] and employs automata- and game-theory: Given a specification, e.g., linear-
time temporal logic (LTL) [Pnu77], the first step translates this specification into an equiv-
alent non-deterministic Büchi word automaton [VW94]. Afterward, the automaton is
transformed into a deterministic parity tree automaton [Saf88; Pit07] that accepts those
infinite trees that satisfy the specification. Deciding the emptiness problem of the tree
automaton, by solving the underlying parity game, then solves the realizability prob-
lem. As observed by Kupferman and Vardi, the determinization procedure for non-
deterministic Büchi word automata, also called Safra construction, “involves complicated
data structures” [KV05] and, as a consequence, is not suitable for a symbolic implemen-
tation [KV05]. Even modern implementations of this approach, like LTLSYNT [MC18] and
STRIX [MSL18], use explicit data structures up to and including the construction and sub-
sequent solving of the resulting parity games.

Symbolic Verification. Compare and contrast this situation with the success of model
checking, which now routinely handle systems of enormous size due to symbolic algo-
rithms. The advent of modern verification started with the introduction of symbolic
model checking algorithms [Bur+90] using reduced ordered binary decision diagrams

1

1. INTRODUCTION

(BDDs) [Bry86] to represent the state-space of the underlying system. This work im-
proves on the at this time common practice of traversing the state-graph of a system
explicitly and the resulting poor scalability with respect to the size of the system, com-
monly known as the “state explosion problem” [Bur+90]. Efficient verification tech-
niques [GSV14] from bounded model checking [Bie+99] and interpolation-based un-
bounded model checking [McM03] to inductive methods like IC3 [Bra11] and property di-
rect reachability [EMB11] pushed the scalability of model checking even further. All those
methods have in common that they have been enabled by the development of scalable
propositional satisfiability (SAT) solvers.

A propositional formula is a formula containing only propositional variables, i.e.,
variables whose values can either be true T or false F, and connectives such as dis-
junction, conjunction, and exclusive or. Propositional satisfiability (SAT) is the prob-
lem to determine whether, for a given propositional formula, there is a satisfying as-
signment, that is, a function mapping variables to a Boolean value, such that the for-
mula evaluates to true under this assignment. While the asymptotical complexity is not
encouraging—propositional satisfiability is the prime NP-complete problem—and all
known algorithms have exponential worst-case running time, SAT solvers routinely han-
dle instances up to millions of variables. Investigating this discrepancy is an active field
of research [IP01; CIP09; VW19], but there is the common belief that those solvers per-
form well due to the inherent structure of instances coming, for example, from model
checking [New+14]. On the algorithmic side, conflict-driven clause learning (CDCL) [JS97;
SS99] is the dominating satisfiability algorithm. As SAT solving is highly competitive,
much time and engineering is spent towards optimizing every aspect of the implemen-
tation, including, but not limited to, the underlying data structures and various kinds of
heuristics such as decision heuristics, clause deletion heuristics, and restart heuristics.
On the other hand, the interface to a SAT solver is standardized1 and easy to use, thus,
it is an ideal building block not only for verification algorithms but also in many recent
algorithms for quantified satisfiability [Jan+12; JM15b; RT15; THJ15; Jan+16; Ten16; HT18;
LWJ18; Blo+18; TR19a].

Symbolic Synthesis. With the advent of Safraless decision procedures [KV05], symbolic
synthesis methods started to gain more attention. The idea is to avoid Safra’s deter-
minization procedure by translating the specification into an equivalent universal co-
Büchi automaton, whose language is then approximated in a sequence of deterministic
safety automata, obtained by bounding the number of visits to rejecting states [FS07].
Examples for a symbolic representation of the state space of the approximated safety
games are antichains [FJR11; Boh+12] and BDDs [Ehl12]. All of the synthesis approaches
mentioned so far have the drawback that the size of the synthesized systems is often
unnecessarily (and impractically) large (cf. [FJ12]) since the automata representing the
specification often contain many more states than are needed by the implementation.
In bounded synthesis [FS07; FS13], one can ensure that the synthesized system is the small-
est possible realization of the specification by bounding the size of the to-be-synthesized

1The C API is called IPASIR and was first used in the SAT Race 2015 [Bal+16b].

2

implementation and by iteratively increasing the bound until a realizing implementation
is found.

In the original formulation of bounded synthesis [FS07; SF07] and in many derived
works [FS13; FJ12; KJB13b; KJB13a; Fin+18a; Coe+19] the constraint systems are built in a
decidable first-order theory and solved using powerful SMT solvers. In the standard en-
coding, both the states of the synthesized system and its inputs are enumerated explic-
itly [FS13]. This thesis shows how quantification can be used to derive more succinct and,
thereby, more symbolic representations of the bounded synthesis constraint system. As
a target logic for the constraint system we use quantified Boolean formulas (QBF), that
is propositional logic extended by (linear) propositional quantification, and dependency
quantified Boolean formulas (DQBF), which allow branching quantification also know as
Henkin quantifiers. The resulting reductions are landmarks on the spectrum of symbolic
vs. explicit encodings.

All of our bounded synthesis encodings represent the synthesized system in terms of
its transition function, which identifies the successor state using the current state and the
input, and additionally in terms of an output function, which identifies the output signals
using the current state and the input. Additionally, the encoding contains an annotation
function, which relates the states of the system to the states of a universal automaton
representing the specification.

In the SAT encoding of the transition function, a separate Boolean variable is used for
every combination of a source state, an input signal, and a target state. The encoding is
thus explicit in both the state and the input. In the QBF encoding, we quantify univer-
sally over the inputs, so that the encoding becomes symbolic in the inputs while staying
explicit in the states. Quantifying universally over the states, just like over the input sig-
nals, is not possible in QBF because the states occur twice in the transition function, as
a source, and as a target. Separate quantifiers over sources and targets would allow for
models where, for example, the value of the output function differs, even though both
the source state and the input are the same. In DQBF, we can avoid such artifacts and
obtain a “fully symbolic” encoding in both the states and the input.

We evaluate the encodings systematically using benchmarks from the reactive syn-
thesis competition (SYNTCOMP) [Jac+17b] and state-of-the-art solvers. Our empirical
finding is that both the input-symbolic and state-symbolic encoding, perform better than
the non-symbolic approach. This fits with our intuition that a more symbolic encoding
provides opportunities for optimization in the solver.

To benefit from those more symbolic encodings, the choice of the underlying satisfi-
ability algorithms for QBF and DQBF are crucial. Abstraction-based algorithms for quan-
tifier elimination can exploit symbolic encodings to avoid an exponential blow-up. The
first part of this thesis presents the clausal abstraction approach for solving the quantified
satisfiability problems mentioned above. The clausal abstraction algorithm is inspired by
the counterexample-guided abstraction refinement (CEGAR) [Cla+00] style of reasoning,
which has also been successfully used in QBF solvers before [Jan+16; JM15b]. On a high
level, the algorithm splits the given quantified problem into a sequence of propositional
problems, one for each quantifier in the quantifier prefix, and instantiates a propositional
SAT solver for each of them. Those SAT oracles solve the quantified problem by commu-

3

1. INTRODUCTION

nicating assignments (representing examples and counterexamples) to their neighbors.
Clausal abstraction has been very successful, winning the annual QBF competition QBFE-
VAL [PS19] since 2017, and has been used as a solving method for QBF encodings of vari-
ous formal method problems [FFT17; FHH18; Fin+17a].

1.1 Quantified Satisfiability as a Building Block for Synthesis

QBF satisfiability has been repeatedly used to solve many problems in computer sci-
ence, including but not limited to robotic planning [Rin07; Egl+17], ontology reason-
ing [Kon+09], model checking [DHK05; BM08; MSB13; Zha14], fault localization in hard-
ware designs [SB07], circuit synthesis [JLH09], program synthesis [Sol+06], reactive syn-
thesis [Fay+17; FFT17; CHR16; CLR17], satisfiability of hyperproperties [FHH18], solving
Petri games [Fin15; Fin+17a], and debugging fault-tolerance specifications [FT14a; FT15].
QBF solving techniques have also been used to build custom and integrated synthesis
procedures that exploit the knowledge of the underlying synthesis problem to synthesize
the winning strategy for safety games [BKS14; Blo+14], debugging of circuits [Gas+14],
and the simulation of axiomatic memory models [Coo+19]. In many cases, the binary
truth/falsity answer from a QBF encoding of a synthesis problem is only part of the de-
sired solver output. A certificate of the solving result, in the form of Boolean functions,
typically directly corresponds to the solution of the original problem, like a realizing im-
plementation in the case of reactive synthesis. We show how to certify the clausal ab-
straction algorithm by providing a method to build Boolean functions during solving.

The simplest form of QBF contains only a single quantifier alternation, that is, the
quantifier prefix is of the form∀X∃Y . The satisfiability problem, which corresponds to
a game where the existential player has complete information over the choice of the uni-
versal player, is ΠP

2 -complete. Using more than one alternation, QBF satisfiability spans
the complete polynomial hierarchy, where the satisfiability problem with unbounded
quantifier alternations is PSPACE-complete [SM73]. Using branching quantifiers such as
Henkin quantifier, the satisfiability problem for the resulting logic, called dependency
quantified Boolean formula (DQBF), becomes NEXPTIME-complete [PRA01]. Beyond the
prefix, there is a second characterization of QBF solving methods based on the structure
of the propositional formula: The standard solving format inherits a matrix representa-
tion called conjunctive normal form (CNF), that is, the propositional part consists of sets
of clauses where every clause is a set of literals (which are variables or their negation). Ev-
ery propositional formula can be transformed into CNF using auxiliary variables [Tse68].
To avoid those auxiliary variables and the resulting proof-theoretic weaknesses [JM17],
more general structures have been used in the context of QBF solving, such as circuits
and formulas in negation normal form (NNF).

The abstraction-based solving algorithm behind clausal abstraction is versatile as
demonstrated in the first part of this thesis: it can handle QBFs from prenex conjunctive
normal form to non-prenex and non-CNF, respectively, as well as branching quantifiers.
An analysis of the algorithm in terms of proof theory reveals that clausal abstraction is
closely related to search-based solving algorithms, i.e., the underlying proof systems in

4

1.2. Beyond Linear-time Specifications

both cases is a variant of Q-resolution [KKF95]. Solvers based on search assign variables
in the order given by the quantifier prefix and progress by learning clauses and cubes for
conflicts and solutions, respectively. In contrast, expansion-based solving methods elimi-
nate universal quantifiers, which in the worst-case, continue until the formula is propo-
sitional. Search- and expansion-based solvers have incomparable proof systems [JM15a].
Thus, there are families of QBF formulas that have polynomial search-based refutations
and only exponential expansion-based refutations, and vice versa. Due to the flexibility
inherent in the abstraction, clausal abstraction can be extended to include refinements
based on partial expansion. The resulting algorithm, a hybrid of search and expansion,
has proof-theoretic advantages over both approaches individually, and this advantage
also translates to the empirical solving performance.

1.2 Beyond Linear-time Specifications

The classic synthesis problem asks for an implementation in terms of a transition system
or sequential circuit. The most prominent extension has been to distributed systems,
called the distributed synthesis problem [PR90; KV01; FS05], where multiple transition sys-
tems are arranged in a distributed architecture which specifies the process topology and the
synthesis problem asks for an implementation of every process such that the mutual in-
teraction satisfies a global specification. In this setting, there is the intriguing question
of how information is propagated through the system to achieve the joint goal. On the
negative side, the complexity result is underwhelming: Already the simple architecture
containing two processes with pairwise disjoint information from the environment, de-
picted in Figure 8.1a, is undecidable [PR90], which, comes from the high expressiveness
of being able to represent a run of a Turing machine [PR90].

More recently, there has been work on temporal logic that includes strategic be-
havior, that is, in the extreme case, the synthesis problem itself. Examples include
alternating-time temporal logic (ATL) [AHK97], strategy logic [CHP10], and Coordination
Logic [FS10]. Coordination Logic has the convenient property of being able to (syntactical)
express exactly those architectures in the distributed synthesis problem for which the re-
alizability problem is decidable, that is, architectures without information fork [FS05]. In-
tuitively, an architecture contains an information fork if the environment can propagate
disjoint bits of information to two distinct processes, such that the information given to
the respective other process is not observable. On the other hand, many interesting ex-
amples of distributed systems contain such kinds of forks like consensus problems, and
we will see many more in the second half of this thesis.

A related, although different kind of research direction is to characterize the flow of
information through a distributed system. This provides an alternative characterization
of architectures as constraining the information-flow between processes: A process re-
acts consistently if, and only if, for every pair of execution traces of the overall system,
a change of its outputs on this pair is preceded by an observable difference, that is, a
different valuation of one of its input propositions. More general, properties that relate
multiple execution traces are known as hyperproperties [CS10]. Hyperproperties generalize

5

1. INTRODUCTION

trace properties, i.e., sets of traces, to sets of sets of traces, and are of huge importance to
the security community in the form of noninterference [GM82], observational determin-
ism [ZM03], plausible deniability [BSG17; CCS17], and alike, but have also ties to classical
formal methods problems like determining if an input to a hardware circuit influences an
output [Fin+18b], distributed systems in the form of fault-tolerance [Fin+18a], symmetry
in hardware designs [FRS15], or the verification of error-correcting codes [FRS15].

The temporal hyperlogic HyperLTL [Cla+14] is an extension of LTL that employs ex-
plicit trace quantification, i.e., it can quantify over multiple execution traces and then re-
late them using temporal operators. HyperLTL is able to express many hyperproperties
of choice, for example safety hyperproperties, also called hypersafety properties, like dis-
tributivity mentioned above and liveness hyperproperties, also called hyperliveness prop-
erties, like plausible deniability (“For every execution trace there is a different one with
the same (public) observations but different valuations of some secret/undisclosed vari-
ables”) or generalized noninterference [McC88]. HyperLTL has been used to verify secu-
rity properties in hardware designs [Cla+14; FRS15; FHT18] and to detect information-flow
violations at runtime [Fin+17b; Fin+18b; HST19; Fin+19b]. Also, the satisfiability problem
for HyperLTL has been studied extensively [FH16; FHS17; FHH18]. In this thesis, we in-
vestigate the realizability problem of HyperLTL and show that it subsumes many classic
variants of the realizability problem such as distributed, fault-tolerant, and symmetric
synthesis. While there are no gains concerning decidability results—given that it sub-
sumes the distributed realizability variant—there is a strong motivation for investigating
the HyperLTL synthesis problem: It is now possible to mix-and-match all those kinds of
properties within a single, unifying framework. Consider, for example, the dining cryptog-
raphers problem [Cha85]: Three cryptographers Ca, Cb, and Cc sit at a table in a restau-
rant having dinner, and either one of cryptographers or the NSA must pay for their meal.
Is there a protocol where each cryptographer can find out whether it was a cryptographer
who paid or the NSA, but cannot find out which cryptographer paid the bill? While being
an easy to grasp problem thanks to the figurative description, the formal description of
this protocol is more involved due to the mixture of linear properties, describing the pro-
tocol behavior and its assumptions, distributivity, a hypersafety property, and secrecy,
a hyperliveness property. The search for a realizing protocol can be encoded as a single
HyperLTL formula and can be synthesized efficiently using techniques presented in this
thesis. We evaluate our HyperLTL synthesis algorithms on a set of case studies, including
classic examples from the theory of distributed systems and cryptography like the CAP
theorem and the dining cryptographers problem, as well as symmetries in hardware de-
signs and error-correcting codes.

1.3 Contributions

Symbolic Encodings of Bounded Synthesis. In this thesis, we show how to derive more
symbolic bounded synthesis constraints by a reduction to QBF and DQBF. We present a
method to effectively solve those constraints, leading the way for improved scalability
and solution quality compared to the original SMT formulation [FS07; SF07]. The QBF

6

1.4. Publications

and DQBF encodings were submitted to the annual QBF competition, helping diversify
the benchmark set and spreading awareness of the synthesis problem for researchers
working on solver development. The corresponding synthesis tool, called BOSY [FFT17],
is publicly available in source code and has been used by students all over the world to
solve synthesis tasks. BOSY won the reactive synthesis competition 2016 and 2017 in the
sequential LTL synthesis track.

HyperLTL Synthesis. We were the first to analyze the realizability problem for
HyperLTL. This thesis investigates the expressivity and decidability of the realizability
problem and, further, gives efficient semi-decision procedures based on bounded synthe-
sis [FS13]. On the expressiveness, we show that HyperLTL realizability subsumes many
classical extensions of the LTL realizability problem like incomplete information [KV97],
distributed synthesis [PR90; KV01; FS05], and fault-tolerant synthesis [DF09; FT15]. We
analyze the decidability of the decision problem based on the quantifier prefix of a
HyperLTL formula and show decidable subclasses of the otherwise undecidable class of
universal HyperLTL formulas.

QBF Solving. We have developed a QBF solving methodology based on the
counterexample-guided abstraction refinement (CEGAR) [Cla+00] algorithm. There
are two outstanding properties: First, the algorithm is versatile and adaptable, as vari-
ants of the base algorithm apply to QBF and DQBF, prenex and non-prenex, as well as
clausal and non-clausal formulas. Second, the implementations in the solvers CAQE
and QUABS show outstanding performance. This is partly due to the combination of
search-based and expansion-based reasoning, as discussed in Chapter 3.

DQBF Solving. In contrast to previous work [FKB12], we show that search-based solv-
ing is feasible for DQBF. This result is based on two essential enhancements: As
Q-resolution [BCJ14a] is incomplete for DQBF, we need an improved proof system.
We characterize fragments for which an extension of Q-resolution called Fork Resolu-
tion [Rab17] is complete and give an extension of Fork Resolution that is complete for
DQBF. Further, compared to [FKB12], we use a less coarse over-approximation during
solving. Lastly, we show that our DQBF solver DCAQE has comparable performance to
QBF solving on the symbolic bounded synthesis encodings, which is in stark contrast to
other state-of-the DQBF solvers.

1.4 Publications

This thesis is based on the following peer-reviewed publications:

[FT14b] Bernd Finkbeiner and Leander Tentrup. „Fast DQBF Refutation“. In: Proceed-
ings of SAT. Vol. 8561. LNCS. Springer, 2014, pp. 243–251. DOI: 10 . 1007 /
978-3-319-09284-3_19.

7

https://doi.org/10.1007/978-3-319-09284-3_19
https://doi.org/10.1007/978-3-319-09284-3_19

1. INTRODUCTION

[FT15] Bernd Finkbeiner and Leander Tentrup. „Detecting Unrealizability of Dis-
tributed Fault-tolerant Systems“. In: Logical Methods in Computer Science 11.3
(2015). DOI: 10.2168/LMCS-11(3:12)2015.

[RT15] Markus N. Rabe and Leander Tentrup. „CAQE: A Certifying QBF Solver“. In:
Proceedings of FMCAD. IEEE, 2015, pp. 136–143. DOI: 10.1109/FMCAD.2015.
7542263.

[Ten16] Leander Tentrup. „Non-prenex QBF Solving Using Abstraction“. In: Proceed-
ings of SAT. Vol. 9710. LNCS. Springer, 2016, pp. 393–401. DOI: 10 . 1007 /
978-3-319-40970-2_24.

[Fay+17] Peter Faymonville, Bernd Finkbeiner, Markus N. Rabe, and Leander Tentrup.
„Encodings of Bounded Synthesis“. In: Proceedings of TACAS. Vol. 10205. LNCS.
2017, pp. 354–370. DOI: 10.1007/978-3-662-54577-5_20.

[FFT17] Peter Faymonville, Bernd Finkbeiner, and Leander Tentrup. „BoSy: An Ex-
perimentation Framework for Bounded Synthesis“. In: Proceedings of CAV.
Vol. 10427. LNCS. Springer, 2017, pp. 325–332. DOI: 10.1007/978-3-319-
63390-9_17.

[Ten17] Leander Tentrup. „On Expansion and Resolution in CEGAR Based QBF Solv-
ing“. In: Proceedings of CAV. Vol. 10427. LNCS. Springer, 2017, pp. 475–494.
DOI: 10.1007/978-3-319-63390-9_25.

[Fin+18] Bernd Finkbeiner, Christopher Hahn, Philip Lukert, Marvin Stenger, and Le-
ander Tentrup. „Synthesizing Reactive Systems from Hyperproperties“. In:
Proceedings of CAV. Vol. 10981. LNCS. Springer, 2018, pp. 289–306. DOI: 10.
1007/978-3-319-96145-3_16.

[HT18] Jesko Hecking-Harbusch and Leander Tentrup. „Solving QBF by Abstraction“.
In: Proceedings of GandALF. Vol. 277. EPTCS. 2018, pp. 88–102. DOI: 10.4204/
EPTCS.277.7.

[Coe+19] Norine Coenen, Bernd Finkbeiner, César Sánchez, and Leander Tentrup.
„Verifying Hyperliveness“. In: Proceedings of CAV. Vol. 11561. LNCS. Springer,
2019, pp. 121–139. DOI: 10.1007/978-3-030-25540-4_7.

[Fin+19] Bernd Finkbeiner, Christopher Hahn, Philip Lukert, Marvin Stenger, and Le-
ander Tentrup. „Synthesis from Hyperproperties“. Accepted for publication
in Acta Informatica. 2019.

[Ten19] Leander Tentrup. „CAQE and QuAbS: Abstraction Based QBF solvers“. Ac-
cepted for publication in JSAT. 2019.

[TR19a] Leander Tentrup and Markus N. Rabe. „Clausal Abstraction for DQBF“. In:
Proceedings of SAT. Vol. 11628. LNCS. Springer, 2019, pp. 388–405. DOI: 10 .
1007/978-3-030-24258-9_27.

8

https://doi.org/10.2168/LMCS-11(3:12)2015
https://doi.org/10.1109/FMCAD.2015.7542263
https://doi.org/10.1109/FMCAD.2015.7542263
https://doi.org/10.1007/978-3-319-40970-2_24
https://doi.org/10.1007/978-3-319-40970-2_24
https://doi.org/10.1007/978-3-662-54577-5_20
https://doi.org/10.1007/978-3-319-63390-9_17
https://doi.org/10.1007/978-3-319-63390-9_17
https://doi.org/10.1007/978-3-319-63390-9_25
https://doi.org/10.1007/978-3-319-96145-3_16
https://doi.org/10.1007/978-3-319-96145-3_16
https://doi.org/10.4204/EPTCS.277.7
https://doi.org/10.4204/EPTCS.277.7
https://doi.org/10.1007/978-3-030-25540-4_7
https://doi.org/10.1007/978-3-030-24258-9_27
https://doi.org/10.1007/978-3-030-24258-9_27

1.5. Structure of This Thesis

Further, the thesis contains material published in the following report:

[TR19b] Leander Tentrup and Markus N. Rabe. „Clausal Abstraction for DQBF (full
version)“. In: CoRR abs/1808.08759 (2019). arXiv: 1808.08759. URL: http:
//arxiv.org/abs/1808.08759.

1.5 Structure of This Thesis

This thesis is structured in two parts. The former gives an in-depth discussion about var-
ious reasoning techniques regarding the satisfiability problem for QBF and DQBF. The
latter provides algorithms for the reactive synthesis problem, which are influenced by
the insights learned in the first part. Both parts are sufficiently self contained to be
read independently although in their development they heavily influenced each other,
for example, by applying similar techniques as in the case for bounded unrealizabil-
ity [Ten13; FT14a; FT15] and bounded unsatisfiability (Chapter 5), using the certification
capabilities developed in Section 2.4 to synthesize reactive systems using bounded syn-
thesis [Fay+17], and employing techniques introduced for non-CNF QBF solving to im-
prove safety game solvers in Section 7.2.1.

1.5.1 Part I: Quantified Satisfiability

In the first part, we tackle the quest to solve the satisfiability problem for propositional
logic extended with quantification. We consider different types of quantifiers, namely
linear and branching quantifiers, different structures such as conjunctive normal form,
negation normal form, prenex and non-prenex forms. Further, we provide means to ex-
tract certificates while solving as well as formal correctness proofs. Also, we provide a
proof-theoretic view of our QBF solving algorithm that provided valuable insights into
the strength and weaknesses, leading to significant empirical performance improve-
ment.

1.5.2 Part II: Reactive Synthesis

In the second part, we consider the synthesis problem for temporal logic. We consider
the bounded synthesis [FS13] approach where the synthesis problem is reduced to the sat-
isfiability problem of a suitable constraint system. We show that we can derive “more
symbolic” constraint systems by employing linear and branching quantifiers. Our evalua-
tion shows that the symbolic variants have better scaling behavior than the non-symbolic
ones in terms of the size of the inputs given by the environment and the number of states
of the to-be-synthesized system.

Afterward, we consider the synthesis problems for HyperLTL and study expressive-
ness and decidability of fragments based on the quantifier prefix. Further, we give semi-
decision procedures for the search for realizing implementations and counterexamples,
respectively. We conclude with a synthesis case-study using benchmarks ranging from
symmetry in hardware designs to fault-tolerance as well as secrecy.

9

https://arxiv.org/abs/1808.08759
http://arxiv.org/abs/1808.08759
http://arxiv.org/abs/1808.08759

Part I

Quantified Satisfiability

11

Chapter 2

Clausal Abstraction

Clausal abstraction is a solving method for quantified Boolean formulas that was in-
dependently developed by Janota & Marques-Silva [JM15b]1 and Rabe & Tentrup [RT15].
While initially only applicable to QBFs in prenex conjunctive normal form, there have
been extensions to QBFs in negation normal form [HT18], parallelization [Ten16], satisfia-
bility modulo theories [BJ15], quantified stochastic Boolean satisfiability [LWJ18], and de-
pendency quantified Boolean formulas [TR19a]. The underlying idea of clausal abstrac-
tion is to assign variables, where the assignment order is determined by the quantifier
prefix until either all clauses are satisfied or there is a set of clauses that cannot be sat-
isfied at the same time. The effect of assignments, i.e., whether they satisfy a clause, is
abstracted into one bit of information per clause, and this information is communicated
through the quantifier prefix. The fundamental data structure of the algorithm is an ab-
straction, a propositional formula for each maximal block of quantifiers, that, given the
valuation of outer variables, generates candidate assignments for the variables bound at
this quantifier block. In case this candidate is refuted by inner quantifiers, the returned
counterexample is excluded in the abstraction. Thus, the clausal abstraction algorithm
uses ideas of search-based solving [GMN09], and counterexample guided abstraction
refinement (CEGAR) algorithms [Cla+00]. A proof-theoretic analysis of the clausal ab-
straction approach [Ten17] has shown that the refutation proofs correspond to the (level-
ordered) Q-resolution calculus [KKF95]. The implementation of the clausal abstraction
algorithm in the solver CAQE won the prenex CNF track in the annual QBF competition
QBFEVAL [NPT06; PS19] 2017, 2018, and 2019. Further, it was awarded a medal in the
FLoC Olympic Games 20182.

This chapter gives a complete overview over the clausal abstraction approach for
QBF, and it is based on an article accepted for publication in the journal of satisfiabil-
ity (JSAT) [Ten19], which is itself partly based on work published in the proceedings of
FMCAD [RT15] and CAV [Ten17]. The remainder of this chapter is structured as follows.
After presenting the necessary preliminaries in Section 2.1, we give the algorithmic de-
tails for the clausal abstraction algorithm, first for the one-alternation fragment of QBF

1which they called clause selection
2http://www.floc2018.org/floc-olympic-games/

13

http://www.floc2018.org/floc-olympic-games/

2. CLAUSAL ABSTRACTION

in Section 2.2 followed by the generalization to quantified Boolean formulas with arbi-
trary many quantifiers in Section 2.3. In Section 2.4, we show how function extraction is
realized, and in Section 2.5, we integrate partial expansion reasoning in the clausal ab-
straction approach. We give a detailed experimental evaluation of the algorithm imple-
mented in the QBF solver CAQE in Section 2.6 and conclude with a summary given in Sec-
tion 2.7.

Related Work. QBF solving techniques can be roughly characterized by search-based
and expansion-based methods. Solvers based on search assign variables in the order
given by the quantifier prefix and progress by learning clauses and cubes for conflicts
and solutions, respectively. Expansion-based solving methods eliminate quantifiers by
rewriting the formula into propositional form. On the algorithmic side, many recent solv-
ing methods [Jan+16; RT15; JM15b; Jan18a; Jan18b; Blo+18] employ a variant of the CE-
GAR [Cla+00] style of reasoning to avoid an exponential blowup.

Search-based Solving. Search-based solvers typically extend algorithms for the proposi-
tional satisfiability (SAT) problem to the richer logic. An early example of such an exten-
sion is the algorithms implemented in the solvers QUAFFLE [ZM02] and QUBE++ [GNT04].
The proof system underlying search-based solvers is Q-resolution [KKF95], which ex-
tends propositional resolution with universal reduction. A more recent solver is
DEPQBF [LB10; LE17], which features a variety of other extensions such as Skolem
and Herbrand function extraction [Nie+12], incremental solving [LE14], and inprocess-
ing [Lon+15]. QUTE [PSS17] is a search-based solver that learns dependencies between
variables during the execution. The clausal abstraction approach [RT15], respectively,
clause selection [JM15b], can be characterized as search-based as they assign variables
contained in quantifier blocks simultaneously using a SAT oracle. While the differ-
ence between the basic algorithms of clausal abstraction and clause selection is mi-
nor [JM15b; RT15], there are several algorithmic improvements described for clausal ab-
straction [RT15; Ten16] that make the implementation CAQE outperform the clause se-
lection solver QESTO as shown in the evaluation in Section 2.6.

There are further extensions of search-based methods to quantified Boolean formu-
las beyond conjunctive normal form [ESW09; GIB09; Kli+10; PSS17]. These methods typ-
ically exploit the duality of propositional formulas in negation normal form. Further ap-
proaches include using antichains as the underlying data structure [Bri+11] and using the
duality of negation normal form to enhance CNF solving [GSB13]. The clausal abstrac-
tion approach has been generalized to QBFs in negation normal form [HT18] and non-
prenex formulas [Ten16]. CQESTO [Jan18a] is a recently introduced circuit solver based on
a similar algorithm as presented in this thesis. The algorithm, however, differs in the way
abstractions are built: We produce a “static” abstraction upfront and learn subformula
valuations during solving, while CQESTO evaluates the circuit under the current variable
assignments and re-encodes the resulting partial circuit using the Tseitin transformation
in each refinement step. To our knowledge, CQESTO cannot produce certificates.

Recently, incremental determinization [RS16; Rab+18] has been proposed as a
search-based algorithm whose propagation mechanism is based on Boolean functions
instead of variable assignments.

14

Expansion-based Solving. For expansion-based methods, one can further distinguish into
complete and partial expansion. Complete expansion eliminates all universal quanti-
fiers and rewrites the QBF to an equisatisfiable propositional formula. Design choices
include the order of elimination, rewriting, and the representation of propositional for-
mulas. Examples for complete expansion solvers are QUBOS [AB02], QUANTOR [Bie04],
NENOFEX [LB08], and AIGSOLVE [SP16]. DYNQBF [CW16] is a recent solver that traverses
a tree decomposition of a QBF instance and uses dynamic programming in conjunction
with BDDs to solve sub-problems.

Partial expansion tries to expand only a subset of the possible universal assignments
to show unsatisfiability (and dually, satisfiability). RAREQS [Jan+16] is a solver based
on partial expansion that has later been extended to include refinements with strate-
gies [Jan18b]. The underlying proof system, ∀Exp+Res [JM15a], first builds a partial ex-
pansion of the QBF and then uses propositional resolution on the expanded matrix. Re-
cently, an algorithm based on partial expansion called IJTIHAD [Blo+18] was proposed
that uses only two competing SAT solvers, whereas RAREQS uses one per quantifier block
in the prefix.

Hybrid Approaches. Hybrid approaches combine both search-based and expansion-
based reasoning, with different levels of integration. The search-based solver
GHOSTQ [Kli+10] incorporates partial expansion reasoning [Jan+16]. HERETIC [Blo+18]
is a lightweight integration of IJTIHAD and DEPQBF. The clausal abstraction solver CAQE
has been extended to include partial expansion reasoning [Ten17]. What makes the
hybrid approaches theoretically appealing and in practice performant is the fact that the
proof systems underlying search, Q-resolution, and partial expansion, ∀Exp+Res, are
incomparable with respect to polynomial simulation [JM15a; BCJ15], that is, neither does
Q-resolution subsume ∀Exp+Res nor vice versa. Hence, a solver that combines both
types of reasoning has a potential advantage over both expansion and search-based
solvers [Ten17].

Preprocessing. Whereas this section is only concerned with complete solving techniques
for quantified Boolean formulas, there is a rich body of literature regarding QBF prepro-
cessing techniques. Further, our experiments in Section 2.6 show that preprocessing is an
integral part of the performance characteristics of modern clausal QBF solvers, and this
applies to clausal abstraction as well.

Blocked clause elimination is a common preprocessing technique, implemented
(among other preprocessing techniques) in the tool BLOQQER [BLS11]. HQSPRE [Wim+17]
is a preprocessor for both QBF and DQBF. Both also use (incomplete) universal expansion
as well as variable elimination using resolution as preprocessing techniques. Recently, a
new preprocessor QRATPRE+ [LE18b] was introduced, which is based on the QRAT cal-
culus [HSB14a].

Certification and Function Extraction. The need for providing solving witnesses beyond
binary answers is a research question that started with the very first QBF solving algo-
rithms. The solver SKIZZO [Ben04] is one of the earliest QBF solvers that included certifi-
cation [Ben05b]. An early certification format was proposed by Jussila et al. [Jus+07] and
implemented for the solvers QUAFFLE and SQUOLEM. Balabanov and Jiang [BJ12] showed

15

2. CLAUSAL ABSTRACTION

how to extract Skolem and Herbrand functions from term-resolution and Q-resolution
proofs, respectively. The QBFCert framework [Nie+12] is an implementation of this ap-
proach for the search-based solver DEPQBF [LE17]. There have been further improve-
ments to the extraction algorithm [BLJ16] and extensions to handle long-distance reso-
lution [ELW13; Bal+15]. As long as there were solvers with certification capabilities, there
are attempts to provide a unified framework [Ben05a; Jus+07; SM09] with the most re-
cent one, QRAT [HSB14a], being the most promising as it was already successfully ap-
plied to preprocessing [HSB17]. To overcome the problem of missing preprocessing in
the context of certification, there has been work that combines certificates produced by
solver and preprocessor [JGM13; Faz+17]. For non-CNF solvers, there have also been meth-
ods for extracting Skolem and Herbrand functions [GGB11; Bri+11].

2.1 Quantified Boolean Formulas

2.1.1 Syntax

A QUANTIFIED BOOLEAN FORMULA (QBF) [BB09] is a propositional formula over a finite
set of variables V with Boolean domain B = {F,T} and quantification over variables.
The syntax is given by the grammar

ϕ ∶= v ∣ ¬ϕ ∣ ϕ ∨ ϕ ∣ ∃v . ϕ,

where v ∈ V . LetB(V) be the set of quantified Boolean formulas over variables V . We
use the usual Boolean connectives conjunctionϕ∧ψ ∶= ¬(¬ϕ∨¬ψ), implicationϕ → ψ ∶=
¬ϕ ∨ ψ, equivalence ϕ ↔ ψ ∶= (ϕ → ψ) ∧ (ψ → ϕ), and exclusion ϕ ⊕ ψ ∶= ¬(ϕ ↔ ψ).
Universal quantification∀v . ϕ is defined as¬∃v .¬ϕ.

We denote the universally and existentially quantified variables as universals and
existentials, respectively. To improve readability, we lift the consecutive quantification
over variables of the same type to the quantification over sets of variables and denote
Qv1.Qv2 . . .Qvn . ϕ by QV . ϕ for V = {v1, . . . , vn} and Q ∈ {∀, ∃}. We assume
w.l.o.g. that every variable v ∈ V is quantified at most once. A quantifier blockQv . ϕ for
Q ∈ {∃,∀}binds the variablev in the scopeϕ. Variables that are not bound by a quantifier
are called free. We refer to the set of free variables of formula ϕ as free(ϕ). A closed QBF
is a formula without free variables. Closed QBFs are either true or false. Every QBF can
be transformed into a closed QBF while maintaining satisfiability by prepending the for-
mula with existential quantifiers that bind the free variables. A formula is in prenex form
if the formula consists of a quantifier prefix followed by a propositional, i.e., quantifier-
free, formula. Every QBF can be transformed into prenex form while maintaining satisfi-
ability. For a k > 0, a formula ϕ is in the kQBF fragment if it is closed, in prenex form, and
has exactly k − 1 alternations between∃ and∀ quantifiers.

A LITERAL l is either a variable v ∈ V , or its negation¬v. The complement of a literal
l , written l , is defined as l = ¬v if l = v, and l = v if l = ¬v. Given a literal l = v or l = ¬v,
we define var(l) = v. Given a set of literals {l1, . . . , ln}, the disjunctive combination
(l1 ∨ . . . ∨ ln) is called a CLAUSE and the conjunctive combination (l1 ∧ . . . ∧ ln) is called
a CUBE .

16

2.1. Quantified Boolean Formulas

A QBF is in PRENEX CONJUNCTIVE NORMAL FORM (PCNF) if its propositional formula
is a conjunction over clauses, i.e., in conjunctive normal form (CNF). We call the proposi-
tional part of a QBF in PCNF the MATRIX and we use Ci to refer to clause i of the matrix
where unambiguous. For convenience, we treat clauses and matrices as a set of literals
and clauses, respectively, and use the usual set operations for their manipulation. When
given matrices, we typically omit the ∧ operator between clauses. Every QBF in prenex
form can be transformed into an equisatisfiable formula in PCNF using the Tseitin trans-
formation [Tse68] with a linear increase in the size of the formula and number of existen-
tial variables.

Example 2.1. The following quantified Boolean formula

∃v ,w .∀x . ∃y, z. (w ∨ x ∨ y)(v ∨w)(x ∨ y)(v ∨ z)(z ∨ x)

is in the 3QBF fragment and its propositional part is in conjunctive normal form.

A QBF is in NEGATION NORMAL FORM (NNF) if negation is only applied to variables,
that is, a formula in NNF contains only conjunctions, disjunctions, and literals. Every QBF
can be transformed into NNF by at most doubling the size of the formula and without
introducing new variables as it is the case for the Tseitin transformation.

Example 2.2. The following quantified Boolean formula

∃x .∀v ,w . ∃y. (x ∨ v ∨ (y ∧w)) ∧ (x ∨ (v ∧w) ∨ y) ∧ (v ∨w ∨ y)

has two quantifier alternations and its propositional formula is in negation normal form.

2.1.2 Boolean Assignments and Functions

Given a subset of variables V ⊆ V , a BOOLEAN ASSIGNMENT of V is a function α∶V → B
that maps each variable v ∈ V to either true (T) or false (F). We write αV when the
domain of α, written dom(α), is not clear from the context. A PARTIAL ASSIGNMENT
β∶V → B�, where B� ∶= B ∪ {�}, may additionally set variables v ∈ V to an undefined
value �. We use the notation α+ and α− to denote the partial assignment that retains
positive and negative variable assignments, respectively. It is defined as

α+(v) =
⎧⎪⎪⎨⎪⎪⎩

α(v) if α(v) = T
� otherwise

and α−(v) =
⎧⎪⎪⎨⎪⎪⎩

α(v) if α(v) = F
� otherwise

for every v ∈ dom(α). We use the replacement operator βV [� ↦ b] for b ∈ B to denote
the assignment where undefined is replaced by a default value b. It is defined as

βV [�↦ b](v) ∶=
⎧⎪⎪⎨⎪⎪⎩

βV(v) if βV(v) ≠ �
b otherwise

17

2. CLAUSAL ABSTRACTION

for everyv ∈ V . To restrict the domain of an assignmentα to a set of variablesV , we write
α∣V . For two assignments α and α′ with domains V = dom(α) and V ′ = dom(α′), we
define the combination α ⊔ α′∶V ∪ V ′ → B as

(α ⊔ α′)(v) =
⎧⎪⎪⎨⎪⎪⎩

α′(v) if v ∈ V ′

α(v) otherwise
.

Note thatα′ overridesα for every elementv ∈ V∩V ′ in the intersection of their domains.
If the domains of α and α′ are disjoint, that is, dom(α) ∩ dom(α′) = ∅, we denote the
combination byα⊔̇α′. For two partial assignmentsβV andβ′V , we define the intersection
operation βV ⊓ β′V ∶V → B� as

(βV ⊓ β′V)(v) =
⎧⎪⎪⎨⎪⎪⎩

βV(v) if βV(v) = β′V(v)
� otherwise

.

We define the complement α to be α(v) = ¬α(v) for all v ∈ dom(α). The comple-
ment of a partial assignment is defined analogously with ¬� = �. We use the nota-
tion ϕ[α] to replace variables v ∈ dom(α)with their assignments α(v). We denote by
αbV ∶= {v ∈ V ∣ αV(v) = b} the subset of variables that are assigned to b ∈ B, i.e., the
preimage of αV with respect to b. The set of assignments and the set of partial assignments
ofV is denoted byA(V) andA�(V), respectively.

A BOOLEAN FUNCTION f ∶A(V) → B maps assignments of V to true or false. An as-
signment αV over variables V can be represented by the conjunctive formula⋀v∈αTV v ∧
⋀v∈αFV ¬v, that is, the only assignment over variablesV that satisfy this formula is the as-
signment αV . Similarly, Boolean functions can be represented by propositional formulas
over the variables in their domain. Let ϕ[fv] be the formula where occurrences of v are
replaced by the propositional representation of fv . It is defined as

x[fv] =
⎧⎪⎪⎨⎪⎪⎩

fv if v = x
x otherwise

(¬ϕ)[fv] = ¬(ϕ[fv])
(ϕ ∨ ψ)[fv] = (ϕ[fv]) ∨ (ψ[fv])

(∃x . ϕ)[fv] =
⎧⎪⎪⎨⎪⎪⎩

ϕ[fv] if v = x
∃x . (ϕ[fv]) otherwise

For example, let ϕ = ∀x . ∃y. (x ∨ ¬y) ∧ (¬x ∨ y) and let fy(x) = x, then ϕ[fy] =
∀x . (x ∨ ¬x) ∧ (¬x ∨ x). We use a function g∶A(X) → A(Y) that maps assign-
ments of X to assignments of Y to represent multiple Boolean functions and define the
replacement operator ϕ[g] accordingly. For example, given another Boolean function
fy′ ∶A({x}) → B, the combination with fy is gy,y′ ∶A({x}) → A({y, y′}) such that
gy,y′(x) = {y ↦ fy(x), y′ ↦ fy′(x)}.

18

2.2. Solving QBF with One Quantifier Alternation

2.1.3 Semantics

We fix a set of variablesV ⊆ V . The satisfaction relation⊧ ⊂ A(V) × B(V) is defined
as

α ⊧ v iff α(v) = T
α ⊧ ¬ϕ iff α ⊭ ϕ
α ⊧ ϕ ∨ ψ iff α ⊧ ϕ or α ⊧ ψ
α ⊧ ∃v . ϕ iff there exists some α′∶A({v})→ B such that α ⊔̇ α′ ⊧ ϕ

QBF SATISFIABILITY is the problem to determine, for a given QBF Φ, the existence of an
assignment α for the free variables free(Φ) such that the relation ⊧ holds. In this case,
we call α a satisfying assignment and say that α satisfies Φ. If α ⊭ Φ, we say that α falsi-
fiesΦ. For a closed-form QBFΦ, the QBF satisfiability problem is equivalent to the valid-
ity problem, which asks if all assignments satisfy Φ, as the problem reduces to checking
whether {} ⊧ Φ where {} denotes the empty assignment. For formulas in prenex form
with propositional formula ϕ, the QBF satisfiability problem can be interpreted as a two-
player game: Based on the order of quantifiers given by the quantifier prefix, the existen-
tial player∃ chooses assignments of existential variables with the aim to satisfy ϕ, while
the universal player∀ chooses assignment of universal variables in order to falsifyϕ. The
satisfiability game is determined, that is, for every QBF, either the existential player or the
universal player has a winning strategy.

For satisfiable QBFs the winning strategy for the existential player is called a SKOLEM
FUNCTION f ∶A(V∀)→ A(V∃)which maps assignments of universal variablesV∀ to as-
signments of existential variablesV∃, such that ϕ[f] is valid. For unsatisfiable QBFs, the
winning strategies are defined dually, i.e., f ∶A(V∃)→ A(V∀) such thatϕ[f] is unsatis-
fiable, and are called HERBRAND FUNCTIONS . Intuitively, Skolem and Hebrand functions
are well-formed if every assigned variable depends solely on its dependencies as given
by the quantifier prefix. We formalize this intuition in the following using the concept of
dependencies and consistency.

An existentially quantified variable v depends on all universally quantified variables
that are bound before v. A universally quantified variable v depends on all existentially
quantified variables bound prior to v as well as the free variables. A free variable v has
no dependencies, i.e., can only be instantiated by constants. The set of dependencies of
a variable v ∈ V is denoted by dep(v). For a set of variablesV , we define dep(V) as the
union over the dependencies⋃v∈V dep(v).

A function fX is WELL-FORMED if the assignments are consistent with respect to the
dependencies of X, i.e., for every x ∈ X and every pair of assignments αV and α′V with
V = dep(X) and αV ∣dep(x) = α′V ∣dep(x) it holds that fX(αV)(x) = fX(α′V)(x). In other
words, fX has to produce the same output forx ∈ X if the dependencies ofx are the same.

2.2 Solving QBF with One Quantifier Alternation

We start the description of the clausal abstraction algorithm by considering only the one-
alternation fragment of QBF, called 2QBF. In this fragment, the existential variables have

19

2. CLAUSAL ABSTRACTION

Algorithm 2.1 Clausal Abstraction Algorithm for 2QBF
1: procedure SOLVE∀∃(∀X . ∃Y . ϕ)
2: initialize abstractions θX and θY with shared variables S = {si ∣ Ci ∈ ϕ}
3: loop
4: match SAT(θX , {}) as
5: Unsat()⇒ return Sat
6: Sat(α)⇒
7: match SAT(θY , α∣S) as
8: Unsat()⇒ return Unsat(α∣X) ▷ α∣X ⊭ ∃Y . ϕ
9: Sat()⇒ θX ← θX ∧ ⋁

s∈(α∣S)T
s ▷ refine θX

10: end loop
11: end procedure

complete information, i.e., they depend on the complete set of universal variables. The rea-
sons for choosing 2QBF as a starting point are manifold; it is in some sense the simplest
extension of propositional logic that includes quantification and allows us to introduce
the core ideas, notation, and terminology behind the clausal abstraction algorithm. Af-
ter discussing the restricted fragment, we generalize the algorithm to arbitrary quantifier
alternations in Section 2.3. For this section, we fix some 2QBF ∀X . ∃Y . ϕ with universal
variables X, existential variablesY , and matrix ϕ.

2.2.1 Algorithm

Preliminaries. We use a generic solving function SAT(θ , α) for propositional formula θ
and assignmentα, that returns whether θ∧α is satisfiable. In the positive case, it returns
Sat(α′), where α′ is a satisfying assignment of θ with α ⊑ α′. In the negative case, it
returns Unsat(β), where β ⊑ α is a partial assignment such that θ ∧ β is unsatisfiable.

In the following algorithms, we make use of pattern matching on well-structured ob-
jects, such as the result of the call to SAT and the quantifier prefix of quantified Boolean
formulas. For example, to determine the leading quantifier of some QBF Φ, we write

match Φ as
∃X . Ψ⇒ […] ▷ leading existential quantifier
∀X . Ψ⇒ […] ▷ leading universal quantifier

Additionally, we allow wildcards, denoted by “ ”, in match arms.

Overview. The clausal abstraction algorithm is based on the idea of using two compet-
ing SAT solvers, one for the universal quantifier that tries to falsify clauses and one for
the existential quantifier that has to satisfy the remaining clauses in the matrix. The al-
gorithm SOLVE∀∃ is shown in Algorithm 2.1. After initializing the abstractions, which is
detailed below, the algorithm repeatedly solves θX using a SAT solver. θX contains vari-
ables X and satisfaction variables S, one variable si ∈ S for every clause Ci ∈ ϕ that
represents whether this clause is satisfied by an assignment αX of variables X. Every as-

20

2.2. Solving QBF with One Quantifier Alternation

signment α with α ⊧ θX is a combination of an assignment α∣X of variables X and an
assignment α∣S of variables S. In the following SAT call to θY , the assignment α∣S rep-
resenting satisfied clauses is assumed. In case θY[α∣S] is satisfiable, we found a match-
ingY assignment to the given X assignment, thus, the abstraction θX is refined and the
algorithm proceeds with the next iteration. The algorithm terminates, returning satisfi-
able and unsatisfiable, if the SAT call to θX and θY is unsatisfiable, respectively. In the
former case, we have depleted all universal assignments and in the latter case there is an
assignment αX such that there is no matchingY assignment.

Abstractions θX and θY . The abstraction is the core data structure of the algorithm,
representing, for each player, an over-approximation of the winning assignments and the
resulting effect those assignments have on the satisfaction of clauses. The abstraction θY
represents the winning assignmentsαY of the existential player under the condition that
a certain set of clauses is already satisfied by the prior universal assignment αX . Thus, θY
is satisfiable if, and only if, every clause in the matrix is satisfied, either by an assignment
toY or by an assignment of the outer universal variables. For universal quantifier∀X, the
abstraction θX represents which clauses are satisfied with respect to an assignment toX.
During the execution of the algorithm, we learn that the universal player cannot falsifyϕ
when a certain set of clauses is satisfied by αX , thus, we refine θX to make sure that one
of the previously satisfied clauses is falsified, which eliminates losing assignments αX .

The interaction between θX and θY is established by a common set of clause satisfac-
tion variables S, one variable si ∈ S for every clause Ci ∈ ϕ. Given an assignment αX
and some clause Ci ∈ ϕ, we guarantee that si is assigned to true if αX ⊧ Ci ∣X . Thus, if
si is assigned to false, the existential quantifier has to satisfy clause Ci . We define the
abstraction that implements those requirements for a clauseCi ∈ ϕ as

clabs∀X(Ci) ∶= si ∨ ¬Ci ∣X = ⋀
l∈C i ∣X

l ∨ si and (2.1)

clabs∃Y(Ci) ∶= si ∨ Ci ∣Y (2.2)

for universal and existential quantifier, respectively. The clausal abstraction for the uni-
versal quantifier block∀X and the existential quantifier block∃Y is defined as

θX ∶= ⋀
C i∈ϕ

clabs∀X(Ci) and θY ∶= ⋀
C i∈ϕ

clabs∃Y(Ci) . (2.3)

Lastly, a refinement for θX ensures that from a set of clauses that was previously satisfied
(si set to true) one is falsified, thus we add the clause

⋁
s∈αTS

s (2.4)

to the abstraction θX . We conclude the description of the algorithm by a detailed exam-
ple. In the following section, we show that the algorithm correctly determines the result
of the satisfiability problem for 2QBF.

21

2. CLAUSAL ABSTRACTION

Example 2.3. Consider the following 2QBF

∀x . ∃y, z. (x ∨ z)(x ∨ y)(x ∨ y ∨ z)(z ∨ x).

By the definitions above, the resulting abstractions are

θ{x} = (s1 ∨ x)(s2 ∨ x)(s3 ∨ x)(s4 ∨ x) and

θ{y,z} = (s1 ∨ z)(s2 ∨ y)(s3 ∨ y ∨ z)(s4 ∨ z) .

We show a possible execution of SOLVE∀∃ on the example formula:
• SAT(θ{x}, {}) = Sat({x ↦ F, s1 ↦ F, s2 ↦ T, s3 ↦ T, s4 ↦ T})
• SAT(θ{y,z}, {s1 ↦ F, s2 ↦ T, s3 ↦ T, s4 ↦ T}) = Sat({z ↦ T, y ↦ F})
• θ′{x} = θ{x} ∧ (s2 ∨ s3 ∨ s4)
• SAT(θ′{x}, {}) = Sat({x ↦ T, s1 ↦ T, s2 ↦ F, s3 ↦ F, s4 ↦ F})
• SAT(θ{y,z}, {s1 ↦ T, s2 ↦ F, s3 ↦ F, s4 ↦ F}) = Unsat
• SOLVE∀∃ returns Unsat({x ↦ T})

2.2.2 Correctness

The correctness argument relates variable assignments to assignments of the satisfac-
tion variables S. We start by stating two properties over the abstractions θX and θY that
immediately follow from their definitions.

Lemma 2.4. Letα be a satisfying assignment ofθX and letαS be some arbitrary assignment over
variables S. It holds that

1. α(si) = F⇒ α∣X ⊭ Ci ∣X for every clauseCi ∈ ϕ and
2. θY[αS] = ⋀

s i∈αFS
Ci ∣Y .

For termination, we need to argue that the main loop in Algorithm 2.1 cannot be ex-
ecuted infinitely often. We give an implicit ranking function, based on the following ob-
servations. First, the number of different refinements, i.e., clauses over S, is bounded by
the number of variables in S. Second, during the execution of the algorithm, every re-
finement clause (line 9) is different, that is, it is impossible that two refinements are the
same.

Lemma 2.5. There are only finitely many different refinement clauses and the refinements dur-
ing the execution of Algorithm 2.1 are pairwise different.

Proof. The number of different refinement clauses is bounded by the number of subsets
of S by the definition in Equation 2.4, i.e., are at most 2∣S∣ different refinement clauses.
Assume for contradiction that there is an execution of the algorithm that produces the
same refinement clause R, thus, according to line 9 of Algorithm 2.1 there are two as-
signments α and α′ such that (α∣S)1 = (α′∣S)1. It holds that R = ⋁s∈(α∣S)T s and thus
α′ ⊭ R. As θX contains the clause R after the refinement with α and α′ satisfies θX , we
derive a contradiction.

22

2.2. Solving QBF with One Quantifier Alternation

Given those lemmas, we can prove the correct termination for true formulas.

Theorem 2.6. If∀X . ∃Y . ϕ is true, Algorithm 2.1 returns Sat.

Proof. Let ∀X . ∃Y . ϕ be true. By the QBF semantics, there is a Skolem function
fY ∶A(X) → A(Y) such that ϕ[fY] is valid. Let αX and αS be arbitrary assignments
satisfying θX (line 4). By Lemma 2.4, it holds that

θY[αS] = ⋀
s i∈αFS

Ci ∣Y ⊆ ⋀
C i∈ϕ

αX⊭C i ∣X

Ci ∣Y = ϕ[αX] .

Hence, αY ∶= fY(αX) is a satisfying assignment for θY[αS] as it satisfies ϕ[αX]. The
formula θY[αS] in line 7 is, thus, always satisfiable and the return in line 8 is unreachable.
Termination is guaranteed by Lemma 2.5.

For the reverse direction, we need additional properties regarding the refinement op-
eration that we state in the following. Let αX be an assignment and let θX and θ′X be the
abstraction before and after the refinement with some assignment αS , respectively. We
say that αX is excluded from θX if θ′X[αX] is unsatisfiable whereas θX[αX] is satisfiable.

Lemma 2.7. If an assignment αX is excluded from θX by a refinement with αS , it holds that
αS(si) = T implies that αX ⊧ Ci ∣X for everyCi ∈ ϕ.

Proof. Let αX and αS be assignments such that αX is excluded from θX by a refinement
with αS , that is, θX[αX] is satisfiable and the refinement clause ψ = ⋁s∈αTS s (line 9 of
Algorithm 2.1) excludes αX , i.e., θ′X = θX ∧ ψ and θ′X[αX] is unsatisfiable. θ′X entails
ψ′ ∶= ⋁s i∈αTS ¬Ci ∣X (see the definition of the universal abstraction in Equation 2.1) and it
holds that αX ⊭ ψ′ (assuming otherwise would contradict that θ′X[αX] is unsatisfiable).
Thus, it holds that αX ⊧ ⋀s i∈α1S Ci ∣X .

Theorem 2.8. If∀X . ∃Y . ϕ is false, Algorithm 2.1 returns Unsat(αX)whereϕ[αX] is unsat-
isfiable.

Proof. Let ∀X . ∃Y . ϕ be false. By the QBF semantics, there exists some assignment αX
such that ϕ[αX] is unsatisfiable. Let αS be the assignment such that αS(si) = T if, and
only if, αX ⊧ Ci ∣X for every Ci ∈ ϕ. The combined assignment αS ⊔̇ αX is a satisfying
assignment for θX in line 4. It holds that θY[αS] = ⋀s i∈αFS Ci ∣Y = ϕ[αX]by the definition
of the existential abstraction. As ϕ[αX] is unsatisfiable, θY[αS] is unsatisfiable as well,
leading to the return in line 8.

To conclude the proof, it remains to show that thisαX is not excluded by some refine-
ment in line 9. Assume for contradiction that it is excluded by some assignment αS , i.e.,
by Lemma 2.7 for everyCi ∈ ϕ it holds that αS(si) = T⇒ αX ⊧ Ci ∣X which is equivalent
to αX ⊭ Ci ∣X ⇒ αS(si) = F. It holds that

ϕ[αX] = ⋀
C i∈ϕ

αX⊭C i ∣X

Ci ∣Y ⊆ ⋀
s i∈αFS

Ci ∣Y = θY[αS] ,

23

2. CLAUSAL ABSTRACTION

thus, from the unsatisfiability of ϕ[αX] follows that θY[αS] is unsatisfiable as well, con-
tradicting the refinement of αS . As there are only finitely many different refinements,
the query in line 4 eventually returns the assignment αX or some other unsatisfying as-
signment.

2.2.3 Optimizations

In this section, we investigate improvements to the algorithm stated in Algorithm 2.1.
Those improvements fall in two categories. The first category is concerned with simpli-
fying the propositional abstractions with the intention to improve the satisfiability check
and the second category is concerned with potentially reducing the number of iterations
of the algorithm.

Abstraction Improvements. In the case that a clause Ci ∈ ϕ contains only existential
quantified variables, si can be assumed to be false. Thus, we can modify the definitions of
clabsQ , given in Equation 2.1 and Equation 2.2 to clabs∀(X ,Ci) = T and clabs∃(Y ,Ci) =
Ci ifCi ∣Y = Ci . Note that in this case, the variable si does not appear in the abstraction.

Balabanov et al. [Bal+16a] describe two further simplifications for the universal ab-
straction:

• If some clause Ci ∈ ϕ is a universal unit clause, i.e., C∣X = {l} for some literal l
with var(l) ∈ X, then the shared variable si can be replaced by the negation l of
the literal.

• If there is a pair of clauses Ci ,C j ∈ ϕ with i ≠ j such that those clauses are equal
with respect to universal literals, i.e., Ci ∣X = C j∣X , then the same shared variable
si can be used for both clauses.

Lastly, one can use the knowledge of the objective of the universal quantifier to im-
prove assignments αS . As the variables S occur pure in the abstraction θX , the SAT solver
may set all of them to false initially. For SAT solver that support setting a default polarity
on decisions, this can be used to improve the initial assignment. Alternatively, the prob-
lem could be reformulated as a maximum satisfiability (MaxSAT) optimization problem.

Algorithmic Improvements. Given assignments αS and αX from the SAT solver in
line 4, αS may not be optimal in the following sense: There can be some clause Ci ∈ ϕ
where αS(si) = T but the assignment αX does not satisfyCi ∣X , i.e., αX ⊧ ¬Ci ∣X . This is
due to the implication in the definition of clabs∀ in Equation 2.1. We circumvent this by
applying a step after line 4 that optimizes αS with respect to αX , i.e., we set αS(si) = F
for every clause Ci ∈ ϕ where αX ⊧ ¬Ci ∣X . This change is also compatible with the
correctness proof in the previous section, especially Lemma 2.4 still holds after the αS
optimization.

Given satisfying assignmentsαS andαY from the SAT solver in line 7, the assignment
αY may satisfy clauses that are not required by the assignment αS , that is, the clause is
already satisfied by the universal variable assignment represented by αS . This is the case
if there is some clauseCi ∈ ϕwith αY ⊧ Ci ∣Y and αS(si) = T. We use this information to

24

2.3. Solving QBF with Arbitrary Quantifier Alternations

Algorithm 2.2 Clausal Abstraction Algorithm for QBF
1: procedure SOLVE(Φ)
2: initialize abstraction θX for every quantifier blockQX in Φ
3: match Φ as
4: ∃X . Ψ⇒ return SOLVE∃(X, Ψ, {si ↦ F ∣ Ci ∈ ϕ})
5: ∀X . Ψ⇒ return SOLVE∀(X, Ψ, {si ↦ F ∣ Ci ∈ ϕ})
6: end procedure

improve the refinement clause in Equation 2.4: For every such clauseCi , we set αS(si) =
F, thus, reducing the number of literals in the refinement clause.

Another enhancement greedily flips variable assignments in αY if the resulting as-
signment satisfies strictly more clauses. Let y ∈ Y be some existential variable. We can
flip the value of y if ϕ[αY ⊔ {y ↦ ¬αY(y)}] ⊆ ϕ[αY]. This greedy flipping may further
improve the effect of the previous optimization.

Balabanov et al. [Bal+16a] noticed that under certain conditions, one can remove lit-
erals from the refinement clause in Equation 2.4. If there are two clauses Ci and C j
with Ci ∣X ⊆ C j∣X and αS(si) = αS(s j) = T, then we can set αS(s j) = F, which re-
moves s j from the refinement clause. This is due to the implications si → ¬Ci ∣X and
s j → ¬C j∣X in the universal abstraction, clabs∀ in Equation 2.1, and the implication
¬C j∣X = ⋀l∈C j ∣X ¬l ⇒ ⋀l∈C i ∣X ¬l = ¬Ci ∣X due to the fact that the literals in C j∣X are
a superset of the literals inCi ∣X .

The algorithmic optimizations are crucial for the performance of the algorithm as
they circumvent non-optimal assignments to satisfaction variables resulting from using
implications in the definition of the abstraction (compared to the equivalences used in
clause selection [JM15b]).

2.3 Solving QBF with Arbitrary Quantifier Alternations

We now generalize the 2QBF algorithm to QBFs with an arbitrary number of alternations
by providing an algorithm that does recursion on the quantifier prefix. The main insight
in this generalization is that the existential player now has a choice to either directly sat-
isfy a clause or assume that an inner quantifier block will satisfy it. For this section, we fix
some quantified Boolean formula Φ in closed prenex conjunctive normal form (PCNF)
with matrix ϕ. We assume that Φ is universally reduced, that is, for every clause Ci ∈ ϕ
and every universal literal l∀ ∈ Ci , there is an existential literal l∃ ∈ Ci that depends
on l∀, formally var(l∀) ∈ dep(var(l∃)). If this property is violated for some clause Ci
and literal l∀ ∈ Ci , then l∀ can be removed from Ci , which is called universal reduc-
tion [KKF95].

25

2. CLAUSAL ABSTRACTION

2.3.1 Algorithm

Overview. The overall approach of the algorithm is to construct a propositional formula
θX for every quantifier blockQX that represents an over-approximation of the winning
assignments αX and the effect of those assignments on the matrix, that is, which clauses
are satisfied and falsified for existential and universal quantifiers, respectively. The main
algorithm SOLVE is depicted in Algorithm 2.2. It takes as an input a quantified Boolean
formula Φ, initializes the abstraction for every quantifier block of Φ, and then returns
the result of the call to SOLVE∃ or SOLVE∀, shown in Algorithm 2.3 and 2.4, depending on
the type of the leading quantifier block. The algorithm SOLVEQ(X, Ψ, αS) determines
whether the quantified subformulaQX . Ψ is satisfiable under the condition that some
clauses are already satisfied by assignments to variables bound at outer quantifiers (rep-
resented by αS as discussed below).

The algorithms for quantified subformulas, SOLVEQ , determine candidate assign-
ments to the variables bound at that quantifier that meet the quantifier’s objective (to
satisfy and falsify the formula for ∃ and∀ quantifier, respectively), or give a reason why
there is no such assignment. If a quantifier is able to provide a candidate assignment,
it is recursively verified by proceeding to the inner quantified subformula. A conflict oc-
curs when the current assignment of variables definitely violates some clause (existential
conflict) or satisfies all clauses (universal conflict). In case of such a conflict, the reason
for this conflict is excluded at an outer quantifier level by refining the corresponding ab-
straction.

Abstractionθ. The formula θ represents, for every quantifier block, how the quantifier
blocks’s variables interact with the assignments of variables of other quantifier blocks.
The algorithm guarantees that whenever a candidate assignment is generated, all vari-
ables bound at outer quantifier levels have a fixed assignment, and thus some (possibly
empty) set of clauses is already satisfied. At an existential quantifier, the corresponding
player then tries to satisfy more clauses with an assignment to the variables bound at this
quantifier, while the universal player tries to find an assignment that make it harder to
satisfy all clauses.

As in the case for 2QBF in the previous section, the interaction of abstractions is es-
tablished by the clause satisfaction variables S with the same semantics as before, i.e.,
given some quantifier blockQX and assignment αV of outer variablesV (w.r.t.QX), for
every clause Ci ∈ ϕ the satisfaction variable si ∈ S represents whether Ci is satisfied by
αV . This, however, is not enough for existential quantifiers as the existential player has
the choice to either satisfy the clause or assume that the clause will be satisfied by an as-
signment of an inner quantifier. Thus, we add an additional set of variables A for every
existential quantifier block ∃X, called assumption variables, with the intended semantics
that variable ai is set to false implies that the clauseCi is satisfied at this quantifier level
(either by an assignment to X or an outer assignment αV abstracted by αS).

We are now going to define the abstraction that implements this intuition. Fix some
quantifier blockQX. To define the abstraction forQX, we split a clause Ci into three

26

2.3. Solving QBF with Arbitrary Quantifier Alternations

parts,

C<i ∶= {l ∈ Ci ∣ l bound beforeQX},
C=i ∶= {l ∈ Ci ∣ var(l) ∈ X}, and
C>i ∶= {l ∈ Ci ∣ l bound afterQX} .

By definition, it holds thatCi = C<i ⊍ C=i ⊍ C>i .
For existential quantifiers, a clause Ci is encoded by a variable si that represents

whether the clause Ci is satisfied by an assignment to variables outer to Y , the literals of
the quantifiers’s variables, and a variable ai that indicates whether the clause is assumed
to be satisfied by an inner assignment. For existential quantifier∃X, the clausal abstrac-
tion for clauseCi ∈ ϕ is defined as

clabs∃X(Ci) =
⎧⎪⎪⎨⎪⎪⎩

si ∨ C=i if∃X is the innermost quantifier
si ∨ C=i ∨ ai otherwise

(2.5)

During the execution of the algorithm, the algorithm potentially visits each quan-
tifier multiple times to generate candidate assignments and assumptions. If those as-
sumptions turn out to be wrong, that is, the corresponding assignment is losing for the
existential player, the abstraction is refined. Such a refinement is a clause that contains
only assumption variablesAand represents sets of clauses that together cannot be satis-
fied by the inner quantifier.

The abstraction for universal quantifiers∀X is unchanged from the 2QBF algorithm,
that is, we define

clabs∀X(Ci) = si ∨ ¬C=i = ⋀
l∈C=i

l ∨ si . (2.6)

In contrast to existential quantifiers, universal quantifiers do not have separate sets of
variables S and A; to define the abstraction we use only satisfaction variables S. This
is merely a minor simplification that exploits the formula structure of universal quanti-
fiers. The universal quantifier cannot make assumptions on the inner quantifiers: Either
a clause is falsified by some assignment to X or it is not. Refinements are represented as
clauses over literals from variables S.

The clausal abstraction θX for some quantifier blockQX is defined as the conjunc-
tion over the abstractions of clauses

θX ∶= ⋀
C i∈ϕ

clabsQX(Ci) . (2.7)

Algorithm for Existential Quantifiers. The algorithm SOLVE∃ is shown in Algo-
rithm 2.3. It decides whether the QBF ∃X . Φ is satisfiable under the assumption that
the matrix ϕ is restricted according to the assignment αS . The algorithm repeatedly
generates candidate assignments by means of the abstraction θX (line 3). If the ab-
straction returns Unsat, there is no winning assignment for this quantifier, thus, the

27

2. CLAUSAL ABSTRACTION

Algorithm 2.3 Algorithm for existentially quantified formulas
1: procedure SOLVE∃(X, Φ, αS)
2: loop
3: match ⟨SAT(θX , αS), Φ⟩ as ▷ assume satisfied and falsified clauses
4: ⟨Sat(α), ∀Y . Ψ⟩⇒ ▷Φ = ∀Y . Ψ
5: α′S ← αS ⊔ {si ↦ T ∣ ai ∈ α∣0A} ▷ update satisfied clauses
6: match SOLVE∀(Y , Ψ, α′S) as ▷ recursive verification
7: Sat(βS)⇒ return Sat(βS ⊓ α+S)
8: Unsat(βS)⇒ θX ← θX ∧⋁s i∈β0S ai ▷ refine θX

9: ⟨Sat(), ⟩⇒ return Sat(α+S) ▷Φ is propositional
10: ⟨Unsat(βS), ⟩⇒ return Unsat(βS)
11: end loop
12: end procedure

algorithm returns Unsat as well (line 10). Further, the reason for the negative result is
given, represented by the assignment βS , that indicates which clauses could not be sat-
isfied simultaneously. If the abstraction returns Sat with assignment α we distinguish
two cases. The first case is the base case of the recursion, that is, the inner formula is
quantifier-free. The algorithm returns Sat together with the partial assignment α+S in-
dicating which clauses have to be satisfied by outer quantifier such that the assignment
αX satisfies the matrix ϕ.

If the inner subformula is quantified, we splitα into two partsαA = α∣AandαX = α∣X .
Then in line 5 we updateαS by marking those clauses as satisfied (set si toT) thatαX satis-
fies and continue with the recursive verification using SOLVE∀ (line 6) which, again, could
either be Sat or Unsat. In the first case, the partial assignment βS (line 7) indicates the
clauses that are required to be satisfied. Before returning, we adapt this witness by the
operation βS ⊓ α+S in line 7 which removes those clauses that are already satisfied by αX ,
i.e., clausesCi where αS(si) = F and αA(ai) = F. In the second case where the verifica-
tion is unsuccessful, the abstraction θX is refined by enforcing that some clause from the
previously unsatisfied clauses is satisfied, before continuing with the next iteration.

Algorithm for Universal Quantifiers. The algorithm SOLVE∀, shown in Algorithm 2.4,
shares the same underlying concept and structure as SOLVE∃ and differs only in minor
details that we discuss in the following. Due to the different abstractions, the algorithm
only assumes already satisfied clauses (by assignments of outer variables), represented
by α+S , when generating the candidate assignment in line 3. This also means that there
is no need to update αS after line 4, as α∣S already represents all satisfied clauses due to
the definition of the universal abstraction. Further, the base case is missing as it is guar-
anteed that every universal quantifier is followed by an existential quantifier (otherwise
it can be removed by universal reduction). The refinement in line 7 states that one of the
previously satisfied clauses has to be falsified, starting with the next iteration.

28

2.3. Solving QBF with Arbitrary Quantifier Alternations

Algorithm 2.4 Algorithm for universally quantified formulas
1: procedure SOLVE∀(X, Φ, αS)
2: loop
3: match ⟨SAT(θX , α+S), Φ⟩ as ▷ assume satisfied clauses only
4: ⟨Sat(α), ∃Y . Ψ⟩⇒ ▷Φ = ∃Y . Ψ
5: match SOLVE∃(Y , Ψ, α∣S) as ▷ recursive verification
6: Unsat(βS)⇒ return Unsat(βS)
7: Sat(βS)⇒ θX ← θX ∧⋁s i∈β1S si ▷ refine θX

8: ⟨Unsat(βS), ⟩⇒ return Sat(βS)
9: end loop

10: end procedure

Example 2.9. Consider again the formula given in: Example 2.1: : Page 17

∃v ,w .∀x . ∃y, z. (w ∨ x ∨ y)(v ∨w)(x ∨ y)(v ∨ z)(z ∨ x)

We build the abstractions

θ{v ,w} = (s1 ∨w ∨ a1)(s2 ∨ v ∨w ∨ a2)(s3 ∨ a3)(s4 ∨ v ∨ a4)(s5 ∨ a5),
θ{x} = (s1 ∨ x)(s3 ∨ x)(s5 ∨ x), and

θ{y,z} = (s1 ∨ y)(s2)(s3 ∨ y)(s4 ∨ z)(s5 ∨ z) .

We give a possible execution of algorithm SOLVE. To improve readability, we use the
propositional representation for assignments as cubes. Note that clauseC2 contains only
variables of the outermost quantifier, thus, setting a2 to true is a useless assumption. In
Section 2.3.3 we discuss this (and other) improvements for the basic algorithm presented
here, for now we just assume that the initial abstraction θ{v ,w} is θ{v ,w} ∧ a2.

• SOLVE∃({v ,w},∀x . ∃y, z. ϕ, s1s2s3s4s5)

• SAT(θ{v ,w}, s1s2s3s4s5) = Sat(v w a1a2a3a4a5)
• α′S = s1s2s3s4s5
• SOLVE∀({x},∃y, z. ϕ, α′S)

– SAT(θ{x}, s2s4) = Sat(x s1s2s3s4s5)
– SOLVE∃({y, z}, ϕ, s1s2s3s4s5)

* SAT(θ{y,z}, s1s2s3s4s5) = Sat(y z)

* return Sat(s1s2s3s4)
– θ′{x} = θ{x} ∧ (s1 ∨ s2 ∨ s3 ∨ s4)
– SAT(θ{x}, s2s4) = Sat(x s1s2s3s4s5)
– SOLVE∃({y, z}, ϕ, s1s2s3s4s5)

* SAT(θ{y,z}, s1s2s3s4s5) = Unsat(s1s3)

29

2. CLAUSAL ABSTRACTION

* return Unsat(s1s3)
– return Unsat(s1s3)

• θ′{v ,w} = θv ,w ∧ (a1 ∨ a3)

• SAT(θ′{v ,w}, s1s2s3s4s5) = Sat(v w a1a2a3a4a5)

• α′S = s1s2s3s4s5
• SOLVE∀({x},∃y, z. ϕ, α′S)

– SAT(θ{x}, s1s2) = Sat(x s1s2s3s4s5)
– SOLVE∃({y, z}, ϕ, s1s2s3s4s5)

* SAT(θ{y,z}, s1s2s3s4s5) = Unsat(s4s5)

* return Unsat(s4s5)
– return Unsat(s4s5)

• θ′′{v ,w} = θ
′
v ,w ∧ (a4 ∨ a5)

• SAT(θ′′{v ,w}, s1s2s3s4s5) = Unsat(s1s2s3s4s5)

• return Unsat(s1s2s3s4s5)

2.3.2 Correctness

The proof of correctness generalizes the arguments made in Section 2.2.2 to formulas
with arbitrary prefixes. Thus, the correctness argument presented in this section is an
inductive argument over the quantifier prefix.

A substantial part of the formal arguments relies on the relation between the abstrac-
tions and the quantified Boolean formula that we formalize in the following. LetQX and
αS be some quantifier and an assignment of satisfaction variables, respectively. In com-
bination, we can interpret them as a new QBF that starts with the quantifier blockQX,
removes all literals that are bound prior toQX, and has only the clauses that are marked
as unsatisfied byαS . To formalize this intuition, we define an operatorΦ∣QX

αS that restricts
the matrix ϕ in a QBF Φ to those clauses Ci ∈ ϕ such that αS(si) = F and removes all
leading quantifiers up toQX. In detail, the resulting QBF has the same quantifier prefix
starting withQX and the matrix {C≥i ∣ Ci ∈ ϕ ∧ αS(si) = F} where C≥i refers to quan-
tifier blockQX. Note that variables bound by outer quantifiers are removed from the
matrix. As an example, consider the formula Φex = ∃v ,w .∀x . ∃y, z. (w ∨ x ∨ y)(v ∨
w)(x ∨ y)(v ∨ z)(z ∨ x) from the previous example: The formula Φex∣∀xs1s2s3s4s5 is equal
to∀x . ∃y, z. (x ∨ y)(x ∨ y)(z ∨ x).

We start by stating simple properties about the abstractions after assuming some as-
signment αS . Those are used in the induction proofs below.

Lemma 2.10. LetΦ be a QBF with matrixϕ and let αS be an assignment over variables S.
1. Let ∃X be the innermost quantifier block. It holds that θX[αS] = ⋀s i∈α0S C

=
i which is

equisatisfiable toΦ∣∃XαS .

30

2.3. Solving QBF with Arbitrary Quantifier Alternations

2. Let ∃X be a (non-innermost) quantifier block of Φ. It holds that θX[αS] =
⋀s i∈α0S (C

=
i ∨ ai).

3. Let∀X be a quantifier block ofΦ. It holds that θX[α+S] = ⋀s i∈α0S (si ∨ ¬C
=
i).

Proof. Follows immediately from the definition of the abstraction θX .

Let QX .QY be a quantifier alternation of Φ. In the following proofs, we have to
transform an assignment αS of satisfaction variables (w.r.t.QX) to an assignment of sat-
isfaction variables with respect toQY by applying the effect of an assignment αX to the
variables X. Often, we will argue over the “optimal” assignment α∗S of the satisfaction
variables S in the abstraction θX to relate Φ∣QY

α∗S
with (Φ∣QX

αS)[αX]. The following lemma
states this connection formally.

Lemma 2.11. LetQX .QY be a quantifier alternation of Φ and let αX and αS be assignments
as defined before. Further, let α∗S be defined such that α∗S (si) = T if, and only if, αS(si) = T or
αX ⊧ Ci ∣X . It holds that (Φ∣QX

αS)[αX] = Φ∣
QY
α∗S

.

Proof. The quantified formulas (Φ∣QX
αS)[αX] and Φ∣QY

α∗S
have the same prefix (both start-

ing withQY) and the same matrix

⋀
C i∈ϕ

αS(s i)=F∧αX⊭C i ∣X

C>i

´¹¹¹¸¹¹¹¶
>w.r.t.QX

= ⋀
C i∈ϕ

α∗S (s i)=F

C≥i

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≥w.r.t.QY

.

We now have the necessary preconditions to state the inductive arguments formally.
The following lemma states that SOLVEQ returns Sat if the given QBF is satisfiable. Fur-
ther, the returned witness represents the necessary condition for satisfiability in form of a
partial assignment βS . Recall that for some partial assignment β, the notation β[�↦ b]
describes the complete assignment where undefined values are set to b ∈ B.

Lemma 2.12. LetQX . Ψ be a quantified subformula of a QBFΦwith matrixϕ and letαS be an
assignment of variables S. If Φ∣QX

αS is true SOLVEQ(X, Ψ, αS) returns Sat(βS)where βS ⊑ α+S
andΦ∣QX

βS[�↦F] is true.

Proof. We prove the statement by structural induction over the quantifier prefix. The
base case follows immediately by Lemma 2.10.1. For the induction step, we consider exis-
tential and universal quantification separately. For existential quantifier∃X, there has to
be a satisfying assignment αX by the QBF semantics and we show that this assignment
is a satisfying assignment for the abstraction θX . Together with the optimal set of as-
sumptions, we can use the induction hypothesis to build a witnessing partial assignment.
Completeness follows from the fact that there are only finitely many different refinement
clauses and the property that assignment αX cannot be excluded by some refinement.
For universal quantifier ∀X, every assignment αX is satisfying, thus, we show that ev-
ery satisfying assignment of the abstraction leads to a subsequent refinement. Thus, the

31

2. CLAUSAL ABSTRACTION

abstraction becomes unsatisfiable (under the given assumption αS) eventually, and the
algorithm returns Sat with a witness satisfying the requirement. The detailed proof fol-
lows.

Induction Base. Let ∃X . ϕ be the innermost quantifier of Φ and let αS be such that Φ∣∃XαS
is true. By Lemma 2.10.1, the truth of Φ∣∃XαS witnesses the satisfiability of θX[αS]. Further,
the algorithm SOLVE∃ returns Sat(α+S) (line 9) and α+S [�↦ F] is equivalent to αS .

Induction Step (Q = ∃). Let ∃X .∀Y be an arbitrary quantifier alternation of Φ and let
αS be such that Φ∣∃XαS is true. By Lemma 2.10.2 it holds that

θX[αS] = ⋀
s i∈α0S

(C=i ∨ ai) .

Since Φ∣∃XαS is true, there is a satisfying assignment αX for the variables X such that
(Φ∣∃XαS)[αX] (a QBF starting with quantifier∀Y) is true. Define α∗A as α∗A(ai) = F if, and
only if, αX ⊧ C=i . Thus, α∗A is the assignment with the smallest number of assumptions
(α∗A(ai) = T) for the given assignment αX . The combined assignment αX ⊔̇ α∗A is a sat-
isfying assignment of the initial abstraction θX[αS] by construction. We perform a case
distinction on the returned assignment of the SAT solver in line 3.

• We assume that the SAT call in line 3 returnsαX ⊔̇α∗A. Letα∗S be the assignment con-
structed from αS and α∗A in line 5. By Lemma 2.11, it holds that (Φ∣∃XαS)[αX] = Φ∣

∀Y
α∗S

is true. By induction hypothesis we deduce that SOLVE∀ returns Sat(βS) where
Φ∣∀YβS[�↦0] is true. Subsequently, SOLVE∃ returns Sat(β′S) (line 7), where β′S =
βS ⊓ α+S .
As the algorithm returns Sat(β′S), it remains to show that Φ∣∃Xβ′S[�↦F] is true. For
every clause that is removed from βS by the intersection with α+S , it holds that
this clause is satisfied by the assignment αX : Assume si ∈ S is removed by the
intersection, that is, βS(si) = T and αS(si) = F. We know that βS ⊑ α∗S

+ =
(αS ⊔ {si ↦ 1 ∣ ai ∈ α∗A

0})+ by induction hypothesis and the construction of α∗S in
line 5. Hence,α∗A(ai) = Fand together withαS(si) = Fwe conclude thatαX ⊧ C=i
due to the definition of clabs∃X in: Equation 2.5.: Page 27

• Assume that the SAT call in line 3 returns an assumptio α′A different to α∗A. Either
α′A corresponds to αX and is non-minimal, i.e., α∗A

+ ⊑ α′A
+, or it corresponds to a

different assignment α′X . The call to SOLVE∀may either return Sat or a counterex-
ample Unsat(βS). We consider the latter case as in the former case SOLVE∃ also
returns Sat and the same argumentation as in the previous case applies.
The subsequent refinement in line 8 requires that one of the unsatisfied clauses
Ci with βS(si) = F has to be satisfied in the next iteration and the corresponding
refinement clause is ψ ∶= ⋁s i∈β0S ai . By construction of α∗A as the optimal assign-
ment corresponding to αX , α∗A ⊭ ψ contradicts that αX is a satisfying assignment
of Φ∣∃XαS . Hence, αX ⊔̇ α∗A is still a satisfying assignment for the refined abstraction
θ′X[αS]. The refinement also reduces the number of A assignments by at least 1
and, thus, brings us one step closer to termination.

32

2.3. Solving QBF with Arbitrary Quantifier Alternations

Induction Step (Q = ∀). Let∀X . ∃Y be a quantifier alternation of Φ and let αS be such
thatΦ∣∀XαS is true. For every assignment αX , it holds that (Φ∣∀XαS)[αX] (a QBF starting with
quantifier∃Y) is true. By Lemma 2.10.3 it holds that

θX[α+S] = ⋀
s i∈α0S

(si ∨ ¬C=i) .

Thus, in order to set si to false for some i, every literal l ∈ C=i has to be assigned negatively.
Fix some arbitrary assignment αX . Let α∗S be the assignment with α∗S (si) = T if, and only
if, αS(si) = T or αX ⊧ C=i . Note that α∗S is minimal with respect to the number of posi-
tively assigned si corresponding toαX . For every α′S returned from the SAT solver in line 3
(assuming αX is fixed) it holds that α∗S

+ ⊑ α′S
+ by the minimality of α∗S . By Lemma 2.11,

it holds that (Φ∣∀XαS)[αX] = Φ∣∃Yα∗S is true and thereby Φ∣∃Yα′S is true as its matrix contains
a subset of the clauses of Φ∣∃Yα∗S . By induction hypothesis we deduce that SOLVE∃ returns
Sat(β′S) where β′S ⊑ α

′
S and Φ∣∃Yβ′s[�↦0] is true. The subsequent refinement in line 7 re-

duces the number of S assignments, so the abstraction θX becomes unsatisfiable (under
the assumption αS) eventually and the loop terminates with Sat(βS) in line 8. Let θ′X
be the abstraction after the termination of the loop. βS ⊑ α+S holds as βS are the failed
assumptions of the SAT call SAT(θ′X , α+S).

It remains to show thatΦ∣∀XβS[�↦F] is true. Assume for contradiction that there is some
αX such that (Φ∣∀XβS[�↦F])[αX] is false. We know that θ′X[αX ⊔̇ βS] is unsatisfiable. Ei-
ther the initial abstraction θX[αX ⊔̇ βS] was unsatisfiable, which leads to a contradic-
tion due to Lemma 2.11, or the assignment αX was excluded due to refinements. As the
refinement only excludes S assignments β′′S such that Φ∣∃Yβ′′S [�↦F] is true, this leads to a
contradiction as well.

The following lemma states the reverse direction, that the algorithm terminates with
the correct result on false formulas. The arguments used in the proof are very similar to
the one for true formulas, but the differences are enough to justify their inclusion.

Lemma 2.13. LetQX . Ψ be a quantified subformula of a QBFΦwith matrixϕ and letαS be an
assignment of variablesS. IfΦ∣QX

αS is false SOLVEQ(X,Ψ,αS) returnsUnsat(βS)whereβS ⊑ α−S
andΦ∣QX

βS[�↦T] is false.

Proof. The structure of the proof is similar to the proof of Lemma 2.12, that is, a structural
induction over the quantifier prefix. For existential quantifier ∃X, every assignment αX
leads to a false QBF. We can use the induction hypothesis for every assignment produced
by the abstraction θX as the abstraction computes an under-approximation of the sat-
isfied clauses with respect to αX . We show that the subsequent refinement excludes at
least the given assignment, thus, the abstraction becomes unsatisfiable eventually (un-
der the given assumption αS). It remains to show that the returned partial assignment
satisfies is a witness for the falsity of the subformula. For universal quantifier∀X, there
is some assignment αX that leads to a false QBF. We show that the algorithm eventually
reaches this assignment (or another assignment that leads to unsatisfiability). Applying
induction hypothesis leads to a witnessing partial assignment. The detailed proof fol-
lows.

33

2. CLAUSAL ABSTRACTION

Induction Base. Let ∃X . ϕ be the innermost quantifier of Φ and let αS be such that Φ∣∃XαS
is false. By Lemma 2.10.1, θX[αS] is unsatisfiable. Let β′S be the failed assumptions from
the call to SAT(θX , αS), i.e., β′S ⊑ α

−
S and θX[β′S] is unsatisfiable. Again by Lemma 2.10.1

it holds that Φ∣∃Xβ′S[�↦T] is false which concludes the induction base as Unsat(β′S) is re-
turned from SOLVE∃.

Induction Step (Q = ∃). Let ∃X .∀Y be a quantifier alternation of Φ and let αS be
such that Φ∣∃XαS is false. For every assignment αX , it holds that (Φ∣∃XαS)[αX] is false. By
Lemma 2.10.2 it holds that

θX[αS] = ⋀
s i∈α0S

(C=i ∨ ai) .

The abstraction θX is initially satisfiable for every choice of αS (every ai can be set to
true)3. Let α be such a satisfying assignment of θX[αS]. We define αX ∶= α∣X and
αA ∶= α∣A. By Lemma 2.10.2, αX ⊭ C=i implies that αA(ai) = T. We define the as-
signment with optimal assumptions α∗A as α∗A(ai) = F if, and only if, αX ⊧ C=i . Note that
αX ⊔̇ α∗A is a satisfying assignment of θX[αS]. We show that even with optimal assump-
tions α∗A, the quantified subformula is unsatisfiable and the subsequent refinement step
excludes at least assignment αS ⊔̇ αA from the abstraction θX .

Let α′S and α∗S be the assignments after line 5 with respect to αA and α∗A, respectively.
From the construction, we know that αA− ⊑ α∗A

−, by the optimality of α∗A, and thereby
α′S
+ ⊑ α∗S

+. We deduce that Φ∣∀Yα′S is false, as the clauses in the matrix Φ∣∀Yα′S are a superset
of those in the matrix of Φ∣∀Yα∗S which is equal to (Φ∣∃XαS)[αX] by Lemma 2.11. By induc-
tion hypothesis, SOLVE∀ with assignment α′S returns Unsat(βS) such that βS ⊑ α′S

− and
Φ∣∀YβS[�↦T] is false. As β0S ⊆ α

′
S
0 = {si ∈ S ∣ αS(si) = F ∧ αA(ai) = T}, the following re-

finement with clause⋁s i∈β0S ai excludes assignment αS ⊔̇ αA from θX . As there are only
finitely many refinement clauses, the SAT call in line 3 eventually becomes unsatisfiable
when assuming αS . Let θ′X be the abstraction at this point and let β′S be the failed as-
sumptions, i.e., β′S ⊑ α

−
S .

Let α′′S = β
′
S[� ↦ T]. It remains to show that Φ∣∃Xα′′S is false. Assume for contradiction

that there is some αX such that (Φ∣∃Xα′′S)[αX] is true. It holds that θ′X[αX ⊔̇ α′′S] is unsat-
isfiable, whereas initially, θX[αX ⊔̇ α′′S] is satisfiable. Thus, the assignment αX was ex-
cluded due to refinements. As the refinement only excludes assignments corresponding
to some S assignment β′′S such that Φ∣∀Yβ′′S [�↦T] is false, this contradicts our assumption.

Induction Step (Q = ∀). Let∀X . ∃Y be a quantifier alternation of Φ and let αS be such
that Φ∣∀XαS is false, that is, there is an assignment αX such that (Φ∣∀XαS)[αX] is false. By
Lemma 2.10.3 it holds that

θX[α+S] = ⋀
s i∈α0S

(si ∨ ¬C=i) .

3In Section 2.3.3 we describe improvements of the abstraction.

34

2.3. Solving QBF with Arbitrary Quantifier Alternations

θX[α+S] is initially satisfiable. Let α be a satisfying assignment of θX[α+S] and define
α′X ∶= α∣X and α′S = α∣S . Given αX from above, we define the optimal corresponding
assignment α∗S as α∗S (si) = T if, and only if, αS(si) = T or αX ⊧ C=i . Note that αS
and α∗S correspond to quantifier∀X and ∃Y , respectively. If α′S = α

∗
S , the call to SOLVE∃

returns Unsat(βS) where βS ⊑ α∗S
− and Φ∣∃YβS[�↦T] is false by induction hypothesis as

(Φ∣∀XαS)[αX] = Φ∣∃Yα∗S (Lemma 2.11) is false. Subsequently, SOLVE∀ returns Unsat(βS)
(line 6). βS ⊑ α−S follows from α∗S

− ⊑ α−S due to the monotonicity of the abstraction:
If α∗S (si) = F, then αS(si) = F.

Let α′S ≠ α
∗
S and assume that SOLVE∃ returns Sat(βS). Subsequently, θX is refined

by adding the the clause ψ ∶= ⋁s∈β1S si . Assume for contradiction that α∗S ⊭ ψ, i.e., that
α∗S is excluded by the refinement. Remember that α∗S was constructed as the optimal as-
signment corresponding toαX . Hence, the exclusion contradicts thatαX is a witness that
Φ∣∀XαS is false. Thus, αX ⊔̇ α∗S remains a satisfying assignment of the refined abstraction.
The refinement reduced the number of S assignments and, thus, some falsifying assign-
ment αX is reached eventually.

Since the main algorithm SOLVE directly calls into SOLVEQ , the following theorem fol-
lows immediately from Lemma 2.12 and 2.13.

Theorem 2.14. SOLVE returns Sat if, and only if,Φ is true.

2.3.3 Optimizations

In this section, we introduce optimizations for the basic algorithm presented in Sec-
tion 2.3.1. We start with two optimizations already described in the initial paper describ-
ing clausal abstraction [RT15]. We then proceed to improvements of the abstraction fol-
lowed by algorithmic improvements. Some of these optimizations are generalized from
the 2QBF fragment in Section 2.2.3.

Stronger Refinements. An existential conflict for quantifier alternation∃X .∀Y of QBF
Φ is a partial assignment βS such that Φ∣∀YβS[�↦T] is false. Intuitively, βS represents a set
of clauses C = {Ci ∣ si ∈ β0S} that could not be satisfied by the inner quantifier, i.e., re-
placing the matrix of Φ by C> = {C>i ∣ si ∈ β0S} results in a false QBF (Lemma 2.13). Re-
finements for such a partial assignment (line 8 of Algorithm 2.3), thus, assert that one of
these clauses has to be satisfied at quantifier∃X to prevent this situation.

In certain cases, we can strengthen the refinement by excluding a conjunction of
“equivalent” clauses, that are clauses that can replace the original clause and would let
to the same result. LetC be the representation of some existential conflict, letCi ∈ C and
let C′ be C \ Ci . If there is some C j ∈ ϕ, such that C>j ⊆ C>i , then C′ ∪ C j is an existen-
tial conflict as well. Thus, we change the refinement to exclude all equivalent existential
conflicts by modifying it to

⋁
s i∈β0S

⋀
C j∈ϕ
C>j ⊆C

>
i

a j . (2.8)

35

2. CLAUSAL ABSTRACTION

In: Section 3.2.1 we show that this improved refinement makes the underlying proof sys-: Page 54
tem exponentially more succinct.

The property described above is in some sense static, i.e., the sets of clauses such that
C>j ⊆ C>i can be computed once and can then be used throughout solving. However, it
also ignores the difference between existential and universal variables. In the following,
we develop an improved refinement that takes the quantification type into account. We
show that only considering existential variables is unsound and derive a characterization
how universal variables have to be taken into consideration. Given a clauseC, we denote
byC∣∃ andC∣∀ the projection ofC to existential and universal variables, respectively. Re-
stricting the subset inclusion to existential variables only, i.e.,C>j ∣∃ ⊆ C>i ∣∃, lets us derive
an unsound refinement clause in the following true QBF:

∃x∀y∃z. (x ∨ y ∨ z)(y ∨ z)(x ∨ y ∨ z) .

Assume the partial assignment {s1 ↦ F, s2 ↦ �, s3 ↦ �} is returned at line 8 of Algo-
rithm 2.3. UsingC>j ∣∃ ⊆ C>i ∣∃ in Equation 2.8, we get the refinement a1∧a3 as (y∨z)∣∃ ⊆
(y∨z)∣∃. This, however, makes the abstraction θ{x} unsatisfiable (as it asserts that x∧x)
and, thus, results in the algorithm returning unsatisfiable as well. The problem is, thatC1
andC3 contain the same universal variable y in opposite polarities. Replacing one clause
with the other in the underlying Q-resolution proof leads to universal tautology clauses
and, thus, unsoundness. We refer the reader to Section 3.2.1 for more details.

LetU = ⋃s i∈β0S C
>
i ∣∀ be the set of universal literals corresponding to βS . The refine-

ment
⋁
s i∈β0S

⋀
C j∈ϕ

C>j ∣∃⊆C
>
i ∣∃∧(C

>
j ∣∀∪U) is not tautological

a j (2.9)

is a sound generalization of Equation 2.8. However, it is not as efficient to implement
as the property is now dependent on the conflict β itself. We show soundness in Sec-
tion 3.2.1, where we also explore the proof-theoretic expressibility.

Tree-shaped Quantifier Prefix. As a preprocessing, we apply the well known mini-
scoping rule

∀X . ∃Y∃Z . ϕ(X ,Y) ∧ ψ(X , Z) ≡ (∀X . ∃Y . ϕ(X ,Y)) ∧ (∀X . ∃Z .ψ(X , Z)) ,

that is, at every existential quantifier block we search for a partitioning of the matrix into
independent formulas. By applying this rule bottom-up, we get a tree-shaped quantifier
prefix. Note, that this tree only branches after an existential quantifier, hence, we modify
the algorithm to split the current entry according to the partitioning and solve every child
individually. In: Section 4.3 we discuss this parallelization in more detail in the context: Page 86
of solving non-prenex formulas in negation normal form.

Abstraction Improvements. We describe improvements to the way the abstractions
are built, that is, reducing the number of satisfaction and assumption variables. These
optimizations are similar to the ones described in Section 2.2.3. Fix some QBF Φ. Let

36

2.3. Solving QBF with Arbitrary Quantifier Alternations

∃X . Ψ be a quantified subformula of Φ and let Ci some clause. If C<i is empty, i.e., the
clause contains no variable bound at some outer quantifier, then the assumption variable
si at this quantifier can be always assumed to be false. Further, ifC>i is empty, then ai can
be assumed to be false and, thus, be removed. This requires a change to:Algorithm 2.3, : Page 28
though: In the return Sat(βS ⊓ α+S) in line 7 we have to add those clauses without as-
sumption variable that are not satisfied by the current assignment, i.e., it has to change to
Sat((βS⊔{si ↦ T ∣ C>i = ∅ ∧ αX ⊭ C=i })⊓α+S). Independent of the quantifier type, it is
possible to omit building the abstraction for clauses withC=i = ∅where the given quan-
tifier has no influence on the satisfaction of the clause. Especially, we do not need to add
the satisfaction and assumption variables initially. This is possible, since the updates to
the satisfaction assignment αS are monotone: If a clause is satisfied at some outer quan-
tifier, it is guaranteed to be satisfied by every inner quantifier (see line 5 of Algorithm 2.3
and lines 3–4 of:Algorithm 2.4). However, we may need to add them during solving in : Page 29
case there is some refinement involving those variables.

We generalize the simplifications for the universal abstraction introduced for 2QBF
in Section 2.2.3:

• If some clauseCi ∈ ϕ is a universal unit clause, i.e.,C∣X = {l} for some literal l with
var(l) ∈ X, and there are no outer variables (C<i = ∅) then the shared variable si
can be replaced by the negation l of the literal.

• If there is a pair of clauses Ci ,C j ∈ ϕ with i ≠ j such that those clauses are equal
with respect to the variables bound at this quantifier, i.e.,C≤i = C

≤
j , then the same

shared variable si can be used for both clauses.
The abstraction allows the existential quantifier to make assumptions on the sat-

isfaction of clauses by inner quantifiers by means of the assignment αA. Lonsing et
al. [LES16] proposed to check during solving whether assuming the current assignment
makes the matrix unsatisfiable when treating all variables existentially. We can imple-
ment this check in the abstraction for some existential quantifier ∃X . by adding the
clause (ai → C>i) for every clauseCi . Hence, assumptions made by the existential quan-
tifier cannot lead to a unsatisfiable matrix, which, in theory should improve the solving
by reducing the number of recursive calls.

Algorithmic Improvements. We recap generalizations of the algorithmic improve-
ments described for the 2QBF algorithm in Section 2.2.3. Given some assignment αX
from the abstraction, we construct the corresponding “optimal” assignment of αA (Al-
gorithm 2.3) and αS (Algorithm 2.4) as described by : Lemma 2.11, respectively. For : Page 31
the propositional case of existential quantifier ∃X, the same optimizations as discussed
in Section 2.2.3 can be applied: We set αS(si) = F before line 9 if αS(si) = T and
αX ⊧ C=i . Further, we may change the assignment αX if such a change satisfies strictly
more clauses.

We also generalize the optimization of refinement clauses due to subsumed literals
described in Section 2.2.3. Given a partial assignment βS representing a conflict in line 8
of SOLVE∃ (Algorithm 2.3). If there are two clausesCi andC j withC≤i ⊆ C

≤
j and βS(si) =

βS(s j) = F, then we can set βS(si) = �, which removes ai from the refinement clause.

37

2. CLAUSAL ABSTRACTION

Given a partial assignment βS representing a conflict in line 7 of SOLVE∀ (Algorithm 2.4).
If there are two clauses Ci and C j with C≤i ⊆ C

≤
j and βS(si) = βS(s j) = T, then we can

set βS(s j) = �, which removes s j from the refinement clause.
The presented algorithms refine conflicts at the earliest point possible, e.g., if a uni-

versal quantifier returns Unsat(βS) (line 8 of Algorithm 2.3), the abstraction at the exis-
tential quantifier is refined immediately. In some cases, this refinement is not needed as
the existential quantifier does not control any of the refined clauses, that is, for allCi ∈ ϕ
with si ∈ β0S it holds that C=i = ∅. The following SAT call in line 3 is unsatisfiable and
βS is a possible failed assumption. Thus, the conflict is just propagated. As an example,
consider the prefix∃x∀v∃y∀w∃z and a clauses (x∨v∨w∨ z)(x∨v∨w∨ z). Given the
assignment xvw, the quantifier ∃z cannot satisfy both clauses simultaneously. The re-
finement at quantifier∃y produces the same conflict again as y has no impact. We add a
check to Algorithm 2.3 and Algorithm 2.4 whether a conflict βS can be propagated, thus,
saving the cost of the refinement and the subsequent SAT call. This optimization was first
described as part of the clause selection algorithm [JM15b].

2.4 Function Extraction

For quantified Boolean formulas, the solving result goes beyond the binary decision prob-
lem discussed in the previous sections. Especially when using QBF as a target for applica-
tions, the witnessing Boolean functions are of great importance. Using Skolem functions,
one can directly construct realizing implementations for synthesis problems encoded to
QBF [Fay+17; FFT17; BKS14; Blo+14]. And even in the negative case, the Herbrand func-
tions may give valuable information about the underlying reason [HT18]. Another ben-
efit of function extraction is the certification of the solving result, i.e., having a verifiable
witness for the solving result. In this section, we present the function extraction approach
for the clausal abstraction algorithm. In Chapter 3, we discuss another certification ap-
proach that is based on producing polynomially verifiable proofs in a calculus that models
the execution of the clausal abstraction algorithm.

The function extraction is based on the correctness proof given in Section 2.3.2. Given
a QBF Φ, some quantifier block QX of Φ, and some assignment of satisfaction vari-
ables αS . Lemma 2.12 shows that there is an assignment to αX such that the subformula
(Φ∣∃XαS)[αX] is true if Φ∣∃XαS is true. Dually, Lemma 2.13 states that an assignment to αX
exists such that the subformula (Φ∣∀XαS)[αX] is false ifΦ∣∀XαS is false. Thus, the function ex-
traction amounts to logging the relevant results during the execution of the algorithm,
that is after the successful verification of the candidate assignment. In the following, we
determine the relevant information that is needed for the extraction, the data structure
in which the information is stored, and an extraction algorithm that returns the Skolem
and Herbrand functions, respectively.

Recursion Tree. The execution of the clausal abstraction algorithm can be represented
as a tree, where the nodes represent quantifiersQX and the edges determines the truth
value and witnessing assignments αX . Formally, a node in the recursion tree is a pair

38

2.4. Function Extraction

∃v ,w
s1s2s3s4s5

∀x
s1s2s3s4s5

∀x
s1s2s3s4s5

∃y, z
s1s2s3s4s5

∃y, z
s1s2s3s4s5

∃y, z
s1s2s3s4s5

Sat(y z) Unsat Unsat

↑ Unsat

v w ↙

↗ Unsat(s1s3)

vw ↘
↖ Unsat(s4s5)

x ↙

↗ Sat(s1s2s3s4)

x ↘
↖ Unsat(s1s3)

x ↘
↖ Unsat(s4s5)

Figure 2.1: Recursion tree corresponding to the execution of SOLVEQ on the formula
∃v ,w .∀x . ∃y, z. (w ∨ x ∨ y)(v ∨w)(x ∨ y)(v ∨ z)(z ∨ x) as shown in Example 2.9.

⟨QX , αS⟩ and there is an edge from ⟨QX , αS⟩ to ⟨QY , α′S⟩ labeled with the candidate
assignment αX and the result res(βS) returned from SOLVEQ if, and only if, (1)QY is the
quantifier block followingQX, (2) (Φ∣QX

αS)[αX] =
4 Φ∣QY

α′S
, and (3) res is the result of Φ∣QY

α′S
where Φ∣QY

βS[�↦F] is true if res = Sat and Φ∣QY
βS[�↦T] is false otherwise. The leaf nodes

⟨∃X , αS⟩ are labeled with the result of the propositional formula Φ∣∃XαS , that is, either
Unsat or Sat(αX). The root node for some formula Φ = QX . Ψ is the designated node
⟨QX , {si ↦ F ∣ Ci ∈ ϕ}⟩. We depict such a recursion tree in Figure 2.1.

After the algorithm terminates, we use the recursion tree to extract the relevant in-
formation to build Skolem and Herbrand functions, respectively. Note that for true QBFs
and existential nodes as well as false QBFs and universal nodes, the respective nodes
have exactly one outgoing edge where the candidate assignment was verified recur-
sively. Due to the correctness lemmata : Lemma 2.12 and : Lemma 2.13, only the la- : Page 31

: Page 33beling of the edges, i.e., the assignment αX and the returned partial assignment βS are
relevant. Thus, we store a list of these verified candidates as a sequence of pairs ⟨βS , αX⟩ ∈
(A�(S) ×A(X)) for every quantifier blockQX.

Function Extraction. We define a function invQX ∶A�(S) → B(V)which, for a given
quantifier blockQX, maps an assignment βS to a propositional formula over variablesV
bound by outer quantifiers (with respect toQX). Intuitively, invQX(βS) describes those
assignments that lead to βS in the abstraction of quantifier blockQX. We define invQX
as

invQX(βS) ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⋀
s i∈β1S

C<i ifQ = ∃

⋀
s i∈β0S

¬C<i otherwise
. (2.10)

4The equality holds if we assume optimal assumptions w.r.t. αX as discussed in Section 2.3.3 about al-
gorithmic improvements.

39

2. CLAUSAL ABSTRACTION

Let ⟨β1S , α
1
X⟩ . . . ⟨βnS , α

n
X⟩ be the pairs of verified candidates corresponding to quantifier

blockQX and let x ∈ X be some variable, the function fx ∶A(V)→ B is defined as

fx ∶=
n
⋁
i=1

⎛
⎝
(α iX(x) = 1) ∧ invQX(βiS) ∧⋀

j<i
¬invQX(β

j
S)
⎞
⎠

. (2.11)

The definition of invQX allows that fx may depend on all variables bound at outer quan-
tifiers, even those that are of the same quantifier type. By replacing those variables with
their extracted functions, one can make sure that fx depends only on its dependencies
dep(x). The size of fx , measured in terms of distinct subformulas, is linear in the number
of pairs. The function fX ∶A(V) → A(X) is defined as the union over all fx for x ∈ X,
formally fX(αV) ∶= ⊔x∈X {x ↦ fx(αV)}. The Skolem and Herband function are then
defined as the union over the functions fX for everyQX whereQ = ∃ for Skolem func-
tions andQ = ∀ for Herbrand functions.

Example 2.15. We show the function extraction for our running example
∃v ,w .∀x . ∃y, z. (w ∨ x ∨ y)(v ∨ w)(x ∨ y)(v ∨ z)(z ∨ x). From the recursion
tree in Figure 2.1, we extract the sequence ⟨s1s3, x⟩⟨s4s5, x⟩ as described above. Applying
the definition of inv∀x , we get

inv∀x(s1s3) = ¬C<1 ∧ ¬C<3 = ¬w and
inv∀x(s4s5) = ¬C<4 ∧ ¬C<5 = v .

Thus, the Herbrand function fx is defined as

fx(v ,w) = inv∀x(s4s5) ∧ ¬inv∀x(s1s3) = v ∧w .

fx depends solely on its dependencies and is functionally correct as ϕ[fx] is equal to

(w ∨ (v ∧w) ∨ y)(v ∨w)((v ∧w) ∨ y)(v ∨ z)(z ∨ v ∨w)
= (v)(w)(v ∨w)(v ∨ z)(z ∨ v ∨w)
= (v)(w)(z)(z ∨ v ∨w) = F .

Theorem 2.16. Skolem and Herbrand functions generated by the clausal abstraction algorithm
are correct.

Proof. Let Φ be a true QBF over existential and universals variables V∃ and V∀, respec-
tively, and let f be the Skolem function as described above. It holds that f = ⊔v∈V∃ fv
is well-formed by construction. Assume that f is not functionally correct. Thus, there is
an assignment α∀ of the universal variables V∀ such that α∀ ⊧ ¬ϕ[f]. We show that f
and α∀ together lead to a root-to-leaf path in recursion tree such that all clauses in the
matrix are satisfied. In detail, we build this path by a traversal of the recursion tree where
at every node we take the leftmost choice such that

• at an existential node ⟨∃X , αS⟩, we take the unique edge labeled with Sat and

40

2.5. Integrating Partial Expansion

ϕ[vw]

w

ϕ[vw]

w

v

ϕ[vw]

w

ϕ[vw]

w

v

(a) A full expansion tree

ϕ[vw]

w

ϕ[vw]

w

v

ϕ[vw]

w

ϕ[vw]

w

v

(b) A partial expansion tree

Figure 2.2: A representation of full and partial expansion trees for formula
∀v ,w . ∃x , y. ϕ, where ϕ = (v → x) ∧ (w → y) ∧ (x ∨ y). The root-to-leaf
paths represent a universal assignment α{v ,w} and the corresponding leaf node contains
the propositional formula ϕ[α{v ,w}] expanded with α{v ,w}. Both trees witness the
unsatisfiability of∀v ,w . ∃x , y. ϕ.

• at an universal node ⟨∀X , αS⟩, we take the leftmost edge labeled with
Sat(βS) such that the set of clauses in Φ∣∀XβS[�↦F] is a superset of the clauses
in (Φ∣∀XαS)[α∀∣X]. Intuitively, the assignment α∀∣X satisfies more clauses than
needed to show that the remaining subformula is true. This partial assignment
βS would have excluded α∀∣X under the assumption αS in the refinement step of
SOLVE∀(.) Note, that such an edge has to exist and all outgoing edges are labeled
with Sat as otherwise, the universal node would not return Sat itself.

By construction, such a path exists and it is consistent with the Skolem function f due
to Equation 2.11. Thus, f produces an assignment corresponding to α∀ that satisfies the
matrix, contradicting α∀ ⊧ ¬ϕ[f]. Analogously for false QBFs.

2.5 Integrating Partial Expansion

In this section, we continue our quest started in Section 2.3.3 for improved refinements
for existential quantifiers. Expansion-based solving methods are based on the idea that
a universal quantifier∀x . ϕ can be rewritten as the conjunction ϕ[x ↦ F] ∧ ϕ′[x ↦ T]
where x is eliminated by replacing it with F and T in the left and right conjunct, respec-
tively, and by creating a copy of every variable in the right conjunct. By repeated applica-
tion, a QBF can be transformed to a propositional formula. This type of complete expan-
sion is for example implemented by the solvers QUBOS [AB02], QUANTOR [Bie04], and
AIGSOLVE [SP16]. Consider, for example, the false QBF ∀v ,w . ∃x , y. (v → x) ∧ (w →
y) ∧ (x ∨ y). Expanding v and w results into the unsatisfiable propositional formula
(xvw)(xvw)(yvw)(yvw)(xvw ∨ yvw)(xvw ∨ yvw)(xvw ∨ yvw)(xvw ∨ yvw). Here, we
annotated variables a with the assignment α of the universal variables, written aα . In
Figure 2.2a we give a visual representation of the full expansion tree, that is, a tree whose
root-to-leaf nodes represent all assignments α to universal variables.

Having to expand each and every universal variable and the resulting blow-up can

41

2. CLAUSAL ABSTRACTION

be, however, avoided in many cases by a method called partial expansion. The idea is
that already a subset of universal assignments can rule out the existence of any Skolem
function. Instantiating the universal assignment {v ↦ T,w ↦ T} in our example above
leads an unsatisfiable formula (xvw)(yvw)(xvw ∨ yvw). Thus, there can be no Skolem
function for x and y if there is no assignment satisfying the matrix on a single universal
assignment. In Figure 2.2b we give a visual representation of the partial expansion tree,
that is, an expansion tree that does not necessarily contain all assignments. The solvers
RAREQS [Jan+16] and IJTIHAD [Blo+18] base their reasoning on partial expansion. In
Chapter 5 we show how to generalize this method for DQBF, which allows non-hierarchal
dependencies, by using the notion of consistency of Skolem functions on a partial expan-
sion tree.

We are now going to show how to integrate partial expansion into the clausal abstrac-
tion algorithm. This integration combines the results of the correctness proof given in
Section 2.3.2 and the function extraction presented in the previous section. The key in-
sight is, that if SOLVE∃ in:Algorithm 2.3 determines that a quantified subformulaΦ[α′S]: Page 28
is unsatisfiable, the witnessing Herbrand function corresponds to a partial expansion tree
that can be used to strengthen the abstraction θX . As we will show in Chapter 3, where
we provide a proof-theoretic analysis, the resulting approach can be seen as a hybrid ap-
proach, enabling both expansion-based andQ-resolution-based, reasoning.

Notation. We start by providing necessary preliminaries and make the intuitive de-
scription given above more precise. For more details, we refer the reader to [JM15a]. A
PARTIAL EXPANSION TREE for QBF Φ with u universal quantifier blocks and matrix ϕ is a
rooted tree T such that every path p0

α1Ð→ p1⋯
αuÐ→ pu in T from the root p0 to some

leaf pu has exactly u edges and each edge pi−1
α iÐ→ pi is labeled with an assignment αi

to the universal variables at universal level i. Each path inT is uniquely defined by its la-
beling. Let T be a partial expansion tree and P = p0

α1Ð→ p1⋯
αuÐ→ pu be a path from the

root p0 to some leaf pu. For an existential variable x we define expand-var(P, x) = xα
where xα is a fresh variable and α = (⊔1≤i≤u αi) ∣dep(x) is the universal assignment of the
dependencies of x. For a propositional formulaϕ define expand(P, ϕ) as instantiatingϕ
with α1, . . . , αu and replacing every existential variable x by expand-var(P, x). We de-
fine expand(T , Φ) as the conjunction of all expand(P, ϕ) for each root-to-leaf path P
in T .

Expansion Refinement. When the candidate verification algorithm returns
Unsat(βS) in line 8 in Algorithm 2.3, we extract the partial expansion tree T that
witnesses the unsatisfiability result. Extracting partial expansion trees during solving is
closely related to function extraction. Given an existential node ⟨∃X , αS⟩ in the recursion
tree (see Section 2.4), we build the partial expansion tree by traversing the subtree of
⟨∃X , αS⟩ and record every universal assignment α at an edge labeled with Unsat. In the
recursion tree depicted in Figure 2.1 and root node ⟨∃{v ,w}, {si ↦ 0 ∣ 1 ≤ i ≤ 5}⟩, the

extracted partial expansion tree T contains the paths p0
{x↦F}
ÐÐÐ→ p1 and p0

{x↦T}
ÐÐÐ→ p′1

from root p0 to the leaves p1 and p′1.

42

2.6. Experimental Evaluation

Finally, given the partial expansion tree T , we build the clausal abstraction for every
clause in the expansion formula expand(T , Φ). The resulting clauses are added to the
abstraction θX . Formally, after the clausal abstraction refinement in line 8, we update
the abstraction by

θX ← θX ∧ ⋀
C∈expand(T ,Φ)

clabs∃X(C) .

Correctness of this refinement follows from the soundness of the partial expansion, i.e.,
replacing the matrix ϕ of some QBF Φ by ϕ ∧ expand(T , Φ) preserves satisfiability for
every expansion treeT , and the correctness of the clausal abstraction. In the implemen-
tation, we can re-use the existent satisfaction variables si of some clauseCi for every cor-
responding expanded clauseCα

i as the literals bound by outer quantifier are equal, that
is,C<i = (Cα

i)<.

2.6 Experimental Evaluation

We implemented the clausal abstraction algorithm in a tool called CAQE5 (Clausal Ab-
straction for Quantifier Elimination) that takes as input a quantified Boolean formula
encoded in the QDIMACS format. As the solver for the propositional abstractions, we
used the SAT solver CryptoMiniSat [SNC09] version 5.0.1. We compare CAQE against
publicly available QBF solvers that support the QDIMACS format, namely DEPQBF [LE17]
version 6.03, DYNQBF [CW16] version 1.1.1, GHOSTQ [Kli+10] version 2017, QESTO [JM15b]
version 1.0, QUTE [PSS17] version 1.1, and RAREQS [Jan+16] version 1.1. For our experi-
ments, we used a machine with a 3.6 GHz quad-core Intel Xeon (E3-1271 v3) processor
and 32 GB of memory. The timeout and memout were set to 10 minutes and 8 GB, respec-
tively. We use the prenex CNF benchmark set from the QBF competition QBFEVAL’18 6.
As preprocessors, we used BLOQQER [BLS11] version 031, HQSPRE [Wim+17] version 1.4,
and QRATPRE+ [LE18b] version 1.0. The cactus plot given in Figure 2.3 shows the num-
ber of solved instances for the best combination of preprocessor and solver. Detailed
solving results are shown in Table 2.1. CAQE solves overall most instances, followed by
RAREQS and QESTO. Further, all solvers solved significantly more instances when using
HQSPRE compared to BLOQQER. At the same time, the improvement due to HQSPRE is
much smaller for the solvers CAQE and RAREQS that are based on (partial) expansion
than for the other solvers, possibly due to the more aggressive in expansion of universal
variables in HQSPRE compared to BLOQQER.

Extended Refinements. We discuss the effect of the stronger refinements given in Sec-
tion 2.3.3 and the expansion refinement given in Section 2.5. There is a tradeoff between
the precision of the abstraction and the cost of these satisfiability calls. The more pre-
cise an abstraction, the more losing assignments are excluded, i.e., higher precision can
potentially reduce the number of propositional satisfiability calls. Both presented opti-
mizations can potentially improve precision, but both of them may also increase the time

5Source code available at https://github.com/ltentrup/caqe
6Available at http://www.qbflib.org/qbfeval18.php

43

https://github.com/ltentrup/caqe
http://www.qbflib.org/qbfeval18.php

2. CLAUSAL ABSTRACTION

0 50 100 150 200 250 300
0

200

400

600

solved instances

tim
e(

se
c.)

CAQE
RAReQS

Qesto
DepQBF

Qute
Ijtihad
dynQBF
GhostQ

Figure 2.3: Cactus plot showing the number of solved instances on the prenex CNF bench-
mark set of QBFEVAL’18 using HQSPRE as preprocessor.

Table 2.1: Number of solved formulas by combinations of solvers and preprocessors on
the prenex-CNF benchmark set of QBFEVAL’18. For every combination, we give the num-
ber of solved instances overall and broken down by result, that is, satisfiable and unsat-
isfiable.

preprocessor HQSPRE BLOQQER QRATPRE+ none
solver SOLVED SAT UNSAT SOLVED SAT UNSAT SOLVED SAT UNSAT SOLVED SAT UNSAT

CAQE 309 122 187 273 115 158 161 63 98 141 43 98
RAREQS 274 102 172 247 94 153 136 47 89 139 28 111
QESTO 269 108 161 196 89 107 127 52 75 98 29 69
DEPQBF 246 97 149 181 91 90 138 70 68 136 53 83
QUTE 239 79 160 159 58 101 116 40 76 94 17 77
IJTIHAD 201 75 146 198 74 124 125 39 86 131 23 108
DYNQBF 201 85 116 113 59 54 81 56 25 59 39 20
GHOSTQ – – – – – – – – – 176 89 87

spent inside the SAT solver. Further, the relative performance of the optimizations de-
pends on the benchmark set as well as the applied preprocessor. Thus, it is advisable to
evaluate those optimizations in practice on a case-by-case basis. However, in our exper-
iments, we found that the expansion refinement optimization vastly improves the num-
ber of solved instances independently of the preprocessor. Also, when comparing the
running times directly, as done in the scatter plot depicted in Figure 2.4, the negative ef-
fect of the running time of the propositional SAT solver is reasonably small.

Regarding the stronger refinements, we found that the effect on instances prepro-
cessed with HQSPRE is negligible. When using BLOQQER, however, the optimization im-

44

2.6. Experimental Evaluation

10−1 100 101 102
10−1

100

101

102

CAQE without expansion refinement

CA
Q

E
w

ith
ex

pa
ns

io
n

re
fin

em
en

t
10−1 100 101 102

10−1

100

101

102

CAQE without stronger refinement

CA
Q

E
w

ith
st

ro
ng

er
re

fin
em

en
t

10−1 100 101 102
10−1

100

101

102

CAQE without extended refinement

CA
Q

E
w

ith
ex

te
nd

ed
re

fin
em

en
t

Figure 2.4: Scatter plot comparing the solving time (in sec.) of CAQE with and without ex-
tended refinements (expansion refinement and stronger refinement) and preprocessing
using BLOQQER. Both axes have logarithmic scale.

proved the number of solved instances significantly. Further, the combination of both
refinements, which we call extended refinement (which is also the default configura-
tion used in the evaluation above), is the best performing variant of CAQE when using
BLOQQER as the preprocessor. In our experiments, the combination performed better
than any of the two refinements alone, indicating that they are in some sense orthog-
onal, as shown in the scatter plots in Figure 2.4.

Algorithmic Choices. In the following, we want to quantify the impact of the algorith-
mic choices described in this chapter. For this setup, we used a version of CAQE, which
is close to the initial version of Section 2.3. Then, we enabled one of the algorithmic im-
provements mentioned in this chapter to evaluate their impact. The results are given in
Table 2.2. The most impact in terms of solved instances has the expansion refinement,
which can be explained by the corresponding improvement of the underlying proof sys-
tem [Ten17]. The sum of additionally solved instances of the optimizations that are en-
abled by default (304) is smaller than the number of instances solved by CAQE (309),
which hints at a positive synergy regarding the combination of individual optimizations.

45

2. CLAUSAL ABSTRACTION

Table 2.2: This table shows the impact of select algorithmic choices on a baseline version
of CAQE using HQSPRE as preprocessor. The baseline solves 229 instances on the prenex-
CNF benchmark set of QBFEVAL’18. For every algorithmic choice, we give the difference
of solved instances (∆) compared to the baseline and detailed results (+) and (−).

Algorithmic choice default described in ∆ + −

Expansion refinement yes Section 2.5 +50 58 8
Tree-shaped quantifier prefix yes Section 2.3.3 +13 16 3
Stronger refinement yes Section 2.3.3 +6 7 1
Sharing of abstraction literals yes Section 2.3.3 +6 14 8
Equivalence constraints in abstraction no [JM15b] +3 5 2
Backtracking over multiple quantifiers no Section 2.3.3 −1 1 2
Dropping redundant refinement literals no Section 2.3.3 −1 6 7

2.7 Summary

In this section, we presented the clausal abstraction approach for solving quantified
Boolean formulas. First, we presented the clausal abstraction algorithm for the one-
alternation fragment of QBF in Section 2.2, followed by the generalization to QBF with
arbitrary many alternations in Section 2.3. Among others, we included a detailed de-
scription of the basic algorithms, algorithmic improvements, and correctness proofs. The
latter gave rise to the function extraction and the expansion-based refinements, as dis-
cussed in Section 2.4 and 2.5. Our experimental evaluation shows that the implemen-
tation of the clausal abstraction in the solver CAQE outperforms state-of-the-art solvers
currently. As encouraging as those results are, they only are a preview of the potential of
the clausal abstraction approach: Not everything described in Section 2.3.3 is fully imple-
mented in CAQE7, nor do we fully understand the interplay between the different opti-
mizations yet, which, potentially, leaves much room for further solving improvements. In
the following section, we take a proof-theoretic view and introduce a calculus for clausal
abstraction. The comparison to existing proof systems reveals improvements that further
improve the empirical solving performance.

7Currently, neither the non-static refinement from Equation 2.9 nor the matrix satisfiability preserving
abstraction strengthening is implemented.

46

Chapter 3

A Proof System for Clausal
Abstraction

In the previous chapter, we introduced the clausal abstraction algorithm for quantified
Boolean formulas in prenex conjunctive normal form. We explained algorithmic details,
proved the algorithm sound and complete, and detailed optimizations like the strong-
unsat refinement. In this chapter, we focus on the proof-theoretical underpinnings. The
motivation for this work was based on the following observation. The abstraction-based
solvers RAREQS [Jan+12; Jan+16], QESTO [JM15b], and CAQE [RT15] share algorithmic sim-
ilarities like working recursively over the structure of the quantifier prefix and using SAT
solver to enumerate candidate solutions. However, instead of using partial expansions of
the QBF as RAREQS does, the more recent approaches base their refinements on whether
a set of clauses is satisfied or not. Despite those algorithmic similarities, the performance
characteristics of the resulting solver in experimental evaluations are very different and
in many cases orthogonal: While RAREQS tends to perform best on instances with a low
number of quantifier alternations, QESTO and CAQE have an advantage in instances with
many alternations [RT15].

Proof theory has been repeatedly used to improve the understanding of different
solving techniques. For example, the proof calculus ∀Exp+Res [JM15a] has been devel-
oped to characterize aspects of expansion-based solving. The results of this section are
three-fold. We introduce a proof system corresponding to clausal abstraction, which we
call ∀Red+Res. The levelized nature of the clausal abstraction algorithm is reflected by
the rules of ∀Red+Res, universal reduction and propositional resolution, which are ap-
plied to blocks of quantifiers. We show that this calculus is inherently different from
∀Exp+Res, explaining the empirical performance results. In fact, we show that∀Red+Res
is polynomially simulation equivalent to level-orderedQ-resolution [JM15a], which is the
underlying proof calculus of search-based solvers. Then, we model the strong-unsat re-
finement as an additional proof rule in the∀Red+Res calculus and show that the result-
ing proof calculus cannot by polynomially simulated by∀Red+Res. Lastly, we show how
to incorporate partial expansion, represented by the calculus∀Exp+Res, as a new axiom
rule in ∀Red+Res. The resulting calculus, ∀Red+∀Exp+Res, is stronger than merely ap-

47

3. A PROOF SYSTEM FOR CLAUSAL ABSTRACTION

plying either calculi: We show that there is a family of formulas where both, ∀Red+Res
and ∀Exp+Res have exponential refutations, whereas there exists a polynomial refuta-
tion in the∀Red+∀Exp+Res calculus.

QBF proof theory is usually studied around the refutation of formulas, mainly in-
herited by methods developed around propositional satisfiability. To show the truth of
a QBF, one merely has to proof the refutation of the negated formula. There is, how-
ever, also work on the theoretical foundations for true QBFs. The dual to Q-resolution,
which applies term-resolution, is exponentially weaker than the negation and refutation
method [JM17]. Beyond prior published results on the proof system of clausal abstrac-
tion [Ten17], we provide a proof system for true QBFs and show its equivalence to the dual
ofQ-resolution [LES16].

This chapter is based on work published in the proceedings of CAV [Ten17].

Related Work. Q-resolution [KKF95] is a variant of propositional refutation that is
sound and refutation complete for QBF. There have been extensions proposed to
Q-resolution, like long-distance resolution [ZM02] and universal resolution [Gel12],
some of which are implemented in the QCDCL solver DEPQBF [LB10; LE17]. Recently,
there have also been extensions proposed that extend Q-resolution by more general-
ized axioms [LES16]. In some sense, the (∀exp-res) rule presented in Section 3.3 can be
viewed as a new axiom rule for the∀Red+Res calculus.

The ∀Exp+Res calculus [JM15a] was introduced to allow reasoning over expansion-
based QBF solving, implemented by the QBF solver RAREQS [Jan+16]. The same desire
motivated the work on ∀Red+Res, namely understanding the performance of the re-
cently introduced QBF solvers CAQE [RT15] and QESTO [JM15b]. The incomparability of
∀Exp+Res andQ-resolution [JM15a; BCJ15] lead to the creation of stronger proof systems
that unify those calculi, like IR-Calc [BCJ14b]. Further separation results, between variants
of IR-Calc and variants ofQ-resolution, were given in [BCJ15]. Those extensions, however,
do not have accompanying implementations. This also applies to later work based on
first-order resolution [Egl16].

There are two restrictions to Q-resolution studied in the literature, that is level-
ordered and tree-like Q-resolution. Those restricted calculi were shown to be incompa-
rable [MS16]. QCDCL based solvers usually exhibit level-ordered proofs (modulo unit-
propagation) [Jan16]. It was shown that ∀Exp+Res polynomially simulates tree-like
Q-resolution [JM15a]. A recent result [Bey+19] shows that DAG-like Q-resolution proofs
of QBFs with an a priori fixed bound on the quantifier alternations can be efficiently
transformed into an ∀Exp+Res proof. We showed that ∀Red+Res is polynomial sim-
ulation equivalent to level-ordered Q-resolution, which explains similar performance
characteristics of the underlying solvers. Further, the strong-unsat rule presented in
Section 3.2.1 can be viewed as a first step towards breaking the level-ordered restric-
tion. The ∀Red+∀Exp+Res calculus polynomially simulates level-ordered and tree-like
Q-resolution.

Quantified resolution asymmetric tautology (QRAT) is a proof calculus [HSB14a] in-
troduced in the context of preprocessing and is able to express all preprocessing tech-

48

3.1. Definitions

C ∪ C′

C ∪ {l} C′ ∪ {l}

(a) Resolution rule

F

c1 c1

c1 ∨ c2 c2

(b) Resolution proof for (c1)(c2)(c1 ∨ c2)

Figure 3.1: Visualization of the resolution rule as a graph.

niques implemented in the state-of-the-art preprocessor BLOQQER [HSB14b]. Recently,
it was shown that it subsumes∀Exp+Res [KS19].

While in the case of propositional SAT solving, symmetries and symmetry breaking
are well-understood, there has been much less work on symmetries in QBF. Recently,
Kauers and Seidl [KS18b] introduced a general framework for the characterization of sym-
metries in QBF. Further, they extendedQ-resolution with a symmetry rule [KS18a].

3.1 Definitions

3.1.1 Resolution

Propositional RESOLUTION is a well-known method for refuting propositional formulas
in conjunctive normal form (CNF). The resolution rule allows to merge two clauses that
contain the same literal, but in opposite signs.

C ∪ {l} C′ ∪ {l}
C ∪ C′

res

Given a matrix ϕ, a RESOLUTION PROOF π is a sequence of applications of the resolution
rule where the clauses inϕ are the leaves. A propositional formula given as matrixϕ is un-
satisfiable if, and only if, there is a resolution proof that derives the empty clause. We vi-
sualize resolution proofs by a graph where the nodes with indegree 0 are called the leaves
and the unique node with outdegree 0 is called the root. We depict the graph represen-
tation of a resolution proof in Figure 3.1b. The size of a resolution proof is the number of
nodes in the graph.

3.1.2 Proof Systems

We consider proof systems that can refute quantified Boolean formulas. To enable com-
parison between proof systems, one uses the concept of POLYNOMIAL SIMULATION . A
proof system P polynomially simulates (p-simulates) P′ if there is a polynomial p such
that for every formula Φ it holds that if there is a proof of Φ in P′ of size n, then there is
a proof of Φ in P whose size is less than p(n). We call P and P′ polynomial equivalent, if

49

3. A PROOF SYSTEM FOR CLAUSAL ABSTRACTION

∀Red+∀Exp+Res+SU

∀Red+∀Exp+Res

∀Exp+Res

∀Red+Res+SU

∀Red+Res
level-ordered
Q-resolution

Q-resolution

tree-like
Q-resolution

Corollary 3.14
Theorem 3.15

Theorem 3.7

Theorem 3.5

[JM15a]

Theorem 3.21

Theorem 3.20

[MS16][MS16], Theorem 3.5

Figure 3.2: Overview of the proof systems and their relations. Solid arrows indicate p-
simulation relation. Dashed lines indicate incomparability results. The gray boxes are
the ones introduced in this section.

P′ additionally p-simulates P. A refutation based calculus (such as resolution) can proof
validity by refuting the the negation of a valid formula.

Figure 3.2 gives an overview over the proof systems introduced in this chapter and
their relation. An edge P → P′ means that P p-simulates P′ (transitive edges are omit-
ted). A dashed line indicates incomparability results.

3.2 A Refutation Proof Calculus for Clausal Abstractions

Given a PCNF formula QX1 . . .QXn .⋀1≤i≤m Ci . We extend the notation C○i (for ○ ∈
{<, ≤, =, ≥, >}) introduced in: Section 2.3 by annotating the quantifier level k explicitly.: Page 25
Given a clause Ci , we write C=ki to denote the literals of Ci that are bound at quantifier
level k (1 ≤ k ≤ n). As before, we useC<ki andC>ki to denote the literals bound before and
after level k, respectively. Further, we define C≤0i = C

≥n+1
i = ∅ for every Ci ∈ ϕ. We use

C to denote a set of clauses andQk ∈ {∃,∀} to denote the quantification type of level k.
We start by defining the object on which our proof calculus ∀Red+Res is based on.

A proof object P k consists of a set of indices P where an index i ∈ P represents the i-
th clause in the original matrix and k denotes the k-th level of the quantifier hierarchy.
We define an operation lit(P k) = ⋃i∈P C=ki , that gives access to the literals of clauses
contained in P k . The leaves in our proof system are singleton sets {i}z where z is the
maximum quantification level of all literals in clauseCi . The root of a refutation proof is
the proof objectP0 that represents the empty set, i.e., lit(P0) = ∅.

The rules of the proof system is given in Figure 3.3. It consists of three rules, an axiom
rule (init) that generates leaves, a resolution rule (res), and a universal reduction rule
(∀red). The latter two rules enable us to transform a premise that is related to quantifier
level k into a conclusion that is related to quantifier level k − 1. The universal reduction
rule and the resolution rule are used for universal and existential quantifier blocks, re-
spectively.

50

3.2. A Refutation Proof Calculus for Clausal Abstractions

P k
1 P k

2 ⋯ P k
j π

(⋃i∈{1,..., j}Pi)
k−1 res Qk = ∃

π is a resolution refutation proof for ⋀
1≤i≤ j

lit(P k
i)

P k

P k−1 ∀red Qk = ∀
∀l ∈ lit(P k). l ∉ lit(P k)

{i}k
init 1 ≤ i ≤ m

C>ki = ∅

Figure 3.3: The rules of the∀Red+Res calculus.

Resolution rule. There is a close connection between (res) and the propositional reso-
lution as(res)merges a set of proof objectsP k

i of level k into a single proof object of level
k− 1. It does so by using a resolution proof for a propositional formula that is constructed
from the premisesP k

i . This propositional formula⋀1≤i≤ j lit(P k
i) contains only literals of

level k. Intuitively, this rule can be interpreted as follows: A resolution proof over those
clauses rules out any possible existential assignment at quantifier level k, thus, one of
those clauses has to be satisfied at an earlier level.

Universal reduction rule. In contrast to (res), (∀red)works on single proof objects. It
can be applied if level k is universal and the premise does not encode a universal tautol-
ogy, i.e., for every literal l ∈ lit(P k), the negated literal l is not contained in lit(P k).

Graph representation. A proof in the ∀Red+Res calculus can be represented as a di-
rected acyclic graph (DAG). The nodes in the DAG are proof objects P k and the edges
represent applications of (res) and (∀red). The rule (res) is represented by a hyper-
edge that is labeled with the propositional resolution proof π. Edges representing the
universal reduction can thus remain unlabeled without introducing ambiguity. The size
of a ∀Red+Res proof is the number of nodes in the graph together with the number of
inner (non-leaf, non-root) nodes of the containing propositional resolution proofs.

A refutation in the∀Red+Res calculus is a proof that derives a proof objectP0 at level
0. A proof for someP k is a∀Red+Res proof with rootP k . Thus, a proof forP k can also be
viewed as a refutation for the formulaQXk+1 . . .QXn .⋀i∈P C>ki starting with quantifier
level k + 1 and containing clauses represented byP .

Example 3.1. Consider the following false QBF

∃e1
°
1

. ∀u1
°
2

. ∃c1, c2
²

3

. (e1 ∨ c1
²

C1

)(u1 ∨ c1
´¹¹¹¹¸¹¹¹¹¶

C2

)(e1 ∨ c2
²

C3

)(u1 ∨ c2
´¹¹¹¹¸¹¹¹¹¹¶

C4

)(c1 ∨ c2
´¹¹¹¹¸¹¹¹¹¶

C5

) . (3.1)

51

3. A PROOF SYSTEM FOR CLAUSAL ABSTRACTION

({1, 2, 3, 4, 5}0,F)

π3

({1, 4, 5}1, e1) ({2, 3, 5}1, e1)

({1, 4, 5}2, u1) ({2, 3, 5}2, u1)

π1 π2

({1}3, c1) ({4}3, c2) ({5}3, c1 ∨ c2) ({3}3, c2)({2}3, c1)

Figure 3.4: A∀Red+Res refutation for the formula given in Equation 3.1.

The refutation in the ∀Red+Res calculus is given in Figure 3.4. In the nodes, we repre-
sent the proof objectsP k in the first component and the represented clause in the sec-
ond component. The proof follows the structure of the quantifier prefix, i.e., it needs four
levels to derive a refutation. The resolution proof π1 for propositional formula

lit({1}3) ∧ lit({4}3) ∧ lit({5}3) ≡ (c1)(c2)(c1 ∨ c2)

is depicted in Figure 3.1b.

Remark 3.2 (Correspondence to assignments of satisfaction variables S). The clauses
indexed in a proof object P correspond to the partial assignments returned by Algo-
rithm 2.3 and 2.4 in the case of unsatisfiability. This connection has already been used
to extract Herbrand functions in Section 2.4.

In the following, we give a formal correctness argument and compare our calculus to
established proof systems. A QBF proof system is sound if deriving a proof implies that the
QBF is false and it is refutational complete if every false QBF has a proof.

Theorem 3.3. ∀Red+Res is sound and refutational complete for QBF.

Proof. The completeness proof is carried out by induction over the quantifier prefix. For
some quantified formulaQX, we build proof objects for subformulas and combine them
into a proof forQX.

Induction base. Let∃X . ϕbe a false QBF andϕbe propositional. Then(res)derives some
P0, where P is the set of indices of clauses contained in the resolution proof of ϕ, be-
cause resolution is complete for propositional formulas. Let∀X . ϕ be a false QBF and ϕ
be propositional. Picking an arbitrary (non-tautological) clauseCi and applying (∀red)
leads to {i}0.

52

3.2. A Refutation Proof Calculus for Clausal Abstractions

Induction step. Let ∃X . Φ be a false QBF, i.e., for all assignments αX the QBF Φ[αX] is
false. Hence, by induction hypothesis, there exists a ∀Red+Res proof for every Φ[αX].
We transform those proofs in a way that they can be used to build a proof for Φ. Let P
be a proof of Φ[αX]. P has a distinct root node (representing the empty set), that was
derived using (∀red) as Φ[αX] starts with a universal quantifier. To embed P in Φ, we
increment every level in P by one, as Φ has one additional (existential) quantifier level.
Then, instead of deriving the empty set, the former root node derives a proof object of
the formP 1. Let N be the set of those former root nodes (one for each different αX). By
construction, there exists a resolution proof π such that the empty set can be derived by
(res) using N (or a subset thereof). Assuming otherwise leads to the contradiction that
some Φ[αX] is true.

Let∀X . Φ be a false QBF, i.e., there is an assignment αX such that the QBF Φ[αX] is
false. Hence, by induction hypothesis, there exists a∀Red+Res proof forΦ[αX]. Applying
(∀red) using αX is a∀Red+Res proof for Φ.

For soundness it is enough to show that one cannot derive a clause using this calculus
that changes the satisfiability. Let Φ = QX1 . . .QXn .⋀1≤i≤m Ci be an arbitrary QBF. For
every level k and everyP k generated by the application of the∀Red+Res calculus, we ar-
gue that Φ andQX1 . . .QXn .⋀1≤i≤m Ci ∧ (⋁i∈P C≤ki) are equisatisfiable. Assume oth-
erwise, then either (∀red) or (res) have derived aP k that would make Φ false. Again,
by induction, one can show that if (∀red) derived aP k that makes Φ false, the original
premise P k+1 would have made Φ false; likewise, if (res) derived a P k that makes Φ
false, the conjunction of the premisesP k−1

1 ,P k−1
2 , . . . ,P k−1

j have made Φ false.

The soundness proof shows that we can derive “summary” clauses for every proof ob-
jectP k .

Corollary 3.4. Given a proof objectP k , adding the clauseCi = (⋁i∈P C≤ki) preserves satisfi-
ability. Further, in a∀Red+Res proof for the strengthened formula, one can replaceP k by {i}k

(and one has to modify the subsequent proof accordingly).

Comparison to Q-resolution calculus. Q-resolution [KKF95] is an extension of the
(propositional) resolution rule to handle universal quantification. The universal reduc-
tion rule allows the removal of universal literal u from a clause C if no existential literal
l ∈ C depends on u. Resolution is only allowed on existential pivots. There is a further
restriction on the applicability of the resolution rule, i.e., it is not allowed to produce tau-
tology clauses. The definitions ofQ-resolution proof and refutation are analogous to the
propositional case.

There are two restricted classes of Q-resolution that are commonly considered, that
is level-ordered and tree-likeQ-resolution. AQ-resolution proof is level-ordered if resolu-
tion of an existential literal l at level k happens before every other existential literal with
level < k. A Q-resolution proof is tree-like if the graph representing the proof has a tree
shape.

We show that ∀Red+Res is polynomially equivalent to level-ordered Q-resolution,
i.e., a proof in our calculus can be polynomially simulated in level-ordered Q-resolution

53

3. A PROOF SYSTEM FOR CLAUSAL ABSTRACTION

and vice versa. While this is straightforward from the definitions of both calculi,
this is much less obvious if one compares the clausal abstraction algorithm, given in
: Section 2.3, to QCDCL [ZM02].: Page 25

Theorem 3.5. ∀Red+Res and level-orderedQ-resolution are p-simulation equivalent.

Proof Sketch. A∀Red+Res proof can be transformed into a Q-resolution proof by replac-
ing every nodeP k by the clause (⋁i∈P C≤ki) according to Corollary 3.4 and by replacing
the hyper-edge labeled with π by a graph representing the applications of the resolu-
tion rule. The resulting graph is a level-orderedQ-resolution proof: It derives the empty
clause, contains the original clauses of the matrix as leaves and otherwise follows the lev-
els of the ∀Red+Res proof. Note that the resulting Q-resolution proof does not contain
tautologies: universal tautologies are checked in (∀red) and w.l.o.g. we can assume that
resolution proofs π in (res) do not produce tautologies. Similarly, a level-ordered Q-
resolution proof can be transformed into a∀Red+Res proof by a step-wise transformation
from leaves to the root. This way, one can track the clauses needed for constructing the
proof objectsP k at every level k.

Since the level-ordering constraint imposes an order on resolution and there are
propositional formulas that have only exponentially larger refutations when an order
is imposed [Goe92], level-ordered Q-resolution and Q-resolution have an exponential
separation. Hence, also ∀Red+Res is in general exponentially weaker than unrestricted
Q-resolution. In practice, and already noted by Janota and Marques-Silva [JM15a], solvers
that are based onQ-resolution typically produce level-orderedQ-resolution proofs.

In: Section 2.3.3, we presented an optimization that can generate new resolvents at: Page 35
level k without recursion into deeper levels was described. We model this optimization
as a new rule extending the∀Red+Res calculus and show that this rule leads to an expo-
nential separation.

3.2.1 Beyond Level-Orderedness

The goal of the strong UNSAT refinement, first described in the initial clausal abstraction
paper [RT15], is to strengthen a certain type of refinements. The basic idea behind this
optimization is that if the solver determines that, at an existential level k, a certain set of
clauses C cannot be satisfied at the same time, then every alternative set of clauses C′,
that is equivalent with respect to the literals in levels> k, cannot be satisfied as well. We
introduce the following proof rule that formalizes this intuition. We extend proof objects
P k such that they can additionally contain fresh literals, i.e., literals that were not part of
the original QBF. Those literals are treated as they were bound at level k, i.e., they are
contained in lit(P k) and can thus be used in the premise of the rule (res), but are not
contained in the conclusion P k−1. Note that, adding literals to proof objects is merely
syntactic sugar and can be desugared by introducing additional variables and clauses. An

54

3.2. A Refutation Proof Calculus for Clausal Abstractions

example for the application of (SU) is given in the proof of Theorem 3.7 below.

(P ∪ {i})k

({a} ∪P)k {a, j1}k ⋯ {a, jn}k
SU Qk = ∃,

C>kj ⊆ C>ki for all j ∈ { j1, . . . , jn},
a fresh variable

Theorem 3.6. The rule (SU) is sound.

Proof. In a resolution proof at level k, one can derive the proof objects (P ∪ { j})k for
j ∈ { j1, . . . , jn} using the conclusion of the rule (SU). IfP contains a literal, one can de-
rive a set of literal-free proof objects using resolution and the argumentation below holds
for each of the elements in this set. Assume we have a proof for(P∪{i})k (premise), then
the quantified formula∀Xk+1 . . .QXn .⋀i∗∈P C>ki∗ ∧C

>k
i is false. Thus, the QBF with the

same quantifier prefix and matrix, extended by some clause C>kj for j ∈ { j1, . . . , jn},
is still false. Since every C j subsumes Ci with respect to quantifier level greater than k
(C>kj ⊆ C>ki), the clauseC>ki is redundant and can be eliminated without changing satis-
fiability. Thus, the resulting quantified formula∀Xk+1 . . .QXn .⋀i∗∈P C>ki∗ ∧C

>k
j is false

and there exists a∀Red+Res proof for (P ∪ { j})k .

Theorem 3.7. ∀Red+Res does not p-simulate∀Red+Res+SU.

Proof. We use the family of formulas CRn that was used to show that level-ordered
Q-resolution cannot p-simulate ∀Exp+Res [JM15a]. We show that CRn has a polyno-
mial refutation in the∀Red+Res+SU calculus, but has only exponential refutations with-
out (SU). The latter follows from Theorem 3.5 and the results by Janota and Marques-
Silva [JM15a].

The formula CRn has the quantifier prefix ∃x11, . . . , xnn∀z∃a1, . . . , an , b1, . . . , bn
and the matrix is given by

(⋁
i∈1..n

ai)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A

∧(⋁
i∈1..n

bi)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
B

∧ ⋀
i , j∈1..n

(xi j ∨ z ∨ ai)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C i j

∧ (x i j ∨ z ∨ b j)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C i j

. (CRn)

One can interpret the constraints as selecting rows and columns in a matrix where i
selects the row and j selects the column, e.g., for n = 3 it can be visualized as follows:

x11 ∨ z ∨ a1 x11 ∨ z ∨ b1 x12 ∨ z ∨ a1 x12 ∨ z ∨ b2 x13 ∨ z ∨ a1 x13 ∨ z ∨ b3
x21 ∨ z ∨ a2 x21 ∨ z ∨ b1 x22 ∨ z ∨ a2 x22 ∨ z ∨ b2 x23 ∨ z ∨ a2 x23 ∨ z ∨ b3
x31 ∨ z ∨ a3 x31 ∨ z ∨ b1 x32 ∨ z ∨ a3 x32 ∨ z ∨ b2 x33 ∨ z ∨ a3 x33 ∨ z ∨ b3

In the following, we give a ∀Red+Res+SU proof. A visualization of the proof steps
is depicted in Figure 3.5. First, we derive the proof object P 1

x1 = {i1 ∣ i ∈ 1..n}
1

(lit(P 1
x1) = ⋁i∈1..n xi1) by applying the resolution and reduction rule on the clausesAand

C11,C21, . . . ,Cn1. Likewise, we derive the proof object P 1
0 = {1 j ∣ j ∈ 1..n}

1 (lit(P 1
0) =

⋁ j∈1..n x1 j) using the clausesB and ,C12, . . . ,C1n. Applying the rule (SU)onP 1
0 results in

55

3. A PROOF SYSTEM FOR CLAUSAL ABSTRACTION

B C11 C12 ⋯ C1n

π1x

P2
0

P 1
0

c1, {1 j ∣ j ∈ 2..n}

c1, c2, {1 j ∣ j ∈ 3..n}

⋯

c1, c2, . . . , cn

c1, 11

c1, 21

. . .

c1, n1

c1

c2, 12

c2, 22

. . .

c2, n2

c2

cn , 1n

cn , 2n

. . .

cn , nn

cn

P 1
x1

P2
x1

πx1

C21C11A ⋯ Cn1

P 1
x2

P2
x2

πx2

C22C12A ⋯ Cn2

⋯

F

Figure 3.5: Schematic visualization of the proof of Theorem 3.7. The blue edges indicate
applications of the (SU) rule and dotted edges denote propositional resolution steps.

P 1
1 = ({c1}∪{1 j ∣ j ∈ 2..n})1 and{c1, 11}

1, {c1, 21}
1, . . . , {c1, n1}

1 where c1 is a fresh vari-
able. Furthern−1applications of the rule(SU) starting onP 1

1 lead toP 1
n = {c j ∣ j ∈ 1..n}

1

and the proof objects {c j , i j ∣ i , j ∈ 1..n}
1, where c j are fresh variables, as all clauses in a

column are equivalent with respect to the inner quantifiers (contain z ∨ b j).
Using P 1

x1 and {c1, 11}
1, {c1, 21}

1, . . . , {c1, n1}
1 from the first (SU) application, we

derive the singleton set {c1} using n resolution steps (lit(P 1
x1) = ⋁i∈1..n xi1 and

lit({c1, i1}
1) = {c1, x i1}). Analogously, one derives the singletons {c2} . . . {cn} and to-

gether withP 1
n = {c j ∣ j ∈ 1..n} the empty set is derived. Thus, there exists a resolution

proof leading to a proof objectP0. The size of the overall proof is polynomial in the size
of the formula.

Despite being stronger than plain∀Red+Res, the extended calculus is still incompa-
rable to∀Exp+Res.

56

3.2. A Refutation Proof Calculus for Clausal Abstractions

Corollary 3.8. ∀Red+Res+SU does not p-simulate∀Exp+Res.

Proof. We use a modification of formula (CRn), which we call CR′n in the following. The
single universal variable z is replaced by a number of variables zi j for every pair i , j ∈ 1..n.

(⋁
i∈1..n

ai) ∧ (⋁
i∈1..n

bi) ∧ ⋀
i , j∈1..n

(xi j ∨ zi j ∨ ai)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C i j

∧ (x i j ∨ z i j ∨ b j)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C i j

(CR′n)

We argue that the rule(SU) is never applicable. Analogously to the proof of Theorem 3.7,
we can the proof object P 1

0 = {1 j ∣ j ∈ 1..n}
1 (lit(P 1

0) = ⋁ j∈1..n x1 j). Where before, we
could apply (SU) as the clauses C11,C21, . . . ,Cn1 are equal w.r.t. the inner variables (in
(CRn) these are z and b1, . . . , bn). In Equation CR′n all of those clauses are different due
to the variables z11, z21, . . . , zn1. Due to symmetry, this is the case for any derivable proof
objectP 1.

Hence, the proof system is as strong as level-ordered Q-resolution which has an ex-
ponential refutation of CRn while ∀Exp+Res has a polynomial refutation since the ex-
pansion tree has still only two branches [JM15a].

When compared toQ-resolution, the rule (SU) can be interpreted as a step towards
breaking the level-ordered constraint inherent to ∀Red+Res. The calculus, however, is
not as strong asQ-resolution.

Corollary 3.9. ∀Red+Res+SU does not p-simulateQ-resolution.

Proof. The formula CR′n from the previous proof has a polynomial (tree-like)
Q-resolution proof. The proof forCRn [MS16] can be adapted forCR′n.

Both results follow from the fact that the rule (SU) as presented is not applicable to
the formulaCR′n. Where inCRn, the clausesCi j are equal with respect to the inner quan-
tifier when j is fixed (z∨b j), inCR′n they are all different (z i j ∨b j). This difference is only
due to the universal variables zi j. Thus, we propose a stronger version of the rule (SU),
called (SU+), that does the subset check only on the existential variables. For the univer-
sal literals, one additionally has to make sure that no resolvent produces a tautology (as
it is the case inCR′n).

(P ∪ {i})k

({a} ∪P)k {a, j1}k⋯ {a, jn}k
SU+

Qk = ∃,
C>kj ∣∃ ⊆ C>ki ∣∃ for all j ∈ { j1, . . . , jn},
C j∣∀∪⋃i∈P C>ki ∣∀ is no tautology for all
j ∈ { j1, . . . , jn},
a fresh variable

Theorem 3.10. The rule (SU+) is sound.

Proof. We adapt the soundness proof of (SU) given in Theorem 3.6. The only change
that is needed is the argumentation why there is a∀Red+Res proof for the newly created

57

3. A PROOF SYSTEM FOR CLAUSAL ABSTRACTION

clauses Ck
j for j ∈ { j1, . . . , jn}. Remember that the existential variables are a subset,

i.e.,C>kj ∣∃ ⊆ C
>k
i ∣∃which means that if there is a propositional resolution proof involving

variables inC>ki ∣∃, there is a (potentially smaller) propositional resolution proof with the
variables in C>kj ∣∃. The universal variables are eliminated by reduction, thus, we have to
make sure that no universal tautology can be created with the other clauses in the proof
objectP which is guaranteed by the side condition of (SU+).

Corollary 3.11. CR′n has a polynomial refutation using∀Red+Res+SU+.

Proof. The proof is the same as the proof for Theorem 3.7. (SU+) is applicable as the zi j
only appear positive in clausesCi j and thus, they cannot produce tautologies.

3.3 Integrating Partial Expansion

3.3.1 The∀Exp+Res Axiom Rule

The levelized nature of the proof system allows us to introduce additional rules that can
reason about quantified subformulas. In the following, we introduce such a rule that al-
lows us to use the∀Exp+Res calculus [JM15a] within a∀Red+Res proof. This models the
partial-expansion refinement given in: Section 2.5. In the following, we re-use notation: Page 41
introduced for the expansion-refinement.

We allow to use the expansion rule (∀exp-res) in every existential level of a
∀Red+Res proof tree. By C≥k we denote a set of clauses that only contain literals bound
at level ≥ k.

T C≥k π
P k−1 ∀exp-res Qk = ∃, π is a resolution refutation of the expansion

formula expand(T , ∃Xk .∀Xk+1⋯∃Xm . C≥k)
P k−1 = {i ∣ Ci ∈ C}k−1

The rule states that if there is a universal expansion of the quantified Boolean formula
∃Xk .∀Xk+1⋯∃Xm . C≥k and a resolution refutation π for this expansion, then there is no
existential assignment that satisfies clausesC from level k. The size of the expansion rule
is the sum of the size of the expansion tree and resolution proof [JM15a].

Example 3.12. We demonstrate the interplay between (∀exp-res) and the ∀Red+Res
calculus on the following formula

1
«
∃e1 .

2
«
∀u1 .

3

∃c1, c2 .

4
ª
∀a .

5
³¹¹¹¹·¹¹¹¹µ
∃b. ∃x .

6
ª
∀z .

7
©
∃t .

(e1 ∨ c1)
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

1

(u1 ∨ c1)
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

2

(e1 ∨ c2)
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

3

(u1 ∨ c2)
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

4

(c1 ∨ c2 ∨ b ∨ a)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¶

5

(z ∨ t ∨ b)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

6

(z ∨ t)
´¹¹¹¹¹¸¹¹¹¹¹¹¶

7

(x ∨ t)
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶

8

(x ∨ t)
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶

9

To apply (∀exp-res), we use the clauses 5–9 from quantifier level 5, i.e.,
C≥5 = {(b)(z ∨ t ∨ b)(z ∨ t)(x ∨ t)(x ∨ t)}. The corresponding quantifier prefix is

58

3.3. Integrating Partial Expansion

∃b∃x∀z∃t. Using the complete expansion of z ({z → 0, z → 1}) as the expansion tree
T , we get the following expansion formula

(b)(t{z→0} ∨ b)(x ∨ t{z→0})(x ∨ t{z→0})(t{z→1})(x ∨ t{z→1})(x ∨ t{z→1}) ,

which has a simple resolution proof π. The conclusion of (∀exp-res) leads to the proof
object{5, 6, 7, 8, 9}4, but only clause 5 contains literals bound before quantification level
5. After a universal reduction, the proof continues as described in Example 3.1.

Theorem 3.13. The (∀exp-res) rule is sound.

Proof. Assume otherwise, then one would be able to derive a proof object P k−1 that is
part of a ∀Red+Res refutation proof for true QBF Φ. Thus, the clause corresponding to
P k−1 (cf. proof of Theorem 3.3) (⋁i∈P C≤ki)made Φ false. However, the same clause can
be derived directly by applying the expansion T to the original QBF, i.e., expanding uni-
versal variables beginning with quantification level k + 1, and propositional resolution
on the resulting expansion formula. Thus, this clause can be conjunctively added to the
matrix without changing satisfiability, leading to a contradiction.

The resulting proof system can be viewed as a unification of the CEGAR approaches
for solving quantified Boolean formulas [Jan+16; JM15b; RT15]. As ∀Red+Res and
∀Exp+Res are incomparable due to Theorem 3.5 and [MS16], the inclusion of the rule
(∀exp-res)makes the resulting proof system∀Red+∀Exp+Res exponentially more suc-
cinct.

Corollary 3.14. ∀Exp+Res does not p-simulate∀Red+∀Exp+Res.

Proof. ∀Exp+Res does not p-simulate level-orderedQ-resolution [MS16].

More interestingly, the combination of both rules makes the proof system stronger
than merely choosing between expansion and resolution proof upfront.

Theorem 3.15. There is a family of quantified Boolean formulas that has polynomial refutation
in∀Red+∀Exp+Res, but has only exponential refutations in∀Red+Res and∀Exp+Res.

Proof. For this proof, we take two formulas that are hard forQ-resolution and∀Exp+Res,
respectively. We build a new family of formulas that has a polynomial refutation in
∀Red+∀Exp+Res, but only exponential refutations in∀Red+Res and∀Exp+Res.

The first formula we consider is formula (2) form [JM15a], that we call DAGn in the
following:

∃e1∀u1∃c1c2⋯∃en∀un∃c2n−1c2n .
(⋁
i∈1...2n

c i) ∧ ⋀
i∈1...n
(e i ∨ c2i−1) ∧ (ui ∨ c2i−1) ∧ (ei ∨ c2i) ∧ (ui ∨ c2i) (DAGn)

It is known that DAGn has a polynomial level-ordered Q-resolution proof and only ex-
ponential ∀Exp+Res proofs [JM15a]. As the second formula, we use the QParityn for-
mula [BCJ15]

∃x1⋯xn∀z∃t2⋯tn . xor(x1, x2, t2)∧ ⋀
i∈3...n

xor(ti−1, xi , ti)∧(z∨tn)∧(z∨tn) (QParityn)

59

3. A PROOF SYSTEM FOR CLAUSAL ABSTRACTION

where xor(o1, o2, o) = (o1 ∨ o2 ∨ o) ∧ (o1 ∨ o2 ∨ o) ∧ (o1 ∨ o2 ∨ o) ∧ (o1 ∨ o2 ∨ o)
defines o to be equal to o1⊕o2. QParityn has a polynomial∀Exp+Res refutation but only
exponentialQ-resolution refutations [BCJ15]. We construct the following formula

∃e1∀u1∃c1c2⋯∃en∀un∃c2n−1c2n .∀a∃b. ∃x1⋯xn∀z∃t2⋯tn .
⋀
i∈1...n
(e i ∨ c2i−1) ∧ (ui ∨ c2i−1) ∧ (ei ∨ c2i) ∧ (ui ∨ c2i) ∧

(a ∨ b ∨⋁
i∈1...2n

c i) ∧ xor(x1, x2, t2) ∧⋀
i∈3...n

xor(ti−1, xi , ti) ∧ (z ∨ tn ∨ b) ∧ (z ∨ tn)

Not that a is pure in the formula above as it is only used such that the existential
variable b that connects both formulas does not collapse with the previous quanti-
fier block. We argue in the following that this formula has a polynomial refutation in
∀Red+∀Exp+Res. First, using (∀exp-res)we can derive the proof object containing the
clause (a ∨ ⋁i∈{1...2n} c i) using the expansion tree T = {z → 0, z → 1} and the clauses
from the last row (analogue to Example 3.12). This proof is analogous to the ∀Exp+Res
proof for QParity [BCJ15] and, thus, polynomial in size. After applying universal reduc-
tion, the proof object representing clause (⋁i∈{1...2n} c i) can be derived. For the remain-
ing formula, there is a polynomial and level-ordered resolution proof [JM15a], thus, the
formula has a polynomial∀Red+∀Exp+Res proof.

There is no polynomial Q-resolution proof, because deriving (⋁i∈{1...2n} c i) is expo-
nential inQ-resolution. Likewise, there is no polynomial∀Exp+Res proof as the formula
after deriving this clause has only exponential∀Exp+Res refutations.

One question that remains open, is how the new proof system compares to unre-
stricted Q-resolution. We already know that the new proof system polynomially simu-
lates both tree-likeQ-resolution as well as level-orderedQ-resolution.

Theorem 3.16. ∀Red+∀Exp+Res does not p-simulateQ-resolution.

Proof Sketch. We construct a formula that is hard for expansion and level-ordered
Q-resolution, but easy for (unrestricted)Q-resolution. We have already seen in the proof
of Theorem 3.15 thatDAGn is hard for∀Exp+Res but easy forQ-resolution. However, the
Q-resolution proof ofDAGn is level-ordered. Hence, we need an additional formula that
is hard to refute for level-ordered Q-resolution. We use the modified pigeon hole for-
mula from [Goe92] where unrestricted resolution has polynomial proofs and resolution
proofs that are restricted to a certain variable ordering are exponential. Using universal
quantification, one can impose an arbitrary order on a level-orderedQ-resolution proof,
thus, there is a quantified Boolean formula which has only exponential level-ordered
Q-resolution but has a polynomial Q-resolution proof. The disjunction of those two for-
mulas gives the required witness. This formula is easy to refute forQ-resolution, but the
first one is hard for∀Exp+Res and the second is hard for level-orderedQ-resolution.

3.3.2 Expanding Conflict Clauses

The applicability of the expansion rule introduced in the previous section is limited to
be an axiom rule, that is, only using clauses of the original formula. In this section, we

60

3.3. Integrating Partial Expansion

({1, 2, 3, 4, 5}0, �)

π

{u ↦ T, v ↦ T} ({1, 2, 3}2, x)

({1, 2, 3}2, v)

π′

({1}4, y) ({2}4, y ∨ z) ({3}4, z)

Figure 3.6: A refutation using the rule (∀exp-res+).

remove this limitation in the proof system by allowing universal expansion to also use
clauses that are derived by the application of other proof rules. In order to allow the
(∀exp-res) to be applied as a non-axiom rule, we use the knowledge that proof object
P k forQk = ∃ can be represented equivalently as clauses. In the Corollary 3.4, we have
established that a proof object P k corresponds to the derived clause ⋁i∈P C≤ki . Then,
the only change to (∀exp-res) is to allow an arbitrary number of already derived proof
objects in the premise and we have to modify the expansion formula to include the cor-
responding conflict clauses. We call the resulting rule (∀exp-res+).

T C≥k P k1
1 ⋯ P k j

j π

P k−1 ∀exp-res+
Qk = ∃, π is a resolution refutation of the
formula expand(T , ∃Xk .∀Xk+1 . . . ∃Xm .
(C ∪ {⋁i∈P1 C

≤k1
i , . . .⋁i∈P j C

≤k j
i })

≥k)
P k−1 = ({i ∣ Ci ∈ C} ∪⋃ j∈{1,..., j}P j)

k−1

ki > k for every i ∈ {1, . . . , j}

Example 3.17. Consider the formula

∀u
1̄

. ∃x
2̄

. ∀v
3̄

. ∃y, z
±

4

. (v ∨ y
±
C1

)(y ∨ z
±
C2

)(z ∨ x
±
C3

)(u ∨ x
²

C4

)(u ∨ x
²

C5

) .

An application of the (∀exp-res+) is given in Figure 3.6.

Corollary 3.18. The non-axiom (∀exp-res+) rule is sound.

Proof. Follows from the soundness of the axiom (∀exp-res) (Theorem 3.13) together
with the soundness of the∀Red+Res proof system (Theorem 3.3) and the correspondence
of the proof objects with derived clauses inQ-resolution (Theorem 3.5).

3.3.3 Dependency Schemes

A dependency scheme [SS09a] is a technique to detect spurious dependencies in a quanti-
fied Boolean formula and have been repeatedly used in QBF solvers [LB10; PSS17] as well

61

3. A PROOF SYSTEM FOR CLAUSAL ABSTRACTION

as preprocessors [Wim+15]. Clausal abstraction, however, is inherently unable to bene-
fit from dependency schemes: After all, the algorithm recurses over the quantifier prefix
by considering maximal blocks of quantifiers of the same type. When using partial ex-
pansion, a dependency scheme can be used to eliminate spurious dependencies before
building the propositional expansion. The soundness of using dependency schemes in
partial expansion was shown in [Bey+18].

Given a QBF Φ, a dependency schemeD ⊆ V × V is a binary relation between vari-
ables ofΦ, where (v1, v2) ∈ D indicates thatv2 depends onv1. Pairs (v1, v2)not included
inD are considered independent. The trivial dependency schemeDtrv models the depen-
dencies that are given by the quantifier prefix: A pair (v1, v2) is included inDtrv if, and
only if,v1 andv2 are bound by opposite quantifiers andv1 is bound beforev2 in the quanti-
fier prefix ofΦ. For some dependency schemeD, we writeD(v) = {v′ ∈ V ∣ (v′, v) ∈ D}
for some variable v ∈ V to denote the set of dependencies of v.

We parameterize the (∀exp-res) rule by a dependency schemeD and adapt the ex-
pansion formula (Section 2.5): For an existential variable x, a root-to-leaf path P, and
a dependency schemeD we define expand-varD(P, x) = xα where xα is a fresh vari-
able and α = (⊔1≤i≤u αi) ∣D(x) is the universal assignment of the dependencies of x. In
this way, we derive the definition of the expansion formula for paths expandD(P, ϕ) and
trees expandD(T , ϕ). We denote the resulting rule by (∀exp(D)-res).

T C≥k π
P k−1 ∀exp(D)-res Qk = ∃, π is a resolution refutation of the expansion

formula expandD(T , ∃Xk .∀Xk+1 . . . ∃Xm . C≥k)
P k−1 = {i ∣ Ci ∈ C}k−1

Note that in the original definition of the rule (∀exp-res) we have implicitly used
the trivial dependency schemeDtrv, thus, (∀exp-res) and (∀exp(Dtrv)-res) are equiv-
alent. The soundness of (∀exp(D)-res) depends on the dependency schemeD. For ex-
ample, the reflexive resolution path dependency schemeDrrs [SS16], which is the most
general dependency scheme that is known to be sound for Q-resolution, is sound for
∀Exp+Res [Bey+18] as well and, thus, the rule (∀exp(Drrs)-res) is sound.

Corollary 3.19. The (∀exp(D)-res) rule is sound for every dependency schemeD such that
∀Exp(D)-Res is sound.

3.3.4 Comparison Between Extensions

We conclude this section by comparing the two extensions of the∀Red+Res calculus.

Theorem 3.20. ∀Red+∀Exp+Res and∀Red+Res+SU are incomparable.

Proof Sketch. The family of formulasCR′n separates∀Red+∀Exp+Res and∀Red+Res+SU.
Since the rule (SU) is not applicable, all∀Red+Res proofs are exponential while there is
a polynomial proof in∀Red+∀Exp+Res.

For the other direction we use a similar construction as the one used in the proof of
Theorem 3.15. We use a combination of CRn and DAGn to construct a formula that has

62

3.4. A Proof Calculus for Satisfiable Formulas

(P1 ∪P ′1)k ⋯ (P j ∪P ′j)k π

(⋃i∈{1,..., j}P ′i)
k−1 res Qk = ∀

π is a cube resolution proof for ⋁
1≤i≤ j

⋀
l∈lit(P k

i)
l

P k

P ′k−1
∃red Qk = ∃ P ′ ⊆ P

∀l ∈ lit((P \P ′)k). l ∉ lit((P \P ′)k)

{1, . . . ,m}k
init

∀i ∈ {1, . . . ,m}.C>ki = ∅

Figure 3.7: The rules of the∃Red+Res calculus.

only exponential refutations in ∀Red+∀Exp+Res, but a polynomial refutation using the
strong-unsat rule. The formulaDAGn is used to generate the premise for the application
of the strong-unsat rule to solveCRn. To generate this premise using the rule(∀exp-res)
one needs an exponential proof. There is a polynomial proof forDAGn in∀Red+Res, but
there is none forCRn, thus,∀Red+∀Exp+Res has only exponential refutations.

Theorem 3.21. ∀Red+∀Exp+Res+SU andQ-resolution are incomparable.

Proof. Follows from the proof of Theorem 3.16 as the witnessing formula can be con-
structed such that the strong-unsat rule is not applicable. The other direction follows
from the separation ofQ-resolution and∀Exp+Res by Beyersdorff et al. [BCJ15].

3.4 A Proof Calculus for Satisfiable Formulas

So far, we were only interested in refutation proofs, that are, proofs that a formula is false.
We argued that this is enough to have a complete proof system as for true formulas we
show the refutation of the negation. This, however, does not match the behavior of the
clausal abstraction algorithm, which learns from counterexamples to universal choices
in the same way as for existential choices. In this section, we present the proof system
underlying the clausal abstraction algorithm on true formulas.

Cube resolution. Dual to the propositional resolution rule, the resolution rule can be
applied to propositional formulas in disjunctive normal form to prove validity. For exam-
ple, using the resolution rule twice, we derive that u ∨ v ∨ (u ∧ v) is valid.

∃Red+Res. The rules of the proof system for valid formulas, which we call ∃Red+Res,
are presented in Figure 3.7. The axiom rule lets us derive the leaf of the proof, that is, the
proof object containing the indices of every clauses. The resolution rule is applicable for
universal quantifier and allows the merger of proof objects if the underlying cube reso-
lution proof is valid. Lastly, existential reduction can be applied to existential quantifier

63

3. A PROOF SYSTEM FOR CLAUSAL ABSTRACTION

∅0

{5, 6}1

π

{1, 3, 6}2 {2, 4, 5}2

{1, 2, 3, 4, 5, 6}3

z ↦ F z ↦ T

u u

x ↦ F, y ↦ F

Figure 3.8: A ∃Red+Res proof for the formula given in Equation 3.2. The edges are anno-
tated by the assignments in case of existential reduction and cubes in case of resolution.

and it removes the clauses satisfied by an assignment to the existential variables. The
root of a∃Red+Res proof is the proof object∅0.

Example 3.22. Consider the following true QBF

∃x , y
±

1

.∀u
2̄

. ∃z
3̄

. (u ∨ z
±
C1

)(u ∨ z
±
C2

)(x ∨ u ∨ z
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C3

)(y ∨ u ∨ z
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C4

)(x ∨ u ∨ z
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C5

)(y ∨ u ∨ z
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C6

). (3.2)

A proof in the∃Red+Res calculus is given in Figure 3.8.

Comparison to Q-Resolution calculus. Analogously to ∀Red+Res, ∃Red+Res is poly-
nomially equivalent to the dual of the level-ordered Q-resolution calculus, that is, the
Q-resolution calculus that operates on cubes instead of clauses [LES16].

Proposition 3.23. ∃Red+Res and the dual of the level-ordered Q-resolution calculus are p-
simulation equivalent.

Proof. The proof is similar to the proof of Theorem 3.5. A ∃Red+Res proof can be trans-
formed into a cube-based Q-resolution proof by a stepwise transformation from the
root to the leaves: The root proof object ∅0 corresponds to the empty cube. At an ex-
istential reduction, we add the corresponding existential assignment to the cube. The
hyper-edge π for a resolution proof in ∃Red+Res corresponds to a cube resolution proof
inQ-resolution.

A level-ordered Q-resolution proof over cubes can be transformed into a ∃Red+Res
proof by a transformation from leaves to the root by tracking the satisfied clauses.

As theQ-resolution calculus over cubes is sound and complete for QBF [GNT06], the
same follows for∃Red+Res.

64

3.5. Summary

Corollary 3.24. Given a QBFϕ in prenex conjunctive normal form. There is a∃Red+Res proof for
ϕ if, and only if,ϕ is true.

We also know that the Q-resolution calculus over clauses is exponentially more suc-
cinct than the Q-resolution calculus over cubes [JM17]. In [JM17] the author proposed to
solve true QBF by refuting their negation. In Chapter 4 we show another possible rem-
edy by considering a generalized normal form, that is, negation normal form (NNF), and
introducing an extension of the clausal abstraction algorithm that is applicable to NNF.

3.5 Summary

In this chapter, we have presented the QBF proof calculus∀Red+Res that corresponds to
the clausal abstraction algorithm. We defined two extensions of the∀Red+Res calculus,
the rule (SU) that breaks the level-orderedness constraint inherent to ∀Red+Res and
the axiom rule (∀exp-res) that allows the integration of partial expansion proofs. We
showed that both extensions are orthogonal, and both make the resulting proof systems
exponentially more succinct. Understanding the proof theory underlying the clausal ab-
straction approach helped us to understand theoretical strengths and weaknesses and
explained empirical differences and similarities compared to existing solvers.

65

Chapter 4

Circuit Abstraction

The clausal abstraction algorithm presented in the previous sections was limited to for-
mulas in prenex conjunctive normal form. Beyond conjunctive normal form (CNF), there
have been many attempts to improve solving performance by going to more general
formula representations, such as circuits [ESW09; GIB09; Kli+10; GB10]. These ap-
proaches close the gap in expressive power between universal and existential players in
CNF [JM17] and often outperform CNF-based solvers on practical benchmarks. In this
chapter, we present an extension of the clausal abstraction algorithm to QBFs in nega-
tion normal form (NNF). The algorithmic underpinnings are remarkably similar: The al-
gorithm builds an abstraction for each quantifier block, communicates assignments be-
tween abstractions, and uses single-clause refinements. The construction of the abstrac-
tion, however, is quite involved, due to the more general propositional structure. The im-
plementation of our NNF approach in the solver QUABS is used in the reactive synthesis
tool BOSY [FFT17], the Petri game solver ADAM [Fin+17a], and the HyperLTL satisfiability
solver MGHYPER [FHH18]. Also, QUABS won the prenex non-CNF track of QBFEVAL 2018
as well as 2019 and was awarded a medal in the FLoC Olympic Games in 20181.

This chapter is based on work published in the proceedings of SAT [Ten16] and Gan-
dALF [HT18], as well as an article accepted for publication in the journal of satisfiability
(JSAT) [Ten19]. The circuit abstraction algorithm, including correctness proof, optimiza-
tions, and certification, is presented in Section 4.1. In Section 4.2, we provide an experi-
mental evaluation of the solver QUABS. Section 4.3 discusses the extension to formulas
in non-prenex form.

4.1 Circuit Abstraction

A fundamental property of the PCNF game is that it is not dual for the two players: The
existential player has to satisfy all clauses while the universal player tries to falsify some
clause. This is especially visible in the underlying proof system: The refutation proof sys-
tem is exponentially more succinct than the satisfaction proof system [JM17]. We propose

1http://www.floc2018.org/floc-olympic-games/

67

http://www.floc2018.org/floc-olympic-games/

4. CIRCUIT ABSTRACTION

Algorithm 4.1 Abstraction Algorithm for QBF in negation normal form.
1: procedure SOLVE(Φ = QX . Ψ)
2: initialize abstraction θY and dual abstraction θY for every quantifierQY in Φ
3: return SOLVE-NNF(QX, Ψ, {si ↦ F ∣ si ∈ SX})
4: end procedure

a generalization of the clausal abstraction algorithm to propositional formulas in nega-
tion normal form (NNF), making the game effectively dual.

Throughout this chapter, we use the notation established for quantified Boolean for-
mulas in : Section 2.1. For quantified Boolean formulas given in conjunctive normal: Page 16
form, we have presented a recursive refinement algorithm in Chapter 2, where the refine-
ment is based on clauses. The underlying insight is that multiple variable assignments
may lead to the satisfaction of the same clauses. Hence, instead of communicating as-
signments, the information on whether a clause is satisfied or not is communicated be-
tween quantifier blocks. Instead of excluding assignments one at a time, the clausal ab-
straction algorithm may exclude multiple assignments with a single refinement step. In
the following, we propose a generalization to formulas in negation normal form, i.e., we
base the communication on the satisfaction of individual subformulas. For this chapter,
we assume an arbitrary (closed, prenex) QBF Φ = QX1⋯QXn . ϕ with quantifier prefix
QX1⋯QXn and propositional body ϕ in NNF.

4.1.1 Algorithm

Overview. The algorithm for solving QBF in negation normal form is in large parts a
staightforward extension of the existential CNF algorithm shown in : Section 2.3. The: Page 25
algorithm SOLVE, depicted in Algorithm 4.1, initializes the abstractions and returns the
result of SOLVE-NNF, shown in Algorithm 4.2. SOLVE-NNF determines candidate assign-
ments to the variables bound at that quantifier, which is then verified recursively, or gives
a reason why there is no such assignment. In the negative case, this reason is excluded at
an outer quantifier.

Going from CNF to NNF makes the algorithm more uniform and—at the same time—
more complex, where the uniformity comes from the quantifiers’ duality and the complex-
ity arises from the less restrictive normal form. Taking both into account leads us to the
most significant algorithmic contribution, the use of a dual abstraction θX in conjunction
with the abstraction θX seen in previous algorithms. The dual abstraction, whose name
indicates that it is the abstraction for negation of the current quantifier, elegantly solves
two issues that already arose in the previous algorithms but were much easier to handle
for CNF. First, consider again the optimization discussed in Section 2.3.3 that improves
the returned witness in the propositional case. In CNF, this was done by setting satisfac-
tion variables to false whenever the current assignment (of existential variables) satis-
fies a clause. In NNF, we use the dual abstraction to generate those partial assignments
from complete assignments of the satisfaction variables using a technique inspired by
dual propagation [GB10; GSB13; NPB14]. Second, in the CNF algorithm:Algorithm 2.3,: Page 28

68

4.1. Circuit Abstraction

we needed to project the partial assignment returned from the inner quantifier in case
of a successful verification (line 8) as some of the clauses may be satisfied by the current
assignment (of existential variables). In NNF, this is not merely a projection, but a trans-
formation from one set of satisfaction variables to a (possibly) different set of satisfaction
variables which can be efficiently implemented by the dual abstraction. Before going into
details of algorithm SOLVE-NNF, we introduce the abstractions first.

Example 4.1. Consider again the QBF from Example 2.2 where the propositional formula
ϕ is in negation normal form:

∃x .∀v ,w . ∃y. (x ∨ v ∨

ψ3
³¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
(y ∧w))

´¹¹¸¹¹¹¶
ψ2

∧ (x ∨

ψ5
³¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
(v ∧w)∨y)

´¹¹¸¹¹¶
ψ4

∧ (v ∨w ∨ y)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ψ6

(4.1)

Throughout this section, we use the naming of the subformulas as indicated in above and
nameψ1 = ϕ. Note, that the formula is true as witnessed by the Skolem functions x = T
and y(v ,w) = v ∨w.

Abstraction θ. The abstraction θX is a propositional formula that represents, for every
quantifier blockQX, an over-approximation of the winning assignments αX as well as
the effect of the assignment αX on the valuation of subformulas. The algorithm guaran-
tees that whenever a candidate assignmentαX is generated usingθX , all variables bound
at outer quantifiers have a fixed assignment, and, thus, the propositional formula ϕ is
partially evaluated.

To facilitate working with arbitrary Boolean formulas, we start with introducing
additional notation. Let B be the set of Boolean formulas and let sf (ψ) ⊂ B and
dsf (ψ) ⊂ B be the set of all subformulas of ψ and the set of direct (or immediate)
subformulas of ψ, respectively. Note that ψ ∈ sf (ψ) but ψ ∉ dsf (ψ). For a propo-
sitional formula ψ, type(ψ) ∈ {lit,∨,∧} returns the Boolean connector if ψ is not
a literal. For example, given ψ = (x ∨ v ∨ (y ∧ w)), the set of all subformulas
is sf (ψ) = {(x ∨ v ∨ (y ∧w)), x , v , (y ∧w), y,w}, the set of direct subformulas is
dsf (ψ) = {x , v , (y ∧w)}, and the Boolean connector is type(ψ) = ∨. For every sub-
formula ψ, we denote by ψ the dual subformula, that is, the formula where every quan-
tifier, Boolean connector, and literal is negated. It holds that ψ is in NNF and that ¬ψ is
equivalent toψ.

We will explain the abstraction for quantifier ∃X as a transformation of the graph
representation of propositional formulas. A propositional formulaψ can be represented
as a graph, where the nodes represent the Boolean connectives and the edges connect a
formula with its direct subformulas. The leaves, i.e., terminal nodes, are the literals con-
tained in ψ. Formally, the graph Gϕ corresponding to some propositional formula ϕ is a
pair ⟨V , E⟩, whereV = sf (ϕ) is the set of vertices andE = V×V is the edge relation such
that (ψi ,ψ j) ∈ E if, and only if,ψ j ∈ dsf (ψi). Figure 4.1 depicts the graph corresponding
to the propositional part of the QBF presented in Example 4.1.

69

4. CIRCUIT ABSTRACTION

∧
1

∨
2

x v ∧
3

y w

∨
4

x ∧
5

v w

y

∨
6

v w y

Figure 4.1: Visualization of the graph representation Gϕ representation of ϕ = (x ∨ v ∨
(y ∧ w)) ∧ (x ∨ (v ∧ w) ∨ y) ∧ (v ∨ w ∨ y). The numbers on the non-terminal nodes
represent the index i for the corresponding subformula ψi as shown in Example 4.1. To
improve readability, some terminal nodes like y andw are drawn multiple times.

We define ψ○ for ○ ∈ {<, ≤, =, ≥, >} as the projection of ψ onto variables bound by
outer (<), current (=), or inner (>) quantifiers with respect toQX, respectively. If the pro-
jected formula does not contain a literal, we return undefined �. Formally, we defineψ○

recursively (where we only recurse if the projection of a subformula is defined) as follows

ψ○ ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⋀
ψ i∈dsf (ψ)
ψ○i ≠�

ψ○i if type(ψ) = ∧

⋁
ψ i∈dsf (ψ)
ψ○i ≠�

ψ○i if type(ψ) = ∨

ψ ifψ is a literal l and var(l) is bound at a quantifier level satisfying ○
� otherwise

Applying this definition on our running example in Equation 4.1, we get, for example,
ψ=2 = x, ψ=4 = x for quantifier ∃x; ψ≤2 = x ∨ v ∨ w, ψ≤4 = x ∨ (v ∧ w) for quantifier
∀v ,w; andψ≤1 = ϕ for quantifier∃y.

We use the same kind of variables as in clausal abstraction to establish the interac-
tion between abstractions: The variables X bound by the current quantifier and, addi-
tionally, the assumption and satisfaction variablesAand S, respectively. The satisfaction
variable si for some subformula ψi ∈ sf (ϕ) represents the effect of variables V bound
at outer quantifier on ψi . To quantify this effect, we have to distinguish whether ψi is
a disjunctive (type(ψi) = ∨) or conjunctive (type(ψi) = ∧) formula. In the disjunctive
case, assigning si to true implies that ψi evaluates to true given the outer variable as-
signment αV . This is a straightforward generalization of the existential abstraction for
clauses (see : Section 2.3). In case ψi is conjunctive, a positive assignment of si means: Page 25
that the conjunct is not yet falsified, that is,ψi does not evaluate to false given the outer

70

4.1. Circuit Abstraction

variable assignment αV . We combine both cases by saying that ψi is assigned positively
with respect to the current quantifier. Since the valuation of the variables X bound by
the current quantifier has an influence on the valuation of subformulas as well, we use
an assumption variable ai to represent the effect of the combined assignments αX and
αS . The intended semantics is that ai is set to false only ifψi is assigned positively at this
quantifier (by assignment αX ⊔̇ αV).

Before formally defining the abstraction, we discuss the underlying derivation steps
on Example 4.1.

Example 4.2. The abstraction θX quantifies the effect of valuations of variablesX on the
satisfaction of subformulas. We derive the abstraction by transforming the graph repre-
sentation of ϕ and ϕ for existential and universal quantifiers, respectively. This transfor-
mation is visualized in Figure 4.2. As a first step, we remove all subformulasψ which are
only influenced by inner quantifiers, i.e., everyψ that is not contained inϕ≤. For example,
ψ6 does not contain x, thus, the whole subformula is removed from ϕ for quantifier∃x.

Then, we replace all maximal subformulas with the propertyψ< = ψ by satisfaction
variables si in a top-down way. Consider the innermost quantifier∃y and subformulaψ4
withdsf (ψ4) = {x ,ψ5, y}. For the former two, x andψ5, it holds thatx< = x andψ<5 = ψ5,
thus, both are replaced with the satisfaction variable s4.

In the innermost quantifier∃y, this already adequately describes the abstraction, for
every other quantifier we have to define the assumption variables. For example at quan-
tifier∃x, an assignment to x can either satisfyψ2 orψ4, but not both, thus, the other for-
mula is assumed to be satisfied by an inner quantifier. We define an assumption variable
for every subformulaψi ∈ sf (ϕ) such that there exist direct subformulasψ j andψk such
that ψ j = ψ≤j and ψk ≠ ψ≤k . Intuitively, for these subformulas ψi , there is a direct influ-
ence byψ j = ψ≤j and the value ofψi is not guaranteed to be determined after the current
quantifier as there is some influence by inner variablesψk ≠ ψ≤k . This can be seen at our
example at quantifier∀v ,w: We need to add an assumption variable toψ3 as y ∈ dsf (ψ3)
but not to ψ5 as ψ=5 = ψ5. Lastly, given some quantifier alternationQX .QY , there is a
one-to-one correspondence between the assumption variablesAX of quantifierQX and
the satisfaction variables SY of quantifierY .

Using the intuition of the interface variables and the determinacy of subformulas, we
are now going to define the abstraction formally. In this definition, we take advantage of
the duality by only defining the abstraction for existential quantifiers. The abstraction for
universal quantifiers is then the abstraction for the negated formula Φ. Let us fix some
existential quantifier∃X and some subformulaψi of ϕ. The abstraction θX is defined as

θX =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

enc(ϕ) ∃X is the innermost quantifier
⋀

ψ i∈sf (ϕ)
∃ψ j ,ψk∈dsf (ψ i)withψ j=ψ≤j ∧ψk≠ψ

≤
k

ai ∨ enc(ψi) otherwise (4.2)

For the innermost quantifier ∃X . ϕ, we encode ϕ using enc defined below. In all other
cases, we define the implication that setting an assumption variable ai to false is only

71

4. CIRCUIT ABSTRACTION

∧

∨
2

x v ∧

y w

∨
4

x ∧

v w

y

∨

v w y

∨

∧
2

s2 v ∨
3

y w

∧
4

s4 ∨

v w

y

∧
6

v w y

∧

∨

s2 ∧

y s3

∨

s4 y

∨

s6 y

Figure 4.2: Abstraction for quantifiers∃x,∀v ,w, and∃y. The grayed out subformulas are
only influenced by inner variables. The colored parts indicate continuous subformulas
withψ = ψ≤. The dashed subformulas indicate placement of assumption variables.

possible if the formula enc(ψi) is satisfied. enc(ψi) considers only subformulas of ψi
which do not contain inner variables and where outer variables are replaced by their re-
spective satisfaction literals. Formally, the abstraction forψi is defined as

enc(ψi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⋀
ψ j∈dsf (ψ i)
ψ j=ψ≤j

encψ i(ψ j) if type(ψi) = ∧

⋁
ψ j∈dsf (ψ i)
ψ j=ψ≤j

encψ i(ψ j) if type(ψi) = ∨
(4.3)

where the direct subformulasψ j ofψi are transformed as follows

encψ i(ψ j) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ψ j ifψ j = ψ=j
si ifψ j = ψ<j
enc(ψ j) otherwise, i.e.,ψ j = ψ≤j

(4.4)

We carefully dissect the definitions in order to map them to the intuitions mentioned
above. The function enc(ψi) builds the abstraction for subformulaψi depending on the
Boolean connector type(ψi) ∈ {∧,∨}. Further, enc considers only those direct subformu-
lasψ j ofψi , which are solely influenced by the current or outer variables, i.e.,ψ j = ψ≤j . The
encoding of direct subformulas encψ i(ψ j) distinguishes three cases. If ψ j contains only
variables X, that is,ψ j = ψ=j , then the result of encψ i(ψ j) = ψ j is the formulaψ j itself. If
ψ j contains only outer variables, that is,ψ j = ψ<j , then the result of encψ i(ψ j) = si is the
satisfaction variable si . Finally, ifψ j contains both types of variables, we apply enc onψ j.

72

4.1. Circuit Abstraction

Algorithm 4.2 Algorithm for solving quantified formulas in NNF.
1: procedure SOLVE-NNF(QX, Φ, αSX)
2: loop
3: match ⟨SAT(θX , αSX), Φ⟩ as ▷ assume outer variable assignment
4: ⟨Sat(α), QY . Ψ⟩⇒
5: αSY ← {si ↦ α(ai) ∣ ai ∈ AX} ▷ update subformula valuation
6: match SOLVE-NNF(QY , Ψ, αSY) as ▷ recursive verification
7: SatQ(βSY)⇒ θX ← θX ∧⋁s i∈β0SY

ai ▷ refine θX
8: return SatQ(OPTIMIZE(α∣X , αSX))
9: UnsatQ(βSY)⇒ θX ← θX ∧⋁s i∈β1SY

ai ▷ refine θX

10: ⟨Sat(α), ⟩⇒ return SatQ(OPTIMIZE(α∣X , αSX)) ▷ propositional
11: ⟨Unsat(βSX), ⟩⇒ return UnsatQ(βSX)
12: end loop
13: end procedure
14: procedure OPTIMIZE(αX , αSX)
15: match SAT(θX , αX ⊔ αSX) as
16: Unsat(β)⇒ return β∣SX ▷ β∣SX ⊑ αSX
17: end procedure

The abstraction for a universal quantifier∀X and the dual abstraction θX of quanti-
fier ∃X are both defined as the abstraction for ∃X with respect to propositional formula
ϕ. As discussed above, satisfaction and assumption variables are not exposed for every
subformulaψi ∈ sf (ϕ). For the given abstraction, we define the set of interface variables
for quantifierQX as

AX = {ai ∣ ψi ∈ sf (ϕ) ∧ ∃ψ j ,ψk ∈ dsf (ψi).ψ j = ψ≤j ∧ ψk ≠ ψ
≤
k} and

SX = {si ∣ ψi ∈ sf (ϕ) ∧ ∃ψ j ,ψk ∈ dsf (ψi).ψ j = ψ<j ∧ ψk ≠ ψ<k} .

This means that for some quantifier alternationQX .QY the sets AX and SY represent
the same subformulas, i.e., ai ∈ AX if, and only if, si ∈ SY .

The algorithm makes progress by refining the abstraction during the execution of
the algorithm. Such a refinement excludes wrong assumptions, i.e., assumptions corre-
sponding to a losing assignment for the variables of the respective quantifier block. Given
such a set of assumptions L ⊆ A, the refinement is represented by the clause

⋁
a i∈L

ai . (4.5)

Algorithm. Algorithm 4.2 shows the recursive QBF solving algorithm SOLVE-NNF. It de-
cides the problem whether the quantified subformula QX . Φ of Φ for Q ∈ {∀, ∃} is
satisfiable under the condition that the propositional formulaϕ is partially evaluated ac-
cording to the assignmentαS that abstracts the outer variable assignment. Note that due

73

4. CIRCUIT ABSTRACTION

to duality, the satisfiability and unsatisfiability are interpreted with respect to the current
quantifier, that is, we define

SatQ =
⎧⎪⎪⎨⎪⎪⎩

Sat ifQ = ∃
Unsat ifQ = ∀

and UnsatQ =
⎧⎪⎪⎨⎪⎪⎩

Unsat ifQ = ∃
Sat ifQ = ∀

.

For sake of simplicity, we base our explanation on existential quantifier in the following.
The algorithm repeatedly generates candidate assignments by means of the abstraction
θX (line 3). If the abstraction returns Unsat, there is no satisfiable assignment with re-
spect to the assignment αS of satisfaction variables, thus, the algorithm returns UnsatQ
as well (line 11). Further, the reason for the unsatisfiability result is given, represented by
the returned partial assignment βSX . If the abstraction returns Sat with assignments αA
and αX , we distinguish two cases. The first case is the base case of the recursion, that is,
the inner formula is quantifier-free (line 10). The algorithm returns SatQ and the partial
assignment, generated by the algorithm OPTIMIZE, indicating which subformulas have to
be positively assigned by outer quantifier such that the assignmentαX satisfiesϕ. Lastly,
assume that the inner subformula is quantified. In this case, we compute the subformu-
las of ϕ that the combination of αX and αS assign positively (line 5) and continue with
the recursive verification. In the positive case, the partial assignment βSY (line 7) indi-
cates the required positively assigned subformulas. As this witnesses the unsatisfiability
of the negated formula, the dual abstraction θX is refined with βSY before translating
the assignment βSY to an assignment βSX using OPTIMIZE in line 8. In case it is negative,
the abstraction θX is refined by enforcing that some negatively assigned subformulas is
assigned postively, before continuing with the next iteration.

The algorithm OPTIMIZE implements dual propagation. The dual abstraction θX is a
representation of the possible assignments of the negated quantifierQX. Thus, assum-
ing the positively verified assignments αX and αS (lines 8 and 10) lead to unsatisfiability
of θX . Note, that we have to negate αS due to the way the abstraction is built (a formal
justification is given in Section 4.1.2). The return value β, that is, the failed assumptions
projected onto variables SX , represents a set of subformulas{ψi ∣ si ∈ β1SX} that needs to
be assigned positively such that the quantifierQX has a satisfiable assignment.

Example 4.3. Consider again the formula given in: Example 2.2:: Page 17

∃x .∀v ,w . ∃y. (x ∨ v ∨

ψ3
³¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
(y ∧w))

´¹¹¸¹¹¹¶
ψ2

∧ (x ∨

ψ5
³¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
(v ∧w)∨y)

´¹¹¸¹¹¶
ψ4

∧ (v ∨w ∨ y)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ψ6

We give the abstractions as discussed in Example 4.2 in propositional form as

θ{x} = (a2 ∨ x)(a4 ∨ x),
θ{v ,w} = (a2 ∨ (s2 ∧ v))(a3 ∨w)(a4 ∨ (s4 ∧ (v ∨w)))(a6 ∨ (v ∧w)),
θ{v ,w} = (a2 ∨ s2 ∨ v)(a3 ∨w)(a4 ∨ s4 ∨ (v ∧w))(a6 ∨ v ∨w),
θ{y} = (s2 ∨ (y ∧ s3))(s4 ∨ y)(s6 ∨ y), and

θ{y} = (s2 ∧ (y ∨ s3)) ∨ (s4 ∧ y) ∨ (s6 ∧ y).

74

4.1. Circuit Abstraction

We give a possible execution of algorithm SOLVE. To improve readability, we use the
propositional representation for assignments.

• SOLVE-NNF(∃x,∀v ,w . ∃y. ϕ, {})
• SAT(θ{x}) = Sat(x a2a4)
• αS{v ,w} = s2s4

– SOLVE-NNF(∀v ,w,∃y. ϕ, αS{v ,w})
– SAT(θ{v ,w}, αS{v ,w}) = Sat(v w a2a3a4a6)
– αS{y} = s2s3s4s6

* SOLVE-NNF(∃y, ϕ, αS{y})

* SOLVE(θ{y}, αS{y}) = Unsat(s2s3)
* return Unsat(s2s3)

– θ
′
{v ,w} = θ{v ,w} ∧ (a2 ∨ a3) = (s2 ∨ v ∨w) [. . .]

– SOLVE(θ
′
{vw}, v w αS{v ,w}) = Unsat(v w s2)

– return Unsat(s2)
• θ′{x} = θ{x} ∧ a2
• SAT(θ′{x}) = Sat(x a2a4)
• α′S{v ,w} = s2s4

– SOLVE-NNF(∀v ,w,∃y. ϕ, α′S{v ,w})

– SAT(θ{v ,w}, α′S{v ,w}) = Sat(v w a2a3a4a6)
– α′S{y} = s2s3s4s6

* SOLVE-NNF(∃y, ϕ, α′S{y})

* SOLVE(θ{y}, α′S{y}) = Sat(y)

* SOLVE(θ{y}, y α′S{y}) = Unsat(y s2s6)

* return Sat(s2s6)
– θ′{v ,w} = θ{v ,w} ∧ (a2 ∨ a6)
– SAT(θ{v ,w}, α′S{v ,w}) = Sat(v w a2a3a4a6)
– α′′S{y} = s2s3s4s6

* SOLVE-NNF(∃y, ϕ, α′′S{y})

* SOLVE(θ{y}, α′′S{y}) = Sat(y)

* SOLVE(θ{y}, y α′′S{y}) = Unsat(y s2s4)

* return Sat(s2s4)
– θ′′{v ,w} = θ

′
{v ,w} ∧ (a2 ∨ a4)

– SAT(θ′′{v ,w}, α′S{v ,w}) = Unsat(s2)
– return Sat(s2)

• SOLVE-NNF(∃x,∀v ,w . ∃y. ϕ, {}) returns Sat

75

4. CIRCUIT ABSTRACTION

4.1.2 Correctness

The proof of correctness requires the same high level argumentation as the correctness
proof for the prenex conjunctive normal form algorithm in : Section 2.3.2. The argu-: Page 30
mentation over the abstraction and negation normal form formulas is, however, much
more sophisticated than the argumentation over clauses in a matrix. Thus, in this sec-
tion, we give a rigorous argumentation for soundness and completeness, even though
there is some repetition and overlap with Section 2.3.2. Remember, that we fixed a QBF
Φ = QX1⋯QXn . ϕwith quantifier prefixQX1⋯QXn and propositional body ϕ in NNF.
Further, we assume thatψ1, . . . ,ψm are the non-literal subformulas of ϕ.

Before going into detail, we outline the structure of this section. First, we establish
a relation between assignments of satisfaction variables αS and their effect on the QBF,
analogously to Section 2.3.2. For some quantifier alternationQX .QY , we show how as-
signmentsαSX with respect to quantifierQX are related to assignmentsαSY w.r.t. quanti-
fierQY . Afterward, we establish statements over the abstractions, the first (Lemma 4.7)
covering the base case of the structural induction. Furthermore, we show that the ab-
stractions θX and θX are effectively dual, which leads to the correctness of the dual prop-
agation in Lemma 4.9. The actual proof of correctness is carried out in Lemma 4.10.

Duality in NNF representation. To match the assignment of the satisfaction variables
αS with the corresponding valuation of the propositional formula ϕ, we define a partial
function that maps subformulas ofϕ to a Boolean valuationBor undefined�. We use the
convention to write such subformula valuation functions as βϕ∶ sf (ϕ) → B�, i.e., we in-
dex the partial function by a propositional formula. Then, similar to the correctness proof
of clausal abstraction in Section 2.3.2, we define an operation Φ∣QX

βϕ , for a QBF Φ, quanti-
fierQX, and subformula valuation βϕ, as the QBF with the same prefix as Φwith propo-
sitional formula ϕ′ resulting from replacing subformulasψi by their valuation βϕ(ψi) if
it is defined. Potentially occurring free variables, which were in the original QBF variables
bound by outer quantifiers, are removed by this operation.

Formally, the propositional part of Φ∣QX
βϕ is defined as the partial evaluation of ϕ ac-

cording to the subformula valuation βϕ. Therefore, we use a partial evaluation function
parteval(ψ, βϕ) that maps a propositional formulaψ and a subformula valuation βϕ to a
propositional formula. It is defined as

parteval(ψ, βϕ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

βϕ(ψ) if βϕ(ψ) ≠ �
⋀

ψ′∈dsf (ψ)
parteval(ψ′ ,βϕ)≠�

parteval(ψ′, βϕ) if type(ψ) = ∧

⋁
ψ′∈dsf (ψ)

parteval(ψ′ ,βϕ)≠�

parteval(ψ′, βϕ) if type(ψ) = ∨

ψ if type(ψ) = lit andψ is bound
� otherwise

76

4.1. Circuit Abstraction

Lastly, we need to define the subformula valuation function corresponding to some as-
signment of satisfaction variables αS . An assignment of satisfaction variables αS repre-
sents the subformula valuation βϕ ∶= sfvalϕ(αS)where sfvalϕ(αS) is defined as

sfvalϕ(αS)(ψi) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

T if si ∈ dom(αS) ∧ (type(ψi) = ∨) ∧ αS(si) = T
F if si ∈ dom(αS) ∧ (type(ψi) = ∧) ∧ αS(si) = F
� otherwise

(4.6)

Then, we define the shorthand notation Φ∣QX
αS as Φ∣QX

βϕ , where βϕ ∶= sfvalϕ(αS).
Many times in this section, we will argue about duality. To make this reasoning pre-

cise, we begin with a formal justification using two lemmata. Recall that we denote by
β the complement of the partial assignment β. The following lemma states that an as-
signment αSX for Φ corresponds to the negated assignment αSX in the negated formula
Φ.

Lemma 4.4 (Duality). LetΦ be a QBF with propositional formulaϕ, letQX be some quantifier
ofΦ, and letαSX be an assignment to the satisfaction variables. Φ∣QX

αSX
is true if, and only if,Φ∣QX

αSX
is false.

Proof. Let βϕ ∶= sfvalϕ(αSX) and let βϕ ∶= sfvalϕ(αSX). It holds that βϕ = βϕ by the
definition of sfval in Equation 4.6. For every QBF Φ it holds that Φ is true if, and only if, Φ
is false. Together, this shows that Φ∣QX

αSX
is true iff Φ∣QX

αSX
is false.

In the correctness proof below, we will argue over optimal assumption assignments
for some quantifierQX, that is, assignments of assumption variables α∗AX

that are min-
imal with respect to the number of assumptions α∗AX

(ai) = T. The following lemma
establishes this form of reasoning for quantifier alternations by proving equisatisfiabil-
ity between (Φ∣QX

αSX
)[αX] and Φ∣QY

α∗SY
for some “optimal” αSY constructed from αSX and

αX analogously to Lemma 2.11. In the proof, we argue over consistency of complete sub-
formula assignments, which means that the assignment respects the propositional for-
mula. A complete subformula assignment αϕ∶ sf (ϕ) → B is consistent, if and only if, for
every (non-literal) subformulaψi of ϕ it holds that

αϕ(ψi) =
⎧⎪⎪⎨⎪⎪⎩

⋀ψ j∈dsf (ψ i) αϕ(ψ j) if type(ψi) = ∧
⋁ψ j∈dsf (ψ i) αϕ(ψ j) otherwise

Lemma 4.5. LetQX .QY be a quantifier alternation of a QBFΦwith propositional formulaϕ
and let αX and αSX be assignments. Further, let α∗SY be defined such that α∗SY (si) = F if, and
only if, αX ⊔̇ αSX ⊧ enc(ψi) (for quantifierQX). It holds that (Φ∣QX

αSX
)[αX] and Φ∣QY

α∗SY
are

equisatisfiable.

Proof. We prove the statement for quantifier alternations of the form ∃X .∀Y , the case
∀X . ∃Y then follows by Lemma 4.4. The quantified formulas (Φ∣∃XαSX)[αX] and Φ∣∀Yα∗SY

77

4. CIRCUIT ABSTRACTION

have the same quantifier prefix (starting with∀Y) and equisatisfiable propositional for-
mula. We show the latter by proving equality over the corresponding subformula assign-
ments. Let βϕ ∶= sfvalϕ(αSX). We augment βϕ with αX , that is, we define β′ϕ ∶= βϕ ⊔ αX .
Let βϕ = sfvalϕ(α∗SY) be the subformula valuation corresponding to α∗SY . Note that
sfvalϕ(α∗SY) is defined with respect to negated subformulas, that is, ψi ∈ ϕ as it corre-
sponds to a universal quantifier ∀Y (and is thus equivalent to the existential quantifier
∃Y over the dual propositional formulaϕ). We show that the assignments β′ϕ and βϕ are
dual with respect to the satisfaction variables for quantifier ∀Y . As the assignment αX
may propagate subformula valuations beyond the boundaries given by the satisfaction
variables, we prove the following strengthening: For every complete and consistent ex-
tensionαϕ ofβ′ϕ (β′ϕ ⊑ αϕ) and every si ∈ SY it holds thatαϕ(ψi) = βϕ(ψi) ifβϕ(ψi) ≠ �.

Let βϕ(ψi) = T (analogous for βϕ(ψi) = F). Then, by definition of sfvalϕ(α∗SY)(ψi)
in Equation 4.6 it holds that type(ψi) = ∨ and α∗SY (si) = T. By the definition of α∗SY , we
know that αX ⊔̇ αSX ⊭ enc(ψi). By the definition of the abstraction θX , for every si ∈ SY ,
there is aψ j ∈ dsf (ψi) such thatψ j = ψ<j , that is,ψ j is only influenced by outer variables
(with respect to X). A recursive argument over enc(ψi) shows that, αX ⊔̇ αSX ⊭ enc(ψi)
implies that for every complete and consistent subformula valuation αϕ(ψi) = F has to
hold.

Further, for every complete and consistent extension αϕ of βϕ with the same variable
assignments as αϕ (αϕ(v) = αϕ(v) for every bound variable v), it holds that αϕ(ψi) =
αϕ(ψi) by duality and the previous statement.

If the assignments are not optimal, there is a monotonicity property on the satisfac-
tion assignments stated below.

Lemma 4.6 (Monotonicity of αSX). LetQX be a quantifier of QBFΦ and letαSX be an assign-
ment such thatΦ∣QX

αSX
is winning forQX. For every α′SX with α+SX ⊑ α

′
SX
+ it holds thatΦ∣QX

α′SX
is

winning forQX.

Proof. We prove the statement for ∃X, the universal case is analogous. Let αSX be given
such that Φ∣∃XαSX is winning for ∃X. Further, choose some arbitrary α′SX with α+SX ⊑ α

′
SX
+.

The subformula valuations βϕ and β′ϕ corresponding to αSX and α′SX , respectively, are
monotone as well: If βϕ(ψi) = T it follows that β′ϕ(ψi) = T by definition in Equa-
tion 4.6.

Reasoning over abstractions θX and θX . In this part, we focus on the two types of ab-
stractions used in the algorithm. First, we have a formal statement regarding equisatisfi-
ability of the innermost abstraction and the circuit representation for a given assignment
of the satisfaction variables αS , similar to Lemma 2.10.1.

Lemma 4.7. Let Φ be a QBF with propositional formula ϕ, let ∃X be the innermost quantifier,
and letαSX be an assignment over variablesSX . It holds thatθX[αSX] is equisatisfiable toΦ∣∃XαSX .

Proof. As ∃X is the innermost quantifier, all variables in ϕ are either bound by ∃X or by
some outer quantifier. By definition in Equation 4.2, the abstraction isθX = enc(ϕ). Note

78

4.1. Circuit Abstraction

that ϕ and enc(ϕ) are identical up to subformulasψ of ϕ with only outer influence (ψ =
ψ<), whereψ is replaced in enc(ϕ)by a satisfaction variable. LetαSX be some assignment
over satisfaction variablesSX . By the definition ofenc(ϕ) (Equation 4.3), replacing si with
αSX(si) leads to formulas which are equal to T ifψi is disjunctive and αSX(si) = T, and
to F ifψi is conjunctive and αSX(si) = F. Otherwise, the variable si is just removed from
the encoded formula enc(ϕ). This matches the definition of the subformula valuation
function βϕ resulting from αSX , thus,

Φ∣∃XαSX = Φ∣
∃X
βϕ = enc(ϕ)[αSX] = θX[αSX] ,

which we show by structural induction over ϕ. Let βϕ be the subformula valuation corre-
sponding toαSX . We show thatΦ∣∃Xβϕ is equal toθX[αSX]. Letψi be an arbitrary non-literal
subformula of ϕ. Further, letψ j be an arbitrary direct subformulaψ j ∈ dsf (ψi). We per-
form a case distinction onψ j:

• Letψ j = ψ=j , thus,ψ j contains only variablesX. The encoding ofψ j is equal in both
cases, as encψ i(ψ j) = ψ j and βϕ(ψ j) = �.

• Let ψ j = ψ<j , thus, ψ j contains only variables bound at outer quantifiers. Thus,
encψ i(ψ j) = si and the subformula is replaced by a constant in Φ∣∃Xβϕ . Since we
replace si with αSX(si), we do a further case distinction on type(ψi) and αSX(si).

– Assume type(ψi) = ∧ and αSX(si) = T, thus, assigning si positively in
enc(ψi) has the same effect as removingψ j.

– Assume type(ψi) = ∨ and αSX(si) = F, thus, assigning si negatively in
enc(ψi) has the same effect as removingψ j.

– Assume type(ψi) = ∧ and αSX(si) = F, thus, assigning si negatively
in enc(ψi) makes enc(ψi) unsatisfiable. By definition in Equation 4.6,
βϕ(ψi) = F as well.

– Assume type(ψi) = ∨ and αSX(si) = T, thus, assigning si positively in
enc(ψi)makes enc(ψi) valid. By definition in Equation 4.6, βϕ(ψi) = T as
well.

If neither of the base cases above applies, the claim follows by induction.

The following two lemmata formalize the duality of the abstraction. These state-
ments are used to argue over the dual abstraction. The former states that the abstraction
is dual with respect to negation of the formula except for the satisfaction variables. It
shows that the dual abstraction is unsatisfiable when assuming a satisfying assignment
of the abstraction. The latter lemma shows the correctness of the dual propagation for
the innermost quantifier.

Lemma 4.8 (Duality ofθX). LetΦbe a QBF with propositional formulaϕ, let∃X be a quantifier
ofΦ, and let αX and αSX be assignments. It holds that

enc(ψi)[αX ⊔̇ αSX]↔ ¬enc(ψi)[αX ⊔̇ αSX] .

79

4. CIRCUIT ABSTRACTION

Proof. As αSX abstracts the outer assignments as subformula valuations, αSX needs to be
negated to represent the same assignments in θX . By structural induction, it is straight-
forward to show that enc(ψi) and enc(ψi) are dual with the exception of variables from
S: A disjunction in enc(ψi) is a conjunction in enc(ψi) and vice versa, a literal l of quanti-
fier∃X in enc(ψi) is negated¬l in enc(ψi). Only satisfaction variables appear positively
in both formulas.

Lemma 4.9. Let Φ be a QBF with propositional formula ϕ, let ∃X be the innermost quantifier,
and letαX andαSX be satisfying assignments of θX . It holds that θX[αX ⊔̇αSX] is unsatisfiable.
Let β be some set of failed assumptions, that is, β ⊑ αX ⊔̇ αSX and θX[β] is unsatisfiable. Then,
β∣SX ⊑ α+SX andΦ∣∃X

β∣SX [�↦F]
is true.

Proof. By the definition of the abstractions, it holds that θX = enc(ϕ) and θX = enc(ϕ).
Lemma 4.8 shows that if αX ⊔̇ αSX is a satisfying assignment of enc(ϕ), the assignment
αX ⊔̇ αSX falsifies enc(ϕ). By definition of failed assumptions, β ⊑ αX ⊔̇ αSX , i.e., there is
noαwithβ ⊑ α that satisfiesθX , hence, allα∗SX withβ∣SX ⊑ α∗SX satisfy θX[αX]. Together
with Lemma 4.7, this shows that Φ∣∃X

β∣SX [�↦F]
is true.

Correctness of SOLVE-NNF. Finally, we can prove the correctness of the SOLVE-NNF algo-
rithm. As in the case for CNF, we prove the correctness by induction over the quantifier
prefix.

Lemma 4.10. Let Φ be a QBF with propositional formula ϕ, letQX . Ψ be a quantified subfor-
mula ofΦ, and let αSX be an assignment of the satisfaction variables SX .

• If Φ∣QX
αSX

is winning forQX, then SOLVE-NNF(QX, Ψ, αSX) returns SatQ(βSX)where
βSX ⊑ α+SX andΦ∣QX

βSX [�↦F] is winning forQX.

• If Φ∣QX
αSX

is losing forQX, then SOLVE-NNF(QX, Ψ, αSX) returns UnsatQ(βSX)where
βSX ⊑ α−SX andΦ∣QX

βSX [�↦T] is losing forQX.

Proof. We prove the statement by structural induction over the quantifier prefix. For this
proof, we can restrictQ to ∃ as the universal case is completely dual (Lemma 4.4). The
base case ∃X distinguishes whether Φ∣∃XαSX is true or false. In both cases, we use the eq-
uisatisfiability of Φ∣∃XαSX and θX[αSX] (Lemma 4.7). In case the formula is true, we addi-
tionally have to use the correctness of the dual propagation as established in Lemma 4.9.
In the induction step, i.e., a quantifier alternation ∃X .∀Y , we perform a case distinction
on the value of Φ∣∃XαSX as well. If it is true, there is a satisfying assignment αX such that
Φ∣∃XαSX [αX] is losing for ∀Y . Applying induction hypothesis and dual propagation gives
the required witness. In case the abstraction produces falsifying assignments, the sub-
sequent refinement excludes them from the abstraction, hence, eventually a satisfying
assignment is reached. IfΦ∣∃XαSX is false, every assignmentαX is winning for∀Y and, thus,
leads to a refinement of the abstraction θX . The abstraction becomes eventually unsat-
isfiable (under the assignment αSX) and the failed assumption represents the required
witness. The detailed proof follows.

80

4.1. Circuit Abstraction

Induction Base. Let ∃X . ϕ be the innermost quantifier of Φ and let αSX be some assign-
ment over SX . We distinguish whether Φ∣∃XαSX is true or false:

• Assume that Φ∣∃XαSX is true. By Lemma 4.7, the truth of Φ∣∃XαSX witnesses the satisfi-
ability of θX[αSX]. By Lemma 4.9, the return value of SOLVE-NNF in line 10 meets
the requirements.

• Assume that Φ∣∃XαSX is false. By Lemma 4.7 it follows that θX[αSX] is unsatisfiable.
Thus, the algorithm returns Unsat(βSX)where βSX are the failed assumptions of
SAT(θX , αSX) which implies that βSX ⊑ α−SX . As θX[βSX [� ↦ T]] is unsatisfiable,
Φ∣∃XβSX [�↦T] is false by Lemma 4.7, thus, β meets the requirements.

The base case for universal formulas ∀X . ϕ follows from the existential cases by
Lemma 4.4.

Induction Step. Let∃X .∀Y be a quantifier alternation of Φ and let αSX be some assign-
ment over SX . We distinguish whether Φ∣∃XαSX is true or false:

• Assume that Φ∣∃XαSX is true. Thus, there is a satisfying assignment αX for the vari-
ables X such that (Φ∣∃XαSX)[αX] is true. We define the “optimal” assignment of
the assumption variables α∗AX

, that is, the minimal assignment with respect to the
number of assumptions (α∗A(ai) = T) for the given assignment αX , as

α∗AX
(ai) =

⎧⎪⎪⎨⎪⎪⎩

F if αX ⊔̇ αSX ⊧ enc(ψi)
T otherwise

.

The definition of the abstraction θX (Equation 4.2) is

θX = ⋀
a i∈AX

ai ∨ enc(ψi) .

The combined assignment αX ⊔̇ α∗AX
is, thus, a satisfying assignment of the ab-

straction θX[αSX] initially. We perform a case distinction on the returned assign-
ment of the SAT solver in line 3.

– We assume that the SAT call in line 3 returnsαX ⊔̇α∗AX
. Letα∗SY be the assign-

ment constructed in line 5. By Lemma 4.5, it holds that(Φ∣∃XαSX)[αX] = Φ∣
∀Y
α∗SY

is true and, thus, losing for ∀Y . By induction hypothesis we deduce that
SOLVE-NNF(∀Y . Ψ, α∗SY) returns Sat(βSY)with βSY ⊑ α−SY where Φ∣∀YβSY [�↦1]

is true. Subsequently, the dual abstraction θX is refined (line 7) and SOLVE-
NNF returns Sat(βSX)where βSX = OPTIMIZE(αX , αSX) (line 8).
It remains to show thatΦ∣∃XβSX [�↦F] is true and βSX ⊑ α+SX . First, we show that

θX[αX ⊔̇ αSX] is unsatisfiable. Initially, the dual abstraction is defined as

θX = ⋀
a i∈AX

ai ∨ enc(ψi) .

The refinement clause for the dual abstraction is ξ ∶= ⋁s i∈β0SY
ai (line 7). As

established by Lemma 4.8, for every ai ∈ AX it holds that enc(ψi)[αX ⊔̇

81

4. CIRCUIT ABSTRACTION

αSX] ↔ ¬enc(ψi)[αX ⊔̇ αSX]. By the definition of θX , for every ai ∈ α0AX
it

holds that enc(ψi)[αX ⊔̇ αSX] = T. As αAX(ai) = αSY (si) for every ai ∈ AX
and βSY ⊑ α−SY it follows that enc(ψi)[αX ⊔̇ αSX] = F for every si ∈ β0SY . This
shows that θX[αX ⊔̇αSX] is unsatisfiable after the refinement ξ. Let β be the
failed assumptions. The returned assignment is βSX = β∣SX , thus βSX ⊑ α+SX .
For every α′SX with βSX ⊑ α′SX it holds that θX[αX ⊔̇ α′SX] is unsatisfiable as
it falsifies the refinement ξ. Thus, one can define a corresponding optimal
α′AX

that satisfies θX and for the resulting α′SY it holds that Φ∣∀Yα′SY
is true as

βSY ⊑ α′
−
SY . Hence, Φ∣∃XβSX [�↦F] is true.

– Assume that the SAT call in line 3 returns a different assumption α′AX
. Either

α′AX
corresponds to αX and is non-minimal, i.e., α∗AX

+ ⊑ α′AX

+, or it corre-
sponds to a different assignment α′X . The call to SOLVE-NNF may either re-
turn Sat or a counterexample Unsat(βSY)with βSY ⊑ α+SY . We consider the
latter case as in the former case SOLVE-NNF also returns Sat and the same ar-
gumentation as in the previous case applies.
The subsequent refinement in line 9 requires that one of the not satisfied
subformulas ψi with βSY (si) = αAX(ai) = T has to be satisfied in the next
iteration and the corresponding refinement clause is ξ ∶= ⋁s i∈β1SY

ai . By con-
struction of α∗AX

as the minimal assignment corresponding to αX , α∗AX
⊭ ξ

contradicts that αX is a satisfying assignment of Φ∣∃XαSX . Hence, αX ⊔̇ α∗AX

is still a satisfying assignment for the refined abstraction θ′X[αSX]. The re-
finement also reduces the number ofAX assignments by at least 1 and, thus,
brings us one step closer to a satisfying assignment.

• Assume that Φ∣∃XαSX is false. For every assignment αX , it holds that (Φ∣∃XαSX)[αX] is
false. The abstraction θX is initially satisfiable for every choice of αSX (every ai can
be set to true, see Equation 4.2). Let α be a such satisfying assignment of θX[αSX].
We define αX ∶= α∣X and αAX ∶= α∣AX . By construction of θX (Equation 4.2), αX ⊔̇
αSX ⊭ enc(ψi) implies thatαAX(ai) = T. We define the assignment with optimal
assumptions α∗AX

as α∗AX
(ai) = F if, and only if, αX ⊔ αSX ⊧ enc(ψi). Note that

αX ⊔̇ α∗AX
is a satisfying assignment of θX[αSX]. We show that even with optimal

assumptions α∗AX
, the quantified subformula is unsatisfiable and the subsequent

refinement step excludes assignment αAX from the abstraction θX .
Let α′SY and α∗SY be the assignments after line 5 with respect to αAX and α∗AX

, re-
spectively. From the construction, we know that α∗AX

+ ⊑ αAX
+, by the optimality

of α∗A, and thereby α∗SY
+ ⊑ α′SY

+. By Lemma 4.5, it holds that (Φ∣∃XαSX)[αX] and
Φ∣∀Yα∗SX

are equisatisfiable and, thus, winning for∀. By the monotonicity condition

given in Lemma 4.6, it follows that Φ∣∀Xα′SX
is false as well. By induction hypothesis,

SOLVE-NNF(∀Y , Ψ, α′SX) returns Unsat(βSY) such that βSY ⊑ α′SY
+ andΦ∣∀βSY [�↦F]

is false. As β1SY ⊆ α
′
SY

1 = {ai ∈ AX ∣ αA(ai) = T}, the following refinement with
clause⋁s i∈β1S ai excludes assignmentαAX from θX . As there are only finitely many

82

4.1. Circuit Abstraction

refinement clauses, the SAT call in line 3 eventually becomes unsatisfiable when
assuming αSX . Let θ′X be the abstraction at this point and let β′SX be the failed as-
sumptions, i.e., β′SX ⊑ α

+
SX .

Let α′′SX = β′SX [� ↦ T]. It remains to show that Φ∣∃Xα′′SX
is false. Assume for

contradiction that there is some αX such that (Φ∣∃α′′SX
)[αX] is true. It holds that

θ′X[αX ⊔̇ α′′SX] is unsatisfiable, whereas θX[αX ⊔̇ α′′SX] is satisfiable. Thus, the as-
signment αX was excluded due to refinements. Let α′′AX

be the optimal assump-
tion assignment corresponding toαX . As the refinement only excludesAX assign-
ments corresponding to some SY assignment β′′SY such that Φ∣∀β′′SY [�↦F] is false,

which contradicts our assumption.
The induction step for quantifier alternation ∀X . ∃Y follows from ∃X .∀Y and
Lemma 4.4.

Since the main algorithm SOLVE directly calls into SOLVE-NNF, the following theorem
follows immediately from Lemma 4.10.

Theorem 4.11. SOLVE returns Sat if, and only if,Φ is true.

4.1.3 Optimizations

In this section, we describe optimizations for the algorithm. Compared to CNF, there are
less opportunities in the algorithm as the dual abstraction already takes care of generat-
ing and translating witnesses.

As shown in the last section, the satisfaction assignments αS correspond to partial
formula evaluations. In the same way as the CNF algorithm, the abstraction only builds
an implication ai ∨ enc(ψi), thus, assumption assignments αA may not be optimal. Fix
some quantifier QX. During the execution of the algorithm, we maintain the partial
evaluation βϕ of ϕ under the current variable assignment αV of variables bound at X
or at some outer quantifier and we use this evaluation to build optimal assignments. If
βϕ(ψi) = T for some ai ∈ AX , then we set αAX(ai) toF.

Similar to the optimization described in Section 2.3.3, one can enhance the abstrac-
tion by only generating abstraction entries that are satisfiable with respect to the propo-
sitional formula, i.e., for every aψ we add the constraint that (aψ → ψ).

Lastly, and already noted by other NNF approaches [Jan+16], subformulasψ ∈ sf (ϕ)
do not need to be in negation normal form ifψ is only influenced by variables of a single
quantifier, that is, ψ = ψ=. For example, the following formula ∀x . ∃y, z. x ∧ (y ↔ z)
can be solved with the algorithm presented above without modifications.

4.1.4 Function Extraction

The overall approach for function extraction algorithm is the same as the one described in
Section 2.4. For every quantifier∃X, we store a sequence of pairs ⟨βSX , αX⟩ ∈ (A�(SX)×
A(X)) and these pairs can be obtained from the algorithm by the returned value βSX
after the dual abstraction optimization (lines 8 and 10). Next, we define the reverse

83

4. CIRCUIT ABSTRACTION

function of the abstraction invQX ∶A�(SX) → B(V) that maps an assignment βSX to
a propositional formula over variablesV bound by outer quantifiers (with respect to X).
Intuitively, invQX(βSX) describes those assignments that lead to βSX in the abstraction
of quantifierQX. We define invQX as

inv∃X(βSX) ∶= ⋀
s i∈β1SX

outer(ψi) (4.7)

where outer is defined as

outer(ψi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⋀
ψ j∈dsf (ψ i)
ψ<j =ψ j

ψ j if type(ψi) = ∧

⋁
ψ j∈dsf (ψ i)
ψ<j =ψ j

ψ j otherwise

The definition of the extracted function fx for somex ∈ X follows then by: Equation 2.11.: Page 40

Example 4.12. We show the function extraction for our running example

∃x .∀v ,w . ∃y. (x ∨ v ∨

ψ3
³¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
(y ∧w))

´¹¹¸¹¹¹¶
ψ2

∧ (x ∨

ψ5
³¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
(v ∧w)∨y)

´¹¹¸¹¹¶
ψ4

∧ (v ∨w ∨ y)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ψ6

From the execution shown in Example 4.3, we extract the sequences ⟨∅, x⟩ and
⟨s2s6, y⟩⟨s2s4, y⟩ as described above. The Skolem function for x is the constant x = T.
Applying the definition of inv∃y, we get

inv∃y(s2s6) = (x ∨ v) ∧ (v ∨w) and
inv∃y(s2s4) = (x ∨ v) ∧ (x ∨ (v ∧w)) .

Thus, the Skolem function fy is defined as

fy(v ,w) = inv∃y(s2s6)[x ↦ T] = (x ∨ v) ∧ (v ∨w)[x ↦ T] = (v ∨w) .

fx and fy depend solely on its dependencies and are functionally correct as ϕ[f{x ,y}] =
((v ∧w) ∨ v ∨w)(v ∨w ∨ (v ∧w)) is a tautology.

4.2 Evaluation

We implemented the abstraction algorithm for negation normal form formulas in a
solver called QUABS2 (Quantified Abstraction Solver) that takes as input a quantified
Boolean formula encoded in the quantified circuit (QCIR) [QBF14] format. As the solver

2Source code available at https://github.com/ltentrup/quabs

84

https://github.com/ltentrup/quabs

4.2. Evaluation

0 20 40 60 80 100 120 140 160 180
0

200

400

600

solved instances

tim
e(

se
c.)

QuAbS
cQESTO
GhostQ

QFUN
Qute

Figure 4.3: Cactus plot showing the number of solved instances on the QBFEVAL’18 bench-
mark set.

for the propositional abstractions, we used the SAT solver CryptoMiniSat [SNC09] ver-
sion 5.0.1. We compare QUABS against the publicly available QBF solvers that support
the QCIR format, namely GHOSTQ [Kli+10] version 2017, QFUN [Jan18b] version 2018,
CQESTO [Jan18a] version 2018, and QUTE [PSS17] version 1.1. For our experiments, we used
a machine with a 3.6 GHz quad-core Intel Xeon (E3-1271 v3) processor and 32 GB of mem-
ory. The timeout and memout were set to 10 minutes and 8 GB, respectively. We use the
prenex non-CNF benchmark set from the QBF competition QBFEVAL’18. The results are
shown in Figure 4.3. Despite being slower initially compared to CQESTO, QUABS solves
more instances overall.

Function Extraction. Enabling function extraction outputs a representation of the
Skolem and Herbrand function, encoded as And-Inverter-Graph, after determining that
the formula is satisfiable and unsatisfiable, respectively. In contrast to CNF solvers, we do
not need to disable optimizations [Nie+12] nor preprocessing (as we do not use external
preprocessors, and QUABS uses only constant propagation as preprocessing technique).
Thus, the impact of function extraction is small, as shown in Figure 4.4, which compares
the running time of QUABS with and without function extraction.

This makes QUABS an ideal candidate for applications where solving witnesses are
needed: QUABS is used in the reactive synthesis tool BOSY [FFT17], which won the syn-
thesis track in the reactive synthesis competition (SYNTCOMP) 2016 and 2017 [Jac+16;
Jac+17a]. Further, it is also part of the Petri game solver ADAM [Fin+17a] and the HyperLTL
satisfiability solver MGHYPER [FHH18].

85

4. CIRCUIT ABSTRACTION

0 100 200 300 400 500 600
0

100

200

300

400

500

600
QuAbS without function extraction

Q
uA

bS
w

ith
fu

nc
tio

n
ex

tra
ct

io
n

Figure 4.4: Scatter plot comparing the solving time (in sec.) of QUABS with and without
function extraction.

4.3 Solving Formulas in Non-Prenex Form

The algorithm presented in Section 4.1 assumes formulas given in prenex normal form
where quantifiers are only allowed in the formula’s prefix. While every QBF can be con-
verted into prenex form, the task of prenexing a QBF is non-deterministic, and different
prenexing strategies lead to different solving times [ESW09]. On the other hand, mini-
scoping can be used to translate prenex formulas into non-prenex form. We have ob-
served [RT15] that this can be quite effective for splitting instances into independent parts
on some benchmark families.

In this section, we extend the circuit abstraction algorithm to handle non-prenex
QBFs in negation normal form. In addition to a linear quantifier prefix, the algorithm han-
dles tree-shaped quantifier hierarchies where the quantifiers may appear under Boolean
connectives that influence which quantifier needs to be considered for solving. For exam-
ple, the formula ∃x , y. x ∨ ∀u. x ∧ (y ↔ u), can be solved by only considering the top-
level quantifier (using assignment {x ↦ T}). Further, for a branching node, i.e., a quan-
tifier block which has multiple children, it is possible to solve the children independently.
Our implementation exploits this independence by solving the different branches in par-
allel. We show the effectiveness of this approach on the reactive synthesis benchmark
set.

Related Work. Some of the prior mentioned non-CNF solving approaches can be ap-
plied to non-prenex settings as well [ESW09; Kli+10; Jan+16]. There has been prior work
on parallelization in QBF solving. PQSOLVE [FMS00] is an early example of a parallel DPLL

86

4.3. Solving Formulas in Non-Prenex Form

solver. Recent examples include the solver HORDEQBF [BL16], that starts multiple in-
stances of the solver DEPQBF with different parameters, and MPIDEPQBF [Jor+14], that
relies on search space partitioning using assumptions. Da Mota et al. [MNS10] proposed
methods to split a QBF at the top level and solve the resulting QBF instances in parallel by
a sequential CNF algorithm. In contrast, our approach can handle branches at every node
in the quantifier hierarchy, and our solving step is tightly integrated into the algorithm.
We refer to [LS18] for more details on parallel solving approaches for QBF.

4.3.1 Algorithm

In addition to the definitions introduced in Section 4.1.1, we define dqsf (ϕ) ⊂ B as
the direct quantified subformulas of ϕ, i.e., a quantifier QX .ψ is in dqsf (ϕ) if QX .ψ
is in the scope of ϕ and there is no other quantifierQY .ψ′ such thatQY .ψ′ is in the
scope of ϕ and QX .ψ is in the scope of ψ′. For a QBF ψ, we extend the definition of
type(ψ) ∈ {lit,∨,∧,Q} to return the Boolean connector if ψ is not a literal nor a quan-
tifier. For example, given ψ = ∃x . (∀y. ∃z. (x ∨ y ∨ ¬x)) ∨ (∀y. (y ∧ x)), it holds
that type(ψ) = Q, dsf (ψ) = {∀y. ∃z. (x ∨ y ∨ ¬x)) ∨ (∀y. (y ∧ x)}, and dqsf (ψ) =
{∀y. ∃z. (x ∨ y ∨ ¬x),∀y. (y ∧ x)}.

For this section, we assume w.l.o.g. that all quantifier blocks in the QBF are strictly
alternating, even for quantifiers not in the prefix. That means that for every quantified
formulaQX .ψ, the quantifier type of all ψ′ ∈ dqsf (QX .ψ) isQ. Further, we assume
that for every quantifierQX .ψ with type(ψ) = {∨,∧} it holds thatQ = ∃ implies that
type(ψ) = ∧ andQ = ∀ implies that type(ψ) = ∃. If this is not the case, one can apply
the mini-scoping rules.

∀X . ϕ ∧ ψ ≡ ∀X . ϕ ∧ ∀X .ψ
∃X . ϕ ∨ ψ ≡ ∃X . ϕ ∨ ∃X .ψ
∀X ,Y . ϕ(X) ∨ ψ(Y) ≡ ∀X . ϕ ∨ ∀Y .ψ
∃X ,Y . ϕ(X) ∧ ψ(Y) ≡ ∃X . ϕ ∧ ∃Y .ψ

The non-prenex algorithm, shown in Algorithm 4.3, is an extension of the prenex
algorithm presented in :Algorithm 4.2. The main difference is that due to the non- : Page 73
linear quantifier structure, the algorithm iterates over every quantified subformula. In
the case that every recursive verification returns SatQ , the algorithm returns SatQ after
dual-abstraction optimization. If one of the recursive verifications turn out to be UnsatQ ,
the given counterexample is excluded by refining the abstraction in line 17. To translate
an assignment of assumption variables αAX into multiple assignments αSY , one for each
quantifierQY , the sets SY have to partition AX .

Example 4.13. Given the following non-prenex formula

∃x . (x ∨ (∀u. ∃z. ((z ∨ u) ∧ (z ∨ u))) ∧ (x ∨ (∀v . (v ∨ (x ∧ v))) . (4.8)

87

4. CIRCUIT ABSTRACTION

Algorithm 4.3 Non-prenex Abstraction Based Algorithm
1: procedure SOLVE-NNF-NON-PRENEX(QX , Φ, αSX)
2: loop
3: match SAT(θX , αSX) as ▷ assume outer variable assignment
4: Sat(α)⇒
5: if Φ is propositional then
6: return SatQ(OPTIMIZE(α∣X , αSX)) ▷ base case
7: end if
8: sub-result ← SatQ
9: βAX = {}

10: forψi = QY . Ψ in dqsf (QX . Φ)where α(ai) = T do
11: αSY ← {si j ↦ α(a j) ∣ s j ∈ SY}▷ update subformula valuation
12: match SOLVE-NNF-NON-PRENEX(QY , Ψ, αSY) as
13: SatQ(βSY)⇒
14: βAX ← βAX ⊔ {ai ↦ F}
15: ⊔ {a j ↦ βSY (s j) ∣ s j ∈ dom(βSY)}
16: UnsatQ(βSY)⇒
17: θX ← θX ∧ (ai ∨⋁s i j∈β1SY

a j) ▷ refine θX
18: sub-result ← UnsatQ
19: end for

20: if sub-result = SatQ then
21: θX ← θX ∧⋁s i∈β0AX

ai ▷ refine θX
22: return SatQ(OPTIMIZE(α∣X , αSX))
23: end if
24: Unsat(βSX)⇒ return UnsatQ(βSX)
25: end loop
26: end procedure

The corresponding graph representation and the subformula indices are given in Fig-
ure 4.5. Consider the following abstractions

θ{x} ∶= (a3 ∨ x) ∧ (a9 ∨ x) ∧ (a12 ∨ x) (a3 → a4)(a9 → a10)
θ{u} ∶= (a7 ∨ u) ∧ (a8 ∨ u) (a5)
θ{v} ∶= (v ∧ (s12 ∨ v))
θ{z} ∶= (s7 ∨ z) ∧ (s8 ∨ z)

We give a possible execution of algorithm SOLVE-NNF-NON-PRENEX. To improve read-
ability, we use the propositional representation for assignments.

• SOLVE-NNF-NON-PRENEX(∃x,ψ2, {})

• SAT(θ{x}) = Sat(x a3a4a9a10a12)

88

4.3. Solving Formulas in Non-Prenex Form

• αS{v} = s12
– SOLVE-NNF(∀v,ψ11, αS{v})

– SAT(θ{v}, αS{v}) = Sat(v)
– return Sat∀(OPTIMIZE(v , s12)) ≡ Unsat(s12)

• θ′{x} = θ{x} ∧ (a10 ∨ a12)

• SAT(θ′{x}) = Sat(x a3a4a9a10a12)

• αS{u} = {}

– SOLVE-NNF-NON-PRENEX(∀u,ψ5, αS{u})

– SAT(θ{u}, αS{u}) = Sat(u a5a7a8)
– αS{z} = s7s8

* SOLVE-NNF-NON-PRENEX(∃z,ψ6, αS{z})

* SOLVE(θ{z}, αS{y}) = Sat(z)

* return Sat∃(OPTIMIZE(z, αS{z})) ≡ Sat(s8)
– θ′{u} = θ{u} ∧ (a5 ∨ a8)

– SAT(θ′{u}, αS{u}) = Sat(u a7a8)

– α′S{z} = s7s8

* SOLVE-NNF-NON-PRENEX(∃z, ϕ, α′S{z})

* SOLVE(θ{y}, α′S{y}) = Sat(z)

* return Sat∃(OPTIMIZE(z, α′S{z})) ≡ Sat(s7)

– θ′′{u} = θ
′
{u} ∧ (a5 ∨ a7)

– SAT(θ′′{u}, αS{u}) = Unsat({})

– return Unsat∀({})
• SOLVE-NNF-NON-PRENEX(∃x,ψ2, {}) returns Sat

Abstraction θ. We adapt the construction of the abstraction θ from Section 4.3 to the
non-prenex setting. We begin by identifying the differences between prenex and non-
prenex solving and how it affects the constructions of the abstraction. A non-prenex
quantifier introduces a sub-game, thus, for such a quantifierQX .ψ, we root the abstrac-
tion θX at formula ψ. At some quantifierQX .ψ, the respective player has the choice to
schedule a subset of the quantified subformulas dqsf (ψ) corresponding to playerQ. For
example, in the formula

∃a. ((∀x . [. . .]) ∧ (∀y. [. . .] ∨ ∀z. [. . .]))

the existential player has the choice to schedule either∀y or∀z, but has to schedule∀x.

89

4. CIRCUIT ABSTRACTION

∃x
1

∧
2

∨
3

x ∀u
4

∃z
5

∧
6

∨
7

z u

∨
8

z u

∨
9

x ∀v
10

∨
11

v ∧
12

x v

Figure 4.5: Visualization of the graph representation Gϕ representation of ϕ = ∃x . (x ∨
(∀u. ∃z. ((z ∨ u)∧ (z ∨ u)))∧ (x ∨ (∀v . (v ∨ x))). The numbers on the non-terminal
nodes represent the index i for the corresponding subformulaψi . To improve readability,
terminal nodes are drawn multiple times.

We implement those changes in the following. Fix some existential quantifier∃X .ψ
and some subformulaψi ofψ. The abstraction θX is defined as

θX =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

enc(ψ) if∃X is an innermost quantifier
⋀

ψ i∈sf (ψ)
∃ψ j ,ψk∈dsf (ψ i)withψ j=ψ≤j ∧ψk≠ψ

≤
k

ai ∨ enc(ψi) otherwise (4.9)

Compared to the non-prenex definition in Equation 4.2, we change the root formula to
beψ instead of ϕ and there is the possibility to have multiple innermost quantifiers. The
abstraction forψi is defined as

enc(ψi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⋀
ψ j∈dsf (ψ i)
ψ j=ψ≤j

encψ i(ψ j) if type(ψi) = ∧

⋁
ψ j∈dsf (ψ i)
ψ j=ψ≤j

encψ i(ψ j) if type(ψi) = ∨

enc(ψ j) ifψi = QY .ψ j

(4.10)

90

4.3. Solving Formulas in Non-Prenex Form

that is, for some inner quantifierQY .ψ j, we ignore the quantifier and directly continue
building the abstraction for ψ j. The encoding of subformulas encψ i(ψ j) stays the same
(Equation 4.4).

Lastly, we have to encode the scheduling constraints for direct quantified subformu-
lasQY .ψ′ ∈ dsf (QX .ψ). Thus, for every such formula ψi ∈ dsf (QX .ψ), we search
in the graph representation the earliest node ψk on the path from ψi to the root ψ such
that type(ψk) ∈ {∨,∧} and ak ∈ AX . If there is such a node, we add the constraint
(ak → encQ(ψk)) to θX and (ai) otherwise. encQ is closely related to enc, but only
collects quantified formulas, that is,

encQ(ψi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⋀
ψ j∈dsf (ψ i)

ψ j=ψ≤j ∧ψ j≠ψ<j ∧ψ j≠ψ=j

encQ(ψ j) if type(ψi) = ∧

⋁
ψ j∈dsf (ψ i)

ψ j=ψ≤j ∧ψ j≠ψ<j ∧ψ j≠ψ=j

encQ(ψ j) if type(ψi) = ∨

a j ifψi = QY .ψ j ∧ ψi ∈ dqsf (ψ)

(4.11)

This gives the intended scheduling semantics: For a conjunction, all conjuncts with quan-
tifier have to be scheduled while for a disjunction, only one of them are required.

4.3.2 Case Study: Parallelizing Bounded Synthesis

For our case study, we consider the reactive synthesis problem, i.e., the problem of syn-
thesizing a finite-state controller from an ω-regular specification. The details of the
QBF encoding of this problem using the bounded synthesis approach [FS13] are given in
: Section 7.3.2, thus, we only give a high level overview. The QBF query has a quantifier : Page 147
prefix of the form ∃∀∃. The variables in the top level existential correspond to a global
constraint that cannot be split syntactically. However, the constraints regarding the inner
quantifiers∀∃are local to the state of the implementation, so one can derive a QBF with a
top level existentially quantifier andn independent∀∃quantifiers below by using minis-
coping rules, where n is the number of states of the to be synthesized controller. This is
merely a new observation and not particularly special for this kind of benchmark as we
have made similar observations regarding competitive benchmark suites for CNF [RT15].

We implemented Algorithm 4.3 in a prototype tool called PQUABS (Parallel Quanti-
fied Abstraction Solver)3 that accepts as input a QBF in the standard format QCIR [QBF14].
We use PicoSAT [Bie08] as the underlying SAT solver and the POSIX pthreads library for
thread creation and synchronization. For every quantifierQX that branches more than
once, we create a thread for each child quantifier. The loop in line 10 is then implemented
by passing αSY to the subquantifier followed by notifying the corresponding thread. Be-
fore line 20, there is a barrier where we wait for all children to finish. For our experiments,
we used a machine with a 3.6 GHz quad-core Intel Xeon (E3-1271 v3) processor and 32 GB
of memory. The timeout was set to 10 minutes. The synthesis instances used in this case
study where taken from the Acacia benchmark set [Boh+12].

3Available at https://www.react.uni-saarland.de/tools/quabs/

91

https://www.react.uni-saarland.de/tools/quabs/

4. CIRCUIT ABSTRACTION

Table 4.1: Cumulated solving time of PQUABS with respect to number of used threads.
There are 443 instances in total.

1 thread 2 threads 3 threads 4 threads prenex

solved instances 397 403 407 409 325
cumulated solving time 100% 64.51% 54.15% 49.94% -

Table 4.2: Detailed solving results for example instances.

instance branching 1 thread 2 threads 3 threads 4 threads

ltl2dba-23 10 598.20 s 393.68 s 335.59 s 312.70 s
100% 65.81% 56.10% 52.27%

ltl2dpa-12 15 521.35 s 302.13 s 233.98 s 202.27 s
100% 57.95% 44.88% 38.80%

ltl2dba-05 4 476.12 s 359.40 s 331.87 s 322.59 s
100% 75.49% 69.70% 67.75%

load-full-6 3 386.94 s 332.15 s 314.37 s 321.75 s
100% 85.84% 81.25% 83.15%

ltl2dpa-11 18 252.61 s 143.13 s 107.54 s 92.43 s
100% 56.67% 42.57% 36.59%

Table 4.1 shows the overall results of our experiments. It depicts the number of
solved instances and the cumulated solving times with respect to the number of threads
used. For comparison, we also included the number of solved instances from the single
threaded version of PQUABS without miniscoping, i.e., linear prenex solving. One cannot
expect linear speedup due to the non-parallelizable parts, like preprocessing and solv-
ing of the top-level existential quantifier, as well as the fact that the solving time of the
children∀∃ quantifiers are not uniform.

Nevertheless, already using 2 threads, the speedup compared to single thread solv-
ing is more than 1.5 and using 4 threads reduces the solving time by a factor of 2 on aver-
age. Table 4.2 gives detailed results for select instances from the scatter plot of Figure 4.6.
These examples are the two “outliers” load-full-6 and ltl2dba-05, the hardest commonly
solved instance ltl2dba-23, and two instances with close to optimal speedup (ltl2dpa-12
and ltl2dpa-11).

4.4 Summary

In this section, we extended the clausal abstraction approach in two dimensions, lifting
the CNF and prenex prerequisites assumed in Chapter 2. First, we considered quanti-
fied Boolean formulas in prenex negation normal form. We presented the new abstrac-
tion and algorithm in Section 4.1, where we also showed the correctness, algorithmic im-

92

4.4. Summary

0 100 200 300 400 500 600
0

100

200

300

400
run time in sec.

ru
n

tim
ei

n
se

c.

2 threads
3 threads
4 threads

Figure 4.6: Scatter plot of solving times with multiple threads against single thread base-
line. Here, we consider only instances with more than 1 second of solving time.

provements, and function extraction. Notably, we introduced the notion of a dual ab-
straction, which is a key factor in the algorithm. Our experiments show that the resulting
algorithm performs better than competing solvers on the QBFEVAL’18 non-CNF bench-
mark set. Afterward, in Section 4.3, we lifted the prenex requirement by considering
tree-shaped quantifier prefixes and showed how to exploit independence by paralleliz-
ing parts of the algorithm. Tree-shaped quantifiers can also be seen as the first step to-
wards non-linear quantifiers as introduced by branching quantifiers, which we discuss in
the following chapters.

93

Chapter 5

Fast DQBF Refutation

The synthesis problem, that is the search for an implementation given declarative speci-
fications, is considered to be an extremely hard algorithmic problem. Depending on the
underlying model, one common way to solve this problem is an encoding to a constraint
problem asserting the existence of Boolean functions. For example, the synthesis of in-
variants, programs, or winning regions of (finite) games can all be expressed as the exis-
tence of a function f ∶Bm → Bn such that for all tuples of inputs x⃗1, . . . , x⃗k ∈ Bm some
relation ϕ(x⃗1, f (x⃗1), . . . , x⃗k , f (x⃗k)) over function applications of f is satisfied. While
it is possible to specify these problems in SMT or in first-order logic, existing algorithms
struggle to solve even simple instances of synthesis queries.

In order to develop a new algorithmic approach for synthesis problems, we focus on
the simplest logic admitting the existential quantification over Boolean functions, de-
pendency quantified Boolean formulas (DQBF). DQBF is an extension of QBF, which al-
lows for non-linear dependencies between quantified variables. However, existing al-
gorithms for DQBF perform poorly, in particular, on synthesis problems [Fay+17]. This
is not surprising: Typical synthesis queries contain two or more function applications,
i.e. are of the form ∃ f .∀x⃗1, x⃗2. ϕ(x⃗1, f (x⃗1), x⃗2, f (x⃗2)), and involve bit-vector variables,
e.g. x⃗1, x⃗2 ∈ Bn. The so far best-performing algorithm for DQBF needs to expand ei-
ther x⃗1 or x⃗2 in order to reach a linear quantifier prefix, which can then be converted to a
QBF [Git+15]. This means that they reduce to QBF formulas that are exponential in n.

Non-linear dependencies also occur naturally in verification problems for incomplete
designs, such as the partial equivalence checking (PEC) problem [Git+13], where a partial cir-
cuit, with some parts left open as “black boxes”, is compared against a reference circuit.
In this chapter, we focus on the PEC problem as it is itself a synthesis problem (“does there
exists an implementation of the black boxes such that the circuit becomes equivalent to
its reference implementation?”) and the encoding to DQBF is straightforward. The in-
puts to the circuit are modeled as universally quantified variables and the outputs of the
black boxes as existentially quantified variables. Since the output of a black box should
only depend on the inputs that are actually visible to the black box, we need to restrict
the dependencies of the existentially quantified variables to subsets of the universally
quantified variables.

95

5. FAST DQBF REFUTATION

x1

x2

y1

y2

Figure 5.1: Example of a partial equivalence checking (PEC)
problem. A partial design, consisting here of the two black
boxes and the OR gate, is compared to the reference circuit
above, here consisting of a single XOR gate. The output of
the complete circuit is 1 iff the completion of the partial de-
sign and the reference circuit compute the same result.

There has been some success in extending standard techniques of QBF solving to
DQBF [FKB12; Git+13; Frö+14; Git+15], including an extension of the clausal abstraction
algorithm to DQBF which we present in Chapter 6. A much faster alternative to such pre-
cise methods is to approximate the dependencies, such that all dependencies become lin-
ear and DQBF thus simplify to QBF. For the PEC problem, an overapproximation of the
dependencies is still useful to find errors (if the black box cannot be implemented with
additional inputs, then it can, for sure, not be implemented according to the original de-
sign), but it significantly decreases the accuracy, because errors that result precisely from
the incomparable dependencies of the black boxes are no longer detected. Consider, for
example, the toy PEC problem shown in Figure 5.1, where we ask whether it is possible
to implement the XOR gate at the top as an OR of the two black boxes below, which each
only sees one of the two inputs x1 andx2. This is obviously not possible; however, the three
overapproximating linearizations∀x1∀x2∃y1∃y2,∀x1∃y1∀x2∃y2 and∀x1∃y2∀x2∃y1 all
result in a positive answer, because an output that depends on both x1 and x2 can com-
pute x1 ⊕ x2, which gives the correct result, assuming that the other black box simply
outputs constant 0.

In this chapter, we present an algorithm for DQBF that combines the efficiency of the
QBF abstraction with the accuracy of the classic methods [FKB12; Git+13; Frö+14; Git+15].
We focus on the refutation of DQBF because this corresponds to the identification of errors
in the PEC problem, or more general, inconsistencies in the specification of a synthesis
problem. In contrast to QBF, where every false formula has a countermodel represented
by a Herbrand function, this is no longer the case for DQBF [BCJ14a]. Another view on
the QBF abstractions mentioned above is that they under-approximate the existence of
a Herbrand countermodel. For example, the linear quantifier prefix∀x1∀x2∃y1∃y2 rep-
resents the search for constant Herband functions fx1 and fx2 . Our algorithm identifies
situations in which a set of Herbrand countermodels is sufficient to rule out a satisfying as-
signment of the existentially quantified variables. In the PEC example from Figure 5.1,
there are four possible constant Herbrand functions represented by the assignment x1x2,
x1x2, x1x2, and x1x2. However, already three of them1, x1x2, x1x2, and x1x2, suffice to rule
out a satisfying assignment for the existential variables: Since y1 does not depend on x2,
its value must be the same forx1x2 andx1x2; likewise, the value of y2 must be the same for
x1x2 and x1x2. For x1x2, both y1 and y2 must be 0, because 1⊕ 1 = 0. However, if y1 = 0 for
x1x2, then y1 = 0 also for x1x2, which leads to a contradiction, because y2 must be equal

1Using a better under-approximation reduces the number of required Herbrand functions in this exam-
ple to just two.

96

5.1. Dependency Quantified Boolean Formulas

to 1 for x1x2 because 1⊕ 0 = 1 and, at the same time, equal to 0, because 0⊕ 0 = 0. In our
algorithm, we specify the existence of such a set of Herbrand functions as a QBF formula.
We iteratively increase the number of countermodels to be considered and terminate as
soon as a satisfying assignment is ruled out.

This chapter is based on work published in the proceedings of SAT [FT14b].

Related Work. DQBF was first defined by Peterson and Reif [PR79] and gained more at-
tention recently [BCJ12; Git+13; Frö+14; BCJ14a; Git+15; Wim+16; Rab17; Bey+18; TR19b].
The satisfiability problem for DQBF is NEXPTIME-complete [PRA01]. The first investi-
gation of practical methods for DQBF solving is a DPLL-based approach due to Fröhlich
et al. [FKB12]. The solver IDQ [Frö+14] uses an instantiation-based algorithm, which is
based on the Inst-Gen calculus, a state-of-the-art decision procedure for the effectively
propositional fragment of first-order logic (EPR), for which the satisfiability problem is
also NEXPTIME-complete. HQS [Git+15] is an expansion based solver that expands univer-
sal variables until the resulting instance has a linear prefix and applies QBF solving after-
ward. The idea of partial expansions was used in previous work, e.g., there is a two-phase
proof system for QBF that expands certain paths and then refutes the formula by propo-
sitional resolution [JM13]. The underlying proof system∀Exp+Res is sound and complete
for DQBF [Bey+18]. The verification of incompletely specified circuits has received signif-
icant attention (cf. [SB01; NSB07]); the connection between DQBF and the PEC problem
was first pointed out by Gitina et al. [Git+13]. On a more general level, the verification of
partial designs is related to the synthesis problems for reactive systems with incomplete
information and for distributed systems (cf. [KV97; FS05]). In previous work, we have pro-
posed an efficient method for disproving the existence of distributed realizations of spec-
ifications given in linear-time temporal logic (LTL) [FT14a] that bounds, similar to the ap-
proach of this chapter, the number of countermodels under consideration.

5.1 Dependency Quantified Boolean Formulas

LetV be a finite set of propositional variables. We use the convention to denote the set of
all universal variablesX , an element x ∈ X , and a subset X ⊆ X (y ∈ Y ⊆ Y for existen-
tial variables, respectively). The standard form of a DEPENDENCY QUANTIFIED BOOLEAN
FORMULA (DQBF) (also called Skolem form [BCJ14a]) is

∀x1.⋯∀xn . ∃y1(H1).⋯∃ym(Hm). ϕ , (5.1)

that is, formulas beginning with universal quantified variables followed by the existen-
tially quantified Henkin quantifiers and the quantifier-free formulaϕ. A Henkin quantifier
∃y(H) explicitly states the dependency for variable y by its support setH ⊆ X , which is
the difference to QBF, where the preceding universal quantification determines the de-
pendencies of an existential variable. For the quantifier-free part ϕ we allow negation
¬, disjunction ∨, conjunction ∧, implication→, equivalence↔, exclusive or ⊕, and the
abbreviations trueT and falseF.

97

5. FAST DQBF REFUTATION

A DQBF formula Φ is satisfiable, if there exists a Skolem function fy for each existen-
tial variable y ∈ Y , such that for all possible assignments of the universal variables X ,
the Skolem functions evaluated on these assignments satisfyϕ. We represent a function
fy as a BINARY DECISION TREE (BDT) , where the branching of the tree represents the as-
signment of universal variables and fy serves as the labeling function for the leaves, see
Figure 5.2a–c for examples of BDTs. As a notation for assignments, we use the cube repre-
sentation defined before (see also Section 2.1). A root-to-leaf path of a BDT represents an
assignment αX whereX ⊆ X is the set of universal variables that the BDT branches on. A
MODELMof a satisfiable DQBF formulaΦ is a binary decision tree with branchingX and
leaf labeling fY such that (1) for every assignment αX represented by a root-to-leaf path
in the tree it holds that αX ⊔̇ fY(αX) ⊧ ϕ and (2) the labels of the leaves are consistent
according to the dependencies of the existential variables, i.e., there exists a decomposi-
tion of the decision tree into individual Skolem functions fy for each y ∈ Y . For example,
the Skolem functions of a satisfiable DQBF formula

∀x1, x2. ∃y1(x1). ∃y2(x2). ϕ (5.2)

are the Boolean functions fy1 and fy2 , depicted in Figure 5.2a and b, respectively. Fig-
ure 5.2c shows the corresponding model, that is the composition of fy1 and fy2 . In this
representation, the incomparable dependencies become visible: Despite the branching
of the tree by both variablesx1 andx2, the results of the Skolem functions fy1 and fy2 must
be equal on paths that cannot be distinguished according to the dependencies, e.g., as y2
does not depend on x1, the paths x1x2 and x1x2 are indistinguishable for fy2 and the re-
sult on both paths is fy2(x2). A CANDIDATE MODEL of a DQBF is a BDT over all existential
variables such that all existential assignments are consistent. A DQBF formula is unsatis-
fiable if there does not exist a model, i.e., for all candidate models always at least one path
violates the quantifier-free formula ϕ.

QBF Approximation. Given a DQBF formula Φ, a QBF formula Ψ with the same
quantifier-free part is an approximation ofΦ, writtenΦ ⪯ Ψ if for all existential variables
y ∈ Y it holds that Hy ⊆ depΨ(y), where Hy is the support set of y and depΨ(y) ⊆ X
is the dependency set of y in the QBF formula Ψ. Given two QBF approximations Ψ and
Ψ′, we call Ψ stronger than Ψ′, written Ψ ⪯ Ψ′, if for all y ∈ Y it holds that depΨ(y) ⊆
depΨ′(y) [Git+13]. In Equation 5.2, y1 and y2 have incomparable dependencies as nei-
ther {x1} ⊆ {x2} nor {x2} ⊆ {x1}. Hence, in all strongest QBF approximations, that is
∀x1∃y1∀x2∃y2 and∀x2∃y2∀x1∃y1, at least one existential variable has more dependen-
cies than before. The resulting inaccuracy was already highlighted in the introduction on
the PEC problem from Figure 5.1, which corresponds to the formula given in Equation 5.2
with quantifier-free partϕ = (y1∨ y2)↔ (x1⊕ x2). All QBF abstractions of Equation 5.2
are satisfiable despite the DQBF formula being unsatisfiable.

Variable Elimination. The expansion based method for converting a DQBF formula Φ
into a logically equivalent QBF formula Ψ [BK06; BCJ14a] uses the idea of unrolling the
binary decision tree, e.g., expanding the formula given in Equation 5.2 by x1 results in the

98

5.2. Bounded Unsatisfiability

fy1(x1)

x1

fy1(x1)

x1

(a) BDT for fy1

fy2(x2)

x2

fy2(x2)

x2

(b) BDT for fy2

fy1(x1)
fy2(x2)

x2

fy1(x1)
fy2(x2)

x2

x1

fy1(x1)
fy2(x2)

x2

fy1(x1)
fy2(x2)

x2

x1

(c) BDT representing the combination of fy1 and fy2

fy1(x1)
fy2(x2)

x2 x2

x1

fy1(x1)
fy2(x2)

x2 x2

x1

(d) Partial BDT for fy1 and fy2

Figure 5.2: The figure shows the binary decision trees for fy1 (a) and fy2 (b), their compo-
sition (c), and a partial model (d) for the PEC problem in Figure 5.1.

formula
∀x2. ∃y2(x2). ∃y1(). ∃y′1(). ϕ[x1 ↦ F] ∧ ϕ′[x1 ↦ T] , (5.3)

where ϕ′ is the formula obtained from ϕ by replacing all occurrences of y1 by y′1. In the
expansion of x1, only variable y1 is duplicated to represent the different choices of the
Skolem function fy1 on the paths that differ in the assignment of x1. As y2 does not de-
pend onx1, the variable y2 is not duplicated. After the expansion of all universal variables,
the resulting existential QBF formula can be solved by a SAT solver. Instead of expanding
all quantifier, one can also expand universal variables until the resulting quantifier prefix
is linear [Git+15] from which point on one can use a QBF solver.

5.2 Bounded Unsatisfiability

Partial Models. Instead of enumerating all constant Herbrand functions, which cor-
responds to expanding the whole binary decision tree, it is often possible to determine
unsatisfiability with only a subset of the assignments to the universal variables. The re-
stricted choice of a Skolem function based on its dependencies can also be defined as a
consistency condition between universal assignments: Given two assignments αX , α′X ∈
A(X), different assignments of an existential variable y ∈ Y onαX andα′X are consistent
if the assignments of Hy on αX and α′X are different. We introduce the notion of partial
models that are decision trees which contain only a subset of all universal assignments.
Formally, a PARTIAL MODEL P of a DQBF formula Φ is a model over universal variables
X were branches may be omitted. A PARTIAL CANDIDATE MODEL is defined analogously.
As partial models are weaker than models, the existence of a partial model does not im-
ply the existence of a model, but from the non-existence of a partial model follows the
non-existence of a model.

99

5. FAST DQBF REFUTATION

Lemma 5.1. Given a DQBF formulaΦ and a set of assignmentsP ⊆ A(X). Φ is unsatisfiable if
there does not exist a partial model overP.

Proof. We only consider the case P ≠ A(X), as for P = A(X) the definition of partial
models and models coincide. Assume for contradiction that there does not exist a par-
tial model over P while Φ is satisfiable, i.e., there exists a modelM of Φ. We define a
candidate partial model P by restrictingM to the assignments P. From the definition
of models, it follows that all assignments inP satisfy ϕ and the labeling of the leaves are
consistent on all pairs of assignments inP . Hence,P is a partial model of Φ, contradict-
ing our assumption.

Bounded Unsatisfiability. We turn the idea of non-existing partial models into the
bounded unsatisfiability problem that limits the number of assignments under consider-
ation to show that no partial model exists. For some k ≥ 1, a DQBF formulaΦ is k-bounded
unsatisfiable if there exists a set of assignments P ⊆ A(X)with ∣P∣ ≤ k such that there
does not exist a partial model over P.

Theorem 5.2. A DQBF formulaΦ is unsatisfiable iff it is k-bounded unsatisfiable for some k ≥ 1.

Proof. If a DQBF formulaΦ is unsatisfiable, it follows immediately that it is2∣X ∣-bounded
unsatisfiable as 2∣X ∣ is the total number of assignments over X . Assume that a DQBF
formulaΦ is k-bounded unsatisfiable, then there exists a set of assignmentsPwith ∣P∣ ≤
k such that Φ is unsatisfiable by Lemma 5.1.

5.3 Encoding of Bounded Unsatisfiability in QBF

We give an encoding of the k-bounded unsatisfiability problem to QBF for a fixed bound
k ≥ 1. Before presenting the general encoding, we show the basic steps on the formula
given in Equation 5.2 ∀x1, x2. ∃y1(x1). ∃y2(x2). ϕ. The formula is unsatisfiable iff for
all candidate models, there exists at least one assignment to the universal such that the
propositional formula ϕ is unsatisfiable. Instead of expanding all four universal assign-
ments, we restrict the binary decision tree to just two (but do not choose which one) and
encode the search for the concrete assignment as QBF formula

∃x11 , x21 , x12, x22 .∀y11 , y21 .∀y12, y22 .¬ϕ1 ∨ ¬ϕ2 (5.4)

that asserts that either assignment violates ϕ. This, however, does not accurately repre-
sent the incomparable dependencies of y1 and y2. For the assignment depicted in Fig-
ure 5.2d, where only x1 has a different assignment on the two assignments, y12 and y22
can have different assignment as well, despite the fact that y2 does not depend on x1. To
fix this inaccuracy, we introduce a consistency condition that ensures the restricted choices
across multiple universal assignments. For example, the consistency condition for y2 in
Equation 5.4 is (y12 ↔ y22)∨ (x12 ↮ x22), i.e., either the assignment of y2 is equal on both
assignments, or the assignment of the dependency x2 is different. In the following, we
describe the general encoding.

100

5.3. Encoding of Bounded Unsatisfiability in QBF

We build a QBF formula bunsat(Φ, k) that encodes the k-bounded unsatisfiability
problem, i.e., for a given bound k, the satisfaction of bunsat(Φ, k) implies that Φ is un-
satisfiable. In the encoding, we introduce k copies of the existential and universal vari-
ables in the DQBF formulaΦ. Moreover, we specify a consistency condition that enforces
that the universal variables can only act according to the assignment of the dependencies
given by the support sets.

bunsat(Φ, k) ∶= ∃x11 , . . . , x1m , x21 , . . . , x2m , . . . , xkm .
∀y11 , . . . , y1n , y21 , . . . , y2n , . . . , ykn .
consistent({y1, . . . , yn}, k)→ ⋁

1≤i≤k
¬ϕk , (5.5)

where ϕk denotes the formula ϕ for which every variable v is replaced by vk . The consis-
tency condition is given by the formula

consistent(Y , k) ∶= ⋀
y∈Y

⋀
(i , j)∈{1,...,k}2

((yi ↔ y j) ∨ (⋁
x∈Hy

x i ↮ x j)) . (5.6)

Lemma 5.3. Let Φ be a DQBF formula, 1 ≤ k ≤ 2∣X ∣ a bound, and let P ⊆ 2X with ∣P∣ = k be
a set of assignments. A binary decision treeP over assignments P is a candidate partial model if,
and only if,P satisfies consistent(Y , k).

Proof. Assume thatP is a candidate partial model. Pick an arbitrary existential variable
y ∈ Y with support set Hy ⊆ X . Pick two different assignments αi and α j from P (if
∣P∣ = 1, consistent(Y , k) is trivially satisfied). To be consistent, the valuation of y on both
assignments must be equal, or αi ∣Hy ≠ α j∣Hy . Hence consistent(Y , k) is satisfied.

Let P be an binary decision tree over P such that the assignments of the existen-
tial variables Y satisfy consistent(Y , k). Let y ∈ Y be an arbitrary existential vari-
able. Pick any combination (i , j) ∈ {1, . . . , k}2 of assignments. By the satisfaction of
consistent(Y , k), it follows that either the valuation of y is equal on both assignments,
or the valuation of a variable from the support set Hy is different. Thus,P is a candidate
partial model.

Theorem 5.4. A DQBF formulaΦ is unsatisfiable if, and only if, there exists a bound k ≥ 1 such
that the QBF formula bunsat(Φ, k) is satisfiable.

Proof. Assume Φ is unsatisfiable, i.e., for all candidate models, there exists an assign-
ment such that the propositional formula is unsatisfiable. Choose a bound k of 2∣X ∣, i.e.,
we choose to expand the whole decision tree. In this case, the consistency condition mod-
els exactly the dependencies of the existential variables (Lemma 5.3). Thus,bunsat(Φ, k)
considers every candidate model and from the unsatisfiability of Φ follows that for each
such candidate, there exists an assignment that satisfies¬ϕ, hence, bunsat(Φ, k) is sat-
isfiable.

Assume there exists a k ≥ 1 such that bunsat(Φ, k) is satisfiable. We choose the
assignmentsP ⊆ 2X from the assignment of the existential variables inbunsat(Φ, k). By

101

5. FAST DQBF REFUTATION

Lemma 5.3, the consistency condition allows for all candidate partial models and, for each
candidate, one of the assignments satisfies ¬ϕ. Hence, it follows that Φ is k-bounded
unsatisfiable and, by Theorem 5.2, that Φ is unsatisfiable.

Proposition 5.5. Let Φ be a DQBF formula. For some bound k ≥ 1, the QBF formula
bunsat(Φ, k) has k ⋅ ∣X ∣ existential and k ⋅ ∣Y ∣ universal variables, respectively, and the propo-
sitional part is of sizeO(∣Y ∣ ⋅ k2 ⋅maxy∈Y ∣Hy ∣ + k ⋅ ∣ϕ∣).

Proof. The number of variables and the size of the unrolling of ϕ follow directly from the
definition given in Equation 5.5. It remains to be shown that the size of the consistency
condition is inO(∣Y ∣ ⋅ k2 ⋅ maxy∈Y ∣Hy ∣. Omitting symmetric cases in the consistency
condition gives us (k2) ∈ O(k

2) different sets (i , j) ∈ {1, . . . , k}2 and the remaining part
follows from the definition given in Equation 5.6.

Combining with QBF Abstraction. One critical observation in the QBF encoding in
Equation 5.5 is that are pair of assignments that are not needed for proving the unsat-
isfiability, but for enforcing consistent labels in the partial model. In Equation 5.5, the
universal variables depend on all existential variables which corresponds to the weak-
est QBF approximation of Φ. By using a stronger QBF abstraction, the QBF formula itself
takes care for a part of the consistency condition, which can decrease the bound needed
to refute a DQBF formula.

Example. Consider again the PEC example from Figure 5.1. As we have seen, there exist
two strongest QBF approximations, but both are satisfiable due to overapproximation.
However, we prove unsatisfiability by using a strongest QBF abstraction together with a
bound of two: The formula

∃x11 , x21 .∀y11 , y21 . ∃x12, x22 .∀y12, y22 . ((y12 ↔ y22) ∨ (x11 ↮ x21))→ (¬ϕ1 ∨ ¬ϕ2) (5.7)

is satisfiable (choose arbitrary assignmentαwithα(x11) ≠ α(x21)andα(x12) = α(x22)). As
the assignment of y2 must be the same on both copies of universal assignments (other-
wise it violates the consistency condition), it holds that either α(y2) ≠ α(x11) or α(y2) ≠
α(x21), hence the propositional formula is violated on either copy.

5.4 Experimental Results

We have implemented the bounded unsatisfiability method using a strongest QBF ab-
straction. In this section, we report on experiments carried out on a 2.6 GHz Opteron sys-
tem. The QBF instances generated by our reduction are solved using a combination of
the QBF preprocessor Bloqqer [BLS11] in version 031 and the QBF solver DepQBF [LB10]
in version 2.0. As a base of comparison, we have also implemented an expansion-based
DQBF solver using the BDD library CUDD in version 2.4.22.

2The source code of the benchmarks and tools are available at http://react.uni-saarland.de/
tools/bunsat/

102

http://react.uni-saarland.de/tools/bunsat/
http://react.uni-saarland.de/tools/bunsat/

5.4. Experimental Results

Table 5.1: Results of the bounded unsatisfiability method on PEC examples. The table
shows the approximation ratio of the bounded-assignment prototype using a bound≤ 2
and the median running time relative to the expansion solver (timeout after 5min per
instance). For every number of black boxes, we generated 1000 random instances.

circuit # black boxes # unsat. bound 1 bound 2 time (rel.)

multiplier

1 950 100 % 100 % 27.5 %
3 927 97.6 % 100 % 22.2 %
5 924 87.6 % 99.6 % 17.9 %
7 912 67.9 % 95.9 % 13.8 %
9 870 30.9 % 76.2 % 16.2 %

adder

1 962 100 % 100 % 10.8 %
3 959 100 % 100 % 9.0 %
5 959 99.9 % 100 % 8.9 %
7 951 99.5 % 100 % 7.0 %
9 957 98.5 % 99.9 % 6.8 %

multiplexer

1 931 100 % 100 % 57.1 %
3 908 97.9 % 99.8 % 48.0 %
5 906 95.7 % 98.5 % 41.9 %
7 896 92.5 % 97.0 % 35.5 %
9 889 88.9 % 94.7 % 28.9 %

look-ahead

1 999 100 % 100 % 4.5 %
3 997 98.2 % 100 % 3.4 %
5 996 97.1 % 100 % 3.3 %
7 996 94.2 % 99.9 % 0.7 %
9 986 84.4 % 99.1 % 0.8 %

Performance. Table 5.1 shows the performance of our solver on several PEC bench-
marks, including the arithmetic circuits multiplier (4-bit) and adder (32-bit), a 32-bit looka-
head arbiter implementation, and a 32-bit multiplexer. The PEC instances are created as
follows: Starting with a circuit, we exchange a variable number of gates by black boxes
and use one copy of the original circuit as the specification. Random faults are inserted
by replacing precisely one gate with a gate of a different type. With only one exception
(instances with more than 7 black boxes of the multiplier instances), more than 94 % of the
instances were solved correctly with bound two, while the number of correctly solved in-
stances by the QBF abstraction drops as low as 84.4 %. The running times in Table 5.1 are
given relative to the running time of the expansion-based solver. Our solver outperforms
the expansion-based solver significantly, especially on benchmarks with a large number
of black boxes. For example, with 9 black boxes, the difference ranges from 37 % faster
(adder) to more than 5 times faster (lookahead).

103

5. FAST DQBF REFUTATION

x1 x2

BB1 BB2

Figure 5.3: PEC problem corresponding to Table 5.2.

Table 5.2: Result of the XOR random function example. The table shows the approxima-
tion quality of the bounded-assignment prototype with respect to the number of black
boxes.

black boxes total sat. unsat. bounded unsatisfiable
1 2 3 > 3

2 65536 32377 33159 22687 10472 0 0
100 % 68.4 % 31.6 % 0 % 0 %

3 50000 9273 40727 11257 26169 3115 186
100 % 27.6 % 64.3 % 7.6 % 0.5 %

4 50000 190 49810 5002 43781 1015 12
100 % 10.0 % 87.9 % 2.0 % < 0.1%

Precision. Table 5.1 indicates that an increase of the bound from 1, which corresponds
to the plain QBF approximation, to 2 already results in a significant improvement of ac-
curacy. Table 5.2 analyzes the impact of the bound on the approximation quality in more
detail. Here, the benchmark is a circuit family from [Git+13], depicted for two black boxes
in Figure 5.3. The circuit uses the XOR of the inputs as specification and a random Boolean
function as implementation, where black boxes with pairwise different dependencies
serve as inputs to this function. For two black boxes, we created all 65536 = 216 instances
of Boolean functions with four inputs. For more than two, we selected a random subset
of 50 000 instances.

Table 5.2 shows an interesting correlation between the plain QBF approximation and
the bounded-assignment method: The less effective the plain approximation, the more
effective the bounded-assignment method. With an increasing number of black boxes,
the number of solved instances by the plain QBF approximation (bound 1) decreases by
more than a half with every black box. At the same time, the relative number of instances
that are solved with a bound of at most two is always larger than 90 %. With a bound of
at most three, nearly all unsatisfiable instances are detected (> 99 %). While the QBF ap-
proximation alone thus does not lead to satisfactory results, a comparatively small bound
suffices to solve almost all instances.

104

5.5. Summary

5.5 Summary

We have presented a method for DQBF refutation that significantly outperforms a BDD-
based DQBF solver based on variable expansion on PEC benchmarks. The bounded unsat-
isfiability method is based on an improved approximation of the DQBF formula encoded
as a QBF, based on the search of multiple Herbrand functions and expressing dependency
constraints as consistency conditions. Our experiments show that considering multiple
Herbrand functions significantly improves accuracy, especially with an increasing num-
ber of black boxes. Compared to our expansion-based solver, the running time of our pro-
totype implementation scales better with the number of black boxes. After the original
formulation [FT14b], the bounded unsatisfiability method has been implemented by the
expansion-based solver HQS [Git+15] and is used by default before the expansion solving
loop.

105

Chapter 6

Clausal Abstraction for DQBF

We continue our investigation of DQBF solving methods. In this chapter, we lift the
clausal abstraction algorithm to DQBF, which comes with two significant challenges:
First, clausal abstraction is based on Q-resolution (see Section 3.2), and Q-resolution is
sound but incomplete for DQBF [BCJ14a]. In particular, clauses may contain variables
from incomparable quantifiers, so-called dependency forks [Rab17], which characterizes
the reason for incompleteness. We address this problem using the Fork Extension [Rab17]
proof rule, which allows us to split clauses with dependency fork into a set of clauses with-
out dependency fork by introducing new variables. Second, clausal abstraction relies on
the linear quantifier order of QBFs in prenex normal form. For DQBF, however, quantifiers
can form an arbitrary partial order. When building a linear order by over-approximating
the dependencies of existential variables and applying clausal abstraction naively, those
variables may have spurious dependencies, i.e., they may only be able to satisfy the proposi-
tional part, if they depend on variables that are not allowed by the Henkin quantifiers.
We show how to record consistency requirements, i.e., partial Skolem functions, that
guarantee that existential variables solely depend on their stated dependencies.

In this chapter, we present the first abstraction based solving approach for DQBF.
The algorithm successfully applies recent insight in solving quantified Boolean formu-
las: It is based on the versatile and award-winning clausal abstraction framework [RT15;
JM15b; HT18; Ten16; Ten17] described in Chapter 2 and leverages progress in DQBF proof
systems [Rab17]. Their integration in this work is non-trivial. To handle the non-linear
dependencies, we use an over-approximation of the dependencies together with consis-
tency requirements. Further, we turn clausal abstraction into an incremental algorithm
that can accept new clauses and variables during solving. Our experiments show that our
approach consistently outperforms first-order reasoning [Frö+14] on the DQBF bench-
marks, and it is especially well-suited for the synthesis benchmark set [Fay+17] where
expansion-based solvers fall short.

This chapter is based on work published in the proceedings of SAT [TR19a] and the
corresponding technical report [TR19b].

107

6. CLAUSAL ABSTRACTION FOR DQBF

Related Work. Fröhlich et al. [FKB12] proposed a first detailed solving algorithm for
DQBF based on DPLL. They already encountered many challenges of lifting QBF algo-
rithms to DQBF, like Skolem function consistency, replay of Skolem functions, forks in
conflict clauses, but solved them differently. Their algorithm, called DQDPLL, has some
similarities to our algorithm (in the same way that clausal abstraction and QDPLL share
the same underlying proof system as shown in Chapter 3), but performs significantly
worse [FKB12]. We highlight a few differences which we believe to be crucial:

1. Our algorithm tries to maintain as much order as possible. Placing universal nodes
at the latest possible allows us to apply the cheaper QBF refinement method more
often.

2. We learn consistency requirements only if they have been verified to satisfy the for-
mula, while DQDPLL learns them on decisions. Consequently, in DQDPLL, learned
Skolem functions become part of the clauses, thus, making conflict analysis more
complicated and less effective as they may be undone during solving. We keep the
consistency requirements distinct from the clauses, all learned clauses at existen-
tial quantifiers are thus valid during solving.

3. Skolem functions in DQDPLL are represented as clauses representing truth-table
entries, thus, become quickly infeasible. In contrast, we use the certification mech-
anism introduced for QBF in Section 2.4.

Wimmer et al. [Wim+16] considered the problem of certifying Skolem functions pro-
duced by DQBF solvers. There has also been work on lifting QBF preprocessing tech-
niques to DQBF [Wim+15; Wim+17].

6.1 Preliminaries

For this chapter, we use the same notation as introduced for QBF in: Section 2.1. In the: Page 16
following, we state the additions needed to work with the more general logic.

We consider DQBF of the form

∀x1.⋯∀xn . ∃y1(H1).⋯∃ym(Hm). ϕ,

that is, DQBF begin with universal quantifiers followed by Henkin quantifiers and the
quantifier-free part ϕ. Where unambiguous, we denote an existential variable by y, a
set of existential variables by Y , and the set of all existential variables byY . For univer-
sal variables, we use x, X, and X , respectively. A Henkin quantifier ∃y(H) introduces
a new variable y, like a normal quantifier, but also specifies a set H ⊆ X of dependen-
cies. For this chapter, we assume that the propositional part ϕ is given in conjunctive nor-
mal form (CNF). For literals l of existential variables with dependency set H we define
dep(l) = H. For literals of universal variables we define dep(l) = {var(l)}. We lift the
operator dep to clauses by defining dep(C) = ⋃l∈C dep(l).

108

6.2. A Resolution Style Proof System

Definition 6.1 (Dependency Fork [Rab17]1). A clauseC contains a dependency fork if there
are two distinct existential variables y and y′ with {y, y′} ⊆ var(C) such that y and y′

have incomparable dependencies, that is, dep(y) ⊈ dep(y′) and dep(y′) ⊈ dep(y).

Relation to QBF in prenex form. In QBF the dependencies of a variable are implicitly
determined by the universal variables that occur before the quantifier in the quantifier
prefix. This gives rise to the notion that QBF have a linear quantifier prefix, whereas DQBF
allows for partially ordered quantifiers.

Encoding Functions in DQBF. One way to think about Henkin quantifiers is that they
represent function applications—the existential variable they introduce is the result of
applying the function to the variables in the dependency set. This allows us to easily en-
code the existential quantification over functions. For a detailed description of the en-
coding we refer to [Rab17].

6.2 A Resolution Style Proof System

In this section we recall the Fork Resolution proof system, which underlies the algorithm
proposed in the following section. We also discuss a problem with the completeness of
Fork Resolution and suggest two ways to overcome the problem. Fork Resolution consists
of the well-known proof rules resolution and universal reduction and introduces a new proof
rule called Fork Extension [Rab17].

Resolution allows us to merge two clauses as follows: Given two clauses C1 ∨ v and
C2 ∨ ¬v, we call (C1 ∨ v) ⊗v (C2 ∨ ¬v) = C1 ∨ C2 their resolvent with pivot v. The
resolution rule states that C1 ∨ v and C2 ∨ ¬v imply their resolvent. Universal reduction
allows us to drop universal variables from clauses when none of the existential variables
in that clause may depend on them. LetC be a clause, let l ∈ C be a literal of a universal
variable, and let l ∉ C. If for all existential variables y in C we have var(l) ∉ dep(y),
universal reduction allows us to derive C \ {l}. Fork Extension allows us to split a clause
C1 ∨C2 by introducing a fresh variable y. The dependency set of y is defined as the inter-
section dep(C1) ∩ dep(C2) and represents that the question whether C1 or C2 satisfies
the original clause needs to be resolved based on the information that is available to both
of them. Fork Extension is usually only applied when C1 and C2 have incomparable de-
pendencies (dep(C1) ⊈ dep(C2) and dep(C1) ⊉ dep(C2)), as only then the dependency
set of y is smaller than those ofC1 and ofC2. The formal definition of the rule is

C1 ∪ C2 y is fresh
∃y(dep(C1) ∩ dep(C2))
´¹¹¸¹¹¹¶

quantifier prefix

C1∪{y} ∧ C2∪{y}
´¹¹¹¸¹¹¹¶

matrix

FEx

1called information fork in the original formulation

109

6. CLAUSAL ABSTRACTION FOR DQBF

Example 6.2. As an example of applying the Fork Extension, consider the quantifier pre-
fix∀x1, x2. ∃y1(x1). ∃y2(x2) and clause (x1 ∨ y1 ∨ y2). Applying (FEx)with the decom-
positionC1 = {x1, y1} andC2 = {y2} results in the clauses (x1∨ y1∨ y3)(y3∨ y2)where
y3 is a fresh existential variable with dependency set dep(y3) = ∅ (dep(C1) = {x1} and
dep(C2) = {x2}).

Resolution is refutationally complete for propositional Boolean formulas. This
means that for every propositional Boolean formula that is equivalent to false we can de-
rive the empty clause using only resolution. In the same way, resolution with existen-
tial pivots and universal reduction (together they are calledQ-resolution) are refutation-
ally complete for QBF [KKF95]. For DQBF, however, Q-resolution is not sufficient—it was
proven to be sound but incomplete [BCJ14a]. Fork Resolution addresses this problem by
extendingQ-resolution by the Fork Extension proof rule [Rab17].

Unfortunately, the proof of the completeness of Fork Resolution relied on a hid-
den assumption that we uncovered by implementing and testing the algorithm pro-
posed in the following section. Consider the DQBF with prefix ∀x1, x2, x3. ∃y1(x1, x2).
∃y2(x2, x3). ∃y3(x1, x3) and a clause C = (y1 ∨ y2 ∨ y3). Formally, C is a dependency
fork according to Definition 6.1, i.e., it contains variables with incomparable dependen-
cies. However, we cannot apply (FEx) because any split of the clause into two parts
C = C1 ∪ C2 satisfies either dep(C1) ⊆ dep(C2) or dep(C1) ⊇ dep(C2). Fork Exten-
sion therefore fails its purpose in this case to eliminate all dependency forks as required
by the proof of completeness in [Rab17]. We say that dependency forks that Fork Exten-
sion cannot split with a literal with smaller dependency set have a dependency cycle. It is
easy to extend the example above to a formula for which Fork Resolution is incomplete
(see Section 6.2.1).

We see two ways to counter this problem. The first is to consider a normal form of
DQBF that does not have dependency cycles. For example, we can restrict to DQBFs where
every incomparable pair of dependency sets must have an empty intersection. This frag-
ment does not admit any dependency cycles and it is NEXPTIME-complete: The formula
used for the NEXPTIME-completeness proof of the deciding the satisfiability problem lies
in this fragment [PRA01]. Thus, this fragment therefore could be used as a normal form
of DQBF. It also guarantees that every dependency set that gets introduced through Fork
Extension maintains this property (in fact, only variables with the empty dependency set
can be created). In this way, the Fork Resolution proof system is indeed strong enough
to serve as a proof system for DQBF. In fact, most applications already fall in this frag-
ment. The synthesis problems introduced in the introduction that can be expressed as
the existence of a function f ∶Bm → Bn, such that for all tuples of inputs x⃗1, . . . , x⃗k ∈ Bm

some relationϕ(x⃗1, f (x⃗1), . . . , x⃗k , f (x⃗k))over function applications of f is satisfied, are
contained in this fragment: By the typical translation into DQBF this results in a formula
with pairwise disjoint dependency sets plus the Tseitin variables that may depend on ev-
ery universal variable [Rab17]. In particular, we have never observed a dependency cycle
in any of the available benchmark sets. In Section 6.2.2 we give a more concise definition
of admissible DQBF fragments.

The second approach is to avoid this normal form and strengthen Fork Extension in

110

6.2. A Resolution Style Proof System

a way that allows us to break dependency cycles. The new rule Strong Fork Extension ex-
tends Fork Extension by the ability to add a set of universal literalsCX to the two clauses
that it produces. Intuitively, adding the literals CX restricts the Skolem function of y to
the case that all literals in CX are false. Hence y does not need to explicitly depend on
dep(CX). This allows us to remove dep(CX) from the dependency set of the freshly in-
troduced variable y.

C1 ∪ C2 y is fresh CX is a set of universal literals
∃y((dep(C1) ∩ dep(C2)) \ dep(CX))
´¹¹¸¹¹¹¶

quantifier prefix

CX∪C1∪{y} ∧ CX∪C2∪{y}
´¹¹¸¹¹¹¶

matrix

SFEx

Lemma 6.3. The Strong Fork Extension rule is sound.

Proof. Given any Skolem function for the formula, we make a case split over the assign-
ments to the universals: If a literal of CX is true, both produced clauses are true and the
rule is trivially sound. If all literals ofCX are false, the Strong Fork Extension is equivalent
to Fork Extension [Rab17].

Theorem 6.4. Strong Fork Resolution is sound and complete for DQBF.

Proof. The proof of completeness of Fork Resolution assumed that any dependency fork
can be split with Fork Extension, by introducing new literals with smaller dependency
sets [Rab17]. Strong Fork Extension guarantees this property also for dependency cycles:
We pick some universal variable x of the dependency sets and split the original clause
twice; once with CX = {x} and once with CX = {x}. This results in four clauses that
together imply the original clause (such that the original clause can be dropped from the
formula), and the two variables introduced have smaller dependency sets. The rest of the
proof remains the same.

6.2.1 Incompleteness Example

We give an example to demonstrate that Fork Resolution is incomplete for general DQBF.
The example formula is an extension of the incompleteness examples used in [BJ12]. The
formula is

∀x1, x2, x3. ∃y1(x1, x2). ∃y2(x2, x3). ∃y3(x1, x3). (x1 ∧ x2 ∧ x3)↔ (y1 ⊕ y2 ⊕ y3)

In CNF, the propositional part looks as follows:

(x1 ∨ x1 ∨ y2 ∨ y3)(x1 ∨ x1 ∨ y3 ∨ y2)(x1 ∨ y2 ∨ y3 ∨ x1)(x2 ∨ x1 ∨ y2 ∨ y3)
(x2 ∨ x1 ∨ y3 ∨ y2)(x2 ∨ y2 ∨ y3 ∨ x1)(x3 ∨ x1 ∨ y2 ∨ y3)(x3 ∨ x1 ∨ y3 ∨ y2)
(x3 ∨ y2 ∨ y3 ∨ x1)(x1 ∨ x1 ∨ y2 ∨ y3)(x2 ∨ x1 ∨ y2 ∨ y3)(x3 ∨ x1 ∨ y2 ∨ y3)
(x1 ∨ y2 ∨ y3 ∨ x1 ∨ x2 ∨ x3)(x1 ∨ x1 ∨ x2 ∨ x3 ∨ y2 ∨ y3)
(y2 ∨ x1 ∨ x2 ∨ x3 ∨ x1 ∨ y3)(y3 ∨ x1 ∨ x2 ∨ x3 ∨ x1 ∨ y2)

It is easy to verify that the following statements hold:

111

6. CLAUSAL ABSTRACTION FOR DQBF

y1

y2

y3

I1 = {x2}

I2 = {x3}
I3 = {x1}

⊈
⊉

Figure 6.1: Visualization of the dependency cycle for clause (y1 ∨ y2 ∨ y3) with prefix
∀x1, x2, x3. ∃y1(x1, x2). ∃y2(x2, x3). ∃y3(x1, x3).

• The formula is false.

• Universal reduction cannot be applied to any clause.

• All resolvents are tautologies.

• Fork Extension is not applicable.

• The formula does not contain the empty clause.
This means that Fork Resolution proof system is not strong enough to refute any DQBF.

6.2.2 Dependency Cycles

In the following, we formalize dependency cycles and show that they are the reason for
incompleteness of Fork Extension. A clauseC contains a dependency cycle of length k > 2,
if there is a subset {l1, l2, . . . , lk} ⊆ C of existential literals such that the intersections of
dependencies Ii = dep(li)∩dep(li+1) ≠ ∅ for all 1 ≤ i ≤ k, with lk+1 = l1 contain pairwise
disjoint variables, i.e., Ii ⊈ I j and I j ⊈ Ii for each i ≠ j. Figure 6.1 depicts a representation
of the dependency cycle. Given a clauseC, the clause poset, writtenposet(C), is a partially
ordered set ⟨P, ⊆⟩where P ⊆ V is the set of dependencies of existential literals inC, i.e.,
{dep(l) ∣ l ∈ C ∧ l is existential}. Ifposet(C) contains more than one maximal element
w.r.t. ⊆,C contains a dependency fork.

Lemma 6.5. Fork Extension is applicable for clauses with dependency fork if, and only if, the
clause does not contain a dependency cycle.

Proof. Assume C contains a dependency cycle, that is, there is a k > 2 and
{l1, l2, . . . , lk} ⊆ C of existential literals such that Ii = dep(li) ∩ dep(li+1) ≠ ∅ for
all 1 ≤ i ≤ k, with lk+1 = l1 contain pairwise disjoint variables, i.e., Ii ⊈ I j and
I j ⊈ Ii for each i ≠ j. W.l.o.g. we assume that {l1, l2, . . . , lk} are the only existential
variables in C. Let C1 ∪ C2 be an arbitrary split containing at least one existential vari-
able. Then, either (FEx) is not applicable (dep(C1) ⊆ dep(C2) or dep(C1) ⊇ dep(C2))
or applying it will lead to a clause with dependency cycle: Let y be the fresh variable

112

6.2. A Resolution Style Proof System

with dep(y) = dep(C1) ∩ dep(C2). If C1 contains a single existential literal li , then
dep(y) ∩ dep(li+1) ≠ ∅ and dep(y) ∩ dep(li−1) ≠ ∅, i.e., the resulting clause has a
dependency cycle of length k. IfC1 contains j > 1 existential literals, then both resulting
clauses contain a dependency cycle of length j + 1 and k − j + 1.

AssumeC does not contain a dependency cycle, that is, there is a maximal elementH
in poset(C), such that there is a unique maximal element in the set of intersections with
other maximal elements H∗ = max⊆ {H ∩H′ ∣ H′ is a maximal element of poset(C)}.
We use the Fork Extension rule (FEx)withC1 = {l ∈ C ∣ dep(l) ⊆ H, dep(l) /⊆ H∗} and
C2 = C \ C1.

As the proof shows that any dependency cycle can be split into smaller dependency
cycles, in the following we only need to argue that there does not exist a dependency cycle
involving three existential variables.

In the following, we want to characterize fragments of DQBF (based on the quantifier
prefix) that do not exhibit dependency cycles. A DQBF formula is in the multi-linear frag-
ment of DQBF, if for all pairs of existential variables y1 and y2 with dependency sets H1
andH2 it holds thatH1 ⊆ H2,H2 ⊆ H1, orH1 ∩H2 = ∅.

Theorem 6.6. The multi-linear fragment of DQBF does not contain dependency cycles.

Proof. Assume we have three variables y1, y2, and y3 with dependency sets H1, H2, and
H3. Further, letH1 ∩H2 ≠ ∅ andH2 ∩H3 ≠ ∅, that is,H1 ⊆ H2 orH2 ⊆ H1, andH2 ⊆ H3
orH3 ⊆ H2, thus, there are 4 combinations:

• H1 ⊆ H2 andH2 ⊆ H3, thusH1 ⊆ H3 andH1 ∩H2 ⊆ H2 ∩H3

• H1 ⊆ H2 andH3 ⊆ H2, thusH1 ∩H3 ⊆ H1 ∩H2

• H2 ⊆ H1 andH2 ⊆ H3, thusH1 ∩H2 = H2 ∩H3

• H2 ⊆ H1 andH3 ⊆ H2, thusH3 ⊆ H1 andH2 ∩H3 ⊆ H1 ∩H2

which rules out any dependency cycle.

Corollary 6.7. Fork Extension is complete for the multi-linear fragment of DQBF.

This characterization, however, is not tight in the following sense: There are many
more quantifier prefixes that rule out the existence of dependency cycles. Consider and
compare the two prefixes

∀x1, x2, x3. ∃y12(x1, x2). ∃y23(x2, x3). ∃y123(x1, x2, x3) (planar)
∀x1, x2, x3. ∃y12(x1, x2). ∃y13(x1, x3). ∃y23(x2, x3). ∃y123(x1, x2, x3) (non-planar)

which are both not in the multi-linear fragment. The first prefix cannot produce depen-
dency cycles while the latter one does. To derive a more concise characterization, we in-
spect the partial order underlying the dependency sets. In the following, we investigate
the underlying reason using Hasse diagrams that represent the partial order defined by
the quantifier prefix of a DQBF.

Given a DQBF Φ, the DEPENDENCY LATTICE is the meet-semilattice ⟨H, ⊆⟩whereH
contains all dependency sets of variables in Φ and additionally all intersections H ∩ H′

113

6. CLAUSAL ABSTRACTION FOR DQBF

∅

{x1} {x2} {x3}

{x1, x2}y12 {x2, x3} y23

{x1, x2, x3}y123

(a) dependency lattice for (planar)

∅

{x1} {x2} {x3}

{x1, x2}y12 {x1, x3}

y13
{x2, x3} y23

{x1, x2, x3}y123

(b) dependency lattice for (non-planar)

Figure 6.2: Visualizations of the dependency lattice as Hasse diagrams for (planar) and
(non-planar).

for everyH,H′ ∈H. We depict the dependency lattice for our example prefixes as Hasse
diagrams in Figure 6.2. When comparing those two representations, we observe that
the left one admits a planar Hasse diagram, that is, there are no crossing edges, while
the right one does not. A finite lattice has a planar Hasse diagram if, and only if, there
is a conjugate partial order [Bir67], where a conjugate order is an order on the incompa-
rable elements of the lattice. For the dependency lattice of (planar), we can verify that
the relation ≺1 given as {x1} ≺1 {x2}, {x1} ≺1 {x3}, {x2} ≺1 {x3}, {x1} ≺1 {x2, x3},
{x3} ≺1 {x1, x2}, and {x1, x2} ≺1 {x2, x3} is such a conjugate order. Consider the
analogous relation ≺2 for (non-planar), built from ≺1 with the additional entries {x2} ≺2
{x1, x3}, {x1, x2} ≺2 {x1, x3}, {x1, x3} ≺2 {x2, x3}. We observe that ≺2 is not transi-
tive: It holds that {x2} ≺2 {x1, x3} and {x1, x3} ≺2 {x2, x3}, while {x2} ⊀2 {x2, x3} as
{x2} ⊆ {x2, x3}.

Theorem 6.8. Let Φ be a DQBF. If the dependency lattice of Φ can be represented as a planar
Hasse diagram, thenΦ does not contain dependency cycles.

Proof. Let ≺ be the conjugate order for the incomparable elements in the dependency
lattice of Φ. Assume for contradiction that there is a dependency cycle, that is, a clause
C such that the poset(C) contains 3 maximal elements H1, H2, and H3 such that I12 =
H1 ∩ H2 ≠ ∅, I13 = H1 ∩ H3 ≠ ∅, and I23 = H2 ∩ H3 ≠ ∅ are pairwise incom-
parable. W.l.o.g. assume that H1 ≺ H2 ≺ H3, thus also H1 ≺ H3 as ≺ is an order re-
lation. Further, we know that Ii j ⊀ Hi , Ii j ⊀ H j, Hi ⊀ Ii j and H j ⊀ Ii j for each
(i , j) ∈ {(1, 2), (1, 3), (2, 3)} by construction of Ii j as the intersection of Hi and H j. In
the following, we we show that the incomparable elements of the dependency cycle can-
not be ordered according to ≺.

• IfH2 ≺ I13, then we derive the contradiction thatH1 ≺ I13 due toH1 ≺ H2.

• IfH3 ≺ I12, then we derive the contradiction thatH2 ≺ I12 due toH2 ≺ H3.
Thus, we know that I13 ≺ H2 and I12 ≺ H3.

• Assume that H1 ≺ I23, then I23 ≺ I12 and I23 ≺ I13 would immediately lead to the
contradiction thatH1 ≺ I12 andH1 ≺ I13, respectively. Thus I12 ≺ I23 and I13 ≺ I23.

114

6.3. Lifting Clausal Abstraction

– Assuming that I13 ≺ I12 leads to the contradiction I13 ≺ H3 due to I12 ≺ H3.

– Assuming that I12 ≺ I13 leads to the contradiction I12 ≺ H2 due to I13 ≺ H2.

Thus, I23 ≺ H1.
Finally, I23 ≺ H1 leads to the contradiction I23 ≺ H2 due toH1 ≺ H2.

The branching fragment of DQBF are those DQBF were the quantifier prefix can be
represented as branching quantifier. The prefix (planar) can be equivalently stated as
∀x1. ∀x2 .∃y12 .∀x3 .∃y23 .∃y123.

Corollary 6.9. Fork Extension is complete for the branching fragment of DQBF.

Proof. The branching representation admits a natural conjugate order.

6.3 Lifting Clausal Abstraction

In this section, we lift clausal abstraction to DQBF. We begin with a high level explana-
tion of the algorithm for QBF and a discussion of the invariants that hold for QBF but are
no longer valid for DQBF. For each of those we identify the underlying problem and show
how we need to modify clausal abstraction. In the following subsections we then explain
those extensions in detail. For the remainder of this section, we assume w.l.o.g. that we
are given a DQBFΦwith matrixϕ, thatϕdoes not contain clauses with dependency forks,
and that every clause is universally reduced. If a formula contains dependency forks ini-
tially, they can be removed as described in Section 6.3.4.

The clausal abstraction algorithm assigns existential and universal variables, where
the order of assignments is determined by the quantifier prefix, until all clauses in the
matrix are satisfied or there is a conflict, i.e., a set of clauses that cannot be satisfied si-
multaneously. Those variable assignments are generated by propositional formulas, one
for every quantifier, called abstractions. In case of a conflict, the reason for this conflict is
excluded by refining the abstraction at an outer quantifier.

The assignment order is based on the quantifier prefix. Thus, for QBF it holds that
an existential variable is only assigned if its dependencies are assigned. In DQBF, Henkin
quantifiers allow us to introduce incomparable dependency sets, and hence, in general,
there is no linear order of assignments. We thus weaken this invariant by requiring that
for every existential variable y, all of its dependencies have to be assigned before assign-
ing y. We ensure this by creating a graph-based data structure, which we call quanti-
fier levels, described in Section 6.3.1. As an immediate consequence, and in contrast to
QBF, an existential variable may be assigned different values depending on assignments
to non-dependencies, and we call this phenomenon a spurious dependency. To eliminate
those spurious dependencies, we enhance the certification approach of clausal abstrac-
tion (see Section 2.4) to build, incrementally, a constraint system that enforces that an ex-
istential variable only depends on its dependencies. These consistency requirements repre-
sent partial Skolem functions. Section 6.3.5 describes how the consistency requirements
are derived, how they are integrated in the algorithm, and when they are invalidated.

115

6. CLAUSAL ABSTRACTION FOR DQBF

We build an abstraction for every existential quantifier ∃Y , splitting every clause C
of the matrix into three parts, based on whether a literal l ∈ C is (1) a dependency, (2)
a literal of a variable in Y , or (3) neither of the two. Section 6.3.2 gives a formal descrip-
tion of the abstraction. As mentioned, all dependencies of Y must be assigned before
we query the abstraction of the quantifier∃Y for a candidate assignment of variablesY .
From the perspective of this abstraction, assignments to non-Y variables are equivalent
when they satisfy the same set of clauses. Vice versa, the only information that matters
for other abstractions is the set of clauses satisfied by variablesY or their dependencies.
The abstraction forY therefore defines a set of interface variables consisting of satisfaction
variables and assumption variables, one for every clause C, where the satisfaction variable
indicates whether the clause is satisfied by a dependency of Y and the assumption vari-
able indicates whether C must still be satisfied by variables outside of Y . Conflicts are
represented by a set of assumption variables that turned out to be unsatisfiable with re-
spect to variables outside ofY . Refinements are clauses over those assumption variables,
requiring that at least one of those contained clauses is satisfied by an assignment toY .

Those refinements correspond to conflict clauses in search-based algorithms and can
be formalized as derived clauses in the Q-resolution calculus (see Section 3.2). Since
Q-resolution is incomplete for DQBF [BCJ14a] and the incompleteness can be character-
ized by clauses with dependency fork as discussed in the previous section, we check if a
conflict clause derived by the algorithm contains such a fork. If this is the case, we split
this clause into a set of clauses that are fork-free. As a byproduct, new existential vari-
ables are created. We show in Section 6.3.4 how clauses with dependency fork are split
and how the clausal abstraction algorithm is extended to incrementally accept new clauses
and variables.

Example 6.10. We will use the following formula with the dependency sets {x1}, {x2},
and {x1, x2} as a running example.

∀x1, x2. ∃y1(x1). ∃y2(x2). ∃y3(x1, x2).
(x1 ∨ x2 ∨ y2 ∨ y3)
´¹¹¹¸¹¹¶

C1

(x1 ∨ y2 ∨ y3)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C2

(y1 ∨ x2 ∨ y3)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C3

(y1 ∨ y3)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C4

(x1 ∨ y1)
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C5

6.3.1 Quantifier Levels

To lift clausal abstraction to DQBF, we need to deal with partially ordered dependency
sets. Given a DQBF Φ, the algorithm starts by building the dependency lattice as intro-
duced in Section 6.2.2. Thus, it constructs the setH that contains all dependency sets of
variables inΦand, additionally, allH∩H′ such thatH,H′ ∈H. For our running example,
we have to add the empty dependency set, resulting in the dependency lattice depicted
in Figure 6.3a. In addition to the dependency setsH and the edge relation ⊆, we depict
the existential variables next to their dependency sets.

Quantifier Levels and Nodes. We continue with building the data structure on which
the algorithm operates. A node binds a variable of the DQBF. A universal node ⟨∀, X⟩

116

6.3. Lifting Clausal Abstraction

∅

{x1}y1 {x2}y2

{x1, x2}y3

(a) dependency lattice

0: ⟨∃,∅,∅⟩

1: ⟨∀, {x1, x2}⟩

2: ⟨∃, {y1}, {x1}⟩, ⟨∃, {y2}, {x2}⟩

3: ⟨∃, {y3}, {x1, x2}⟩

(b) quantifier levels

Figure 6.3: Dependency lattice and quantifier levels for the DQBF given in Example 6.10.

binds universal variables X and an existential node ⟨∃,Y ,H⟩ binds existential variables
Y with dependency set H. Nodes are grouped together in quantifier levels, where each
universal level contains exactly one universal node and existential levels may contain
multiple existential nodes (which have all pairwise incomparable dependency sets). We
index levels by natural numbers i, starting with 0. In Figure 6.3b we depict an example
for the data structure obtained from the dependency lattice on its left. Before describ-
ing the construction of quantifier levels, we state their invariants. For some node N , let
bound∀(N) be the set of universal variables bound at N , i.e., the union of all X where
⟨∀, X⟩ is in a level with smaller index than node N . Let bound∃(N) be the analogously
defined set of bound existential variables. The set of bound variables is bound(N) ∶=
bound∃(N) ∪̇ bound∀(N).

Proposition 6.11. The quantifier levels data structure has the following properties.
1. Every variable is bound excactly once, i.e., for every variablev inΦ, there is exactly one node
⟨∀, X⟩ or ⟨∃,Y ,H⟩ such that v ∈ X or v ∈ Y .

2. Every pair of nodes ⟨∃,Y ,H⟩ and ⟨∃,Y ′,H′⟩with Y ≠ Y ′ contained in an existential
level have incomparable dependencies, i.e.,H /⊆ H′ andH /⊇ H′.

3. For every pair of nodes ⟨∃,Yi ,Hi⟩ and ⟨∃,Yj ,H j⟩ contained in existential levels i and j
with i < j, it holds that eitherHi ⊂ H j orHi andH j are incomparable.

4. For every existential node ⟨∃,Y ,H⟩ it holds thatH ⊆ bound∀(⟨∃,Y ,H⟩).
5. There is a unique maximal ⟨∃,Y ,H⟩withH ⊇ H′ for every ⟨∃,Y ′,H′⟩.

In the following, we describe the construction of quantifier levels from a dependency
lattice. Every element of the dependency lattice H ∈ H is transformed into one existen-
tial node, ⟨∃,Y ,H⟩, whereY is the set of existential variables with dependency setH, i.e.
dep(y) = H for all y ∈ Y . Some existential nodes (like the root node in our example) may
be initially empty. The existential levels are obtained by an antichain decomposition of
the dependency lattice (satisfying Proposition 6.11.2 and 6.11.3). If the dependency lattice
does not contain a unique maximal element, we add an empty existential node ⟨∃,X ,∅⟩
(satisfying Proposition 6.11.5).

Universal variables are placed in the universal node just before the existential level
they first appear in as a dependency. This is achieved by a top-down pass through the ex-

117

6. CLAUSAL ABSTRACTION FOR DQBF

Algorithm 6.1 Main solving algorithm that iterates over the quantifier levels
1: procedure SOLVE(DQBF Φ)
2: levels← build quantifier levels
3: initialize every node in levels, i.e., build abstraction θ, set entries← []
4: αV ← {v ↦ F ∣ v ∈ V}, lvl ← 0
5: loop
6: match SOLVELEVEL(lvl) as
7: CandidateFound⇒ lvl ← lvl + 1
8: Conflict(jmpBackToLvl)⇒ lvl ← jmpBackToLvl
9: Result(res)⇒ return res

10: end loop
11: end procedure

istential quantifier levels, adding a universal level with node N = ⟨∀, X⟩ before existen-
tial level with nodes⟨∃,Y1,H1⟩, . . . , ⟨∃,Yk ,Hk⟩ such thatX = (⋃1≤i≤k Hi)\bound∀(N)
(satisfying Proposition 6.11.4).2 Empty universal levels ⟨∀,∅⟩ are omitted. Level num-
bers follow the inverse order of the dependency sets, such that the “outer” quantifiers
have smaller level numbers than the “inner” quantifiers; see Figure 6.3.

If the formula is a QBF, it holds that bound∀(⟨∃,Y ,H⟩) = H. For QBF, this construc-
tion yields a strict alternation between universal and existential levels, but for DQBF ex-
istential levels can succeed each other, as shown in Figure 6.3.

Algorithmic Overview. The overall approach of the algorithm is to construct a proposi-
tional formulaθ for every node, that represents which clauses it can satisfy (for existential
nodes) or falsify (for universal nodes). We describe their initialization in detail below. In
every iteration of the loop in algorithm SOLVE (Algorithm 6.1) the variable assignmentαV
is extended (case CandidateFound), which we assume to be globally accessible, or node
abstractions are refined by adding an additional clauses (case Conflict).

The nodes are responsible for determining candidate assignments to the variables
bound at that node, or to give a reason why there is no such assignment. If a node is
able to provide a candidate assignment, we proceed to the successor level (Algorithm 6.1,
line 7). A conflict occurs when the algorithm determines that the current assignment αV
definitely violates the formula (unsat conflict) or satisfies it (sat conflict). When conflicts
are inspected (explained in Section 6.3.3), they indicate a level that tells the main loop
how far we have to jump back (Algorithm 6.1, line 8). The last alternative in the main
loop is that we have found a result, which allows us to terminate (line 9).

2It is possible to introduce all universal variables upfront, but this negatively affects solving perfor-
mance. Equality is not always possible, as shown by the formula∀x1 , x2 , x3∃y1(x1)∃y2(x2)∃y3(x2 , x3).

118

6.3. Lifting Clausal Abstraction

6.3.2 Initialization of the abstractions θ

The formula θ for each node represents how the node’s variables interact with the as-
signments on other levels. The algorithm guarantees that whenever we generate a can-
didate assignment for a node, all variables on outer (=smaller) levels have a fixed assign-
ment, and thus some set of clauses is satisfied already. Existential nodes then try to sat-
isfy more clauses with their assignment, while universal nodes try to find an assignment
that makes it harder to satisfy all clauses. An existential variable y may not only depend
on assignments of its dependencies, but also on assignments of existential variables with
strict smaller dependency as they are in a strictly smaller level (see Section 6.3.1) and
thus are assigned before y. We call this the extended dependency set, written exdep(y),
and it is defined as dep(y) ∪̇ {y′ ∈ Y ∣ dep(y′) ⊂ dep(y)}. For a set Y ⊆ Y , we define
exdep(Y) = ⋃y∈Y exdep(y).

The interaction of abstractions is established by a common set of clause satisfaction
variables S, one variable si ∈ S for every clause Ci ∈ ϕ. Given some existential node
⟨∃,Y ,H⟩ with extended dependency set D = exdep(Y) and assignment αV of outer
variables V (w.r.t. ∃Y , i.e., V = bound(⟨∃,Y ,H⟩)). For every clause Ci ∈ ϕ it holds that
if si is assigned to true, one of its dependencies has satisfied the clause, that is, αV ⊧
Ci ∣D. Thus, an assignment of the satisfaction variablesαS is an abstraction of the concrete
variable assignment αV as multiple assignments could led to the same satisfied clauses.

For universal quantifiers, this abstraction is sufficient as the universal player tries to
satisfy as few clauses as possible. For existential quantifiers, however, the existential
player can choose to either satisfy the clause directly or assume that the clause will be
satisfied by an inner quantifier. Thus, we add an additional type of variables A, called
assumption variables, with the intended semantics that ai is set to false at some existen-
tial quantifier ∃Y implies that the clause Ci is satisfied at this quantifier (either by an
assignment αY to variablesY of the current node or an assignment of dependencies rep-
resented by an assignmentαS to the satisfaction variables S), formally,αV ⊔̇αY ⊧ Ci ∣D∪̇Y
if ai is false.

We continue by defining the abstraction that implements this intuition.
Formally, for every node ⟨∃,Y ,H⟩ and every clause Ci , we define C<i ∶=
{l ∈ Ci ∣ var(l) ∈ exdep(Y)} as the set of literals on which the current node may de-
pend,C=i ∶= {l ∈ Ci ∣ var(l) ∈ Y} as the the set of literals which the current node binds,
and C>i ∶= {l ∈ Ci ∣ var(l) ∉ exdep(Y) ∪ Y} as the set of literals on which the current
node may not depend. By definition, it holds that Ci = C<i ∪̇ C=i ∪̇ C>i . The clausal
abstraction θY for this node is defined as⋀C i∈ϕ (ai ∨ si ∨ C

=
i). Note, that si and ai are

omitted ifC<i = ∅ andC>i = ∅, respectively.
Over time, the algorithm calls each node potentially many times for candidate as-

signments, and it adds new clauses learnt from refinements. The new clauses for existen-
tial nodes will only contain literals from assumption variables L ⊆ A, representing sets
of clauses that together cannot be satisfied by the inner levels. The refinement⋁a i∈L ai
ensures that some clauseCi with ai ∈ L is satisfied at this node.

Universal nodes ⟨∀, X⟩ have the objective to falsify clause. We define the abstrac-
tion θX for this node as⋀C i∈ϕ (si ∨ ¬C

=
i) = ⋀C i∈ϕ (si ∨⋀l∈C=i l). Observe that univer-

119

6. CLAUSAL ABSTRACTION FOR DQBF

Algorithm 6.2 Algorithm for solving a quantifier level by iterating over its nodes
1: procedure SOLVELEVEL(lvl)
2: if lvl is universal then return SOLVE∀(levels[lvl])
3: end if
4: for each node n in levels[lvl] do
5: if SOLVE∃(n) = Conflict(jmpBackToLvl) then
6: return Conflict(jmpBackToLvl)
7: end if
8: end for
9: return CandidateFound

10: end procedure

sal nodes do not have separate sets of variablesAand S, but just one copy S. This is just a
minor simplification, exploiting the formula structure of universal nodes. Note that si set
to false implies that αX falsifies the literals in the clause, that is, αX ⊧ ¬C=i . Refinements
are represented as clauses⋁s i∈L si over literals in S.

In our running example, clauses 3–5 (y1 ∨ x2 ∨ y3)(y1 ∨ y3)(x1 ∨ y1) are represented
at node ⟨∃, {y1}, {x1}⟩ by clauses (a3 ∨ y1)(a4 ∨ y1)(y1). Note especially, that x2 ∉
exdep(y1) = {x1}, thus there is no s variable in the first encoded clause, despite x2 being
assigned earlier in the algorithm (Figure 6.3).

6.3.3 Solving Levels and Nodes

SOLVELEVEL in Algorithm 6.2 directly calls SOLVE∀ or SOLVE∃ on all the nodes contained
in the given level lvl. For existential levels, if any node returns a conflict, the level returns
that conflict (Algorithm 6.2, line 6).

We process universal and existential nodes with the two procedures shown in Al-
gorithm 6.3. The SAT solvers generate a candidate assignment to the variables (lines 4
and 15) of that node, which is then used to extend the (global) assignment αV (lines 7
and 18). In case the SAT solver returns Unsat, the unsat core represents a set of clauses
that cannot be satisfied (for existential nodes) or falsified (for universal nodes). The un-
sat core is then used to refine an outer node (lines 6 and 17) and we proceed with the level
returned by REFINE.

Solving Existential Nodes. There are some differences in the handling of existential
and universal nodes that we look into now. The linear ordering of the levels in our data
structure means that there may be a variable assigned that an existential node must not
depend on. We therefore need to project the assignment αV to those variables in the
node’s dependency set. We define a function prj∃∶ 2Y ×A(V) → A(S) that maps vari-
able assignmentsαV to assignments of satisfaction variables S such that si is set to true if,
and only if, some literal l ∈ C<i is assigned positively by αV . Thus, the projection function

120

6.3. Lifting Clausal Abstraction

Algorithm 6.3 Algorithms for solving existential and universal nodes

1: procedure SOLVE∃(N ≡ ⟨∃,Y ,H⟩)
2: βY ← CHECKCONSISTENCY(αV)
3: αS ← prj∃(Y , αV)
4: match SAT(θY , βY ⊔ αS) as
5: Unsat(β)⇒
6: return REFINE(unsat, β∣S ,N)
7: Sat(α)⇒ update αV with α∣Y
8: if node is max. element then
9: return REFINE(sat, αS ,N)

10: end if
11: return CandidateFound
12: end procedure

13: procedure SOLVE∀(N ≡ ⟨∀, X⟩)
14: βS ← prj∀(X , αV)
15: match SAT(θX , βS) as
16: Unsat(β)⇒
17: return REFINE(sat, β∣S ,N)
18: Sat(α)⇒ update αV with α∣X
19: return CandidateFound

20: end procedure

only considers actual dependencies of ⟨∃,Y ,H⟩:

prj∃(Y , αV)(si) =
⎧⎪⎪⎨⎪⎪⎩

T if αV ⊧ C<i
F otherwise

For our running example, at node ⟨∃, {y2}, {x2}⟩, the projection for the first clause
C1 = (x1 ∨ x2 ∨ y2 ∨ y3) is prj∃({y2}, x1x2)(s1) = prj∃({y2}, x1x2)(s1) = F and
prj∃({y2}, x1x2)(s1) = prj∃({y2}, x1x2)(s1) = T becauseC<1 = (x2).

If the SAT solver returns a candidate assignment at the maximal existential node (i.e.,
the node on innermost level), we know that all clauses have been satisfied, and we have
therefore refuted the candidate assignment of some universal node. This is handled by
calling REFINE in line 9. For existential nodes we additionally have to check for consis-
tency, which we discuss in Section 6.3.5 (called in line 2).

Solving Universal Nodes. Similar to the projection for existential nodes, we need an
(almost symmetric) projection for universal nodes (line 14). It has to differ slightly from
prj∃, because we use just one set of variables S for universal nodes. A universal quantifier
cannot falsify the clause if it is already satisfied.

prj∀(X , αV)(si) =
⎧⎪⎪⎨⎪⎪⎩

T if αV ⊧ Ci ∣bound⟨∀,X⟩
� otherwise

6.3.4 Refinement

Algorithm REFINE in Algorithm 6.4 is called whenever there is a conflict, i.e. whenever
it is clear that αV satisfies the formula (sat conflict) or violates it (unsat conflict). In case
there is an unsat conflict at an existential node, we build the (universally reduced) conflict
clause from βS (as explained in Section 3.2) in line 3. If the clause is fork-free, we can apply
the standard refinement for clausal abstraction (see also Section 2.3) with the exception
that we need to find the unique refinement node first (line 10). This backward search

121

6. CLAUSAL ABSTRACTION FOR DQBF

Algorithm 6.4 Refinement algorithm that eliminates dependency forks
1: procedure REFINE(res, βS , node)
2: if res = unsat then
3: Cconflict = ⋃s i∈βFS Ci ∣bound(node) ▷Cconflict is universally reduced
4: if Cconflict contains dependency fork then
5: fork elimination⇒ add clauses and variables, update abstractions θ
6: RESETCONSISTENCY for all nodes
7: return Conflict(lvl = 0)
8: end if
9: end if

10: if next ← DETERMINEREFINEMENTNODE(res, βS , node.level) then
11: return Conflict(next.level)
12: else ▷ conflict at outermost∃/∀ node
13: return Result(res)
14: end if
15: end procedure

over the quantifier levels is shown in Algorithm 6.5. For anunsat conflict, we traverse the
levels backwards until we find an existential node that binds a variable contained in the
conflict clause.

Because the conflict clause is fork-free, the target node of the traversal is unique. For
a sat conflict, we do the same for universal nodes but the uniqueness comes from the fact
that universal levels are singletons. We then add the refinement clause to the SAT solver
at the corresponding node (Algorithm 6.5, lines 6 and 12) and proceed. For sat conflicts,
we have to additionally learn consistency requirements at existential nodes (line 18) that
make sure that the node produces the same result if the assignment (restricted to the de-
pendencies of that node) repeats. In case the conflict propagated beyond the root node,
we terminate with the given result.

Fork Extension. In case that the conflict clause contains a fork, we apply Fork Extension
as described in Section 6.2. After applying Fork Extension, we encode the newly created
clauses and variables within their respective nodes. We update the abstractions with
those fresh variables and clauses as for the initial abstraction discussed in Section 6.3.2.
Additionally, we reset learned Skolem functions as they may be invalidated by the refine-
ment (Algorithm 6.4, line 6).

6.3.5 Consistency Requirements

The algorithm described so far produces correct refutations in case the DQBF
is false. For positive results, the consistency of Skolem functions of incompara-
ble existential variables may be violated. Consider for example the formula
∀x1∀x2. ∃y1(x1). ∃y2(x2). ∃y3(x1, x2). ϕ and assume that for the assignment x1x2,
there is a corresponding satisfying assignment y1y2y3. If the next assignment is x1x2,

122

6.3. Lifting Clausal Abstraction

Algorithm 6.5 Backward search algorithm to determine refinement node
1: procedure DETERMINEREFINEMENTNODE(res, βS , lvl)
2: while lvl ≥ 0 do
3: if res = unsat and lvl is existential then
4: for node ⟨∃,Y ,H⟩ in levels[lvl] do ▷ check ifY is in conflict clause
5: if there exists some si ∈ βFS such thatCi ∣Y ≠ ∅ then
6: θY ← θY ∧⋁s i∈βFS ai ▷ refine abstraction
7: return ⟨∃,Y ,H⟩
8: end if
9: end for

10: else if res = sat and lvl is universal with node ⟨∀, X⟩ then
11: if there exists some si ∈ βTS such thatCi ∣X ≠ ∅ then
12: θX ← θX ∧⋁s i∈βTS si ▷ refine abstraction
13: return ⟨∀, X⟩
14: end if
15: else if res = sat and lvl is existential then ▷ add consistency requirements
16: for N = ⟨∃,Y ,H⟩ in levels[lvl] do
17: if H ⊂ bound∀(N) then
18: LEARNENTRY(N)
19: end if

20: set βS(si) = � if αY ⊧ Ci and βS(si) = T for all si ∈ S
21: end for
22: end if
23: lvl ← lvl − 1
24: end while
25: return res
26: end procedure

then the assignment to y1 has to be the same as before (y1 → F) as the value of its sole
dependency x1 is unchanged.

We enhance the certification capabilities of clausal abstraction (see Section 2.4) to
build consistency requirements that represent partial Skolem functions in our algorithm
during solving. We incrementally build a list of entries, where the first component in an
entry is a propositional formula over the dependencies and the second component is the
corresponding assignment αY . Before generating a candidate assignment in SOLVE∃, we
call CHECKCONSISTENCY (Algorithm 6.6) to check if the assignment αY for the given as-
signment αV of dependencies is already determined, by iterating through the learned
entries (Algorithm 6.6, lines 2–3). If it is the case, we get an assignmentαY that is then as-
sumed for the candidate generation. Note that in this case, the SAT call in line 4 of SOLVE∃
is guaranteed to return Sat (we already verified this assignment, otherwise it would not
have been learned). Further, consistency requirements are only needed for existential
nodes ⟨∃,Y ,H⟩with H ⊂ bound∀(⟨∃,Y ,H⟩), i.e., that observe an over-approximation

123

6. CLAUSAL ABSTRACTION FOR DQBF

Algorithm 6.6 Algorithms for handling consistency requirements
1: procedure CHECKCONSISTENCY(αV)
2: for (cond, αY) in entries do
3: if SAT(cond, αV) is Sat then return αY
4: end if
5: end for
6: return empty assignment
7: end procedure
8: procedure RESETCONSISTENCY
9: entries← []

10: reset learned clauses at universal nodes
11: end procedure
12: procedure LEARNENTRY(node ≡ ⟨∃,Y ,H⟩)
13: let αS and αY be from line 7 of Algorithm 6.3.
14: entries.push((⋀s i∈αTS C

<
i , αY))

15: end procedure

of their dependency set. For those nodes, the consistency requirements enforce that
whenever two assignments of the dependencies are equal, the assignment of αY returns
the same value as well. We call RESETCONSISTENCY (Algorithm 6.6) to reset the consis-
tency requirements in case we applied Fork Extension (Algorithm 6.4, line 6) as the new
clauses may affect already learned parts of the function. We, further, have to reset the
clauses learned at universal nodes (Algorithm 6.6, line 10).

We learn a new consistency requirement by calling LEARNENTRY (Algorithm 6.6) on
the backward search on sat conflicts, that is in line 18 in Algorithm 6.5. When we de-
termine the refinement node for sat conflicts, we call LEARNENTRY in every existen-
tial node ⟨∃,Y ,H⟩ with H ⊂ bound∀(⟨∃,Y ,H⟩) on the path to that node. In our
example, when the base case of ⟨∃, {y3}, {x1, x2}⟩ returns (all clauses are satisfied,
line 9 in Algorithm 6.3), we add consistency requirements at nodes ⟨∃, {y2}, {x2}⟩ and
⟨∃, {y1}, {x1}⟩ before refining at ⟨∀, {x1, x2}⟩. In addition to the learning, we modify
the witnesses by projecting away entries that are satisfied by some assignment αY for
some existential node ⟨∃,Y ,H⟩ in line 20.

6.3.6 Example

We consider a possible execution of the presented algorithm on our running example.
For the sake of readability, we combine unimportant steps and focus on the interest-
ing cases. Assume the following initial assignment α1 = x1x2y1y2 before node Nmax ≡
⟨∃, {y3}, {x1, x2}⟩. The result of projecting function prj∃({y3}, α1) is s1s2s3s4s5 and the
SAT solver (Algorithm 6.3, line 4) returns Unsat(α′1)with coreα′1 = s2s4 as there is impos-
sible to satisfy both clauses (s2 ∨ y3) and (s4 ∨ y3) of the abstraction. The refinement al-
gorithm (Algorithm 6.4) builds the conflict clauseCconflict = C2∣bound(N3)∪C4∣bound(N3) =
(x1 ∨ y2 ∨ y1) at line 3 which contains a dependency fork between y1 and y2. We have

124

6.4. Correctness

already seen in Example 6.2 that the fork can be eliminated resulting in fresh variable y4
with dep(y4) = ∅ and the clauses 6 and 7 (x1 ∨ y1 ∨ y4)(y4 ∨ y2).

Now, the root node contains variable y4, for which we assume assignment{y4 ↦ T}.
For the same universal assignment as before (x1x2), the assignment of y2 has to change
to {y2 ↦ T} due to the newly added clause 7, leading to α2 = x1x2y1y2y4 before node
Nmax. The only unsatisfied clause is C4 which can be satisfied using {y3 ↦ F}, leading
to the base case (Algorithm 6.3, line 9). During refinement, we learn Skolem function
entries (x1 ∧ y4, y1) and (x2 ∧ y4, y2) at nodes ⟨∃, {y1}, {x1}⟩ and ⟨∃, {y2}, {x2}⟩ as
prj∃({y1}, x1x2) and prj∃({y2}, x1x2) assign s1, s5, s6 and s1, s6 positively, respectively.

For the following universal assignment x1x2, the value of y2 is already determined
by the consistency requirements (Algorithm 6.3, line 2) to be positive. There is a contin-
uation of the algorithm without further unsat conflict, determining that the instance is
true.

6.4 Correctness

In this section, we give a formal correctness proof of the algorithm. For soundness, the
algorithm has to guarantee that existential variables are assigned consistently, that is
for an existential variable y with dependency dep(y) it holds that fy(α) = fy(α′) if
α∣dep(y) = α′∣dep(y) for every α and α′. Our algorithm maintains this property at every
point during the execution by a combination of over-approximation and consistency re-
quirements. Completeness relies on the fact that the underlying proof system is refuta-
tionally complete for DQBF. Progress is guaranteed as there are only finitely many dif-
ferent conflict clauses and, thus, only finitely many Skolem function resets. We start by
giving the correctness arguments for the base case and state theorems over the structure
of the abstractions. Then, we split the actual correctness proof into two theorems that
argue inductively over the structure of the quantifier levels. The argumentation in this
section roughly follows the structure of the correctness proof for the QBF algorithm given
in Section 2.3.2.

The first lemma states the base case, i.e., that the abstraction for the maximal ele-
ment is equisatisfiable to replacing the assignment of the bound variables αV in the ma-
trix ϕ.

Lemma 6.12. Let ⟨∃,Y ,H⟩ be the existential node corresponding to the unique maximal ele-
ment and let αV be some assignment withV = bound(⟨∃,Y ,H⟩). Then, the SAT call (line 4)
of SOLVE∃(⟨∃,Y ,H⟩) returns Sat if, and only if,ϕ[αV] is satisfiable.

Proof. The abstraction θY for the maximal element does not contain assumption literals,
i.e., it has the form θY = ⋀C i∈ϕ si ∨ C

=
i . By definition of αS = prj∃(Y , αV), it holds that

θY[αS] = ⋀
C i∈ϕ
αV⊭C<i

C=i = ϕ[αV].

Additionally, for non-maximal nodes, we state two lemmata that describe the effect
of assignments of satisfaction variables on the existential and universal abstractions.

125

6. CLAUSAL ABSTRACTION FOR DQBF

Lemma 6.13. Let ⟨∃,Y ,H⟩ be an existential node and let αS be some assignment of the satis-
faction variables. It holds that θY[αS] = ⋀s i∈αFS (C

=
i ∨ ai).

Proof. The abstraction θY for the existential node ⟨∃,Y ,H⟩ has the form θY =
⋀C i∈ϕ(ai ∨ si ∨ C

=
i). It follows immediately that θY[αS] = ⋀s i∈αFS (C

=
i ∨ ai).

Lemma 6.14. Let ⟨∀, X⟩ be an universal node and let βS be some positive assignment of the
satisfaction variables (i.e., a partial assignment containing only positive values). It holds that
θX[βS] = ⋀C i∈ϕ,βS(s i)≠T(si ∨ ¬C

=
i).

Proof. The abstraction θX for the a universal node ⟨∀, X⟩ has the form θX = ⋀C i∈ϕ(si ∨
¬C=i). It follows immediately that θX[βS] = ⋀C i∈ϕ,βS(s i)≠T(si ∨ ¬C

=
i).

The following lemmata state that refinements are correct, i.e., that the clause con-
tained in the refinement is satisfied, respectively, falsified.

Lemma 6.15. Let ⟨∃,Y ,H⟩ be some existential node and let αV be some assignment withV =
bound(⟨∃,Y ,H⟩). Let α be the assignment after a satisfiable call to the abstraction θY (line 4
of SOLVE∃(⟨∃,Y ,H⟩)). For every clauseCi ∈ ϕ it holds that ai ↦ F implies thatαY ∪̇αV ⊧ Ci .

Proof. Follows by the abstraction definitions and the projection functions.

Lemma 6.16. Let ⟨∀, X⟩ be some universal node and let αV be some assignment with V =
bound(⟨∀, X⟩). Let α be the assignment after a satisfiable call to the abstraction θX (line 15
of SOLVE∀(⟨∀, X⟩)). For every clauseCi ∈ ϕ it holds that si ↦ F implies that αX ∪̇ αV ⊭ Ci .

Proof. Follows by the abstraction definitions and the projection functions.

The proof of correctness is an inductive argument over the quantifier levels. Fix some
level lvl and an assignment of the variables bound before lvl, the algorithm determines
the result of the DQBF where the prior bound variables are replaced by this assignment.
The algorithm, further, determines a subset of the satisfied clauses as a witness for the
outer levels.

We define an operator Φ∣lvlαS that restricts the matrix ϕ in a DQBF Φ to those clauses
Ci ∈ ϕ such that αS(si) = F, i.e., the resulting DQBF has the same quantifier prefix from
quantifier level lvl onwards with matrix ϕ′ ∶= {C≥i ∣ Ci ∈ ϕ ∧ αS(si) = F}. Variables that
are bound by a smaller quantifier level than lvl are removed from the matrix. Intuitively,
the operator removes clauses marked as satisfied by αS .

Lemma 6.17. Let Φ be a DQBF with matrix ϕ, let lvl be a quantifier level, and let αV be an as-
signment of variables bound prior to lvl. IfΦ[αV] is true SOLVELEVEL(lvl) produces a sat conflict
with partial assignment βS such thatΦ∣lvlβS[�↦F] is true.

Proof. We prove the statement by induction over the quantifier levels.

126

6.4. Correctness

Induction Base. Let lvl be the quantifier level with the unique maximal node Nmax =
⟨∃,Y ,H⟩ (see Proposition 6.11.5) and let αV be such that Φ[αV] is true. By Lemma 6.12,
the truth of Φ[αV] witnesses the satisfiability of θY[αS] where αS = prj(Y , αV). As
Nmax is maximal, the algorithm SOLVE∃ calls REFINE(sat, αS , Nmax) and αS[� ↦ F] is
equivalent to αS satisfying the second condition due to the definition of prj∃.

Induction Step (Q = ∃). Let lvl be an existential quantifier level and let αV be such
that Φ[αV] is true. Let ⟨∃,Y ,H⟩ be an arbitrary existential node in lvl. Further, let
αS = prj∃(Y , αV). By Lemma 6.13 it holds that

θY[αS] = ⋀
s i∈αFS

(C=i ∨ ai) .

Since Φ[αV] and thereby Φ∣lvlαS is true, there is a satisfying assignment αY for the vari-
ables Y such that Φ∣lvlαS [αY] is true. Define α∗A as α∗A(ai) = F if, and only if, αV ⊔̇ αY ⊧
C≤i . Thus, α∗A is the minimal assignment with respect to the number of assumptions
(α∗A(ai) = T) for the given assignment αY . The combined assignment αX ⊔̇ α∗A is a satis-
fying assignment of the initial abstraction θY[αS] by construction. Thus, for every node
N in lvl, SOLVE∃ returns CandidateFound and the algorithm continues to the next quan-
tifier level. We perform a case distinction on the assignments created on lvl, i.e., returned
by the SAT solver in line 7. As Φ[αV] is true, there is a satisfying assignment α∗Y for every
node ⟨∃,Y ,H⟩ in lvl. Let α∪Y be the combined assignment of every existential node in
this level.

Assume that the SAT solver in line 7 returns this assignment. Thus, Φ[αV ⊔̇ α∪Y] is
true. By induction hypothesis we deduce that the next level produces a sat conflict with
partial assignmentβS such thatΦ∣lvl+1βS[�↦F] is true, i.e., the assignmentβS represents those
clauses that need to be satisfied such that Φ is true. Since lvl is existential, this witness is
propagated. During this propagation, we adapt the witness by removing entries satisfied
by the assignment α∪Y of this quantifier level (line 20).

Assume that the SAT solver in line 7 returns a different assignment. If the assignment
is still satisfying Φ, the next level returns a sat conflict and the same argumentation as
above applies. In the case the next level returns a unsat conflict with witness β′S there are
3 possibilities:

1. The conflict does not contain variables of any existential node, which immediately
contradicts that Φ[αV] is true.

2. The conflict contains variables of a single existential node ⟨∃,Y ,H⟩. The subse-
quent refinement in line 6 of Algorithm 6.4 requires that one of the not satisfied
clauses Ci with β′S(si) = F has to be satisfied in the next iteration and the corre-
sponding refinement clause is ψ ∶= ⋁s i∈β′S F ai . By construction of α∗A as the mini-
mal assignment corresponding toαY ,α∗A ⊭ ψ contradicts thatαY is a satisfying as-
signment ofΦ[αV]. Hence, αY ⊔̇ α∗A is still a satisfying assignment for the refined
abstraction θ′Y[αS]. The refinement also reduces the number ofAassignments by
at least 1 and, thus, brings us one step closer to termination.

3. The conflict contains variables of more than one existential node, thus, the con-
flict clause Cconflict in line 3 of Algorithm 6.4 contains a dependency fork. It holds

127

6. CLAUSAL ABSTRACTION FOR DQBF

that αV ⊔̇ α∪Y ⊭ Cconflict as established in Section 3.2, where α∪Y is the combined
assignment of lvl. Applying Fork Extension gives us new clauses without depen-
dency fork. There exists an assignment α′V with αV ⊑ α′V such that the new DQBF
Φ[α′V] is still true (where α′V is the assignment αV plus added assignment for the
new variables due to Fork Extension). Unlike before, α∪Y does no longer satisfy the
abstraction, thus, a different assignment is produced.

In all possible cases, eventually, the satisfying assignment is reached.

Induction Step (Q = ∀). Let lvl be a universal quantifier level with the singleton node
⟨∀, X⟩ and let αV be such that Φ[αV] is true. Further, let βS = prj∀(X , αV). For every
assignment αX , it holds that Φ[αV ⊔̇ αX] is true. By Lemma 6.14 it holds that

θX[βS] = ⋀
C i∈ϕ,βS(s i)≠T

(si ∨ ¬C=i) .

Thus, in order to set si to false for some i, every literal l ∈ C=i has to be assigned neg-
atively. Fix some arbitrary assignment αX . By induction hypothesis, the following level
produces a sat conflict with partial assignment β′S such thatΦ∣lvl+1β′S[�↦F] is true. The subse-
quent refinement in line 12 of Algorithm 6.4 reduces the number of S assignments, thus,
eventually, the abstraction θX[βS] becomes unsatisfiable. Let θ′X be the abstraction at
this point and let β∗S be the failed assumptions. β∗S ⊑ β

+
S holds as β∗S are the failed as-

sumptions of the SAT call SAT(θ′X , βS).
It remains to show thatΦ[αV]∣lvlβ∗S [�↦F] is true. Assume for contradiction that there is

some αX such that (Φ[αV]∣lvlβ∗S [�↦F])[αX] is false. Let βS = prj∀(X , αV)We know that
θ′X[αX ⊔̇βS] is unsatisfiable. Thus, the assignmentαX was excluded due to refinements.
As the refinement only excludes S assignments β′′S such thatΦ∣lvl+1β′′S [�↦F] is true, this leads
to a contradiction.

Lemma 6.18. LetΦbe a DQBF with matrixϕ, let lvlbe a quantifier level, and letαV be an assign-
ment of variables bound prior to lvl. If Φ[αV] is false SOLVELEVEL(lvl) produces a unsat conflict
with partial assignment βS such thatΦ∣lvlβS[�↦T] is false.

Proof. We prove the statement by induction over the quantifier levels.

Induction Base. Let lvl be the quantifier level with the unique maximal node Nmax =
⟨∃,Y ,H⟩ (see Proposition 6.11.5) and let αV be such that Φ[αV] is false. By Lemma 6.12,
θY[αS] is unsatisfiable where αS = prj(Y , αV). Let β′S be the failed assumptions from
the sat call to SAT(θY , αS), i.e., β′S ⊑ αS and θY[β′S] is unsatisfiable. Due to the definition
of the abstraction, Φ∣lvlβ′S[�↦T] is false.

Induction Step (Q = ∃). Let lvl be an existential quantifier level and let αV be such
that Φ[αV] is false. Let ⟨∃,Y ,H⟩ be an arbitrary existential node in lvl. Further, let
αS = prj∃(Y , αV). By Lemma 6.13 it holds that

θY[αS] = ⋀
s i∈αFS

(C=i ∨ ai) .

128

6.4. Correctness

As Φ[αV] is false, every assignment of the existential level is false as well. There are two
possible executions:

• Assume that all existential nodes generate a candidate assignment, then we can
apply the induction hypothesis to deduce that the next level produces a unsat con-
flict with partial assignment β′S such that Φ∣lvl+1β′S[�↦T] is false. The refinement with
witness β′S has three possibilities:

1. The conflict does not contain variables of any existential node, that is, the
algorithm produces the partial assignment β′S .

2. The conflict contains variables of a single existential node ⟨∃,Y ,H⟩. The
subsequent refinement in line 6 of Algorithm 6.4 requires that one of the not
satisfied clauses Ci with β′S(si) = F has to be satisfied in the next iteration
and the corresponding refinement clause isψ ∶= ⋁s i∈β′S F ai . The refinement
reduces the number of A assignments by at least 1 and, thus, brings us one
step closer to termination.

3. The conflict contains variables of more than one existential node, thus, the
conflict clauseCconflict in line 3 of Algorithm 6.4 contains a dependency fork.
It holds that αV ⊔̇ α∪Y ⊭ Cconflict, where α∪Y is the combined assignment of
lvl. Applying Fork Extension gives us new clauses without dependency fork.
In the following, a different assignment is produced.

In the latter two cases, we make progress towards termination.

• Assume that one of the existential nodes ⟨∃,Y ,H⟩produce a unsat conflict. Letθ′Y
be the abstraction at this point and let β′S be the failed assumptions, i.e., β′S ⊑ αS .
Let α′′S = β

′
S[� ↦ T]. It remains to show that Φ∣lvlα′′S is false. Assume for contradic-

tion that there is some αY such that Φ∣lvlα′′S [αY] is true. It holds that θ′Y[αY ⊔̇ α′′S]
is unsatisfiable, whereas initially, θY[αY ⊔̇ α′′S] is satisfiable. Thus, the assign-
ment αY was excluded due to refinements. As the refinement only excludes as-
signments corresponding to some S assignment β∗S such that Φ∣lvlβ∗S [�↦T] is false,
this contradicts our assumption.

Induction Step (Q = ∀). Let lvl be a universal quantifier level with the singleton node
⟨∀,Y⟩ and let αV be such that Φ[αV] is false. Further, let βS = prj∀(X , αV). There is
some assignment αX such that that Φ[αV ⊔̇ αX] is false. By Lemma 6.14 it holds that

θX[βS] = ⋀
C i∈ϕ,βS(s i)≠T

(si ∨ ¬C=i) .

θX[βS] is initially satisfiable by construction. Given αX from , we define the optimal cor-
responding assignment β∗S as β∗S(si) = T if, and only if, either βS(si) = T or βX ⊧ C=i .
Assume that the SAT solver in line 15 of Algorithm 6.3 returns the assignment αX . Thus,
by induction hypothesis, the next level produces a unsat conflict with partial assignment
β′S such that Φ∣lvl+1β′S[�↦T] is false.

Assume that the SAT solver in line 15 of Algorithm 6.3 returns a different assignment
α′X . IfΦ[αV ⊔̇α′X] is false, the same argumentation as above applies. If this is not the case,

129

6. CLAUSAL ABSTRACTION FOR DQBF

Table 6.1: Number of instances solved within 10 min. For every solver, we give the number
of solved instances overall (#) and broken down by satisfiable (T), unsatisfiable (F), and
uniquely solved instances (∗).

Benchmark # DCAQE IDQ HQS IPROVER
T F ∗ # T F ∗ # T F ∗ # T F ∗

PEC1 [FT14b] 1000 839 7 832 224 37 0 37 0 636 10 626 32 71 0 71 0
PEC2 [Git+15] 720 342 71 271 12 214 45 169 0 401 104 297 60 288 60 228 0
BoSy [Fay+17] 1216 1006 389 617 66 924 335 589 2 735 231 504 0 946 370 576 20

2936 2187 1175 1772 1305

the next level produces a sat conflict with partial assignment β′S such that Φ∣lvl+1β′S[�↦F] is
true. Subsequently, θX is refined by adding the the clauseψ ∶= ⋁s i∈β′ST si . By construction
of β∗S as the optimal assignment corresponding toαX , we deduce that β∗S ⊭ ψ contradicts
that αX is a witness that Φ[αV] is false. Thus, αX ⊔̇ β∗S remains a satisfying assignment
of the refined abstraction. The refinement reduced the number of S assignments and,
thus, the falsifying assignment αX is reached eventually.

From Lemma 6.17 and 6.18 we can conclude the faithful replication of the DQBF se-
mantics by the lifted clausal abstraction algorithm.

Theorem 6.19. SOLVE(Φ) returns sat if, and only if,Φ is satisfiable.

6.5 Evaluation

We compare our prototype implementation, called DCAQE3, against the publicly avail-
able DQBF solvers, IDQ [Frö+14], HQS [Git+15], and IPROVER [Kor08]. We ran the experi-
ments on machines with a 3.6 GHz quad-core Xeon (E3-1271 v3) processor with 32 GB of
memory. Timeout and memout were set to 10 minutes and 8 GB, respectively. We used
the DQBF preprocessor HQSPRE [Wim+17] for every solver except HQS. We evaluate our
solver on the DQBF case studies regarding reactive synthesis [Fay+17] (described in Sec-
tion 7.3) and the partial equivalence checking problem (PEC), already introduced in Chap-
ter 5, using the benchmark sets PEC1 [FT14b] and PEC2 [Git+15].

The second case study (BoSy) considers the problem of synthesizing sequential cir-
cuits from specifications given in linear-time temporal logic (LTL) [Fay+17]. The bench-
marks were created using the tool BOSY [FFT17] and the LTL benchmarks from the Re-
active Synthesis Competition [Jac+16; Jac+17a]. Each formula encodes the existence of a
sequential circuit that satisfies the LTL specification.

The results are presented in Table 6.1. The PEC instances contain over-proportionally
many unsatisfiable instances, and we conjecture that the differences between DCAQE
and IDQ/IPROVER can be explained by the effectiveness of the resolution-based refuta-
tions that DCAQE is based on. HQS performs well on those benchmarks as well, which

3Available at https://github.com/ltentrup/caqe.

130

https://github.com/ltentrup/caqe

6.6. Summary

550 600 650 700 750 800 850 900 950 1,000
0

200

400

600

solved instances

tim
e(

se
c.)

dCAQE
iProver

iDQ
HQS

Figure 6.4: Number of solved instances within 10 minutes among the 1216 instances from
the BoSy benchmark set.

could be due to the fact that it implements the fast refutation technique presented in
Chapter 5 that was introduced alongside the benchmark set PEC1. The reactive synthesis
benchmark set is were DCAQE excels. The benchmark set contains many easily solvable
benchmarks, indicated by the high number of instances that are commonly solved by all
solvers. However, there are also a fair amount of hard instances, and DCAQE solves signif-
icantly more of those than any other solver. Further, we can see the effect mentioned in
the introduction of the infeasibility of expansion-based methods, as shown by the result
of HQS. The cactus plot given in Figure 6.4 shows that DCAQE makes more progress, es-
pecially with a more substantial runtime where the other solvers solve very few instances
after 100s. These results give rise to the hope that the scalability of more expressive syn-
thesis approaches [FT15; Fin+18a; Coe+19] can be improved by employing DQBF solving.

6.6 Summary

We lifted the clausal abstraction algorithm to DQBF. This algorithm is the first to use the
new Fork Resolution proof system, and it significantly increases the performance of DQBF
solving on synthesis benchmarks. In particular, in the light of the past attempts to define
search algorithms [FKB12] (which are closely related to clausal abstraction) for DQBF, this
is a surprising success. It appears that the Fork Extension proof rule was the missing piece
in the puzzle to build search/abstraction algorithms for DQBF.

131

Part II

Reactive Synthesis

133

Chapter 7

Synthesizing Reactive Systems

In the previous part, we showed how to solve the quantified satisfiability problem for
linear and branching quantifiers. We now turn our attention towards applying those in-
sights to solve the realizability problem for reactive systems using specifications in linear-
time temporal logic. There has been a recent surge of new algorithms and tools for the
synthesis of reactive systems from temporal specifications [Job+07; Ehl11; Boh+12; FS13;
FT14a; MC18; MSL18]. Roughly, these approaches can be classified into two categories:
game-based synthesis, whose origins date back to the seminal paper by Büchi and Landwe-
ber [BL69], translates the specification into a deterministic automaton and subsequently
determines the winner in a game played on the state graph of this automaton; Safraless
synthesis [KV05] avoids the transformation of the specification into an equivalent deter-
ministic automaton via Safra’s determinization procedure by approximating the specifi-
cation in a sequence of deterministic safety automata. A special case of the latter category
is bounded synthesis [SF07; FS13], which constructs a constraint system that characterizes
all implementations, up to a fixed bound on the size of the implementation, that satisfy
the specification. While in game-based methods the synthesized implementations are
often unnecessarily (and impractically) large (cf. [FJ12]), due to the fact that the deter-
ministic automaton often contains many more states than are needed by the implemen-
tation, in bounded synthesis, one can ensure that the synthesized implementation is the
smallest possible realization of the specification by iteratively increasing the bound.

In the original formulation [FS07; SF07] and many derived works [FS13; FJ12; KJB13b;
KJB13a; Fin+18a; Coe+19] the constraint systems are built in a decidable first-order the-
ory and solved using powerful SMT solver. In the standard encoding, both the states of
the synthesized implementation and its inputs are enumerated explicitly [FS13]. In this
section, we investigate whether the scalability of bounded synthesis can be improved by
using propositional quantification, thus, effectively making the constraint system more
“symbolic”.

We reduce the bounded synthesis problem of linear-time temporal logic (LTL) to con-
straint systems given as Boolean formulas (SAT), quantified Boolean formulas (QBF), and
dependency quantified Boolean formulas (DQBF). The reductions are landmarks on the
spectrum of symbolic vs. explicit encodings. All encodings represent the synthesized im-

135

7. SYNTHESIZING REACTIVE SYSTEMS

plementation in terms of its transition function, which identifies the successor state using
the current state and the input, and additionally, in terms of an output function, which
identifies the output signals using the current state and the input. Furthermore, the en-
coding contains an annotation function, which relates the states of the implementation
to the states of a universal automaton representing the specification.

In the SAT encoding of the transition function, a separate Boolean variable is used for
every combination of a source state, an input signal, and a target state. The encoding is
thus explicit in both the state and the input. In the QBF encoding, we quantify univer-
sally over the inputs, so that the encoding becomes symbolic in the inputs while staying
explicit in the states. Quantifying universally over the states, just like over the input sig-
nals, is not possible in QBF because the states occur twice in the transition function, as
source and as target. Separate quantifiers over sources and targets would allow for mod-
els where, for example, the value of the output function differs, even though both the
source state and the input are the same. In DQBF, we can avoid such artifacts and obtain
a “fully symbolic” encoding in both the states and the input.

We evaluate the encodings systematically using benchmarks from the reactive syn-
thesis competition (SYNTCOMP) [Jac+17b] and state-of-the-art solvers. Our empirical
finding is that both the input-symbolic and state-symbolic encoding, perform better
than the non-symbolic approach. This fits with our intuition that a more symbolic en-
coding provides opportunities for optimization in the solver. It turns out that the DQBF
solver DCAQE form Chapter 6 is crucial to the performance of the state-symbolic encod-
ing: There is even evidence that the DQBF approach scales better with the number of
states then the QBF encoding.

This section is based on work published in the proceedings of TACAS [Fay+17] and
CAV [FFT17].

7.1 Preliminaries

Let AP be a finite set of atomic propositions and let Σ = 2AP be the corresponding alpha-
bet. An infinite word σ ∈ Σω is an infinite sequence of elements ofΣ. Finite words σ ∈ Σ∗
are finite sequences. The length of σ = σ0σ1⋯σn ∈ Σ∗ is ∣σ ∣ = n + 1. For infinite σ ∈ Σω,
we define ∣σ ∣ = ∞. Given some set A ⊆ AP of atomic propositions, we use a ∈ 2A to de-
note an assignment of propositions, where a ∈ a and a ∉ a means that a ∈ A is assigned
true and false, respectively.

7.1.1 Linear-time Temporal Logic

LINEAR-TIME TEMPORAL LOGIC (LTL) [Pnu77] is a commonly used specification language
for linear-time properties. The grammar of LTL is given by

ϕ ∶∶= true ∣ p ∣ ¬ϕ ∣ ϕ ∨ ϕ ∣ϕ ∣ ϕ U ϕ,

where p ∈ AP is an atomic proposition. We use the standard Boolean abbreviations
false ∶= ¬true, ϕ ∧ ψ = ¬(¬ϕ ∨ ¬ψ), ϕ → ψ = ¬ϕ ∨ ψ, and ϕ ↔ ψ = (ϕ →

136

7.1. Preliminaries

ψ) ∧ (ψ → ϕ). In addition to the temporal operators nextϕ and until ϕ U ψ we use
the derived operators release ϕRψ = ¬(¬ϕ U ¬ψ), eventuallyϕ ≡ trueU ϕ, globally
ϕ ≡ ¬¬ϕ, and weak untilϕW ψ ≡ϕ∨(ϕUψ). We define the satisfaction relation
σ , i ⊧ ϕ for σ ∈ Σω and i ≥ 0 as

σ , i ⊧ true
σ , i ⊧ p iff p ∈ σi
σ , i ⊧ ¬ϕ iff σ , i ⊭ ϕ
σ , i ⊧ ϕ ∨ ψ iff σ , i ⊧ ϕ or σ , i ⊧ ψ
σ , i ⊧ϕ iff σ , i + 1 ⊧ ϕ
σ , i ⊧ ϕ U ψ iff there is some j ≥ i with σ , j ⊧ ψ

and for all k with i ≤ k < j it holds that σ , k ⊧ ϕ

We write σ ⊧ ϕ as a shorthand for σ , 0 ⊧ ϕ. The language of ϕ, writtenL(ϕ), is the set
of infinite words that satisfy ϕ, that is,L(ϕ) = {σ ∈ Σω ∣ σ ⊧ ϕ}.

7.1.2 Automata

A UNIVERSAL CO-BÜCHI AUTOMATON A over a finite alphabet Σ is a tuple ⟨Q , q0, δ, F⟩,
where Q is a finite set of states, q0 ∈ Q the designated initial state, δ ⊆ Q × Σ × Q is
the transition relation, and F ⊆ Q is the set of rejecting states. Given an infinite word
σ ∈ Σω, a run of σ onA is a finite or infinite path q0q1q2 ⋅ ⋅ ⋅ ∈ (Q∗ ∪ Qω) that respects
the transition relation, i.e., for all i ≥ 0 with i + 1 < ∣σ ∣ it holds that (qi , σi , qi+1) ∈ δ.
A run is accepting, if it contains only finitely many rejecting states, i.e., either the run is
finite or there exists an i ≥ 0 such that for all j ≥ i it holds that q j ∉ F. A accepts a
word σ , if all runs of σ onA are accepting. The language ofA, writtenL(A), is the set
{σ ∈ Σω ∣ A accepts σ}.

We represent automata as directed graphs with vertex set Q and a symbolic rep-
resentation of the transition relation δ as propositional formulas B(AP). The rejecting
states in F are marked by double lines.

Example 7.1. Consider the LTL formula ψ = (r1 → g1) ∧ (r2 → g2) ∧
¬(g1 ∧ g2). Whenever there is a request ri , the corresponding grant gi must be set
eventually. Further, it is disallowed to set both grants simultaneously. The universal co-
Büchi automatonAψ that accepts the same language asψ is shown in Figure 7.1a.

Proposition 7.2 ([KV05]). Given an LTL formulaϕ, there is a universal co-Büchi automatonAϕ

withO(2∣ϕ∣) states that accepts the languageL(ϕ).

7.1.3 Transition Systems as a Model of Reactive Systems

We use transition systems as a model of computation for reactive systems. Transition sys-
tems consume sequences over an input alphabet by transforming their internal state in
every step. Let I be a finite set of input propositions and let Υ = 2I be the correspond-
ing finite alphabet. A Υ-TRANSITION SYSTEM is a tuple ⟨S , s0, τ⟩, where S is a finite set

137

7. SYNTHESIZING REACTIVE SYSTEMS

q0

q1 q2

qe

T

r1 r2
g1g2

g1 g2

T

(a) Universal co-Büchi automatonAψ

s0
g1

s1
g2

T

T

(b) Transition systemSarb

Figure 7.1: A specification automaton over inputs r1, r2 and outputs g1, g2 and a realizing
transition system.

of states, s0 ∈ S is the designated initial state, and τ∶ S × Υ → S is the transition func-
tion. We write s υÐ→ s′ or (s, υ, s′) ∈ τ if τ(s, υ) = s′. We generalize the transition
function to sequences over Υ by defining τ∗∶Υ∗ → S recursively as τ∗(є) = s0 and
τ∗(υ0⋯υn−1υn) = τ(τ∗(υ0⋯υn−1), υn) for υ0⋯υn−1υn ∈ Υ+.

We define the output behavior of a transition system with respect to a labeling func-
tion. LetO be a finite set of output propositions and letΓ = 2O be the corresponding finite
alphabet. A Γ-LABELED Υ-TRANSITION SYSTEM S is a tuple ⟨S , s0, τ, l⟩where, ⟨S , s0, τ⟩ is
a Υ-transition system and l is a labeling function. We distinguish between two types of
labeling, STATE-LABELED or Moore transition systems with labeling function l ∶ S → Γ and
TRANSITION-LABELED or Mealy transition systems with labeling function l ∶ S × Υ → Γ.
Given an infinite word υ = υ0υ1⋯ ∈ Υω, the transition system produces an infinite se-
quence of outputs γ = γ0γ1⋯ ∈ Γω, such that

γi =
⎧⎪⎪⎨⎪⎪⎩

l(τ∗(υ0⋯υi−1)) ifS is state-labeled
l(τ∗(υ0⋯υi−1), υi) ifS is transition-labeled

for every i ≥ 0. The resulting trace ρ is (υ0 ∪ γ0)(υ1 ∪ γ1)⋯ ∈ (2I∪O)ω. The set of traces
generated byS is denoted by traces(S). A transition systemS satisfies an LTL formulaϕ,
if, and only if, traces(S) ⊧ ϕ.

Example 7.3. Figure 7.1b depicts the two-state (state-labeled) transition system Sarb =
⟨{s0, s1}, s0, τ⟩with τ(s0, i) = s1 and τ(s1, i) = s0 for every i ∈ 2I as well as l(s0) = {g1}
and l(s1) = {g2}. The set of traces is traces(S) = ({g1}{g2})ω ∪ (2{i1 ,i2})ω.

7.1.4 Strategies and Trees

A STRATEGY f ∶ (2I)∗ → 2O maps sequences of input valuations 2I to an output valua-
tion 2O . The behavior of a strategy f ∶ (2I)∗ → 2O is characterized by an infinite tree that

138

7.2. Safraless Synthesis

g1

g2

g1 g1 g1 g1

∅

g2

g1 g1 g1 g1

r1

g2

g1 g1 g1 g1

r2

g2

g1 g1 g1 g1

r1, r2

⋮

Figure 7.2: Visualization of the strategy induced by the transition system from Figure 7.1b.

branches by the valuations of I and whose nodes N ∈ (2I)∗ are labeled with the strate-
gic choice f (N). For an infinite word υ = υ0υ1υ2⋯ ∈ (2I)ω, the corresponding labeled
path is defined as (f (є) ∪ υ0)(f (υ0) ∪ υ1)(f (υ0υ1) ∪ υ2)⋯ ∈ (2I∪O)ω. We lift the set
containment operator ∈ to the containment of a labeled path σ = σ0σ1σ2⋯ ∈ (2I∪O)ω in
a strategy tree induced by f ∶ (2I)∗ → 2O , i.e., σ ∈ f if, and only if, f (є) = σ0 ∩ O and
f ((σ0∩ I)⋯(σi∩ I)) = σi+1∩O for all i ≥ 0. We define the satisfaction of an LTL formula
ϕ (over atomic propositions I∪O) on strategy f , written f ⊧ ϕ, as{σ ∣ σ ∈ f } ⊧ ϕ. Thus,
a strategy f is a model of ϕ if the set of labeled paths of f is a model of ϕ.

A transition system S = ⟨S , s0, τ, l⟩ GENERATES the strategy f if f (υ) = l(τ∗(υ))
for every υ ∈ (2I)∗. A strategy f is called FINITE-STATE if there exists a transition system
that generates f . The strategy generated by the transition systemSarb from Example 7.3
is depicted in Figure 7.2.

7.2 Safraless Synthesis

The game-based approach to reactive synthesis, dating back to Büchi and Landweber’s
seminal 1969 paper [BL69], first translates the specification into an equivalent non-
deterministic Büchi word automaton [VW94]. Afterward, the automaton is transformed
into a deterministic parity tree automaton [Saf88; Pit07] that accepts those infinite trees
that satisfy the specification. Deciding the emptiness problem of the tree automaton, by
solving the underlying parity game, then solves the realizability problem. Examples of
synthesis tools implementing this approach are LTLSYNT [MC18] and STRIX [MSL18].

Safraless decision procedures [KV05] avoid the transformation of the specification
into an equivalent deterministic automaton via Safra’s determinization procedure. In-
stead, the specification is first translated into an equivalent universal co-Büchi automa-
ton, whose language is then approximated in a sequence of deterministic safety au-
tomata, obtained by bounding the number of visits to rejecting states [FS07]. Synthesis
tools employing this approach are, e.g., UNBEAST [Ehl11], ACACIA+ [Boh+12], and recent
versions of BOSY [FFT17].

Bounded synthesis [SF07] limits not only the number of visits to rejecting states, but
also the number of states of the synthesized system itself. As a result, the bounded
synthesis problem can be represented as a decidable constraint system, even in set-

139

7. SYNTHESIZING REACTIVE SYSTEMS

tings where the classical synthesis problem is undecidable, such as the synthesis of
asynchronous and distributed systems (cf. [FS13]). There have been several propos-
als for encodings of bounded synthesis. The first encoding [FS07; SF07] was based on
first-order logic modulo finite integer arithmetic. Improvements to the original en-
coding include the representation of transition systems that are not necessarily input-
preserving, and, hence, often significantly smaller [FS13], the lazy generation of the con-
straints from model checking runs [FJ12], and specification rewriting and modular solv-
ing [KJB13b]. Recently, a SAT-based encoding was proposed [SHY15]. Another SAT-based
encoding [FK16] bounds, in addition to the number of states, also the number of loops. A
QBF-based encoding has been used in the related problem of solving Petri games [Fin15].
Petri games can be used to solve specific distributed synthesis problems. They have, how-
ever, a significantly simpler winning condition than the games resulting from LTL speci-
fications.

7.2.1 Safety Game Reduction

Before we consider the bounded synthesis problem, we briefly describe the Safraless
safety game reduction method [FS07], for which we show that insights from solving QBF
in negation normal form given in Chapter 4 can lead to improvement over the state-of-
the-art SAT-based safety game solver.

Infinite Games. Infinite games are a convenient way to represent the realizability prob-
lem. Based on a finite graph structure, called arena, the environment and system player
move ad infinitum a token by choosing outgoing transitions. For our description, we will
use standard game notation, e.g., player 0 typically represents the system player while
player 1 represents the environment.

An ARENA Ar = ⟨V ,V0,V1, E⟩ is a finite graph where V is a finite set of vertices,
partitioned into verticesV0 ⊆ V belonging to player0andV1 ⊆ V belonging to player 1, as
well as an edge relationE ⊆ V×V . A PLAY is an infinite sequence ρ satisfying(ρi , ρi+1) ∈
E for all i ≥ 0. An INFINITE GAME G = ⟨Ar,Win⟩ consists of an arena, on which the game
is played, and a winning conditionWin ⊆ Vω for player 0. A SAFETY GAME G = ⟨Ar,Bad⟩
withBad ⊆ V is an infinite game with the winning condition that no play visits a bad state
v ∈ Bad, i.e., the associated winning condition isWin = {ρ ∈ Vω ∣ ρi ∉ Bad for all i ≥ 0}.

Reduction. Given a universal co-Büchi automatonA = ⟨Q , q0, δ, F⟩ over alphabet Σ =
2I∪O and a bound k > 0, we recap the reduction to safety games [FS07] where a winning
strategy for player 0 (from the initial vertex) implies that system player has a realizing
strategy. The underlying concept of the reduction is that the game represents all runs of
the automaton, that is, determines the universal automaton. We define the underlying
arena ArA = ⟨V ,V0,V1, E⟩ as follows. The state space for player 1,V1 ∶ Q → {0, . . . , k},
is a representation of the powerset ofQ, whereV(q) = 0andV(q) = 1means thatq ∈ Q
is not reached and reached, respectively. For rejecting states, we additionally store the
number of recurring visits. Player 0 reacts on actions chosen by player 1, thus, we encode
those actions in the state space, i.e.,V0 = {(v , i) ∣ v ∈ V1, i ∈ 2I}. Thus,V = V0 ∪V1. The

140

7.2. Safraless Synthesis

edge relation E = V × V is defined such that for every (v0, i) ∈ V0 and v1 ∈ V1 it holds
that (v1, (v0, i)) ∈ E if, and only if, v0 = v1 and ((v0, i), v1) ∈ E if, and only if

∃o ∈ 2O .∀q′ ∈ Q .
v1(q′) = 0↔ ∀q ∈ Q . v0(q) > 0→ q′ ∉ δ(q, i , o, q′) (unreach)

∧ v1(q′) = v0(q′)↔ q′ ∉ F ∧ ∃q ∈ Q . v0(q) > 0 ∧ q′ ∈ δ(q, i , o, q′) (reach)
∧ v1(q′) = v0(q′) + 1↔ q′ ∈ F ∧ ∃q ∈ Q . v0(q) > 0 ∧ q′ ∈ δ(q, i , o, q′). (reject)

In other words, (reach) states q′ is only unreachable iff there is no transition q i∪oÐÐ→ q′

from any reachable automaton state q, (reach) states that q′ is only reachable iff there
is a transition q i∪oÐÐ→ q′ from some reachable automaton state q, and lastly (reject)
implements the rejecting counter. We denote the initial vertex by vinit ∈ V1, where
vinit(q0) = 1 and for all q ∈ Q \ {q0} it holds that vinit(q) = 0. The set of bad states
isBad = {v ∈ V1 ∣ ∃q ∈ F . v(q) = k}.

Example 7.4. Figure 7.3 depicts the safety game resulting from applying the re-
duction to the automaton from our earlier example (Figure 7.1a). In this visu-
alization, we use ⟨qa0 , qb1 , qc2, qde ⟩ for a, b, c, d ∈ {0, 1, 2} to denote the state
{q0 ↦ a, q1 ↦ b, q2 ↦ c, qe ↦ d}. To improve readability, we omit unreachable states
q0 and use q instead of q1. This view approximates the search space of synthesis tools
like Unbeast [Ehl11] and Acacia+ [Boh+12].

Lemma 7.5 ([FS07]). If player 0 has a winning strategy for ArA from initial vertex vinit then
there is a realizing strategy forA.

The representation of the winning strategy can be improved by considering sparse
strategies, i.e., positional strategies that are only defined for the reachable part of the
state space [EM12].

Symbolic Safety Games. While the safety game reduction has the benefit of a polyno-
mial decision procedure, the state space is exponential in the number of input proposi-
tions. To avoid this blow-up, we instead use a symbolic game representation. A SYMBOLIC
SAFETY GAME is a tuple G = ⟨X , Xinit , T , P⟩ where X is a finite set of state variables,
Xinit ∈ B(X) is the initial state constraint,T ∈ B(X∪I∪O∪X′) represents the transition
relation and P∶B(X) represents the states on which the property holds.

Given a universal co-Büchi automatonA = ⟨Q , q0, δ, F⟩ over alphabet Σ = 2I∪O and
a bound k > 0, we build a safety game where a winning strategy for the system player
implies the existence of a realizing strategy. We use δBq ∈ B(Q , I,O) to denote the state,
input, and output valuations that lead to q as a Boolean formula. We define a symbolic
safety game GA where X = {q ∈ Q} ∪ {q1, . . . , qk ∣ q ∈ F} is the state space, Xinit =
q0 ∧ ⋀q∈Q\{q0} ¬q is the initial state, T = ⋀q′∈Q q′ ↔ δBq ∧ ⋀1<i≤k

q i ′∈F
qi ′ ↔ δBq i−1 is the

transition function, and P = ¬⋁q∈F qk is the safety property. The underlying idea is the
same as for the non-symbolic safety game.

141

7. SYNTHESIZING REACTIVE SYSTEMS

⟨q0⟩
⟨q0⟩
r1r2

⟨q0⟩
r1r2

⟨q0⟩
r1r2

⟨q0⟩
r1r2

⟨q0, qe⟩

⟨q0, q1⟩

⟨q0, q1, q2⟩

⟨q0, q2⟩
⟨q0, q2⟩
r1r2

⟨q0, q2⟩
r1r2

⟨q0, q2⟩
r1r2

⟨q0, q2⟩
r1r2

⟨q0, q22⟩ ⟨q0, q1, q22⟩

r1r2r1r2

r1r2 r1r2

g1 ∨ g2

g1g2

g1g2

g1

g1g2

g1g2

g1g2

g1g2 g1g2

g1g2

g2

r1r2

r1r2

r1r2
r1r2

g1 ∨ g2

g1g2

g1g2

g1g2

g1g2

g1g2

g2

g1g2

g1g2
g1g2

g1g2

. . .

. . .

⋮ ⋮

Figure 7.3: Safety game resulting from the automaton given in Figure 7.1a and bound k =
2. Red and orange states denote bad states and losing states for player 0, respectively.
Red and blue edges denote losing and winning moves of player 0, respectively.

Corollary 7.6. If the system player wins the game GA then there is a realizing strategy forA.

The solution to a symbolic safety game, that is, the existence of a winning region
w∶B(X) containing the initial state(s), implying the property P and being invariant un-
der the transition relation, can be expressed by the DQBF formula [BKS14]

∀x⃗ . ∃w .∀i⃗ . ∃o⃗.
∀x⃗′. ∃w′. (Xinit ⇒ w) ∧ (w ⇒ P) ∧ ((x⃗ = x⃗′)⇒ (w = w′)) ∧ (w ∧ T ⇒ w′)

A direct solving approach starts with the states that are initially safe and then com-
putes the smallest fixpoint over the enforceable predecessor that can be computed using
the QBF formula (with free variables x⃗) pred(F) = ∀i⃗ . ∃o⃗, x⃗′. T(x⃗ , i⃗ , o⃗, x⃗′) ∧ F(x⃗′). We

142

7.2. Safraless Synthesis

Table 7.1: Result of our prototype safety game solver on the safety benchmarks from the
reactive synthesis competition (SYNTCOMP).

benchmark family DEMIURGE prototype

amba 141 147
genbuf 37 45
circuit-equiv 94 100
ltl2dpa 16 22
cycle-shed 11 12
driver 31 36
hwmcc 140 145
ltl2aig 26 29
matrix-mult 20 21

total 516 557

refer to Bloem et al. [BKS14] for more details on an effective implementation using com-
peting SAT solvers.

For the remainder of this section, we describe an optimization based on knowledge
of the abstraction for the circuit abstraction algorithm given in Section 4.1.1. As a moti-
vating example, consider the quantified formula ∀X∃y. y ↔ ϕ(X). Depending on ϕ,
refinements purely based on universal variable assignments may need exponentially (in
∣X∣) many refinements to determine the result. This is for example the case for ϕ(X) =
⊕x∈X x. On the other hand, we have seen that the circuit abstraction algorithm only com-
municates subformula valuations, in our example, the value of ϕ(X), resulting in a con-
stant number of refinements (namely 2). This abstraction method can be integrated into
the SAT-based algorithms [BKS14]. We implemented this idea in a prototype safety game
solver and compare it to the state-of-the-art SAT-based solver DEMIURGE [BKS14] in Ta-
ble 7.1. Notably, we see improvement across all benchmark sets and not only the circuit
equivalence benchmarks.

7.2.2 Bounded Synthesis

Bounded synthesis [FS13] is a synthesis procedure for LTL specifications that produces
size-optimal transition systems. A given LTL formula ϕ is translated into a universal co-
Büchi automatonA that accepts the languageL(ϕ). A transition systemS realizes speci-
ficationϕ if, and only if, every trace generated byS is in the languageL(ϕ). S is accepted
byA if every path of the unique run graph, that is the product ofS andA, has only finitely
many visits to rejecting states. This acceptance is witnessed by a bounded annotation on
this product.

The bounded synthesis approach is to synthesize a transition system of bounded size
n, by solving a constraint system that asserts the existence of a transition system and la-
beling function ofS as well as a valid annotation. In this section, we discuss how to con-

143

7. SYNTHESIZING REACTIVE SYSTEMS

⟨s0, q0⟩

λ ∶ 0

⟨s1, q0⟩

λ ∶ 0

⟨s1, q1⟩

λ ∶ 1

⟨s1, q2⟩

λ ∶ 2

⟨s0, q1⟩

λ ∶ 2

⟨s0, q2⟩

λ ∶ 1

⟨s0, qe⟩

λ ∶ �

⟨s1, qe⟩

λ ∶ �

Figure 7.4: Run graph of the automatonAψ and the two-state transition systemSarb from
the earlier example (Figure 7.1). The bottom node part displays a valid λ annotation of the
run graph.

struct a formula that represents that a given annotation is correct. We will use this formula
as a building block for different bounded synthesis constraint systems in Section 7.3.

The product of a transition system S = ⟨S , s, τ, l⟩ and a universal co-Büchi automa-
tonA = ⟨Q , q0, δ, F⟩ is a RUN GRAPH G = ⟨V , E⟩, whereV = S × Q is the set of vertices
and E ⊆ V × V is the edge relation with

((s, q), (s′, q′)) ∈ E iff ∃i ∈ 2I . τ(s, i) = s′ and (q, i ∪ l(s, i), q′) ∈ δ . (rel)

A vertex v = (s, q) ∈ V is rejecting, if and only if, q ∈ F. A run is a path starting in the
initial vertex(s0, q0). A run is accepting if it is finite or contains only finitely many rejecting
states. A run graph is accepting if every run is accepting.

Lemma 7.7 ([FS13]). LetS andA be a transition system and universal co-Büchi automata over
the same alphabet. If the run graphS ×A is accepting, thenS is accepted byA.

A witness of an accepting run graph is an ANNOTATION λ, a function V → N ∪ {�}
that maps nodes from the run graph to either unreachable � or a natural number k. An
annotation is valid if it satisfies the following conditions:

• the initial vertex v0 = (s0, q0) is labeled by a natural number (λ(v0) ≠ �), and

• if a vertex v ∈ V is annotated with a natural number (λ(v) = k ≠ �) then every
successor vertexv′ ∈ V with (v , v′) ∈ E is annotated with a greater number, which
needs to be strictly greater if v′ is rejecting. That is, λ(v′) ⊵ k where⊵ ∶= > if v′ is
rejecting and ≥ otherwise.

Example 7.8. Figure 7.4 shows the run graph ofAψ and Sarb from our earlier example
(Figure 7.1). Additionally, a valid annotation λ is provided in the second component of
every node. One can verify that the annotation is correct by checking every edge indi-
vidually. For example, the annotation has to increase from ⟨s0, q0⟩ → ⟨s1, q2⟩ and from
⟨s0, q2⟩ → ⟨s1, q2⟩ as q2 is rejecting. As λ(⟨s0, q0⟩) = 0 and λ(⟨s0, q2⟩) = 1, it holds that
λ(⟨s1, q2⟩)must be at least 2.

144

7.3. Encodings of Bounded Synthesis

More formally, we encode the check for a valid annotation as two constraints

λ(v0) ≠ � (init)
∀v , v′ ∈ V . (λ(v) ≠ � ∧ (v , v′) ∈ E)→ (λ(v′) ≠ � ∧ λ(v′) ⊵ λ(v)) (succ)

form which we derive encodings for various theories like propositional logic, (depen-
dency) quantified Boolean formulas, and satisfiability modulo theories in Section 7.3.

Theorem 7.9 ([FS13]). LetS andAbe a transition system and universal co-Büchi automata over
the same alphabet. If λ is a valid annotation of the run graphS ×A, thenS is accepted byA.

7.3 Encodings of Bounded Synthesis

In this section, we explore different encodings of the constraint system given above. The
de facto standard and most obvious candidate is an encoding to the SMTLIB [BFT17] for-
mat which conveniently can express quantification over Boolean and finite data-types
(such as the state-space), as well as the ordering constraints of the λ annotation. The
original formulation of bounded synthesis [FS07; SF07] and many other [FS13; KJB13b;
FJ12] uses the SMT encoding. This has the disadvantage of not being able to use state-of-
the-art solvers for related domains like SAT, QBF, and DQBF. In this section, we explore
specialized encodings to these domains. To derive a baseline, we use a purely proposi-
tional encoding of the constraints (init) and (succ) by expanding all quantifiers, especially
also those contained in (rel), and encoding the ordering constraints as binary arithmetic.
Afterward, we show how the signals controlled by the environment (input propositions
I) can be handled symbolically by universal propositional quantification, leading to an
exponentially more succinct constraint system. Furthermore, we derive encodings that
handle the state-space of automatonA and transition system S symbolically by an en-
coding to DQBF. In the following section, we then evaluate those different encodings us-
ing state-of-the-art satisfiability solvers.

7.3.1 SAT: The Basic Encoding

Given S ,A, and λ, we want to derive a propositional constraint that is satisfiable if, and
only if, the annotation is valid. First, by the characterization above, we know that we can
verify the annotation by local checks, i.e., we have to consider only one step in the product
graph. To derive a propositional encoding, we encodeS ,A, and λ:

• S = ⟨S , s, τ, l⟩. We represent the transition function τ by one variable τs,i ,s′ rep-
resenting a transition form s to s′ with i ∈ 2I and the labeling function l by one
variable lo,s,i for every output proposition o ∈ O, state s ∈ S, and input valua-
tion i ∈ 2I . Given s, s′ ∈ S, i ∈ 2I and o ∈ O, it holds that (1) τs,i ,s′ is true if,
and only if, τ(s, i) = s′, and (2) lo,s,i is true if, and only if, o ∈ l(s, i). Note that
we assume transition-labeled transition systems. The corresponding encoding for
state-labeled transition systems only differs in the encoding of the labeling func-
tion, i.e., lo,s instead of lo,s,i .

145

7. SYNTHESIZING REACTIVE SYSTEMS

• A = ⟨Q , q0, δ, F⟩. We represent δ ∶ (Q × 2I∪O × Q) as propositional formulas
δBq,i ,q′ over the output variablesO. That is, an assignment o ∈ 2O satisfies δBq,i ,q′ iff
(q, i ∪ o, q′) ∈ δ.

• λ∶ S × Q → N ∪ {�}. We first split the annotation λ into two parts: The first part
λB ∶ S × Q → B represents the reachability constraint and the second part λ# ∶
S×Q → N represents the bound. For every s ∈ S and q ∈ Q we introduce variables
λBs,q that we assign to true iff the state pair is reachable from the initial state pair
and a bit vector λ#s,q that represents the binary encoding of the value λ(s, q).

Using the encodings ofS ,A, and λ, we derive the following constraint system.

∃
s∈S ,q∈Q

λBs,q , λ
#
s,q . ∃

s,s′∈S ,i∈2I
τs,i ,s′ . ∃

o∈O ,s∈S ,i∈2I
lo,s,i .

⋀
s∈S
⋀
i∈2I
⋁
s′∈S

τs,i ,s′ (τ-complete)

λBs0 ,q0 (init)

⋀
q∈Q
⋀
s∈S

⎛
⎝
λBs,q → ⋀

q′∈Q
⋀
i∈2I
(δBq,i ,q′[o ↦ lo,s,i]→ ⋀

s′∈S
(τs,i ,s′ → λBs′ ,q′ ∧ λ#s′ ,q′ ⊵ λ#s,q))

⎞
⎠

(succ)

In addition to (init) and (succ), we have a constraint that enforces that for every state and
every input combination, there is at least one successor as otherwise the transition sys-
tem would not be complete and the constraint (succ) can be trivially satisfied. We use the
notation δBq,i ,q′[o ↦ lo,s,i] to replace every occurrence of o ∈ O by the variable represent-
ing the labeling lo,s,i . Note, that we do not enforce that τ is deterministic. This opens up
the possibility to optimize the non-determinism using other design constraints by using
a weighted satisfiability problem, such as MaxSAT. One can, for example, try to maximize
the non-determinism by optimizing the number of positive assignments τs,i ,s′ , or mini-
mize the number of λB assignments to minimize the number of reachable states in the
run graph.

Proposition 7.10. If the propositional constraint system is satisfiable for a givenA, then there
exists a transition systemS and a valid λ annotation such thatS is accepted byA.

Proof. The propositional encoding is a straightforward unrolling of the constraints (init)
and (succ).

Proposition 7.11. The size of the constraint system is inO(nm2 ⋅2∣I∣ ⋅(maxq,q′∈Q ,i∈2i ∣δBq,i ,q′ ∣+
nb)) and the number of variables is inO(n(mb + 2∣I∣ ⋅ (n + ∣O∣))), where n = ∣S∣,m = ∣Q∣,
and b is the number of bits for the binary encoding of λ#.

146

7.3. Encodings of Bounded Synthesis

Proof. Let n = ∣S∣ andm = ∣Q∣. The number of variables is in

O(nm
°
λ

+ nmb
±
λ#

+ n2 ⋅ 2∣I∣
´¹¹¹¹¹¸¹¹¹¹¹¹¶

τ

+ n ⋅ ∣O∣ ⋅ 2∣I∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

l

)

= O(n(mb + n ⋅ 2∣I∣ + ∣O∣ ⋅ 2∣I∣))

= O(n(mb + 2∣I∣ ⋅ (n + ∣O∣)))

The size of the constraint system is

O(n2 ⋅ 2∣I∣
´¹¹¹¹¹¸¹¹¹¹¹¹¶

(τ-complete)

+ 1
®

(init)

+ nm ⋅m ⋅ 2∣I∣ ⋅ (max
q,q′∈Q ,i∈2i

∣δBq,i ,q′ ∣ + nb)

´¹¹¹¸¹¹¶
(succ)

)

= O(nm2 ⋅ 2∣I∣ ⋅ (max
q,q′∈Q ,i∈2i

∣δBq,i ,q′ ∣ + nb))

Since we only quantify existentially over propositional variables, the encoding can be
solved by a SAT solver. The synthesized transition system can be directly extracted from
the satisfying assignment of the solver.

7.3.2 QBF: The Input-Symbolic Encoding

One immediate drawback of the encoding above is the explicit handling of the inputs in
the existential quantifiers representing the transition function τ and the labeling l , which
introduces several variables for each possible input i ∈ 2I . This leads to a constraint sys-
tem that is exponential in the number of inputs, both in the size of the constraints and in
the number of variables. Also, since all variables are quantified on the same level, some
of the inherent structure of the problem is lost and the solver will have to assign a value
to each propositional variable, which may lead to non-minimal solutions of τ and l due
to unnecessary interdependencies.

By adding a universal quantification over the input variables, we obtain a quantified
Boolean formula (QBF) and avoid this exponential blow-up. In this encoding, the vari-
ables representing the λ annotation remain in the outer existential quantifier—they can-
not depend on the input. We then universally quantify over the valuations of the input
propositions I (interpreted as variables in this encoding) before we existentially quantify
over the remaining variables.

By the semantics of QBF, the innermost quantified variables, representing the tran-
sition function τ and labeling function l of S , can be seen as Boolean functions (Skolem
functions) whose domain is the set of assignments to I. Indicating the dependency on
the inputs in the quantifier hierarchy, we can now drop the indices i from the variables
τs,i ,s′ and lo,s,i . Further, we now represent δ ∶ (Q × 2I∪O × Q) as propositional formulas
δBq,q′ over the inputs I and outputs O with the following property: An assignment i ∪ o
satisfies δBq,q′ iff(q, i∪o, q′) ∈ δ. We obtain the following formula for the input-symbolic
encoding. (The gray box highlights the changes in the quantifier prefix compared to the

147

7. SYNTHESIZING REACTIVE SYSTEMS

previous encoding.)

∃
s∈S ,q∈Q

λBs,q , λ
#
s,q . ∀i⃗ . ∃

s,s′∈S
τs,s′ . ∃

o∈O ,s∈S
lo,s .

⋀
s∈S
⋁
s′∈S

τs,s′ (τ-complete)

λBs0 ,q0 (init)

⋀
q∈Q
⋀
s∈S

⎛
⎝
λBs,q → ⋀

q′∈Q
(δBq,q′[o ↦ lo,s]→ ⋀

s′∈S
(τs,s′ → λBs′ ,q′ ∧ λ#s′ ,q′ ⊵ λ#s,q))

⎞
⎠

(succ)

Proposition 7.12. If the input-symbolic constraint system is satisfiable for a givenA, then there
exists a transition systemS and a valid λ annotation such thatS is accepted byA.

Proof. By expanding the universal quantification, we derive the propositional encoding.

Proposition 7.13. Letn = ∣S∣,m = ∣Q∣, and letb be the number of bits for the binary encoding of
λ#. The size of the input-symbolic constraint system is inO(nm2(maxq,q′∈Q ∣δBq,q′ ∣+nb)). The
number of existential and universal variables is inO(n(mb+n+ ∣O∣))andO(∣I∣), respectively.

Proof. Let n = ∣S∣ and m = ∣Q∣. The number of universal variables is inO(∣I∣). The num-
ber of existential variables is in

O(nm
°
λ

+ nmb
±
λ#

+ n2
®
τ

+ n ⋅ ∣O∣
²

l

)

= O(n(mb + n + ∣O∣))

The size of the constraint system is

O(n2
®

(τ-complete)

+ 1
®

(init)

+ nm ⋅m ⋅ (max
q,q′∈Q

∣δBq,q′ ∣ + n ⋅ b)
´¹¹¸¹¹¹¶

(succ)

)

= O(nm2(max
q,q′∈Q

∣δBq,q′ ∣ + n ⋅ b))

The input-symbolic encoding is exponentially smaller (in ∣I∣) than the basic encoding
and enables the solver to exploit the dependency between I and the transition function
τ. An additional property of this encoding that we use in the implementation is the fol-
lowing: If we fix the values of the λ annotation, the resulting 2QBF query represents all
transition systems that are possible with respect to the λ annotation. Since the outer-
most variables are existentially quantified, their assignments (in case the formula is sat-
isfiable) can be extracted easily, even from non-certifying QBF solvers. For synthesis, we
thus employ a two-step approach. We first solve the complete encoding and, if the for-
mula was satisfiable, extract the assignment of the annotation variables λBs,q and λ#s,q. In
the second step we instantiate the formula by the satisfiable λ annotation and solve the

148

7.3. Encodings of Bounded Synthesis

remaining formula with a certifying solver to generate Boolean functions for the inner
existential variables. Those can be then translated into a realizing transition system.

We have already exploited another property of this encoding for the experiments in
Section 4.3.2, namely that the constraints for the innermost quantifier alternation are lo-
cal to the state s ∈ S of the transition system and, thus, can be split syntactically using the
miniscoping rules.

7.3.3 DQBF: The State- and Input-Symbolic Encoding

The previous encoding shows how to describe the functional dependency between the
inputs I and the transition function τ and outputs o as a quantifier alternation. The re-
active synthesis problem, however, contains more functional dependencies that we can
exploit.

In the following, we describe an encoding that asserts the existence of a symbolic
transition system. A SYMBOLIC TRANSITION SYSTEM S = ⟨X , Xinit , T , L⟩, where X is a
finite set of state-bits, Xinit ∈ B(X) represents the initial state, T ∈ B(X ∪ I ∪ O ∪ X′)
denotes the transition relation, and L∶O → B(X ∪ I) is the labeling function. W.l.o.g.
we fix Xinit = ⋀x∈x⃗ x. Every symbolic transition system S can be transformed into an
equivalent transition systemS where the size ofS is ∣S ∣ = O(2∣X∣).

Since all variables depend on the state, we no longer have propositional variables.
Instead, we use branching quantification, i.e., an encoding to dependency quantified
Boolean formulas (DQBF).

∀x⃗ .∃
q∈Q

λBq , λ
#
q .∀i⃗ . ∃

x′∈x⃗′
τx′ .∃

o∈O
lo .

∀x⃗′.∃
q∈Q

λ′Bq , λ
′#
q .

(x⃗ = x⃗′)→ ⋀
q∈Q
((λBq = λ′

B
q) ∧ (λ#q = λ′

#
q)) (func)

Xinit → λBq0 (init)

⋀
q∈Q

⎛
⎝
λBq → ⋀

q′∈Q
(δBq,q′[o ↦ lo] ∧ ⋀

x′∈x⃗′
(τx′ ↔ x′)→ λ′Bq′ ∧ λ′

#
q′ ⊵ λ#q)

⎞
⎠

(succ)

The branching quantification introduces two copies of the annotation, one depend-
ing on the current state x⃗ and one depending on the successor state x⃗′. To ensure that
both copies represent the same function, we add the constraint (func).

Proposition 7.14. If the state-symbolic constraint system is satisfiable for a givenA, then there
exists a symbolic transition system S and a valid λ annotation such that S is accepted byA.

Proposition 7.15. Letn = ∣X∣,m = ∣Q∣, and letbbe the number of bits for the binary encoding of
λ#. The size of the state-symbolic constraint system is inO(m2 ⋅(maxq,q′∈Q ∣δBq,q′ ∣+n+b)). The
number of existential and universal variables is inO(n+mb+ ∣O∣)andO(n+ ∣I∣), respectively.

149

7. SYNTHESIZING REACTIVE SYSTEMS

Proof. Let n = ∣X∣ and m = ∣Q∣. The number of universal variables is inO(n + ∣I∣). The
number of existential variables is in

O(m
®
λ

+ mb
°
λ#

+ n
®
τ

+ ∣O∣
¯
l

)

= O(mb + n + ∣O∣)

The size of the constraint system is

O(n +mb
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

(func)

+ n
®

(init)

+m ⋅m ⋅ (max
q,q′∈Q

∣δBq,q′ ∣ + n + b)
´¹¹¹¸¹¹¹¶

(succ)

)

= O(m2 ⋅ (max
q,q′∈Q

∣δBq,q′ ∣ + n + b))

Note that when comparing to the previous encodings n is only logarithmic in the size
of the non-symbolic transition system.

Encoding the states of the specification automaton. The last dependency that we con-
sider here is the dependency on the state space of the specification automaton. As a
precondition, we need a symbolic representation A = ⟨Y ,Yinit , ∆, R⟩ of a universal co-
Büchi automaton over atomic propositions I ∪O, whereY is a set of variables whose val-
uations represent the state space, Yinit ∈ B(Y) is a propositional formula representing
the initial state, ∆ ∈ B(Y ∪ I ∪ O ∪ Y ′) is the transition relation (y⃗ ∪ i ∪ o ∪ y⃗′ satisfies
∆ iff y⃗ i∪oÐÐ→ y⃗′), and R ∈ B(Q) is a formula representing the rejecting states.

∀x⃗ ∀ y⃗. ∃λB, λ#.
∀i⃗ .∃x′∈x⃗′ τx′ .∃o∈O lo .

∀x⃗′∀ y⃗′. ∃λ′B, λ′#.
(x⃗ = x⃗′) ∧ (y⃗ = y⃗′)→ (λB = λ′B) ∧ (λ# = λ′#) (func)
(Xinit ∧ Yinit)→ λB (init)

λB ∧ ∆[o ↦ lo] ∧ ⋀
x′∈x⃗′
(τx′ ↔ x′)→ λ′B ∧ λ′# ⊵ λ# (succ)

Proposition 7.16. If the symbolic constraint system is satisfiable for a givenA , then there exists
a symbolic transition system S and a valid λ annotation such that S is accepted by A .

Theorem 7.17. Let n = ∣X∣,m = ∣Y ∣, and let b be the number of bits for the binary encoding of
λ#. The size of the symbolic constraint system is inO(n+m+b+ ∣∆∣). The number of existential
and universal variables is inO(n + b + ∣O∣) andO(n +m + ∣I∣), respectively.

Proof. Let n = ∣X∣ and m = ∣Y ∣. The number of universal variables is inO(n + m + ∣I∣).
The number of existential variables is in

O(1
®
λ

+ b
®
λ#

+ n
®
τ

+ ∣O∣
¯
l

)

= O(n + b + ∣O∣)

150

7.4. Experimental Evaluation

Table 7.2: The table compares the encodings with respect to the number of variables and
the size of the constraint system. We indicate the number of states of the (non-symbolic)
transition system and the (non-symbolic) automaton byn andm, respectively. b denotes
the number of bits in the binary encoding of λ#.

existentials # universals constraint size

basic n(mb + 2∣I∣ ⋅ (n + ∣O∣)) - nm2 ⋅ 2∣I∣ ⋅ (max
q,q′∈Q ,i∈2I

∣δBq,q′ ∣ + nb)

input-symbolic n(mb + n + ∣O∣) ∣I∣ nm2(max
q,q′∈Q

∣δBq,q′ ∣ + nb)

state-symbolic log n +mb + ∣O∣ log n + ∣I∣ m2(max
q,q′∈Q

∣δBq,q′ ∣ + log n + b)

symbolic log n + b + ∣O∣ log nm + ∣I∣ log nm + b + ∣∆∣

The size of the constraint system is

O(n +m + b
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(func)

+ n +m
²

(init)

+ ∣∆∣ + n + b
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(succ)

)

= O(n +m + b + ∣∆∣)

7.3.4 Comparison

Table 7.2 compares the sizes of the presented encodings. From the basic propositional
encoding, we developed more symbolic encodings by making dependencies explicit and
employing quantification over Boolean functions. This conciseness, however, comes with
the price of higher solving complexity. In the following section we study this tradeoff em-
pirically.

7.4 Experimental Evaluation

7.4.1 Implementation

We implemented the encodings described in this section in a tool called BOSY1. By us-
ing standard formats for solving, automaton conversion, and solution representation, the
implementation is highly flexible with respect to tools used for specific tasks such as LTL
to automaton conversion and solving. An overview of the tool architecture is given in Fig-
ure 7.5.

The LTL to automaton conversion is provided by the tools SPOT [Dur+16] and
LTL3BA [Bab+12]. We reduce the number of λ# annotations and the number of bits in the
encoding by only using them for automaton states within a rejecting strongly connected
component, as proposed in [Ehl12]. BOSY searches for a system implementation and a
counter-strategy for the environment in parallel. An exponential search strategy is em-
ployed for the bound on the size of the transition system. In synthesis mode, we apply as
a post-processing step circuit minimization provided by ABC [BM10].

1The tool is available at https://github.com/reactive-systems/bosy

151

https://github.com/reactive-systems/bosy

7. SYNTHESIZING REACTIVE SYSTEMS

LTL, Signature, Mealy/Moore

Preprocessing

LTL

LTL to Automata
Translation

ltl3ba, spot

Automata

Implementation (AIGER, SMV, DOT, Verilog)

Encoding

SMT SAT QBF DQBF / EPR

SMT
Solver
Z3, CVC4

SAT
Solver
PicoSAT,

CryptoMiniSat

QBF Solver
CAQE, QuAbS,

DepQBF,

RAReQS, CADET

DQBF / EPR
Solver

dCAQE, iDQ, HQS /

Eprover, Vampire

Model Assignment Certificate

unsatisfiable
increase bound

Postprocessing

Figure 7.5: Tool Architecture of BOSY

For solving the non-symbolic encoding, we translate the propositional query to the
DIMACS file format and solve it using the CRYPTOMINISAT [SNC09] SAT solver in version
5. The satisfying assignment is used to construct the realizing transition system.

The input-symbolic encoding is translated to the QDIMACS file format and is solved
by a combination of the QBF preprocessor BLOQQER [BLS11] and the QBF solver CAQE de-
scribed in Chapter 2. The solution extraction is implemented in two steps. For satisfiable
queries, we first derive a top level (λ) assignment [SK14] and instantiate the QBF query
using this assignment which results in a 2QBF query that represents transition systems
that satisfy the specification. This is then solved using a certifying QBF solver, such as
QUABS described in Chapter 4, CADET [RS16], or DEPQBF [LB10; Nie+12]. The resulting

152

7.4. Experimental Evaluation

Table 7.3: Implementation matrix

basic input-symbolic state-symbolic symbolic

fragment SAT QBF DQBF DQBF
state-/transition-labeled / / / /
solution extraction # #

Skolem functions, represented as AIGER circuit, are transformed into a representation of
the transition system.

The symbolic encodings are translated to the DQDIMACS file format and solved by a
DQBF solver such as DCAQE described in Chapter 6, IDQ [Frö+14], and HQS [Git+15]. Due
to limited solver support, we have not implemented solution extraction.

For comparison, we also implemented an SMT version using the classical encod-
ing [FS13]. We also tested the state-symbolic and symbolic encoding with state-of-the-
art EPR solvers, but the solving times were not competitive. Table 7.3 gives an overview
over the capabilities of the implemented encodings.

Internally, we use a circuit representation of the synthesized transition system. From
this representation, it is possible to translate the implementation into an AIGER circuit
as required by the SYNTCOMP rules, to an SMV model for model checking, to a graphical
representation using the DOT format, and to a Verilog module description.

7.4.2 Setup & Benchmarks

For our experiments, we used a machine with a 3.6 GHz quad-core Intel Xeon (E3-1271
v3) processor and 32 GB of memory. The timeout and memout were set to 1 hour and
30 GB, respectively. We use the LTL benchmark sets from the reactive synthesis compe-
tition (SYNTCOMP) [Jac+16] from the year 2019. In total, the benchmark suite of SYNT-
COMP 2019 consists of 429 benchmarks. We compare against the game-based solvers
LTLSYNT [MC18] and STRIX [MSL18].

7.4.3 Realizability

Bounded Synthesis Encodings. In Figure 7.6 we depict the result of the BOSY variants
• BOSY-CAQE using the input-symbolic (QBF) encoding and the solver CAQE (Chap-

ter 2) with preprocessor BLOQQER [BLS11],

• BOSY-DCAQE using the state-symbolic (DQBF) encoding and the solver DCAQE
(Chapter 6) with preprocessor HQSPRE [Wim+17],

• BOSY-CRYPTOMINISAT using the basic (SAT) encoding and the solver
CRYPTOMINISAT [SNC09],

• BOSY-Z3 using the SMT encoding [FS13] and the solver Z3 [MB08], and

• BOSY-IDQ using state-symbolic (DQBF) encoding and the solver IDQ [Frö+14] with
preprocessor HQSPRE [Wim+17].

153

7. SYNTHESIZING REACTIVE SYSTEMS

0 50 100 150 200 250 300
0

1,000

2,000

3,000

solved instances

tim
e(

se
c.)

BoSy-CAQE
BoSy-dCAQE
BoSy-CryptoMiniSat
BoSy-Z3
BoSy-iDQ

Figure 7.6: Number of solved instances within 1 hour among the 429 instances from
SYNTCOMP 2019.

From the cactus plot, we observe that all encodings presented in Section 7.3 with the re-
spective best performing solver outperform the SMT-based baseline. This is in sharp con-
trast to our previous experiments [Fay+17], where the DQBF encoding did not perform
well. This performance increase can be directly attributed to the DQBF solver DCAQE,
discussed in Chapter 6, as the comparison to the same encoding with a different DQBF
solver IDQ in Figure 7.6 shows. In Table 7.4, we give more detailed results on parame-
terized benchmarks. While overall in most cases slower than the variant using CAQE,
there is some evidence that DCAQE may scale better with respect to the number of states:
BOSY-DCAQE is able to solve the 4bit arbiter variants without spurious grants (instances
“full_arbiter_4” and “full_arbiter_enc_4”) which no other bounded synthesis tool is able
to (they are only able to solve the 3bit variants). Overall, those results show that not only
is DQBF solving now feasible for solving the realizability problem, but it is also compet-
itive when compared to state-of-the-art SAT and QBF solvers. Further, there is evidence
that a symbolic representation of the state space could let to improved scalability of tools
based on bounded synthesis.

Game-based Tools. We compare an implementation of the symbolic safety game re-
duction from Section 7.2.1, called BOSY-GAME, against the game-based tools LTLSYNT in
version 2.8.1 and STRIX from SYNTCOMP 2018. The results are shown in Figure 7.7 and
include, for comparison, the best performing BOSY variant using CAQE and the bounded
synthesis tool PARTY [KJB13a]. BOSY-GAME and LTLSYNT use the same tool (SPOT) for the
conversion of LTL formulas to automata but use different solving methods afterward.
This conversion is the bottleneck for those tools; we see that in Figure 7.7 they solve ex-
actly the same amount of instances (although there is some variance on the level of indi-
vidual formulas). In contrast, STRIX uses a different conversion mechanism that exploits

154

7.4. Experimental Evaluation

Table 7.4: Experimental results of selected scalable instances. Reported is the number of
solved instances k per benchmark class and the cumulative solving time t (in seconds).

BOSY-DCAQE BOSY-CAQE BOSY-CMSAT BOSY-Z3

instance # k sum t k sum t k sum t k sum t

amba_decomp_arbiter 6 3 965.9 3 598.0 2 80.6 2 1.3

amba_decomp_encode 6 4 18.5 6 316.5 4 117,7 2 0.9

amba_decomp_lock 6 5 318.3 5 93.4 3 1112.2 1 7.1

collector 24 20 3110.0 19 461.9 21 7882.8 14 344.9

detector 12 9 872.4 9 756.3 8 2226.8 7 1161.1

full_arbiter 15 8 5815.8 6 17.9 6 17.0 6 186.5

load_balancer 12 9 3236.7 9 119.0 9 1950.0 8 74.5

ltl2dba 47 17 2434.1 16 783.4 16 2479.0 11 370.3

prioritized_arbiter 14 7 736.4 7 370.8 6 284.9 5 321.0

round_robin_arbiter 12 8 344.4 9 843.6 9 102.1 8 365.3

simple_arbiter 17 10 249.2 10 333.2 9 524.3 9 1379.7

the syntactic structure of formulas and is able to solve the realizability problem for more
instances. To test the conjecture that the LTL handling leads to significantly improved
performance, we implemented a variant of BOSY-GAME, called BOSY-DECOMPOSE, that
tries to decompose the LTL specification into the syntactic categories presets (concern only
the initial state), invariants, safety, and liveness. Furthermore, it tries to split the formula
into a set of assumptions A and guaranteesG. This approach is similar to safety-first syn-
thesis [SS09b] and GR(1) synthesis [KP10; PPS06], and thus, sound but incomplete for gen-
eral LTL as it assumes that the liveness assumptions have no influence on the satisfiability
of the safety guarantees. However, it is fast and can solve many realizable specifications,
such as the AMBA bus controller and the generalized buffer examples. If the incomplete
check does not determine a solution, we apply a complete method based on the decom-
position of safety and liveness given in [Ehl12]. As can be seen in Figure 7.7, the resulting
prototype implementation solves nearly all benchmarks (411 out of 429) of the bench-
mark set.

7.4.4 Synthesis

To evaluate the different encodings in terms of their solutions to the synthesis problem
and to compare them to other competing tools, we measure the size of the provided solu-
tions. In line with the rules of SYNTCOMP, the synthesized transition system is encoded
as an AIGER circuit. The size of the result is measured in terms of the number of AND
gates.

First, we compare in the scatter plot of Figure 7.8 the propositional, non-symbolic

155

7. SYNTHESIZING REACTIVE SYSTEMS

0 50 100 150 200 250 300 350 400
0

1,000

2,000

3,000

solved instances

tim
e(

se
c.)

BoSy-decompose
Strix
BoSy-game
ltlsynt
BoSy-CAQE
Party

Figure 7.7: Number of solved instances within 1 hour among the 429 instances from
SYNTCOMP 2019.

encoding to the input-symbolic encoding. Since most points are below the diagonal
and, thus, the size of the implementation is smaller than their counterparts, the input-
symbolic solutions are better in size compared to the non-symbolic encoding. We thus
observe that the ability to universally quantify over the inputs and extract the transition
system from the functional descriptions leads to advantages in terms of the size of the
solution strategies.

In Figure 7.9, we compare our input-symbolic encoding against two competing tools.
On the left, we observe that the solution sizes of our input-symbolic encoding are signif-
icantly better (observe the log-log scale) than the solutions provided by LTLSYNT, some-
times with 3 orders of magnitude. The reason for the size difference is that the strate-
gies of LTLSYNT may depend on the current state of the specification automaton, as they
are extracted from the resulting safety game. When comparing to STRIX, there are cases
where STRIX produces smaller implementations when measuring the number of AND
gates (but never smaller than BOSY in the number of latches). Still, there is a slight advan-
tage of BOSY, with some instances that are two orders of magnitude smaller compared to
the solutions produced by STRIX.

7.5 Summary

We have investigated the reactive synthesis problem for linear specifications given as LTL
formulas. Based on the safraless decision procedures, we introduced two methods to
solve the synthesis problem. A reduction to symbolic safety games and the bounded syn-
thesis approach. For the safety game reduction, we showed how the state-of-the-art SAT-
based solution algorithm can be improved based on the insights from the circuit abstrac-

156

7.5. Summary

100 101 102 103 104 105
100

101

102

103

104

105

basic

in
pu

t-s
ym

bo
lic

Figure 7.8: Scatter plot comparing the size of the synthesized strategies between the ba-
sic (Section 7.3.1) and input-symbolic (Section 7.3.2) encoding using CRYPTOMINISAT and
CAQE, respectively. Both axes have logarithmic scale.

100 101 102 103 104 105 106
100

101

102

103

104

105

106
ltlsynt

Bo
Sy

(in
pu

t-s
ym

bo
lic

)

100 101 102 103 104
100

101

102

103

104
Strix

Bo
Sy

(in
pu

t-s
ym

bo
lic

)

Figure 7.9: Scatter plot comparing the size of the synthesized strategies of BOSY-CAQE,
LTLSYNT, and STRIX. Both axes have logarithmic scale.

tion approach (Section 4.1.1). We have revisited the bounded synthesis problem [FS13]
and presented alternative encodings into Boolean formulas (SAT), quantified Boolean
formulas (QBF), and dependency-quantified Boolean formulas (DQBF). Our evaluation

157

7. SYNTHESIZING REACTIVE SYSTEMS

shows that the approaches based on quantified satisfiability clearly dominate the SAT ap-
proach, and also previous approaches to bounded synthesis—both in terms of the num-
ber of instances solved and in the size of the solutions.

In the following sections, we consider a more expressive specification language, that
can express many prior extensions of the LTL realizability problem. In more detail, we will
investigate hyperproperties in the form of the temporal logic HyperLTL, an extension of LTL
by quantification over execution traces.

158

Chapter 8

Synthesis From Hyperproperties

Generalization is a fundamental aspect of computer science. Instead of examining sim-
ilar yet seemingly unrelated research questions in isolation, the task is to find a suit-
able overarching framework. In reactive synthesis, there is plenty of work extending the
monolithic (single-process) synthesis from ω-regular languages, introduced in the pre-
vious section, to different settings, such as incomplete information [KV97], distributed
systems [PR90; KV01; FS05], fault-tolerance [DF09; FT14a; FT15], reasoning over knowl-
edge [Fag+95], to name a few. Hyperproperties [CS10] are such a generalization that
promises the unification of many such extensions into a single framework. Hyperprop-
erties extend trace properties, i.e., sets of traces, to properties over sets of traces, i.e., sets of
sets of traces.

While decidability results cannot be obtained from this unification, synthesis from
hyperproperties is in general undecidable [Fin+18a] even for restricted classes- The ad-
vantage is that having a semi-decision procedure for the synthesis from hyperproperties
allows us to synthesize solutions for any of the prior studied extensions and, further, con-
sider multiple extensions in conjunction. The result is that we can specify properties well
beyond the expressiveness of earlier synthesis approaches that remain at the same time
concise as we can pick the best representation at hand. The dining cryptographers from
the introduction is such an example: The secrecy requirements can be conveniently rep-
resented using knowledge “no one knows whether cryptographer Ca has paid” while the
information available (and hidden) can be described as a distributed architecture where
every cryptographer is an entity that has inputs (shared secrets) and produces outputs.

HyperLTL [Cla+14] is a temporal hyperlogic that extends LTL by introducing trace
quantifiers. The model checking [Cla+14; FRS15; FHT18], synthesis [Fin+18a; Coe+19],
satisfiability [FH16; FHS17; FHH18], and runtime verification [Fin+17b; Fin+18b; HST19;
Fin+19b] problems have been studied for HyperLTL. HyperLTL is able to express all the
requirements needed for the dining cryptographers example, thus, we can synthesize a
realizing protocol using a single HyperLTL formula.

When considering the output complexity of reactive synthesis from hyperproperties,
which is a more apt comparison to model checking [FS13], we show that the results from
model checking of hyperproperties translate to synthesis as well: In the same way that

159

8. SYNTHESIS FROM HYPERPROPERTIES

model checking of (alternation-free) HyperLTL has the same complexity as LTL model
checking, the output complexity of (alternation-free) HyperLTL synthesis has the same
complexity as the output complexity of LTL synthesis.

This chapter is based on work published in the proceedings of CAV [Fin+18a] and an
article submitted to Acta Informatica [Fin+19a].

8.1 Temporal Hyperproperties

In this section, we develop the notion of a temporal hyperproperties and we recap
HyperLTL, an extension of LTL using quantification over execution traces.

HyperLTL. HyperLTL [Cla+14] is a temporal logic for specifying hyperproperties. It ex-
tends LTL (see Section 7.1.1) by quantification over trace variables π and a method to
link atomic propositions to specific traces. The set of trace variables is V . Formulas in
HyperLTL are given by the grammar

ϕ ∶∶= ∀π. ϕ ∣ ∃π. ϕ ∣ ψ
ψ ∶∶= true ∣ aπ ∣ ¬ψ ∣ ψ ∨ ψ ∣ψ ∣ ψ U ψ

where a ∈ AP and π ∈ V . For the quantifier-free part, we allow the same abbrevia-
tions as introduced for LTL in Section 7.1.1. To denote that two traces π and π′ are equal
w.r.t. propositions A ⊆ AP, we write π =A π′ as a shorthand for⋀a∈A(aπ ↔ aπ′).

The semantics is given by the satisfaction relation⊧T over a set of tracesT ⊆ Σω. We
define an assignmentΠ ∶ V → Σω that maps trace variables to traces. Π[π ↦ t]updates
Π by assigning variable π to trace t.

Π, i ⊧T true
Π, i ⊧T aπ iff a ∈ Π(π)[i]
Π, i ⊧T ¬ϕ iff Π, i ⊭T ϕ
Π, i ⊧T ϕ ∨ ψ iff Π, i ⊧T ϕ or Π, i ⊧T ψ
Π, i ⊧T ϕ iff Π, i + 1 ⊧T ϕ
Π, i ⊧T ϕ U ψ iff ∃ j ≥ i . Π, j ⊧T ψ ∧ ∀i ≤ k < j. Π, k ⊧T ϕ
Π, i ⊧T ∃π. ϕ iff there is some t ∈ T such that Π[π ↦ t], i ⊧T ϕ
Π, i ⊧T ∀π. ϕ iff for all t ∈ T it holds that Π[π ↦ t], i ⊧T ϕ

We writeT ⊧ ϕ for{} ⊧T ϕwhere{}denotes the empty assignment. Two HyperLTL for-
mulas ϕ and ψ are equivalent, written ϕ ≡ ψ if they have the same models. A HyperLTL
formula ϕ is denoted satisfiable if there is a set of traces T which satisfies ϕ, i.e., T ⊧ ϕ.
The satisfiability problem is undecidable for general HyperLTL formulas but becomes de-
cidable if we renounce∀∗∃∗ formulas which alternate the quantifier from∀ to∃ [FH16].
For an LTL formula ϕ, we denote by ϕ[π] the quantifier-free HyperLTL formula where ev-
ery proposition a is replaced by aπ .

Every hyperproperty is an intersection of a hypersafety and a hyperliveness prop-
erty [CS10]. A hypersafety property is one where there is a finite set of finite traces that is a

160

8.2. On the Expressiveness of Temporal Hyperproperties

bad prefix, i.e., that cannot be extended into a (possibly infinite) set of (possibly infinite)
traces that satisfies the hypersafety property. A hyperliveness property is a hyperproperty
where every finite set of finite traces can be extended to a possibly infinite set of infinite
traces such that the resulting trace set satisfies the hyperliveness property.

(In)dependence is a hyperproperty that we will use multiple times in this section, thus,
we define the following syntactic sugar. Given two disjoint subsets of atomic propositions
C ⊆ AP and A ⊆ AP, we define independence as the following HyperLTL formula

Dπ,π′
A↦C ∶= (⋁

a∈A
(aπ ↮ aπ′))R(⋀

c∈C
(cπ ↔ cπ′)) , (8.1)

which requires that the valuations of propositionsC on traces π and π′ have to be equal
until and including the point in time where there is a difference in the valuation of some
proposition in A. Prefacing universal quantification, that is, the formula ∀π∀π′.Dπ,π′

A↦C
guarantees that every proposition c ∈ C solely depends on propositions in A.

8.2 On the Expressiveness of Temporal Hyperproperties

In this section, we introduce the realizability problem for HyperLTL and compare its ex-
pressiveness to various previous extensions of the LTL realizability problem.

Definition 8.1 (HyperLTL Realizability). A HyperLTL formula ϕ over atomic propositions
AP = I ⊍ O is realizable if, and only if, there is a strategy f ∶ (2I)∗ → 2O that satisfies ϕ.

The fragment of HyperLTL with only a single, universal quantifier ∀π. ϕ is equiva-
lent to the LTL realizability problem of ϕ. With two universal quantifiers, one can ex-
press relations between traces in the execution tree, thus, one can express the LTL real-
izability problem with restricted information flow like incomplete information [KV97],
distributed synthesis [PR90; KV01; FS05], and fault-tolerant synthesis [DF09; FT15].

Incomplete Information. The realizability problem with incomplete informa-
tion [KV97] is a tuple ⟨ϕ, I,O ,H⟩, where ϕ is an LTL formula, I is a set of input proposi-
tions,O is a set of output propositions, andH ⊆ I is a set of hidden inputs not observable
by the system. Thus, a realizing strategy f ∶ (2I\H)∗ → 2O has a computation tree that
only branches by I \ H. In order to evaluate ϕ, which may include propositions H, the
computation tree is widened [KV97] by H. In HyperLTL, we can verify that a strategy
f ′∶ (2I)∗ → 2O has the same output-behavior as a H-widened strategy f by checking
f ′ ⊧ ∀π∀π′.Dπ,π′

I\H↦O .

Theorem 8.2. The HyperLTL realizability problem subsumes the LTL realizability with incom-
plete information problem.

Proof. Given ⟨ϕ, I,O ,H⟩, the following HyperLTL formula over inputs I and outputsO is
equirealizable:

∀π∀π′. ϕ[π] ∧ Dπ,π′
I\H↦O

161

8. SYNTHESIS FROM HYPERPROPERTIES

penv

p1 p2

a b

c d

(a) An architecture of two processes that spec-
ify process p1 to produce c from a and p2 to pro-
duce d from b.

penv

p1 p2

a a, b

c d

(b) The same architecture as on the left, where
the inputs of process p2 are changed to a and b.

Figure 8.1: Distributed architectures

Distributed Synthesis. The distributed synthesis problem was introduced by Pnueli
and Rosner [PR90] and introduces the concept of architectures as a constraint on the in-
formation flow. An architecture is a set of processes P, with distinct environment process
penv ∈ P, such that the processes produce outputs synchronously, but each process bases
its decision only on the history of valuation of inputs that it observes.

Formally, a distributed architectureA is a tuple ⟨P, penv , I ,O⟩where P is a finite set
of processes with distinguished environment process penv ∈ P. The functions I ∶ P → 2AP

andO∶ P → 2AP define the inputs and outputs of processes. While processes may share
the same inputs (in case of broadcasting), the outputs of processes must be pairwise dis-
joint, i.e., for all p ≠ p′ ∈ P it holds thatO(p) ∩ O(p′) = ∅. W.l.o.g. we assume that
I(penv) = ∅. We denote by P− = P \ {penv} the set of processes excluding the environ-
ment process.

The distributed realizability problem for architectures without information
forks [FS05] is decidable. Intuitively, an information fork is a situation where two dis-
tinct processes p, p′ ∈ P receive environment inputs I and I′ (may be transitive through
other processes) such that both observe inputs that the other process does not observe,
i.e., there exist i ∈ I and i′ ∈ I′ such that i ∉ I′ and i′ ∉ I. We depict two example
architectures in Figure 8.1. The architecture in Figure 8.1a contains an information fork
while the architecture in Figure 8.1b does not. Furthermore, the processes in Figure 8.1b
can be ordered linearly according to the subset relation on the inputs.

Theorem 8.3. The HyperLTL realizability problem subsumes the distributed LTL realizability
problem.

Proof. Given a distributed realizability problem ⟨ϕ,A⟩, the following HyperLTL formula
over inputsO(penv) for P− and outputs⋃p∈P− O(p) is equirealizable:

∀π∀π′. ϕ[π] ∧ ⋀
p∈P−

Dπ,π′
I(p)↦O(p)

Asynchronous Distributed Synthesis. The asynchronous system model [SF06] is a gen-
eralization of the synchronous model discussed previously. In this model, we have a
global scheduler, controlled by the environment, that decides when and which processes

162

8.2. On the Expressiveness of Temporal Hyperproperties

are scheduled. The resulting distributed realizability problem is already undecidable for
LTL specifications and systems with more than one process [SF06].

Theorem 8.4. The HyperLTL realizability problem subsumes the asynchronous distributed LTL
realizability problem.

Proof. Let A = ⟨P, penv , I ,O⟩ be a distributed architecture. To model scheduling, we
introduce an additional set Sched = {schedp ∣ p ∈ P−} of atomic propositions. The valu-
ation of schedp indicates whether system process p is currently scheduled or not. A pro-
cess p ∈ P−may observe whether it is scheduled or not, that is, it may depend on schedp.
The environment can decide at every step which processes to schedule. When a process
is not scheduled, its output behavior does not change [FS13]. As the scheduling is con-
trolled by the environment, we assume that every process is infinitely often scheduled,
as otherwise, the environment wins by simply not scheduling any process.

Given an asynchronous distributed realizability problem ⟨ϕ,A⟩, the following
HyperLTL formula over inputsO(penv) ∪ Sched and outputs⋃p∈P− Op is equirealizable:

∀π∀π′.
⎛
⎝ ⋀p∈P−

schedp[π]
⎞
⎠
→ ϕ[π] ∧ ⋀

p∈P−
Dπ,π′
(I(p)∪{schedp})↦O(p)

∧ ⋀
p∈P−

¬schedp[π]→
⎛
⎝ ⋀o∈O(p)

oπ ↔oπ
⎞
⎠

Symmetric Synthesis. A special case of distributed synthesis is symmetric synthe-
sis [EF17], which, additionally to distributivity, requires that all system processes act ex-
actly the same if they are given the same inputs. Formally, symmetric synthesis requires
a symmetric architecture ⟨P, penv , I ,O⟩where for each process p ∈ P−, ∣I(p)∣ = n and
∣O(p)∣ = m for some n,m ∈ N. We assume an implicit ordering of inputs and output
per process and use the notation I(p) j andO(p) j to access the j-th input and output
of process p ∈ P−, respectively. Then, we can express the symmetry constraint as an LTL
formula

⋀
p,p′∈P−

⎛
⎝ ⋁1≤ j≤n

I(p) j ↮ I(p′) j
⎞
⎠R
⎛
⎝ ⋀1≤ j≤m

O(p) j ↔ O(p′) j
⎞
⎠

. (sym)

Theorem 8.5. The HyperLTL realizability problem subsumes the symmetric (distributed) LTL re-
alizability problem.

Proof. Given a symmetric realizability problem over architecture A and specifications
ϕ1, . . . , ϕk for the k processes the following HyperLTL formula over inputsO(penv) for
P− and outputs⋃p∈P− O(p) is equirealizable:

∀π∀π′. ⋀
1≤i≤k

ϕi[π] ∧ ⋀
p∈P−

Dπ,π′
I(p)↦O(p) ∧ sym[π]

163

8. SYNTHESIS FROM HYPERPROPERTIES

Fault-tolerant Synthesis. We consider another extension to the distributed synthesis
problem where we incorporate the possibility that communication between processes
may be subject to faults, such as Byzantine faults [FT14a; FT15]. In the distributed syn-
thesis formulation above, communication from some process p to p′ was encoded as an
atomic proposition a such that a ∈ O(p) and a ∈ I(p′). In the fault-tolerance encoding,
we split this connection into a sending part as ∈ O(p) and a receiving part ar ∈ I(p′)
where ar ∈ O(penv) is a proposition controlled by the environment. To relate as and ar ,
we add the assumption(as ↔ ar) to the LTL specification. This encoding uses more
atomic propositions and additional LTL constraints but is otherwise equivalent to the one
presented before.

This increased flexibility, that is, being able to specify communication using tempo-
ral logic, allows us to express unreliable communication. For example, using the assump-
tion(as ↔ ar) specifies a delay of one time step on the receiver,ar specifies a
stuck-at-one fault, and T specifies a Byzantine fault where the environment takes over
the communication. This alone is not enough though: If a process gets such a specifica-
tion it knows which receiving propositions present actual values and which one is sub-
ject to a fault. Thus, the processes are challenged in multiple architectures, where each
architecture may have a different set of communication faults as well as specifications:
Depending on the type of failure, the overall system may only be expected to satisfy a
weaker property then the original, non-faulty one.

Formally, the fault-tolerant realizability problem is a tuple ⟨A, ϕ1, . . . , ϕn⟩, where A
is a distributed architecture with the property that every process receives only environ-
ment inputs, i.e., I(p) ⊆ O(penv) for all p ∈ P−, and ϕ1, . . . , ϕn are LTL formulas. For
Byzantine fault-tolerance, ϕi = ⋀(s,r)∈R i (s ↔ r) → ψi where Ri ⊆ O × I are the
non-faulty communication of architecture i andψi is the LTL specification that should be
ensured.

As an example, consider the architecture

⟨{penv, p1, p2, p3}, penv, {p1 ↦ {a}, p2 ↦ {a}, p3 ↦ {b, c}},
{penv ↦ {a, b, c}, p1 ↦ {x}, p2 ↦ {y}, p3 ↦ {z}}⟩ (8.2)

with specifications ϕ1 = ((x ↔ b) ∧ (y ↔ c)) → ψ, ϕ2 = (y ↔ c) → ψ, and ϕ3 =
(x ↔ b)→ ψ. This example specification asserts thatψ holds in all three architectures
depicted in Figure 8.2, i.e., if either p1

xÐ→ p3 or p2
y
Ð→ p3 fails, but not both of them. Hence,

process p3 cannot know whether the information given via propositions b or c is correct.

Theorem 8.6. The HyperLTL realizability problem subsumes the fault-tolerant LTL realizability
problem.

Proof. Given ⟨A, ϕ1, . . . , ϕn⟩, the following HyperLTL formula over inputs O(penv) and
outputs⋃p∈P− Op is equirealizable:

∀π∀π′. ⋀
1≤i≤n

ϕi[π] ∧ ⋀
p∈P−

Dπ,π′
I(p)↦O(p)

164

8.3. Deciding HyperLTL Realizability

penv p3

p1

p2

z

x b

y

c

a

a

(a) non-faulty

penv p3

p1

p2

z

x

y

c

a

a

b

(b) p1 ↛ p3

penv p3

p1

p2

z

x b

y

a

a

c

(c) p2 ↛ p3

Figure 8.2: Visual interpretation of a fault-tolerance specification: On the left is the orig-
inal (non-faulty) architecture where the communication between p1 → p3 and p2 → p3
is intact. The two architectures on the right represent the case where either p1 ↛ p3 or
p2 ↛ p3. In this case, the receiving propositions b and c, respectively, are controlled by
the environment. In fault-tolerant synthesis, we search for strategies for processes p1, p2,
and p3 such that the specification is satisfied in all architectures.

Table 8.1: Complexity of the HyperLTL realizability problem for the fragments discussed
in Section 8.3.

∃∗ ∀1 incompl. inform. ∀∗ ∃∗∀1 linear∀∗ ∃∗∀>1 ∀∗ ∀∗∃∗

PSPACE-complete 2EXPTIME-complete 3EXPTIME non-elem. undecidable

8.3 Deciding HyperLTL Realizability

In this section, we identify fragments of HyperLTL for which the realizability problem is
decidable. The results are summarized in Table 8.1.

We base our investigation on the structure of the quantifier prefix of the HyperLTL
formulas. We call a HyperLTL formula ϕ (quantifier) alternation-free if the quantifier pre-
fix consists solely of either universal or existential quantifiers. We denote the corre-
sponding fragments as the (universal)∀∗ and the (existential)∃∗ fragment, respectively.
A HyperLTL formula is in the ∃∗∀∗ fragment, if it starts with arbitrarily many existential
quantifiers, followed by arbitrarily many universal quantifiers. Analogously for the∀∗∃∗
fragment. For a given natural number n, we refer to a bounded number of quantifiers
with∀n, respectively ∃n. The∀1 realizability problem is equivalent to the LTL realizabil-
ity problem.

8.3.1 ∃∗ Fragment

The realizability problem for existential HyperLTL is PSPACE-complete. This can be shown
by a reduction of the realizability problem to the satisfiability problem for bounded one-
alternating ∃∗∀2HyperLTL [FH16], i.e., finding a trace set T such that T ⊧ ϕ. For com-
pleteness, we recap the proof given in [Fin+18a; Fin+19a].

165

8. SYNTHESIS FROM HYPERPROPERTIES

Lemma 8.7 ([Fin+18a]). An existential HyperLTL formulaϕ = ∃π1⋯∃πn .ψ is realizable if, and
only if,ϕsat ∶= ∃π1⋯∃πn .∀π∀π′.ψ ∧ Dπ,π′

I↦O is satisfiable.

Proof. Assume f ∶ (2I)∗ → 2O realizes ϕ, that is f ⊧ ϕ. Let T = traces(f) be the set of
traces generated by f . It holds thatT ⊧ ϕ andT ⊧ ∀π, π′.Dπ,π′

I↦O . Therefore,T witnesses
the satisfiability of ϕsat. For the reverse direction, assume that ϕsat is satisfiable. Let S be
a set of traces that satisfies ϕsat. We construct a strategy f ∶ (2I)∗ → 2O as

f (σ) =
⎧⎪⎪⎨⎪⎪⎩

w∣σ ∣ ∩ O if σ is a prefix of somew∣I withw ∈ S
∅ otherwise

wherew∣I denotes the trace restricted to I, meaning thatwi ∩ I for all i ≥ 0. Note that if
there are multiple candidatesw ∈ S, thenw∣σ ∣ ∩ O is equal across all of them due to the
required determinism∀π∀π′.Dπ,π′

I↦O . By construction, all traces in S are contained in f ,
and together with S ⊧ ϕ, it holds that f ⊧ ϕ as the sets of sets of traces satisfying the
existential formula ϕ are upward closed.

Theorem 8.8 ([Fin+18a]). Realizability of existential HyperLTL specifications is PSPACE-
complete.

Proof. Given an existential HyperLTL formula, we gave a linear reduction to the satisfi-
ability of the ∃∗∀2 fragment in Lemma 8.7. The satisfiability problem for a bounded
number of universal quantifiers is in PSPACE [FH16]. Hardness follows from LTL satisfi-
ability [SC85], which is equivalent to the∃1 fragment.

8.3.2 ∀∗ Fragment

In the following, we will use the distributed synthesis problem defined above, i.e., the prob-
lem whether there is an implementation of processes in a distributed architecture (cf.
Figure 8.1) that satisfies an LTL formula.

Corollary 8.9 ([Fin+18a]). The synthesis problem for universal HyperLTL becomes undecidable
as soon as we have more than one universal quantifier.

Proof. Follows from Theorem 8.3 and the undecidability of distributed synthesis for
LTL [PR90].

It tuns out that the reduction works the other way, too: Using the idea of collaps-
ing quantifiers [Fin+18a], it is possible to check whether the HyperLTL realizability prob-
lem can be reduced to the distributed synthesis problem and, thus, one can character-
ize a decidable fragment of universal HyperLTL. Given a universal HyperLTL formula
ϕ = ∀π1⋯∀πn .ψ, we define the COLLAPSED formula of ψ as collapse(ψ) ∶= ψ[π1 ↦
π][π2 ↦ π] . . . [πn ↦ π] where ψ[πi ↦ π] replaces all occurrences of πi in ψ with
π. Further, we define collapse(ϕ) = ∀π. collapse(ψ). While there are formulas that are
equivalent to their collapsed form, e.g.,∀π∀π′.aπ∧bπ′ , this does not hold in general
as shown by the formula∀π.∀π′.(aπ ↔ aπ′). If a HyperLTL formula is not equivalent
to its collapsed form, then this formula is not expressible using one universal quantifier.

166

8.3. Deciding HyperLTL Realizability

Lemma 8.10 ([Fin+18a]). Eitherϕ ≡ collapse(ϕ) orϕ has no equivalent∀1 formula.

Note that equivalence of universal HyperLTL formulas can be checked in
EXPSPACE [FH16]. Using this, we can recap the definition the linear∀∗ fragment [Fin+18a],
a subclass of universal formulas for which the realizability problem is decidable: A uni-
versal HyperLTL formulaϕ = ∀π1⋯∀πn .ψ is in the LINEAR FRAGMENT of∀∗ if and only if,
for all output propositions oi ∈ O there is a subset of input propositions Ji ⊆ I such that

∀π1⋯∀πn .ψ ∧ Dπ1 ,π2
I↦O ≡ ∀π∀π

′. collapse(ψ) ∧ ⋀
o i∈O

Dπ,π′
J i↦{o i}

and Ji ⊆ Ji+1 for all i. The constraint Dπ1 ,π2
I↦O is added to ϕ to enforce input-determinism

for the equivalence check. This is no restriction for the realizability problem as strategies
are input-deterministic.

Example 8.11 ([Fin+18a]). An example of a formula in the linear fragment of ∀∗ is ϕ =
∀π∀π′.ψ with ψ = Dπ,π′

{a}↦{c} ∧ (cπ ↔ dπ) ∧ (bπ ↔ eπ), I = {a, b}, and
O = {c, d , e}. The corresponding formula asserting input-deterministism is ϕdet =
∀π∀π′.ψ ∧ Dπ,π′

I↦O . One possible choice of J ’s is {a, b} for c, {a} for d and {a, b} for e.
Note, that one can use either {a, b} or {a} for c as∀π∀π′.Dπ,π′

{a}↦{d} ∧ (cπ ↔ dπ) im-

plies∀π∀π′.Dπ,π′
{a}↦{c}. However, the apparent alternative {b} for e would yield an un-

decidable architecture with information fork. It holds thatϕdet and∀π∀π′. collapse(ψ)∧
Dπ,π′
{a,b}↦{c}∧D

π,π′
{a}↦{d}∧D

π,π′
{a,b}↦{e} are equivalent and, thus, thatϕ is in the linear frag-

ment.

Theorem 8.12 ([Fin+18a]). The realizability of the linear∀∗ fragment of HyperLTL can be de-
cided in non-elementary time.

From this observation, we can derive further fragments of HyperLTL. In the following,
we define the incomplete information fragment of∀∗HyperLTL and show that the decision
problem is 2EXPTIME-complete, i.e., no harder than LTL. This fragment includes proper-
ties like observational determinism [ZM03], which can be expressed in HyperLTL [Cla+14]
as

∀π∀π′.(Iobsπ = Iobsπ′)→(Oobs
π = Oobs

π′)

stating that, for every pair of traces, if the observable inputs are the same, then the ob-
servable outputs must be same as well. A universal HyperLTL formulaϕ = ∀π1⋯∀πn .ψ is
in the INCOMPLETE INFORMATION FRAGMENT of∀∗ if and only if, there is a subset of input
propositionsH ⊆ I such that

∀π1⋯∀πn .ψ ∧ Dπ1 ,π2
I↦O ≡ ∀π∀π

′. collapse(ψ) ∧ Dπ,π′
I∖H↦O .

Theorem 8.13. The decision problem of formulas in the incomplete information fragment is
2EXPTIME-complete.

167

8. SYNTHESIS FROM HYPERPROPERTIES

Proof. Given a universal HyperLTL formula ϕ = ∀π1⋯∀πn .ψ in the incomplete in-
formation fragment. Due to the proof of Theorem 8.2, the decision problem of
∀π∀π′. collapse(ψ) ∧ Dπ,π′

I∖H↦O can be reduced to the decision problem of synthesis un-
der incomplete information [KV97] whose decision problem is in 2EXPTIME. Hardness
follows from LTL realizability.

8.3.3 ∃∗∀1 Fragment

In this fragment, we consider arbitrary many existential trace quantifiers followed by a
single universal trace quantifier. This fragment turns out to be still decidable. We solve
the realizability problem for this fragment by reducing it to a decidable fragment of the
distributed realizability problem for LTL.

Theorem 8.14. Realizability of∃∗∀1HyperLTL specifications is decidable.

Proof. Let ϕ be ∃π1⋯∃πn .∀π′.ψ. We reduce the realizability problem of ϕ to the dis-
tributed realizability problem for LTL. Intuitively, we use a two-process distributed archi-
tecture where the first process p is supposed to produce the traces for the leading exis-
tential quantification and the second process p′ represents the realizing strategy. The
architecture is depicted in Figure 8.3.

For every existential trace quantifier π, we introduce a copy of every atomic propo-
sition for the distributed realizability problem, written aπ for a ∈ AP. We use the same
notation for sets of atomic propositions, e.g., Iπ = {iπ ∣ i ∈ I}. Process p has no inputs,
thus, produces only a single trace, and it controls the outputs ⋃

1≤i≤n
(Iπ i ∪ Oπ i). Using an

appropriate valuation of its outputs, process p selects the paths in the strategy tree corre-
sponding to the existential trace quantifiers ∃π1⋯∃πn. Thus, those output propositions
of process p have to encode an actual path in the strategy tree produced by p′. To ensure
this, we add the LTL constraint(Iπ i = I)→(Oπ i = O) that asserts that if the inputs
correspond to some path in the strategy tree, the outputs on those paths have to be the
same. The resulting architecture Aϕ is

⟨{penv, p, p′}, penv, {p ↦ ∅, p′ ↦ I}, {penv ↦ I, p ↦ ⋃
1≤i≤n
(Iπ i ∪ Oπ i), p′ ↦ O}⟩ .

It is easy to verify that Aϕ does not contain an information fork, thus the realizability
problem is decidable [FS05]. The LTL specificationθ isψ∧⋀1≤i≤n(Iπ i = I)→(Oπ i =
O) where we replace every aπ by aπ for existential traces and aπ′ to a in ψ. The im-
plementation of process p′ (if it exists) is a realizing strategy for the HyperLTL formula
(process p producing witnesses for the ∃ quantifiers): Assume that there are realizing
strategies for ⟨Aϕ , θ⟩, i.e., fp∶ (2∅)∗ → 2⋃1≤i≤n(Iπi∪Oπi) and fp′ ∶ (2I)∗ → 2O . fp′ is a
realizing strategy for ϕ as well: By the HyperLTL semantics, we have to show that there
is a trace assignment Π∶V∃ → traces(fp′) such that for all t ∈ traces(fp′) it holds
that Π[π′ → t] ⊧traces(fp′) ψ. We define Π in the following. Note that traces(fp) is

a singleton set and let tp ∈ (2⋃1≤i≤n(Iπi∪Oπi))ω be the corresponding trace. For every

168

8.4. Summary

penv

p p′

∅ I

⋃
1≤i≤n
(Iπ i ∪ Oπ i) O

Figure 8.3: Visualization of the architecture used in the ∃∗∀1 reduction in the proof of
Theorem 8.14.

πi ∈ {π1, . . . , πn}, we define Π(πi) = tp∣Iπi where we replace aπ i by a for every a ∈ AP.
This, together with θ shows thatψ holds for every chosen path t ∈ traces(fp′) for π′.

Conversely, a model for ϕ can be used as an implementation of p and p′: Let
f ∶ (2I)∗ → 2O be a realizing strategy of ϕ. We use f as a strategy for p′. We construct
the single trace produced by pusing the existential trace assignmentΠ∶V∃ → traces(f).
Let t1, . . . , tn ∈ traces(f) be the corresponding traces. We construct a single trace tp by
replacing propositions a ∈ AP by aπ i for every ti and the subsequent union of the result-
ing traces (which now have pairwise disjoint propositions). Due to the construction, fp
satisfies⋀1≤i≤n(Iπ i = I) → (Oπ i = O) and thus, the distributed architecture satis-
fies θ. Hence, the distributed synthesis problem ⟨Aϕ , θ⟩ has a solution if, and only if, ϕ
is realizable.

8.3.4 ∀∗∃∗ Fragment

To complete the characterization of decidability results, we briefly state the result for for-
mulas in the ∀∗∃∗ fragment. Whereas the ∃∗∀1 fragment remains decidable, the real-
izability problem of ∀∗∃∗ turns out to be undecidable even when restricted to only one
quantifier of both sorts (∀1∃1). The undecidability proof uses a reduction from Post’s Cor-
respondence Problem (PCP).

Theorem 8.15 ([Fin+18a]). Realizability of∀∗∃∗HyperLTL is undecidable.

8.4 Summary

In this section, we investigated temporal hyperproperties, which are properties relating
multiple observation traces. We showed that the realizability problem for the tempo-
ral hyperlogic HyperLTL subsumes many earlier extensions of the LTL realizability prob-
lem, including realizability under incomplete information, distributed realizability, and
symmetric synthesis. Further, we analyzed the complexity of the decision problem for
(unbounded) synthesis based on the structure of the quantifier prefix. In the following
section, we introduce a semi-decision procedure for realizability and unrealizability.

169

Chapter 9

Bounded Synthesis from
Hyperproperties

In the previous section, we have seen that HyperLTL is an immensely expressive speci-
fication language—at the cost of giving up decidability. In this section, we provide an
alternative view of the synthesis procedure that is motivated by considering the output
complexity as pioneered by Finkbeiner and Schewe [FS13]. In this view, we measure the
complexity of the synthesis procedure in the size of the system to-be-synthesized as it
is done in model checking. In this model, we derive complexity results that are analo-
gous to model checking HyperLTL: In the same way that the model checking of universal
HyperLTL has the same asymptotical complexity as the corresponding problem for LTL,
that is, NLOGSPACE-complete [FRS15], we show that the realizability problem for univer-
sal HyperLTL is in the same complexity class as LTL [FS13], namely in NP.

Using the bounded synthesis [FS07; SF07; FS13; Fay+17] approach discussed in Sec-
tion 7.2.2, we derive a semi-decision procedure for universal HyperLTL in Section 9.1.
Based on the bounded unrealizability method [Ten13; FT14a; FT15], we derive a method
to detect unrealizability of universal HyperLTL specifications in Section 9.2. Lastly, we
consider the synthesis problem for HyperLTL with quantifier alternations in Section 9.3.

This chapter is based on work published in the proceedings of CAV [Fin+18a; Coe+19]
and an article submitted to Acta Informatica [Fin+19a].

9.1 Synthesis from Universal HyperLTL

Overview. We first sketch the synthesis procedure and then proceed with a description
of the intermediate steps. Let ϕ be a universal HyperLTL formula∀π1⋯∀πn .ψ. We build
the automatonAψ whose language is the set of n-tuples of traces that satisfyψ. We then
define the acceptance of a transition systemS onAψ by means of the self-composition of
S . Lastly, we encode the existence of a transition system accepted byAψ as a constraint
system.

171

9. BOUNDED SYNTHESIS FROM HYPERPROPERTIES

s0
{res, int}

s1
∅

¬dec ∨ val

dec ∧ ¬val

dec ∧ val
¬dec ∨ ¬val

(a) Synthesized transition
system from LTL formula in
Equation 9.1.

s0
{res}

s1
{res, int}

s2
∅

¬pub ∧ (¬dec ∨ ¬val)

dec ∧ val

dec ∧ ¬val ∧ ¬pub

¬dec ∨ val

pub ∧ (¬dec ∨ ¬val)
¬pub ∧ ¬val

pub ∧ ¬val
∨ ¬dec ∧ val

dec ∧ pub ∧ ¬val

dec ∧ val

(b) Synthesized transition system from the conjunction of LTL
specification in Equation 9.1 and HyperLTL specification in
Equation 9.2.

Figure 9.1: Synthesized state-labeled transition systems based on the specification given
in Example 9.1.

Example 9.1. Throughout this section, we will use the following (simplified) running ex-
ample. Assume we want to synthesize a system that keeps decisions secret until it is al-
lowed to publish. Thus, our system has three input signals decision, indicating whether
a decision was made, the secret value, and a signal to publish results. Furthermore, our
system has two outputs, an undisclosed output internal that stores the value of the last
decision, and a public output result that indicates the result. No information about de-
cisions should be inferred until publication. To specify the functionality, we propose the
LTL specification

(decision→ (value↔internal))
∧(¬decision→ (internal↔internal))
∧(publish→(internal↔ result)) . (9.1)

The solution produced by the LTL synthesis tool BOSY (Section 7.4.1), shown in Figure 9.1a,
clearly violates our intention that results should be secret until publish: Whenever a de-
cision is made, the output result changes as well.

We formalize the property that no information about the decision can be inferred
from result until publication as the HyperLTL formula

∀π∀π′. (publishπ ∨ publishπ′)R(resultπ ↔ resultπ′) . (9.2)

It asserts that for every pair of traces, the result signals have to be the same until (if ever)
there is a publish signal on either trace. The universal co-Büchi automata for the LTL and
HyperLTL specifications are depicted in Figure 9.2.

A solution satisfying both, the functional specification and the hyperproperty, is
shown in Figure 9.1b. The system switches states whenever there is a decision with a dif-
ferent value than before and only exposes the decision in case there is a prior publish com-
mand.

172

9.1. Synthesis from Universal HyperLTL

q0

q1 q2

q3

qe

T

¬dec ∧ ¬int
∨ dec ∧ ¬val

int

¬dec ∧ int
∨ dec ∧ val

¬int

pub

(int↮ res)

T

(a) Automaton accepting the language defined
by the LTL formula in Equation 9.1.

q0 qe

¬pubπ ∧ ¬pubπ′
∧ resπ ↔ resπ′

resπ ↮ resπ′

T

(b) Automaton accepting the language defined
by the HyperLTL formula in Equation 9.2.

Figure 9.2: Universal co-Büchi automata recognizing the languages from Example 9.1.

Before discussing our synthesis approach, we proceed with discussing the model
checking of universal HyperLTL using self-composition.

Self-composition. The model checking of universal HyperLTL formulas [FRS15] is based
on self-composition [BDR11]. Let prji be the projection to the i-th element of a tuple. Let
zip denote the usual function that maps an n-tuple of sequences to a single sequence
of n-tuples, for example, zip([1, 2, 3], [4, 5, 6]) = [(1, 4), (2, 5), (3, 6)], and let unzip
denote its inverse. The n-fold self-composition ofS = ⟨S , s0, τ, l⟩, writtenSn, is defined
as ⟨Sn , sn0 , τ⃗, l⃗⟩ where τ⃗∶ Sn × (2I)n → Sn and l⃗ ∶ Sn → (2O)n are defined such that for
all s⃗, s⃗′ ∈ Sn, i⃗ ∈ (2I)n, and o⃗ ∈ (2O)n we have that τ⃗(s⃗, i⃗) = s⃗′ and l⃗(s⃗) = o⃗ iff for all
1 ≤ i ≤ n, it holds that τ(prji(s⃗), prji(i⃗)) = prji(s⃗′) and l(prji(s⃗)) = prji(o⃗). The set of
traces generated bySn is traces(Sn) = {zip(t1, . . . , tn) ∣ t1, . . . , tn ∈ traces(S)}

For a quantifier-free HyperLTL formula ψ, we construct the universal co-Büchi au-
tomatonAψ such thatL(Aψ) is the set of infinite words σ such that unzip(σ) ⊧ ψ, i.e.,
the tuple of traces satisfies ψ (see for example Figure 9.2b). We get this automaton by
dualizing the non-deterministic Büchi automaton for¬ψ [KV05; FS13], i.e., changing the
branching from non-deterministic to universal and the acceptance condition from Büchi
to co-Büchi. Hence, S satisfies a universal HyperLTL formula ϕ = ∀π1⋯∀πn .ψ if the
traces generated by self-compositionSn are a subset ofL(Aψ).

Lemma 9.2. A transition systemS satisfies the universal HyperLTL formulaϕ = ∀π1⋯∀πn .ψ,
if, and only if, the run graph ofSn onAψ is accepting.

Proof. S ⊧ ϕ if, and only if, Sn is accepted byAψ [Cla+14]. The correctness of the run
graph is established in Lemma 7.7.

Synthesis. LetS = ⟨S , s0, τ, l⟩ andAψ = ⟨Q , q0, δ, F⟩. We encode the synthesis prob-
lem as a constraint system in a decidable first-oder theory. Therefore, we use uninter-
preted function symbols to encode the transition system and the annotation. For the

173

9. BOUNDED SYNTHESIS FROM HYPERPROPERTIES

transition system, those functions are the transition function τ∶ S ×2I → S and the label-
ing function l ∶ S → 2O . The annotation is split into two parts, a reachability constraint
λB∶ Sn × Q → B indicating whether a vertex in the run graph is reachable and a counter
λ#∶ Sn × Q → N that maps every reachable vertex to the maximal number of rejecting
vertices visited by any path starting in the initial vertex. The resulting constraint asserts
that there is a transition system with an accepting run graph:

∀s⃗, s⃗′ ∈ Sn .∀q, q′ ∈ Q .∀i⃗ ∈ (2I)n .
λB((s0)n , q0) ∧
(λB(s⃗, q) ∧ τ⃗(s⃗, i⃗) = s⃗′ ∧ (q, i⃗ ∪ l⃗(s⃗), q′) ∈ δ)→ λB(s⃗′, q′) ∧ λ#(s⃗′, q′) ⊵ λ#(s⃗, q)

where ⊵ is > if q′ ∈ F and ≥ otherwise.

Theorem 9.3. The constraint system is satisfiable with bound b = ∣S∣ if, and only if, there is a
transition systemS of size b that realizes the HyperLTL formula.

Proof. If the constraint system is satisfiable, the satisfying interpretation of λ# and λB

represent a valid annotation for the run graph Sn × Aψ , where S is constructed from
satisfying interpretations of τ and l . For the reverse direction, note that for every tran-
sition system S with ∣S∣ = b, there is an interpretation of τ and l that represents this
transition system, i.e., an unsatisfiable constraint system rules out any transition system
of size b. Further, there is an upper bound on the number of λ# when the size of S is
fixed [FS13].

We extract a realizing implementation by asking the satisfiability solver to generate
a model for the uninterpreted functions that encode the transition system.

Theorem 9.4. Letϕ be a universal HyperLTL formula. Deciding whether there exists a realizing
transition systemS of size b = ∣S∣ is NP-complete.

Theorem 9.5. The constraint system after removing syntactic sugar, i.e., the quantifications over
finite domains, is polynomial in b. Further, it is propositional up to the difference constraints
X − Y ≤ c for some bound c ∈ {0, 1}. Deciding propositional logic with difference constraints
is NP-complete [NO05]. Hardness follows from NP-hardness of the corresponding problem for
LTL [FS13].

9.2 Bounded Unrealizability

While the previous section was concerned with the existence of (small) system strate-
gies, we now shift our focus on environment strategies. In the case of LTL, Chapter 7 al-
ready gave a satisfying answer as the realizability problem is dual. Already for universal
HyperLTL this is no longer the case: To show unrealizability, the environment player has
to produce, with the knowledge of the system player’s strategy, a set of traces such that the
quantifier-free formula is violated. On the other hand, unrealizability is of great impor-
tance: Especially for distributed architectures and complex specifications such as fault-
tolerance, the search for environment counter-strategies becomes more important as it

174

9.2. Bounded Unrealizability

indicates problems early in the design process. In earlier work, we introduced the con-
cept of counterexamples to realizability [Ten13; FT14a; FT15] for distributed realizability and
developed methods to derive small counterexamples automatically.

We adapt the definition of counterexamples to realizability for LTL [FT14a] to
HyperLTL in the following. Let ϕ be a universal HyperLTL formula ∀π1⋯∀πn .ψ over in-
puts I and outputs O, a counterexample to realizability is a set of input traces P ⊆ (2I)ω
such that for every strategy f ∶ (2I)∗ → 2O the labeled traces P f ⊆ (2I∪O)ω satisfy
¬ϕ = ∃π1⋯∃πn .¬ψ.

Proposition 9.6. A universal HyperLTL formula ϕ = ∀π1⋯∀πn .ψ is unrealizable if, and only
if, there is a counterexampleP to realizability.

Proof. LetP be a counterexample to realizability. Assume for contradiction thatϕ is real-
izable by a strategy f . By definition ofP , we know thatP f ⊧ ∃π1⋯∃πn .¬ψ. This means
that there exists an assignment ΠP ∶V → P f with ΠP , 0 ⊧P f ¬ψ, which is equivalent
to ΠP ⊭P f ψ. Therefore, not all assignments Π ∶ V → P f satisfy Π, 0 ⊧P f ψ, which
implies thatP f ⊭ ∀π1⋯∀πn .ψ = ϕ. Hence, f ⊭ ϕ, which concludes the contradiction.

Let ϕ be unrealizable. We show that the set P = (2I)ω is a counterexample to re-
alizability. Let f ∶ (2I)∗ → 2O be an arbitrary strategy, and letP f be the corresponding
set of labeled traces. From the unrealizability of ϕ, we now that f ⊭ ∀π1⋯∀πn .ψ. Thus,
there exists a trace assignment ΠP ∶V → P f with ΠP , 0 ⊧P f ¬ψ, which is equivalent to
P ⊧ ∃π1⋯∃πn .¬ψ.

Despite being independent of strategy trees, there are in many cases finite represen-
tations ofP . Consider, for example, the unrealizable specificationϕ1 = ∀π∀π′.(iπ ↔
iπ′), where the setP1 = {∅ω , {i}ω} is a counterexample to realizability. As a second ex-
ample, consider ϕ2 = ∀π∀π′.(oπ ↔ oπ′) ∧(iπ ↔ oπ)with conflicting require-
ments on o. P1 is a counterexample to realizability for ϕ2 as well: By choosing a different
valuation of i in the first step ofP1, the system is forced to either react with different val-
uations of o (violating the first conjunct), or not correctly repeating the initial value of i
(violating the second conjunct).

There are, however, already linear specifications where the set of counterexample
traces is not finite and depends on the strategy tree [FT15]. For example, the specifica-
tion

∀π.(oπ ↔iπ) (9.3)

is unrealizable as the system cannot predict future values of the environment. There is
no finite set of traces witnessing this: For every finite set of traces, there is a strategy tree
such that(oπ ↔iπ) holds on every such trace. On the other hand, there is a simple
counterexample strategy, that is a strategy that observes output sequences and produces
inputs, depicted in Figure 9.3. In this example, the counterexample strategy inverts the
outputs given by the system, thus it is guaranteed that(o ↮ i) for every system
strategy.

We combine those two approaches, selecting counterexample traces and using
strategic behavior. A k-counterexample strategy for ∀nHyperLTL observes k output se-
quences and produces k inputs, where k is a new parameter. We require that k is at

175

9. BOUNDED SYNTHESIS FROM HYPERPROPERTIES

s0 s1

o/i
¬o/i

o/¬i

¬o/¬i

Figure 9.3: Counterexample strategy for the LTL formula given in Equation 9.3.

least the number of universal quantifiers n. The counterexample strategy is winning if
(1) either the traces given by the system player do not correspond to a strategy, or (2) the
body of the HyperLTL formula is violated for any n subset of k traces. Regarding property
(1), consider the two traces where the system player produces different outputs initially.
Clearly, those two traces cannot be generated by any system strategy since the initial state
(root labeling) is fixed.

We reduce the search for a k-counterexample strategy to LTL synthesis. For every
atomic proposition a ∈ AP, we produce k copies a1, . . . , ak . We use the same notation
for sets of atomic propositions, e.g., I j = {i j ∣ i ∈ I} for 1 ≤ j ≤ k. The search for a
k-counterexample strategy can be reduced to LTL synthesis using k-tuple input propo-
sitionsOk , k-tuple output propositions Ik , and the formula

strategic(Ik ,Ok)→ ⋁
P⊆{1,...,k}with ∣P∣=n

¬ψ[P] ,

where ψ[P] denotes the replacement of aπ i by the Pith position of the combined in-
put/output k-tuple. The formula strategic(Ik ,Ok) enforces that the behavior of the sys-
tem player is strategic and is defined as

⋀
1≤ j1< j2≤k

(⋁
i∈I
(i j1 ↮ i j2))R(⋀

o∈O
(o j1 ↔ o j2)) .

This is an instance of the formula (sym) given in Section 8.2.

Theorem 9.7. A universal HyperLTL formula ϕ = ∀π1⋯∀πn .ψ is unrealizable if there is a k-
counterexample strategy for some k ≥ n.

Proof. Fix ϕ and let fcex∶ (2O
k)+ → 2I

k
be a k-counterexample strategy. Assume for con-

tradiction that f ∶ (2I)∗ → 2O is a strategy realizing ϕ. Let f k ∶ (2Ik)∗ → 2O
k

be the
strategy that represents the k-fold self-composition of f (adapting atomic propositions
as described earlier). By combining f and fcex, we get an infinite sequence t ∈ (2Ik∪Ok)ω:
t0 = f (є)∪ fcex(f (є)), t1 = f (fcex(f (є)))∪ fcex(f (fcex(f (є)))), . . . This sequence rep-
resents a k-tuple cexk = (I∪O)k . As f k satisfies strategic(Ik ,Ok), there is an-tuple cexn
build from elements of cexk such that for the corresponding trace assignment Π it holds
thatΠ, 0 ⊧traces(f) ¬ψ. This contradicts our assumption that f is a realizing strategy.

176

9.3. Synthesis from HyperLTL with Quantifier Alternations

9.3 Synthesis from HyperLTL with Quantifier Alternations

The alternation-free fragment of HyperLTL does not cover all hyperproperties. For ex-
ample, universal HyperLTL cannot express the secrecy property that given a trace of the
system, there has to be an alternative trace with the same valuation of observable vari-
ables while having a different valuation of the undisclosed, that is, secret variables. In
HyperLTL, this property can be expressed with a formula that has a∀∃quantifier alterna-
tion, where the existential trace quantifier selects a suitable alternative trace. More gen-
erally, those properties can be characterized as hyperliveness [CS10]. In this section, we
show how to reduce existential trace quantification to strategic choice that approximates
the HyperLTL semantics where the∃-player has access to the complete trace assignment,
i.e., infinite traces. To cope with this incompleteness, we introduce a bounded lookahead
as a variant of prophecy. This section is based on work published in the proceedings of
CAV [Coe+19].

The model checking problem of∀π. ∃π′.ψ can be viewed as a game between the∀-
player and the∃-player [Coe+19]. For every traceπ chosen by the∀-player by a traversal of
the state space of the transition system, the∃-player has to build a trace π′ such that the
pair ⟨π, π′⟩ satisfies ψ. We use an approximation of this game by limiting the ∃-player
to strategic choice, i.e., she can only act on the finite prefix observed instead of the com-
plete knowledge of π. While the existence of a winning strategy for the ∃-player implies
that ∀π. ∃π′.ψ is satisfiable, the converse is not true as a satisfying/matching choice of
π′ given π may depend on a position in the future.

This game-theoretic approach provides an opportunity for the user to reduce the
complexity of the model checking problem [Coe+19]: If the user provides a strategy for
the ∃-player, then the problem reduces to the cheaper model checking problem for uni-
versal properties. We show that such strategies can also be constructed automatically
using synthesis. Beyond model checking, the game-theoretic approach also provides a
method for the synthesis of systems that satisfy a conjunction of hypersafety and hyper-
liveness properties. Here, we do not only synthesize the strategy but also construct the
system itself, i.e., the game graph on which the model checking game is played. While
the synthesis from∀∗∃∗ hyperproperties is known to be undecidable in general, we show
that the game-theoretic approach can naturally be integrated into the bounded synthe-
sis approach presented in Section 9.1, which checks for the existence of a correct system
up to a bound on the number of states.

In our game-theoretic view on the model checking problem for ∀∗∃∗HyperLTL, the
∃-player has an infinite lookahead. There is some work on finite lookahead on trace lan-
guages [KZ15]. We use the idea of finite lookahead as an approximation to construct ex-
istential strategies and give a novel synthesis construction for strategies with delay based
on bounded synthesis [FS13].

9.3.1 Model Checking with Synthesized Strategies

Preliminaries. For tuples x⃗ ∈ Xn and y⃗ ∈ Xm over set X, we use x⃗ ⋅ y⃗ ∈ Xn+m to denote
the concatenation of x⃗ and y⃗. Given a function f ∶X → Y and a tuple x⃗ ∈ Xn, we define

177

9. BOUNDED SYNTHESIS FROM HYPERPROPERTIES

by f ○ x⃗ ∈ Yn the tuple (f (x⃗0), . . . , f (x⃗n−1)).
Given a Γ-labeled Υ-transition system S = ⟨S , s0, τ, l⟩ and a Γ′-labeled Υ′-

transition system S ′ = ⟨S′, s′0, τ′, l ′⟩, we define the CROSS-PRODUCT S × S ′ =
⟨S × S′, (s0, s′0), τ′′, l ′′⟩ as the Γ × Γ′-labeled Υ × Υ′-transition system where
τ′′((s, s′), (υ, υ′)) = (τ(s, υ), τ′(s′, υ′)) and l ′′((s, s′)) = (l(s), l ′(s′)).

Let S∗ = ⟨S∗, s∗0 , τ∗, l∗⟩ be the transition system generating strategy f , then the
COMPOSITION S ∣∣ f = S ∣∣ S∗ is the transition system ⟨S × S∗, (s0, s∗0), τ∣∣, l ∣∣⟩ where
τ∣∣∶ (S × S∗) × Υ∗ → (S × S∗) is defined as τ∣∣((s, s∗), υ∗) = (τ(s, l∗(s∗)), τ∗(s∗, υ∗))
and l ∣∣∶ (S × S∗) → Γ is defined as l ∣∣(s, s∗) = l(s) for every s ∈ S, s∗ ∈ S∗, and υ∗ ∈
Υ∗. Intuitively, the resulting transition systemS∗ produces the inputs forS . We use the
notation zip(ψ, π1, . . . , πn) for some HyperLTL formulaψ to combine the trace variables
π1, . . . , πn (occurring free inψ) into a fresh trace variable π∗.

Our semi-decision procedure is based on the following substitution theorem.

Theorem 9.8 (Strategic Substitution [Coe+19]). LetS be a Υ-transition system.

• It holds thatS ⊧ ∀π1⋯∀πn . ∃π′1⋯∃π′m .ψ if there is a strategy f ∶ (Υn)∗ → Υm such
thatSn × (Sm ∣∣ f) ⊧ ∀π∗.zip(ψ, π1, . . . πn , π′1 , . . . , π′m).

• It holds thatS ⊧ ∃π1⋯∃πm .∀π′1⋯∀π′n .ψ if there is a strategy f ∶ ∅∗ → Υm such that
(Sm ∣∣ f) × Sn ⊧ ∀π∗.zip(ψ, π1, . . . πm , π′1 , . . . , π′n).

Model Checking. We first consider the model checking problem of ∀n∃mHyperLTL,
where we search for a strategy f∃∶ (Υn)∗ ↦ Υm that produces a witness for the existen-
tial trace quantifiers. For a given HyperLTL formula of the form ∀n∃mψ and a transition
systemS , we search for a transition systemS∃ = ⟨X , x0, µ, l∃⟩, where X is a set of states,
x0 ∈ X is the designated initial state, µ∶X × Υn → X is the transition function, and
l∃∶X → Υm is the labeling function, such thatSn × (Sm ∣∣S∃) ⊧ zip(ψ)1.

Theorem 9.9. The strategy realizability problem for∀∗∃∗ formulas is 2EXPTIME-complete.

Proof. Given a transition system S and a formula ∀n∃mψ. We reduce the strategy syn-
thesis problem to the problem of synthesizing a distributed reactive system with a single
black-box process. The architecture is given in Figure 9.4a and the specification is given
byψ. This problem is decidable [FS05] and can be solved in 2EXPTIME. The lower bound
follows from the LTL realizability problem [PR89].

The decidability result implies that there is an upper bound on the size of S∃ that is
doubly exponential in ψ. Thus, the bounded synthesis approach [FS13] can be used to
search for increasingly larger implementations, until a solution is found or the maximal
bound is reached, yielding an efficient decision procedure for the strategy synthesis prob-
lem. In the following, we describe this approach in detail.

1We focus on∀n∃mHyperLTL, however, for formulas of the form∃m∀nψ the problem only differs in the
input ofS∃ as the generated strategy is f∃∶ ∅∗ ↦ Υm .

178

9.3. Synthesis from HyperLTL with Quantifier Alternations

Sn Sm

S∃env

In

In

Im

On Om

(a) The strategy synthesis prob-
lem with given implementation

Sn Sm

S∃env

In

In

Im

On Om

(b) The implementation syn-
thesis problem with given
strategy

Sn Sm

S∃env

In

In

Im

On Om

(c) The synthesis problem for
strategy and implementa-
tion

Figure 9.4: Representation of the different synthesis problems as a distributed synthesis
problem, i.e., the problem of synthesizing implementations of the black-box processes
such that the joint combination with the white-box processes (which have a given imple-
mentation), satisfy the specification.

Bounded Synthesis of Strategies. We transform the synthesis problem into a con-
straint satisfaction problem, where we leave the representation of the strategy uninter-
preted and challenge the solver to provide an interpretation. Given a HyperLTL formula
∀n∃mψ whereψ is quantifier-free, the model checking is based on the product of the n-
fold self composition of the transition systemS , them-fold self-composition ofS where
the strategyS∃ controls the inputs, and the universal co-Büchi automatonAψ represent-
ing the languageL(ψ) ofψ.

In more detail, the algorithm searches for a transition systemS∃ = ⟨X , x0, µ, l∃⟩ such
that the run graph of Sn, Sm ∣∣ S∃, andAψ , written Sn × (Sm ∣∣ S∃) ×Aψ , is accepting.
Formally, given a Γ-labeled Υ-transition systemS = ⟨S , s0, τ, l⟩ and a universal co-Büchi
automatonAψ = ⟨Q , q0, δ, F⟩, where δ∶Q × Υn+m × Γn+m → 2Q , the run graph Sn ×
(Sm ∣∣ S∃) × Aψ is the directed graph (V , E), with the set of vertices V = Sn × Sm ×
X × Q, initial vertex vinit = (sn0 , sm0 , x0, q0) and the edge relation E ⊆ V × V satisfying
((s⃗n , s⃗m , x , q), (s⃗′n , s⃗′m , x′, q′)) ∈ E if, and only if

∃υ⃗ ∈ Υn . (s⃗n
υ⃗Ð→
τn

s⃗′n) ∧ (s⃗m
l∃(x)ÐÐÐ→
τm

s⃗′m) ∧ (x
υ⃗Ð→
µ
x′)

∧ q′ ∈ δ(q, υ⃗ ⋅ l∃(x), ln(s⃗n) ⋅ lm(s⃗m)) .

Lemma 9.10. GivenS ,S∃, and a HyperLTL formula∀n∃mψwhereψ is quantifier-free. LetAψ
be the universal co-Büchi automaton forψ. If the run graphSn × (Sm ∣∣S∃) ×Aψ is accepting,
thenS ⊧ ∀n∃mψ.

Proof. Follows from Theorem 9.8 and the fact thatAψ representsL(ψ).

We encode the search for S∃ and the annotation λ as an SMT constraint system.
Therefore, we use uninterpreted function symbols to encode S∃ and λ. A transition sys-
tem S is represented in the constraint system by two functions, the transition function

179

9. BOUNDED SYNTHESIS FROM HYPERPROPERTIES

τ∶ S × Υ → S and the labeling function l ∶ S → Γ. As before, the annotation is split into
reachability λB∶V → B and rejecting counter λ#∶V → N. The resulting constraint as-
serts that there is a transition system S∃, i.e., an interpretation for µ and l∃ such that
the resulting run graph is accepting. Note, that the functions representing the system
S (τ∶ S × Υ → S and l ∶ S → Γ) are given, that is, they are interpreted.

∀υ⃗ ∈ Υn .∀s⃗n , s⃗′n ∈ Sn .∀s⃗m , s⃗′m ∈ Sm .∀q, q′ ∈ Q .∀x , x′ ∈ X .
λB(sn0 , sm0 , x0, q0) ∧

(λB(s⃗n , s⃗m , x , q) ∧ q′ ∈ δ(q, (υ⃗ ⋅ l∃(x)), (l ○ (s⃗n ⋅ s⃗m))) ∧ x′ = µ(x , υ⃗)

∧ s⃗′n = τn(s⃗n , υ⃗) ∧ s⃗′m = τm(s⃗m , l∃(x)))

⇒ λB(s⃗′n , s⃗′m , x′, q′) ∧ λN(s⃗n , s⃗m , x , q) ⊵ λN(s⃗′n , s⃗′m , x′, q′)

where⊵ is> ifq′ ∈ F and≥otherwise. The bounded synthesis algorithm increases the bound
of the strategyS∃ until either the constraints system becomes satisfiable, or a given up-
per bound is reached. In the case the constraint system is satisfiable, we can extract inter-
pretations for the functions µ and l∃ using a solver that is able to produce models. These
functions then represent the synthesized transition systemS∃.

Corollary 9.11. GivenS and a HyperLTL formula∀∗∃∗ψ whereψ is quantifier-free. If the con-
straint system is satisfiable for some bound on the size ofS∃ thenS ⊧ ∀∗∃∗ψ.

Proof. Follows immediately by Lemma 9.10.

As the decision problem is decidable, we know that there is an upper bound on the
size of a realizing strategy transition system S∃ and, thus, the bounded synthesis ap-
proach is a decision procedure for the strategy realizability problem.

Corollary 9.12. The bounded synthesis algorithm decides the strategy realizability problem for
∀∗∃∗HyperLTL.

Proof. The existence of such an upper bound follows from Theorem 9.9.

Approximating Prophecy. We introduce a new parameter to the strategy synthesis
problem to approximate the information about the future that can be captured using
prophecy variables [Coe+19]. This bound represents a constant lookahead into future
choices made by the environment. In other words, for a given k ≥ 0, the strategy S∃ is
allowed to depend on choices of the ∀-player in the next k steps. There are formulas,
however, were even bounded lookahead is not enough. In the formula

∀π. ∃π′. (oπ′ → iπW(i′π ∧ ¬iπ)) ∧ (¬oπ′ → iπW(¬i′π ∧ ¬iπ))

the environment player (controlling i and i′) can delay the satisfaction of the right hand
side of the weak until ad infinitum. While constant lookahead is only an approximation of
infinite clairvoyance, it suffices for many practical situations as shown by prior case stud-
ies [FRS15; DAr+17].

180

9.3. Synthesis from HyperLTL with Quantifier Alternations

s0
{o}

s1
∅∗i

i

¬i

i

¬i

∗¬i

Figure 9.5: Visualization of a 2-lookahead transition system that satisfies the LTL formula
given in Equation 9.3.

We present a solution to synthesize transition systems with constant lookahead for
k ≥ 0using bounded synthesis. To simplify the presentation, we present the stand-alone
problem with respect to a specification given as a universal co-Büchi automaton. The in-
tegration into the constraint system for the∀∗∃∗HyperLTL synthesis as presented in the
previous section is then straightforward. First, we present an extension to the transition
system model that incorporates the notion of constant lookahead. The idea of this ex-
tension is to replace the initial state s0 by a function init∶Υk → S that maps input se-
quences of length k to some state. Thus, the transition system observes the first k inputs,
chooses some initial state based on those inputs, and then progresses with the same pace
as the input sequence. Next, we define the run graph of such a systemSk = ⟨S , init, τ, l⟩
and an automatonA = ⟨Q , q0, δ, F⟩, where δ∶Q × Υ × Γ → Q, as the directed graph
(V , E) with the set of vertices V = S × Q × Υk , the initial vertices (s, q0, υ⃗) ∈ V
such that s = init(υ⃗) for every υ⃗ ∈ Υk , and the edge relation E ⊆ V × V satisfying
((s, q, υ1υ2⋯υk), (s′, q′, υ′1υ′2⋯υ′k)) ∈ E if, and only if

∃υk+1 ∈ Υ. s
υk+1ÐÐ→ s′ ∧ q′ ∈ δ(q, υ1, l(s)) ∧ ⋀

1≤i≤k
υ′i = υi+1 .

Thus, the run graph contains a prefix of the input sequence of length k.

Lemma 9.13. Given a universal co-Büchi automatonAand a k-lookahead transition systemSk .
Sk ⊧ A if, and only if, the run graphSk ×A is accepting.

Finally, synthesis amounts to solving the following constraint system:

∃λB∶ S × Q × Υk → B. ∃λN∶ S × Q × Υk → N.

∃init∶Υk → S . ∃τ∶ S × Υ → S . ∃l ∶ S → Γ.

(∀υ⃗ ∈ Υk . λB(init(υ⃗), q0, υ⃗)) ∧
∀υ1υ2⋯υk+1 ∈ Υk+1.∀s, s′ ∈ S .∀q, q′ ∈ Q .

(λB(s, q, υ1⋯υk) ∧ s′ = τ(s, υk+1) ∧ q′ ∈ δ(q, υ1, l(s)))
⇒ λB(s′, q′, υ2⋯υk+1) ∧ λN(s, q, υ1⋯υk) ⊵ λN(s′, q′, υ2⋯υk+1)

Corollary 9.14. Given some k ≥ 0, if the constraint system is satisfiable for some bound on the
size ofSk thenSk ⊧ A.

181

9. BOUNDED SYNTHESIS FROM HYPERPROPERTIES

9.3.2 Synthesis with Quantifier Alternations

We now build on the introduced techniques to solve the synthesis problem for HyperLTL
with quantifier alternation, that is, we search for implementations that satisfy the given
properties. In Section 8.2, we solved the synthesis problem for ∃∗∀∗HyperLTL by a re-
duction to the distributed synthesis problem. We present an alternative synthesis pro-
cedure that (1) introduces the necessary concepts for the synthesis of the∀∗∃∗ fragment
and that (2) strictly decomposes the choice of the existential trace quantifier from the
implementation.

Fix a formula of the form ∃m∀n .ψ. We again reduce the verification problem to the
problem of determining whether a run graph is accepting. As the existential quantifiers
do not depend on the universal ones, there is no future dependency and thus no need
for prophecy variables or bounded lookahead. Formally, S∃ is a tuple ⟨X , x0, µ, l∃⟩ such
that X is a set of states, x0 ∈ X is the designated initial state, µ∶X → X is the transition
function, and l∃∶X → Υm is the labeling function. S∃ produces one infinite sequence in
(Υm)ω, without having any knowledge about the behavior of the universally quantified
traces. The run graph is then (Sm ∣∣S∃)×Sn ×Aψ . The constraint system is built analo-
gously to Section 9.3.1, with the difference that the representation of the systemS is now
also uninterpreted. In the resulting SMT constraint system, we have two bounds, one for
the size of the implementationS and one for the size ofS∃.

Corollary 9.15. The bounded synthesis algorithm decides the realizability problem for
∃∗∀1 HyperLTL and is a semi-decision procedure for∃∗∀>1 HyperLTL.

The synthesis problem for formulas in the ∀∗∃∗HyperLTL fragment uses the same
reduction to a constraint system as the strategy synthesis in Section 9.3.1, with the only
difference that the transition systemS itself is uninterpreted. In the resulting SMT con-
straint systems, we have three bounds, the size of the implementationS , the size of the
strategyS∃, and the lookahead k.

Corollary 9.16. Given a HyperLTL formula∀n∃m .ψ whereψ is quantifier-free. ∀n∃m .ψ is re-
alizable if the SMT constraint system corresponding to the run graphSn × (Sm ∣∣S∃) ×Aψ is
satisfiable for some bounds onS ,S∃, and lookahead k.

9.4 Experimental Evaluation

We implemented a prototype synthesis tool, called BOSYHYPER2, for HyperLTL based on
the bounded synthesis algorithms described in Section 9.1 and 9.3. Furthermore, we im-
plemented the search for counterexamples proposed in Section 9.2.

We base our implementation on the LTL synthesis tool BOSY described in Sec-
tion 7.4.1. For efficiency, we split the specifications into two parts, a part containing the
linear (LTL) specification, and a part containing the hyperproperty given as HyperLTL for-
mula. Consequently, we build two constraint systems, one using the standard bounded

2BOSYHYPER is available at https://www.react.uni-saarland.de/tools/bosy/

182

https://www.react.uni-saarland.de/tools/bosy/

9.4. Experimental Evaluation

synthesis approach discuessed in Section 7.3 and one using the approach described in
Section 9.1. Before solving, those constraints are combined into a single SMT query. This
results in a much more concise constraint system compared to the one where the com-
plete specification is interpreted as a HyperLTL formula. For solving the SMT queries, we
use the solver Z3 [MB08]. We continue by describing the benchmarks used in our exper-
iments.

Symmetric mutual exclusion. Our first example demonstrates the ability to specify
symmetry in HyperLTL for a simple mutual exclusion protocol. Let r1 and r2 be input sig-
nals representing mutually exclusive requests to a critical section and g1/g2 the respective
grants to enter the section. Every request should be answered eventually(ri →gi)
for i ∈ {1, 2}, but not at the same time¬(g1 ∧ g2). The minimal LTL solution is de-
picted in Figure 9.6a. It is well known that no mutex protocol can ensure perfect symme-
try [MP95], thus when adding the symmetry constraint specified by the HyperLTL formula

∀π∃π′.((g1π ↔ g2π′) ∧ (g2π ↔ g1π′) ∧ (r1π ↔ r2π′) ∧ (r2π ↔ r1π′)) (9.4)

the formula becomes unrealizable. The formula asserts that for every execution, there is
an alternative execution were g1 and g2 as well as r1 and r2 are mirrored. An alternative
formulation can be derived by universal strengthening, that is reducing the∀∃ formula to
a ∀2 formula by encoding the knowledge of the existential trace selection into the for-
mula. For the universal strengthening∀π∀π′. (r1π ↮ r2π′)R(g1π ↔ g2π′)our tool pro-
duces the counterexample shown in Figure 9.6b. By adding another input signal tie, that
breaks the symmetry in case of simultaneous requests, the specification becomes realiz-
able with the witnessing transition system given in Figure 9.6c. The universal strengthen-
ing with tie breaker is∀π∀π′. ((r1π ↮ r2π′) ∨ (tieπ ↮ ¬tieπ′))R(g1π ↔ g2π′). Com-
pare and contrast this formulation to the one with alternation: We neither have to specify
the witnessing traces manually nor do we have to modify the symmetry constraint when
adding the symmetry breaker tie. In formulation with alternation, the HyperLTL speci-
fication stays as is, in fact, it does not even mention tie. Detailed solving results for the
different variants are given in Table 9.1. We further evaluated the same properties on a
version that forbids spurious grants. Here, the universal strengthening is stronger than
needed, resulting in a larger solution than the one synthesized from Equation 9.4. We
verified that the transition system resulting from the strengthening by model checking
the synthesized solution with the∀∃ formula from Equation 9.4.

Beyond symmetry, we can specify properties over the scheduling, like the question
whether the scheduling introduces artificial waiting times. To show that this is not the
case, we have to provide, for every execution, an alternative execution trace where always
at most one request is active:

∀π∃π′.((g1π ↔ g2π′) ∧ (g2π ↔ g1π′) ∧ ¬(r1π′ ∧ r2π′))

In other words, we defend our scheduling by providing a wait-free alternative path.

183

9. BOUNDED SYNTHESIS FROM HYPERPROPERTIES

g1 g2

T

T

(a) Non-symmetric solution

T/r1πr2πr1π′r2π′

(b) Counterexample to symme-
try

g1 g2

tie ¬tie
T

T

(c) Symmetry breaking solution

Figure 9.6: Synthesized solution of the mutual exclusion protocols.

Table 9.1: Results of the mutex benchmarks. When no hyperproperty is given, only the
LTL part is used. A given implementation is denoted by “(states)”.

Instance Hyperproperty ∣S ∣ ∣S∃∣ Time[s]

Mutex
— 2 – < 1
symmetry (∀2-strengthened) 3 – 3.3
symmetry (∀∃) 3 1 3.4

Mutex w/o spurious grants

— 3 – < 1
symmetry (∀2-strengthened) 5 – 423
symmetry (∀∃) (5) 1 1.2
symmetry (∀∃) 3 1 3.9
wait-free (∀∃) 3 3 46
symmetry (∀∃) + wait-free (∀∃) 3 1+3 840

Dining Cryptographers. Recap the dining cryptographers problem: Three cryptogra-
phersCa,Cb , andCc sit at a table in a restaurant having dinner and either one of the cryp-
tographers or, alternatively, the NSA must pay for their meal. Is there a protocol where
each cryptographer can find out whether it was a cryptographer who paid or the NSA, but
cannot find out which cryptographer paid the bill?

In order to do so, every cryptographerC has to be able to plausibly deny that she has
paid, that is, for every possible execution of the protocol there has to be an alternative
execution with the same observations despite the fact thatC has not paid. We formalize
the deniability for cryptographerCa (Cb andCc are dual) as

∀π. ∃π′.(¬paidaπ′ ∧ (outaπ ↔ outaπ′) ∧ (outbπ ↔ outbπ′) ∧ (outcπ ↔ outcπ′)).

The setting is also distributed with four system processes: The three cryptographers (Ca,
Cb , and Cc), where each cryptographer shares a secret bit with each other (denoted sab
for the shared secret ofCa andCb). The fourth entity is the process that receives the out-
put from the cryptographers (outa, outb, and outc) and computes the result whether one
of them has paid the bill (output paidgroup). The architecture is given in Figure 9.7.

We now formalize this as a HyperLTL synthesis problem. The set of atomic proposi-

184

9.4. Experimental Evaluation

out

Ca Cc

Cb

penv

outa
outb

outc

paidgroup

paida,
sab, sac

paidc ,
sbc , sacpaidb,

sab, sbc

paidNSA

Figure 9.7: The architecture of the dining cryptographers problem with three cryptogra-
phers.

tions is partitioned into system and environment outputs given as

O = {outa , outb , outc , paidgroup} and

I = {paidNSA, paida , paidb , paidc , sab , sac , sbc} .

The functional (LTL) requirements are simple, assuming that exactly one of paidNSA,
paida, paidb, and paidc is true, the output of paidgroup is the negation of paidNSA. As an
LTL formula this can be written as

exactly-one(paida , paidb , paidc , paidNSA)→(paidgroup ↔ ¬paidNSA) .

The distributed architecture is encoded as a conjunction of HyperLTL formulas ensuring
independence of non-observable inputs, i.e.,

∀π∀π′.Dπ,π′
{paida ,sab ,sac}↦{outa}

∧ Dπ,π′
{paidb ,sab ,sbc}↦{outb}

∧ Dπ,π′
{paidc ,sac ,sbc}↦{outc}

∧ Dπ,π′
{outa ,outb ,outc}↦{paidgroup}

In a previous formulation [Fin+18a] we used a universal strengthening were the in-
distinguishable executions that witnessed the required deniability were explicitly enu-
merated in order to encode the synthesis problem in∀∗HyperLTL, e.g., forCa andCb:

∀π∀π′.((paidaπ ∧ ¬paidaπ′) ∧ (¬paidbπ ∧ paidbπ′)
∧ (sabπ ↮ sabπ′) ∧ (sbcπ ↔ sbcπ′) ∧ (sacπ ↔ sacπ′)
→ (outaπ ↔ outaπ′) ∧ (outbπ ↔ outbπ′)) .

Neither LTL synthesis nor its distributed variant can express the combination of those
requirements. Our HyperLTL synthesis tool BOSYHYPER is able to synthesize a realizing
protocol automatically. A closer look in the implementation reveals, that the tool has
synthesized the XOR scheme presented in the original solution [Cha85].

185

9. BOUNDED SYNTHESIS FROM HYPERPROPERTIES

Table 9.2: Results of the dining cryptographers benchmarks. A given implementation is
denoted by “(states)”.

Instance Hyperproperty ∣S ∣ ∣S∃∣ Time[s]

Dining Cryptographers

distributed (∀2) 1 – 44
distr. (∀2) + deniability (∀2-strength.) 1 – 61
distributed (∀2) + deniability (∀∃) (1) 1 1.2
distributed (∀2) + deniability (∀∃) 1 1 12.6

Distributed and fault-tolerant systems. In Section 8.3 we presented a reduction of ar-
bitrary distributed architectures to HyperLTL. As an example for our evaluation, consider
a setting with two processes, one for encoding input signals and one for decoding. Both
processes can be synthesized simultaneously using a single HyperLTL specification. The
(linear) correctness condition states that the decoded signal is always equal to the in-
puts given to the encoder. Furthermore, the encoder and decoder should solely depend
on the inputs and the encoded signal, respectively. Additionally, we can specify desired
properties about the encoding like fault-tolerance [FT15] or Hamming distance of code
words [FRS15]. An example solution for 2 input bits and 3 encoded bits is shown in Fig-
ure 9.8. For the encoding, we required that for every change in the input, two encoding
bits change. The synthesized solution uses a parity bit as the third encoded bit and the
encoding and decoding parts are strictly independent. Detailed solving results are re-
ported in Table 9.3 where i- j-x means i input bits, j encoded bits, and x represents the
property. The property is either tolerance against a single Byzantine signal failure or a
guaranteed Hamming distance of code words.

CAP Theorem. The CAP Theorem due to Brewer [Bre00] states that it is impossible to
design a distributed system that provides Consistency, Availability, and Partition toler-
ance (CAP) simultaneously. This example has been considered before [FT15] to evaluate
a technique that could automatically detect unrealizability. However, when we drop ei-
ther Consistency, Availability, or Partition tolerance, the corresponding instances (AP, CP,
and CA) become realizable, which the previous work was not able to prove. We show that
our implementation can show both, unrealizability of CAP and realizability of AP, CP, and
CA.

We recap the formal encoding [FT15] using HyperLTL. There are two differences, we
allow for cyclic architectures and we show the Mealy version (the Moore version needs 3
consecutive before the output, due to the delayed flow of information). We assume
there is a fixed number n of nodes, that every node implements the same service, and
that the architecture is fully connected. We use the variables reqi and outi to denote in-
put and output of node i, respectively. The consistency and availability requirements
are encoded as the LTL formulas (⋀1≤i<n outi ↔ out i+1) and ((⋁1≤i≤n reqi) ↔
(⋁1≤i≤n outi)). The partition tolerance is modeled in a way that there is always at most

186

9.4. Experimental Evaluation

2

i1

4

i2

6

ienc1

8

ienc2

10

ienc3

1416

18

20

12

2224

2628

30

32

34

3638

40

42

44

enc2

enc3enc1 dec1 dec2

s0

0

Figure 9.8: Representation of the solution for an encoder with 2 input bits and 3 encoded
bits as And-Inverter-Graph. The solution is produced by BOSYHYPER where the specifica-
tion is given as a single HyperLTL formula specifying both, the encoder and the decoder,
as well as the distributivity constraints. Note that although BOSYHYPER produces a global
implementation, the implementation is actually distributed as decoder and encoder do
not share gates.

penv

p1 p2

req1 req2
s1 → r2

s2 → r1out1 out2

Figure 9.9: Visualization of the architecture for the CAP-2 instance.

one node partitioned from the rest of the system. For two nodes, we get the LTL formula

((r2 ↔ s1) ∨(r1 ↔ s2))→((out1 ↔ out2) ∧ ((req1 ∨ req2)↔ (out1 ∨ out2)))

and additionally the HyperLTL constraint∀π∀π′.Dπ,π′
{req1 ,r2}↦{s1 ,out1}

∧Dπ,π′
{req2 ,r1}↦{s2 ,out2}

.
The corresponding architecture is shown in Figure 9.9. The results are given in Table 9.3.

Long-term information flow. Previous work on model-checking hyperproper-
ties [FRS15] found that an implementation for the commonly used I2C bus protocol

187

9. BOUNDED SYNTHESIS FROM HYPERPROPERTIES

could remember input values ad infinitum. For example, it could not be verified that
information given to the implementation eventually leaves it, i.e., is forgotten. This
is especially unfortunate in high security contexts. We consider a simple bus protocol
which is inspired by the widely used I2C protocol. Our example protocol has the inputs
send for initiating a transmission, in for the value that should be transferred, and an
acknowledgment bit indicating successful transmission. The bus master waits in an idle
state until a send is received. Afterward, it transmits a header sequence, followed by
the value of in, waits for an acknowledgement and then indicates success or failure to the
sender before returning to the idle state. We specify the property that the input has no
influence on the data that is send, which is obviously violated (instance NI1). As a second
property, we check that this information leak cannot happen arbitrary long (NI2) for
which there is a realizing implementation.

We give the LTL specification used in the benchmarks in the following

idle
∧((idle ∧ ¬send)→idle)
∧((idle ∧ send)→ (start ∧2transmit ∧ (2data↔ in)))
∧(transmit →waitForAck)
∧((waitForAck ∧ ack)↔success)
∧((waitForAck ∧ ¬ack)↔failure)
∧(success→idle)
∧(failure→idle)
∧(mutex(idle, start, transmit,waitForAck, success, failure))

Additionally, we used the following HyperLTL specifications

∀π∀π′.((sendπ ↔ sendπ′) ∧ (ackπ ↔ ackπ′))→(dataπ ↔ dataπ′) (NI1)
∀π∀π′.((sendπ ↔ sendπ′) ∧ (ackπ ↔ ackπ′))

→ ((inπ ↔ inπ′)→(dataπ ↔ dataπ′)) (NI2)

Results. Table 9.3 reports on the results of the ∀∗HyperLTL benchmarks. We distin-
guish between state-labeled (Moore) and transition-labeled (Mealy) transition systems.
Note that the counterexample strategies use the opposite transition system, i.e., a Mealy
system strategy corresponds to a state-labeled (Moore) environment strategy. Typically,
Mealy strategies are more compact, i.e., need smaller transition systems and this is con-
firmed by our experiments. BOSYHYPER is able to solve most of the examples, providing
realizing implementations or counterexamples. Regrading the unrealizable benchmarks
we observe that usually two simultaneously generated paths (k = 2) are enough with the
exception of the encoder example. Overall the results are encouraging showing that we
can solve a variety of instances with non-trivial information flow.

188

9.5. Summary

Table 9.3: Results of BOSYHYPER on the ∀∗HyperLTL benchmarks sets described in Sec-
tion 6.5. They ran on a machine with a dual-core Core i7, 3.3 GHz, and 16 GB memory.

Benchmark Instance Result States Time[sec.]
Moore Mealy Moore Mealy

Encoder/Decoder

1-2-hamming-2 realizable 4 1 1.6 1.3
1-2-fault-tolerant unrealizable (k = 2) 1 - 54.9 -
1-3-fault-tolerant realizable 4 1 151.7 1.7
2-2-hamming-2 unrealizable (k = 3) - 1 - 10.6
2-3-hamming-2 realizable 16 1 > 1 h 1.5
2-3-hamming-3 unrealizable (k = 3) - 1 - 126.7

CAP Theorem

cap-2-non-dist. realizable 8 1 7.0 1.3
cap-2 unrealizable (k = 2) 1 - 1 823.9 -
ca-2 realizable - 1 - 4.4
ca-3 realizable - 1 - 15.0
cp-2 realizable 1 1 1.8 1.6
cp-3 realizable 1 1 3.2 10.6
ap-2 realizable - 1 - 2.0
ap-3 realizable - 1 - 43.4

Bus Protocol NI1 unrealizable (k = 2) 1 1 75.2 69.6
NI2 realizable 8 8 24.1 33.9

9.5 Summary

In this chapter, we presented semi-decision procedures for the realizability problem of
HyperLTL. We gave algorithms that can efficiently show the realizability and unrealiz-
ability of universal HyperLTL. By reducing existential trace quantification to strategic
choice and bounded lookahead, we reduced the realizability problem with quantifier-
alternations to the alternation-free fragment. Using case studies whose properties go
well beyond state-of-the-art synthesis tools, we showed that we can synthesize imple-
mentations with non-trivial information flow automatically.

189

Chapter 10

Conclusions & Outlook

We have developed symbolic methods for the synthesis problem of reactive systems.
Based on a reduction to the satisfiability problem of QBF and DQBF, we have constructed
a more succinct encoding of the bounded synthesis approach. Using the solving algo-
rithms introduced in the first part of this thesis, we were able to show that our method
significantly improves over the previous bounded synthesis encoding based on a reduc-
tion to a decidable first-order theory. Further, we showed that, in addition to produc-
ing state-space optimal solutions, the measurement in terms of the size of the transition
function is often significantly smaller than state-of-the-art synthesis tools.

Further research questions include using a more modular approach to handling LTL
formulas: Frequently, it is not even possible to construct an encoding as the automaton
conversion from a single, monolithic LTL formula time out. The encodings can be im-
proved, too: For example, symmetry breaking constraints have been successful in many
approaches that use SAT solving and may significantly improve solver performance. Fur-
ther, a more specialized encoding to conjunctive normal form may improve performance
and may obviate the need for preprocessing.

This thesis has established DQBF solving as a viable alternative to QBF solving for the
bounded synthesis from LTL. In theory, we can also use DQBF as a target logic for symbolic
encodings of the HyperLTL synthesis problem. This, however, needs to go hand-in-hand
with a suitable solving algorithm and implementation; the current prototypical clausal
abstraction solver does not always perform better than the SMT encoding.

This thesis also contributes to the theory and practice of solving quantified Boolean
formulas. We have shown that the underlying concept of the clausal abstraction al-
gorithm can be applied to a variety of different quantified formulas: prenex and non-
prenex, clausal and non-clausal, as well as linear and branching quantification. On the
theory side, we have shown how to combine Q-resolution and ∀Exp+Res to a unified
proof system that combines the strength of both of them. This result leads the way to
an outstanding performance of the implementations in the annual QBF competition.

The implementation of clausal abstraction would benefit from heuristics that guide
which of the extensions to use for a given formula. For example, it is known that the num-
ber of alternations of the quantifier prefix influences the decision between search-based

191

10. CONCLUSIONS & OUTLOOK

and expansion-based solving, both in theory [Bey+19] and practice [LE18a]. Further, sup-
porting the QRAT proof format should be possible with the benefit of being able to cer-
tify the complete solving pipeline, from preprocessing to solving.

192

Bibliography

[AB02] Abdelwaheb Ayari and David A. Basin. „QUBOS: Deciding Quantified
Boolean Logic Using Propositional Satisfiability Solvers“. In: Proceedings
of FMCAD. Vol. 2517. LNCS. Springer, 2002, pp. 187–201. DOI: 10.1007/3-
540-36126-X_12.

[AHK97] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. „Alternating-
time Temporal Logic“. In: Proceedings of FOCS. IEEE Computer Society, 1997,
pp. 100–109. DOI: 10.1109/SFCS.1997.646098.

[Bab+12] Tomás Babiak, Mojmıŕ Kretıńský, Vojtech Rehák, and Jan Strejcek. „LTL to
Büchi Automata Translation: Fast and More Deterministic“. In: Proceedings of
TACAS. Vol. 7214. LNCS. Springer, 2012, pp. 95–109. DOI: 10.1007/978-3-
642-28756-5_8.

[Bal+15] Valeriy Balabanov, Jie-Hong Roland Jiang, Mikolas Janota, and Magdalena
Widl. „Efficient Extraction of QBF (Counter)models from Long-Distance Res-
olution Proofs“. In: Proceedings of AAAI. AAAI Press, 2015, pp. 3694–3701. URL:
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/
view/9419.

[Bal+16a] Valeriy Balabanov, Jie-Hong Roland Jiang, Christoph Scholl, Alan
Mishchenko, and Robert K. Brayton. „2QBF: Challenges and Solutions“.
In: Proceedings of SAT. Vol. 9710. LNCS. Springer, 2016, pp. 453–469. DOI:
10.1007/978-3-319-40970-2_28.

[Bal+16b] Tomás Balyo, Armin Biere, Markus Iser, and Carsten Sinz. „SAT Race 2015“. In:
Artif. Intell. 241 (2016), pp. 45–65. DOI: 10.1016/j.artint.2016.08.
007.

[BB09] Hans Kleine Büning and Uwe Bubeck. „Theory of Quantified Boolean Formu-
las“. In: Handbook of Satisfiability. Vol. 185. Frontiers in Artificial Intelligence
and Applications. IOS Press, 2009, pp. 735–760. DOI: 10.3233/978- 1-
58603-929-5-735.

[BCJ12] Valeriy Balabanov, Hui-Ju Katherine Chiang, and Jie-Hong Roland Jiang.
„Henkin Quantifiers and Boolean Formulae“. In: Proceedings of SAT. Vol. 7317.
LNCS. Springer, 2012, pp. 129–142. DOI: 10.1007/978-3-642-31612-
8_11.

193

https://doi.org/10.1007/3-540-36126-X_12
https://doi.org/10.1007/3-540-36126-X_12
https://doi.org/10.1109/SFCS.1997.646098
https://doi.org/10.1007/978-3-642-28756-5_8
https://doi.org/10.1007/978-3-642-28756-5_8
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9419
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9419
https://doi.org/10.1007/978-3-319-40970-2_28
https://doi.org/10.1016/j.artint.2016.08.007
https://doi.org/10.1016/j.artint.2016.08.007
https://doi.org/10.3233/978-1-58603-929-5-735
https://doi.org/10.3233/978-1-58603-929-5-735
https://doi.org/10.1007/978-3-642-31612-8_11
https://doi.org/10.1007/978-3-642-31612-8_11

BIBLIOGRAPHY

[BCJ14a] Valeriy Balabanov, Hui-Ju Katherine Chiang, and Jie-Hong R. Jiang. „Henkin
quantifiers and Boolean formulae: A certification perspective of DQBF“. In:
Theor. Comput. Sci. 523 (2014), pp. 86–100. DOI: 10.1016/j.tcs.2013.
12.020.

[BCJ14b] Olaf Beyersdorff, Leroy Chew, and Mikolas Janota. „On Unification of QBF
Resolution-Based Calculi“. In: Proceedings of MFCS. Vol. 8635. LNCS. Springer,
2014, pp. 81–93. DOI: 10.1007/978-3-662-44465-8_8.

[BCJ15] Olaf Beyersdorff, Leroy Chew, and Mikolás Janota. „Proof Complexity of
Resolution-based QBF Calculi“. In: Proceedings of STACS. Vol. 30. LIPIcs.
Schloss Dagstuhl – LZI, 2015, pp. 76–89. DOI: 10.4230/LIPIcs.STACS.
2015.76.

[BDR11] Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. „Secure information
flow by self-composition“. In: Mathematical Structures in Computer Science 21.6
(2011), pp. 1207–1252. DOI: 10.1017/S0960129511000193.

[Ben04] Marco Benedetti. „Evaluating QBFs via Symbolic Skolemization“. In: Proceed-
ings of LPAR. Vol. 3452. LNCS. Springer, 2004, pp. 285–300. DOI: 10.1007/
978-3-540-32275-7_20.

[Ben05a] Marco Benedetti. „Extracting Certificates from Quantified Boolean Formu-
las“. In: Proceedings of IJCAI. Professional Book Center, 2005, pp. 47–53. URL:
http://ijcai.org/Proceedings/05/Papers/0985.pdf.

[Ben05b] Marco Benedetti. „sKizzo: A Suite to Evaluate and Certify QBFs“. In: Proceed-
ings of CADE-20. Vol. 3632. LNCS. Springer, 2005, pp. 369–376. DOI: 10 .
1007/11532231_27.

[Bey+18] Olaf Beyersdorff, Joshua Blinkhorn, Leroy Chew, Renate Schmidt, and Mar-
tin Suda. „Reinterpreting Dependency Schemes: Soundness Meets Incom-
pleteness in DQBF“. In: J. Autom. Reasoning (2018), pp. 1–27. DOI: 10.1007/
s10817-018-9482-4.

[Bey+19] Olaf Beyersdorff, Leroy Chew, Judith Clymo, and Meena Mahajan. „Short
Proofs in QBF Expansion“. In: Proceedings of SAT. Vol. 11628. LNCS. Springer,
2019, pp. 19–35. DOI: 10.1007/978-3-030-24258-9_2.

[BFT17] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard: Ver-
sion 2.6. Tech. rep. Department of Computer Science, The University of Iowa,
2017. URL: http://www.SMT-LIB.org.

[Bie+99] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu.
„Symbolic Model Checking without BDDs“. In: Proceedings of TACAS. Vol. 1579.
LNCS. Springer, 1999, pp. 193–207. DOI: 10.1007/3-540-49059-0_14.

[Bie04] Armin Biere. „Resolve and Expand“. In: Proceedings of SAT. Vol. 3542. LNCS.
Springer, 2004, pp. 59–70. DOI: 10.1007/11527695_5.

194

https://doi.org/10.1016/j.tcs.2013.12.020
https://doi.org/10.1016/j.tcs.2013.12.020
https://doi.org/10.1007/978-3-662-44465-8_8
https://doi.org/10.4230/LIPIcs.STACS.2015.76
https://doi.org/10.4230/LIPIcs.STACS.2015.76
https://doi.org/10.1017/S0960129511000193
https://doi.org/10.1007/978-3-540-32275-7_20
https://doi.org/10.1007/978-3-540-32275-7_20
http://ijcai.org/Proceedings/05/Papers/0985.pdf
https://doi.org/10.1007/11532231_27
https://doi.org/10.1007/11532231_27
https://doi.org/10.1007/s10817-018-9482-4
https://doi.org/10.1007/s10817-018-9482-4
https://doi.org/10.1007/978-3-030-24258-9_2
http://www.SMT-LIB.org
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/11527695_5

Bibliography

[Bie08] Armin Biere. „PicoSAT Essentials“. In: JSAT 4.2-4 (2008), pp. 75–97. URL:
https://satassociation.org/jsat/index.php/jsat/article/
view/45.

[Bir67] Garrett Birkhoff. Lattice theory. eng. American Math. Soc., 1967.

[BJ12] Valeriy Balabanov and Jie-Hong R. Jiang. „Unified QBF certification and its
applications“. In: Formal Methods in System Design 41.1 (2012), pp. 45–65. DOI:
10.1007/s10703-012-0152-6.

[BJ15] Nikolaj Bjørner and Mikolás Janota. „Playing with Quantified Satisfaction“.
In: Proceedings of LPAR. Vol. 35. EPiC Series in Computing. EasyChair, 2015,
pp. 15–27.

[BK06] Uwe Bubeck and Hans Kleine Büning. „Dependency Quantified Horn Formu-
las: Models and Complexity“. In: Proceedings of SAT. Vol. 4121. LNCS. Springer,
2006, pp. 198–211. DOI: 10.1007/11814948_21.

[BKS14] Roderick Bloem, Robert Könighofer, and Martina Seidl. „SAT-Based Syn-
thesis Methods for Safety Specs“. In: Proceedings of VMCAI. Vol. 8318. LNCS.
Springer, 2014, pp. 1–20. DOI: 10.1007/978-3-642-54013-4_1.

[BL16] Tomás Balyo and Florian Lonsing. „HordeQBF: A Modular and Massively
Parallel QBF Solver“. In: Proceedings of SAT. Vol. 9710. LNCS. Springer, 2016,
pp. 531–538. DOI: 10.1007/978-3-319-40970-2_33.

[BL69] J. Richard Büchi and Lawrence H. Landweber. „Solving Sequential Con-
ditions by Finite-State Strategies“. English. In: Transactions of the American
Mathematical Society 138 (1969). ISSN: 00029947. URL: http://www.jstor.
org/stable/1994916.

[BLJ16] Valeriy Balabanov, Shuo-Ren Lin, and Jie-Hong R. Jiang. „Flexibility and Op-
timization of QBF Skolem-Herbrand Certificates“. In: IEEE Trans. on CAD of
Integrated Circuits and Systems 35.9 (2016), pp. 1557–1568. DOI: 10 . 1109 /
TCAD.2015.2512906.

[Blo+14] Roderick Bloem, Uwe Egly, Patrick Klampfl, Robert Könighofer, and Florian
Lonsing. „SAT-based methods for circuit synthesis“. In: Proceedings of FMCAD.
IEEE, 2014, pp. 31–34. DOI: 10.1109/FMCAD.2014.6987592.

[Blo+18] Roderick Bloem, Nicolas Braud-Santoni, Vedad Hadzic, Uwe Egly, Florian
Lonsing, and Martina Seidl. „Expansion-Based QBF Solving Without Recur-
sion“. In: Proceedings of FMCAD. IEEE, 2018, pp. 1–10. DOI: 10.23919/FMCAD.
2018.8603004.

[BLS11] Armin Biere, Florian Lonsing, and Martina Seidl. „Blocked Clause Elimina-
tion for QBF“. In: Proceedings of CADE. Vol. 6803. LNCS. Springer, 2011, pp. 101–
115. DOI: 10.1007/978-3-642-22438-6_10.

195

https://satassociation.org/jsat/index.php/jsat/article/view/45
https://satassociation.org/jsat/index.php/jsat/article/view/45
https://doi.org/10.1007/s10703-012-0152-6
https://doi.org/10.1007/11814948_21
https://doi.org/10.1007/978-3-642-54013-4_1
https://doi.org/10.1007/978-3-319-40970-2_33
http://www.jstor.org/stable/1994916
http://www.jstor.org/stable/1994916
https://doi.org/10.1109/TCAD.2015.2512906
https://doi.org/10.1109/TCAD.2015.2512906
https://doi.org/10.1109/FMCAD.2014.6987592
https://doi.org/10.23919/FMCAD.2018.8603004
https://doi.org/10.23919/FMCAD.2018.8603004
https://doi.org/10.1007/978-3-642-22438-6_10

BIBLIOGRAPHY

[BM08] Marco Benedetti and Hratch Mangassarian. „QBF-Based Formal Verification:
Experience and Perspectives“. In: JSAT 5.1-4 (2008), pp. 133–191. URL: https:
//satassociation.org/jsat/index.php/jsat/article/view/
62.

[BM10] Robert K. Brayton and Alan Mishchenko. „ABC: An Academic Industrial-
Strength Verification Tool“. In: Proceedings of CAV. Vol. 6174. LNCS. Springer,
2010, pp. 24–40. DOI: 10.1007/978-3-642-14295-6_5.

[Boh+12] Aaron Bohy, Véronique Bruyère, Emmanuel Filiot, Naiyong Jin, and Jean-
François Raskin. „Acacia+, a Tool for LTL Synthesis“. In: Proceedings of CAV.
Vol. 7358. LNCS. Springer, 2012, pp. 652–657. DOI: 10.1007/978-3-642-
31424-7_45.

[Bra11] Aaron R. Bradley. „SAT-Based Model Checking without Unrolling“. In: Pro-
ceedings of VMCAI. Vol. 6538. LNCS. Springer, 2011, pp. 70–87. DOI: 10.1007/
978-3-642-18275-4_7.

[Bre00] Eric A. Brewer. „Towards robust distributed systems (abstract)“. In: Proceed-
ings of PODC. ACM, 2000, p. 7. DOI: 10.1145/343477.343502.

[Bri+11] Thomas Brihaye, Véronique Bruyère, Laurent Doyen, Marc Ducobu, and
Jean-François Raskin. „Antichain-Based QBF Solving“. In: Proceedings of ATVA.
Vol. 6996. LNCS. Springer, 2011, pp. 183–197. DOI: 10.1007/978-3-642-
24372-1_14.

[Bry86] Randal E. Bryant. „Graph-Based Algorithms for Boolean Function Manipula-
tion“. In: IEEE Trans. Computers 35.8 (1986), pp. 677–691. DOI: 10.1109/TC.
1986.1676819.

[BSG17] Vincent Bindschaedler, Reza Shokri, and Carl A. Gunter. „Plausible Denia-
bility for Privacy-Preserving Data Synthesis“. In: PVLDB 10.5 (2017), pp. 481–
492. DOI: 10.14778/3055540.3055542. URL: http://www.vldb.org/
pvldb/vol10/p481-bindschaedler.pdf.

[Bur+90] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and L. J.
Hwang. „Symbolic Model Checking: 1020 States and Beyond“. In: Proceedings
of LICS. IEEE Computer Society, 1990, pp. 428–439. DOI: 10.1109/LICS.
1990.113767.

[CCS17] Anrin Chakraborti, Chen Chen, and Radu Sion. „DataLair: Efficient Block
Storage with Plausible Deniability against Multi-Snapshot Adversaries“. In:
PoPETs 2017.3 (2017), p. 179. DOI: 10.1515/popets-2017-0035.

[Cha85] David Chaum. „Security Without Identification: Transaction Systems to
Make Big Brother Obsolete“. In: Commun. ACM 28.10 (1985), pp. 1030–1044.
DOI: 10.1145/4372.4373.

[CHP10] Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman. „Strategy
logic“. In: Inf. Comput. 208.6 (2010), pp. 677–693. DOI: 10 . 1016 / j . ic .
2009.07.004.

196

https://satassociation.org/jsat/index.php/jsat/article/view/62
https://satassociation.org/jsat/index.php/jsat/article/view/62
https://satassociation.org/jsat/index.php/jsat/article/view/62
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-642-31424-7_45
https://doi.org/10.1007/978-3-642-31424-7_45
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1145/343477.343502
https://doi.org/10.1007/978-3-642-24372-1_14
https://doi.org/10.1007/978-3-642-24372-1_14
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.14778/3055540.3055542
http://www.vldb.org/pvldb/vol10/p481-bindschaedler.pdf
http://www.vldb.org/pvldb/vol10/p481-bindschaedler.pdf
https://doi.org/10.1109/LICS.1990.113767
https://doi.org/10.1109/LICS.1990.113767
https://doi.org/10.1515/popets-2017-0035
https://doi.org/10.1145/4372.4373
https://doi.org/10.1016/j.ic.2009.07.004
https://doi.org/10.1016/j.ic.2009.07.004

Bibliography

[CHR16] Chih-Hong Cheng, Yassine Hamza, and Harald Ruess. „Structural Synthe-
sis for GXW Specifications“. In: Proceedings of CAV. Vol. 9779. LNCS. Springer,
2016, pp. 95–117. DOI: 10.1007/978-3-319-41528-4_6.

[Chu57] Alonzo Church. „Application of Recursive Arithmetic to the Problem of Cir-
cuit Synthesis“. In: Summaries of the Summer Institute of Symbolic Logic 1 (1957),
pp. 3–50.

[CIP09] Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. „The Complex-
ity of Satisfiability of Small Depth Circuits“. In: Proceedings of IWPEC. Vol. 5917.
LNCS. Springer, 2009, pp. 75–85. DOI: 10.1007/978-3-642-11269-0_6.

[Cla+00] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
„Counterexample-Guided Abstraction Refinement“. In: Proceedings of CAV.
Vol. 1855. LNCS. Springer, 2000, pp. 154–169. DOI: 10.1007/10722167_15.

[Cla+14] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micin-
ski, Markus N. Rabe, and César Sánchez. „Temporal Logics for Hyperproper-
ties“. In: Proceedings of POST. Vol. 8414. LNCS. Springer, 2014, pp. 265–284.
DOI: 10.1007/978-3-642-54792-8_15.

[CLR17] Chih-Hong Cheng, Edward A. Lee, and Harald Ruess. „autoCode4: Struc-
tural Controller Synthesis“. In: Proceedings of TACAS. Vol. 10205. LNCS. 2017,
pp. 398–404. DOI: 10.1007/978-3-662-54577-5_23.

[Coe+19] Norine Coenen, Bernd Finkbeiner, César Sánchez, and Leander Tentrup.
„Verifying Hyperliveness“. In: Proceedings of CAV. Vol. 11561. LNCS. Springer,
2019, pp. 121–139. DOI: 10.1007/978-3-030-25540-4_7.

[Coo+19] Simon Cooksey, Sarah Harris, Mark Batty, Radu Grigore, and Mikolás Janota.
„PrideMM: A Solver for Relaxed Memory Models“. In: CoRR abs/1901.00428
(2019). arXiv: 1901 . 00428. URL: http : / / arxiv . org / abs / 1901 .
00428.

[CS10] Michael R. Clarkson and Fred B. Schneider. „Hyperproperties“. In: Journal of
Computer Security 18.6 (2010), pp. 1157–1210. DOI: 10.3233/JCS- 2009-
0393.

[CW16] Günther Charwat and Stefan Woltran. „Dynamic Programming-based QBF
Solving“. In: Proceedings of QBF@SAT. Vol. 1719. CEUR Workshop Proceedings.
CEUR-WS.org, 2016, pp. 27–40.

[DAr+17] Pedro R. D’Argenio, Gilles Barthe, Sebastian Biewer, Bernd Finkbeiner, and
Holger Hermanns. „Is Your Software on Dope? - Formal Analysis of Surrep-
titiously ”enhanced” Programs“. In: Proceedings of ESOP. Vol. 10201. LNCS.
Springer, 2017, pp. 83–110. DOI: 10.1007/978-3-662-54434-1_4.

[DF09] Rayna Dimitrova and Bernd Finkbeiner. „Synthesis of Fault-Tolerant Dis-
tributed Systems“. In: Proceedings of ATVA. Vol. 5799. LNCS. Springer, 2009,
pp. 321–336. DOI: 10.1007/978-3-642-04761-9_24.

197

https://doi.org/10.1007/978-3-319-41528-4_6
https://doi.org/10.1007/978-3-642-11269-0_6
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-662-54577-5_23
https://doi.org/10.1007/978-3-030-25540-4_7
https://arxiv.org/abs/1901.00428
http://arxiv.org/abs/1901.00428
http://arxiv.org/abs/1901.00428
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.1007/978-3-662-54434-1_4
https://doi.org/10.1007/978-3-642-04761-9_24

BIBLIOGRAPHY

[DHK05] Nachum Dershowitz, Ziyad Hanna, and Jacob Katz. „Bounded Model Check-
ing with QBF“. In: Proceedings of SAT. Vol. 3569. LNCS. Springer, 2005, pp. 408–
414. DOI: 10.1007/11499107_32.

[Dur+16] Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille, Thibaud
Michaud, Etienne Renault, and Laurent Xu. „Spot 2.0 - A Framework for
LTL and ω-Automata Manipulation“. In: Proceedings of ATVA. Vol. 9938. LNCS.
2016, pp. 122–129. DOI: 10.1007/978-3-319-46520-3_8.

[EF17] Rüdiger Ehlers and Bernd Finkbeiner. „Symmetric Synthesis“. In: Proceedings
of IARCS. Vol. 93. LIPIcs. Schloss Dagstuhl – LZI, 2017, 26:1–26:13. DOI: 10.
4230/LIPIcs.FSTTCS.2017.26.

[Egl+17] Uwe Egly, Martin Kronegger, Florian Lonsing, and Andreas Pfandler. „Con-
formant planning as a case study of incremental QBF solving“. In: Ann. Math.
Artif. Intell. 80.1 (2017), pp. 21–45. DOI: 10.1007/s10472-016-9501-2.

[Egl16] Uwe Egly. „On Stronger Calculi for QBFs“. In: Proceedings of SAT. Vol. 9710.
LNCS. Springer, 2016, pp. 419–434. DOI: 10.1007/978-3-319-40970-
2_26.

[Ehl11] Rüdiger Ehlers. „Unbeast: Symbolic Bounded Synthesis“. In: Proceedings of
TACAS. Vol. 6605. LNCS. Springer, 2011, pp. 272–275. DOI: 10.1007/978-
3-642-19835-9_25.

[Ehl12] Rüdiger Ehlers. „Symbolic bounded synthesis“. In: Formal Methods in System
Design 40.2 (2012), pp. 232–262. DOI: 10.1007/s10703-011-0137-x.

[ELW13] Uwe Egly, Florian Lonsing, and Magdalena Widl. „Long-Distance Resolution:
Proof Generation and Strategy Extraction in Search-Based QBF Solving“. In:
Proceedings of LPAR. Vol. 8312. LNCS. Springer, 2013, pp. 291–308. DOI: 10 .
1007/978-3-642-45221-5_21.

[EM12] Rüdiger Ehlers and Daniela Moldovan. „Sparse Positional Strategies for
Safety Games“. In: Proceedings of SYNT. Vol. 84. EPTCS. 2012, pp. 1–16. DOI:
10.4204/EPTCS.84.1.

[EMB11] Niklas Eén, Alan Mishchenko, and Robert K. Brayton. „Efficient implementa-
tion of property directed reachability“. In: Proceedings of FMCAD. FMCAD Inc.,
2011, pp. 125–134. URL: http://dl.acm.org/citation.cfm?id=
2157675.

[ESW09] Uwe Egly, Martina Seidl, and Stefan Woltran. „A solver for QBFs in negation
normal form“. In: Constraints 14.1 (2009), pp. 38–79. DOI: 10.1007/s10601-
008-9055-y.

[Fag+95] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Reasoning
About Knowledge. MIT Press, 1995.

[Fay+17] Peter Faymonville, Bernd Finkbeiner, Markus N. Rabe, and Leander Tentrup.
„Encodings of Bounded Synthesis“. In: Proceedings of TACAS. Vol. 10205. LNCS.
2017, pp. 354–370. DOI: 10.1007/978-3-662-54577-5_20.

198

https://doi.org/10.1007/11499107_32
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.4230/LIPIcs.FSTTCS.2017.26
https://doi.org/10.4230/LIPIcs.FSTTCS.2017.26
https://doi.org/10.1007/s10472-016-9501-2
https://doi.org/10.1007/978-3-319-40970-2_26
https://doi.org/10.1007/978-3-319-40970-2_26
https://doi.org/10.1007/978-3-642-19835-9_25
https://doi.org/10.1007/978-3-642-19835-9_25
https://doi.org/10.1007/s10703-011-0137-x
https://doi.org/10.1007/978-3-642-45221-5_21
https://doi.org/10.1007/978-3-642-45221-5_21
https://doi.org/10.4204/EPTCS.84.1
http://dl.acm.org/citation.cfm?id=2157675
http://dl.acm.org/citation.cfm?id=2157675
https://doi.org/10.1007/s10601-008-9055-y
https://doi.org/10.1007/s10601-008-9055-y
https://doi.org/10.1007/978-3-662-54577-5_20

Bibliography

[Faz+17] Katalin Fazekas, Marijn J. H. Heule, Martina Seidl, and Armin Biere. „Skolem
Function Continuation for Quantified Boolean Formulas“. In: Proceedings of
TAP. Vol. 10375. LNCS. Springer, 2017, pp. 129–138. DOI: 10.1007/978-3-
319-61467-0_8.

[FFT17] Peter Faymonville, Bernd Finkbeiner, and Leander Tentrup. „BoSy: An Ex-
perimentation Framework for Bounded Synthesis“. In: Proceedings of CAV.
Vol. 10427. LNCS. Springer, 2017, pp. 325–332. DOI: 10.1007/978-3-319-
63390-9_17.

[FH16] Bernd Finkbeiner and Christopher Hahn. „Deciding Hyperproperties“. In:
Proceedings of CONCUR. Vol. 59. LIPIcs. Schloss Dagstuhl – LZI, 2016, 13:1–
13:14. DOI: 10.4230/LIPIcs.CONCUR.2016.13.

[FHH18] Bernd Finkbeiner, Christopher Hahn, and Tobias Hans. „MGHyper: Checking
Satisfiability of HyperLTL Formulas Beyond the∃∗∀∗ Fragment“. In: Proceed-
ings of ATVA. Vol. 11138. LNCS. Springer, 2018, pp. 521–527. DOI: 10.1007/
978-3-030-01090-4_31.

[FHS17] Bernd Finkbeiner, Christopher Hahn, and Marvin Stenger. „EAHyper: Sat-
isfiability, Implication, and Equivalence Checking of Hyperproperties“. In:
Proceedings of CAV. Vol. 10427. LNCS. Springer, 2017, pp. 564–570. DOI: 10.
1007/978-3-319-63390-9_29.

[FHT18] Bernd Finkbeiner, Christopher Hahn, and Hazem Torfah. „Model Check-
ing Quantitative Hyperproperties“. In: Proceedings of CAV. Vol. 10981. LNCS.
Springer, 2018, pp. 144–163. DOI: 10.1007/978-3-319-96145-3_8.

[Fin+17a] Bernd Finkbeiner, Manuel Gieseking, Jesko Hecking-Harbusch, and Ernst-
Rüdiger Olderog. „Symbolic vs. Bounded Synthesis for Petri Games“. In: Pro-
ceedings of SYNT@CAV. Vol. 260. EPTCS. 2017, pp. 23–43. DOI: 10 . 4204 /
EPTCS.260.5.

[Fin+17b] Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander Ten-
trup. „Monitoring Hyperproperties“. In: Proceedings of RV. Vol. 10548. LNCS.
Springer, 2017, pp. 190–207. DOI: 10.1007/978-3-319-67531-2_12.

[Fin+18a] Bernd Finkbeiner, Christopher Hahn, Philip Lukert, Marvin Stenger, and Le-
ander Tentrup. „Synthesizing Reactive Systems from Hyperproperties“. In:
Proceedings of CAV. Vol. 10981. LNCS. Springer, 2018, pp. 289–306. DOI: 10.
1007/978-3-319-96145-3_16.

[Fin+18b] Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander Tentrup.
„RVHyper: A Runtime Verification Tool for Temporal Hyperproperties“. In:
Proceedings of TACAS. Vol. 10806. LNCS. Springer, 2018, pp. 194–200. DOI: 10.
1007/978-3-319-89963-3_11.

[Fin+19a] Bernd Finkbeiner, Christopher Hahn, Philip Lukert, Marvin Stenger, and Le-
ander Tentrup. „Synthesis from Hyperproperties“. Accepted for publication
in Acta Informatica. 2019.

199

https://doi.org/10.1007/978-3-319-61467-0_8
https://doi.org/10.1007/978-3-319-61467-0_8
https://doi.org/10.1007/978-3-319-63390-9_17
https://doi.org/10.1007/978-3-319-63390-9_17
https://doi.org/10.4230/LIPIcs.CONCUR.2016.13
https://doi.org/10.1007/978-3-030-01090-4_31
https://doi.org/10.1007/978-3-030-01090-4_31
https://doi.org/10.1007/978-3-319-63390-9_29
https://doi.org/10.1007/978-3-319-63390-9_29
https://doi.org/10.1007/978-3-319-96145-3_8
https://doi.org/10.4204/EPTCS.260.5
https://doi.org/10.4204/EPTCS.260.5
https://doi.org/10.1007/978-3-319-67531-2_12
https://doi.org/10.1007/978-3-319-96145-3_16
https://doi.org/10.1007/978-3-319-96145-3_16
https://doi.org/10.1007/978-3-319-89963-3_11
https://doi.org/10.1007/978-3-319-89963-3_11

BIBLIOGRAPHY

[Fin+19b] Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander Tentrup.
„Monitoring Hyperproperties“. In: Formal Methods in System Design (2019),
pp. 1–28. DOI: 10.1007/s10703-019-00334-z.

[Fin15] Bernd Finkbeiner. „Bounded Synthesis for Petri Games“. In: Symposium on
Correct System Design. Vol. 9360. LNCS. Springer, 2015, pp. 223–237. DOI: 10.
1007/978-3-319-23506-6_15.

[FJ12] Bernd Finkbeiner and Swen Jacobs. „Lazy Synthesis“. In: Proceedings of VMCAI.
Vol. 7148. LNCS. Springer, 2012, pp. 219–234. DOI: 10.1007/978-3-642-
27940-9_15.

[FJR11] Emmanuel Filiot, Naiyong Jin, and Jean-François Raskin. „Antichains and
compositional algorithms for LTL synthesis“. In: Formal Methods in System De-
sign 39.3 (2011), pp. 261–296. DOI: 10.1007/s10703-011-0115-3.

[FK16] Bernd Finkbeiner and Felix Klein. „Bounded Cycle Synthesis“. In: Proceedings
of CAV. Vol. 9779. LNCS. Springer, 2016, pp. 118–135. DOI: 10.1007/978-3-
319-41528-4_7.

[FKB12] Andreas Fröhlich, Gergely Kovásznai, and Armin Biere. „A DPLL Algorithm
for Solving DQBF“. In: Proceedings of POS@SAT. 2012.

[FMS00] Rainer Feldmann, Burkhard Monien, and Stefan Schamberger. „A Dis-
tributed Algorithm to Evaluate Quantified Boolean Formulae“. In: Proceed-
ings of AAAI. AAAI Press / The MIT Press, 2000, pp. 285–290. URL: http://
www.aaai.org/Library/AAAI/2000/aaai00-044.php.

[Frö+14] Andreas Fröhlich, Gergely Kovásznai, Armin Biere, and Helmut Veith. „iDQ:
Instantiation-Based DQBF Solving“. In: Proceedings of POS@SAT. Vol. 27. EPiC
Series in Computing. EasyChair, 2014, pp. 103–116. URL: http : / / www .
easychair.org/publications/paper/187054.

[FRS15] Bernd Finkbeiner, Markus N. Rabe, and César Sánchez. „Algorithms for
Model Checking HyperLTL and HyperCTL∗“. In: Proceedings of CAV. Vol. 9206.
LNCS. Springer, 2015, pp. 30–48. DOI: 10.1007/978-3-319-21690-4_3.

[FS05] Bernd Finkbeiner and Sven Schewe. „Uniform Distributed Synthesis“. In: Pro-
ceedings of LICS. IEEE Computer Society, 2005, pp. 321–330. DOI: 10.1109/
LICS.2005.53.

[FS07] Bernd Finkbeiner and Sven Schewe. „SMT-Based Synthesis of Distributed
Systems“. In: Proceedings of AFM. 2007.

[FS10] Bernd Finkbeiner and Sven Schewe. „Coordination Logic“. In: Proceedings of
CSL. Vol. 6247. LNCS. Springer, 2010, pp. 305–319. DOI: 10.1007/978-3-
642-15205-4_25.

[FS13] Bernd Finkbeiner and Sven Schewe. „Bounded synthesis“. In: STTT 15.5-6
(2013), pp. 519–539. DOI: 10.1007/s10009-012-0228-z.

200

https://doi.org/10.1007/s10703-019-00334-z
https://doi.org/10.1007/978-3-319-23506-6_15
https://doi.org/10.1007/978-3-319-23506-6_15
https://doi.org/10.1007/978-3-642-27940-9_15
https://doi.org/10.1007/978-3-642-27940-9_15
https://doi.org/10.1007/s10703-011-0115-3
https://doi.org/10.1007/978-3-319-41528-4_7
https://doi.org/10.1007/978-3-319-41528-4_7
http://www.aaai.org/Library/AAAI/2000/aaai00-044.php
http://www.aaai.org/Library/AAAI/2000/aaai00-044.php
http://www.easychair.org/publications/paper/187054
http://www.easychair.org/publications/paper/187054
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1109/LICS.2005.53
https://doi.org/10.1109/LICS.2005.53
https://doi.org/10.1007/978-3-642-15205-4_25
https://doi.org/10.1007/978-3-642-15205-4_25
https://doi.org/10.1007/s10009-012-0228-z

Bibliography

[FT14a] Bernd Finkbeiner and Leander Tentrup. „Detecting Unrealizable Specifi-
cations of Distributed Systems“. In: Proceedings of TACAS. Vol. 8413. LNCS.
Springer, 2014, pp. 78–92. DOI: 10.1007/978-3-642-54862-8_6.

[FT14b] Bernd Finkbeiner and Leander Tentrup. „Fast DQBF Refutation“. In: Proceed-
ings of SAT. Vol. 8561. LNCS. Springer, 2014, pp. 243–251. DOI: 10 . 1007 /
978-3-319-09284-3_19.

[FT15] Bernd Finkbeiner and Leander Tentrup. „Detecting Unrealizability of Dis-
tributed Fault-tolerant Systems“. In: Logical Methods in Computer Science 11.3
(2015). DOI: 10.2168/LMCS-11(3:12)2015.

[Gas+14] Adrià Gascón, Pramod Subramanyan, Bruno Dutertre, Ashish Tiwari, Dejan
Jovanovic, and Sharad Malik. „Template-based circuit understanding“. In:
Proceedings of FMCAD. IEEE, 2014, pp. 83–90. DOI: 10.1109/FMCAD.2014.
6987599.

[GB10] Alexandra Goultiaeva and Fahiem Bacchus. „Exploiting QBF Duality on a Cir-
cuit Representation“. In: Proceedings of AAAI. AAAI Press, 2010. URL: http://
www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1791.

[Gel12] Allen Van Gelder. „Contributions to the Theory of Practical Quantified
Boolean Formula Solving“. In: Proceedings of CP. Vol. 7514. LNCS. Springer,
2012, pp. 647–663. DOI: 10.1007/978-3-642-33558-7_47.

[GGB11] Alexandra Goultiaeva, Allen Van Gelder, and Fahiem Bacchus. „A Uniform
Approach for Generating Proofs and Strategies for Both True and False QBF
Formulas“. In: Proceedings of IJCAI. IJCAI/AAAI, 2011, pp. 546–553. DOI: 10 .
5591/978-1-57735-516-8/IJCAI11-099.

[GIB09] Alexandra Goultiaeva, Vicki Iverson, and Fahiem Bacchus. „Beyond CNF: A
Circuit-Based QBF Solver“. In: Proceedings of SAT. Vol. 5584. LNCS. Springer,
2009, pp. 412–426. DOI: 10.1007/978-3-642-02777-2_38.

[Git+13] Karina Gitina, Sven Reimer, Matthias Sauer, Ralf Wimmer, Christoph Scholl,
and Bernd Becker. „Equivalence checking of partial designs using depen-
dency quantified Boolean formulae“. In: Proceedings of ICCD. IEEE Computer
Society, 2013, pp. 396–403. DOI: 10.1109/ICCD.2013.6657071.

[Git+15] Karina Gitina, Ralf Wimmer, Sven Reimer, Matthias Sauer, Christoph Scholl,
and Bernd Becker. „Solving DQBF through quantifier elimination“. In: Pro-
ceedings of DATE. ACM, 2015, pp. 1617–1622. URL: http://dl.acm.org/
citation.cfm?id=2757188.

[GM82] Joseph A. Goguen and José Meseguer. „Security Policies and Security Mod-
els“. In: Proceedings of S&P. IEEE Computer Society, 1982, pp. 11–20. DOI: 10.
1109/SP.1982.10014.

[GMN09] Enrico Giunchiglia, Paolo Marin, and Massimo Narizzano. „Reasoning with
Quantified Boolean Formulas“. In: Handbook of Satisfiability. Vol. 185. Fron-
tiers in Artificial Intelligence and Applications. IOS Press, 2009, pp. 761–780.
DOI: 10.3233/978-1-58603-929-5-761.

201

https://doi.org/10.1007/978-3-642-54862-8_6
https://doi.org/10.1007/978-3-319-09284-3_19
https://doi.org/10.1007/978-3-319-09284-3_19
https://doi.org/10.2168/LMCS-11(3:12)2015
https://doi.org/10.1109/FMCAD.2014.6987599
https://doi.org/10.1109/FMCAD.2014.6987599
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1791
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1791
https://doi.org/10.1007/978-3-642-33558-7_47
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-099
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-099
https://doi.org/10.1007/978-3-642-02777-2_38
https://doi.org/10.1109/ICCD.2013.6657071
http://dl.acm.org/citation.cfm?id=2757188
http://dl.acm.org/citation.cfm?id=2757188
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.3233/978-1-58603-929-5-761

BIBLIOGRAPHY

[GNT04] Enrico Giunchiglia, Massimo Narizzano, and Armando Tacchella. „QuBE++:
An Efficient QBF Solver“. In: Proceedings of FMCAD. Vol. 3312. LNCS. Springer,
2004, pp. 201–213. DOI: 10.1007/978-3-540-30494-4_15.

[GNT06] Enrico Giunchiglia, Massimo Narizzano, and Armando Tacchella.
„Clause/Term Resolution and Learning in the Evaluation of Quantified
Boolean Formulas“. In: J. Artif. Intell. Res. 26 (2006), pp. 371–416. DOI: 10 .
1613/jair.1959.

[Goe92] Andreas Goerdt. „Davis-Putnam Resolution versus Unrestricted Resolution“.
In: Ann. Math. Artif. Intell. 6.1-3 (1992), pp. 169–184. DOI: 10 . 1007 /
BF01531027.

[GSB13] Alexandra Goultiaeva, Martina Seidl, and Armin Biere. „Bridging the gap be-
tween dual propagation and CNF-based QBF solving“. In: Proceedings of DATE.
EDA Consortium San Jose, CA, USA / ACM DL, 2013, pp. 811–814. DOI: 10 .
7873/DATE.2013.172.

[GSV14] Orna Grumberg, Sharon Shoham, and Yakir Vizel. „SAT-based Model Check-
ing: Interpolation, IC3, and Beyond“. In: Software Systems Safety. Vol. 36. NATO
Science for Peace and Security Series, D: Information and Communication
Security. IOS Press, 2014, pp. 17–41. DOI: 10.3233/978-1-61499-385-
8-17.

[HSB14a] Marijn Heule, Martina Seidl, and Armin Biere. „A Unified Proof System for
QBF Preprocessing“. In: Proceedings of IJCAR. Vol. 8562. LNCS. Springer, 2014,
pp. 91–106. DOI: 10.1007/978-3-319-08587-6_7.

[HSB14b] Marijn Heule, Martina Seidl, and Armin Biere. „Efficient extraction of Skolem
functions from QRAT proofs“. In: Proceedings of FMCAD. IEEE, 2014, pp. 107–
114. DOI: 10.1109/FMCAD.2014.6987602.

[HSB17] Marijn J. H. Heule, Martina Seidl, and Armin Biere. „Solution Validation and
Extraction for QBF Preprocessing“. In: J. Autom. Reasoning 58.1 (2017), pp. 97–
125. DOI: 10.1007/s10817-016-9390-4.

[HST19] Christopher Hahn, Marvin Stenger, and Leander Tentrup. „Constraint-Based
Monitoring of Hyperproperties“. In: Proceedings of TACAS. Vol. 11428. LNCS.
Springer, 2019, pp. 115–131. DOI: 10.1007/978-3-030-17465-1_7.

[HT18] Jesko Hecking-Harbusch and Leander Tentrup. „Solving QBF by Abstraction“.
In: Proceedings of GandALF. Vol. 277. EPTCS. 2018, pp. 88–102. DOI: 10.4204/
EPTCS.277.7.

[IP01] Russell Impagliazzo and Ramamohan Paturi. „On the Complexity of k-SAT“.
In: J. Comput. Syst. Sci. 62.2 (2001), pp. 367–375. DOI: 10.1006/jcss.2000.
1727.

202

https://doi.org/10.1007/978-3-540-30494-4_15
https://doi.org/10.1613/jair.1959
https://doi.org/10.1613/jair.1959
https://doi.org/10.1007/BF01531027
https://doi.org/10.1007/BF01531027
https://doi.org/10.7873/DATE.2013.172
https://doi.org/10.7873/DATE.2013.172
https://doi.org/10.3233/978-1-61499-385-8-17
https://doi.org/10.3233/978-1-61499-385-8-17
https://doi.org/10.1007/978-3-319-08587-6_7
https://doi.org/10.1109/FMCAD.2014.6987602
https://doi.org/10.1007/s10817-016-9390-4
https://doi.org/10.1007/978-3-030-17465-1_7
https://doi.org/10.4204/EPTCS.277.7
https://doi.org/10.4204/EPTCS.277.7
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/jcss.2000.1727

Bibliography

[Jac+16] Swen Jacobs, Roderick Bloem, Romain Brenguier, Ayrat Khalimov, Felix
Klein, Robert Könighofer, Jens Kreber, Alexander Legg, Nina Narodytska,
Guillermo A. Pérez, Jean-François Raskin, Leonid Ryzhyk, Ocan Sankur, Mar-
tina Seidl, Leander Tentrup, and Adam Walker. „The 3rd Reactive Synthe-
sis Competition (SYNTCOMP 2016): Benchmarks, Participants & Results“. In:
Proceedings of SYNT@CAV. Vol. 229. EPTCS. 2016, pp. 149–177. DOI: 10.4204/
EPTCS.229.12.

[Jac+17a] Swen Jacobs, Nicolas Basset, Roderick Bloem, Romain Brenguier, Maxim-
ilien Colange, Peter Faymonville, Bernd Finkbeiner, Ayrat Khalimov, Felix
Klein, Thibaud Michaud, Guillermo A. Pérez, Jean-François Raskin, Ocan
Sankur, and Leander Tentrup. „The 4th Reactive Synthesis Competition
(SYNTCOMP 2017): Benchmarks, Participants & Results“. In: Proceedings of
SYNT@CAV. Vol. 260. EPTCS. 2017, pp. 116–143. DOI: 10 . 4204 / EPTCS .
260.10.

[Jac+17b] Swen Jacobs, Roderick Bloem, Romain Brenguier, Rüdiger Ehlers, Timo-
theus Hell, Robert Könighofer, Guillermo A. Pérez, Jean-François Raskin,
Leonid Ryzhyk, Ocan Sankur, Martina Seidl, Leander Tentrup, and Adam
Walker. „The first reactive synthesis competition (SYNTCOMP 2014)“. In:
STTT 19.3 (2017), pp. 367–390. DOI: 10.1007/s10009-016-0416-3.

[Jan+12] Mikolás Janota, William Klieber, João Marques-Silva, and Edmund M.
Clarke. „Solving QBF with Counterexample Guided Refinement“. In: Proceed-
ings of SAT. Vol. 7317. LNCS. Springer, 2012, pp. 114–128. DOI: 10.1007/978-
3-642-31612-8_10.

[Jan+16] Mikolás Janota, William Klieber, Joao Marques-Silva, and Edmund M. Clarke.
„Solving QBF with counterexample guided refinement“. In: Artif. Intell. 234
(2016), pp. 1–25. DOI: 10.1016/j.artint.2016.01.004.

[Jan16] Mikolás Janota. „On Q-Resolution and CDCL QBF Solving“. In: Proceedings of
SAT. Vol. 9710. LNCS. Springer, 2016, pp. 402–418. DOI: 10.1007/978-3-
319-40970-2_25.

[Jan18a] Mikolás Janota. „Circuit-Based Search Space Pruning in QBF“. In: Proceedings
of SAT. Vol. 10929. LNCS. Springer, 2018, pp. 187–198. DOI: 10.1007/978-
3-319-94144-8_12.

[Jan18b] Mikolás Janota. „Towards Generalization in QBF Solving via Machine Learn-
ing“. In: Proceedings of AAAI. AAAI Press, 2018. URL: https://www.aaai.
org/ocs/index.php/AAAI/AAAI18/paper/view/16945.

[JGM13] Mikolás Janota, Radu Grigore, and João Marques-Silva. „On QBF Proofs and
Preprocessing“. In: Logic for Programming, Artificial Intelligence, and Reasoning -
19th International Conference, LPAR-19, Stellenbosch, South Africa, December 14-
19, 2013. Proceedings. Vol. 8312. LNCS. Springer, 2013, pp. 473–489. DOI: 10.
1007/978-3-642-45221-5_32.

203

https://doi.org/10.4204/EPTCS.229.12
https://doi.org/10.4204/EPTCS.229.12
https://doi.org/10.4204/EPTCS.260.10
https://doi.org/10.4204/EPTCS.260.10
https://doi.org/10.1007/s10009-016-0416-3
https://doi.org/10.1007/978-3-642-31612-8_10
https://doi.org/10.1007/978-3-642-31612-8_10
https://doi.org/10.1016/j.artint.2016.01.004
https://doi.org/10.1007/978-3-319-40970-2_25
https://doi.org/10.1007/978-3-319-40970-2_25
https://doi.org/10.1007/978-3-319-94144-8_12
https://doi.org/10.1007/978-3-319-94144-8_12
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16945
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16945
https://doi.org/10.1007/978-3-642-45221-5_32
https://doi.org/10.1007/978-3-642-45221-5_32

BIBLIOGRAPHY

[JLH09] Jie-Hong Roland Jiang, Hsuan-Po Lin, and Wei-Lun Hung. „Interpolating
functions from large Boolean relations“. In: Proceedings of ICCAD. ACM, 2009,
pp. 779–784. DOI: 10.1145/1687399.1687544.

[JM13] Mikolás Janota and João Marques-Silva. „On Propositional QBF Expansions
and Q-Resolution“. In: Proceedings of SAT. Vol. 7962. LNCS. Springer, 2013,
pp. 67–82. DOI: 10.1007/978-3-642-39071-5_7.

[JM15a] Mikolás Janota and Joao Marques-Silva. „Expansion-based QBF solving ver-
sus Q-resolution“. In: Theor. Comput. Sci. 577 (2015), pp. 25–42. DOI: 10 .
1016/j.tcs.2015.01.048.

[JM15b] Mikolás Janota and Joao Marques-Silva. „Solving QBF by Clause Selection“.
In: Proceedings of IJCAI. AAAI Press, 2015, pp. 325–331.

[JM17] Mikolás Janota and João Marques-Silva. „An Achilles’ Heel of Term-
Resolution“. In: Proceedings of EPIA. Vol. 10423. LNCS. Springer, 2017, pp. 670–
680. DOI: 10.1007/978-3-319-65340-2_55.

[Job+07] Barbara Jobstmann, Stefan J. Galler, Martin Weiglhofer, and Roderick Bloem.
„Anzu: A Tool for Property Synthesis“. In: Proceedings of CAV. Vol. 4590. LNCS.
Springer, 2007, pp. 258–262. DOI: 10.1007/978-3-540-73368-3_29.

[Jor+14] Charles Jordan, Lukasz Kaiser, Florian Lonsing, and Martina Seidl. „MPIDe-
pQBF: Towards Parallel QBF Solving without Knowledge Sharing“. In: Pro-
ceedings of SAT. Vol. 8561. LNCS. Springer, 2014, pp. 430–437. DOI: 10.1007/
978-3-319-09284-3_32.

[JS97] Roberto J. Bayardo Jr. and Robert Schrag. „Using CSP Look-Back Techniques
to Solve Real-World SAT Instances“. In: Proceedings of AAAI. AAAI Press / The
MIT Press, 1997, pp. 203–208. URL: http://www.aaai.org/Library/
AAAI/1997/aaai97-032.php.

[Jus+07] Toni Jussila, Armin Biere, Carsten Sinz, Daniel Kröning, and Christoph M.
Wintersteiger. „A First Step Towards a Unified Proof Checker for QBF“. In: Pro-
ceedings of SAT. Vol. 4501. LNCS. Springer, 2007, pp. 201–214. DOI: 10.1007/
978-3-540-72788-0_21.

[KJB13a] Ayrat Khalimov, Swen Jacobs, and Roderick Bloem. „PARTY Parameterized
Synthesis of Token Rings“. In: Proceedings of CAV. Vol. 8044. LNCS. Springer,
2013, pp. 928–933. DOI: 10.1007/978-3-642-39799-8_66.

[KJB13b] Ayrat Khalimov, Swen Jacobs, and Roderick Bloem. „Towards Efficient Pa-
rameterized Synthesis“. In: Proceedings of VMCAI. Vol. 7737. LNCS. Springer,
2013, pp. 108–127. DOI: 10.1007/978-3-642-35873-9_9.

[KKF95] Hans Kleine Büning, Marek Karpinski, and Andreas Flögel. „Resolution for
Quantified Boolean Formulas“. In: Inf. Comput. 117.1 (1995), pp. 12–18. DOI:
10.1006/inco.1995.1025.

204

https://doi.org/10.1145/1687399.1687544
https://doi.org/10.1007/978-3-642-39071-5_7
https://doi.org/10.1016/j.tcs.2015.01.048
https://doi.org/10.1016/j.tcs.2015.01.048
https://doi.org/10.1007/978-3-319-65340-2_55
https://doi.org/10.1007/978-3-540-73368-3_29
https://doi.org/10.1007/978-3-319-09284-3_32
https://doi.org/10.1007/978-3-319-09284-3_32
http://www.aaai.org/Library/AAAI/1997/aaai97-032.php
http://www.aaai.org/Library/AAAI/1997/aaai97-032.php
https://doi.org/10.1007/978-3-540-72788-0_21
https://doi.org/10.1007/978-3-540-72788-0_21
https://doi.org/10.1007/978-3-642-39799-8_66
https://doi.org/10.1007/978-3-642-35873-9_9
https://doi.org/10.1006/inco.1995.1025

Bibliography

[Kli+10] William Klieber, Samir Sapra, Sicun Gao, and Edmund M. Clarke. „A Non-
prenex, Non-clausal QBF Solver with Game-State Learning“. In: Proceedings
of SAT. Vol. 6175. LNCS. Springer, 2010, pp. 128–142. DOI: 10.1007/978-3-
642-14186-7_12.

[Kon+09] Roman Kontchakov, Luca Pulina, Ulrike Sattler, Thomas Schneider, Petra
Selmer, Frank Wolter, and Michael Zakharyaschev. „Minimal Module Ex-
traction from DL-Lite Ontologies Using QBF Solvers“. In: Proceedings of IJCAI.
2009, pp. 836–841. URL: http : / / ijcai . org / Proceedings / 09 /
Papers/143.pdf.

[Kor08] Konstantin Korovin. „iProver - An Instantiation-Based Theorem Prover for
First-Order Logic (System Description)“. In: Proceedings of IJCAR. Vol. 5195.
LNCS. Springer, 2008, pp. 292–298. DOI: 10.1007/978-3-540-71070-
7_24.

[KP10] Uri Klein and Amir Pnueli. „Revisiting Synthesis of GR(1) Specifications“. In:
Proceedings of HVC. Vol. 6504. LNCS. Springer, 2010, pp. 161–181. DOI: 10 .
1007/978-3-642-19583-9_16.

[KS18a] Manuel Kauers and Martina Seidl. „Short proofs for some symmetric Quan-
tified Boolean Formulas“. In: Inf. Process. Lett. 140 (2018), pp. 4–7. DOI: 10.
1016/j.ipl.2018.07.009.

[KS18b] Manuel Kauers and Martina Seidl. „Symmetries of Quantified Boolean For-
mulas“. In: Proceedings of SAT. Vol. 10929. LNCS. Springer, 2018, pp. 199–216.
DOI: 10.1007/978-3-319-94144-8_13.

[KS19] Benjamin Kiesl and Martina Seidl. „QRAT Polynomially Simulates ∀ \text -
Exp+Res“. In: Proceedings of SAT. Vol. 11628. LNCS. Springer, 2019, pp. 193–202.
DOI: 10.1007/978-3-030-24258-9_13.

[KV01] Orna Kupferman and Moshe Y. Vardi. „Synthesizing Distributed Systems“.
In: Proceedings of LICS. IEEE Computer Society, 2001, pp. 389–398. DOI: 10.
1109/LICS.2001.932514.

[KV05] Orna Kupferman and Moshe Y. Vardi. „Safraless Decision Procedures“. In:
Proceedings of FOCS. IEEE Computer Society, 2005, pp. 531–542. DOI: 10 .
1109/SFCS.2005.66.

[KV97] Orna Kupferman and Moshe Y. Vardi. „Synthesis with incomplete informa-
tion“. In: ICTL. 1997.

[KZ15] Felix Klein and Martin Zimmermann. „How Much Lookahead is Needed to
Win Infinite Games?“ In: Proceedings of ICALP. Vol. 9135. LNCS. Springer, 2015,
pp. 452–463. DOI: 10.1007/978-3-662-47666-6_36.

[LB08] Florian Lonsing and Armin Biere. „Nenofex: Expanding NNF for QBF Solving“.
In: Proceedings of SAT. Vol. 4996. LNCS. Springer, 2008, pp. 196–210. DOI: 10.
1007/978-3-540-79719-7_19.

205

https://doi.org/10.1007/978-3-642-14186-7_12
https://doi.org/10.1007/978-3-642-14186-7_12
http://ijcai.org/Proceedings/09/Papers/143.pdf
http://ijcai.org/Proceedings/09/Papers/143.pdf
https://doi.org/10.1007/978-3-540-71070-7_24
https://doi.org/10.1007/978-3-540-71070-7_24
https://doi.org/10.1007/978-3-642-19583-9_16
https://doi.org/10.1007/978-3-642-19583-9_16
https://doi.org/10.1016/j.ipl.2018.07.009
https://doi.org/10.1016/j.ipl.2018.07.009
https://doi.org/10.1007/978-3-319-94144-8_13
https://doi.org/10.1007/978-3-030-24258-9_13
https://doi.org/10.1109/LICS.2001.932514
https://doi.org/10.1109/LICS.2001.932514
https://doi.org/10.1109/SFCS.2005.66
https://doi.org/10.1109/SFCS.2005.66
https://doi.org/10.1007/978-3-662-47666-6_36
https://doi.org/10.1007/978-3-540-79719-7_19
https://doi.org/10.1007/978-3-540-79719-7_19

BIBLIOGRAPHY

[LB10] Florian Lonsing and Armin Biere. „DepQBF: A Dependency-Aware QBF
Solver“. In: JSAT 7.2-3 (2010), pp. 71–76. URL: https://satassociation.
org/jsat/index.php/jsat/article/view/84.

[LE14] Florian Lonsing and Uwe Egly. „Incremental QBF Solving by DepQBF“. In:
Proceedings of ICMS. Vol. 8592. LNCS. Springer, 2014, pp. 307–314. DOI: 10.
1007/978-3-662-44199-2_48.

[LE17] Florian Lonsing and Uwe Egly. „DepQBF 6.0: A Search-Based QBF Solver Be-
yond Traditional QCDCL“. In: Proceedings of CADE. Vol. 10395. LNCS. Springer,
2017, pp. 371–384. DOI: 10.1007/978-3-319-63046-5_23.

[LE18a] Florian Lonsing and Uwe Egly. „Evaluating QBF Solvers: Quantifier Alterna-
tions Matter“. In: Proceedings of CP. Vol. 11008. LNCS. Springer, 2018, pp. 276–
294. DOI: 10.1007/978-3-319-98334-9_19.

[LE18b] Florian Lonsing and Uwe Egly. „QRAT+: Generalizing QRAT by a More Pow-
erful QBF Redundancy Property“. In: Proceedings of IJCAR. Vol. 10900. LNCS.
Springer, 2018, pp. 161–177. DOI: 10.1007/978-3-319-94205-6_12.

[LES16] Florian Lonsing, Uwe Egly, and Martina Seidl. „Q-Resolution with General-
ized Axioms“. In: Proceedings of SAT. Vol. 9710. LNCS. Springer, 2016, pp. 435–
452. DOI: 10.1007/978-3-319-40970-2_27.

[Lon+15] Florian Lonsing, Fahiem Bacchus, Armin Biere, Uwe Egly, and Martina Seidl.
„Enhancing Search-Based QBF Solving by Dynamic Blocked Clause Elimina-
tion“. In: Proceedings of LPAR. Vol. 9450. LNCS. Springer, 2015, pp. 418–433.
DOI: 10.1007/978-3-662-48899-7_29.

[LS18] Florian Lonsing and Martina Seidl. „Parallel Solving of Quantified Boolean
Formulas“. In: Handbook of Parallel Constraint Reasoning. Springer, 2018,
pp. 101–139. DOI: 10.1007/978-3-319-63516-3_4.

[LWJ18] Nian-Ze Lee, Yen-Shi Wang, and Jie-Hong R. Jiang. „Solving Exist-Random
Quantified Stochastic Boolean Satisfiability via Clause Selection“. In: Proceed-
ings of IJCAI. ijcai.org, 2018, pp. 1339–1345. DOI: 10.24963/ijcai.2018/
186.

[MB08] Leonardo Mendonça de Moura and Nikolaj Bjørner. „Z3: An Efficient SMT
Solver“. In: Proceedings of TACAS. Vol. 4963. LNCS. Springer, 2008, pp. 337–
340. DOI: 10.1007/978-3-540-78800-3_24.

[MC18] Thibaud Michaud and Maximilien Colange. „Reactive Synthesis from LTL
Specification with Spot“. In: Proceedings of SYNT@CAV. 2018.

[McC88] Daryl McCullough. „Noninterference and the composability of security prop-
erties“. In: Proceedings of S&P. IEEE Computer Society, 1988, pp. 177–186. DOI:
10.1109/SECPRI.1988.8110.

[McM03] Kenneth L. McMillan. „Interpolation and SAT-Based Model Checking“. In:
Proceedings of CAV. Vol. 2725. LNCS. Springer, 2003, pp. 1–13. DOI: 10.1007/
978-3-540-45069-6_1.

206

https://satassociation.org/jsat/index.php/jsat/article/view/84
https://satassociation.org/jsat/index.php/jsat/article/view/84
https://doi.org/10.1007/978-3-662-44199-2_48
https://doi.org/10.1007/978-3-662-44199-2_48
https://doi.org/10.1007/978-3-319-63046-5_23
https://doi.org/10.1007/978-3-319-98334-9_19
https://doi.org/10.1007/978-3-319-94205-6_12
https://doi.org/10.1007/978-3-319-40970-2_27
https://doi.org/10.1007/978-3-662-48899-7_29
https://doi.org/10.1007/978-3-319-63516-3_4
https://doi.org/10.24963/ijcai.2018/186
https://doi.org/10.24963/ijcai.2018/186
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1109/SECPRI.1988.8110
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/978-3-540-45069-6_1

Bibliography

[MNS10] Benoit Da Mota, Pascal Nicolas, and Igor Stéphan. „A new parallel architec-
ture for QBF tools“. In: Proceedings of HPCS. IEEE, 2010, pp. 324–330. DOI: 10.
1109/HPCS.2010.5547114.

[MP95] Zohar Manna and Amir Pnueli. Temporal verification of reactive systems - safety.
Springer, 1995. ISBN: 978-0-387-94459-3.

[MS16] Meena Mahajan and Anil Shukla. „Level-ordered Q-resolution and tree-like
Q-resolution are incomparable“. In: Inf. Process. Lett. 116.3 (2016), pp. 256–258.
DOI: 10.1016/j.ipl.2015.11.017.

[MSB13] Christian Miller, Christoph Scholl, and Bernd Becker. „Proving QBF-hardness
in Bounded Model Checking for Incomplete Designs“. In: Proceedings of MTV.
IEEE Computer Society, 2013, pp. 23–28. DOI: 10.1109/MTV.2013.11.

[MSL18] Philipp J. Meyer, Salomon Sickert, and Michael Luttenberger. „Strix: Explicit
Reactive Synthesis Strikes Back!“ In: Proceedings of CAV. Vol. 10981. LNCS.
Springer, 2018, pp. 578–586. DOI: 10.1007/978-3-319-96145-3_31.

[New+14] Zack Newsham, Vijay Ganesh, Sebastian Fischmeister, Gilles Audemard,
and Laurent Simon. „Impact of Community Structure on SAT Solver Perfor-
mance“. In: Proceedings of SAT. Vol. 8561. LNCS. Springer, 2014, pp. 252–268.
DOI: 10.1007/978-3-319-09284-3_20.

[Nie+12] Aina Niemetz, Mathias Preiner, Florian Lonsing, Martina Seidl, and Armin
Biere. „Resolution-Based Certificate Extraction for QBF - (Tool Presenta-
tion)“. In: Proceedings of SAT. Vol. 7317. LNCS. Springer, 2012, pp. 430–435. DOI:
10.1007/978-3-642-31612-8_33.

[NO05] Robert Nieuwenhuis and Albert Oliveras. „DPLL(T) with Exhaustive Theory
Propagation and Its Application to Difference Logic“. In: Proceedings of CAV.
Vol. 3576. LNCS. Springer, 2005, pp. 321–334. DOI: 10.1007/11513988_33.

[NPB14] Aina Niemetz, Mathias Preiner, and Armin Biere. „Turbo-charging Lemmas
on demand with don’t care reasoning“. In: Proceedings of FMCAD. IEEE, 2014,
pp. 179–186. DOI: 10.1109/FMCAD.2014.6987611.

[NPT06] Massimo Narizzano, Luca Pulina, and Armando Tacchella. „The QBFEVAL
Web Portal“. In: Proceedings of JELIA. Vol. 4160. LNCS. Springer, 2006, pp. 494–
497. DOI: 10.1007/11853886_45.

[NSB07] Tobias Nopper, Christoph Scholl, and Bernd Becker. „Computation of min-
imal counterexamples by using black box techniques and symbolic meth-
ods“. In: Proceedings of ICCAD. IEEE Computer Society, 2007, pp. 273–280. DOI:
10.1109/ICCAD.2007.4397277.

[Pit07] Nir Piterman. „From Nondeterministic Büchi and Streett Automata to Deter-
ministic Parity Automata“. In: Logical Methods in Computer Science 3.3 (2007).
DOI: 10.2168/LMCS-3(3:5)2007.

[Pnu77] Amir Pnueli. „The Temporal Logic of Programs“. In: Proceedings of FOCS. IEEE
Computer Society, 1977, pp. 46–57. DOI: 10.1109/SFCS.1977.32.

207

https://doi.org/10.1109/HPCS.2010.5547114
https://doi.org/10.1109/HPCS.2010.5547114
https://doi.org/10.1016/j.ipl.2015.11.017
https://doi.org/10.1109/MTV.2013.11
https://doi.org/10.1007/978-3-319-96145-3_31
https://doi.org/10.1007/978-3-319-09284-3_20
https://doi.org/10.1007/978-3-642-31612-8_33
https://doi.org/10.1007/11513988_33
https://doi.org/10.1109/FMCAD.2014.6987611
https://doi.org/10.1007/11853886_45
https://doi.org/10.1109/ICCAD.2007.4397277
https://doi.org/10.2168/LMCS-3(3:5)2007
https://doi.org/10.1109/SFCS.1977.32

BIBLIOGRAPHY

[PPS06] Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. „Synthesis of Reactive(1) De-
signs“. In: Proceedings of VMCAI. Vol. 3855. LNCS. Springer, 2006, pp. 364–380.
DOI: 10.1007/11609773_24.

[PR79] Gary L. Peterson and John H. Reif. „Multiple-Person Alternation“. In: Proceed-
ings of FOCS. IEEE Computer Society, 1979, pp. 348–363. DOI: 10 . 1109 /
SFCS.1979.25.

[PR89] Amir Pnueli and Roni Rosner. „On the Synthesis of a Reactive Module“. In:
Conference Record of the Sixteenth Annual ACM Symposium on Principles of Pro-
gramming Languages, Austin, Texas, USA, January 11-13, 1989. ACM Press, 1989,
pp. 179–190. DOI: 10.1145/75277.75293.

[PR90] Amir Pnueli and Roni Rosner. „Distributed Reactive Systems Are Hard to Syn-
thesize“. In: Proceedings of FOCS. IEEE Computer Society, 1990, pp. 746–757.
DOI: 10.1109/FSCS.1990.89597.

[PRA01] Gary Peterson, John Reif, and Syed Azhar. „Lower Bounds for Multiplayer
Non-Cooperative Games of Incomplete Information“. In: Computers and
Mathematics with Applications 41 (2001), pp. 957–992.

[PS19] Luca Pulina and Martina Seidl. „The 2016 and 2017 QBF solvers evaluations
(QBFEVAL’16 and QBFEVAL’17)“. In: Artif. Intell. 274 (2019), pp. 224–248. ISSN:
0004-3702. DOI: 10.1016/j.artint.2019.04.002.

[PSS17] Tomás Peitl, Friedrich Slivovsky, and Stefan Szeider. „Dependency Learning
for QBF“. In: Proceedings of SAT. Vol. 10491. LNCS. Springer, 2017, pp. 298–313.
DOI: 10.1007/978-3-319-66263-3_19.

[QBF14] QBF Gallery 2014. QCIR-G14: A Non-Prenex Non-CNF Format for Quantified
Boolean Formulas. Tech. rep. 2014. URL: http://qbf.satisfiability.
org/gallery/qcir-gallery14.pdf.

[Rab+18] Markus N. Rabe, Leander Tentrup, Cameron Rasmussen, and Sanjit A. Seshia.
„Understanding and Extending Incremental Determinization for 2QBF“. In:
Proceedings of CAV. Vol. 10982. LNCS. Springer, 2018, pp. 256–274. DOI: 10.
1007/978-3-319-96142-2_17.

[Rab17] Markus N. Rabe. „A Resolution-Style Proof System for DQBF“. In: Proceedings
of SAT. Vol. 10491. LNCS. Springer, 2017, pp. 314–325. DOI: 10.1007/978-
3-319-66263-3_20.

[Rin07] Jussi Rintanen. „Asymptotically Optimal Encodings of Conformant Planning
in QBF“. In: Proceedings of AAAI. AAAI Press, 2007, pp. 1045–1050. URL: http:
//www.aaai.org/Library/AAAI/2007/aaai07-166.php.

[RS16] Markus N. Rabe and Sanjit A. Seshia. „Incremental Determinization“. In: Pro-
ceedings of SAT. Vol. 9710. LNCS. Springer, 2016, pp. 375–392. DOI: 10.1007/
978-3-319-40970-2_23.

208

https://doi.org/10.1007/11609773_24
https://doi.org/10.1109/SFCS.1979.25
https://doi.org/10.1109/SFCS.1979.25
https://doi.org/10.1145/75277.75293
https://doi.org/10.1109/FSCS.1990.89597
https://doi.org/10.1016/j.artint.2019.04.002
https://doi.org/10.1007/978-3-319-66263-3_19
http://qbf.satisfiability.org/gallery/qcir-gallery14.pdf
http://qbf.satisfiability.org/gallery/qcir-gallery14.pdf
https://doi.org/10.1007/978-3-319-96142-2_17
https://doi.org/10.1007/978-3-319-96142-2_17
https://doi.org/10.1007/978-3-319-66263-3_20
https://doi.org/10.1007/978-3-319-66263-3_20
http://www.aaai.org/Library/AAAI/2007/aaai07-166.php
http://www.aaai.org/Library/AAAI/2007/aaai07-166.php
https://doi.org/10.1007/978-3-319-40970-2_23
https://doi.org/10.1007/978-3-319-40970-2_23

Bibliography

[RT15] Markus N. Rabe and Leander Tentrup. „CAQE: A Certifying QBF Solver“. In:
Proceedings of FMCAD. IEEE, 2015, pp. 136–143. DOI: 10.1109/FMCAD.2015.
7542263.

[Saf88] Shmuel Safra. „On the Complexity of omega-Automata“. In: Proceedings of
FOCS. IEEE Computer Society, 1988, pp. 319–327. DOI: 10 . 1109 / SFCS .
1988.21948.

[SB01] Christoph Scholl and Bernd Becker. „Checking Equivalence for Partial Imple-
mentations“. In: Proceedings of DAC. ACM, 2001, pp. 238–243. DOI: 10.1145/
378239.378471.

[SB07] Stefan Staber and Roderick Bloem. „Fault Localization and Correction with
QBF“. In: Proceedings of SAT. Vol. 4501. LNCS. Springer, 2007, pp. 355–368. DOI:
10.1007/978-3-540-72788-0_34.

[SC85] A. Prasad Sistla and Edmund M. Clarke. „The Complexity of Propositional
Linear Temporal Logics“. In: J. ACM 32.3 (1985), pp. 733–749. DOI: 10.1145/
3828.3837.

[SF06] Sven Schewe and Bernd Finkbeiner. „Synthesis of Asynchronous Systems“. In:
Proceedings of LOPSTR. Vol. 4407. LNCS. Springer, 2006, pp. 127–142. DOI: 10.
1007/978-3-540-71410-1_10.

[SF07] Sven Schewe and Bernd Finkbeiner. „Bounded Synthesis“. In: Proceedings of
ATVA. Vol. 4762. LNCS. Springer, 2007, pp. 474–488. DOI: 10.1007/978-3-
540-75596-8_33.

[SHY15] Masaya Shimakawa, Shigeki Hagihara, and Naoki Yonezaki. „Reducing
Bounded Realizability Analysis to Reachability Checking“. In: Proceedings of
RP. Vol. 9328. LNCS. Springer, 2015, pp. 140–152. DOI: 10.1007/978- 3-
319-24537-9_13.

[SK14] Martina Seidl and Robert Könighofer. „Partial witnesses from preprocessed
quantified Boolean formulas“. In: Proceedings of DATE. European Design and
Automation Association, 2014, pp. 1–6. DOI: 10.7873/DATE.2014.162.

[SM09] Igor Stéphan and Benoit Da Mota. „A Unified Framework for Certificate and
Compilation for QBF“. In: Proceedings of ICLA. Vol. 5378. LNCS. Springer, 2009,
pp. 210–223. DOI: 10.1007/978-3-540-92701-3_15.

[SM73] Larry J. Stockmeyer and Albert R. Meyer. „Word Problems Requiring Expo-
nential Time: Preliminary Report“. In: Proceedings of STOC. ACM, 1973, pp. 1–
9. DOI: 10.1145/800125.804029.

[SNC09] Mate Soos, Karsten Nohl, and Claude Castelluccia. „Extending SAT Solvers
to Cryptographic Problems“. In: Proceedings of SAT. Vol. 5584. LNCS. Springer,
2009, pp. 244–257. DOI: 10.1007/978-3-642-02777-2_24.

209

https://doi.org/10.1109/FMCAD.2015.7542263
https://doi.org/10.1109/FMCAD.2015.7542263
https://doi.org/10.1109/SFCS.1988.21948
https://doi.org/10.1109/SFCS.1988.21948
https://doi.org/10.1145/378239.378471
https://doi.org/10.1145/378239.378471
https://doi.org/10.1007/978-3-540-72788-0_34
https://doi.org/10.1145/3828.3837
https://doi.org/10.1145/3828.3837
https://doi.org/10.1007/978-3-540-71410-1_10
https://doi.org/10.1007/978-3-540-71410-1_10
https://doi.org/10.1007/978-3-540-75596-8_33
https://doi.org/10.1007/978-3-540-75596-8_33
https://doi.org/10.1007/978-3-319-24537-9_13
https://doi.org/10.1007/978-3-319-24537-9_13
https://doi.org/10.7873/DATE.2014.162
https://doi.org/10.1007/978-3-540-92701-3_15
https://doi.org/10.1145/800125.804029
https://doi.org/10.1007/978-3-642-02777-2_24

BIBLIOGRAPHY

[Sol+06] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodík, Sanjit A. Seshia, and
Vijay A. Saraswat. „Combinatorial sketching for finite programs“. In: Pro-
ceedings of ASPLOS. ACM, 2006, pp. 404–415. DOI: 10 . 1145 / 1168857 .
1168907.

[SP16] Christoph Scholl and Florian Pigorsch. „The QBF Solver AIGSolve“. In: Pro-
ceedings of QBF@SAT. Vol. 1719. CEUR Workshop Proceedings. CEUR-WS.org,
2016, pp. 55–62. URL: http://ceur-ws.org/Vol-1719/paper5.pdf.

[SS09a] Marko Samer and Stefan Szeider. „Backdoor Sets of Quantified Boolean
Formulas“. In: J. Autom. Reasoning 42.1 (2009), pp. 77–97. DOI: 10 . 1007 /
s10817-008-9114-5.

[SS09b] Saqib Sohail and Fabio Somenzi. „Safety first: A two-stage algorithm for LTL
games“. In: Proceedings of FMCAD. IEEE, 2009, pp. 77–84. DOI: 10 . 1109 /
FMCAD.2009.5351138.

[SS16] Friedrich Slivovsky and Stefan Szeider. „Soundness of Q-resolution with de-
pendency schemes“. In: Theor. Comput. Sci. 612 (2016), pp. 83–101. DOI: 10.
1016/j.tcs.2015.10.020.

[SS99] João P. Marques Silva and Karem A. Sakallah. „GRASP: A Search Algorithm
for Propositional Satisfiability“. In: IEEE Trans. Computers 48.5 (1999), pp. 506–
521. DOI: 10.1109/12.769433.

[Ten13] Leander Tentrup. „Detecting Unrealizable Specifications of Distributed Sys-
tems“. Master’s Thesis. Saarland University, Dec. 2013.

[Ten16] Leander Tentrup. „Non-prenex QBF Solving Using Abstraction“. In: Proceed-
ings of SAT. Vol. 9710. LNCS. Springer, 2016, pp. 393–401. DOI: 10 . 1007 /
978-3-319-40970-2_24.

[Ten17] Leander Tentrup. „On Expansion and Resolution in CEGAR Based QBF Solv-
ing“. In: Proceedings of CAV. Vol. 10427. LNCS. Springer, 2017, pp. 475–494.
DOI: 10.1007/978-3-319-63390-9_25.

[Ten19] Leander Tentrup. „CAQE and QuAbS: Abstraction Based QBF solvers“. Ac-
cepted for publication in JSAT. 2019.

[THJ15] Kuan-Hua Tu, Tzu-Chien Hsu, and Jie-Hong R. Jiang. „QELL: QBF Reasoning
with Extended Clause Learning and Levelized SAT Solving“. In: Proceedings of
SAT. Vol. 9340. LNCS. Springer, 2015, pp. 343–359. DOI: 10.1007/978-3-
319-24318-4_25.

[TR19a] Leander Tentrup and Markus N. Rabe. „Clausal Abstraction for DQBF“. In:
Proceedings of SAT. Vol. 11628. LNCS. Springer, 2019, pp. 388–405. DOI: 10 .
1007/978-3-030-24258-9_27.

[TR19b] Leander Tentrup and Markus N. Rabe. „Clausal Abstraction for DQBF (full
version)“. In: CoRR abs/1808.08759 (2019). arXiv: 1808.08759. URL: http:
//arxiv.org/abs/1808.08759.

210

https://doi.org/10.1145/1168857.1168907
https://doi.org/10.1145/1168857.1168907
http://ceur-ws.org/Vol-1719/paper5.pdf
https://doi.org/10.1007/s10817-008-9114-5
https://doi.org/10.1007/s10817-008-9114-5
https://doi.org/10.1109/FMCAD.2009.5351138
https://doi.org/10.1109/FMCAD.2009.5351138
https://doi.org/10.1016/j.tcs.2015.10.020
https://doi.org/10.1016/j.tcs.2015.10.020
https://doi.org/10.1109/12.769433
https://doi.org/10.1007/978-3-319-40970-2_24
https://doi.org/10.1007/978-3-319-40970-2_24
https://doi.org/10.1007/978-3-319-63390-9_25
https://doi.org/10.1007/978-3-319-24318-4_25
https://doi.org/10.1007/978-3-319-24318-4_25
https://doi.org/10.1007/978-3-030-24258-9_27
https://doi.org/10.1007/978-3-030-24258-9_27
https://arxiv.org/abs/1808.08759
http://arxiv.org/abs/1808.08759
http://arxiv.org/abs/1808.08759

Bibliography

[Tse68] Grigori S Tseitin. „On the complexity of derivation in propositional calculus“.
In: Studies in constructive mathematics and mathematical logic 2.115-125 (1968),
pp. 10–13.

[VW19] Nikhil Vyas and Ryan Williams. „On Super Strong ETH“. In: Proceedings of SAT.
Vol. 11628. LNCS. Springer, 2019, pp. 406–423. DOI: 10.1007/978-3-030-
24258-9_28.

[VW94] Moshe Y. Vardi and Pierre Wolper. „Reasoning About Infinite Computations“.
In: Inf. Comput. 115.1 (1994), pp. 1–37. DOI: 10.1006/inco.1994.1092.

[Wim+15] Ralf Wimmer, Karina Gitina, Jennifer Nist, Christoph Scholl, and Bernd
Becker. „Preprocessing for DQBF“. In: Proceedings of SAT. Vol. 9340. LNCS.
Springer, 2015, pp. 173–190. DOI: 10.1007/978-3-319-24318-4_13.

[Wim+16] Karina Wimmer, Ralf Wimmer, Christoph Scholl, and Bernd Becker. „Skolem
Functions for DQBF“. In: Proceedings of ATVA. Vol. 9938. LNCS. 2016, pp. 395–
411. DOI: 10.1007/978-3-319-46520-3_25.

[Wim+17] Ralf Wimmer, Sven Reimer, Paolo Marin, and Bernd Becker. „HQSpre - An Ef-
fective Preprocessor for QBF and DQBF“. In: Proceedings of TACAS. Vol. 10205.
LNCS. 2017, pp. 373–390. DOI: 10.1007/978-3-662-54577-5_21.

[Zha14] Wenhui Zhang. „QBF Encoding of Temporal Properties and QBF-Based Ver-
ification“. In: Proceedings of IJCAR. Vol. 8562. LNCS. Springer, 2014, pp. 224–
239. DOI: 10.1007/978-3-319-08587-6_16.

[ZM02] Lintao Zhang and Sharad Malik. „Conflict driven learning in a quantified
Boolean Satisfiability solver“. In: Proceedings of ICCAD. ACM / IEEE Computer
Society, 2002, pp. 442–449. DOI: 10.1145/774572.774637.

[ZM03] Steve Zdancewic and Andrew C. Myers. „Observational Determinism for
Concurrent Program Security“. In: Proceedings of CSFW. IEEE Computer Soci-
ety, 2003, p. 29. DOI: 10.1109/CSFW.2003.1212703.

211

https://doi.org/10.1007/978-3-030-24258-9_28
https://doi.org/10.1007/978-3-030-24258-9_28
https://doi.org/10.1006/inco.1994.1092
https://doi.org/10.1007/978-3-319-24318-4_13
https://doi.org/10.1007/978-3-319-46520-3_25
https://doi.org/10.1007/978-3-662-54577-5_21
https://doi.org/10.1007/978-3-319-08587-6_16
https://doi.org/10.1145/774572.774637
https://doi.org/10.1109/CSFW.2003.1212703

Index

assignment
Boolean, written α, 17
partial Boolean, written β, 17

BDT, binary decision tree, 98

DQBF
candidate model, 98
candidate partial model, 99
dependency lattice, 113
model, 98
partial model, 99

DQBF, dependency quantified Boolean
formula, 97

function
Boolean, 18
Herbrand, 19
Skolem, 19
well-formed, 19

game, 140
arena, 140
play, 140
safety, 140
symbolic, 141

HyperLTL
collapse, 166
incomplete information, 167
linear, 167

LTL, Linear-time temporal logic, 136

NNF, negation normal form, 17

partial expansion tree, 42
PCNF, prenex conjunctive normal form,

17
polynomial simulation, 49

QBF
clause, writtenC, 16
cube, 16
literal, written l , 16
matrix, written ϕ, 17
satisfiability, 19

QBF, quantified Boolean formula, 16

resolution, 49
proof, 49

run graph, 144
annotation, 144

strategy, 138
finite-state, 139

transition system, 137
composition, 178
cross-product, 178
generates strategy, 139
labeled, 138
state-labeled, Moore, 138
symbolic, 149
transition-labeled, Mealy, 138

universal co-Büchi automaton, 137

213

	Introduction
	Quantified Satisfiability as a Building Block for Synthesis
	Beyond Linear-time Specifications
	Contributions
	Publications
	Structure of This Thesis

	Quantified Satisfiability
	Clausal Abstraction
	Quantified Boolean Formulas
	Solving QBF with One Quantifier Alternation
	Solving QBF with Arbitrary Quantifier Alternations
	Function Extraction
	Integrating Partial Expansion
	Experimental Evaluation
	Summary

	A Proof System for Clausal Abstraction
	Definitions
	A Refutation Proof Calculus for Clausal Abstractions
	Integrating Partial Expansion
	A Proof Calculus for Satisfiable Formulas
	Summary

	Circuit Abstraction
	Circuit Abstraction
	Evaluation
	Solving Formulas in Non-Prenex Form
	Summary

	Fast DQBF Refutation
	Dependency Quantified Boolean Formulas
	Bounded Unsatisfiability
	Encoding of Bounded Unsatisfiability in QBF
	Experimental Results
	Summary

	Clausal Abstraction for DQBF
	Preliminaries
	A Resolution Style Proof System
	Lifting Clausal Abstraction
	Correctness
	Evaluation
	Summary

	Reactive Synthesis
	Synthesizing Reactive Systems
	Preliminaries
	Safraless Synthesis
	Encodings of Bounded Synthesis
	Experimental Evaluation
	Summary

	Synthesis From Hyperproperties
	Temporal Hyperproperties
	On the Expressiveness of Temporal Hyperproperties
	Deciding HyperLTL Realizability
	Summary

	Bounded Synthesis from Hyperproperties
	Synthesis from Universal HyperLTL
	Bounded Unrealizability
	Synthesis from HyperLTL with Quantifier Alternations
	Experimental Evaluation
	Summary

	Conclusions & Outlook
	Bibliography
	Index

