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Absiract

Cancer is a heterogeneous class of complex diseases that are characterized by unlimited
proliferation of malignant cells. Cancer is caused by a complex interplay of (epi-)genetic
aberrations that strongly differ between tumors. This heterogeneity makes cancer difficult to
treat. Personalized cancer treatment aims at selecting the most suitable (combination of) drugs
to treat a specific tumor based on its genetic and molecular characteristics. Data from modern
high-throughput experimental technologies have greatly improved the resolution at which
tumor-driving factors can be determined across levels of cellular regulation. In order to extract
disease- and treatment-relevant information from this mass of complex, high-dimensional, and
noisy data sets, robust statistical and computational tools and methods are required.

In this thesis, we present a comprehensive tool suite for cancer treatment decision support and
translational research. The encompassed tools provide rich functionality for the genetic and
molecular characterization of tumors with an emphasis on deregulated biological processes and
the identification of disease-driving regulatory key players. The integrative analysis of multi-
omics data sets with a priori knowledge from clinical practice guidelines and relevant medical,
pharmacological, and biological databases covers a variety of research scenarios from biomarker
identification to the personalized assessment of various types of treatment options including
standard-of-care targeted drugs, candidates for drug repositioning and immunotherapy.

First, we present several tools for the statistical analysis of multi-omics data that can be broadly
applied, e.g. for molecular characterization of a sample of interest or for biomarker identification.
These tools include GeneTrail2 and RegulatorTrail. GeneTrail2 is a web service for the statistical
analysis of molecular signatures that provides various types of enrichment analyses for the
identification of deregulated pathways. While GeneTrail2 focuses on the assessment of aberrant
biological pathways and signaling cascades, RegulatorTrail aims at the identification of those
transcriptional regulators that seem to have a high impact on these pathogenic processes. To
this end, RegulatorTrail provides numerous methods. As one of these methods, we propose
REGulator-Gene Association Enrichment (REGGAE), which is based on the combination of
regulator-target interactions and enrichment analysis.

While the above-mentioned tools and methods are designed for general purposes, we specifically
focus on personalized medicine and translational research with DrugTargetInspector (DTI).
DTI provides rich functionality for the assessment of molecular drug targets, putative target
pathways and corresponding drugs based on the integrative analysis of tumor-specific omics
data sets.

Finally, we present ClinOmicsTrail®, an interactive visual analytics tool for breast cancer
treatment stratification. ~ ClinOmicsTrail®® supports clinicians by providing a thorough
assessment of standard-of-care targeted drugs, candidates for drug repositioning, and
immunotherapeutic approaches, including checkpoint inhibitors and personalized cancer
vaccines.

In summary, this work presents novel methods and computational tools for the integrative
analysis of multi-omics data for translational research and clinical decision support, assisting
researchers and clinicians in finding the best possible treatment options in a deeply personalized

way.






Summary

Cancer is a heterogeneous class of diseases caused by the complex interplay of (epi-)genetic
aberrations and is difficult to treat due to its heterogeneity. In this thesis, we present a tool
suite of novel methods and computational tools for the genetic and molecular characterization
of tumors to support decision making in personalized cancer treatments. The first tool included
in this tool suite is GeneTrail2, a web service for the statistical analysis of molecular signatures.
While GeneTrail2 focuses on the evaluation of aberrant biological pathways and signal cascades,
RegulatorTrail identifies those transcriptional regulators that appear to have a high impact
on these pathogenic processes. With DrugTargetInspector (DTI), we focus specifically on
personalized medicine and translational research. DTI offers comprehensive functions for the
evaluation of target molecules, the associated signaling cascades, and the corresponding drugs.
Finally, we present ClinOmicsTrail®®, an analysis tool for stratification of breast cancer treatments.
ClinOmicsTrail*® supports clinicians with a comprehensive evaluation of on- and off-label drugs

as well as immune therapies.
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Zusammenfassung

Krebs ist eine heterogene Klasse von Erkrankungen, die durch ein komplexes Zusammenspiel
von (epi-)genetischen Aberrationen verursacht wird und sich aufgrund ihrer Heterogenitat nur
schwer behandeln ldsst. In dieser Arbeit prasentieren wir eine Reihe neuer Methoden und
Berechnungswerkzeuge fiir die genetische und molekulare Charakterisierung von Tumoren zur
Entscheidungsunterstiitzung bei personalisierten Krebsbehandlungen.

Diese Berechnungswerkzeuge beinhalten unter anderem GeneTrail2, einen Webservice fiir die
statistische Analyse molekularer Signaturen. Wahrend GeneTrail2 sich auf die Bewertung von
aberranten biologischen Pfaden und Signalkaskaden konzentriert, identifiziert RegulatorTrail
jene Transkriptionsregulatoren, die einen hohen Einfluss auf diese pathogenen Prozesse
zu haben scheinen. Mit DrugTargetinspector (DTI) fokussieren wir uns speziell auf
die personalisierte Medizin und die translationale Forschung. DTI bietet umfangreiche
Funktionen fiir die Bewertung von Zielmolekiilen, den dazugehorigen Signalkaskaden und
entsprechenden Medikamenten. Schlielich prasentieren wir ClinOmicsTrail, ein Analysetool
zur Stratifizierung von Brustkrebsbehandlungen. ClinOmicsTrail®® unterstiitzt Kliniker durch

eine umfassende Bewertung von On- und Off-Label-Medikamenten und Immuntherapien.
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Infroduction

Cancer is a class of complex diseases characterized by uncontrolled proliferation of cells that tend
to invade surrounding tissue and metastasize to other sites of the body [1]. By the year 2030, two
out of three elderly people are expected to be diagnosed with cancer [2]. As incidence rates of
cancer are strongly correlated with age [3], a prolonged life expectancy and an aging population
will result in a continuously increasing number of cancer patients in the future. Although the
progress in science and medicine has improved the treatment of cancer over the last decades [4],
cancer is still the second leading cause of death in Germany and other Western industrialized
countries (cf. Figure 1.1).

Leading causes of death
Germany, 2015 - 925,200 deaths
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Figure 1.1 Leading causes of death in Germany 2015. Based on a total of 925,200 cases, the fraction of the eleven
most common causes of death are displayed. Data obtained from the German Federal Statistical Office [5].

The reasons why cancer treatment is still a grand challenge can be found in the origins and traits
of this complex class of diseases. The transformation from normal human cells into cancer cells
occurs via the acquisition of several capabilities enabling malignant growth. High mutation rates
combined with uncontrolled proliferation lead to a Darwinian-like cellular evolution that fosters

tumor heterogeneity. This diversity is also reflected in strongly varying treatment responses in



2 1 INTRODUCTION

tumors of the same type or even subtype and hence has to be accounted for in a personalized
treatment decision-making process [6].

The idea of personalized medicine per se is not new. The field of medicine has always been
personalized in such a way that physicians have strived to determine the underlying causes of
their patients” diseases and to treat them accordingly. It is conveyed that already around 400 BC,
the Greek physician Hippocrates assessed the composition of four distinct types of body fluids
black and yellow bile, phlegm, and blood (the ‘four humors’) before treating a patient [7].
Over the last decades, there were numerous endeavors to identify treatment-relevant biomarkers
that also led to the concept of companion diagnostics. Companion diagnostics are specific
molecular, genetic, or imaging tests that assess the status of key tumor-driving genes or
proteins, which inform the applicability of specific drugs. For example, the treatment of colon
cancer with cetuximab requires the determination of the mutation status of the Kirsten rat
sarcoma viral oncogene homolog (KRAS). KRAS is a proto-oncogene that oftentimes carries an
activating mutation rendering KRAS independent from upstream activation by the epidermal
growth factor receptor (EGFR), the molecular drug target of cetuximab. Hence, treatment with
cetuximab is only eligible for patients without the mutation [8]. Nowadays, an increasing
number of companion diagnostics for cancer treatment stratification are approved by the U.S.
Food and Drug Administration (FDA). However, in many cases, the sole consideration of single
or a few biomarkers might not suffice to comprehensively identify the specific tumor’s driving
factors and hence predict treatment outcome. Oncogenic mutations in the v-raf murine sarcoma
viral oncogene homolog B (BRAF) are illustrative for this, as they are predictive for BRAF
inhibitor response (e.g., for treatment with vemurafenib or dabrafenib) in melanoma [9, 10],
but not necessarily in other cancer types. [11].

Although there is anecdotal evidence of super responders that experienced long-term remission
after personalized treatment [12], its broad clinical benefit remains to be shown in clinical
trials [13]. The complex biology of altered signaling cascades driving a tumor is likely to
explain why there are currently only a few classes of patients benefiting from precision oncology.
Hence, in order to comprehensively characterize and stratify a given tumor, besides of the sole
consideration of individual actionable mutations, the complex molecular ‘circuitry” of altered
genes and proteins and their interdependencies also need to be taken into account to obtain a
holistic view on disease-driving mechanisms.

With an evolving understanding of cancer biology and the increased accessibility of high-
throughput technologies, the breadth and depth at which tumor-driving factors can be
determined on a genetic and molecular level in clinically relevant time frames have greatly
improved. Biotechnological high-throughput methods of various types enable fine-grained
measurements of a tumor’s (epi-)genome and transcriptome, microRNAs, proteins, and
metabolites (‘omics data’) in the cell.

The integrative analysis of all of these multi-faceted data sets has the potential to significantly
advance personalized medicine [14]. However, the sheer amount of high-dimensional and
noisy data and the complexity of molecular interactions and dependencies make the manual
identification of all treatment-relevant pieces of information a futile task. Hence, easy-to-use, yet
powerful bioinformatics tools and clinical decision support systems are required that integrate
clinical and multi-omics data sets of a patient under investigation with a priori knowledge
from various biological, medical, and pharmacological databases and reference data sets. Such



analyses have to be conducted in a transparent and reproducible manner. The obtained results
should be provided in clear and easy-to-interpret visualizations that support clinicians in
selecting the best suitable treatment options for their patients (cf. Figure 1.2).

Personalized cancer treatment on the basis of such a holistic assessment of key tumor driving
genes and pathways has the potential to improve treatment responses and quality of life for
patients. Moreover, the elucidation of specific tumor characteristics and how they inform drug
sensitivity can promote drug development by revealing additional or alternative uses for drugs

and drug candidates.

Integrative analyses

databases

._ Biological
Clinical data @ ? & medical

Multi-omics

Sample-specific data
abpajmouy oud y

molecular & Reference
genetic data data sets

Tumor characterization &

treatment stratification

Clinical decision support

Figure 1.2 Workflow of decision support for personalized cancer treatment using multi-omics integrative analyses.
The infegrative analysis of a tumor sample’s clinical and molecular data in combination with a priori knowledge
from various biological and medical databases can be employed to characterize the given tumor, hence
providing clinical decision support for treatment stratification. The icons in this figure were obtained from [15].

Thesis scope and outline

In this thesis, we present a comprehensive tool suite for cancer treatment decision support and
translational research. The encompassed tools provide rich functionality for the genetic and
molecular characterization of tumors with an emphasis on deregulated biological processes and
the identification of disease-driving regulatory key players. The identified tumor characteristics
are combined with a priori knowledge from clinical practice guidelines and relevant medical,
pharmacological, and biological databases for a personalized assessment of various types of
treatment options, including standard-of-care targeted drugs, candidates for drug repositioning,

and immunotherapy.



4 1 INTRODUCTION

Tumors can potentially contain a plethora of (epi-)genomic and transcriptomic aberrations that
manifest in dysregulated activity patterns of a variety of biological pathways, thereby leading
to the specific disease phenotype. However, the alterations present in a tumor are not all
contributing equally to the disease. Hence, for the identification of suitable treatment options,
disease-driving alterations and their effects on cancer-relevant signaling cascades have to be
determined. Such an assessment has the potential to drastically advance the evaluation of
personalized (combination) therapies for cancer while improving the interpretability of analysis
results.

Our first scientific contribution in this context is the development of GeneTrail2, a web service
for the statistical analysis of molecular signatures that identifies deregulated pathways by means
of enrichment analyses. GeneTrail2 offers numerous statistical tests and a broad collection
of biological pathways and functional gene sets, making it one of the most comprehensive
web service for enrichment analyses to date. While GeneTrail2 is a general-purpose tool for
the assessment of altered biological pathways and signaling cascades, the identification of
the underlying key regulatory elements that promote pathological processes is crucial to gain
mechanistic insights into complex diseases like cancer. One essential class of regulatory elements
implicated in cancer development and progression are transcriptional regulators. Being mostly
located at the end of signaling cascades and hence acting as the effectors of intracellular signal
transduction, the activation states of transcriptional regulators can also be considered as a
proxy for the activities of their belonging pathways. We therefore developed RegulatorTrail,
a web service for the assessment of transcriptional regulators with respect to their impact
on pathogenic processes. RegulatorTrail provides eight different methods to identify and
prioritize influential regulators on the basis of epigenomics and transcriptomics data. As one
of these methods, we propose REGulator-Gene Association Enrichment (REGGAE), a novel
approach to prioritize transcriptional regulators based on the combination of regulator-target
interactions with Gene Set Enrichment Analysis. Using REGGAE, we were, for example, able to
mechanistically elucidate the role of the transcription factor TCF3 as a potential master regulator
in blastemal Wilms tumors, an aggressive form of childhood nephroblastoma.

The tools and methods mentioned above can be used for the thorough characterization of
tumors, which is an essential prerequisite for personalized cancer treatment. The identified
characteristics can be investigated with respect to their potential impact on drug sensitivity
to inform treatment selection. In order to support oncologists in making informed treatment
decisions and to foster translational research, we have developed the interactive assistance tool
DrugTargetInspector (DTI). DTI provides rich functionality for the assessment of molecular
drug targets, putative target pathways, and corresponding drugs based on the integrative
analysis of tumor-specific omics data sets. Molecular drug targets of recommended drugs for
more than 30 cancer types and a wide range of potential candidates for drug repositioning
can be investigated with respect to their deregulation status and the existence of potentially
resistance-causing mutations. Furthermore, DTI offers functionality to determine and visually
assess a drug target’s effect on downstream processes. While DrugTargetInspector is applicable
across cancer types and provides a focused evaluation of molecular drug targets with potential
applications in drug repositioning, the successful implementation of personalized medicine
in the clinical practice requires the holistic assessment of a large variety of factors that might
(de-)sensitize a drug in a cancer type-specific manner. Clinical decision support tools need



to comprehensively assess and integrate various types of (epi-)genomic and transcriptomic
aberrations with respect to their implications for drug sensitivity while keeping the provided
information as concise as possible. Moreover, in order to gain acceptance and build trust
with clinicians and patients, transparency of the analyses and interpretability of the results are
essential factors. To this end, we developed ClinOmicsTrail®®, an interactive visual analytics
tool for breast cancer treatment stratification. ClinOmicsTrail’® supports clinicians by providing
a thorough assessment of standard-of-care targeted drugs, candidates for drug repositioning,
and immunotherapeutic approaches, including checkpoint inhibitors and personalized cancer
vaccines. To this end, our tool analyzes clinical markers and (epi-)genomics and transcriptomics
data sets to identify and evaluate the tumor’s key driver mutations, the overall mutational load,
activity patterns of cancer-relevant pathways, drug-specific predictive biomarkers, the status
of molecular drug targets, and pharmacogenomic effects. The breadth and depth of analyzes
and visualizations offered by ClinOmicsTrail®™® make it a promising tool with the potential to
noticeably advance precision medicine and clinical decision support in the near future.

This thesis consists of seven chapters and its remainder is structured as follows: Chapter 2
provides information on the required biological background. This includes an overview of
essential components and characteristics of cancer development and progression, as well as a
discussion of current treatment options and the concept of personalized medicine as an approach
to cancer treatment. Across all methods and tools proposed in this thesis, we utilize a variety
of databases providing a priori knowledge from various domains and large-scale multi-omics
data sets that help to pinpoint disease-causing alterations. Chapter 3 introduces the most
relevant of these databases and data sets and gives an overview of current high-throughput
experimental techniques that can be used to capture the aberrations present in a specific tumor.
In Chapter 4, we present several tools and methods for the identification of various types
of predictive biomarkers for treatment stratification. These include deregulated biological
processes and pathway activities, as well as transcriptional regulators. For each of the presented
tools and web services, we provide a description of the underlying methods and demonstrate
their capabilities in several case studies on a diverse range of cancer types. Chapter 5 describes
the interactive assistance tool DrugTargetInspector. This includes a description of the tool’s
comprehensive functionality, as well as examples demonstrating its applicability to support
personalized medicine and drug repositioning on different types of omics data. Chapter 6
focuses on ClinOmicsTraile, our visual analytics tool for breast cancer treatment stratification.
We provide descriptions of the tool’s rich set of features and highlight their relevance for
treatment decision support. Moreover, we present several case studies demonstrating how
ClinOmicsTrail*® may guide the breast cancer treatment selection process. Finally, Chapter 7
concludes this thesis and provides directions for future work.

Due to the interdisciplinary nature of bioinformatics research projects, this thesis contains many
results that are based on the joint effort of various researchers across several disciplines. In order
to ensure transparency of contributions, respective sections will contain information boxes on

author contributions and references to corresponding publications.






Biological Background

This chapter introduces the biological background relevant for this thesis. To this end, we first
discuss the basic principles of the molecular biology of eukaryotic cells, followed by a description
of (epi-)genetic and molecular aberrations typically occurring in cancer. In this context, we will
also present common characteristics of malignant tumors. Additionally, we will give a brief
overview of current treatment options for cancer and present personalized medicine as a holistic

approach to cancer prevention, diagnosis, and treatment.

2.1 Molecular biology of eukaryotic cells

In 1866, the Augustinian friar Gregor Mendel published the results of his archetypal experiments
on plant hybridization and thereby provided, amongst others, first evidence for the fact that the
heritable material of an organism is a significant determinant of the observed phenotype [16].
Nowadays, the elucidation of the relationship between the genotypic markup of an organism
and its phenotypic manifestation is still a major focus of biology research. The ‘flow of genetic
information’ is a conceptual scaffold that portrays this dependence as a multistep process in
which information from the (epi-)genome is selectively expressed in the form of proteins and
functional RNAs that accomplish various functions in the cell and that significantly contribute
to the cell’s phenotype (cf. Figure 2.1 A) [17].

The human body consists of 30 to 40 trillion individual cells of various specialization, distinct
metabolism, and physiology [18]. The creation and maintenance of these different cellular
phenotypes require the coordinated expression of particular sets of genes while others have to
be repressed [19]. Numerous regulatory elements and mechanisms govern gene expression by
impeding (or enabling) the flow of genetic information (cf. Figure 2.1 B).

The modulation of the ‘packing’ of genetic material in the cell’s nucleus is a primary control
point of gene expression. In the nucleus, the DNA is present in a highly condensed form,
the chromatin. To achieve this high level of compression, the DNA is tightly wrapped
around histones, which are octameric protein complexes, forming nucleosomes that are further
folded into chromatin fibers [20]. Depending on the compression level of the chromatin,
heterochromatin and euchromatin can be distinguished. Chromatin in its more densely
compacted form is called heterochromatin. In heterochromatin, regulatory target sequences
are likely to be inaccessible. Conversely, in euchromatin, the less compacted form of chromatin,
these regulatory regions are reachable. In these open chromatin regions, transcription factors
(TFs) can bind to specific control sequences in regulatory regions of a gene (e.g., the promoter,
enhancer, or silencer regions), where they foster or repress the transcription of their respective
target genes [21]. However, most transcription factors cannot exercise their function on their
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Figure 2.1 Flow of genetic information. A) Black arrows indicate the flow of genetic information from the genome
to the proteome in a simplified scheme. The regulatory effects of MiIRNAs and transcription regulators are indicated
by gray arrows. B) Examples of relevant regulatory elements and mechanisms controlling the flow of genetic
information to the next level. C) Examples of measurable alterations that can help to elucidate the genetic and
molecular underpinnings of a tumor’s phenotype. The icons in this figure were obtained from [15].

own. Various other classes of proteins like coactivators or chromatin remodeling complexes are
typically required to ensure the recruitment and activation of the transcriptional machinery, as
well as proper elongation and controlled termination of transcription [22]. Besides the factors
mentioned above, also epigenetic components play essential roles in governing gene expression.
For example, there is a large variety of epigenetic marks, e.g. covalent modifications of histones or
the DNA itself, which form complex regulatory patterns fostering either an activated, poised, or
repressed state of the affected gene [23]. In general, acetylation of histone residues is associated
with potentially active gene expression [24], while DNA methylation of CpG-rich regions close
to the transcription start site of a gene is typically an indicator of gene silencing [25].

Once DNA transcription is successfully initiated, DNA can be transcribed into messenger RNA
(mRNA) or non-coding RNA. In the case of mRNA, the primary transcript is called pre-mRNA,
which can be made up of one or several exons and introns [26]. The pre-mRNA undergoes
several post-transcriptional processing steps, which can involve 5’-capping, 3’-polyadenylation,
alternative splicing, and sometimes RNA editing [27, 28]. The class of non-coding RNAs
contains numerous types of functional RNAs that are not translated into proteins. These
include, but are not limited to, ribosomal RNAs, transfer RNAs, and long non-coding RNAs
[29]. Another prominent type of non-coding RNAs are microRNAs (miRNAs). These rather
short nucleotide chains can exert their regulatory effect by causing the degradation of their target
mRNAs or inhibition of their translation [30].

The mature mRNA4, if not degraded or inhibited by regulatory RNA molecules, is transported to
the ribosomes, where it is translated into the corresponding amino acid chain via complementary
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base-pairing of tRNA adaptor molecules to the mRNA template [31]. The newly synthesized
polypeptide then needs to fold into its three-dimensional structure, which ultimately defines
the function of the protein. The process of protein folding can be supported by a complex
cellular machinery of molecular chaperones. These chaperones support protein folding as well
as the assembly of protein complexes [32]. In order to be able to react to external stimuli
quickly, proteins can be activated or inactivated via post-translational modifications (PTMs)
[33]. The most prominent type of PTM is phosphorylation, which describes the addition of
a phosphate group to a protein, thereby quickly switching the protein’s state from inactive to
active or vice versa. Interacting proteins can form cascades of protein phosphorylations and
dephosphorylations, transmitting and amplifying external signals (e.g., growth signals) into
the nucleus. Besides signal transduction, PTMs can also determine a protein’s cellular location
or mark them for degradation. Examples of such PTMs are sumoylation and ubiquitination
[34, 35]. Proteins, their interaction partners and substrates form complex and dynamic systems
within cells. However, as interactions are not restricted to single cells, proteins can also receive
signals from or convey signals to other cells [36]. In cases where this well-orchestrated interplay
of gene regulation, protein-protein signaling, and the cellular metabolism gets out of balance,
complex diseases may arise, a very prominent example of which is cancer [37].

2.2 Cancer

Over the last centuries, major advances in technology, sanitation, and medicine have significantly
increased life expectancy in more and more regions of the world [38], shifting the leading
causes of morbidity and mortality from infectious diseases to non-contagious diseases like
cardiovascular diseases, diabetes, or cancer [39]. Cancer is a class of complex diseases that are
characterized by the uncontrolled proliferation of previously healthy cells that gained the ability
to invade adjacent tissues and to spread to distant parts of the body. In the following sections,
we will describe the process of tumor development and a set of common cancer characteristics.
Furthermore, we will review how these characteristics are exploited in various types of cancer

treatment.

2.2.1 Cancer development and characteristics

The development of malignant neoplasms from healthy cells occurs in a multistep process
during which the cells accumulate (epi-)genomic aberrations. During the lifespan of an
organism, the DNA and its structure are continuously subject to impairment by various types
of aberrations. DNA damage can be induced by erroneous DNA replication or environmental
factors like chemical agents, radiation, or viruses [40, 41]. In healthy cells, damage detection
and repair mechanisms counteract these aberrations either by repairing compromised DNA
or labeling the cell for destruction. However, in cases where the cells’ defense and control
mechanisms are disturbed, aberrations might manifest in the genome [42]. In a Darwinian-like
evolutionary process, those alterations that confer a growth advantage to the affected cells are
selected for. Progressively, these cells accumulate further aberrations, potentially leading to the
formation of a tumor [42].
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2.2.1.1 (Epi-)genomic aberrations contributing to cancer

There are various types of genetic aberrations (i.e., mutations) that enable tumor pathogenesis
(cf. Figure 2.1 C). Mutations can be classified with respect to their hereditability, size, and effect.
Concerning hereditability, germline and somatic mutations can be distinguished. Changes
occurring in an organism’s germ cells (ova or spermatozoa) are called germline mutations.
Germline mutations can be passed on to the offspring of an organism, which will carry these
aberrations in all of its cells. There are several types of germline mutations known to confer a
predisposition for specific cancer types, like breast cancer [43], colon cancer [44], and others
[45]. Mutations arising in any other cell type (i.e., the ‘soma’) are called somatic mutations.
The spread of somatic mutations is limited to the descendants of the affected cells. Although
many cancers also have hereditary components, the occurrence of additional somatic mutations
during the lifespan of an organism is typically required to initiate tumor pathogenesis [46].
Besides a classification by hereditability, mutations can also be classified by means of the size of
the affected genomic region. Small genomic aberrations like point mutations or the insertion,
deletion, or substitution of a few nucleotides can be distinguished from structural genomic
alterations like copy number variations (i.e., amplifications and deletions) or the rearrangement
of even larger genomic regions (e.g., resulting in fusion genes). Also on the level of whole
chromosomes, structural and numeric anomalies can contribute to the development of cancer
[47].

As a third way of classifying genomic aberrations, we can consider the effect of a particular
mutation on the phenotype. Mutations can occur in coding regions of the genome, where they
can affect the structure and hence the functionality of the encoded proteins, and in regulatory
sites where they can contribute to alterations in gene expression. When considering protein-
coding small-scale mutations, we can further classify mutations according to their effect on
the protein structure. Here, we can distinguish synonymous and non-synonymous mutations.
Synonymous mutations do not alter the encoded amino acid and hence do not affect the protein’s
structure and functionality. Non-synonymous mutations, on the other hand, can affect the
encoded amino acid, the length of the polypeptide, or the reading frame. There are different
types of non-synonymous mutations: Missense mutations result in the exchange of a single
amino acid in the translated polypeptide. Nonsense mutations lead to the substitution of an
amino acid with a premature stop codon. Readthrough mutations, on the other hand, induce the
opposite, namely the replacement of a stop codon by a regular amino acid-encoding codon. The
latter two types of non-synonymous mutations lead to truncation or elongation of the produced
isoforms. In cases where an insertion or deletion (‘indel”) has a size that is not a multiple of three,
this results in the shift of the open reading frame (frameshift mutation) that severely disturbs
the peptide sequence.

Besides aberrations directly affecting the sequence and structure of the DNA, also epigenetic
alterations (‘epimutations’) can contribute to carcinogenesis. Altered patterns of histone
modifications and DNA methylation can affect the structure and integrity of the genome, as well
as disrupting gene expression. A typical example of this is DNA hypomethylation of promoters,
which can contribute to gene activation, whereas promoter hypermethylation can lead to the
transcriptional silencing of the affected genes [48].

Tumors can potentially contain a plethora of different aberrations. However, not all of these

contribute equally to a tumor’s initiation and progression. Mutations that actually promote the
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disease are referred to as driver mutations, whereas other ‘bystander’ mutations not central to
the disease development are called passenger mutations. Whether an (epi-)genomic aberration
is classified as driver or passenger mutation depends on various factors including the specific
gene being affected as well as the mutation’s effect on the activity of the corresponding protein.
Here, two extreme cases can be distinguished: gain-of-function and loss-of-function mutations.
Gain-of-function mutations can be achieved by various mechanisms like activating mutations,
amplifications, or gene fusion to an actively transcribed gene. In the context of cancer initiation
and progression, genes for which a gain-of-function mutation increases cancer risk are called
proto-oncogenes (and ‘oncogenes’ in their mutated, hyperactive form). Typical classes of
proteins that act as (proto-)oncogenes are transcription factors, chromatin remodelers, growth
factors and their receptors, as well as signal transducers. Loss-of-function mutations can be
mediated by inactivating mutations, deletions, or loss of chromosomal arms. Genes for which
a loss-of-function mutation supports tumorigenesis are called tumor suppressor genes. Tumor
suppressor genes are commonly involved in the negative regulation of cell proliferation.

2.2.1.2 The Hallmarks of Cancer

The (epi-)genomic alterations accumulated during tumorigenesis propagate to higher levels of
cellular regulation, where they disturb signaling cascades and, ultimately, the behavior of the
affected cells to enable malignant growth. Although the types and succession of the aberrations
underpinning this transition can vary strongly between tumors, tumors can still be characterized
by several commonalities. Hanahan and Weinberg summarized these common characteristics
as the Hallmarks of Cancer [49]. The authors defined eight acquired capabilities and two
enabling factors that allow cancer cells to survive, proliferate, and ultimately to metastasize (cf.
Figure 2.2).

In brief, in order to allow malignant growth, cancer cells bypass the dependence of exogenous
growth signals, which are required for healthy quiescent cells to proliferate again, by generating
their own growth signals [50]. This mechanism is accompanied by cancer cells’ insensitivity to
anti-growth signals [51].

However, this growth potential would be restrained in healthy cells by the limited number of
growth-and-division cycles cells are allowed to undergo before they reach a state of senescence
or apoptosis. This limitation is attained by the progressive erosion of chromosome-protecting
telomeres at each round of replication. Tumor cells counteract this process by the upregulation
of telomerase expression [52].

Continuous cell growth and division need to be fuelled by large amounts of energy. To this end,
cancer cells modify the cellular metabolism, for example via an increased uptake and utilization
of glucose that, together with glutamine, is a major building block of cell maintenance and
biosynthesis in mammalian cells. [53].

Another perspective on malignant growth is that cancer cells do not only grow and proliferate
unlimitedly, but also feature the capability of evading apoptosis [54]. Resistance to apoptosis can
be acquired by cancer cells via a multiplicity of mechanisms like suppression of mitochondrial
membrane permeabilization and others [55].

Similar to the evasion of apoptosis via cell-intrinsic mechanisms, cancer cells also acquired the

capability to avoid recognition and elimination by the immune system. In the early stages of
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Figure 2.2 The Hallmarks of Cancer. Overview of a tumor’s acquired characteristics and enabling factors (marked
by an asterisk) promoting unlimited growth and disease progression. Figure based on [49]. The icons in this figure

were obtained from [15].
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tumorigenesis, the immune system typically can identify and destroy incipient cancer cells.
However, in a process called immunoediting, weakly immunogenic cancer cells are selected
for. The reduction in immunogenicity can be mediated by various mechanisms like defects
in or a total loss of target antigen presentation [56]. Even in cases where the recognition of
tumor cells is still functioning, cancer cells can evade immune destruction by the expression
of immunoregulatory checkpoint proteins like PD-L1 that bind to corresponding receptors on
activated T-cells, thereby preventing them from eradicating the malignant cells [57].

In order to supply the increasing amount of tumor tissue with oxygen and nutrients, the
cancer cells induce the sprouting of new blood vessels from the existing vascular system, i.e.
angiogenesis [58].

However, lack of further space and nutrients lets cancer cells develop the capability of
invasion and metastasis, founding new colonies of malignant cells in distinct areas of the body,
disconnected from the primary tumor [59].

Besides the eight hallmark capabilities described above, Hanahan and Weinberg define two
enabling characteristics that foster their acquisition: genome instability and mutation as well as
tumor-promoting inflammation. In order to transform healthy cells into cancer cells, checkpoints
preventing cells with DNA mutations from proliferation, have to be circumvented. As a
consequence, the mutability of the cell’s genome is increased, which enables the acquisition
of the described features [60]. Inflammation can foster multiple hallmark capabilities, for
example by supplying growth factors and extracellular matrix-modifying enzymes to the tumor
microenvironment that can promote typical hallmark characteristics like angiogenesis, invasion,

and metastasis [61].

2.2.2 Cancer treatment

Typical treatment options for tumors include surgery, radiation, systemic chemotherapy, and in
the recent past also immunotherapy. Depending on a variety of factors, such as tumor size and
stage, its location, and the overall health status of the patient, different treatment modalities or
combinations thereof are utilized. The surgical excision of a tumor is the primary treatment
option for many cancer types, especially when diagnosed at an early stage [62]. However, the
applicability of surgery is limited when tumors are difficult to reach or have metastasized.
Another common treatment option for solid cancers is radiotherapy. Here, a beam of ionizing
radiation is targeted at the tumor. The absorbed energy leads to the formation of free radicals in
the cancer cells, which severely damage the DNA and ultimately cause cell death [63].

For systemic therapy, there exists a plethora of drugs: At the time of writing, the National Cancer
Institute (NCI) lists more than 250 approved anticancer drugs and combination regimen [64].
The approved drugs can be subdivided into two major categories: non-specific chemotherapy
and targeted therapy. Conventional non-targeted cytotoxic agents encompass several classes like
taxanes, anthracyclines, or alkylating agents [65]. Although these drug classes have different
mechanisms of action, they all rigorously attack rapidly dividing cells in the body. This high
promiscuity leads to severe side effects as for example also cells of the gastrointestinal epithelium
and the immune system are damaged.

In contrast to this, targeted drugs try to utilize characteristics of the tumor to specifically attack
cancer cells, thereby maximizing efficacy while minimizing toxicity. The rationale behind this
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approach is a concept called ‘oncogene addiction’, which postulates that tumors are likely to be
dependent on a single or a few (potentially druggable) cancer genes for the manifestation of
their malignant phenotypes [66].

With respect to targeted chemotherapy, we can distinguish two main classes of therapeutic
agents: small molecules and monoclonal antibodies [67]. Small molecules are organic
compounds that are able to enter cells due to their low molecular weight. Small molecules
in cancer treatment are typically tyrosine or serine/threonine kinase inhibitors (indicated by
the suffix ‘-ib”), which target aberrant signal transduction processes in the cell [68]. Examples
of such kinase inhibitors are imatinib for the treatment of chronic myelogenous leukemia via
inhibition of the BCR-ABL tyrosine kinase [69], or vemurafenib, which targets BRAF-mutant
advanced melanoma [70]. Besides small molecules, monoclonal antibodies (indicated by the
suffix ‘-mab’) are an emerging and highly specific means of cancer treatment. Antibodies can
occupy cell surface receptors and thereby block essential signaling cascades responsible for the
propagation of, for example, growth signals into the nucleus. Additionally, they can trigger
antibody-dependent cellular cytotoxicity. A prominent example of such a highly specialized
drug is trastuzumab, a humanized monoclonal antibody targeting the human epidermal growth
factor receptor 2 (HER2), which is over-abundant in some types of breast cancer [71]. Other
examples are bevacizumab, which targets angiogenic processes in the tumor by inhibiting the
vascular endothelial growth factor A (VEGFA) [72] and rituximab for the treatment of diffuse
large B-cell lymphoma [73]. In recent years, antibody-drug conjugates (ADCs) have risen to
become a promising class of targeted cancer treatment. ADCs combine the high selectivity of
monoclonal antibodies with the cytotoxic activity of traditional chemotherapeutic drugs. To this
end, small molecules with high toxicity are covalently bound to an antibody via a linker that is
stable in circulation but releases the cytotoxic agent when bound to the target cell [74].
Targeted drugs have significantly advanced cancer treatment over the last two decades. They
were commonly considered as ‘magic bullets’, a term originally coined by the bacteriologist
Paul Ehrlich in referral to chemicals specifically targeting microorganisms [75]. However, the
individual administration of highly specialized compounds does not properly account for the
multidimensional nature of cancer, which can involve many molecular players interacting in
interconnected pathways. Hence, the treatment of a tumor with a single targeted drug, aiming
at the ablation of a single molecular target or pathway is unlikely to achieve complete remission.
Under the selective pressure of the drug, resistant subpopulations emerge that can quickly
outgrow the sensitive cells and cause relapse [76]. There are various mechanisms by which
tumors evade treatment, for example by mutating and structurally altering drug targets such
that inhibitors cannot bind anymore or via the activation of alternative signaling pathways to
alleviate the dependence on signal transduction cascades blocked by a therapeutic agent [77].
To prevent these escape mechanisms, combination therapies accounting for several mechanisms
driving a tumor have proven great potential [78-80]. Combination schemes can follow various
strategies like the maximal inhibition of a single target (e.g., bevacizumab-sunitinib against
VEGF and its receptor VEGFR), targeting multiple key players ‘vertically” along a pathway (e.g.,
HER2 and mTOR in the ErbB2 signaling pathway), or attacking several ‘parallel” oncogenic
signaling pathways (e.g., the VEGF signaling pathway plus the EGFR signaling pathway) [81].
Besides the presented approaches to cancer treatment, cancer immunotherapy has been gaining

more and more attention as a cancer treatment option, especially in the last years. The
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term immunotherapy encompasses various approaches that all aim at harnessing the patient’s
immune system to treat cancer. Emerging immunotherapies for cancer include checkpoint
blockade, adoptive T-cell therapy, and therapeutic cancer vaccines.

Typically, the recognition of tumor antigens by effector T-cells leads to the destruction of the
tumor cells. However, as described in Section 2.2.1, cancer cells are likely to evade detection and
eradication by the immune system. One central mechanism by which this can be achieved is the
activation of immune system-suppressing checkpoints like CTLA-4 or PD-1 [82]. For instance,
in cases where cancer cells express the programmed death ligand 1 or 2 (PD-L1/2) on their
surface, the PD-1 receptor on T-cells in close proximity may bind to this ligand inducing an
inhibitory signal and preventing the tumor cell from being destroyed. In such cases, inhibiting
either the receptor or the ligand (e.g., by pembrolizumab binding to PD-1 [83] or atezolizumab
against PD-L1 [84]) can allow T-cells to resume their attack of the tumor cells. Several studies
across cancer types showed that the effectiveness of such checkpoint inhibitors - amongst others -
correlates with the number of mutations present in a tumor, making them a promising treatment
option, especially for advanced and aggressive tumors [85, 86].

Besides checkpoint blockade, adoptive T-cell therapy is another promising approach to cancer
immunotherapy [87]. In order to boost a patient’s immune system, T-cells are harvested from the
patient, grown in vitro and reintroduced in considerable amounts. There are also forms in which
the T-cells are genetically modified or chimeric antigen receptors are attached to the T-cells, such
that they can better recognize cancer cells.

Another approach to induce the formation of tumor-specific cytotoxic T-cells is the use of
personalized cancer vaccines [88, 89]. Cancer vaccines aim at overexpressed or altered proteins
and HLA-presented peptide sequences (neoantigens) that resulted from genetic, epigenetic, and
gene expression changes uniquely characterizing the patient’s tumor. They are used to prime
T-cells to recognize these characterizing antigens and induce a T-cell mediated immune reaction.
As the neoepitopes are dependent on both the patient’s tumor mutations and HLA genotype,
cancer vaccines have to be individually designed. The identified epitopes can serve as the basis
for the synthesis of a personalized cancer vaccine, which can be combined with checkpoint
inhibitors to potentially boost the effectiveness of the vaccine [90].

Although the diagnosis and treatment of cancer have greatly improved over the last decades
and survival rates across cancer types have generally increased, mortality rates and therapeutic
success still vary strongly between cancer types (cf. Figure 2.3). Besides the depicted disparity
between different types of cancer, there is also a high genotypic diversity between tumors of the
same type, subtype, and even between different regions of the same tumor that impede therapy
stratification and hence must be accounted for in the treatment decision-making process [91].

2.3 Personalized medicine

Personalized medicine, often also referred to as precision medicine or individualized medicine,
is a holistic approach of tailoring disease prevention, diagnosis, treatment, and monitoring
to an individual based on his/her genetic and molecular makeup, clinical data, and medical
history [93]. Although physicians have always strived to find the optimal treatment for their
patients, the emergence of high-throughput biotechnological techniques since the turn of the

last millennium marks an inflection point in the diagnosis and treatment of complex diseases.
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Figure 2.3 Five-year cancer survival rates in the USA. Average five-year survival rates for various cancer types in
the United States. Red points indicate the rates for 1970-77 and the blue points indicate the rates for 2007-2013.
Data obtained from [92].

DNA and RNA sequencing [94], microarray technologies [95], proteomics approaches [96], and
other techniques provide an unprecedented wealth of data that can be used for individualized
phenotyping.

The concept of personalized medicine is used in a broad set of diseases, including infectious
diseases, cardiovascular disorders, or neurological conditions [97]. One of its major fields of
application is cancer, for which various aspects of personalized intervention will be exemplified
in the following.

One of the goals of personalized medicine is to fulfill a paradigm shift from reactive to preventive
healthcare [98]. Predisposition testing is thereby a major cornerstone to identify individuals
at risk for certain diseases. For example, women carrying harmful germline mutations in the
tumor suppressor genes BRCA1 or BRCA2 have an up to eight-fold increased risk to develop
breast cancer and an up to 40-fold risk to develop ovarian cancer during their lifetimes [99]. For
patients at increased risk, screening frequency could be increased to detect developing tumors
as early as possible [100], they could undergo a prophylactic mastectomy in the case of breast
cancer [101] or be treated with chemopreventive agents [102].

In cases where the occurrence of a malignancy could not be prevented, there are various options
for the personalized management of the disease. Considering radiotherapy, personalization
could be achieved via an adaptation of the radiation dose to the tumor’s specific composition.
For example, a PET/MRI scan could be used to identify aggressive hypoxic regions in the tumor
that require a higher intensity of radiation in these areas [103]. In the realm of systemic therapy,
there is also a large potential for personalization. Numerous factors need to be taken into account
to determine the potential efficacy of a drug or drug regimen for a given tumor. Personalized

cancer chemotherapy aims at targeting the pathophysiologically and therapeutically relevant
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alterations that drive a specific tumor. In order to identify potential treatment options, these
tumor characteristics have to be identified and assessed with respect to their effect on drug
sensitivity. In addition to tumor-specific mutations, also aberrations affecting genes involved in
absorption, distribution, metabolism, and excretion (ADME) of drugs are of great importance
for treatment selection and dosing. The assessment of drug-processing enzymes like members
of the cytochrome P450 family or transporter proteins is also referred to as pharmacogenomic
(PGx) testing. Genomic aberrations in cytochromes can affect the metabolism of a wide range
of commonly used drugs. They can affect the rate at which drugs are metabolized in the body
or even completely prevent the activation of prodrugs in the liver [104].

Across all stages of personalized medicine, but specifically prior to and during treatment, bio-
logical markers (biomarkers) play an essential role in pinpointing relevant tumor characteristics.
As defined by the Food and Drug Administration (FDA), a biomarker is a “characteristic that
is measured as an indicator of normal biological processes, pathogenic processes, or responses
to an exposure or intervention, including therapeutic interventions” [105]. Biomarkers can be
categorized according to their purpose into several classes, including susceptibility biomarkers,
diagnostic biomarkers, prognostic biomarkers, predictive biomarkers, and monitoring biomark-
ers [105]. For treatment decision support, prognostic and predictive biomarkers are of major in-
terest. Prognostic biomarkers provide information on the progression of the disease. Prominent
examples of prognostic biomarkers are Oncotype DX [106] and MammaPrint [107] that deter-
mine the aggressiveness and risk of relapse of a breast tumor based on multi-gene signatures,
thereby also assessing the need for adjuvant chemotherapy. In contrast to prognostic biomark-
ers, predictive biomarkers are concerned with the efficacy and safety of certain drugs or types of
treatment. In vitro diagnostic tests or imaging tools to assess the state of predictive biomarkers
are called companion diagnostics (CDx) [108].

Nowadays, there are more than 40 types of CDx approved for cancer treatment stratification by
the FDA. These include the interrogation of HER2 amplification status prior to treatment with
trastuzumab or pertuzumab in breast cancer [109], the assessment of KRAS mutation status for
cetuximab treatment in colon cancer [110], or the recognition of the Philadelphia chromosome
(BCR-ABL fusion gene) in chronic myeloid leukemia to ensure susceptibility for imatinib [111]
or nilotinib [112].

Moreover, companion diagnostics and biomarker-based treatment stratification can also be
utilized in the drug development process. Besides rational drug design, the concept of drug
repositioning plays a major role in this context. Drug repositioning describes the identification
of new indications for already approved drugs [113] or drug candidates that failed to reach
market entry due to various reasons (the latter sometimes referred to as ‘drug repurposing’)
[114]. The lung cancer drug gefitinib, for example, could not demonstrate a survival advantage
in the general population of lung cancer patients and was withdrawn from the market after
initial FDA-approval. However, in the subgroup of patients with specific EGFR mutations,
gefitinib could show significant benefits and hence was approved as first-line treatment for
accordingly stratified lung cancer patients in 2015 [115]. Also, the expansion of indications
for a drug can be observed: Crizotinib, a kinase inhibitor approved to treat specific forms
of non-small cell lung cancer, including those that are EML4-ALK positive, is also effective
in other tumors containing ALK alterations, such as anaplastic large cell lymphoma [116] or
pediatric neuroblastoma [117]. In 2017, the FDA even granted tissue/site-agnostic approval to
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the checkpoint inhibitor pembrolizumab, which was the first targeted cancer treatment to be
administered across cancer types for patients with metastatic, microsatellite instability-high or
mismatch repair-deficient solid tumors [118].

With an increasing body of knowledge about a tumor’s underlying genomic alterations and the
expression of relevant biomarkers, tumor classification and patient stratification are shifting
away from the tissue of origin and toward a molecular taxonomy and mechanism-driven
treatment decisions. This paradigm shift is also reflected in the way clinical trials are conducted.
Traditionally, clinical trials were mostly focused on average responses across a population,
not on the specific subgroups that might be especially susceptible to the treatment due to
their (epi-)genetic and molecular markup. Nowadays, there are new and emerging classes
of precision medicine clinical trials that account for personalization: so-called ‘basket’ and
‘umbrella’ trials. In basket (or bucket) trials, a drug of interest targeting a specific aberration
is tested on a variety of tumor types in a biomarker-positive subgroup. Umbrella trials have
many different treatment arms (like the spokes of an umbrella) in which patients are matched
to different drugs depending on the molecular makeup of their disease. The recently completed
prospective umbrella trial MOSCATO 01 evaluated the clinical benefit of high-throughput
genomic analyses guiding treatment selection in advanced solid tumors. However, only for
411 of 843 samples an actionable genomic alteration could be identified and of the accordingly
treated patients only 11% showed a response to their matched treatments [119]. Also, the
currently running NCI MATCH trial, the largest combined basket/umbrella trial to date, could
so far only assign a genetics-based treatment to 9% of the enrolled patients [120].

Hence, in order to comprehensively characterize and stratify a given tumor, besides of the sole
consideration of individual actionable mutations, the complex molecular ‘circuitry” of altered
genes and proteins and their interdependencies also need to be taken into account to obtain a

holistic view on disease-driving mechanisms [121].



Materials and Methods

A general goal of life science research is the identification of the components that make up
a living system. Specifically, the elucidation of the relations and interactions among these
components that result in the functioning of the system as well as its dysfunctioning in the
presence of perturbations, are of major interest.

With respect to the personalized treatment of cancer, this goal translates to (i) the identification
of (epi-)genomic and molecular aberrations present in a tumor and (ii) the evaluation of
these alterations concerning disease initiation and progression as well as potential treatment
responses [122]. In this chapter, we will give an overview of the biotechnological techniques,
computational and statistical methods, as well as reference databases that are required to
approach these goals. To this end, we will first introduce three prevailing types of high-
throughput experimental techniques and corresponding bioinformatics processing steps to
comprehensively characterize tumor samples with respect to their (epi-)genetic and molecular
profiles. In order to extract relevant information from these high-dimensional and complex
data sets, a priori knowledge from various domains and robust statistical methods are required.
Hence, in the second part of this chapter, we will present several classes of databases and
resources that cover a variety of pathway-, disease-, and treatment-specific aspects including
the functional annotation of genes and gene sets, known cancer driver genes, drug-target
interactions, and the pharmacogenomic effects of mutations. Finally, we will present various
types of statistical tests and algorithms for the identification of deregulated genes and biological
processes.

3.1 High-throughput experimental techniques

The totality of specific types of biological entities (e.g., genetic material, transcripts, or proteins)
is typically indicated by the common suffix ‘-ome’, as for example in ‘genome’, ‘transcriptome’,
or ‘proteome’. Current biotechnological high-throughput techniques allow to comprehensively
study different types of ‘omes’ and hence are referred to as ‘omics’ technologies [123]. The
thereby obtained high-dimensional data sets (‘omics data’) can be used to address various types
of research questions ranging from basic science to translational research and clinical decision
support. In the following sections, we will describe three main classes of biological assays that
can be used to measure (epi-)genomics, transcriptomics, and proteomics data. For each of these
techniques, the experimental principle, areas of application, and required computational steps
for data processing will be presented.

19
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3.1.1 Microarrays

The microarray technique is based on the highly parallel hybridization of entities under
investigation (e.g., DNA, RNA, or proteins) to a predefined set of specific, complementary
probes on a slide, the actual microarray. Fluorescence intensities are captured to assess the
degree of hybridization, which acts as a proxy for the quantification of the entity under
investigation [95].

In the following, the experimental principle of microarrays will be presented using the example
of cDNA microarrays and one of its predominant applications: the measurement of transcript
levels. Afterward, further types of microarrays to measure various other kinds of cellular
aberrations will be addressed. Finally, the required processing steps for the quantification of
the measurements will be discussed.

3.1.1.1 Experimental principle

A typical application of cDNA microarrays is the assessment of gene expression at the mRNA
level. An overview of the workflow is provided in Figure 3.1.
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Figure 3.1 Overview of cDNA single-channel microarray workflow. After extraction of mRNA from the sample of
interest, the mMRNA is reversely transcribed into cDNA and amplified. Fluorescent labeling of the probes is followed
by hybridization to the microarray and a washing step. (Please note that the microarray probes are not depicted
for improved visual clarity.) Based on the intensity of the emitted fluorescence in the respective spots, expression
levels of franscripts and genes can be deduced. Figure adapted from [124].

In a first step, the mRNA is extracted from the cells under investigation, which is reverse-
transcribed and amplified to generate complementary DNA (cDNA) for hybridization. The
cDNA is afterward labeled with a detectable marker, typically a fluorescent dye like the
fluorophore Cyanine 3 (Cy3) [125]. The microarray itself is a small platform consisting of
a solid surface on which specific oligonucleotide probes are bound to designated spots. The
fluorescence-labeled cDNA is hybridized onto the microarray, relying on the high specificity of
complementary base-pairing [126]. The hybridization is followed by a washing step that aims
at removing unbound as well as unspecifically binding cDNA. The degree of hybridization for
each spot is assayed by measuring the emitted fluorescence using, e.g., a confocal laser scanner.
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Several steps of subsequent image analysis and data normalization (cf. Section 3.1.1.3) then
yield expression levels that can be compared to those of a reference sample or control group
to identify sample-specific expression changes (cf. Section 3.3.2).

Besides the single-channel experiments described above, there are also two-channel experiments
in which two samples to be compared against each other are labeled with fluorophores emitting
at different wavelengths (e.g., Cy3 and Cy5) and compete for hybridization to the microarray
probes [127]. In this setting, differential expression can be directly deduced from the relative
fluorescent intensities.

3.1.1.2 Other microarray technologies and applications

There are also numerous other experimental techniques that use different types of microarrays,
three of which will be described in the following.

Comparative genomic hybridization microarrays: Besides the assessment of transcript levels,
also copy number variations between samples (cf. Section 2.2.1.1) can be assessed using
microarrays, in an experiment type called Comparative Genomic Hybridization on arrays
(aCGH). Here, the microarray contains probes of single-stranded DNA fragments of known
chromosomal location. In a two-channel microarray setting, the DNA extracted from a test
sample and a reference sample are denatured, labeled with fluorescent dyes of different colors,
and applied to the microarray for competitive hybridization. The captured relative fluorescence
intensities are used to compute relative copy numbers for the two samples. Depending on the
research question at hand, probe lengths can range from less than 100 bases to several hundred
kilobases. By this, the aCGH approach overcomes limitations of previous cytogenetic techniques
like conventional Comparative Genomic Hybridization (CGH) [128], which only provided low
resolution, and Fluorescence In Situ Hybridization (FISH) [129], which could only be used for
the analysis of a limited number of chromosomal loci at a time [130].

Methylation microarrays: Microarrays can also be used to measure DNA methylation [131].
As described in Section 2.1, DNA methylation is a type of epigenetic modification, which is
not readily detectable from the underlying genomic sequence. Hence, in order to be assessable
using microarrays or sequencing technologies (cf. Section 3.1.2), methylation states have to be
‘translated” to the nucleotide level. Bisulfite conversion is the current gold standard for the
quantification of DNA methylation [132]. The treatment of the DNA under investigation with
sodium bisulfite leads to the conversion of unmethylated cytosines to uracil, while methylated
cytosines remain unaltered [133]. After fragmentation, amplification, and denaturation, the
bisulfite-converted DNA is hybridized to the microarray. Here, commonly used technologies
such as the Illumina Infinium HumanMethylation450 BeadChip [134] measure methylation
levels at single CpG resolution using two types of probes, one complementary to the methylated
allele and one to the unmethylated allele. The state of a specific CpG thereby is assumed to also
be representative for flanking CpG sites as for example present in CpG islands. After the allele-
specific annealing of the fragments, the probe sequence is extended by labeled nucleotides. This
extension only occurs for those sequences that perfectly match the probes, i.e. for unmethylated
loci only those that are bound to the probes for the unmethylated state and for methylated
loci only those that are bound to the probes for the methylated state. The respective signal
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intensities obtained from subsequent immunohistochemical staining are used to quantify DNA
methylation levels as B-values (or M-values).

Protein microarrays: Another type of cellular characteristic measurable using microarrays
is protein abundance. Techniques like Forward-Phase Protein MicroArrays (FPPAs) can be
used to quantify protein levels [135]. In contrast to the types of microarray experiments
described above, instead of oligomeric nucleotides, protein-specific antibodies are attached to
the microarray. After protein extraction from the cells under investigation, the lysate is added
to the microarray. The amount of protein binding to the probe antibodies can be quantified by
using fluorescence labeling either of the lysate proteins themselves or via reporter antibodies in
a so-called ‘sandwich’ assay format [136, 137]. Conversely, Reverse-Phase Protein MicroArrays
(RPPAs) can be used to assess the abundance of a single type of protein across a large number
of samples, which are individually spotted onto an array. Here, the levels of the protein under
investigation are queried using a highly specific antibody [138]. In both cases, the reliability
of the measurements is crucially dependent on the specificity of the employed primary (and
potentially secondary) antibodies.

Moreover, there are also microarray platforms that use so-called ‘aptamers’ instead of antibodies.
Aptamers are single-stranded oligonucleotide molecules that specifically bind to their target
proteins. The SOMAscan assay by SomaLogic employs their proprietary SOMAmer (Slow Off-
rate Modified Aptamer) reagents to capture up to 5,000 proteins simultaneously [139, 140].
While protein microarrays are an emerging means of protein identification and quantification
[141], mass spectrometry-based approaches, which will be presented in Section 3.1.3, are
another commonly used approach to proteomics.

3.1.1.3 Processing of microarray data

For obtaining expression values from microarray experiments, multiple processing steps are
necessary, which will be exemplarily outlined for single-channel oligonucleotide microarrays
(cf. Section 3.1.1.1) in the following paragraphs.

Scanning and image analysis:  After the excitation of the hybridized probes on the microarray
using a laser beam of fluorophore-specific wavelength, a gray-scale image of the microarray is
captured by the laser scanner. In order to obtain the raw fluorescence signals for each entity
on the array, several steps of image analysis are required. As microarray spots typically follow
a grid-like arrangement, the pixels belonging to each probe can be identified by placing a grid
onto the image, which is adjusted by geometric operations on the pixel rows and columns to
account for slight offsets and rotations [142]. Then, the pixels in each target area are classified
as belonging either to the signal (‘“foreground’) or the surrounding area (‘background’). This
segmentation can be achieved using different approaches, including adaptive shape detection
[143] or clustering methods [144]. Based on this classification and the intensities of the

respective pixels, the overall intensity of a spot can be inferred.

Nonspecific-binding correction and summarization: ~ Although the washing step in microarray
protocols aims at removing unspecifically binding fragments, a residual amount of unspecific



3.1 High-throughput experimental techniques 23

hybridization typically remains, which has to be taken into account to identify and quantify
expressed genes [145].

An example of how to account for this already by design of the microarray are Affymetrix
oligonucleotide arrays. Here, each target sequence to be measured is represented by a probe
set of up to n = 20 pairs of relatively short (25 nucleotides long) perfect-match (PM) and
adjacent mismatch (MM) probes, which are distributed across the chip. PM probes are perfectly
complementary to the targeted sequence, whereas MM probes contain a single-base substitution
at a central position. The amount of hybridization to the MM probes is assumed to be
representative of non-specific hybridization events. For each target sequence, the corresponding
spots yield two series of values, PM;, ..., PM,, and MMj, ..., MM,,. For a qualitative assessment
of whether or not an actual signal can be detected for a given target sequence, the two series can
be tested for a significant difference in their distribution (e.g., using the Wilcoxon signed-rank
test, see Section 3.3.2). For the quantitative determination of expression of a target sequence s,
the average difference between PM and MM partners can be considered:

i (PM] — MM})

5= ,
ng

where PM; is the PM value of the i-th probe of target sequence s, MM is its corresponding
MM value, and n; is the number of probe pairs available for sequence s. Alternatively, there
are also averaging-methods that account for potential outliers like the One-Step Tukey Biweight
Algorithm [146].

Normalization: Besides unspecific hybridization, there are numerous other factors that may
add noise or systematic sources of variability to the raw microarray data, for example, RNA
degradation or a varying spotting efficiency [147, 148]. Hence, in order to ensure intra- and inter-
array comparability, a normalization step is required. The background correction step described
above can be considered as an intra-array normalization [149]. For inter-array normalization,
there are various approaches, including the use of reference gene sets or distribution-matching
procedures. The selection of a reference set of probes as normalization sample thereby relies
on the assumption that these probes do not show much biological variation across experiments
(e.g., via the use of spike-in mRNA) [150]. Distribution-matching procedures aim at making
expression value distributions comparable across arrays. To this end, quantile normalization
is a commonly applied method, which adjusts the expression value distribution across arrays
[151]. An alternative to this is Variance Stabilizing Normalization (VSN), which is based on the
observation that fluorescence measurements of high intensities typically show larger variances
than low-intensity measurements. VSN transforms the data such that the variance is stabilized
across the whole range of expression [152].

There are several algorithms and software packages available that aim at making expression
value distributions comparable across arrays, of which Robust Multiarray Average (RMA) [153]
and Affymetrix MicroArray Suite 5.0 (MAS 5.0) [154] are two of the most popular ones.

Batch effects: Microarray experiments do not measure gene expression in absolute units and
they are highly sensitive to changes in the experimental setup as well as the external conditions
under which the experiment is performed. As a consequence, the results of microarray
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experiments conducted in different experimental runs will exhibit differences that are due to
non-biological, but rather technical variance. These systematic errors are called batch effects and
they are likely to impede subsequent data analysis steps if not accounted for [155]. The causes of
batch effects can range from major differences in the experimental setup like the use of different
types of microarray platforms or experimental protocols over variations in sample preparation
to presumably minor factors like the temperature and lighting or the actual ‘batches’ of chemical
reagents used [156, 157]. Batch effects arise whenever a set of samples is measured in multiple
parts or microarray data sets from different resources are being combined. Hence, in these cases
it is necessary to correct for the bias introduced by batch effects. To this end, batch effect removal
techniques such as SVA [158], ComBat [159], or RUV-2 [160] should be applied. However, all
of these methods require an experimental design that accounts for batch effect removal, where
one or more samples of every condition should be contained in each batch. If this is not the case,
the impact of the phenotype can hardly be differentiated from the impact of the confounding
factor(s), making the reconstruction of the actual signal nearly impossible [161].

3.1.2 High-throughput sequencing

The term ‘sequencing’ generally describes the process of identifying the primary structure
(the ‘sequence’) of larger molecules of covalently bound monomeric units, forming so-called
‘biopolymers’. While this broad definition also covers polypeptides and polysaccharides, we
will focus on polynucleotides (DNA and RNA) in the following. Nowadays three generations
of DNA/RNA sequencing technologies are distinguished that differ in their throughput and
experimental overhead: they range from first-generation and rather low-throughput Sanger
sequencing [162] over the massively parallel sequencing of shorter fragments in second-
generation technologies [163] to the ‘real-time” sequencing of very long molecules in the third
generation [164]. The term ‘high-throughput sequencing’ comprises the second and third
generations of sequencing techniques.

There is a broad variety of protocols and techniques to conduct high-throughput sequencing
that vary depending on the sequencing platform used and the task at hand. In the following
sections, we will describe the underlying experimental principles, different areas of application,

and the computational steps required for the processing of the experimental data.

3.1.2.1 Experimental principle

There are three main approaches to sequencing: (i) sequencing-by-synthesis, (ii) sequencing-
by-ligation, and (iii) sequencing-by-hybridization [165]. @ While sequencing-by-synthesis
uses polymerases to successively add individual bases to a growing strand [166], short
oligonucleotides are used in the other two cases. Specifically, the formation of perfectly
matching duplexes with a target sequence is considered in sequencing-by-hybridization [167].
In sequencing-by-ligation, hybridizing oligonucleotides are ligated to complement the template
strand [94]. Besides different ways of base or oligonucleotide integration, also the means
by which an incorporated base or bound fragment is identified differs between sequencing
techniques. Many sequencing technologies rely on the optical detection of fluorescent reporters
[168]. However, there are also approaches that rely on the detection of hydrogen ions that
are released during polymerization (e.g., IonTorrent’s semiconductor technology) [169] or the
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change of electrical current as DNA bases pass through a nanopore (as in Oxford Nanopore’s
sequencing technology) [170].

In the following, we will explain the experimental principle of DNA sequencing via the example
of the commonly used second-generation technique of sequencing-by-synthesis, as provided by
[lumina for Whole Genome Sequencing [171]. Figure 3.2 provides an overview of the workflow.

DNA extraction DNA fragmentation Library creation
(from cells of interest) (and filtering) (adaptor ligation and amplification)

v
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Figure 3.2 Overview of lllumina sequencing-by-synthesis workflow. DNA extraction and fragmentation are
followed by the construction of the sequencing library. In this step, adapters are attached to the fragments, which
are amplified on the flow cell using Bridge PCR to form clusters. The actual sequencing is performed by iterative
rounds of nucleotide incorporation and fluorescence capturing. The thereby obtained sequencing reads can be
aligned to a reference genome and downstream analyses like variant identification can be performed. Parts of
the image adapted from [171] and [172]. The icons in this figure were obtained from [15].

In a first step, the DNA is extracted from the cells under investigation. Next, the analyte is
fragmented using random shearing (e.g., via nebulization, isothermal sonication, or enzymatic
fragmentation [173]) and filtered for fragments of protocol-appropriate length, typically
between 200 and 500 bp [174]. The template is subsequently amplified using a specialized
form of Polymerase Chain Reaction (PCR), called Bridge PCR. In this amplification technique,
template DNA is denatured and two types of adapters are ligated to the respective ends of the
fragments. These fragments are hybridized to the so-called ‘flow cell’ that contains a ‘lawn’
of adapter-complementary primers. After hybridization of the fragment adapters to the first
type of primer, a polymerase creates the complement of the hybridized fragment. The double-
stranded molecule is then denatured and the original template is washed away. The remaining
strand bends over and hybridizes - in resemblance of a bridge - to the second type of primer
and strand complementation is initiated. In the following PCR process, the double-stranded

molecules are iteratively denatured, each strand forming a new ‘bridge’ for DNA replication
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and thereby exponentially amplifying the template sequence. After clonal amplification of the
fragments, the reverse strands are cleaved and washed off, leaving only the forward strands for
sequencing.

The actual sequencing is also conducted in an iterative process. Starting from sequencing
primers that are attached to the 3’ ends of the templates, the reads are generated. To this
end, fluorescence-labeled nucleotides (dNTPs) are added to the flow cell and compete for
incorporation by DNA polymerases into the growing chains. After a matching dNTP is added
to the backbone, the unbound nucleotides are rinsed, and the clusters are excited by a light
source. A characteristic fluorescent signal is emitted from each cluster as each type of nucleotide
is labeled with a specific fluorophore. Based on the emission wavelengths and signal intensities
captured by an optical device, the incorporated nucleotides per cluster can be determined in a
process called base calling. By this, millions of clusters can be sequenced simultaneously. The
incorporated nucleotides contain reversible blocking groups to prevent the nascent chains from
being extended in an uncontrolled manner. In a subsequent step, these terminators and the
fluorophores are cleaved and the cycle starts over until the desired read length is achieved.

In a paired-end setting, i.e., in cases where a fragment is sequenced from both ends, the first read
product is washed away and another round of sequencing is conducted. To this end, one more
round of bridge hybridization and strand complementation is performed and the reverse strands
are used for sequencing. The pairing of the reads provides additional spatial information that
can be advantageous for further analysis steps (cf. Section 3.1.2.3). Separation distances can
range from short inserts (200 to 500 bp) to long insert mate pairs (2 to 5 kb) [175].

Depending on the question at hand, the sequence reads are either assembled to a novel genome
or aligned to a reference genome. Having paired-end reads helps to resolve ambiguous
alignments and chromosomal rearrangements, such as insertions, deletions, and inversions
[176]. Finally, various types of downstream analyses like variant calling, i.e., the identification of
variations of the considered sample from the reference genome, can be performed [177]. Please
refer to Section 3.1.2.3 for an overview of the respective processing steps.

3.1.2.2 Other sequencing technologies and applications

High-throughput sequencing is a broadly used technique that can be employed to answer
various types of research questions. In the following, several major types of applications will
be outlined.

Targeted sequencing: Besides Whole Genome Sequencing (WGS), also targeted sequencing
approaches like exome sequencing and panel sequencing are commonly applied. Exome
sequencing, sometimes also called Whole Exome Sequencing (WES), focuses on the sequencing
of the protein-coding regions in the genome (i.e., the exons), which only cover about 1% of
the human genome [178]. Hence, for applications like the identification of genetic variants
affecting protein sequences, WES is a much more time- and cost-efficient alternative to WGS
[179]. Exome sequencing protocols are similar to those of WGS, with the additional step of
exome capturing prior to amplification. Most commonly, biotinylated oligonucleotide probes
that selectively target exons (so-called ‘baits”) are used for this purpose. After hybridization, the
probe-DNA hybrids are seized by magnetic streptavidin beads and enriched via amplification
[180]. An even more targeted approach to sequencing is Gene Panel Sequencing, in which only
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up to several hundred genes are considered and which is typically used in clinical practice to
probe for a predefined set of specific diagnostics- or treatment-relevant variants [181].

The drastically reduced number of bases that have to be sequenced in targeted sequencing
approaches in comparison to WGS allows for an increased depth of sequencing at still relatively
low costs. Sequencing coverage (i.e., the average number of unique reads that include a given
nucleotide in the assembled sequence) thereby can be increased from low fold coverages of
around 30x (as typically used in WGS) to high (typically at 100-200x) and ultra-high coverages
(typically at 500-1000x) for exome and panel sequencing, respectively. By this, also low-
frequency alterations can be reliably identified [182].

RNA sequencing: In addition to the elucidation of a sample’s genomic features, high-
throughput sequencing techniques can also be applied for transcriptome profiling via a class
of approaches called RNA Sequencing (RNA-Seq) [183]. Similar to the targeted sequencing
approaches described above, RNA-Seq requires an initial step of so-called ‘target enrichment”:
Depending on the entities of interest, mRNA or different types of non-coding RNA need to be
extracted from the cell lysate. To this end, magnetic beads with bound poly (T)-oligonucleotides
can be used to capture only the mRNA from a cell lysate of interest by hybridizing to the poly (A )-
tails of mature mRNAs. The mRNA molecules can then be sequenced using, in principle, any
sequencing technology. In a next step, the obtained reads are either mapped to a reference
genome or used for de novo transcriptome assembly. The coverage of the mapped reads within a
gene can be used for quantification of the corresponding gene’s expression (cf. Section 3.1.2.3).
RNA-Seq overcomes some of the shortcomings of hybridization-based methods like the ones
described in Section 3.1.1, as it is not limited to detecting transcripts that correspond to known
genomic sequences, does not suffer from cross-hybridization bias, and provides a broader
dynamic range of detection [184].

Bisulfite sequencing: Aside from the use of methylation microarrays, genome-wide methyla-
tion patterns can also be assessed via bisulfite sequencing [185]. Analogously to the sample
preparation for methylation microarrays described above, the presence or absence of a methyl
group at the fifth carbon position of cytosine pyrimidine rings is ‘encoded’ into the DNA via
sodium bisulfite treatment. By this, unmethylated cytosines are deaminated to uracils, which
are read as thymine when sequenced, while methylated cytosines remain unaltered and hence
are read as cytosines. In comparison to hybridization-based and other methods, bisulfite se-
quencing entails the advantage of single-nucleotide resolution [186].

Chromatin immunoprecipitation sequencing: Another prominent application scenario for
sequencing is Chromatin ImmunoPrecipitation Sequencing (ChIP-Seq), which is a combination
of chromatin immunoprecipitation and deep sequencing to determine the occupancy of DNA
with binding proteins [187]. Here, chromatin-binding factors and regulatory elements like
transcription factors, histone modifications, or RNA polymerases are cross-linked to their bound
DNA (e.g., via formaldehyde treatment). After cell lysis, the isolated chromatin is fragmented
and the protein-DNA complexes are captured from the lysate via immunoprecipitation using
specific antibodies. Sequencing of the DNA fragments, to which the corresponding regulators

were bound to, allows for the identification of binding sites and motif discovery [188].
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3.1.2.3 Processing of sequencing data

Similarly to the processing of microarray data (cf. Section 3.1.1.3), several image capturing
and analysis steps are required for base calling, i.e. for the identification of the succession of
nucleotides in the sequenced fragments. These initial processing steps are typically already
performed by the sequencing machine [189]. The subsequent primary analysis of the obtained
raw sequencing data is again a multistep process that, depending on the research question at
hand, either provides a de novo genome (or transcriptome) assembly or uses a reference genome
(or transcriptome) for further analysis. In the latter case, which we will focus on in the following,
analysis workflows typically result in lists of somatic and/or germline mutations or scores of
(differential) gene expression. The different analysis steps are conducted in elaborate pipelines
that vary depending on the sequencing method used and the aim of the analysis. The main
analysis steps, which will be outlined below, are quality control, read mapping, and either
variant calling/annotation or copy number quantification for genome sequencing scenarios or
RNA quantification in the case of RNA sequencing. There are numerous tools for each of these
analysis steps [190-192].

Quality control: Typically, the sequencing machine yields information about the identified
reads, i.e. the sequenced fragments of DNA or RNA, in the form of FASTQ files (see Section A.1.2
for details on the file format). Besides the actual sequencing information, FASTQ files contain
scores indicating the quality of each base call as estimated by the sequencing machine. These
quality scores, called Phred scores Q;;, indicate the probability of the reported nucleotide 7;; to

be a sequencing error and are defined as follows:

Qij = —10logy, (Pij) ,

with p;; being the probability of an incorrect base call of the j-th base in read i. Typically, base
calling quality decreases towards the end of a read [193]. Hence, the Phred scores can be used
to trim reads such that only high-confidence nucleotides are considered for further analysis.
Another class of artifacts potentially contained in the raw data is introduced by sequencing
adapters. Sequencing adapters are short nucleotide sequences ligated to the genomic fragments
for amplification and sequencing as part of the experimental protocol (cf. Section 3.1.2.1). The
sequences of the used adapters or fragments thereof are sometimes erroneously contained in
the obtained read sequences. Hence, in order to remove low-quality bases and adapter artifacts
from the raw sequencing data, tools like Trimmomatic [194] or Flexbar [195] should be included
in corresponding sequencing pipelines.

Read mapping: The experimental principle of ‘shotgun sequencing” as employed by most
sequencing techniques provides reads that do not contain any information about where
in the genome they are originating from. Hence, the reads have to be mapped to a
corresponding reference genome, which is provided for numerous organisms by several
databases (cf. Section 3.2.1). The task of read mapping corresponds to the solving of an
approximate string matching problem, i.e. the search for occurrences of a read within a reference
sequence while allowing for some mismatches and gaps between the two. This tolerance is
required as (i) the reads contain sequencing errors that have to be accounted for and (ii) the



3.1 High-throughput experimental techniques 29

genomic sequence of a sample under investigation is expected to differ from the reference
genome [196]. This difference becomes especially evident when mapping reads originating
from the genomes of cancerous cells, as these are likely to contain numerous germline as well as
somatic aberrations.

There are a plethora of tools for read mapping [197], of which the Burrows-Wheeler Aligner
(BWA) [198] and Bowtie2 [199] are two of the most popular ones. In order to overcome the
combinatorial explosion of putative alignments, the majority of these tools apply indexing and
filtering techniques to quickly scan and reduce the search space [200]. In this context, indexing
means the preprocessing (e.g., via Burrows-Wheeler transformation [198]) and representation
of the reference genome, the reads, or both in specific data structures (e.g., suffix array [201], FM-
index [202]) that trade a much faster identification of putative alignment positions off against a
larger memory consumption. Filtering strategies rely on the identification of short regions in the
reference genome (k-mers) that perfectly match to a small fraction of the read (the ‘seed”). Only
for those regions, the whole read is being aligned using optimized local dynamic programming-
based algorithms [203, 204], which also provide a measure of alignment quality.

Besides the intrinsic difficulty of the approximate string matching problem, additional
challenges arise when mapping reads obtained from RNA sequencing experiments. When
aligning reads obtained from transcripts, the alignment potentially has to be split along intron-
exon boundaries. A commonly used read mapping tool for the identification of such spliced
alignments is TopHat2 [205].

Although bioinformatics approaches can tackle various challenges arising in the context of read
mapping, the inherent structure of the DNA hinders unambiguous mappings in many cases.
The genomes of a broad range of species, from bacteria to humans, contain a high number of
repetitive regions (‘repeats’) [206]. Reads originating from these repetitive regions cannot be
unambiguously mapped by the read aligner. However, in the case of paired-end sequencing (cf.
Section 3.1.2.1), the alignment tool can utilize the fact that the paired sequences were derived
from the two ends of a fragment of (roughly) known length.

A current standard for the output of read mapping tools are the Sequence Alignment/Map
format (SAM) or its binary version, the Binary Alignment/Map format (BAM). For details on
these file formats, please refer to Section A.1.3.

After the actual alignment step, some pipelines include an optional step of re-aligning reads
around indels. This step is based on the observation that reads harboring indels are especially
prone to suboptimal alignments. To reduce this bias, a re-alignment around these positions can
be performed, for example using the Genome Analysis ToolKit (GATK) [207, 208].

Variant calling:  In its most general form, variant calling is the process of identifying sequence
differences between the mapped reads of a sample under investigation and the reference genome.
These differences can serve as the basis of, for example, an examination of the molecular causes of
genetic disorders or the identification of contributors to the initiation and progression of complex
diseases like cancer.

In an ideal world, variant calling and the related process of genotype calling, i.e. the
determination of a variant’s zygosity to be either heterozygous (only one allele affected) or
homozygous (both alleles affected), could be performed by simply assessing the frequency of
the variation across all reads mapped to the considered genomic location. Yet, preprocessed
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sequencing data can exhibit high error rates that are due to various factors, including base calling
inaccuracies and ambiguous alignments. As a consequence, frequency-based approaches using
fixed thresholds are only feasible for deep sequencing data, i.e. for samples in which specific
genomic locations are, on average, covered by a sufficiently large number of reads [209]. As a
remedy, there are various tools and methods based on heuristics or probabilistic models that
try to reduce and to quantify the uncertainty associated with variant and genotype calling by
considering prior information such as Phred quality scores, read coverage, and allele frequencies.
Prominent examples of such tools are MuTect [210], SomaticSniper [211], and VarScan2 [212].
Solving the task of variant calling has the potential to yield a comprehensive overview of various
types of local genomic aberrations, including base substitutions and short insertions or deletions,
as well as copy number variations or even larger structural aberrations [213, 214].

However, as already discussed in Section 2.2.1.1, not all deviations from the reference genome
are specific to diseased cells: with respect to the reference genome, samples can contain
germline mutations as well as somatic mutations. In the context of oncology, variant calling
oftentimes mainly refers to the identification of somatic mutations in the cancer genome, as
(some of) these variants are assumed to drive the progression of the tumor. A differentiation
of mutations in somatic and germline variants can be achieved in three ways: either via (i)
the comparison to a healthy control sample from the same patient, (ii) the consideration of
allele frequencies, or by (iii) filtering for known somatic variants using variant databases. The
first, and preferable, approach requires the availability of a healthy control sample from the
same individual to distinguish somatic from germline variations. The two samples then can
either undergo variant calling independently and the mutations in the intersection of both are
considered as germline mutations or they are jointly analyzed [215]. Another approach for the
case that no patient-matched normal control is available is the consideration of allele frequencies.
In combination with information about tumor purity, i.e. the estimated fraction of tumor tissue
in the sample, they can be used to predict a variant’s zygosity and whether it is assumed to be
a somatic or germline mutation [216, 217]. Lastly, there are numerous databases that contain
knowledge about a plethora of variations and whether they have previously been reported
as germline variants or being cancer-associated (cf. Section 3.2.3). While being independent
from a control tissue sample, this approach has the major drawback that it is dependent on the
quality and completeness of the used databases and that low-frequency variants will hardly be
distinguishable from sequencing noise.

While somatic mutations in cancer cells are typically the primary focus for the identification
of suitable targeted treatment options, the consideration of germline aberrations should not
be neglected, as they can play essential roles in the identification of predispositions for certain
diseases or the assessment of drug-processing enzymes (cf. Section 2.3).

The results of variant calling pipelines are commonly represented in the Variant Call Format
(VCF) (see Section A.1.4 for additional details on the file format), which serves as input for the
subsequent variant annotation step.

Variant annotation: The sequencing of cancer genomes can reveal a large number of somatic
(and/or germline) mutations, all of which have a different degree of impact (if any) on the
disease phenotype (cf. Section 2.2.1.1). The process of variant annotation aims at aggregating
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and reporting relevant information to a given genomic alteration and is an essential step in
sequencing analysis pipelines to facilitate the interpretation of the detected mutations [191].

A first step in pinpointing those mutations that are relevant for disease initiation and progression
is the identification of the genomic region or gene affected by a given variation and its functional
effect. There are several general-purpose tools like ANNOVAR [218], SnpEff [219], or Ensembl’s
Variant Effect Predictor (VEP) [220] that categorize variants based on their predicted impact on
protein function. For example, VEP distinguishes more than 30 so-called ‘consequence types’,
i.e. different effects a mutation can have on the genomic location or protein it occurs in (cf.
Section A.2). While severe mutations like a frameshift or nonsense mutations are generally
assumed to destroy the structure and hence functionality of the affected protein, the functional
impact of other types of consequences is non-obvious. To this end, the annotations made by the
aforementioned tools can be extended by additional classifications of the consequences in terms
of their predicted severities. For non-synonymous variants, tools like Sorting Intolerant From
Tolerant (SIFT) [221] or Polymorphism Phenotyping v2 (PolyPhen-2) [222] can be used. SIFT is
a tool that predicts the effect of a mutation on the affected protein’s function based on sequence
homology and the physicochemical characteristics of the exchanged amino acids. PolyPhen-2
uses a variety of sequence-based and structure-based features to predict the probability that an
amino acid substitution has a damaging effect.

Although these annotations can provide first insights into the potential role of specific mutations
in the disease context, they were developed for general applications and hence lack cancer-
specific annotations that could aid downstream analysis and interpretation. To this end, various
databases containing cancer-specific annotations like ClinVar [223], CIViC [224], COSMIC [225],
or dbSNP [226] can be employed. Additional details on these databases can be found in
Section 3.2.3.

Copy number quantification: High-throughput sequencing data can also be used to assess
copy numbers within a sample. In contrast to aCGH arrays, which were presented in
Section 3.1.1.2 and which identify relative copy number changes, there are efforts to derive
absolute copy numbers from whole-genome or whole-exome sequencing data. There are
numerous methods that, to this end, typically consider read counts or investigate distances
between read pairs. Examples for such tools are CNVnator [227], CNV-seq [228], or
VariationHunter [229].

RNA quantification: As an alternative to microarray experiments for the quantification of
transcript levels (cf. Section 3.1.1), gene expression can also be measured using RNA sequencing
techniques (cf. Section 3.1.2.2). As already indicated in the previous paragraphs, the quality
control and read mapping steps are generally similar to those of DNA sequencing data. However,
in order to account for splicing events that may prevent RNA reads from being consecutively
aligned to the reference genome, specialized tools can be employed. Popular RNA aligners are
TopHat2 [205] and STAR [230]. After the (spliced) alignment to the transcriptome, the coverage
of RNA reads across a gene can be used to infer its expression level. To this end, the read counts
are normalized with respect to various confounding factors, including total read count and
gene length [231]. Here, commonly used tools include HTSeq [232] and featureCounts [233].
Expression levels are quantified by counting the number of reads that have been mapped to a



32 3 MATERIALS AND METHODS

locus of interest. In order to make RNA-Seq results comparable between runs, absolute counts
are typically converted to Fragments Per Kilobase of Exon per Million Reads Mapped (FPKM)
[234] or related measures [235]:

FPKM; = — 1 — T 09,

where g; is the number of fragments mapped to a specific gene 7, the length of which is denoted
as I and the total number of mapped fragments over all genes j is given by }_; ;. In contrast
to data derived from microarray experiments, which are typically assumed to yield normally
distributed values, tools for estimation of differential expression based on RNA-Seq count data
(e.g., Cufflinks [236], DESeq [237]) typically assume an underlying Poisson or negative binomial
distribution.

3.1.3 Mass spectrometry

The last experimental technique described in this chapter - and an emerging means of protein
and metabolite quantification - is mass spectrometry. Similar to microarray and sequencing
technologies, mass spectrometry is based on the identification and quantification of the
molecular fragments making up the biological entities under consideration, which are in the
case of mass spectrometry proteins or metabolites. To this end, mass-to-charge ratios and
intensities of the respective ionized molecular fragments are measured and analyzed. There
are various protocols and types of mass spectrometry, of which the commonly used technique
of Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) for proteins is described
in the following.

3.1.3.1 Experimental principle

LC-MS/MS is based on the stepwise selection, fragmentation, and mass analysis of proteins and
peptides of interest [238]. Figure 3.3 gives an overview of the processing steps.

In a first step, proteins are extracted from the cells of interest. Depending on the type of analysis
to be conducted, the mixture of proteins in the lysate can be separated by molecular weights
and/or isoelectric points (e.g., via 1D or 2D gel electrophoresis). The subsequent analysis
of single bands reduces the complexity and increases the accuracy of the mass spectrometry.
The selected proteins are proteolytically digested (e.g., using trypsin) to obtain a characteristic
mixture of peptides due to the used enzyme’s specific cleavage sites [239].

In order to improve both, the sensitivity and specificity of the MS, the mixture of peptides
is separated in a process called Liquid Chromatography (LC). In LC, the sample is pumped
through a stationary phase (e.g., a silica gel) using an organic solvent as the mobile phase.
By this, the mixture’s constituents are separated by polarity due to their relative affinities to
the mobile and the stationary phase, respectively [240]. The peptides eluting from the LC are
subsequently ionized. To this end, soft-ionization techniques like electrospray ionization can be
used, which generate ions from macromolecules without breaking their chemical bonds [241].
The charged peptides undergo the first stage of mass analysis, which separates them based
on their mass-to-charge ratio. This first run results in a mass spectrum from which typically

peptides of a particular mass-to-charge ratio are selected for further analysis.
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Figure 3.3 Overview of LC-MS/MS workflow. After extraction and separation by gel electrophoresis, a subset of
proteins are enzymatically digested and the mixture is furthermore separated by liquid chromatography. As soon
as the peptides elute from the chromatography column, they are ionized and undergo a first mass analysis (MS).
Peptides at a particular mass-to-charge ratio (m/z) are selected for further fragmentation and a second run of
mass analysis (MS/MS). Based on the observed spectrum, the originating proteins and their abundances can be
inferred. The database icon was obtained from [15].

After further fragmentation of the ‘precursor ions’ (e.g., via collision-induced dissociation
[242]) into ‘product ions’, the ions undergo a second round of mass analysis. The resulting
characteristic pattern of peaks and, in particular, their relative differences can be used to identify
the amino acid sequence of the analyzed peptide. To this end, the observed mass spectrum is
queried against a database of theoretical masses of in silico-digested peptides (based on known
enzyme specificities). After the identification of the different individual peptide sequences,
these sequences are used to infer which protein(s) were present in the sample [243]. Using
mass spectrometry, not only different proteins can be identified and distinguished, but also
the presence or absence of post-translational modifications (PTMs) (cf. Section 2.1), as they
yield observable peak distances in the MS/MS run. This allows for the elucidation of signal
transduction processes based on the assessment of protein phosphorylation states, but also other
types of PTMs like ubiquitination, sumoylation, or glycosylation can be assessed [244].

3.1.3.2 Quantitative proteomics

Besides the identification of proteins, also their abundance can be approximated from the
detected signal intensities, i.e. the height of the corresponding peaks in the mass spectrum [245].
However, the observed peak heights are affected by a variety of perturbing factors, e.g. varying
efficiencies in protein digestion or alterations in the degree of ionization of a peptide due to
coeluting substances (‘matrix effects’). These perturbing factors can strongly vary between
experimental runs and hence hinder a relative quantification of proteins across experiments
[246]. As a remedy, internal references can be used for quantification, for example based on
stable isotope labeling. Corresponding methods relate the protein expression of two samples to
each other, one of which is isotopically labeled. This approach relies on the theory that a stable
isotope-labeled peptide possesses the same chemical properties as its native counterpart and

hence is also affected to the same extent by the bias-inducing factors mentioned above [96]. Yet,
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the labeled and unlabeled form of a peptide display a specific difference in their mass-to-charge
ratios in the resulting mass spectrum, which facilitates accurate quantification via the relation
of their relative signal intensities.

There are several methods for isotope quantification, which mainly differ by the way in which
stable isotope labels are introduced into the proteins or peptides of interest. Stable Isotope
Labeling by Amino Acids in Cell Culture (SILAC) [247] is one of the most prominent methods
for isotope quantification and follows the approach of metabolic labeling.

For SILAC, two populations of cells are grown in cell culture, one of which is cultivated in an
isotope-labeled medium, in which lysine and arginine are substituted by their heavy isotope
counterparts. Typical isotopes used in SILAC to replace the respective atoms in light amino acids
are?H,13C,1°N, and 180 [248]. The substitution within the cells occurs via protein turnover and
due to the fact that the cells have to ingest essential amino acids (i.e., amino acids that cannot
be synthesized by the cells themselves) from the medium. Although arginine actually is a non-
essential amino acid in adult vertebrates, studies have shown that arginine becomes essential
in cell cultures [249, 250]. In combination with the fact that trypsin specifically cleaves after
lysine and arginine, this ensures that nearly every peptide originating from the heavy sample
will be isotopically labeled when analyzed using mass spectrometry. SILAC can be used to
investigate the effects of perturbations on protein expression. To this end, one of the populations
is perturbed, e.g. via the treatment with a drug. The cells from the two populations are then lysed
and mixed in a 1:1 ratio, followed by the combined processing of the sample and MS analysis.
For comparisons across several samples and conditions, a modification of the classic SILAC-
approach, called spike-in SILAC [251] can be used. Here, cells grown in heavy media are used
as a reference in each sample, yielding normalized abundance ratios for every sample that cancel

out when relating two samples to each other.

3.1.3.3 Processing of mass spectrometry data

The processing of mass spectrometry data to yield qualitative and quantitative information
about the contained proteins (or metabolites) is a multistep procedure, which will be briefly
described in the following paragraphs for the proteomics case. For each step within these
pipelines, there exist numerous tools that are optimized for different types of analyzes [252-254].
Many of these tools are also part of comprehensive frameworks for the processing of mass
spectrometry data like OpenMS [255], Mzmine2 [256], or MAVEN [257].

Raw data filtering: Fragmentation-based approaches like tandem mass spectrometry yield a
large variety of fragment ions, whose corresponding peaks in the mass spectrum are commonly
impaired by spectral noise. In order to increase the accuracy of peptide identification, an initial
noise filtering step is performed to separate the actual signal from background noise (e.g.,
induced from chemical or instrumental interference) [258]. To this end, the peaks with the
weakest intensities (i.e., background noise) are filtered out.

Peak detection and identification: Before peptides are identified from MS/MS spectra,
typically a (computational) deisotoping step is performed. Due to the fact that an analyte can
sometimes contain naturally occurring rare isotopes (e.g., 13C), there might be additional minor

peaks besides the major monoisotopic peak (that occurs at the theoretical mass) in the mass
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spectrum. Deisotoping algorithms like the ones provided by Decon2LS [259] or PeakSelect [260]
try to group the isotopic peaks with the corresponding monoisotopic peak.

The next step is to identify the peptides that correspond to the (monoisotopic) peaks in the
filtered spectrum. To this end, one or several databases are used to compare the experimental
features against patterns of theoretically digested proteins using tools like SEQUEST [261] or
Mascot [262]. After the identification of the contained peptides, they have to be mapped to
their originating proteins. In contrast to simple organisms, where most peptides can be uniquely
mapped to one protein, the problem becomes much more complex for higher eukaryotes [263] as
many peptides could stem from several proteins, thus leading to ambiguous protein assignments.
A well-known tool to perform this inference is ProteinProphet [264], which tries to identify the
minimal set of proteins that can explain all the observed peptides.

Quantification:  Besides the identification of proteins contained in a sample, for many research
scenarios it is of high interest to also measure and compare protein abundances to identify
differences between two samples or sample groups. In label-free cases where each sample is
analyzed individually, matching peaks across experiments have to be identified. The heights
of the corresponding peaks are used to determine the relative peptide abundances between
the samples. However, in general, this approach is less accurate than methods employing
stable isotope labeling (cf. Section 3.1.3.2). In these labeled approaches, the relative quantity
of a specific protein can be determined from their relative signal intensities using tools like
ASAPRatio [265] or MaxQuant [266].

3.2 Reference databases and resources

High-throughput technologies as the ones described in Section 3.1 produce large amounts of
complex, noisy, and heterogeneous data that require the use of bioinformatics methods in
combination with biological domain knowledge to obtain novel insights into disease biology
and putative treatment options. In this context, databases and other resources act as an enabling
factor for feature annotation and systems biology integrative analyses. There is a large and
steadily increasing number of databases that capture various types of biological knowledge,
facilitating a multi-faceted investigation of data sets of interest [267].

This plethora of databases can be classified in various ways: for instance, some databases
contain general-purpose information, while others are specific to certain organisms or diseases.
Also, they can be distinguished in terms of accessibility, cost of use, and whether or not they
are continuously updated. Another essential difference between and sometimes even within
databases is the level of evidence provided for the entries: some databases only provide
validated information, while others also contain derived or predicted entries.

In the following, we will present three main classes of databases and resources especially
relevant to basic cancer research and translational medicine. To this end, we here focus on
the primary types of information provided by the respective databases, acknowledging that a
sharp partitioning is hardly achievable due to the complexity and comprehensiveness of current
databases.
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3.2.1 Entity-related databases

This class of databases entails various types of resources that provide biological context to
specific biological entities like genomic locations, genes, or proteins. Similar to the ‘flow of
genetic information’ (cf. Section 2.1), they range from reference genomes and catalogs of genes
over information on regulatory elements to protein sequence and structure databases.

The National Center for Biotechnology Information (NCBI) provides reference genomes for a
multitude of organisms in their Reference Sequence (RefSeq) database [268]. The Gencode
database, on the other hand, focuses on the identification and classification of genes in
Homo sapiens and Mus musculus and provides corresponding reference genomes for those two
organisms [269].

One of the most comprehensive databases for gene-specific information is NCBI’s (Entrez)
Gene database [270]. The provided database records include general-purpose information like
alternative gene names, summary descriptions, genomic localizations, tissue-specific expression
patterns, as well as links to literature and other external resources. GeneCards is another gene-
centric resource that integrates various types of information from a large variety of external
databases [271].

The HUGO Gene Nomenclature Committee (HGNC) [272] provides approved human
gene names and short-form abbreviations (‘gene symbols’) for almost 40,000 human loci,
including protein-coding and non-coding genes, as well as corresponding identifiers in other
nomenclatures that can be used for identifier mapping.

Going beyond gene-level annotation, the Ensembl project [273] covers various types of entities,
ranging from single exons over transcripts to genes and their respective gene products. Each
entity is provided with a stable alphanumeric identifier and includes information about genomic
locations for various reference genomes and cross-references to related entities.

Besides Ensembl, the Universal Protein Resource (UniProt) is a major resource for protein an-
notation, including details on the three-dimensional structure, post-translational modifications,
and functional annotations [274].

For the elucidation of regulatory mechanisms concerning gene expression, there is a large variety
of databases that provide information on regulatory elements like transcription factors and
their target sites (e.g., TRANSFAC [275], JASPAR [276], or ENCODE [277]) and miRNAs (e.g.,
miRBase [278], miRCarta [279], or miRWalk [280]).

3.2.2 Pathway-related databases

Nowadays, there are various resources and databases that try to structure the complex molecular
circuitry within cells by providing functional annotations to gene sets, biological processes, and
pathways.

The most comprehensive and renowned resource for the functional annotation of gene sets is the
Gene Ontology (GO) database [281]. GO provides a hierarchy of controlled vocabulary terms
to describe the roles of genes and their respective gene products concerning their molecular
function(s), the biological process(es) they are involved in, and the cellular component(s) in
which molecular events occur. While GO is a valuable resource for gene set annotations, it
does not provide information about the specific interactions (i.e., chemical reactions and binding

events) between genes, proteins, non-coding RNAs, and metabolites that together give rise to a
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cellular function. The Kyoto Encyclopedia of Genes and Genomes (KEGG) comprises several
databases that provide details on regulatory signaling cascades, biochemical reactions, and
additional information about the involved genes and proteins [282]. The encompassed KEGG
PATHWAY database provides a collection of manually created pathway maps that represent
knowledge of molecular interaction networks, including additional knowledge about interaction
types like activation, inhibition, phosphorylation, and dephosphorylation.

Similarly to KEGG, Reactome is an expert-curated and peer-reviewed pathway database [283].
Reactome’s data model covers protein, protein complexes, metabolites, and their respective
interactions. WikiPathways [284] is another resource providing interactive biological pathway
maps via an open, collaborative platform.

3.2.3 Disease- and drug-related databases

For personalized medicine and decision support, the incorporation of disease-specific, as well
as pharmacologic and pharmacogenomic knowledge is of great importance.

The Single Nucleotide Polymorphism Database (dbSNP) is a comprehensive resource for
annotations of genetic variations, including population-specific frequencies, links to related
publications, and information about the pathogenicity of mutations, i.e., their predicted role
in human disease [226]. Unlike indicated by the name, dbSNP does not only contain Single
Nucleotide Polymorphism (SNPs), i.e., single nucleotide substitutions that occur in at least 1%
of a population, dbSNP also covers other types of short sequence variation (e.g., small insertions
or deletions) that occur frequently enough to be termed polymorphic [285]. Similarly to dbSNP,
the ClinVar database [223] describes the relationships between human genetic variations and
disease phenotypes. Moreover, the clinical significance of aberrations and supporting evidence
is provided whenever available.

The Catalogue Of Somatic Mutations In Cancer (COSMIC) focuses on the potential role of
mutations in human cancer. COSMIC is currently the most comprehensive publicly available
resource for expert-curated somatic information and their relation to human cancers [225].
Another resource for the evaluation of the clinical relevance of inherited and somatic variants
in cancer is CIViC, the Clinical Interpretation of Variants in Cancer database [224]. CIViC is an
open access, expert-crowdsourced knowledgebase that provides several levels of evidence for
the assessment of the predictive power of aberrations with respect to the treatment with various
drugs.

As already discussed in Chapter2, tumors can potentially contain various types of
(epi-)genomic variations in numerous genes, not all equally contributing to cancer initiation

and progression. Databases like the Integrative Onco-Genomics database (IntOGen) [286] and
DriverDB [287] can help to prioritize genes for further investigation by providing information
about known and putative driver genes and corresponding aberrations for a variety of cancer
types.

Information about a broad range of drugs and their molecular targets is provided by various
resources like DrugBank [288], the Drug Gene Interaction Database (DGIdb) [289], and
the Therapeutic Target Database (TTD) [290]. DrugBank is a comprehensive resource that
combines detailed drug data (i.e., chemical, pharmacological, and pharmaceutical properties of
a drug) with additional details on drug targets and relevant ADME genes (i.e., drug-processing
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enzymes, transporters, carriers). The latest release of DrugBank (Version 5.1.1) contains almost
12,000 drug entries, covering all stages of development from experimental to approved. DGIdb
provides a comprehensive collection of drug-target interactions gathered and consolidated from
the literature and a broad array of databases and web resources. In addition to drug-target
interactions, TTD additionally provides information about target-affiliated biological pathways.
The data provided by these databases can be employed to find existing drugs for a specific target
(e.g., to assess putative points of intervention within a pathway or gene set) or to identify all
known targets of a drug under consideration.

(Epi-)genomic and transcriptomic aberrations in molecular drug targets can significantly impact
the efficacy and toxicity of drugs. The consideration of predictive biomarkers (CDx) and
pharmacogenomic interactions (PGx) is hence an integral part of personalized medicine. There
exist a variety of databases that focus on CDx and PGx relationships and which vary in their
comprehensiveness and provided levels of evidence.

The FDA, for instance, only provides a list of approved and ready-to-use companion diagnostics
that test for specific aberrations determining treatment eligibility [291].

A Dbroader set of annotations is provided by OncoKB [292], which covers more than 4,000
genomic alterations for several dozens of drugs. These alterations are classified into four levels
of clinical evidence.

An even more comprehensive resource providing putative pharmacogenomic effects is the
Genomics of Drug Sensitivity in Cancer (GDSC1000) database [293]. GDSC1000 contains the
predicted effects of aberrations on drug efficacy based on drug sensitivity measurements for a
wide range of drugs across numerous types of cell lines.

Besides databases as the ones described above, there are also numerous resources that provide
disease-specific multi-omics data sets and, in some cases, also drug sensitivity information that
can be used to infer cancer type-specific patterns of (epi-)genetic and molecular aberrations and
determinants of drug sensitivity. The Gene Expression Omnibus (GEO) [294], ArrayExpress
[295], NCBI's Sequence Read Archive (SRA) [296], and the European Genome-Phenome
Archive [297] are examples of comprehensive resources that provide various types of omics
data across diseases and sample conditions. The currently largest multi-omics data set on
primary and metastatic tumor samples is provided by The Cancer Genome Atlas (TCGA) [298].
Other resources like GDSC1000 [293] and the DREAMY7 data set [299] combine multi-omics
measurements for cell lines of various types with drug sensitivity measurements for large panels
of drugs.

3.3 Detecting deregulated genes and processes

The preprocessed data obtained from the high-throughput experimental technologies described
in Section 3.1is of high dimensionality and complex nature. Thus, in order to extract meaningful
biological information from these data, appropriate statistical and computational means need to
be applied. In this section, we will briefly introduce the statistical concept of hypothesis testing
and significance (Section 3.3.1), followed by an overview of various methods for the detection
of deregulated genes (Section 3.3.2) and biological processes (Section 3.3.3).
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3.3.1 Hypothesis testing and significance

Hypothesis testing is a commonly used technique of inferential statistics for the assessment of
properties of a population based on an observed sample [300, 301]. The following definitions
and explanations are based on [302].

A property of such a population is typically represented as an unknown parameter § € ) of the
underlying probability distribution, i.e. the probability distribution from which the observed
sample was drawn. The parameter space () can be partitioned in two disjoint subsets () and
0Oy (O = OQpU)y) that give rise to two hypotheses about the value of 6: the so-called ‘null
hypothesis” (Hp) and the ‘alternative hypothesis” (Hj ):

Hy:0 € ()
Hi:0e )y

While H; typically corresponds to the research hypothesis of interest (see also the example
below), Hp represents the complementary hypothesis. As we cannot directly assess the
correctness of Hy, we instead consider the probability of obtaining the observed sample under
the assumption that Hy is true. If this probability is sufficiently small, we can reject the null
hypothesis Hy in favor of Hj. In order to determine whether or not to reject Hy, a test procedure
¢ is used. The test procedure (decision rule) J; is a function that determines whether or not to
reject Hy for a given random sample x = (x1, X3, ..., X, ). To this end, a so-called ‘test statistic” is
employed. A test statistic T : R" — R is a real-valued function that maps the made observations
to a scalar value. If the result of the test statistic T(x) exceeds the critical value ¢ defined by the
test procedure d., Hy will be rejected. By this, the test procedure J. partitions the sample space
S (i.e., the set of all possible random samples x) into two subsets: the so-called ‘critical region’
(CR), for which the test procedure é. will reject Hy and the complementary subset (CR) for
which Hy will not be rejected.

The probability that the test procedure J. will reject Hy is defined by the so-called ‘power
function’ 77(0|4,):

7(6|6.) = P(x € CR|8) V8 € Q

In hypothesis testing, two classes of errors can occur: type-I and type-II errors. A type-I error
refers to the erroneous rejection of a true null hypothesis. The probability of making a type-I
error is denoted by:

P{type-lerror} = sup (7(6|d.))
0e)

Conversely, in cases where H; holds but Hy is erroneously not rejected, a type-II error occurs.
The probability of making a type-II error is denoted by:

P{type-Il error} = sup (1 — 7t(6/4.))
0

The significance level « of a test procedure . defines an upper bound for the probability of
drawing the wrong conclusion by rejecting a correct null hypothesis, i.e. the probability of
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conducting a type-I error:

sup (7t(6]6:)) < «

0y
Typically, « is set to 0.01 or 0.05.
Finally, in order to determine whether or not to reject Hy on the basis of a random sample x,
suppose that the value of the test statistic is given by t = T(x). For the test procedure J; that
rejects Hy if T(x) > t, we define the p-value p of this observation as:

p = sup (7r(6]6))
ey

= sup (P(T > t|6))
0eQ)y

If the obtained p-value is smaller than the predefined significance level &, Hy will be rejected in
favor of Hj.

For illustrative purposes, consider the following example of replicated measurements of a gene’s
expression in two conditions X and Y, e.g. in diseased and in healthy state: The measurements
yield two series of values x = (x1,..x;) € R* and y = (y1,..., ym) € R™. For the assessment of
whether there is a significant difference in the mean gene expression between the two conditions
XandY (i.e., whether or not the gene is differentially expressed), the null hypothesis would state
that the two underlying populations have identical mean values (Hp : yx = py), whereas the
alternative hypothesis would state that there is a difference (Hy : ux # py).

For the evaluation of these statements, a suitable test statistic T needs to be applied. For the
given example, a possible test statistic would be the t-statistic (see also Section 3.3.2):

Py

T(xll“‘l xm]/lr--v]/m) = y 7
(n—l)s§+(m—1)s§ 1

n+m—2 a T

S|=

with % and 7 being the respective sample means and s2 and si the respective sample variances.
The value of the test statistic T on the observed data is given by t = T(x, ..., Xn, Y1, ..., Ym)- The
extremity of ¢ under the null hypothesis can be used to judge the significance of the observation:

p="P(T| > |t| | Ho)

This definition corresponds to a two-tailed testing scenario that is applicable in cases in which
the alternative hypothesis embodies deviations from a reference in either direction. In contrast,
statistical testing that examines only deviations in one of the two possible directions is called one-
tailed or, more specifically, left-tailed (p; = P(T < t|Hp)) and right-tailed (p, = P(T > t|Hp)).
Observations with sufficiently small p-values (< «) indicate the observation is unlikely to occur
under the null hypothesis. Hence, Hy should be rejected in favor of Hj.

While p-values are the de facto standard when assessing statistical hypotheses, it has to be
acknowledged that there has been an ongoing controversy around their informative value as
they do not provide information about the actual biological relevance of the detected effect
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[303, 304]. Hence, in addition to a p-value, the actual effect size should always be stated and
considered when assessing the biological significance of a result. The effect size is the magnitude
of the observed differences between groups. It can be measured, for example, as the difference
between the means of the expression scores of a sample group and a reference group [305].

3.3.1.1 Multiple hypothesis testing

As established above, the significance level & describes the expected probability of making a type-
I error when performing a single hypothesis test. However, in most studies and especially in the
analysis of biological high-throughput experiments, a multitude of hypotheses are tested, e.g.
for the assessment of differential expression of thousands of genes. Hence, when conducting
n = 1,000 hypothesis tests at a significance level of « = 0.05, we have to expect to obtain
«-n =0.05-1,000 = 50 false-positive results (i.e., false discoveries) just by chance. Consider the
case that a hypothesis test results in the rejection of Hy. The probability that this was the correct
decisionis 1 — &. Accordingly, the probability of making the correct decision in n hypothesis tests
when always rejecting Hy is given by (1 — «)". Based on this observation, the Family-Wise Error
Rate (FWER) is defined as the probability of making at least one false discovery in # different

rejected tests:
Prwer =1 — (1 - ‘X)n'

With an increasing number of tests 7, this error rate increases and hence has to be accounted
for. There are various methods to control the FWER, i.e. to adjust the single test type-I error in
such a way that the overall type-I error rate remains below a given threshold. One of the most
conservative methods is the Bonferroni correction [306]. Consider the case that n hypothesis
tests were conducted, yielding n p-values py,..., py. Instead of accepting p; if it is smaller
the significance threshold «, the corresponding observation i is only considered significant if
pi -1 < a holds. There are also other methods for FWER correction available that are slightly
less strict while maintaining firm control of the FWER, e.g. as proposed by Sidék [307], Holm
[308], and Finner [309].

An alternative to controlling the FWER is the consideration of the False Discovery Rate (FDR).
The FDR is the expected proportion of false positives (type-I errors) among the rejected null
hypotheses. Commonly used methods to control the FDR were presented by Benjamini and
Hochberg [310] and by Benjamini and Yekutieli [311].

The Benjamini-Hochberg method adjusts each original p-value p;. The adjusted p-values are
typically called g-values g;. Consider a list of n independent p-values sorted in ascending order
p1 < p2 < ... < py. The g-value g; for a p-value p; is then computed as follows:

pi Jifi=mn
qi = )
min{qiﬂ,? . PZ} ,Vie {I’l — 1,,1}

Rejecting Hy only for those observations i with g; < «, controls the FDR to be at most « (under
the assumption of independent hypotheses being tested). An extension of this approach is
the Benjamini-Yekutieli method [311], which controls the FDR under arbitrary dependence

assumptions.
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3.3.2 Detecting deregulated genes

The identification of differences between two states of interest (e.g., comparing diseased vs.
control or treated vs. untreated) is a typical goal in many research scenarios. In order to provide
a sound statistical basis for such comparative studies, there are various statistical tests for the
detection of deregulated genes, proteins, or other molecular entities, which we will refer to as
‘entity-level statistics’. Some of the most commonly used entity-level statistics will be described
in the following paragraphs [312].

Consider the following notation: Let x = (x1,..,x,) € R"and y = (y1,...,ym) € R" be two
series of measurements for a sample group and a control group, respectively. The sample mean

% for a sample x of size n is defined as:

=i
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The sample variance s2 for a sample x of size n with mean ¥ is defined as:

§2 = 1 n(x‘—f)z
on—15 '

The sample mean ¥ (i) and the sample variance s2 (si) are estimators for the mean iy (yy) and

variance 0?2 (O'yz) of the (respective) underlying population.
(Log) fold change: One of the simplest and most intuitive entity-level scores is the (log) fold
change (sometimes called ‘fold quotient”). The fold change is defined as the quotient between

the means of the respective sample groups x and y:

fc =

ESER

In order to adjust the ranges of scores indicating over- and underexpression, typically the log
fold change is considered instead of the fold change:

log, (fc) = log, (;)
= log, (%) — log,(¥)

By taking the logarithm of the original fold changes, the transformed scores are distributed
around zero. While zero indicates that the expression levels remained constant between the
two considered groups, positive scores indicate the upregulation of genes in the sample group
in comparison to the control group, and negative scores indicate the downregulation of genes in
the sample group in comparison to the control group. Besides its application on sample groups,
the fold change can also be used to compare two samples directly, e.g. the gene expression of a

specific gene in a tumor versus its expression in healthy tissue of the same patient.

Standard score:  When comparing a single sample i (e.g., obtained from a specific tumor)
against a larger background distribution (e.g., of a cohort of tumors of the same subtype), the
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standard score (or z-score) is a typical measure of choice. The standard score is defined as

where x; denotes the expression value of the considered gene in sample i and the estimated mean
and standard deviation of the background distribution are given by ¥ and sy, respectively. The
z-score assumes normally distributed data and describes the number of standard deviations sy

the expression of sample 7 is away from the mean of the population *.

T-tests: In scenarios where two series of (normally distributed) values should be compared,
t-tests are typically applied. The t-test family consists of various hypothesis tests (cf.
Section 3.3.1) that test for the inequality of means (Hy : ux = py vs. Hy : px # py). They
can be applied in various scenarios (one-sample vs. two-sample, paired vs. unpaired) [313, 314].
One commonly used variant is the unpaired two-sample Student’s t-test [315]. The values of its
test statistic t = T(x1, ..., Xn, Y1, .--ym) are distributed according to a t-distribution with m +n — 2
degrees of freedom and can be computed as:

t= b

(n—l)s%—l—(m—l)s; 1 N
n+m—2 n

3=

The Student’s t-test assumes that the populations underlying the two samples have the same
variance ¢?, which is approximated by their respective sample variances s2 and 55. There are
also other variations of t-tests like the Welch’s t-test [316, 317], which does not require the
assumption of equal population variances. The Student’s ¢-test is typically recommended for
research scenarios with larger cohorts [313]. In cases with smaller sample sizes, regularized
versions are preferred, such as the independent shrinkage t-test proposed by Opgen-Rhein and
Strimmer [318].

Wilcoxon rank-sum test: The Wilcoxon rank-sum test [319] (also called the Wilcoxon-Mann-
Whitney test) is a non-parametric alternative to the independent two-sample t-test, which is
solely based on the relative order of the values in the two given samples (i.e., their ranks) and
hence does not make any assumption about the underlying distributions.

The test statistic U is calculated based on the combined ranking R of the n + m values in the two
given samples x and y:

-(n+1)

n
U=n-m+ > — Ry,

where R, is the sum of the ranks of those values in R that belong to the sample group x:

n—+m

Rx = Z i 'i/
i=1

with 7; being an indicator variable that is set to 1, if the i-th element in the ranked list R belongs to
the sample group x, and to 0 otherwise. In order to assess the significance of an observed value
of the test statistic, it can then be compared to the critical value for a given significance level «
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and the corresponding samples size n and m as provided in a reference table (e.g., [314]). For
larger sample sizes, the test statistic can be approximated by a normal distribution [320], based
on which p-values can be derived.

3.3.3 Detecting deregulated pathways and networks

In the previous section, we presented several entity-level statistics that can be used to assess the
degree of deregulation of genes, proteins, miRNAs, or other molecular entities. These methods
might yield tremendously large lists of relevant, but isolated items. However, as already
mentioned in Section 2.1, genes and their gene products do not act in isolation, but instead,
they interact with each other in a highly coordinated and balanced fashion to form complex
biochemical processes and signaling cascades that allow the cells to perform their designated
functions. Given the functional interdependencies between the molecular components in a cell,
complex diseases are rarely a consequence of an aberration in a single gene, but rather arise
from the interplay of various causative factors and pathobiological processes. Hence, besides
the investigation of single entities, the investigation of groups of genes in their functional context
will provide a holistic view on a condition under investigation.

An important concept describing the complexity of cellular processes is the notion of a functional
module, or pathway, as proposed by Hartwell et al. [321]. According to this simplified view, a
module is a well-defined entity that is separable from other modules and whose components
interact with each other to give rise to a specific biological function. While this view of biological
processes and signaling cascades as separable units is favorable for various applications like the
functional annotation of gene sets, one has to acknowledge that such pathways are only human-
defined excerpts of large and highly interconnected molecular networks [19].

With the goal of providing biological context to high-throughput experimental data, a large
variety of pathway and network analysis methods were proposed over the years. These
approaches generally combine a priori knowledge of biological processes (cf. Section 3.2.2)
with statistical and algorithmic procedures to elucidate complex biological mechanisms like
the initiation and progression of cancer [322]. Following the classification proposed by Khatri
et al. [323], we will present three major classes of pathway and network analysis approaches
in the subsequent sections. The classes differ in the extent of a priori knowledge and types of
input data used and range from Over-Representation Analysis (Section 3.3.3.1) over Functional
Class Scoring (Section 3.3.3.2) to topology-based methods (Section 3.3.3.3). While most of the
methods can be applied to various types of molecular entities, i.e. genes, proteins, miRNAs, and
others, we will in the following only refer to ‘genes’ for the sake of readability. For each of these
classes, several representative approaches and methods will be introduced.

3.3.3.1 Over-Representation Analysis

Life science experiments oftentimes yield a list of ‘interesting’ genes (e.g., a set of genes
differentially expressed between two phenotypes). A typical follow-up question in such
cases is whether the identified genes share a common biological function. To this end, Over-
Representation Analysis (ORA) can be used. ORA tests for a set of interesting genes (called the
‘test set’) whether they are over- or under-represented in a so-called ‘category” of genes with

known functional annotation.
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Consider an universe of possible entities, which is called the reference set R, a test set T, which
is a subset of the universe (T C R), and a category C C R. The number of entities from the
test set that overlap with the category k := |T N C| can be compared with the number of entities
expected to be found in this category just by chance using a classical urn model (cf. Figure 3.4 A):
Given an urn containing N := |R| balls out of which K := |C| are red and N — K are blue, and
from which n := |T| balls are randomly drawn without replacement. Furthermore, consider a
random variable X that counts the number of red balls in a random sample. The probability
of obtaining exactly k red balls in a random sample can be computed using the hypergeometric
distribution [324]:
() i)

W)

Pr(X=k|N,K,n) =

The expected number of hits in a randomly chosen test set of cardinality 7 is given by k' = &2

Based on the value of k’, the hypergeometric test can be used to compute a one-sided p-value for
the over-representation (k > k') or under-representation (k < k') of the category C in the test
set T [325]:

P Pr(X=i|N,Kn) ifk>k

o ,
YioPr(X=i|NKmn) ifk <k

However, the above equations are only valid in cases where the test set is a subset of the reference
set (T C R). If this is not the case, Fisher’s Exact Test [300] should be used instead:

(D)
(ki)

Pr(X =k| N,K,n,i) =

The p-values are defined analogously:

" Pr(X=i|N,Kmnk) ifk>FK
pc =
YK Pr(X=i|N,Knk) ifk<k

As indicated above, ORA is a commonly used method to test for the functional enrichment of a
sets of interesting genes as obtained from biological experiments. ORA can also be applied for
the downstream analysis of high-throughput experiments that yield measurements for a large
number of genes. However, in such cases, a subset of, for example, differentially expressed genes
for further investigation has to be determined, which requires the user to select a threshold. Due
to the arbitrary nature of such thresholds, potentially interesting components close to the cutoff
threshold will be omitted, which might affect the results. Hence, in these cases, the methods
presented in the following sections might be advantageous.

3.3.3.2 Functional Class Scoring

Similarly to Over-Representation Analysis, Functional Class Scoring (FCS) methods also aim at
the identification of those pathways and functional gene sets that are enriched or depleted in the
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Figure 3.4 Exemplary functional enrichment methods. Entities belonging fo a category of interest are colored in
red, entities not belonging to the category in blue. A) Urn model for the hypergeometric test. A test set of size 1 is
obtained from the reference set of size N via random sampling without replacement. B) Exemplary Kolmogorov-
Smirnov running sum as used in unweighted GSEA. The entity list L is sorted based on the entities’ associations with
the considered phenotype. The maximum deviation of the running rum from zero (RS?MX) serves as the value of
the tfest statistic.

data set under investigation. However, in contrast to ORA, FCS approaches do not just consider
sets of interesting genes, but take all measured genes as well as their scores of deregulation
into account. In the following paragraphs, we will present the seminal method of Gene Set

Enrichment Analysis as well as more recently proposed approaches.

Gene Set Enrichment Analysis: One of the first and most popular representatives of the FCS
approach is Gene Set Enrichment Analysis (GSEA) [326, 327]. Based on scores of differential
gene expression (cf. Section 3.3.2), GSEA ranks all measured entities (typically in decreasing
order) and calculates a statistic that reflects the degree to which a given category is represented
at the extremes of the ranked list, i.e. whether the category genes are enriched at the beginning or
the end of the sorted list. This approach is formalized using the Kolmogorov-Smirnov running-
sum statistic [328]: Consider a list of entities L = (I1,1, ..., In), sorted according to their entity-
level scores. An example for this would be a list of genes in decreasing order of their t-scores
indicating differential gene expression. The list L is traversed from top to bottom, while a statistic
(the so-called ‘running sum’) is computed. The runnig sum starts at zero and is increased
every time an entity belonging to a category C (with m := |C|) is encountered, and decreased

otherwise:

RS€(0) =0
RSC(i—1)+w ifl;€C

1

RSC(i—1)—w; ifl;¢C

1

RSC(i) =

The values of the respective increments (w;") and decrements (w; ) depend on whether
the original Kolmogorov-Smirnov formulation is used (‘unweighted” GSEA) or its weighted
extension as proposed by Subramanian et al. [326]. In both cases, the magnitudes of the
respective summands are selected in such a way that the running sum returns to a value of zero
after the traversal of the list L, i.e. RS“(n) = 0. In the original, unweighted formulation, this is

achieved by the two constants w;” = n —m and w; = m. In weighted GSEA, for each entity
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i € C with corresponding entity-level score w(!;), the respective increment wl+ is computed as:

wh = [w(l;)|?
1 NR 4
where Ng = Y cc|w(l;)|P is used as a normalization factor with the parameter p € Ry

controlling the degree to which the entity-level scores are used to weight the running sum.
Conversely, the decrement is defined as:

As indicated in Figure 3.4 B, the enrichment score RS, is defined as the maximum deviation
from zero encountered during the traversal of the list:

ngnax = max |RSC(Z>|
i

The enrichment score RSS,,, will become larger the more the entities contained in the considered
category C tend to occur at the top or bottom of the given sorted list L.

The significance of an enrichment score RSS,,, can be determined using permutation tests. There
are several approaches to this end, each of which has specific strengths and weaknesses, as well
as data requirements, see Powers et al. [329] for an elaborate discussion. Performing sufficiently
many permutation runs allows the generation of a null distribution, based on which an empirical
p-value can be inferred. This p-value is based on the proportion of random permutation runs
that obtained an enrichment score equal to or more extreme than the originally observed one.
In the case of unweighted GSEA, an algorithm for the calculation of exact p-values was proposed
by Keller et al. [327], which has the advantage that the obtained p-values are not limited by
the number of permutations conducted. In their method, the actual number p* of running
sum statistics that achieve an absolute score smaller than RSS,,, is determined using a dynamic

programming approach. The exact p-value can then be computed as:

p*
=1- -
P )

Finally, the obtained p-values are adjusted to account for multiple testing (cf. Section 3.3.1.1).
While the Kolmogorov-Smirnov-like statistics described above are very popular and widely used,
there are a variety of other pathway-level statistics that are able to identify the coordinated up- or
downregulation of entities belonging to a category of interest. The proposed statistical models
range from simple statistics like the sum/mean/median gene level statistics [330] over the max-
mean statistic [331] to the Wilcoxon rank-sum test (cf. Section 3.3.2), all of which have shown
to yield comparable results to GSEA [332].

Pathifier: Similar to other FCS approaches, the Pathifier tool [333] aggregates entity-level
information into pathway-level scores. For a given set of samples and pathways (categories) of
interest, the method computes a Pathway Deregulation Score (PDS) for each sample-pathway
pair. To this end, Pathifier requires a gene expression matrix E € IRP*" for p genes and
n samples as input. Moreover, clinical or biological attributes (e.g., tumor aggressiveness or
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patient survival) for the n samples need to be available. Finally, the sample set needs to contain
several reference or control samples.

Each pathway analyzed in Pathifier is represented by a gene set P with |P| = dp. For the analysis
of a given pathway P, only the dp genes constituting the pathway are considered for each of the
n samples. Their respective gene expression scores (Ep € R%7*") are used to place all  samples
in the dp-dimensional subspace spanned by the pathway genes.

In a next step, a nonlinear ‘principal curve’ [334] is placed through the point cloud of samples
following the progression of clinical or biological attributes of the samples (e.g., WHO grades,
see Figure 3.5 A for illustration).

® Normal
WHO grade |
WHO grade Il
WHO grade Ill
® WHO grade IV

Figure 3.5 Exemplary visualization of the Pathifier approach. A) Principal curve following the progression of WHO
grades. Principal component visualization of a point cloud of exemplary normal samples and tumor samples,
colored according to their WHO grade. The principal curve is fitted following the progression of WHO grades from
Normal over WHO grade | to WHO grade 1V using the algorithm by Hastie and Stuetzle [334]. B) Projection of
samples onto the principal curve. The samples are projected orthogonally onto the principal curve and the PDS
of a specific sample i is estimated as the distance from the centroid of the normal samples (in blue), along the
principal curve, fo the projection of i. Figure based on [333].

In order to measure the PDS, the samples are projected orthogonally onto the principal curve
(cf. Figure 3.5 B). The deregulation score Dp(i) for a sample i is defined as the distance from
the control state (i.e., the centroid of a set of control samples) to the sample’s projection along
the principal curve.

In contrast to GSEA, Pathifier does not provide p-values based on which the significance of single
pathways can be assessed. Instead, the tool results in a matrix M € R"*", with n being the
number of samples and m the number of considered pathways, that contains a PDS for each
pair. This matrix can then be used for clustering and hence the identification of potentially new,
pathway-based molecular subtypes of cancer [335].

One major limitation of this approach is its reliance on a large cohort of samples, preferably with
a set of corresponding healthy samples and comprehensive and meaningful clinical annotations,
which is feasible for scenarios like the retrospective analysis of large data sets like TCGA
(cf. Section 3.2.3), but impractical for the analysis of individual samples (e.g., for treatment
stratification purposes).
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Metagene-based methods: In the subclass of metagene-based methods, genes belonging to
a pathway of interest (or a subset thereof) and their respective scores of deregulation are
aggregated into the deregulation score of a ‘metagene’, which then serves as a proxy for the
considered pathway’s activity.

One of the first approaches in this realm was proposed by Guo et al. [336], who summarized the
scores of differential expression of the pathway genes based on simple statistics like the mean
or median. An alternative approach, presented by Bild et al. [337], considers for each pathway
P the dp-dimensional space spanned by the dp genes of the pathway and performs a principal
component analysis [338] on the embedded point cloud of samples. The pathway activation of
a sample i then is represented by its first principal component.

In contrast to the former two methods that consider all pathway genes, Lee and coworkers only
consider a subset of pathway genes for pathway activity inference. To this end, they propose
pathway-specific sets of COndition-Responsive Genes (CORGs) [339]. A CORG set G’f, is a
subset of those k genes of a pathway P whose averaged differential expression delivers optimal
discriminative power for the distinction of the two phenotypes of interest. Figure 3.6 provides
a summary of the approach.

In a first step, the differential expression of each pathway gene is computed using a t-test (cf.
Section 3.3.2) comparing the two phenotypes under investigation. Depending on the average
t-score among all pathway genes, either only genes with positive t-scores (for f > 0) or only
genes with negative f-scores (for f < 0) are considered for the CORG set. Starting with an
initial CORG set G} that only contains the gene with the largest differential expression (from the
respective subset), the CORG set is iteratively extended by the next most differentially expressed
gene (Gé‘j — G;‘,H ), until the discriminative power of the CORG set does not improve any more.
In order to assess the discriminative power of a given CORG set G5, the expression scores of the
genes in G are averaged to obtain a pathway activity score for each sample i:

k 1 i
Llp,- = — 6]"1'
i \/Ejzl

with ¢;; being the gene expression of gene j in sample i. The activity scores for the samples
within the two phenotype groups are compared using a t-test to determine the discriminative
power of the current CORG set GX. The final result for a pathway P is the CORG set GX with
the smallest k with 1 < k < dp satisfying T(Gfﬁl) < T(Gk) and T(X) being the t-test for the
pathway activities computed based on the gene set X.

One central limitation of this approach is the focus on either upregulated or downregulated
genes within a pathway, which, however, both contribute to the overall pathway’s activity and
hence should be investigated jointly.

Based on the CORG approach, Sootanan et al. try to address this problem using Negatively
Correlated Feature Sets (NCFS). NCFS follows the CORG method in the sense that in a greedy
fashion genes are iteratively added to a predictive set until the discriminative power converges.
In NCFS, the pathway genes are split into two sorted lists, each ordered by the genes” absolute
scores of correlation or anti-correlation, respectively. Figure 3.7 provides an overview of the
approach.

Here, the predictive set constitutes of two subsets Gf} and G;? that are iteratively extended
in each round, each by the feature with the next largest correlation and anti-correlation,
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Figure 3.6 Schematic overview of the CORG approach. For all dp genes in a pathway P, t-scores assessing the
differential gene expression between two phenotypes (e.g., fumor vs. control) are computed. Depending on the
average t-score I across the dp genes, two different cases are considered. The CORG set G;S (highlighted in red)
is iteratively extended and its discriminative power with respect to the two considered phenotypes is determined
using a t-test (T(G;‘,)) on their respective pathway activities a’lg,tumw and a’lg,mmm,. Figure based on [339].

respectively. The pathway activity a% . of a pathway P in a sample i is then computed as the
difference of the averaged scores of genes in the positively correlated set Gf,l and the averaged
scores of genes in the negatively correlated set G;{}:
Kk k
ap; = ap,; —ap;
The discriminative power of the predictive set is iteratively assessed analogously to the CORG
method described above.

Although FCS-based approaches successfully alleviate the problems of ORA, they still face some
limitations that arise from the consideration of pathways as mere sets of genes. Most importantly,
FCS methods do not consider the dependencies between genes in a pathway, neither their
relative positions within the pathway. Also, FCS approaches are limited by the fact that each
gene set is analyzed individually, not accounting for the strong interdependence and cross talk
between pathways at a systems level.

3.3.3.3 Topology-based methods

Over the last decades, enormous efforts have been put into the investigation of molecular
interactions, many of which are described in various large-scale databases (cf. Section 3.2.2).
Computational approaches that take these interactions into account are of particular interest,

especially for the detection of pathways and subnetworks that are deregulated in pathogenic
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Figure 3.7 Schematic overview of the NCFS approach.

For all dp genes in a pathway P, their Pearson’s

correlations (PC) with the marker of interest are computed (e.g., survival fime, drug sensitivity). Genes with positive
correlation are sorted in descending order of their correlation score and genes with negative correlation are
sorted in ascending order. The predictive set Gé‘j = Gf,l @] Gf} (highlighted in red) is iteratively extended and its
discriminative power with respect to the two considered phenotypes is determined using a t-test (T(G’l‘,)) on their
respective pathway activities a@/tumor and a’lg,mmml. Figure based on [340].
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processes. This third class of methods combines information about the deregulation of genes
between two phenotypes with topology information on individual pathways or their integration
into networks.

Prior to the presentation of various topology-based methods, we first have to consider the
mathematical representation of biological networks, which is common to all of these methods.
In general, a biological network can be modeled as a graph G = (V,E), whose nodes v; € V
represent biological entities, such as proteins, functional RNA molecules, or metabolites, while
the edges e;; = (v;,v;) € E, v;,v; € V correspond to relationships between those biological
entities, for example, binding, activation, or inhibition. The network interactions can be modeled
either by undirected or by directed edges, representing, for example, protein-protein interactions
or activating/inhibitory regulatory events, respectively. Depending on the type of entity and
interactions considered, various types of biological networks can be distinguished [341]: Protein-
protein interaction networks contain proteins as nodes and (typically) undirected edges that
indicate an interaction of two or more proteins. Metabolic networks encode the biochemical
reactions of metabolites being catalyzed by enzymes. Gene regulatory networks describe how
genes regulate each other, and in a related manner, signaling networks trace the information
flow in and between cells.

The continuously growing class of topology-based methods includes various sub-classes that
differ in their computational approaches as well as their biological goals: some methods aim
at predicting the activities of pre-defined pathways, similarly to FCS approaches, while others
focus on the identification of deregulated subnetworks and functional modules. In the following

paragraphs, we will exemplarily outline several methods from different sub-classes.

ScorePAGE: For the identification of active (metabolic) pathways, Rahnenfiihrer et al.
proposed the ScorePAGE algorithm (Scoring Pathway Activity with Gene Expression Data)
[342]. ScorePAGE requires gene expression measurements of n samples under different
conditions (e.g., time points after a perturbation) and a set of (metabolic) pathways, including
their associated genes and respective topologies. For a pathway P under investigation, the
ScorePAGE method computes for each pair of genes (g;, g;) within the pathway a similarity score
s(gi,8;)- To this end, different measures like Pearson’s correlation [343], covariance [344], or the
cosine similarity [345] are used on the n samples. The similarity scores are moreover weighted
using the distances between the two genes in the pathway, i.e. the minimal number of reactions
connecting the two enzymes in a metabolic pathway.
The overall pathway activity s(P) for a pathway P of size k is then given by the average of all
considered gene pairs:

1 1

s(P) = — i
(5) 1<iTi<p min{d(gi, &

),10} : S(girgj)'

where d(g;, g;) is the distance between two genes g; and g; and the constant 10 is used to ensure
a minimal contribution of all gene pairs within the pathway to the overall activity score.

The significance of the co-regulation of the genes within a pathway and hence its activity is
assessed using a nonparametric permutation test. In order to account for multiple hypothesis

testing, the Benjamini and Hochberg correction is performed (cf. Section 3.3.1.1).
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SPIA: The Signaling Pathway Impact Analysis (SPIA) [346] aims at identifying deregulated
molecular pathways via the combination of two types of evidence: (i) the overrepresentation
of differentially expressed genes in the pathway of interest and (ii) the investigation of the
pathway’s overall ‘perturbation’ (i.e., deregulation). While the first part can be achieved using
a classical ORA (cf. Section 3.3.3.1), the second part uses the network topology to trace the
propagation of expression changes. To this end, for each gene g;, its score of differential
expression and the amount of perturbation in its downstream genes are taken into account.
To this end, SPIA scores a gene highly ‘perturbatory’ if it affects other perturbatory genes in
the network, see Figure 3.8. The perturbation factor PF(g;) of a gene g; is computed using a

recursive algorithm similar to the PageRank index used by Google [347]:

AE(g) Y gy LE8)
PF(gi) = AE(gi) +]; B Naote))
Here, AE(g;) is the score of differential expression of gene g;. The second term is the sum of the
perturbation factors PF(g;) for all n genes g; directly upstream of the target gene g;, normalized
by the number of all genes directly downstream of each such gene Ny,(g;), and weighted by B;;.
The indicator variable fj; reflects the type of interaction present between two network nodes g;
and g;, with f;; = 1 indicating an activating effect and f;; = —1 for an inhibitory effect of g; on
gi- By following this recursive approach, the authors take into account the location of a gene in
the pathway, following the rationale that deregulated genes at the beginning of a pathway can
also perturb many downstream genes, while aberrations towards the end of a signaling cascade

only affect fewer downstream genes.
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Figure 3.8 Perturbation factor computation in SPIA. The coloring in the exemplary pathway on the right visualizes
the network components considered when computing the perturbation factor PF(gi) for a gene i, which
corresponds to node D in the visualization. Pointed arrows indicate an activating interaction, whereas ‘T'-shaped
arrows indicate an inhibitory interaction.

Although this approach seems to be appealing, it has the major drawback that it considers
pathways independently, neglecting their crosstalk and interdependencies. In order to
alleviate this limitation, the authors recently proposed System-level PAThway Impact AnaLysis
(SPATIAL) [348], an extension of SPIA that takes a global view on the pathway and network
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topology and also considers the perturbation of respective upstream pathways in its pathway
activity model.

Network diffusion-based methods: Another set of tools employs network diffusion-based
approaches to study the effects of molecular aberrations (e.g., mutations) on downstream genes
and processes. The HotNet [349] algorithm uses the physics of heat diffusion to detect ‘mutated
subnetworks’, i.e. subnetworks of genes likely to be affected by the mutations present in a
(tumor) sample. To this end, the network is considered as a metallic lattice and the genomic
alterations as sources of ‘heat’ which propagates along the network topology, leading to ‘hot’, i.e.
highly relevant, networks. The heat diffusion is here modelled as a random walk on the network
graph. A random walk is a stochastic process that models the iterative transition of a ‘random
walker” from seed nodes (the affected, e.g., mutated, genes) to randomly chosen neighbors over
time until a steady state is reached [350, 351].

EnrichNet [352] is another approach that uses random walks to assess the effect of aberrations
on pathway activities. Starting from a set of seed genes, a network diffusion is performed. The
diffusion scores obtained by the genes of a specific gene set (i.e., pathway or category) are then
converted to distances, resulting in a distance vector for each pathway. This distance vector
is compared to the average distribution across all pathways to assess the significance of the
pathway’s deregulation.

There are also several methods that extend the uni-directional network diffusion approaches
described above: TieDIE (Tied Diffusion Through Interacting Events) [353] and NetICS
(Network-based Integration of Multi-omiCS Data) [354] use directed graphs to perform a
bidirectional graph diffusion from two different sources, namely a set of genes with genomic
aberrations and a set of differentially expressed genes. While the ‘heat’ from genomic aberrations
is diffused along the edges of the network, the scores of differentially expressed genes are
diffused in the opposite direction, along reversed edges. By this, linker (or ‘mediator’) genes
that connect genomic aberrations and transcriptional changes can be identified. These mediators
might be promising candidates for the development of targeted therapies. TieDIE and NetICS
follow the same analysis steps, where NetICS performs an additional step of averaging over the

samples of a population to obtain a population-wide view on potential mediators.

Formulation as an optimization problem: Instead of focusing on specific seed genes as done
by the presented diffusion-based approaches or the investigation of individual pathways as in
SPIA, there is another class of methods that aims at identifying deregulated functional modules
in biological networks.

To this end, these approaches employ the topology of a biological network G and scores of
differential expression that are mapped onto the nodes of the network.

For example, Keller et al. proposed the Finding Deregulated Paths (FiDePa) algorithm [355],
an algorithm that efficiently searches for all paths of length k in a given regulatory or signaling
network that are significantly enriched with deregulated genes or proteins. To this end, paths
of length k in the network are used as categories in unweighted GSEAs (cf. Section 3.3.3.2). In
order to identify the most significant paths efficiently, a dynamic programming scheme was
devised.
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Other approaches aim at solving the Maximum-Weight Connected Subgraph (MWCS) problem,
which is based on the idea of ‘active subnetworks’ as introduced by Ideker et al. [356]: Given
a connected, undirected, vertex-weighted graph G = (V,E, w) with weights w : V — R, find
a connected subgraph G’ = (V/,E’) C G that maximizes the score w(G') = Y ,cy» w(v). The
MWTCS problem has been proven to be NP-hard [356]. One of the first methods to approach
the MWCS problem was presented by Ulitsky et al. with DysrEgulated Gene Set Analysis via
Subnetworks (DEGAS) [357]. DEGAS searches for a minimal connected subnetwork with at
least k differentially expressed nodes (i.e., genes or proteins) in all but / investigated samples. To
solve this NP-hard problem, DEGAS employs heuristics with provable performance guarantees.
Another tool that solves a variation of this problem is KeyPathwayMiner [358]. KeyPath-
wayMiner employs an ant colony optimization technique to identify connected subnetworks of
maximal size in which all but k nodes are differentially expressed in all but / analyzed samples.
One of the first approaches to solve the original MWCS problem to optimality was introduced
by Dittrich et al. [359]. The authors reformulated the problem as a Prize-Collecting Steiner Tree
problem, which can be efficiently solved using a corresponding Integer Linear Programming
(ILP) formulation [360]. (Integer) Linear Programs are optimization problems with linear
objective functions that are optimized with respect to linear constraints [361]. In the case of
Integer Linear Programs, the results are constrained to be integer.

Backes et al. extended the approach by Dittrich and coworkers to account for directed networks,
in order to better model the signal propagation within biological networks [362]. To this end,
they proposed a branch-and-cut algorithm based on an ILP formulation.

The corresponding problem can be formulated as follows: Given a directed graph G = (V,E),
find the most deregulated subgraph G’ of given size k where all nodes ' € G’ are reachable
from a designated root node vy that also belongs to G’. This root node could be a molecular key
player contributing to the deregulation of its downstream components and hence might be of
interest as a potential drug target.

In the following, we will describe the corresponding ILP formulation in more detail, as this
‘Subgraph ILP” will be further employed in the tools and analyses presented in the remainder
of this thesis. To this end, we introduce the following notation: Let w = (wjy,..., w,) € R%
be a vector of gene weights, containing for each node i € V its absolute score of differential
expression. The binary vector x = (x1, ..., x,) € B" contains an indicator variable for each node
of the graph, indicating the selection of subgraph vertices in the result (x; = 1 if v; is selected,
0 otherwise). Finally, the binary vector y = (y1, ..., ¥») € B" contains indicator variables for the
choice of the root node (y; = 1 if node v; is selected as the root node, 0 otherwise).

An overview of the problem formulation is given in Table 3.1: In order to find the most
deregulated subgraph, the objective function is the sum of the selected subgraph nodes,
weighted by their score of deregulation (Equation 3.1). Equations 3.2 and 3.3 ensure that
precisely k vertices are selected to be part of the solution and that exactly one root node is
assigned. The Inequations 3.4 and 3.5 guarantee for each selected vertex that it is either the
root node or that at least one of its parent nodes (parents of i are given by the set In(i)) has been
selected. The last constraint (Inequation 3.6) prevents the ILP to yield two disconnected cycles
by making sure that each selected cycle C either contains the root node or that a selected vertex

outside of C is a parent of one of the cycle nodes.
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Objective
max Zi:wi - x; (3.1) ls\illabggll)z}f the overall deregulation of the
Subject to
Z x; =k (3.2)  Ensures that the subgraph is of size k
i
Yyi=1 (3.3)  Ensures that a single root node is selected
i

Ensures that the designated root node is

Yi < xi Vi (i) part of the selected subgraph
Xi—yi— ), <0 Vi (3.5)  Ensures connectivity of the subgraph
jetn(i)

Y (xi—yi)— ), x%<|C|—1 VC (3.6) Prevents disconnected cycles
ieC jeIn(C)

Table 3.1 Subgraph ILP formulation. The objective function and the respective constraints are given in the first
column, the second column provides a numbering for reference in the text, and the third column describes the
purpose of the respective formula. The variable C describes cycles formed by the selected nodes.

A limitation of topology-based methods is their dependence on just this type of a priori
knowledge. Molecular interaction networks are still not complete [363]. Besides a variety
of missing links, both experimental techniques (e.g., yeast-two-hybrid) and computational
inference approaches are prone to false positives [364, 365]. Moreover, currently available
networks also are of rather coarse granularity as they typically do not distinguish between
different splicing variants or isoforms of a gene or protein.



Tools for Multi-Omics Integrative Analyses

The thorough measurement of biological data using, for example, the experimental high-
throughput techniques described in Section 3.1, allows investigating biological systems at an
unprecedented depth and scale. In combination with additional resources of a priori knowledge
(cf. Section 3.2), this enables a holistic view on the mechanisms underlying these biological
systems, and thereby provides means to analyze the emergence and progression of complex
diseases like cancer. The processing, handling, integration, annotation, and analysis of such
complex, heterogeneous, and often large data sets calls for a computational infrastructure and
novel methods to generate a multi-dimensional picture of the conditions under investigation.
To this end, we have developed an integrative tool suite for computational systems biology
that facilitates systems-oriented research by providing various tools and methods for multi-
omics integrative analyses and biomarker identification, which will be presented in this
chapter. First, we will present Graviton, a general framework for the implementation of
web-based, integrative, multi-omics systems-biology tools. Graviton also serves as basis for
our specialized analysis pipelines (Section 4.1): GeneTrail2 - a web service for multi-omics
enrichment analysis (Section 4.2), RegulatorTrail - a web service for the identification of key
transcriptional regulators (Section 4.3), and NetworkTrail - a web service for identifying and
visualizing deregulated biological subnetworks (Section 4.4). Two specialized analysis tools
for personalized medicine that focus on drug repositioning and clinical decision support will be
presented separately in Chapters 5 and 6.

4.1 Graviton - a framework for multi-omics integrative analyses

The framework has mainly been developed by Daniel Stéckel and Tim Kehl. | have contributed
to Graviton via the integration of additional databases, tools, and analyses that enable the
use of Graviton in the context of personalized medicine.

The main challenge in systems biology is the complexity of the investigated biological systems
in combination with the vast amount of data that is scattered across numerous resources and
that all have to be integrated and jointly analyzed. Hence, comprehensive computational tools
are required to gain novel insights in systems biology [366, 367]. The integration and combined
analysis of data from different sources is a multistep procedure involving a variety of tools for
data handling and harmonization, the actual analyses, the visualization of the results, and their

export for downstream processing.

57
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To provide a sound basis for tackling these challenges, we developed Graviton, a general
framework for integrative multi-omics systems-biology approaches. Graviton provides a wide
array of general-purpose functionality like data upload, identifier mapping, resource handling,
job scheduling and forms the basis for all of our specialized tools and web services, which will be
discussed in subsequent sections. First, we will briefly describe the enabling potential of such
a framework (Section 4.1.1), provide an overview of its implementation (Section 4.1.2), and
describe its workflow (Section 4.1.3).

4.1.1 Software as a service

Software as a Service (SaaS) is a software distribution model in which a provider hosts an
application and customers access the offered functionality over the internet, typically using
standard web browsers [368]. While Saa$ is mainly used in commercial context, it also provides
numerous advantages for academic settings, and especially for the use in systems biology
approaches: The implementation of systems biology research projects requires the cooperation
of researchers from various domains (such as biologists, physicians, mathematicians, chemists),
not all of which necessarily have a background in bioinformatics or computer science. However,
for the integrative analysis of multi-omics data, the installation and correct use of various tools
are required, which typically have to be operated over the command-line and do not provide
a Graphical User Interface (GUI) [369]. Furthermore, although there are many standards
for data representation, the output and input formats of different tools are commonly not
interoperable and require reformatting [370]. This impedes productivity and is prone to errors.
The implementation of analysis pipelines in the form of web services overcomes these obstacles:
A web service only requires a single, centralized point of installation, which is maintained by
the host. The provided functionality is platform-independent and accessible from anywhere.
Moreover, the seamless integration of the respective analysis steps mitigates the otherwise
tedious task of individually performing all steps of the analysis with specialized tools or scripts.
There are various workflow-management systems that aim at providing such integrated
functionality. Systems like KNIME [371], Taverna [372], or Galaxy [373] enable the construction
and execution of specialized workflows. While these platforms allow for convenient and
customized pipeline design, they do not provide ready-to-use workflows, but instead require
the user to select and arrange the individual analysis steps from a multitude of options.

4.1.2 Implementation

Graviton is implemented based on a modular multi-layer client-server architecture that ensures
extensibility and maintainability (cf. Figure 4.1).

The first layer corresponds to the user frontend, which is implemented using HTML5 [374] and
CSS3 [375], in combination with Bootstrap [376] and the Thymeleaf template engine [377]. Re-
sults are visualized using the DataTables plug-in for JQuery [378] and the JavaScript libraries of
Chart.js [379], D3.js [380], and Highcharts [381]. In the application layer, Java [382], JavaScript
[383], JQuery [384], and AJAX [385] are used for the implementation of the internal logic and
client-server communication with a RESTful Application Programming Interface (API) [386].
The API allows to set up and run computationally intensive tasks (‘jobs’) and to handle the cre-
ated (intermediate) results (‘resources’). The last layer, the resource layer, contains rich analysis
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Figure 4.1 Graviton architecture. The colored boxes represent the layers of the three-tier client-server architecture.
Within each layer, the respective components and employed technologies (indicated by the ‘code’ icon) are
displayed. The displayed icons were obtained from [15].

functionality implemented in the form of a C++ library [387]. Metadata on user sessions and
performed analyses are stored in a PostgreSQL database [388]. This ensures the reproducibility
of the obtained results, as all analysis parameters are recorded, including the random seeds that
are used in analysis steps involving randomization. Furthermore, we use a document-oriented
database [389] for the storage of a priori biological knowledge, which is used for annotation and
analysis of the uploaded data sets. The underlying database content is regularly updated in a

semi-automatized manner.

Documentation: Inorder to make a tool or web service as easy to use as possible for researchers
of various domains, an intuitive user interface and thorough documentation are essential. To this
end, the user-friendly interface of our web services leads the user through the data upload and
analysis steps and provides reasonable default parameter settings, matching the properties of
the uploaded data. Moreover, we provide extensive documentation for all our web services. The
supporting information ranges from standalone tutorials for the respective analysis workflows,
over example files and additional information along the data upload and analysis steps, to
interactive explanations of the provided results. All visualizations and (intermediate) results

can be downloaded for further processing or reporting.

RESTful APl:  Graviton offers a large variety of tools and methods, which are useful in a variety
of research scenarios. In order to enable other bioinformaticians to integrate this functionality
into their existing analysis pipelines, Graviton also provides a RESTful API as a programming
interface. A RESTful API is an API that follows the architectural style of REpresentational
State Transfer (REST). REST is a scheme for client-server communication that allows the
client to access and modify textual representations of Web resources using a predefined set
of stateless operations [390]. Web resources can be identified over the internet via their
Uniform Resource Identifier (URI). Typical operations in REST are GET, POST, PUT, or DELETE.
These operations are called ‘stateless” because a client’s request is required to contain all the
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information (parameters) necessary to be processed by the server and hence no contextual
information needs to be stored on the server. An overview of the Graviton API is provided
on http://apidoc.bioinf.uni-sb.de and an example of how to programmatically run an

analysis is listed in Section A.3.1.

4.1.3 Workflow and functionality

Graviton is a framework for building fully integrated bioinformatics web services. To this end,
it provides implementations of general-purpose functionality like file parsers, scoring, identifier
mapping, and annotation of data sets, which can be used in all of our specialized web services
and hence avoids code duplication and reimplementation of functionality. Figure 4.2 gives an

overview of the Graviton workflow.
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Figure 4.2 Overview of Graviton workflow. The box border and diamond colors correspond to the type of data
used in the corresponding step or analysis. Orange: clinical data, blue: gene expression data, green: protein levels,
purple: methylation data, red: mutation data, lime: copy number alterations, pink: chromatin structure. Input
data formats are indicated by the *file’ icon, used databases by a ‘database’ icon, statistical and computational
methods by a gear wheel, and our intfegrated web services by the ‘user’ icon. The section and chapter numbers
in the ‘specialized analyses’ box are references to the sections and chapters in which the respective tools are
presented. BED: Browser Extensible Data, COSMIC: Catalogue Of Somatic Mutations In Cancer, GEO: Gene
Expression Omnibus, HENC: HUGO Gene Nomenclature Committee, SEG: SEGmented data file format, TSV: Tab-
Separated Values, TXT: plain text file, VCF: Variant Call Format, VEP: Variant Effect Predictor. The displayed icons
were obtained from [15].

Supported input data: Graviton provides the basis for several specialized multi-omics
integrative web services and hence supports a large variety of data input types. The framework
enables the upload of numerous types of omics data in several (standardized) input formats (cf.
Figure 4.2, first column). For the use in gene set based analyses (e.g., as provided by GeneTrail2
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or RegulatorTrail), a plain text file containing a list of identifiers of a set of ‘interesting entities’
can be provided as most simple form of input. Transcriptomics, proteomics, and epigenomics
data can be uploaded as whitespace-separated files (e.g., in TSV file format) that contain a
whitespace-separated pair of entity identifier and corresponding deregulation score per line.
Besides files containing user-defined scores, also matrices containing expression values for a set
of samples can be uploaded. Alternatively, expression matrices from GEO [294] can be imported
by providing identifiers for GEO SEries (GSE) or GEO Data Set (GDS) files. The samples
contained in such matrices can be divided by the user into the samples under investigation
and a set of control samples. The user can then analyze the two groups using various types of
entity-level statistics, as described in the following paragraph. Mutation data can be uploaded in
Variant Call Format (VCF, cf. Section A.1.4) and should contain information on a tumor sample
and ideally a matched control to be able to differentiate between somatic and germline mutations.
Copy number alterations can be provided to the web service in SEGmented data file format (SEG,
cf. Section A.1.6). Besides providing flexibility in the data formats, we also aim at covering
as many of the standard entity identifier types as possible. These include EntrezGene [270],
Ensembl identifiers [273], HGNC symbols and IDs [272], KEGG [282], UniProt [274] for genes
and proteins, and miRBase [278] identifiers for miRNAs.

Preprocessing: Depending on the type of uploaded data, up to three additional preprocessing
steps are performed (cf. Figure 4.2, second column) before the data can serve as input for the
specialized analyses. The preprocessing steps include (i) the assessment of differential gene
expression or methylation levels, (ii) the annotation of genomic aberrations with additional
metadata, and (iii) the harmonization of the respective entity identifier types used in the
uploaded files.

In cases where a matrix of measurements for samples of two phenotypes (e.g., tumor and
control) is provided, the user can select for both phenotypes those samples that should be used
in the analysis. In a next step, the groups of selected samples are compared against each other
to assess differential gene expression or methylation. Depending on the sample selection, the
user can choose from a broad array of parametric and nonparametric tests and scoring schemes
(cf. also Section 3.3.2). In cases where one sample of interest is compared against one or several
reference samples, the (log) mean fold quotient [391] can be computed. If a reference set with
several samples is provided, the user could additionally select the standard score (z-score) [392]
as the scoring method. For the comparison of two groups of samples, the following tests are
provided: independent shrinkage t-test [393], independent Student’s t-test [394], Wilcoxon-
Mann-Whitney test [395], signal-to-noise ratio [396], F-test [397], and the (log) mean fold
quotient [391]. A complete list of all provided entity-level statistics is given in Table A.4.

If genomic aberrations in the form of mutations are uploaded, Graviton annotates the mutations
with their predicted impact on the corresponding genes and proteins (e.g., missense variant,
stop gain, frameshift). To this end, Ensembl’s Variant Effect Predictor (VEP) [220] is used (cf.
Section 3.1.2.3). Additionally, the contained mutations are cross-referenced with dbSNP [226]
and COSMIC [225] for further details on the potential functional impact and pathogenicity of the
mutation. Since copy number alterations are typically described in terms of the genomic location
(coordinates) they occur in, the affected genes have to be identified using reference genomes
(e.g., GRCh37/38 [398]) and gene annotations, which we obtained from Gencode [399].
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The integration and analysis of heterogeneous data from different sources requires their
harmonization into a common format using common identifiers. To this end, Graviton provides
sophisticated mapping functionality [400] and mapping files for a variety of organisms and
a plethora of identifier types (e.g., from NCBI EntrezGene [270], Ensembl [273], HGNC
[272], KEGG [282], UniProt [274], miRBase [278]). A complete list of all available mappings
is given at https://genetrail2.bioinf.uni-sb.de/mappings.html. As the internal
representation of gene- and protein-based entities within Graviton, HUGO gene symbols are
used (cf. Section 3.2.1). In order to keep the mapping process traceable and transparent,
Graviton provides mapping statistics that indicate which identifiers were mapped to which other
identifiers and also which identifiers could not be mapped and hence were not considered in the
further analysis steps.

Specialized analyzes: After upload and preprocessing of the different omics data sets, the data
can be analyzed using various specialized tools and analysis pipelines, which will be presented
in detail in the following sections and chapters (cf. Figure 4.2, third column). GeneTrail2
is a web-interface providing access to different tools for the statistical analysis of molecular
signatures with a focus on pathway enrichment analyses. It offers multiple statistical tests and
a comprehensive collection of biological pathways (cf. Section 4.2). RegulatorTrail is a web-
interface providing access to different methods to identify and prioritize key transcriptional
regulators with respect to their impact on expression changes caused, for example, by
pathological processes. NetworkTrail is a web-interface providing access to different analysis
tools for regulatory networks (cf. Section 4.4).

While the previous three tools are of general purpose and can be well used for basic science and
biomarker identification, the remaining two tools, DrugTargetInspector and ClinOmicsTrail’®,
focus on translational cancer research and clinical decision support for personalized medicine.
DrugTargetInspector (DTI) is an interactive assistance tool for treatment stratification. DTI
analyzes genomics, transcriptomics, and proteomics data sets and provides information on
deregulated drug targets, deregulated biological pathways, and subnetworks, as well as
mutations and their potential effects on putative drug targets and genes of interest (cf.
Chapter 5). ClinOmicsTrail*® is an interactive visual analytics tool for breast cancer treatment
stratification. The web service offers rich functionality for the integration and analysis of
clinical markers as well as transcriptomics and (epi-)genomics data sets with respect to a broad
spectrum of biological, pharmacological, and medical knowledge. To this end, ClinOmicsTrail>®
provides a comprehensive assessment of a variety of treatment options based on the tumor’s
main driver mutations, the overall tumor mutational burden, activity patterns of core breast
cancer-relevant pathways, drug-specific predictive biomarkers, the status of molecular drug
targets, and pharmacogenomic implications (cf. Chapter 6).

Furthermore, in order to provide a comprehensive view on the data set(s) under investigation,
our web services are seamlessly integrated with each other. Hence, once omics data sets are
uploaded to one of the web services, they can also be readily analyzed using other applicable
tools within the Graviton framework.
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4.2 GeneTrail2 - a web service for multi-omics enrichment analysis

GeneTrail2 is the successor of the Genelrail web service, which had been developed by
Backes et al. [401] in 2007. The GeneTrqil2 rewrite has mainly been conducted by Daniel
Stéckel, Tim Kehl, and Patrick Trampert. | contributed by integrating additional resources and
connections to our other web services to facilitate the use of GeneTrail2 in the context of
personalized medicine. GeneTrail2 is published in D. Stdckel, T. Kehl, P. Trampert, L. Schneider
et al. Multi-omics enrichment analysis using the Genelrail2 web service. Bioinformatics (2016)
31.10. doi: 10.1093/bioinformatics/btv770.

The measurement and analysis of comprehensive multi-omics data sets allow studying the
mechanisms of pathogenic processes in the initiation and progression of complex diseases
such as cancer at unprecedented breadth and depth. While the analysis of such data sets
has the potential to improve the diagnosis, prognosis, and therapy of diseases [402—405], the
interpretation, validation, and translation of the obtained findings into clinical practice remains
a big challenge [406]. The (epi-)genetic and cellular heterogeneity within tissues and across
patients is one of the reasons why individual markers and even sets of marker genes oftentimes
lack the robustness required for clinical applications [407]. Moreover, marker genes typically
are selected independently from each other, neglecting their coordinated functioning within
protein complexes and signaling cascades. As a remedy, methods for the pathway- and network-
based analysis of omics data sets (cf. Section 3.3.3) have become a more and more popular
tool for biomarker identification [326, 408-412]. In order to provide a wide variety of over-
representation and pathway-enrichment methods to the research community, we developed
GeneTrail2, a web service for the integrated analysis of genomics, transcriptomics, miRNomics,
and proteomics data sets. In the following sections, we will first describe related tools and web
services (Section 4.2.1). Afterward, we will describe the GeneTrail2 workflow and the offered
functionality (Section 4.2.2). Finally, we will demonstrate the capabilities of GeneTrail2 in a case

study for the identification of a treatment-relevant subtype in pancreatic cancer (Section 4.2.3).

4.2.1 Related work

There are numerous enrichment-based approaches for the functional annotation of gene sets
and multi-omics measurements. Please refer to Section 3.3.3 for an elaborate overview. Most of
these approaches are complemented by corresponding standalone tools or web services, which
will be briefly discussed in the following.

Several of those tools offer interfaces for specific enrichment methods, for example, DAVID
[413] or GoMiner [414] for Over-Representation Analysis (cf. Section 3.3.3.1), whereas GSEA-P
[415] and the Broad Institute [416] provide functionality for Gene Set Enrichment Analysis (cf.
Section 3.3.3.2). There are also other tools available that offer more than one type of enrichment
analysis, for example, Babelomics [417], GOrilla [418], or GOstat [419]. These tools, however,
typically trade this additional functionality off against smaller numbers of available databases to
test for [400]. Additional web services offering enrichment analyses are listed in the OMICtools
database [420].
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4.2.2 Workflow and functionality

As shown in Chapter 3, a large variety of enrichment methods exists, none of which can be
considered as a ‘magic bullet’ applicable to all scenarios [421-423]. With GeneTrail2, we
provide one of the most comprehensive collections of statistical methods and integrated a priori
knowledge for enrichment analyses. GeneTrail2 is a complete rewrite of its predecessor, the
GeneTrail [401] web service.

GeneTrail2 follows the modular framework approach for Gene Set Enrichment Analysis as
presented by Ackermann and Strimmer [332], which consists of the following steps: (i) the
identification of entity-level scores (e.g., of differential gene expression), (ii) the application of
a set-level statistic to determine enrichment scores, and (iii) the significance assessment of the
results. To this end, GeneTrail2 provides a comprehensive collection of biological categories
to test for, numerous statistical tests for the identification of deregulated genes and pathways,

and multiple views on the computed results. Figure 4.3 provides an overview of the GeneTrail2

workflow.
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Figure 4.3 GeneTrail2 workflow. Input data formats are indicated by the ‘file” icon, used databases by a ‘dato-
base’ icon, and stafistical as well as computational methods by a gear wheel. Dashed arrows and boxes
indicate optional steps. Due to space constraints, not all provided methods and databases are listed. Please
refer to Section A.4 for a complete list. BH: Benjamini-Hochberg adjustment, BY: Benjamini-Yekutieli adjustment,
DTl: DrugTargetinspector, GEO: Gene Expression Omnibus, GO: Gene Ontology, GSEA: Gene Set Enrichment
Analysis, HGNC: HUGO Gene Nomenclature Committee, KEGG: Kyoto Encyclopedia of Genes and Genomes,
NT: NetworkTrail, ORA: Over-Representation Analysis, TSV: Tab-Separated Values, TXT: plain text file. The displayed
icons were obtained from [15].

Data upload and scoring:  First, the user uploads the data to be analyzed. GeneTrail2 supports
genomics, transcriptomics, miRNomics, and proteomics data sets and can convert between 32

identifier types (cf. Table A.3). In cases where a data matrix is provided, the samples have to be
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divided into a sample set and a reference set based on which entity-level scores are computed.
In total, 13 identifier-level statistics are implemented (cf. Table A.4). After scoring, simple
transformations such as taking the absolute value of the score or to square the result can be
applied.

Enrichment analysis: In the next step, the user can select one of ten set-level statistics (cf.
Table A.5) and the biological categories and pathways that should be analyzed. For human
alone, GeneTrail2 provides more than 46,000 categories collected from over 30 databases
including GO [424], KEGG [282], Reactome [425], WikiPathways [426], DrugBank [427],
TRANSFAC [275], and miRDB [428] (cf. Table A.7). Moreover, custom user categories can be
uploaded to GeneTrail2 in Gene Matrix Transposed (GMT) file format (cf. Section A.4.2.1). In
order to account for multiple hypothesis testing (cf. Section 3.3.1.1), eight p-value adjustment
methods are provided (cf. Table A.6). For each step of the analysis pipeline, the user can adjust
the parameters of the employed methods. However, we also provide default values that should
be applicable for most use cases.

Visualization of the results: The analysis results are provided in a ranked list of relevant
pathways, ordered by confidence values (multiple testing-corrected p-values). The result
list can be searched, sorted, and filtered. In order to make the results as meaningful and
interpretable as possible, we provide various views for the enrichment results (cf. Figure 4.4 and
Section A.4.3). Besides the default view of a list of enriched or depleted pathways, GeneTrail2
also provides an inverse enrichment view. Here, differentially expressed genes are listed in
decreasing order of their score of deregulation. For each gene, the pathways and gene sets the
gene belongs to are listed and they can be investigated with respect to their enrichment status.
For the integrative analysis of enrichment results from multiple omics data sets, GeneTrail2’s
comparative enrichment view can be used. This specialized view allows comparing several
enrichment results side-by-side. Currently, there are two modes for comparison: intersection
and union. The intersection mode only displays categories that are significantly enriched in all
performed enrichment analyses, the union displays any category that is significantly enriched
at least once. For the visual analytics-based investigation of dependencies between enriched
or depleted categories, GeneTrail2 also offers a dependency wheel visualization and is integrated
with the interactive graph visualization tool OnGraX [429]. The dependency wheel provides
a circular representation of altered categories with connecting ribbons indicating the number
of shared genes between two categories. OnGraX, on the other hand, provides a network
visualization of significantly enriched or depleted categories, in which closely related categories
form clusters.

Interoperability: Due to the fact that GeneTrail2 is based on the Graviton framework, it is also
tightly integrated with our other web services. Specifically, once entity-level scores for multi-
omics data sets are obtained, these scores can be forwarded to NetworkTrail (cf. Section 4.4)
for network analysis or to DrugTargetInspector (cf. Chapter 5) for an assessment of deregulated
drug targets and potential treatment options.
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GeneTrail2 has been well received in the research community. On average, GeneTrail2 is used
for more than 900 analysis runs each month. At the time of writing, it has been cited 69 times.
In the following section, we will demonstrate GeneTrail2’s capabilities in fostering translational

research and biomarker identification by the example of pancreatic cancer.
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Figure 4.4 GeneTrail2 results for sumohigh ys. sumo'ow subtype in PDAC. Enrichment results for the case study
described in Section 4.2.3. Scores of differential gene expression between the two groups were computed using
the independent shrinkage t-test. For the enrichment, unweighted GSEA with exact p-value computation was
used. The obtained p-values were FDR-adjusted to a significance level of 0.05 using the Benjamini-Yekutieli method.
A) Main results table. The tested categories are ranked by the significance score of their enrichment. Significantly
enriched categories are highlighted in red. The table can be re-ordered by clicking on the respective ‘sort symbol’
next to the column name. B) Searching and filtering. The results table can be searched using the search box in
the top right corner of the table. The results can moreover be filtered using the filter boxes below each of the
table columns. C) Running sum plots. Clicking on the More button yields a visualization of the running sum of the
corresponding category. Here, the running sums for the two most significantly enriched categories "HALLMARK
MYC TARGETS V1’ and ‘HALLMARK MYC TARGETS V2’ are displayed.
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4.2.3 Case study: The SUMO pathway as a therapeutic option in pancreatic
cancer

Parts of this section are published in Biederstadt, A., Hassan, Z., Schneeweis, C., Schick,
M., Schneider, L. et al. SUMO Pathway Inhibition Targets an Aggressive Pancreatic Cancer
Subtype. Gut (2020) doi: 10.1136/9utinl-2018-317856. For the manuscript, | acquired data
sets and performed numerous bioinformatics analyses, including the ones presented in this
section. The presented drug sensitivity analyses were conducted by Alexander Biederstédt
and colleagues.

Although pancreatic cancer only accounts for about 3% of all diagnosed cancers, it is with a 5-
year survival rate of only 9% currently the fourth leading cause of cancer death in the United
States [430]. With an incidence rate of 95%, Pancreatic Ductal AdenoCarcinoma (PDAC) is the
most common form of pancreatic cancer [431]. Treatment options for PDAC are limited. Due
to the lack of comprehensive preventive screening facilities, PDAC is typically only diagnosed
in advanced stages. In combination with a relatively high median age of 71 years of PDAC
patients at diagnosis, this leads to the fact that only 15-20% of PDACs can be resected [432].
Moreover, there are only few chemotherapeutic treatment options available for PDAC, none of
which currently employs molecular biomarkers for treatment stratification [433].

With the goal of determining a potential novel stratified PDAC therapy, we analyzed gene
expression data for a cohort of PDAC samples. Within this cohort, we were able to identify an
aggressive molecular subtype that seems to be driven by a coactivation of MYC and the SUMO
pathway. This dependence can potentially be therapeutically exploited for a subtype-specific
treatment of pancreatic cancer. In the following sections, we will describe our analysis in more
detail.

MYC and SUMOylation in PDAC: Several molecular subtypes of PDAC have been described
in the literature, of which the so-called ‘squamous’, sometimes also called ‘basal-like” or
‘mesenchymal’, subtype is associated with especially poor prognosis [434-436]. The squamous
subtype is characterized by an activated MYC pathway [435]. The oncogenic transcription factor
MYC is known to drive tumor initiation and progression in various cancer types [437, 438].
While there is also research focusing on directly targeting MYC for cancer treatment [439, 440], it
has been shown that MYC exerts its oncogenic potential via the activation of growth-promoting
downstream processes [441, 442]. Hence, tackling these effector processes might be a promising
strategy for a stratified PDAC treatment, following the concept of ‘synthetic lethality’. Synthetic
lethality here describes the observation that the presence of a cancer-driving aberration (e.g.,
an MYC amplification) is accompanied by an increased vulnerability to perturbations of other
molecular factors [443, 444]. The activation of the SUMOylation pathway has in this context
already been described as a prerequisite for MYC-driven tumorigenesis [445] and several
SUMOylation pathway genes have already been identified as synthetic lethal interactions for
MYC (i.e., MYC-dependent tumor cells have been shown to be susceptible to suppression of the
respective SUMO pathway genes) [446]. Moreover, MYC-driven SUMOylation has been shown
to be a therapeutic vulnerability in B-cell ymphoma [447]. SUMOylation is a post-translational
modification (cf. Section 2.1) in which members of the small ubiquitin-like modifier (SUMO)
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protein family are conjugated to lysine residues of their target proteins. SUMOylation is involved
in a variety of cellular processes, including the regulation of protein subcellular localization,
the interaction of proteins, and DNA repair [448]. The covalent attachment of SUMO family
members (SUMO1, SUMO2, SUMO3) to their target genes is mediated by a multistep catalytic
process that involves various enzymes: SAE1 (SUMOI1 activating enzyme subunit 1), UBA2
(ubiquitin-like modifier activating enzyme 2), UBE2I (ubiquitin-conjugating enzyme E2 I),
PIAS1-4 (protein inhibitor of activated STAT 1-4), and the SENP protein family of SUMO-specific
peptidases.

SUMOylation-based molecular subtype of PDAC: To further investigate the relevance of the
SUMOylation pathway in PDAC, we analyzed a gene expression data set of a cohort of 96 PDAC
patients provided by Bailey ef al. [435]. The provided normalized gene expression scores were
z-transformed (cf. Section 3.3.2) for each sample in comparison to all the other samples. For
a predefined set of SUMO-related genes of interest, we investigated the scores of deregulation
within the cohort and could identify a PDAC subtype (SUMOM8") with increased expression of
core SUMO pathway genes, see Figure 4.5.
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Figure 4.5 Differential gene expression defines SUMOM9M subtype in PDAC. Scores of differential intra-tumor gene
expression are mapped 1o six colors between blue (downregulation) and yellow (upregulation). The sumonhiah
subtype is characterized by positive z-scores for SAE1, UBA2, and UBE2I (n=14). Differences in gene expression
between the SUMONI" and the SUMO'W group were assessed using Student’s t-test. The subtype and grade of
the investigated samples are depicted in the last two ‘rows’ of the visualization. The enrichment of the respective
clinical aftributes in one of two groups was assessed using Fisher’s exact test. The obtained significance levels are
indicated using asterisks next to the gene name: * < 0.05, xx < 0.01, * * * < 0.001, * * ** < 0.0001.

With respect to clinical attributes, SUMOMS8" PDACs are characterized by an enrichment of
squamous subtypes (Fisher’s exact test, p=0.0013) and poorly differentiated cells (Fisher’s exact
test, p=0.036).

In order to provide further evidence for the activating role of MYC in the SUMOMS8! subtype,
we performed enrichment analysis using GeneTrail2. To this end, we uploaded the gene
expression matrix of PDAC samples provided by Bailey ef al. and compared the SUMOMgh with
the SUMO!® group using the independent shrinkage t-test. Based on these scores of differential

gene expression between the two groups, we tested for the enrichment of two sets of MYC-target
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genes as provided by the Molecular Signatures DataBase (MSigDB) [449] and four categories
related to SUMOylation obtained from the Gene Ontology [281]. To this end, we used the
unweighted GSEA approach with exact p-value computation [327]. The obtained p-values were
FDR-adjusted to a significance level of 0.05 using the Benjamini-Yekutieli method. The results,
which are displayed in Figure 4.4, show a significant enrichment of MYC hallmark target genes,
as well as the core SUMOylation gene sets in the SUMOM8" subtype.

Moreover, using Kaplan-Meier plots (cf. Figure 4.6), we determined that SUMOM8" PDACs are
characterized by decreased progression-free as well as overall survival, and hence actually define
an aggressive subtype of PDACs.
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Figure 4.6 Kaplan-Meier plot for sumohigh ys. sumo'ow subtype in PDAC. The follow-up status of the patients was
divided into six types: ‘alive - without disease’, ‘dlive - with disease’, "alive - disease status unknown’, ‘deceased
- of disease’, ‘deceased - of other cause’, and ‘deceased - of unknown cause’. Samples without any follow-up
information were not considered. A) Overall survival analysis. Here, all samples are considered. B) Progression-
free survival analysis. Here, only samples with the follow-up status “alive - without disease’ and all samples with
follow-up status ‘deceased’ are considered.

Targeting the SUMO pathway in PDAC: In order to determine whether the SUMOylation
machinery is indeed a relevant target in PDAC, we tested the activity of two small-molecule
inhibitors of the SUMO-activating enzyme (SAE), a heteromer formed by the two subunits SAE1
and UBA2 (which sometimes also called SAE2). The inhibitors ML-792 and ML-93 selectively
block SAE and hence prohibit SUMOylation. ML-792 has already previously been described
to potently decrease cancer cell proliferation and work especially well in MYC hyperactive cells
[450].

We analyzed the sensitivity of six human PDAC cell lines to the treatment with ML-792 and
ML-93, respectively. Three of those cell lines showed low levels of MYC protein expression
(BxPC-3, MIA-Pa-Ca-2, IMIM-PC1) and three had higher MYC levels (DAN-G, PaTu-8988T,
PSN1). Figure 4.7 provides an overview of the results. In comparison to ML-792, ML-93 induces
a higher reduction in cell viability, which means that ML-93 is more effective than ML-792 for
these PDAC cell lines (cf. Figure 4.7 A). Moreover, ML-93 shows an increased potency in the
MYC-high PDAC cell lines, both with respect to the maximal response at a concentration of 1

M (cf. Figure 4.7 B), as well as the reduction of colony size at a concentration of 40 nM (cf.
Figure 4.7 C).
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Figure 4.7 Efficacy of SUMO inhibitors ML-792 and ML-93 in PDAC. A) Reduction of viability. Boxplots for reductionsin
cell viability when treating PDAC cell lines with either ML-792 or ML-93 at 1 11M. B) Response rates for ML-93. Boxplots
for response rates of six cell lines with low and high MYC protein expression levels, respectively, to treatment with 1
UM ML:-93. C) Colony reduction for ML-93. Boxplots for colony reduction rates after treatment with 40 nM ML-93 in
MYC-low and MYC-high cell lines, respectively.

To summarize, we provided evidence for the existence of a molecular subtype (SUMOMsh)
of PDAC that is defined by a co-activation of the SUMO pathway and the oncogene MYC.
The SUMOM8h subtype is characterized by an aggressive progression, poor prognosis, and the
current lack of treatment options. To this end, we investigated two SUMO inhibitors as potential
stratified treatment option. While the analysis of the relatively small number of cell lines can
only serve as a first proof-of-concept, the results nevertheless indicate that MYC hyperactivation
generates a vulnerability that potentially can be exploited by SUMO inhibitors.

4.3 RegulatorTrail - a web service for the identification of key transcrip-

tional regulators

The RegulatorTrail web service is published in T. Kehl, L. Schneider et al. RegulatorTrail: a web
service for the identification of key transcriptional regulators. Nucleic Acids Research (2017)
45.W1. doi: 10.1093/nar/gkx350. The web service was mainly been developed by Tim Kehl.
| contributed via the implementation of the web service’s analysis workflow for personalized
medicine research scenarios. Moreover, | supported the conduction of the case studies as
well as the writing and revision of the manuscript.

In the previous section, we presented GeneTrail2, a general-purpose tool for the identification of
altered biological pathways and pathological processes. In order to obtain further mechanistic
insights into complex diseases like cancer, the key regulatory elements that induce these
pathological processes have to be identified. One essential class of regulatory elements are
transcriptional regulators. Transcriptional regulators like transcription factors, coregulators,
and epigenetic modifiers control the transcriptional machinery in eukaryotic cells and hence
play major roles in most biological processes. Consequently, alterations in their structure,
abundance, and activities have been associated with a variety of diseases, including cancer

[451]. In this context, transcriptional regulators are commonly described as oncogenes or tumor
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suppressors [452]. Prominent examples are the tumor suppressor gene TP53 and the oncogene
MYC, which have been shown to be frequently altered in a variety of cancer types [437, 453].
Moreover, the capability of such regulatory elements to control the transcription of a large
number of genes makes them interesting candidates to be targeted in cancer therapy [454, 455].
In order to identify those transcriptional regulators that are involved in pathogenic processes, we
developed the web service RegulatorTrail. The tool provides eight different methods to identify
and prioritize influential regulators on the basis of epigenomics and transcriptomics data. In
the following sections, we will first briefly describe related approaches for the identification
and prioritization of key transcriptional regulators (Section 4.3.1). Afterward, we will give an
overview of RegulatorTrail’s workflow and functionality (Section 4.3.2). As one of the methods
provided by RegulatorTrail, we propose REGulator-Gene Association Enrichment (REGGAE),
a novel approach to prioritize transcriptional regulators based on the combination of regulator-
target interactions with enrichment analysis (Section 4.3.3). Finally, we will present a case study
in which we use RegulatorTrail to assess the role of TCF3 as a potential master regulator in
blastemal Wilms tumors (Section 4.3.4).

4.3.1 Related work

There are various approaches that aim at identifying and prioritizing those transcriptional
regulators that might explain the differences in gene expression between two phenotypes
(e.g., diseased vs. control). Most of the proposed approaches rely on a priori knowledge of
transcription factors and their corresponding target genes as provided by various databases (cf.
Section 3.2.1).

A first class of methods determines those regulators whose target genes show a significant
enrichment in a set of differentially expressed genes using Over-Representation Analysis (cf.
Section 3.3.3.1). To this end, TFactS [456] employs the hypergeometric test. The R-package
DCGL [457] provides two different methods: (i) Targets” Enrichment Density (TED) tests for
the enrichment of a regulator’s targets in a list of deregulated genes using the binomial test
and (ii) Targets’ Differentially Co-Expressed Links Density (TDD) computes for a transcription
factor T; the ‘density’ of co-expressed target genes among all target genes:

2k

TDD(T) = oy~

with N being the number of targets of T; and k being the number of target genes that are
differentially co-expressed with their regulator T;, forming what Liu et al. call ‘Differentially
Co-Expressed Links’ (DCLs) [458].

Another group of approaches is based on correlations between regulators and their target genes.
The Regulatory Impact Factor metrics RIF1 and RIF2 investigate the co-expression between a
regulator and its target genes [459]. The Correlation Set Analysis (CSA) [460] method aims
at unveiling essential regulators by calculating the mean of all pair-wise correlations in the
target set of a specific regulator. We recently developed an enrichment-based method called
REGGAE that prioritizes regulators based on correlations within transcriptomics data, which
will be presented in Section 4.3.3. Moreover, there are several other approaches that employ
graph algorithms (e.g., TFRank [461]) or machine learning approaches (e.g., MIPRIP [462],
Regulatory Snapshots [463]).
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Besides the analysis and prioritization of transcriptional regulators on the basis of known,
experimentally determined regulator-target interactions, another set of approaches focuses on
the genome-wide prediction of transcription factor binding sites and motifs, which thereupon
can be used to determine key regulators. Several methods have been proposed that jointly
analyze epigenetic data (e.g., of open chromatin regions) and known transcription factor
binding motifs. Examples for such approaches are CENTIPEDE [464], MILLIPEDE [465], or
the more recently proposed method TEPIC [466]. The transcription factor binding affinities
predicted by these tools can also be used to build models of gene expression that weight the
transcriptional regulators by their relevance. An example of such an approach is the INVOKE
(IdeNtification Of Key transcriptional regulators using Epigenetics data) analysis presented by
Schmidt et al. [466, 467].

Many of the tools and methods described above are tailored to a specific application scenario.
In order to provide an easy-to-use computational platform covering multiple research scenarios
with respect to transcriptional regulation, we developed the web service RegulatorTrail, whose
workflow and functionality will be described in the following section.

4.3.2 Workflow and functionality

RegulatorTrail provides eight different methods for the identification and prioritization of
transcriptional regulators that cover the different methodological classes sketched in the
previous section. To this end, RegulatorTrail offers solutions for four main use cases (i.e.,
‘scenarios’), which will be individually described in the following paragraphs. An overview
of the different workflows is provided in Figure 4.8.

Due to the fact that the methods provided by RegulatorTrail require a priori biological knowledge
of regulators and their target genes as well as regulator binding site motifs, we integrated data
from several databases and resources. Formally, we define a pair consisting of a regulator and
one of its experimentally determined target genes as Regulator-Target-Interaction (RTI). In order
to provide a comprehensive list of known RTIs, we obtained data from seven databases: ChEA
[468], ChIP-Atlas (http://chip-atlas.org), ChipBase [469], ENCODE [470], JASPAR
[471], SignaLink [472], and TRANSFAC [275]. Information on regulator binding motifs is
typically provided in the form of Position Count Matrices (PCMs). PCMs consist of four rows
(one for each nucleotide) and one column for each position of the binding motif. The entries of
a PCM are the number of occurrences of each nucleotide at the respective position in the motif
[473]. For PCMs, we collected data from four databases: HOCOMOCO [474], JASPAR [471],
the Kellis Lab ENCODE Motif database [475], and TRANSFAC [275].

Scenario I:  In the first scenario, which is indicated by orange arrows and boxes in Figure 4.8,
Opver-Representation Analysis (ORA, cf. Section 3.3.3.1) is used to identify those transcriptional
regulators whose target genes show a significant overlap with a gene set of interest. Here, users
can either upload a set of interesting genes or provide a score file (cf. Section 4.1.3), which
can be used to filter for, for example, the most differentially expressed genes. Moreover, users
can choose a collection of RTIs from our database or upload a set of custom regulator-target
interactions. To perform the ORA, three different statistical tests are offered: the hypergeometric
test [456], Fisher’s exact test [300], and the binomial test [457]. Finally, one of eight p-value
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adjustment methods is applied (cf. Table A.6), resulting in a list of potentially influential
regulators, sorted by their adjusted p-values.

Scenario ll: In the second scenario, users can either upload a matrix of normalized gene
expression values or use RegulatorTrail’s integrated functionality to import data from GEO
(cf. Section 4.1.3). Provided that the matrices contain samples belonging to two groups of
interest (e.g., disease and control), differential gene expression between the two groups can be
assessed. To this end, RegulatorTrail provides a variety of methods (cf. Table A.4). Based on the
obtained deregulation scores, the user can select lists of up- or downregulated genes for further
investigation (e.g., the top 250 most upregulated genes). For the identification of influential
regulators, these genes can either be used to perform a target gene enrichment as described in
Scenario I, or serve as input to the correlation-based methods RIF1, RIF2 [459], or REGGAE
(cf. Section 4.3.3). The latter three methods have the advantage that they additionally provide
information on whether the regulator has an activating or repressing effect on their targets. Also
in this scenario, users can either use our predefined collection of RTIs or upload their own set
of RTIs. The respective analysis steps are highlighted in red in Figure 4.8.

Scenario lll: The third scenario (indicated in blue in Figure 4.8) aims at predicting
transcription factor binding sites via the use of known binding motifs. In order to restrict the
search space, open chromatin data are used as input. To this end, candidate regions of open
chromatin in the form of DNase-hypersensitive sites [476] or H3K4me3 histone modification
data [477] can be uploaded in BED format (cf. Section A.1.5). In order to extract those genomic
regions from the open chromatin data that overlap with transcriptional start sites of genes,
RegulatorTrail considers a window of user-defined size for each gene. These windows are
centered at the respective gene’s most 5" Transcriptional Start Site (TSS). The thereby identified
candidate regions are then analyzed using the segmentation-based method TEPIC [466], which
uses a customizable collection of Position Count Matrices (PCMs) to predict transcription factor-
gene affinities. The resulting matrix of TF-gene affinity scores can also be used to build a
predictive model of gene expression (cf. Scenario IV).

Scenario IV:  As already indicated in the previous paragraph, the transcription factor-gene
affinity scores computed by a TEPIC analysis can also be used to predict those regulators that
have the highest impact on the expression of their target genes. The corresponding analysis
steps are highlighted in green in Figure 4.8. In addition to a BED file containing open chromatin
regions, which also serves as input in Scenario III, a score file containing gene expression
measurements for the same sample is required. The TF-gene affinity matrix A € Rj "™
consisting of affinity scores for all pairs of n genes and m transcription factors is used in a linear

regression model to predict the gene expression of the n genes ¢ = (¢1,82, .., §n):
§=A-pte

with the regression coefficients B = {B1, B2, ..., Bm} and the error term € = {¢; €r,...,€n}.
In order to control the regression coefficients, the user can choose between three types of
regularization: Ridge [478], Lasso [479], and the Elastic Net [480], which each applies a different
penalty to the regression coefficients ;. The linear models yield a list of features with non-zero
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regression coefficients, which are likely to play essential roles in the transcriptional regulation
of the analyzed sample. Moreover, model performance is assessed by Pearson correlation [343],
Spearman correlation [481], and the mean-squared error [482] between the predicted and the

actual gene expression.

The results from all four scenarios either yield lists of interesting regulators (Scenarios I, II, and
IV) or putative target genes (Scenario III), which can further be analyzed using GeneTrail2
(cf. Section 4.2) to assess the potentially common functional context of the identified regulators
and targets, respectively. Moreover, in cases where scores of differential gene expression
were either uploaded to or computed within RegulatorTrail (Scenarios I and II), these scores
can also seamlessly be used for the identification of deregulated regulatory subnetworks via
NetworkTrail (cf. Section 4.4).

4.3.3 REGGAE - REGgulator-Gene Association Enrichment

The work described in this section is published in Kehl, T., Schneider, L. et al. REGGAE: a novel
approach for the identification of key franscriptional regulators. Bioinformatics (2018) 1.8. doi:
10.1093/ bioinformatics/bty372. The REGGAE method was developed by Tim Kehl and Hans-
Peter Lenhof. | contributed to the presented case studies and the writing and revision of the
manuscript.

For the identification and prioritization of transcriptional regulators that have a strong influence
on the expression of a given set of genes, we have proposed an alternative approach to
the ones described in Section 4.3.1: REGulator-Gene Association Enrichment (REGGAE)
analysis combines association scores between regulators and their target genes with a Gene Set
Enrichment approach to identify and prioritize the influence of the investigated regulators on
expression changes between two phenotypes.

In the following paragraphs, we will first describe the methodology of REGGAE in more
detail and then compare REGGAE'’s capability to identify relevant regulators with the ones of
competing tools. Moreover, in Section 4.3.4, we will present a case study in which REGGAE was
used to investigate transcriptional regulators in an aggressive subtype of Wilms tumor.

The REGGAE algorithm: Figure 4.9 provides an overview of the REGGAE workflow and
Algorithm 4.1 shows the REGGAE algorithm in pseudocode.

The input for a REGGAE analysis consists of a normalized gene expression matrix E € RP*"
of measurements for p genes in n samples, where the n samples belong to two phenotypes
(e.g., disease and control). In a first step, scores of differential gene expression between these
two groups are computed using one of the numerous entity-level statistics offered by REGGAE
(cf. Table A.4). Based on these scores, the genes are sorted and either the most up- or down-
regulated genes (based on a user-defined threshold) are considered for further analysis. The
separate consideration of up- and down-regulated genes is required as transcriptional regulators
could affect some of their target genes in an activating manner, while others are repressed. If not

considered individually, these effects may cancel each other out.
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Figure 4.9 REGGAE workflow. The blue background boxes correspond to the stages of the method, ranging from
data input over scoring and preprocessing to the actual analysis and options for downstream analysis. The used
databases are indicated by a ‘database’ icon and statistical as well as computational methods by a gear wheel.
GT2: GeneTrail2. The displayed icons were obtained from [15].

For better readability, we consider in the following only one of the two (up- or downregulated)
sorted gene lists: D = {g1,92,..,gm}- Based on a collection of regulator-target interactions
(cf. Section 4.3.2), those [; regulators Ry, = {rin, rin, vy ril,-} that can influence the expression
of a specific gene g; € D are considered. For every pair of regulator r;; (j € {1,...,/;}) and
target gene g;, we calculate the correlation between the expression values of regulator and target
across all samples using either Pearson’s correlation coefficient [483] for linear dependencies or
Spearman’s rank correlation coefficient [481] for non-linear dependencies. For each gene g;, the
regulator list Ry, is sorted with respect to the (absolute or signed) correlation coefficients, which
is considered as the degree of regulator-target association (cf. ‘rows’ in Figure 4.10 A).

Based on the sorted list of differentially expressed genes D = {¢1, 2, ..., gm } (first ‘column’ in
Figure 4.10 A) and their corresponding sorted regulator lists R;"_ = {r;kl, iy r;‘li}, we create
anew list L = {r}y,751, ..., 71,112,135, . }. This new list L is created by traversing the sorted
list of differentially expressed genes D in decreasing order. First, the most strongly associated
regulators r}; for each gene g; are added to L, followed by the second most strongly associated
regulators 7}, for each gene g; and so on (cf. Figure 4.10 B).

In the final list L, regulators are sorted by their impact on their target genes, this means that reg-
ulators that are strongly associated with highly deregulated genes will occur at the beginning
of the list. Hence, regulators with a major impact on the observed differential gene expression
should be enriched at the top of the list. In order to assess and quantify such an accumulation,
we carry out an enrichment analysis for each regulator individually, as indicated in Figure 4.10
by the blue regulator r1. To this end, REGGAE offers the Wilcoxon rank-sum test [319] or the
unweighted version of the Kolmogorov-Smirnov test [328]. The resulting p-values are adjusted
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using the method proposed by Benjamini and Yekutieli [311] (cf. Section 3.3.1.1). Finally, REG-
GAE provides a list of regulators sorted by their adjusted p-values.

Input: Normalized gene expression matrix E € IR”*" for p genes and in total n
disease and control samples, lists of regulators Ry, for each gene g;, overall
number of regulators s

Output: List M* of regulators sorted by their adjusted p-values

D,y + computeDifferential GeneExpressionBetweenTumorAndControl (E)
D < considerOnlyDeregulationInOneDirectionAndSort(D,;, “up”)

foreach gene g; in D do
Cq; [] //List of correlations of g; with its regulators

foreach regulator r;j in Ry; do
‘ Cg, < append(Cy;,computeCorrelation(Eg, Ey;))
end
Rg, < sortRegulatorsInDecreasingOrderOfCorrelation(Ry,, Cq;)
//This yieds Rgii = {15,175 oo r;‘ll_}

end

L <[] // List of regulators to be used for enrichment
forjinltosdo
foriin1to|D| do
‘ L+ append(L,r;})
end
end
M + [] //List of enrichment results for all regulators

forjin1tosdo
| M < performEnrichmentOnEachRegulator(L, j)

end
M* + adjustForMultipleTestingAndSort(M)

Algorithm 4.1  Pseudocode for REGGAE algorithm. For exemplary purposes, we consider only upregulated genes
in this pseudocode, hence the parameter ‘up’ in the function ‘considerOnlyDeregulationinOneDirectionAndSort’.
The variables Eg, and Ey,; stand for the measured gene expression values for a gene g; and a regulator r;;, re-
spectively. For the functions ‘computeDifferentialGeneExpressionBetweenTumorAndControl’, ‘computeCorrela-
tion’, ‘performEnrichmentOnEachRegulator’, and ‘adjustForMultipleTestingAndSort’, users can select from several
options, see description in main ftext.

However, due to the fact that technical noise in the gene expression measurements can bias
the computed correlations, which are an essential part of the REGGAE algorithm, we offer the
use of a following bootstrapping scheme [484] to improve the robustness of the method. This
means that we perform numerous runs of the REGGAE algorithm, each time on a slightly altered
input data set and average the results. To this end, we create b bootstrap samples, where each
sample is generated by randomly selecting (with replacement) n columns from the original
gene expression matrix E. By this, we obtain an input matrix of the original dimensions, but
with moderately varying content. Next, REGGAE is applied to each of the b bootstrap samples.
Finally, the median p-value of the b results is used as the final score for this regulator.
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Figure 4.10 Sorting of regulators by relevance. A) A subset of either up- or downregulated genes {gl,gz, ...,gm}
are sorted according to their degree of differential expression. For each gene g;, the list of targeting regulators
is sorfed with respect to the degree of regulator-target association. The blue nodes correspond to a regulator
under investigation. B) Shows the sorted list of regulators that is obtained by concatenating the regulators in a
column-wise manner. The obtained list serves as input for enrichment analyses with the respective regulators as
‘category’ under investigation. Figure adapted from [485].

Comparison to other methods: In order to compare the capabilities of REGGAE with
competing methods, we applied REGGAE and seven other methods (CSA, RIF1, RIF2, TDD,
TED, TFactS, and TFRank, see Section 4.3.1) to a breast cancer data set and investigated whether
we could identify key regulatory factors involved in breast cancer initiation and progression.
Breast cancer is one of the most common types of cancer and the second leading cause of cancer
death among women [486]. One of the clinically most relevant breast cancer subtypes are
estrogen receptor-positive (ER+) tumors, which comprise around 70% of diagnosed cases [487]
and generally have a better prognosis than estrogen receptor-negative (ER-) tumors [488] (see
also Section 6.2).

We applied REGGAE and the other methods to a data set of 37 breast cancer cell lines, which
was published by Heiser et al. [489] and for which we obtained their estrogen receptor status
from a study by Neve et al. [490] (cf. Section A.5.1.1).

In total, we compared 16 ER+ and 21 ER- cell lines to find those transcriptional regulators
that have a strong influence on the differential expression between the two phenotypes. As
a first step, we assessed differential gene expression between ER+ and ER- samples using the
shrinkage f-test [318]. The genes were sorted with respect to their t-scores. From the sorted
list, we selected several gene sets for further investigation: all genes that were significantly up-
regulated in ER+ tumors (with p < 0.01), as well as the top 250, 500, 750, and 1,000 genes. We
individually applied REGGAE to the five lists and obtained five ranked lists of regulators. These
five rankings were aggregated into the final result using sum-of-ranks. For each regulator, we
used the maximum of the five p-values from the five runs as overall p-value. Parameters for all
analyses and corresponding results can be found in Section A.5.1.2. Runtimes for all methods
are depicted in Table A.9.
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Table 4.1 shows the top five regulators identified by REGGAE (columns 1 and 2) and the results
for these regulators as obtained from the other methods (columns 3-9). The first entry in each
table cell either contains p-values or scores if no p-values are provided by the respective method
(indicated by an asterisk). The second entry (in parentheses) indicates the rank of the gene in

the respective result lists.

Regulator REGGAE CSA RIF1* RIF2* TDD TED TFactS TFRank*
FOXA1 634-107¥1  976.107¢ —2.87 8.34 84-107% 1.0 1.0 6.92
(1) (359) (116) (18) (956) (843) (953) (2)
GATA3 323-1071%7 976-.-10¢ 273 5.16 87-10° 1.0 0.05 6.56
(2) (421) (113) (62) (747) (681) (369) 3)
ESR1 652-10712  976-107¢ —1.93 —0.1 84-107% 1.0 1.0 10.28
(3) (509) (229) (915) (949) (440) (790) (1)
MYB 634-1071%  976-10°¢ —2.07 4.14 84-10° 1.0 0.31 545
(4) (262) (130) (75) (878) (606) (519) (6)
SPDEF 26-10718  976-.107% —3.05 8.54 14-107° 1.0 36-107Y 644
(5) (40) (32) (15) (434) (892) (72) (4)

Table 4.1 Top five regulators in ER+ breast cancer identified by REGGAE in comparison to other approaches. For
REGGAE, CSA, and TFactS adjusted p-values are depicted. *For RIF1, RIF2, and TFRank, which do not provide p-
values, the respective test statistic value is shown. Numbers in parentheses represent the rank in the sorted result
list.

The top five regulators identified by REGGAE are FOXA1, GATA3, ESR1, MYB, and SPDEE, all
of which have already been described as prognostic markers in breast cancer indicating a good
prognosis [491-494]. Especially, FOXA1, GATA3, and ESR1 have been reported as co-located
and co-expressed in breast cancer cells [495, 496]. Moreover, FOXA1, GATA3, ESR1, and SPDEF
are reported as master regulators in fibroblast growth factor (FGF) signaling and breast cancer
risk in ER+ cells [497]. The top five REGGAE candidates have also been identified by CSA and
TFRank as significant. Notably, with respect to the rankings of the top candidates, REGGAE
and TFRank yield very similar results that differ strongly from the remaining methods. TFactS
detected only two of the five regulators as significant, RIF1 and RIF2 detected four out of the five
among their top 200 results.

To summarize, our results indicate that most methods identify similar key regulators, however,
with substantially different rankings. Although most methods were able to assign at least some
of the central regulators of ER+ cells as being relevant, REGGAE and TFRank excelled in terms
of the actual ranking of those regulators.

Besides this breast cancer case study, we also analyzed perturbation gene expression signatures
of induced MYC overexpression in mouse lymphomas and knock-out experiments in human em-
bryonic stem cells, in which REGGAE outperformed TFRank. Please refer to the corresponding
publication for additional details [485].

While the results described above demonstrate that REGGAE is able to yield reasonable results,
we also used REGGAE to obtain novel biological insights into the regulatory mechanisms
underlying an aggressive subtype of Wilms tumors. The corresponding analysis and results
will be presented in the following section.
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4.3.4 Case study: The role of TCF3 as potential master regulator in blastemal
Wilms tumors

The results described in this section were published in T. Kehl, L. Schneider et al. The role of TCF3
as potential master regulator in blastemal Wilms tumors. International Journal of Cancer (2019)
144.6. doi: 10.1002/ijc.31834. The performed analyses were conceptualized and conducted
by Hans-Peter Lenhof and Tim Kehl. | contributed to the interpretation of the results as well as
the writing and revision of the manuscript.

4.3.4.1 Wilms tumors

Wilms tumors (WT), also known as nephroblastomas, are pediatric malignant tumors and the
predominant type of childhood kidney cancer [498]. Although Wilms tumors generally have a
good prognosis with survival rates over 90%, some subtypes are associated with a high risk of
relapse [499]. Typically, WTs mainly consist of three histological components: blastema, stroma,
and epithelial cells. The proportions and degree of differentiation of these cell types can strongly
vary between tumors [500].

For the treatment of WTs, two different schemes have been established. While the Children’s
Oncology Group (COG) does not see a need for routine preoperative treatment, children
treated according to the protocol of Société Internationale d’Oncologie Pediatrique (SIOP)
typically undergo neoadjuvant chemotherapy. Preoperative chemotherapy can strongly affect
the composition of cell types in the (remaining) tumor. In this context, a larger amount of
surviving, chemoresistant blastema (inducing the so-called ‘blastemal subtype’) confers a high
risk [501]. In order to better understand the role of blastema as a high-risk factor in WTs, it is
of utmost importance to elucidate the regulatory mechanisms that differentiate blastemal from
non-blastemal components of WTs.

4.3.4.2 REGGAE analysis

In order to identify transcriptional regulators that potentially explain the differences between
blastemal and non-blastemal Wilms tumors, we collected and analyzed 33 WT samples from
patients that were treated according to the SIOP protocol, which means that they received
neoadjuvant chemotherapy with actinomycin-D, vincristine and, in the case of metastases,
doxorubicin.

The data set contains biopsies of 17 blastemal and 16 non-blastemal tumors (cf. Table A.12).
Gene expression was assessed using Agilent SurePrint arrays. The corresponding data set has
been published on the Gene Expression Omnibus platform (accession number: GSE98334).

In order to identify the most influential regulators, we first assessed differential gene
expression between the blastemal and non-blastemal tumor samples using shrinkage t-test (cf.
Section 3.3.2). The genes are then sorted in descending order of their t-scores.

For the analysis using REGGAE, we created ten different lists: Based on a significance threshold
of 0.01, we selected all significantly upregulated genes (538) and all significantly downregulated
genes (317). Moreover, we created eight lists containing the 250, 500, 750, and 1,000 most
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upregulated and most downregulated genes, respectively. In a next step, we applied REGGAE
to each of those lists. The results for the five lists of upregulated genes and analogously for the
five lists of downregulated genes were aggregated using the second-order statistic for p-values
[319]. The aggregated p-values are finally FDR-adjusted using the approach by Benjamini and
Yekutieli [311].

Table 4.2 gives an overview of the ten most significant regulators based on the lists of
upregulated and downregulated genes, respectively. Please refer to Section A.5.2 for the full

list of identified regulators.

Upregulated genes Downregulated genes

Regulator P-value Regulator P-value
RUNX1 () 1.22-107180 NR2F2 () 7.83-107116
TCF3 (+) 5.96 - 10163 MAX (+) 3.27-1071%
NR2F2 (+) 6.19-107163 TCF3 (-) 3.12-107%
MAX (-) 3.54-1071%7 RUNX1 (+) 1.78 .10~
SFPQ (+) 1.06 - 107136 CREBBP (-) 8.51-10778
ELF1 (-) 4.60-107134 ELF1 (+) 1.09-1077°
KDMS5B (+) 1.68 - 10131 SUMO2 () 4.03-10774
HDAC1 (+) 9.85-101% CREB1 (-) 442 .10770
SIN3A (+) 2.90-10~1% SMC3 (-) 8.33-10770
CREB1 (+) 5.84-10712 UBTF (-) 9.24-107%!

Table 4.2 Top ten regulators identified by REGGAE analysis in blastemal Wilms tumors. Aggregated REGGAE
results for upregulated and downregulated genes, respectively. Each ranking was obtained via a sum-of-rank
aggregation of the REGGAE results for input lists of the following sizes: 250, 500, 750, and 1,000, as well as alll
significantly upregulated (538) and downregulated (317) genes (with p-value < 0.01). The colors of the gene
symboils in the first and third column indicate whether the mean correlation coefficient between a regulator and
its farget genes is positive (+) or negative (-).

According to REGGAE, the most influential regulators for both up- and downregulated genes
are NR2F2, TCF3, RUNX1, and MAX. The nuclear receptor subfamily 2 group F member 2
(NR2F2) is a transcription factor that is involved in the differentiation of human embryonic
stem cells [502]. Moreover, it has been shown to play a role in tumor initiation and progression
of several cancer types [503]. Transcription factor 3 (TCF3) is - as the generic name suggests -
a transcription factor that plays essential roles in a variety of processes: It has been shown to
induce gene expression of Wnt-responsive genes [504]. The Wnt signaling pathway is known
to be activated in blastemal WTs [505] and it has been linked to tumorigenesis as well as
chemoresistance in various tumor types [506, 507]. Along with TCF3, we have also identified
two of its coactivators: CREBBP and EP300 (see extended results in Table A.10). The RUNX
family transcription factor 1 (RUNX1) is a known tumor suppressor in breast cancer and acute
lymphoblastic leukemia [508, 509]. It is involved in the differentiation of hematopoietic stem
cells to lymphoid or myeloid cells [510]. The MYC associated factor X (MAX) is a transcription
factor that forms different kinds of homo- and heterodimers with other transcriptional regulators
like MYC, MNT, or MXI1 and which is involved in regulation of cell proliferation, differentiation,
and apoptosis [511].

These results indicate that many of the essential regulators active in blastemal subtype WTs are
involved in the regulation of stem cells and hence are likely to induce the stem-like character and
potentially the aggressiveness of blastemal WTs. To validate this hypothesis, we investigated
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the chromatin signaling network of mouse Embryonic Stem Cells (ESCs) [512]. The network
contains many of the top regulators identified by REGGAE, including TCF3. The 49 genes
belonging to this network are highly enriched for both REGGAE results lists. Moreover, all of
those genes have binding sites for TCF3 and the majority of those genes also shows a strong
absolute correlation (|p| > 0.5) in gene expression with TCF3. In order to confirm the role of
TCE3 in blastemal WTs, we additionally verified that TCF3 target genes are significantly enriched
in the set of most highly expressed genes in blastemal WTs.

To further support our observation of the stem cell-like character of blastemal WTs, we
performed a comparison of histone marks in embryonic stem cells and Wilms tumor cells. Here,
our results indicate that blastemal WT cells share several characteristics with ESCs that are not
present in non-blastemal tumor cells. Additionally, we observed that TCF3 targets are again
significantly enriched in the set of genes with activating histone marks in their promoter regions.
This result reinforces our assumption that TCF3 is a crucial regulatory element in blastemal WTs.
Please refer to the manuscript for details on the performed analyses and additional results.

To summarize, our results emphasize that stem cell-like properties are a central characteristic of
blastemal Wilms tumors and might even foster the increased malignancy and chemoresistance
of this tumor subtype. Specifically, our results highlight the role of TCF3 as a central element in
a circuitry of regulatory and epigenetic mechanisms. Along with TCF3, we identified several
additional biomarkers that are characteristic of the blastemal subtype. These insights can
potentially be utilized to improve diagnosis, prognosis, and even therapy of patients with Wilms

tumors.

4.4 NetworkTrail - a web service for identifying and visualizing deregu-

lated subnetworks

The results described in this section were published in D. Stéckel et al. NetworkTrail - a web
service for identifying and visualizing deregulated subnetworks. Bioinformatics (2013) 29.13.
doi: 10.1093/bioinformatics/btt204. | was not involved in the initial development of this web
service, yet | have contributed to the web service’s maintenance ever since. Due to the
fact that NetworkTrail is also integrated with the other tools described in this and the following
chapters, we will briefly describe the functionality, but refer the reader for additional details

and case studies o the above-mentioned manuscript.

The deregulation of signaling pathways plays a central role in many complex diseases, and
especially in cancer (cf. Chapter 2). For the identification and elucidation of altered biological
processes that characterize a given phenotype, numerous computational methods have been
proposed (cf. Section 3.3.3). Some of these methods focus on the analysis of gene sets (cf.
Sections 3.3.3.1 and 3.3.3.2), while others also take the topology of the underlying biological
signaling network into account (cf. Section 3.3.3.3).

While GeneTrail2 (cf. Section 4.2) provides an easy-to-use web service for the gene set based
analysis of biological categories and pathways, NetworkTrail focuses on the topology-based
analysis of altered pathologic processes. The NetworkTrail web service enables users to detect
the most deregulated pathways and subgraphs in biological networks.
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4.4.1 Workflow and functionality

An overview of the analysis workflow within NetworkTrail is shown in Figure 4.11.

“;Input Y Preprocessing &* Analysis i= Results
BTsv ¥ Fold change %% ...
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n?;[t:x » Entity-level statistics ¥ FiDePa QMX
l £* Subgraph ILP £ BiNA
i i
Score AN /\\ Network Network
> > > >
list \/ \A/ analysis visualization
b4 g o
: Y T
B TSV N P € Reactome BSIF
5 Transformation S KEGG BENA
SOOI

Figure 4.11 NetworkTrail workflow. Input (and output) data formats are indicated by the ‘file’ icon, used
databases by a ‘database’ icon, and statistical as well as computational methods by a gear wheel. BiNA:
Biological Network Analyzer, GEO: Gene Expression Omnibus, KEGG: Kyoto Encyclopedia of Genes and Genomes,
NA: Node Attribute file, SIF: Simple Interaction File, TSV: Tab-Separated Values. The displayed icons were obtained
from [15].

Similar to the web services presented in the previous sections, the analyses conducted by
NetworkTrail are based on differential gene expression. Users can either provide scores of
differential gene expression in the form of a score file or provide a gene expression matrix
(cf. Section 4.1.3). In the latter case, users can choose from a variety of entity-level statistics
to compute deregulation scores per gene (cf. Table A.4). These scores can optionally be
transformed using basic operations like taking the absolute value.

In a next step, the scores of deregulation per gene are mapped onto the nodes of a
signaling network derived from KEGG [282] (cf. Section 3.2.2). For the computation of
the most deregulated subnetwork, NetworkTrail provides two algorithms: an Integer Linear
Programming (ILP) formulation proposed by Backes et al. [362] and the FiDePa algorithm
devised by Keller et al. [355]. Details on both methods can be found in Section 3.3.3.3.

The computed deregulated subgraphs can be visualized in three ways: (i) directly in the browser
using a visualization based on Cytoscape.js [513], (ii) in a new browser tab via the OnGraX
graph visualization tool [429], or (iii) locally on the user’s computer via a Java web start
provided by the Biological Network Analyzer (BiNA) [514]. Finally, a representation of the
resulting subgraph in the form of SIF (Simple Interaction Format) and NA (Node Attribute) files
(cf. Section A.6.1) can be downloaded for offline usage and visualization in graph visualization
tools like the standalone version of Cytoscape [515].

A case study using the NetworkTrail functionality and additional details on the corresponding
visualization using BiNA will be presented in Chapter 5.






DrugTargetinspector

Main parts of this chapter are published in L. Schneider, D. Stéckel, T. Kehl et al.
DrugTargetinspector: An assistance tool for patient treatment stratification. Infernational
Journal of Cancer (2016) 138.7. doi: 10.1002/ijc.29897. The DrugTlargetinspector web service
was predominantly developed by myself. It is based on the Graviton software architecture
devised by Daniel Stéckel and Tim Kehl.

Many complex diseases, and especially cancer, are caused by genetic and molecular aberrations
that emerge in an evolutionary manner and manifest in various ways in the molecular, cellular,
and ultimately phenotypic characteristics of the disease [516]. Due to the genetic and molecular
heterogeneity of tumors, and the fact that cancerous clonal evolution can rapidly induce drug
resistance, the treatment of cancer is still a grand challenge. The intrinsically positive fact that
the number of chemotherapeutic agents is steadily growing (currently there are more than 200
FDA-approved anticancer drugs), however, renders the search for an optimal treatment even
more difficult, in particular, if a combination therapy is required. Hence, in order to determine
an optimal treatment for a given tumor, an in-depth characterization of the tumor’s genetic and

phenotypic makeup can provide a sound basis for decision-making.

5.1 Related work

In order to support systems medicine and translational research, several bioinformatics methods
and tools have emerged over the last years that approach the pathological and pharmacological
dependencies in complex diseases from various angles: The Drug-Gene Interaction database
(DGIdb) [517] combines information from several databases like DrugBank [427], PharmGKB
[518], or CancerCommons [519] to identify those drugs that target genes in a user-provided
gene set. Similarly, the Search Tool for InTeractions of CHemicals (STITCH) [520] provides
information on drug-target interactions, which are rated by a confidence score that is based on
the occurrence of the respective interaction in other databases, the results of in-vitro experiments,
and the literature. The web service canSAR [521] combines biological, pharmacological, and
chemical data with biological network topologies to facilitate hypothesis generation for drug
development. Recently, DrugTargetProfiler has been presented [522], a visual analytics tool
for the interactive analysis and exploration of drug-target interaction networks obtained from
the authors’ own open data crowdsourcing portal for the annotation of molecules as drug
targets [523]. However, all of these tools lack the integration of tumor-specific genomics or
transcriptomics data.

85


https://doi.org/10.1002/ijc.29897

86 5 DRUGTARGETINSPECTOR

The continuous development of high-throughput experimental techniques, which allow for the
molecular characterization of diseases at an increasing resolution (cf. Section 3.1), has enabled
the development of a variety of tools that utilize molecular data to elucidate treatment options.
The ConnectivityMap [524] and its successor, the Library of Integrated Network-based Cellular
Signatures (LINCS) [525], provide collections of gene expression profiles from numerous
human cell lines, which were treated with a variety of perturbing agents, including more than
1,000 distinct bioactive small molecules. User-provided query signatures (gene expression
profiles) can be uploaded and compared to all reference expression profiles using Gene Set
Enrichment Analysis (GSEA) (cf. Section 3.3.3.2). By this, those perturbagens that are most
strongly correlated or anti-correlated with the query can be identified. The ConnectivityMap
is, amongst others, used by the tool DrugPairSeeker [526] to predict optimal pairs of drugs that
potentially ‘re-regulate’ cancerous gene expression profiles towards gene expression patterns of
healthy cells.

Another class of tools tries to improve treatment selection via the investigation of deregulated
pathway and network structures: The Cytoscape plugin OCSANA [527] aims at selecting an
optimal and minimal combination of interventions that disrupt all regulatory and signaling
pathways that exist between two gene sets of interest. These sets could, for example, be a set
of genes with genomic aberrations and a set of genes that show differential expression. Other
tools seek to simulate the behavior of cancer cells and hence their reaction to therapeutic agents.
Iadevaia ef al. [528] aim at identifying optimal drug combinations by tracing signaling cascades
using phosphoproteomics data. The Oncosimulator [529] combines clinical and molecular data
to simulate a tumor’s response to treatment with a drug, including toxicologically relevant side
effects. Other approaches predict the response of cancer cells to drug treatment by population
modeling of Darwinian evolution [530, 531].

A major factor explaining the differences in drug responses between tumors of the same type,
and even subtype, are the genomic alterations that drive the disease. Accordingly, genomic
alterations are also used by several tools to predict treatment outcome. A comprehensive
resource for the elucidation of pharmacogenomic interactions (i.e., mutations that affect the
efficacy of a drug) is the Genomics of Drug Sensitivity in Cancer database (GDSC1000)
[532, 533]. Similar information with a focus on drug targets is provided by the Cancer
Drug Resistance database (CancerDR) [534], which contains pharmacological profiles of 148
anticancer drugs across 952 cell lines, including known mutations and their effect on treatment
response. In 2014, the Dialogue on Reverse Engineering Assessment and Methods (DREAM)
project presented a challenge to predict the drug sensitivity of various breast cancer cell lines
[299]. The participant’s approaches ranged from principal component analysis over regression
trees to ensemble methods. The best-performing team used a Bayesian multitask multiple
kernel learning method [535]. Besides the mere prediction of drug sensitivity, there are also
numerous approaches that aim at generating mechanistic insights into the molecular processes
and dependencies that inform drug sensitivity. For example, Aben et al. devised TANDEM, a
two-stage elastic net regression, which combines genomics and transcriptomics data to identify
molecular key players predictive for drug response [536]. Similarly, in LOBICO, logic models of
combinations of molecular aberrations are derived from the GDSC1000 data set [537].
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In order to support systems medicine and translational research, we have developed
DrugTargetInspector (DTI), an interactive assistance tool that provides rich functionality for
the integrative analysis of tumor-specific omics data sets. In order to reveal the characteristics of
a given tumor, DTI analyzes and integrates genomics, transcriptomics, and proteomics data sets,
where genomics data sets provide information on genetic alterations (cf. Section 5.2.2). These
alterations can affect the eligibility of therapy options in different ways. On the one side, driver
mutations induce the deregulation of certain processes and pathways and hence the knowledge
of such mutations and the induced pathway activities is important for decisions on (targeted)
therapies. On the other side, mutations can make therapies ineffective or reduce their efficacy.
To account for these dependencies, mutation data can be uploaded to DTI and, based on the
GDSC1000 database, DTI annotates given mutations with their pharmacogenomic effects across
alarge panel of drugs (cf. Section 5.2.3.2). Transcriptomics and proteomics data sets can be used
to identify deregulated signaling pathways and processes. To this end, DTI performs enrichment
analyses on a large set of pathways derived from a variety of databases (cf. Section 5.2.3.4).
Based on these pathway activities and the corresponding information on mutations, putative
target pathways, drug targets and their corresponding drugs can be identified. DTI also
determines if these drug targets are deregulated and offers functionality to determine their
effect on downstream processes. To this end, DTI performs a subgraph analysis, which reveals
the most deregulated subnetwork rooted in a drug target of interest (cf. Section 5.2.3.4). The
subnetwork is visualized along with its corresponding gene expression data, which allows for
a visual assessment of how the downstream molecules might be influenced by the root node.
DrugTargetInspector is also fully integrated with its sister projects GeneTrail2 (cf. Section 4.2),
RegulatorTrail (cf. Section 4.3), and NetworkTrail (cf. Section 4.4). In summary, this provides
a powerful integrated tool suite for cancer therapy stratification by providing in-depth analyses
of tumor omics data sets and a characterization of various aspects of dysregulation in the tumor,
making DTI a valuable addition to existing clinical decision-support systems. DTI can be freely
accessed at https://dti.bioinf.uni-sb.de.

In the subsequent sections, we will first give an overview of DTI's workflow and functionality
(Section 5.2), followed by three case studies highlighting DTI’s potential to foster treatment

decision-making and translational research (Section 5.3).

5.2 Workflow and functionality

The identification of tumor-specific characteristics that can serve as a sound basis for treatment
stratification requires (i) the integration of a broad range of heterogeneous omics data sets
and databases, (ii) the development of powerful statistical methods for the analysis of high-
dimensional and noisy data, and (iii) the generation of explorative tools that provide intuitive
visualizations of relevant results. For the identification of tumor-specific characteristics relevant
for an optimal treatment stratification, DTI integrates genomics and molecular data with a
priori biological, pharmacological, and medical knowledge. Based on these data, several
complementary analyses are performed, each of which yields a different view on the tumor
under investigation. Figure 5.1 provides an overview of DTI’s workflow.
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Figure 5.1 DrugTargetinspector workflow. The box border colors correspond to the type of data used in the
corresponding step or analysis. Red: mutation data, blue: gene expression data. Please note that the term ‘gene
expression” here covers mMRNA expression, mMIRNA expression, as well as protein levels. The green border color in
the last column stands for results and potential analysis endpoints. Input (or output) data formats are indicated
by the *file” icon, used databases by a ‘database’ icon, and statistical as well as computational methods by a
gear wheel. ACS: American Cancer Society, BiNA: Biological Network Analyzer, GDSC1000: Genomics of Drug
Sensitivity in Cancer, GEO: Gene Expression Omnibus, GSEA: Gene Set Enrichment Analysis, ILP: Integer Linear
Programming, KEGG: Kyoto Encyclopedia of Genes and Genomes, NA: Node Attribute file, SIF: Simple Interaction
File, TSV: Tab-Separated Values, VCF: Variant Call Format, VEP: Variant Effect Predictor. The icons in this figure were
obtained from [15].
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DrugTargetInspector (DTI) incorporates various databases, including gene ontologies, regula-
tory network databases, specialized databases on miRNAs and transcription factors, pharma-
cological databases, and clinical decision guidelines, which are described in Section 5.2.1. In
Section 5.2.2, the different data types and corresponding file formats that can be uploaded to
DTI are specified. The variety of analysis tools provided by DTI is sketched in Section 5.2.3,
followed by a description of the visualization of the analysis results in Section 5.2.4.

5.2.1 Integrated databases

DrugTargetInspector incorporates various databases, ranging from gene ontologies and
regulatory network data over pharmacological data to clinical decision guidelines. For
information on genes and the functional categories they belong to, we employ NCBI Gene
[270] and GO [424]. The Kyoto Encyclopedia of Genes and Genomes (KEGG, cf. Section 3.2.2)
[282] provides information on regulatory signaling cascades and their topologies. In order to
map miRNAs and transcription factors to the genes they affect, we incorporate miRTarBase
[538] and TRANSFAC [539]. Pharmacological data are obtained from DrugBank [427], which
provides comprehensive information on therapeutic agents and their respective drug targets (cf.
Section 3.2.3). Not only genomic variations in a drug’s molecular target, but also mutations
unrelated to the actual target can affect a drug’s efficacy (e.g., activating mutations downstream
of a receptor that is targeted by an inhibitor). To this end, DTI employs the Genomics of
Drug Sensitivity in Cancer database (GDSC1000) [533] and PharmGKB [540], which contain
information on pharmacogenomic interactions for a wide range of drugs. DTI also provides
information about standard-of-care treatments and treatment decision guidelines for cancer.
There are several guidelines available in the United States [541] and in Europe [542, 543] that
are substantially overlapping. A list of 74 cancer subtypes and their respective recommended
treatments was obtained from the American Cancer Society (ACS) [541]. For 32 of these
subtypes, information about targeted treatment options was provided.

5.2.2 Tumor-specific input data

DrugTargetInspector enables the upload of omics data in several file formats. Transcriptomics
data (MRNA/miRNA) and proteomics data can be uploaded as tab-delimited score files (TSV).
Additionally, we support the upload of (gene) expression matrices. Expression data sets from
the Gene Expression Omnibus (GEO, cf. Section 3.2.3) [544] can be imported by providing
identifiers for GEO SEries (GSE) files or GEO Data Set (GDS) files. For the analysis of genetic
alterations, mutation data can be uploaded in Variant Call Format (VCF, cf. Section A.1.4),
which is a common format to describe variations identified in next-generation sequencing
experiments (cf. Section 3.1.2) and which is supported by many tools for variant identification
like SAMtools [545], GATK [546], or VarScan2 [547] (cf. Section 3.1.2.3). DTI supports
numerous identifiers describing biological entities in the uploaded files: EntrezGene [270],
HGNC symbols and IDs [272], KEGG [282], and UniProt identifiers [274] for genes and mirBase
identifiers [278] for miRNAs.
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5.2.3 Integrated analyses

Based on gene expression data of a tumor sample and one or several healthy controls, DTI offers
various methods to calculate scores of differential expression per gene. This functionality is
presented in Section 5.2.3.1. Alternatively, users can directly provide score files that describe
the degree of deregulation of all genes (or microRNAs), which are used as basis for the analysis
of deregulated drug targets, processes, and pathways in the following. In order to provide a
detailed view of the genetic variations in the tumor, DTI analyzes the mutations contained in
uploaded VCF files and assesses their pharmacogenomic effects (Section 5.2.3.2). Moreover, DTI
analyzes deregulated drug targets (Section 5.2.3.3), provides a general overview on deregulated
processes in the tumor (Section 5.2.3.4), and investigates the potential impact of targeted drugs
on deregulated pathways and regulatory networks (Section 5.2.3.5).

5.2.3.1 Scoring and preprocessing

For the integration of the tumor-specific input data provided by users with the database
content of DTI, identifiers types have to be harmonized. To this end, DTI uses Graviton's
elaborate mapping functionality (cf. Section 4.1.3). As the internal representation of gene- and
protein-based entities, HUGO gene symbols are used, and for miRNAs, miRBase identifiers are
employed.

In order to identify characteristic deregulated processes and molecular key players of a tumor
under investigation, DTT offers functionality for the calculation of scores measuring the degree
of deregulation of all genes in the tumor tissue in comparison to one or several healthy samples
(e.g., obtained from the healthy tissue surrounding the tumor). After the upload of anormalized
(gene) expression matrix (or import of a GSE file from the GEO database), users can select and
assign samples to a test set and a reference set. For therapy stratification, the test set would
usually consist of an individual tumor sample and the reference set should contain healthy
control sample(s). In this case, users can use (log) mean fold quotients [391] as scoring method
to assess differential gene expression. In the case that the reference set consists of several samples,
users can alternatively choose the z-score [392] as scoring method. If required, also larger
sample groups can be compared against each other using one of the following tests: independent
shrinkage t-test [393], independent Student’s t-test [394], Wilcoxon-Mann-Whitney test [395],
signal-to-noise ratio [396], F-test [397], and (log) mean fold quotient [391].

5.2.3.2 Analysis of pharmacogenomic effects

(Epi-)genetic variations, especially driver mutations, play a central role in tumor initiation and
progression. In order to take these effects into account for the treatment decision-making
process, somatic variant data can be analyzed in DTI. To this end, drug targets potentially
affected by variations and drugs for which pharmacogenomic effects have been described by
GDSC1000 are highlighted in the results. In order to also account for aberrations that have
not (yet) been described as pharmacogenomic, DTI also analyzes the impact of the contained
variations on the protein sequence (e.g., stop gained, missense, frameshift). To this end,
Ensembl’s Variant Effect Predictor (VEP) [548] is employed (cf. Section A.2). In terms of
treatment stratification, genetic variations like mutations and SNPs are also of particular interest,
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as they can have a major effect on the tumor’s sensitivity to certain drugs [8]. To this end, drug
targets potentially affected by variations and drugs for which pharmacogenomic effects have
been described by GDSC1000 are highlighted in the results.

5.2.3.3 Identification of deregulated drug targets

At the time of writing, there are more than 200 FDA-approved anticancer drugs available,
which are characterized in databases like DrugBank [427]. Many of those drugs have specific
molecular targets and can be employed for targeted therapies [71, 549]. DTI offers functionality
for identifying those genes that are (i) deregulated in the tumor under investigation, (ii) whose
deregulation has a strong effect on the tumor’s phenotype, and (iii) that can be targeted by
known drugs. In a first step, based on the provided (or computed) scores of deregulation and
drug-target interactions contained in DrugBank, DTI identifies all known drug targets that are
significantly deregulated in the sample under investigation. In a second step, DTI analyzes the
biological pathways containing these drug targets (Section 5.2.3.4) and molecular subnetworks
potentially affected by them (Section 5.2.3.5).

5.2.3.4 Detection of deregulated processes and pathways

In order to investigate pathways affected by the considered drug target, DTI performs
(unweighted) Gene Set Enrichment Analyses (cf. Section 3.3.3.2) for all KEGG pathways
containing the corresponding gene. The analysis is based on the scores of deregulation for the
genes contained in each pathway and reveals which regulatory pathways are most affected by
the disease and potentially also by the deregulation of the drug targets. Significantly enriched
(or depleted) pathways are highlighted in the results and can also be visually inspected on the
KEGG website.

Moreover, in order to generally assess deregulated processes in the tumor, without the focus
on a specific drug target, additional Gene Set Enrichment Analyses can be natively performed
using GeneTrail2, which provides a variety of different enrichment algorithms and biological

categories to test for (cf. Section 4.2).

5.2.3.5 Computation of most-deregulated subnetwork

In order to provide an even more in-depth view on the role of deregulated drug targets under
investigation, DTI also assesses the potential downstream effects of deregulated drug targets.
To this end, the KEGG regulatory signaling network is considered, whose nodes correspond to
genes/proteins and whose edges describe regulatory interactions between these genes/proteins
(cf. Section 3.2.2). The absolute values of the scores of differential expression, which were
computed by DTI in a previous step, are mapped onto the network nodes. Based on this
weighted network and a drug target under investigation, we calculate the connected subnetwork
of size k that (i) is rooted in the considered drug target and (ii) maximizes the sum over all
weights of the nodes, which corresponds to the connected subnetwork of size k with the highest
degree of deregulation (cf. Table A.11). Besides the most deregulated subnetwork, DTT also
provides the option to compute the most upregulated subgraph. In this case, the original scores
of differential expression are used instead of the transformed ones.
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We formulate this optimization problem as an extension of the Integer Linear Programming
formulation (ILP) proposed by Backes et al. [362], which is presented in detail in Section 3.3.3.3.
The ILP is solved using the Branch&Cut framework of CPLEX [550]. The degree of deregulation
(or upregulation) of these subnetworks is assumed to mirror the phenotypic effect of the
deregulated drug target and thus can help to judge the influence of its deregulation. In order to
assess the robustness of the subgraph analysis results, not a single subgraph is computed, but
a set of subgraphs with different sizes within a predefined range, which are used to generate a
consensus graph (see also Section 5.2.4.3). Moreover, in addition to analyses on the downstream
effects potentially induced by the drug target, DTI can also compute the most deregulated (or
upregulated) subgraph that is upstream of a drug target of interest. By this, aberrant genes or
mutations that might have induced the deregulation of the drug target itself can be elucidated.

5.2.4 Results visualization

After users have been guided through the data upload and scoring steps, they are forwarded
to DrugTargetInspector’s results page, which provides a prioritized list of deregulated drug
targets and which serves as a starting point for additional in-depth analyses. In the subsequent
sections, we will first describe DTT's results page in general (Section 5.2.4.1), followed by details
on enrichment results (Section 5.2.4.2), and the visualization of deregulated subgraphs and

genomic aberrations contained in the data set (Section 5.2.4.3).

5.2.4.1 Results page

Figure 5.2 shows DrugTargetInspector’s results page for an exemplary colon cancer data set,
which will be presented in detail in Section 5.3.2. The results page consists of two main
elements: the table of deregulated drug targets and a side panel, in which filtering options
and computation parameters can be set and from which additional analyses can be triggered.
The results table is fully searchable and sortable and provides a prioritized list of molecular
drug targets, decreasingly sorted by their score of differential expression. For each drug target
(Figure 5.2 A), the second column indicates whether or not the drug target is affected by a
mutation (Figure 5.2 B). Clicking on the blue ‘map’ icon will open a pop-up with additional
details on the contained mutation(s) and their potential effects on the target. The third column
contains the drug targets’ scores of differential expression, followed by a list of drugs that
target this gene/protein. A literature search in PubMed [551] for any combination of a drug
and the corresponding drug target can be performed by clicking on the ‘chevron’ icon in
the Drugs column (Figure 5.2 C). Next to the ‘chevron’ icon, there is a ‘link” icon, which
indicates whether or not pharmacogenomic interactions are known for the respective drug
(Figure 5.2 D). Additional detailed information on the displayed molecular targets and drugs
is available via links to respective database entries in NCBI Gene [270] and DrugBank [427].
Based on the subtype of cancer that is under investigation, standard-of-care drugs, as obtained
from the American Cancer Society [541], are highlighted in green (Figure 5.2 E). The last
column contains a ‘magnifying glass” icon, which links to a menu, from which enrichments
(cf. Section 5.2.3.4) and subgraph analyses (cf. Section 5.2.3.5) can be performed (Figure 5.2 F).
Finally, the side panel (Figure 5.2 G) contains numerous collapsible boxes. Clicking on a box
unfolds additional details and options, as well as parameter settings for the analyses. For
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Figure 5.2 DrugTargetinspector results page. The main panel contains the fable of deregulated drug targets,
their mutation status, scores of differential expression, and a list of drugs targeting the respective molecules. A)
Drug target. Details on the molecular drug target can be obtained by clicking on the target’s name, which
links to the respective entry in NCBI Gene. B) Mutation indicator. The ‘marker’ icon indicates whether (blue) or
not (gray) the sample contains a mutation that affects the target gene. In cases where a mutation is present,
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D) Pharmacogenomic dependencies. The 'link’ icon indicates whether (blue) or not (gray) pharmacogenomic
information for the respective drug is available. Clicking on a blue icon opens a pop-up containing additional
details on known pharmacogenomic effects for this drug. E) Standard-of-care drugs. Based on a list of standard-of-
care drugs for different subtypes of cancer by the American Cancer Society, drugs approved for the considered
cancer subtype are highlighted in green. F) Target-specific analyses. Drug-target specific analyses can be started
by clicking on the magnifying glass. G) Side panel. The collapsible side panel boxes contain help and settings for
the analyses. Clicking on a box unfolds its content. Please refer to Figure A.5 for an overview of the panel content.
H) Help indicator. Additional information on the content of the side panel boxes is provided when hovering over
the respective ‘question mark’ symbol.
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example, the Filter box contains various options to filter the results table for drugs with specific
pharmacological properties, e.g. to only display antineoplastic agents that act as inhibitors. For
an overview of the complete side panel content, please see Figure A.5. As additional help, we
provide descriptions of the respective modules when hovering over the ‘question mark” symbol
in each box (Figure 5.2 H).

5.2.4.2 Enrichment results

In order to get deeper insights into the regulatory context of a drug target under investigation,
we can perform Gene Set Enrichment Analysis within DTI, as described in Section 5.2.3.4. For
a given drug target, the analysis can be triggered when clicking on the respective Show KEGG
enrichment button (cf. Figure 5.2 F). The enrichment results are then displayed in an additional
module in the side panel, see Figure 5.3 B-D. In case of a significant enrichment or depletion,
the pathway is marked with a red or green arrow, respectively. A visualization of the respective
pathways on the KEGG website can be opened by clicking on the K(EGG) button. Details on
the enrichment can be investigated by clicking on the View enrichment results button (Figure 5.3
D and E).

5.2.4.3 Visudlization of deregulated subnetworks

In order to investigate the regulatory impact that a deregulated drug target might exert on
its downstream molecules, DTI provides functionality to compute the most deregulated (or
upregulated) subgraph rooted in a drug target of interest. Clicking on the magnifying glass
next to the respective drug target and then on the Compute subnetwork button (Figure 5.4 C) will
initiate the analysis. For a better assessment of the subgraph’s robustness, not a single subgraph,
but several subgraphs of predefined sizes are computed and combined into a consensus graph.
Several parameters, including the subgraph size range, can be set in the Subgraph analysis
side panel (Figure 5.4 B), the default range covers subgraphs of sizes three to 15. For the
visualization of the resulting subgraphs, we use BiNA, an open-source tool for visualization
and analysis of biological networks [514]. BiINA combines sophisticated drawings of biological
networks with intuitive mechanisms for navigating, zooming, and searching. DTI uses BiNA
Webstart to display the computed subgraphs as a consensus graph, which means that all nodes
and all edges contained in the respective subgraphs of different sizes are jointly displayed.
The consensus graph is arranged in a hierarchical layout, rooted in the drug target under
investigation, for an intuitive visualization of putative signal propagation paths (Figure 5.4 E).
Nodes are colored according to the deregulation score of the corresponding genes. Moreover,
the consensus graph can be interactively investigated and analyzed: users can step through the
subgraphs of different sizes to assess whether the graph is extended consistently, which indicates
arobustresult, or whether there is much variation in the subgraphs. Furthermore, the subgraphs
can be annotated with additional information, for example, to highlight mutations or known

drug targets (cf. Figure 5.6).
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Figure 5.3 Enrichment results in DrugTargetinspector.

A) Results page for exemplary blastema sample

WS1073TA3 (see Section 5.3.1). B-D) KEGG enrichment results for the drug fargets protfeasome 20S subunit beta
5 (PSMBS), DNA polymerase epsilon 2 (POLE2), and histone deacetylase 2 (HDAC?2). Red upwards pointing arrows
indicate a significant enrichment of the respective pathway in the ftumor, while green downwards pointing arrows
illustrate a significant depletion. E) Detailed view of the HDAC2 enrichment results in GeneTrail2, see Section 4.2.2
for an in-depth description of the functionality in this results view.
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5.3 Case studies

To illustrate the use of DrugTargetInspector, we present clinical case studies addressing three
different tumor entities and based on different types of omics data. In Section 5.3.1, we will
investigate gene expression profiles of Wilms tumors, Section 5.3.2 presents the results for an
integrated analysis of transcriptomics and genomics data in colon adenocarcinoma, and finally,
the analysis results for a proteomics data set of a lung adenocarcinoma will be presented in
Section 5.3.3.

5.3.1 Wilms tumors

Wilms tumors, also known as nephroblastomas, are childhood renal tumors (see also
Section 4.3.4.1). Although Wilms tumors have a survival rate of more than 90%, there are
subtypes associated with a high risk of relapse within the first two years after diagnosis. Wilms
tumors are classified into three risk groups: high, intermediate, and low risk according to their
risk of relapse. These risk groups are defined by different histologic phenotypes: The blastemal
subtype and diffuse anaplasia are considered as high-risk subtypes. The stromal, epithelial,
triphasic, regressive, and focal anaplasia subtypes are associated with an intermediate risk, and
the completely necrotic subtype shows the lowest risk [552]. Since the tumor biopsies considered
in this analysis stem from a European study, chemotherapy was applied before surgery and
tumor biopsy. As a standard regimen defined by the Société Internationale d’Oncologie
Pediatrique (SIOP) [553], these tumors were treated with a combination of the cytotoxic agents
actinomycin D, vincristine, and - in the case of metastases - also doxorubicin. Actinomycin D
binds to DNA and inhibits RNA synthesis. Vincristine binds to the microtubular proteins of
the mitotic spindle, leading to mitotic arrest or cell death. Doxorubicin is an anthracycline that
attacks DNA by several mechanisms: DNA intercalation, strand breakage, and topoisomerase II
inhibition. Adjuvant treatment after surgery might be required based on local tumor stage and
histological subtype. In the following, we consider Wilms tumor samples of several subtypes and
analyze their transcriptomic profiles to identify deregulated drug targets and altered biological
pathways that might inform the selection of adjuvant treatment options. For our analysis, we
used a gene expression data set of 37 Wilms tumor samples of different subtypes (cf. Table A.12).
Gene expression experiments were performed using Agilent microarrays and the raw data was
processed and normalized using GeneSpring GX [554]. We compared each tumor sample
against a set of four normal kidney samples and computed z-scores to assess differential gene
expression.

Figure 5.5 shows a heat map of significantly upregulated drug targets per tumor sample. Only
genes targetable by known antineoplastic agents are displayed (cf. Figure A.6 for a complete list
of deregulated drug targets). Several observations can be made in this heat map: First, there
is substantial heterogeneity, even in samples of the same histological subtype. Second, there
are numerous drug targets that are strongly upregulated in many Wilms tumor samples, for
example several members of matrix metallopeptidase family, most strikingly MMP16, oftentimes
in combination with MMP2 and MMP14. These matrix metalloproteases can all be targeted by
the broad spectrum matrix metalloprotease inhibitor marimastat, which might be an interesting
treatment option in these cases. Marimastat is an antimetastatic agent and also acts as an

angiogenesis inhibitor [427]. Comparing the different pathological subtypes, one can observe
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that blastema samples generally show higher levels of upregulation for a large number of drug
targets than samples of other subtypes. Most of the blastema samples show an over-expression
of DNA-methyltransferase 1 (DNMT1) and histone deacetylase 2 (HDAC?2). In several samples,
HDAC2 upregulation is accompanied by a strong overexpression of several members of the
proteasome subunits family (PSMB1, PSMB2, PSMB5, PSMD1, PSMD2). As exemplarily shown
for sample WS1073TA3 in Figure 5.3, in such cases, combination treatment with vorinostat
and bortezomib could be beneficial, which is also investigated in clinical studies [555]. The
phospholipase A2 group IVA (PLA2G4A), which is involved in inflammatory processes, also
shows significant upregulation in many blastema samples. Five of the samples (WS38T, WS953T,
WS991T, WS906T, WS919T) exhibit increased levels of RXRG, the retinoid X receptor gamma.
This is interesting in terms of elucidation of alternative treatment options, because RXRG can be
targeted by vitamin A derivatives such as all-trans retinoic acid (ATRA, tretinoin). Tretinoin acts
as cell proliferation inhibitor and differentiation inducer [556]. The positive effect of vitamin
A treatment in Wilms tumors has also been described in the literature: Zirn et al. [557] and
Wegert et al. [558] could observe a re-regulation of relapse-associated gene expression patterns
after treatment of cultured Wilms tumor cells with ATRA. Also other types of cancer showed to
be responsive, in particular acute promyelocytic leukemia [559]. Especially in tumors that are
resistant to conventional therapy, ATRA-induced growth inhibition might hence be used as an
alternative or additional therapeutic intervention.

5.3.2 Colon adenocarcinoma

In our second case study, we consider colon cancer, the most common type of gastrointestinal
cancer. Colon cancer is known to occur spontaneously, but also as a familial cancer [560].
Here, we analyze a data set of colon adenocarcinomas obtained from The Cancer Genome Atlas
(TCGA, cf. Section 3.2.3), which contains both gene expression measurements and information
on somatic mutations [298]. For the computation of deregulated drug targets, we compare
samples of tumor tissue against a set of nine healthy tissue controls and calculate z-scores to
estimate the changes in gene expression. The corresponding mutation data are converted from
the MAF file format to the VCF file format using the vcf2maf library [561]. In the following, we
focus on the sample TCGA-AA-3542. In addition to standard cytotoxic drugs, the European
Society for Medical Oncology (ESMO) [542] lists the targeted therapeutic agents bevacizumab,
regorafenib, cetuximab, and panitumumab as possible treatment options. Two of these drugs,
cetuximab and panitumumab, target the epidermal growth factor receptor (EGFR). However,
DTI reveals that EGFR is downregulated and additionally mutated, containing a missense
variant that is predicted by SIFT to have a deleterious effect (cf. Section 3.1.2.3). Moreover,
performing a deregulated-subgraph analysis for EGFR shows that most downstream molecules
of EGFR are also downregulated, indicating a loss of functionality in EGFR. Thus, treatment with
cetuximab and panitumumab might not only be ineffective, but could even cause unwanted side
effects.

Figure 5.6 shows that there is a strong over-expression of members of the RAS family, a family
of common oncogenes in colon cancer. Hence, in such a case, it might be more effective to add
bevacizumab to the regimen, which is also prioritized in DTI over regorafenib. Bevacizumab’s
molecular target, the vascular endothelial growth factor A (VEGFA), is slightly upregulated, not
mutated, and also an upstream molecule of the RAS family. However, DTI also lists other drug
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targets that are much stronger upregulated and that might provide alternative treatment options
with a putative higher efficacy, as for example members of the matrix metalloprotease family
or DNA polymerases, as depicted in Figure 5.6. A potential drug regimen targeting several of
these highly upregulated proteins could consist of cytarabine, marimastat, and cladribine. This
regimen could inhibit the upregulated DNA repair mechanisms (KEGG pathways Base excision
repair and Nucleotide excision repair enriched) that prevent the cells from undergoing apoptosis
and promote proliferation. Another approach could be the combination of drugs targeting
several distinct deregulated pathways in the tumor.

5.3.3 Lung adenocarcinoma

Lung cancer is the most common cause of cancer death, accounting for about 27% of all cancer
deaths [562]. In our third case study, we examine a data set of 18 paired samples of tumor
tissue and healthy lung tissue. Half of the tumor samples are adenocarcinoma, the other half
squamous cell lung cancer, both of which belong to the class of Non-Small Cell Lung Carcinoma
(NSCLC). For each of the samples, we used a Mass Spectrometry (MS)-based workflow to
investigate the sample proteomes, see Section 3.1.3 for a general overview. In contrast to
transcriptomics approaches, which use information about the mRNA content of a sample as a
proxy for the resulting protein expression, MS-based proteomics allows assessing the protein
content directly. Even though current technologies still can only cover relatively abundant
proteins, proteomics data offers some distinct advantages compared to transcriptomics data,
as the potentially non-linear relationship between mRNA content and protein concentration
can severely confound the interpretation of transcriptomics data. In addition, proteomics
approaches potentially can detect post-translational modifications that are not detectable in a
transcriptomics approach. Here, we used a combination of ion mobility separation with high-
performance liquid chromatography and mass spectrometry in a label-free approach, from
which we obtained concentrations of more than 3,000 proteins per sample. We computed scores
for each sample as the paired difference between protein concentrations in the tumor tissue and
the control. Thereby, missing values were set to zero. The resulting score files were uploaded
to DrugTargetInspector and the contained UniProt IDs were mapped to the HGNC symbols
of their encoding genes. As a specific example, we investigate the paired sample 718, which
contains a specimen of adenocarcinoma tumor tissue (77-09_718T_AdenoCal) and healthy
lung tissue from the same patient (77-160_718_L1). Figure 5.7 shows changes in concentration
levels for all measured proteins that can be targeted by antineoplastic agents. For NSCLC,
ESMO recommends the targeted treatment with EGFR inhibitors (e.g., erlotinib), angiogenesis
inhibitors targeting VEGFA (e.g., bevacizumab), and drugs targeting the anaplastic lymphoma
receptor tyrosine kinase (ALK), for example crizotinib [563]. As protein abundances for
VEGFA and ALK were below the detection threshold and hence not measured, we focus our
discussion on EGFR. As can be seen in Figure 5.7, the protein EGFR is highly abundant in the
tumor sample, while it is even below the detection threshold in the control, which makes it
an eligible target for inhibition. Additionally, the FMS-related tyrosine kinase 3 (FLT3), the 5-
aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC),
and the phosphoribosylglycinamide formyltransferase (GART) are potential drug targets of
interest, as for all of them the amount of the corresponding proteins is highly increased in
the tumor. For example, FLT3 can be targeted by the tyrosine kinase inhibitors sorafenib and
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sunitinib. ATIC and GART are both involved in the de novo purine biosynthetic pathway and
can be targeted by pemetrexed. In order to elaborately validate the putative drug targets, of
course, information on mutations contained in the tumor and potentially affecting drug targets
or important downstream key players would be of interest, as could be seen in the previous case

study.
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Figure 5.7 Changes in concentration levels for proteins targetable by antineoplastic agents (sample 718). The
heights of the single bars indicate absolute concentrations of the corresponding protfeins. Gray bars indicate
concentration levels in the control. The colored bars show the concentration levels in the tumor, red indicating an
increase in abundance, blue a decrease in abundance.

5.4 Discussion

We present DrugTargetInspector, an interactive tool for treatment stratification. DTI analyzes
genomics, transcriptomics, and proteomics data sets and provides information on deregulated
drug targets, enriched biological pathways, and deregulated subnetworks, as well as mutations
and their potential effects on putative drug targets and genes of interest. DTI sorts drug targets
based on their degree of upregulation. In order to identify relevant pathways, enrichment
analyses based on KEGG pathways can be performed. Using subgraph analyses, users can
further investigate which impact the deregulation of a drug target has on the deregulation of
other molecules downstream of the drug target in signaling cascades. If this is the case, inhibition
and re-regulation of the considered drug target might also positively affect the deregulated
downstream processes. DTI can complement the expression-based analyses with genomic
variation data: Uploaded VCF files are annotated using Ensembl’s Variant Effect Predictor in
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terms of genomic location and the potential effect on the encoded protein. This additional layer
of information can reveal drug targets to be inappropriate for treatment due to, for example,
missense mutations as could be seen in our case study on colon adenocarcinoma. As DTI
also considers which treatment options are recommended for a certain type of tumor, the tool
helps physicians to select the most promising drug or combination of drugs from this resource.
However, as DTI’s results are not restricted to standard-of-care drugs, other putative drugs
can be considered as well in cases where (i) there are no recommendations available, as in
high-risk Wilms tumor relapses, or (ii) the effectiveness of standard-of-care drugs is reduced
by mutations in the corresponding drug targets. In summary, DTI provides a platform for
the integrated analysis of various omics data sets that allows investigating the genomic and
transcriptomic properties of a tumor under consideration, which can support physicians in their
clinical treatment decision-making process, also elucidating treatment options that might be
neglected otherwise.

DrugTargetInspector has been well received by the scientific community and was awarded the
Scientific Excellence Award at the Future X Healthcare conference in 2017, as well as Landmark in the
Land of Ideas in 2018.






ClinOmicsTrail®®

Main parts of this chapter are published in L. Schneider, T. Kehl, K. Thedinga et al.
ClinOmicsTrailP®: a visual analytics tool for breast cancer treatment stratification. Bioinformat-
ics (2019). doi: 10.1093/bioinformatics/btz302. The ClinOmicsTrail®® web service was devel-
oped by myself and Tim Kehl. Hans-Peter Lenhof and | have conceptualized the visualizations
and the performed analyses, including the pathway activity measure. The data acquisition,
processing, and case studies were performed by me. The neoepitope prediction functionality
was developed by Benjamin Schubert and colleagues.

The use of companion diagnostics is more and more becoming an integral part of the
personalized treatment of cancer [564] (see also Section 2.3). One of the major successes in
this field is the assessment of the status of the human epidermal growth factor receptor 2
(HER2/neu, ERBB2), which is overexpressed or amplified in 25% of breast cancer patients.
In the HER2-positive case, patients are eligible for treatment with the monoclonal antibody
trastuzumab [109]. Still, less than 50% of HER2-positive breast cancers respond to trastuzumab
[565]. This observation underlines that the consideration of individual biomarkers does not
suffice to capture the complexity of cancer. While the use of gene panels as more comprehensive
means of tumor characterization is emerging (cf. Section 3.1.2.1), the sole consideration of
genomic aberrations only yields a one-dimensional picture of aberrant processes in tumor cells
and has been shown to be insufficient to predict treatment response [299, 536, 566]. In contrast,
a holistic view on the genomic and molecular dependencies in tumors that utilizes several types
of biological information, including (epi-)genomics, transcriptomics, and proteomics data has
the potential to lead to actionable and predictive models of cancer [98]. A holistic approach
should also encompass the identification and quantification of deregulated biological pathways,
as they are the mediators of cancer development and progression and can inform the selection
of specific pathway-targeting treatment options.

Considering the continually increasing volumes of quantitative (multi-)omics data on tumors
and the vast body of research elucidating molecular and pharmacogenomic dependencies in
cancer, clearly illustrates the need for clinical decision support systems. Clinical decision support
systems are designed to gather and integrate relevant information and they aim at improving
patient outcomes by enabling more confident clinical decisions at the point of care.

To this end, we have developed ClinOmicsTrailP®

, a comprehensive visual analytics tool for
breast cancer decision support that provides a holistic assessment of standard-of-care targeted
drugs, candidates for drug repositioning, and immunotherapeutic approaches. Our tool
analyzes and visualizes clinical markers and (epi-)genomics and transcriptomics data sets to

identify and evaluate the tumor’s main driver mutations, the tumor mutational burden, activity
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patterns of core cancer-relevant pathways, drug-specific biomarkers, the status of molecular
drug targets, and pharmacogenomic influences. For ClinOmicsTraﬂbC, we deliberately focused
on breast cancer for a proof-of-concept, as breast cancer is the second leading cause of cancer
death among women [486]. Moreover, breast tumors, even of the same histopathological
subtype, exhibit a high genotypic diversity that impedes therapy stratification and that hence
must be accounted for in the treatment decision-making process. Still, albeit ClinOmicsTrail>®
is optimized for the analysis of breast cancer data sets, the underlying analysis methods
and visualization techniques offered by our web service can also be used for the genetic
and molecular characterization of other tumor types by mainly exchanging the tumor-specific
underlying databases. In summary, ClinOmicsTrail is a powerful integrated visual analytics
tool for breast cancer research in general and therapy stratification in particular, assisting
oncologists in finding the best possible treatment options for their breast cancer patients
based on actionable, evidence-based results. ClinOmicsTrail®™® can be freely accessed at
https://clinomicstrail.bioinf.uni-sb.de.

In the following sections, we will first introduce the concept of molecular tumor boards
(Section 6.1), followed by a brief overview of breast cancer subtypes and statistics (Section 6.2).
Related approaches for (breast cancer) treatment stratification will be presented in Section 6.3.
ClinOmicsTrail*’s workflow and functionality is the topic of Section 6.4. How this functionality
can support the treatment decision-making process is then demonstrated using three case
studies (Section 6.5). Finally, we conclude this chapter with a general discussion of our
approach in Section 6.6.

6.1 Molecular tumor boards

The challenges of personalized treatment selection for oncology patients have led to the
implementation of Molecular Tumor Boards (MTBs) in most cancer centers. MTBs are an
extension of traditional multidisciplinary tumor boards in which a group of medical experts,
including medical oncologists, surgeons, radiologists, pathologists, and other specialists, decide
on the best treatment options for their cancer patients. In addition to the clinical data and
treatment history of the patient, MTBs also consider genetic and molecular aberrations contained
in the tumor [567]. Typically, molecular tumor boards consider consenting patients who are
(i) progressive on all conventional treatment options [568-570] or (ii) who have rare cancers,
for which only a few treatments exist [571-573]. Tumor biopsies with a high-enough tumor
content (typically > 20%) are analyzed using cancer-specific gene panels, such as those offered
by Foundation Medicine [574] or CeGaT [575], sometimes even whole-exome sequencing
is conducted [576]. Additional measurements such as transcriptome [571], copy number
alterations [119], or the methylome [577] are included occasionally. In addition to potential
difficulties in obtaining a tumor biopsy and sufficient quantities of tumor DNA (or RNA) for
molecular profiling, the interpretation of the clinical significance of genomic and transcriptomic
aberrations is a challenging task [578]. Hence, bioinformatics-driven clinical decision support
systems are required to analyze the high-dimensional data sets and to present the treatment-
relevant findings in a clear and concise manner to form the basis for the MTB to decide on the
treatment of a patient.
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6.2 Breast cancer

Breast cancer is the most common type of cancer and the second leading cause of cancer death

among women [486] (cf. Figure 6.1).
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Figure 6.1 Female cancer statistics. A) Proportion of newly diagnosed female cancer patients by main primary
site for a total of 277,940 cases in Germany, 2018 [579]. B) Incidence rate for breast cancer in women assuming a
lifespan of 80 years [680]. C) Data obtained from [681]. The pink ribbon symbol was obtained from [15].

Breast cancer has long been established as a cancer type with several clinically relevant subtypes,
which have been identified using both classical immunohistochemistry and gene expression
profiling. There are four main molecular subtypes of breast cancer that differ in the composition
of relevant receptors and their respective growth rates, but also in their gene expression patterns
[490, 582, 583]: (i) breast cancers of type Luminal A are hormone receptor-positive (i.e., they
express the estrogen receptor and/or the progesterone receptor), HER2-negative, grow rather
slowly, and have the best prognosis. (ii) Luminal B subtypes are hormone receptor-positive,
might be HER2-positive, and are slightly more aggressive than the Luminal A subtype. (iii)
HER?2-enriched tumors are HER2-positive and hormone receptor-negative. The final subtype,
(iv) Basal-like or Triple-negative, is the most aggressive one. Its hormone receptor status is
negative and HER?2 is not amplified. Figure 6.2 provides an overview of this classification
scheme.

The different subtypes show major differences in terms of their incidence, prognosis, and
treatment sensitivity [584-586]. Therapeutic approaches to breast cancer include surgery,
radiation, and systemic therapy. As the current standard of care, treatment options are
typically selected based on a few clinical markers like cancer stage, the presence or absence
of hormone receptors, HER2/neu amplification, and the menopausal status of the patient
[586, 587]. For the treatment of hormone-dependent (i.e., hormone receptor-positive) breast
cancers, endocrine therapy is an integral treatment element [588]. Here, typically the estrogen
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Figure 6.2 Breast cancer subtypes. Classification of breast tumor samples into molecular subtypes (in blue)
based on the presence (‘positive’) or absence (‘negative’) of the hormone receptors ER and PR (first layer), the
overexpression or amplification status of HER2 (second layer) and the tumors growth rates as determined by Ki-67
staining (third layer). ER: estrogen receptor, HER2: human epidermal growth factor receptor 2, PR: progesterone
receptor.

receptor inhibitor tamoxifen and, for postmenopausal women, aromatase inhibitors (e.g.,
exemestane and anastrozole) are used [589]. In the case of HER2-positive breast cancer, there are
several targeted drugs available that specifically bind to ERBB2 (HER2/neu) (e.g., trastuzumab,
pertuzumab) or to several members of the ERBB family (e.g., lapatinib, neratinib) to prevent
dimerization and hence growth signal propagation [590]. In contrast to hormone receptor-
and/or HER2-positive breast cancers, the standard of care currently does not provide any
targeted treatment options for triple-negative breast cancers, which constitute 10%-20% of all
breast cancers [591]. For this aggressive tumor type, the molecular characterization of targetable
oncogenic drivers might be especially beneficial [592].

Moreover, studies have shown that differences in the response to treatment, even in patients with
the same subtype of breast cancer, correlate with differences in gene expression patterns among
these patients, illustrating the urgent need to treat breast cancer with a personalized approach
[593].

6.3 Related work

Several tools and web services have been designed to support the breast cancer treatment
decision-making process. For example, the web service Adjuvant!Online [594] allows estimating
relapse-free and overall survival for women with early breast cancer when treated with adjuvant
endocrine therapy or chemotherapy. To this end, clinical parameters like the patient’s age
at diagnosis and a selection of tumor characteristics like tumor size, grade, and its hormone
receptor status are considered. Similarly, the PREDICT web service [595] also provides adjuvant
treatment decision support, but additionally considers the HER?2 status of the patient. The
analysis results in a statistic on the observed relative benefit of four treatment regimens versus
no adjuvant treatment in a group of patients with comparable tumor markers. Based on similar

clinical input data, CancerMath [596] provides a set of tools to predict life expectancy and to
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estimate treatment benefits for various hormonal and chemotherapeutic agents. However, all
tools and predictions listed above are solely based on a rather small set of clinical markers, which
do not capture the complexity of a tumor [597]. As breast cancer is known for strongly disparate
treatment responses, even in patients with common histopathological features [584, 598], it
is of utmost importance to additionally consider the tumor’s genetic and phenotypic makeup.
With the continuous development of biotechnological high-throughput methods, high quality
genetic and molecular profiling of tumors has become available at relatively low cost, supporting
clinicians in diagnosis, prognosis, and treatment selection. For the clinical assessment of a given
breast tumor, nowadays various molecular assays can be used, for example Oncotype DX [106]
or MammaPrint [107], which are medium-sized (21 to 70 markers) prognostic gene expression
assays that assess the risk for relapse and metastasis. Based on these predictions, the benefit of
adjuvant chemotherapy can be determined. Another commonly used multigene signature is the
PAMB50 classifier, which predicts the molecular subtype of breast cancer samples based on the
expression of a set of 50 genes [599]. However, these approaches do not assess the suitability of
specific drugs. RecurrenceOnline [600] is an online analysis tool that utilizes microarray-based
gene expression data to predict response to hormonal and targeted therapy as well as the risk
of recurrence for a given tumor sample. Still, these tests do not consider the effect of mutations
that might drive the disease or cause resistance to certain drugs.

Accounting for the influence of mutations on treatment response, there are also several
companies (e.g., CeGaT [575] or Foundation Medicine [574]) that commercially offer clinical
decision support based on next-generation sequencing and proprietary genomic profiling
assays. The provided reports contain information on pathogenic mutations with known
pharmacogenomic effects on cancer drugs. While this information is already very valuable, the
underlying analyses only focus on the investigation of genomic aberrations, neglecting all other
layers of cellular regulation and disease manifestation.

In order to obtain a more holistic picture of aberrant processes in tumors, we have developed
DrugTargetInspector (see Chapter 5), an interactive assistance tool for the investigation of
differentially expressed or mutated molecular targets of known drugs. Based on this, approved
drugs for different cancer types and putative drug repositioning candidates can be assessed.
Especially the aspect of considering aberrant pathways to identify biomarkers and to inform
treatment decision-making has been well adopted in the research community: Alcaraz et al.
have developed PathClass [601], a web service that predicts molecular subtypes of breast cancer
samples based on gene expression data and using different methods including PAMS50 [599],
SCMGENE [602], SCMOD1/2 [603, 604], and KeyPathwayMiner [605] (cf. Section 3.3.3.3).
Similarly, Lee et al. use the metagene-based method of COndition-Responsive Genes (CORGs, cf.
Section 3.3.3.2) on differentially expressed genes, copy number variations, and miRNA target
genes to predict molecular subtypes of breast cancer using k-means clustering [606]. For the
identification of drug repositioning candidates for the treatment of breast cancer, Mejia-Pedroza
et al. derive pathway activities from Pathifier (cf. Section 3.3.3.2) to identify pathway-based
subtypes potentially susceptible to treatment with drugs targeting these aberrant pathways
[607].

In order to translate multi-omics, holistic analyses of tumor samples into clinical practice,
clinical markers have to be analyzed jointly with large and complex omics data sets. This,

in turn, requires easy-to-use bioinformatics tools able to integrate different molecular and
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clinical data sets and to extract the most relevant information. On top of this, the determined
tumor characteristics have to be evaluated with respect to a comprehensive body of medical,
pharmacological, and biological knowledge to gain actionable insights from the data. The
obtained results finally have to be presented in a concise manner that facilitates interpretation.
Here, we present ClinOmicsTraile, an interactive visual analytics tool for breast cancer treatment
stratification. ClinOmicsTrail>® offers rich functionality for the integration and analysis of
clinical markers as well as transcriptomics and (epi-)genomics data sets with respect to a
broad spectrum of biological, pharmacological, and medical knowledge. Our tool provides
a comprehensive assessment of a variety of treatment options based on the tumor’s main
driver mutations, the overall tumor mutational burden, activity patterns of core breast cancer-
relevant pathways, drug-specific predictive biomarkers, the status of molecular drug targets and
pharmacogenomic implications. Table 6.1 shows how ClinOmicsTrail®® excels with respect to
breadth and depth of analyses compared to related approaches.
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[608] v * * * iy x
PREDICT
[595] v v (v) % x v x x x x
CancerMath
[596] (v) v  (v) % x v % x x x
Oncotype DX v " (v) % x v x x v X
[106]
MammaPrint
v . v
[107] x x x * * * )
DrugTargetinspector x x v v x x v x v v
[609]
CeGal
[575] x x  (v) x v x v x x X
FoundationOne CDx x x v v v X v x b X
[574]
. : sbc
ClinOmicsTrail x x v v v v v v v v

[610]

Table 6.1 Comparison of different tools for clinical breast cancer decision support. The tools are assessed in terms
of their considered input data types, the performed analyses / predictions, and the presentation of the results. The
green checkmark indicates that a certain feature is given, the blue checkmark in parentheses stands for a limited
extent to which a feature is provided / considered, and the red cross means that the considered feature is not
provided.

6.4 Workflow and functionality

ClinOmicsTrail guides breast cancer therapy selection by evaluating available therapeutic
regimens in the context of the individual molecular tumor characteristics. To this end,
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ClinOmicsTrail*® analyzes and integrates clinical, genomics, and transcriptomics data. These
tumor characteristics are then combined with a priori knowledge from clinical practice guidelines
as well as from various medical, pharmacological, and biological databases to assess therapy
options, both on-label and off-label. ClinOmicsTrail> reports these results in an intuitive and
interactive manner, highlighting characteristics that might support or contraindicate the use of
specific therapy options. These characteristics include a variety of relevant factors for treatment
success (e.g., biomarkers, molecular drug targets, and drug metabolism) as well as breast cancer-
driving pathways. Figure 6.3 gives an overview of the ClinOmicsTrail>® workflow, covering all
steps from sample data input, over preprocessing and analysis steps, to the visualization of the
results. The respective workflow components will be described in more detail in the following

sections.
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Figure 6.3 Overview of ClinOmicsTrail®® workflow. The box border colors correspond to the type of data used in
the corresponding step or analysis. Orange: clinical data, blue: gene expression data, purple: methylation data,
red: mutation data, green: copy number alterations. The pink border color in the last column stands for results and
potential analysis endpoints. Infegrated databases are indicated by a database icon, third party fools by a gear
wheel, and molecular data sets by the double-helix symbol. COSMIC: Catalogue Of Somatic Mutations In Cancer,
DB: DrugBank, DREAM7: Dialogue for Reverse Engineering Assessments and Methods — drug sensitivity prediction
challenge, DTI: DrugTargetinspector, GDSC1000: Genomics of Drug Sensitivity in Cancer, GO: Gene Ontfology, GT2:
GeneTrail2, HGNC: HUGO Gene Nomenclature Committee, INtfOGen: Integrative Onco Genomics, KEGG: Kyoto
Encyclopedia of Genes and Genomes, MDANderson: MD Anderson Cancer Center, TCGA: The Cancer Genome
Aflas, TID: Therapeutic Target Database, VEP: Variant Effect Predictor. The displayed icons were obtained from
[15].

6.4.1 Tumor-specific input data and preprocessing

ClinOmicsTrail*® allows the user to integrate clinical data of the tumor under investigation with

its (epi-)genetic alterations and gene expression measurements (cf. Figure 6.3, first and second



112 6 CLINOMICSTRAILBC

column). Details on the considered types of input data and their relevance for the treatment
decision-making process will be provided in the following sections.

6.4.1.1 Clinical data

ClinOmicsTrail*® analyzes the status of several standard clinical markers for breast cancer
diagnosis and treatment. Firstly, the status of the estrogen receptor (ER) and the progesterone
receptor (PR) are considered as they play a crucial role in breast cancer development and
progression. Their presence or lack — in combination with the menopausal status of the patient
— informs the eligibility of several types of drugs, including aromatase inhibitors and estrogen
receptor-targeting drugs. Another critical biomarker to be considered is the status of HER2 [611].
An overrepresentation of this receptor on tumor cells makes them sensitive to treatment with,
for example, antibody-based inhibitors like trastuzumab or pertuzumab. Also, information on
tumor growth (Ki-67 staining, s-phase fraction), the histopathological subtype, tumor size and
grade, lymph node and metastasis status, as well as clinical metadata like a patient ID, the origin
of the sample (primary tumor vs. metastasis), the fraction of tumor tissue in the sample, and
the date of biopsy can be provided to ClinOmicsTrail®.

6.4.1.2 Molecular and genetic data

Besides the clinical biomarkers, various types of molecular data, covering several layers of
genomic and transcriptomic regulation, can be processed and investigated.

Based on gene expression measurements of a tumor sample and a matched control,
ClinOmicsTrail®® computes for each gene a score mirroring its differential gene expression.
These scores are used - amongst others - to estimate the activity of breast cancer-relevant
signaling pathways (cf. Section 6.4.2). Gene expression data can be provided as a whitespace-
delimited score file or gene expression matrix. For the latter, a single sample of interest has to
be selected as well as one or several non-tumor control samples. Based on the selection, either a
log fold change or a z-score is computed to assess differential gene expression.

For the analysis of genetic variations, ClinOmicsTrail>®

requires (whole genome or exome)
mutation data of the tumor sample and a (e.g., blood-derived) control to identify somatic
and germline mutations. These will be used for the identification and prioritization of
driver mutations, the assessment of pharmacogenomic effects, and the computation of tumor
mutational burden (cf. Section 6.4.2). Mutation data can be uploaded to ClinOmicsTrail>®
in Variant Call Format (VCF, cf. Section A.1.4). Ideally, the provided VCF file should
contain information on the tumor sample and a matched control as to clearly differentiate
between somatic and germline mutations. In cases where only a tumor sample is provided,
ClinOmicsTrail>® estimates, based on allele frequency, whether a mutation is likely to be
germline or somatic. In order to assess the impact of protein-coding mutations on the disease
phenotype, all mutations are annotated with their effects on the corresponding proteins (e.g.,
missense variant, stop gain, frameshift) using Ensembl’s Variant Effect Predictor (VEP) [220].
Additionally, the contained mutations are cross-referenced with dbSNP [226] and COSMIC
[612] for further details on the potential functional impact of the mutation.

As altered copy numbers are believed to account for up to 85% of dysregulated gene expression
in breast cancers [613], ClinOmicsTrail® also considers this type of data for the identification
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of driver genes and the holistic assessment of altered processes in the tumor. Copy number
alterations can be uploaded in segmented data file format (SEG, cf. Section A.1.6) as log-ratios
of tumor copy numbers in relation to normal copy number levels. The copy number alterations
of the contained genomic regions are mapped to genes using the reference genomes GRCh37/38
[398] and gene annotations from Gencode [399].

Besides the aforementioned genomic aberrations, also epigenomic changes (e.g., differential
methylation of promotors) can contribute to tumor initiation and progression. Breast cancer is
typically characterized by a combination of global hypomethylation and local hypermethylation,
where the latter is likely to silence growth-regulatory genes [614]. Methylation data can be
provided to ClinOmicsTrail® as white-space separated files that contain methylation scores (e.g.,
beta values of promoter methylation) per gene identifier.

For all omics data types, we support all commonly used identifier types, including HGNC gene
symbols [272], NCBI EntrezGene IDs [270], and UniProt identifiers [274]. The identifiers used
in the provided omics data sets are unified in an automatic identifier mapping step for seamless
integration in the following analyses.

Since in a clinical setting not all of the described clinical, genomics, and transcriptomics data
might be available, ClinOmicsTrail>® only requires the user to provide gene expression data.
However, the more types of omics data are available, the better ClinOmicsTrail>® can reveal its
full potential, providing additional analyses and a more comprehensive assessment of tumor
characteristics. A summary of all uploaded data sets and the provided clinical information is
given on the results page for further reference.

6.4.2 |dentification of tumor characteristics

Based on the various types of clinical and molecular data described in Section 6.4.1,
ClinOmicsTrail>® performs a variety of integrated analyses (cf. Figure 6.3, third column) with a
focus on breast cancer-relevant driver genes and signaling pathways.

In a first step, ClinOmicsTrail>® identifies tumor-driving (epi-)genomic aberrations, including
mutations, copy number variations, and DNA methylation (Section 6.4.2.1). As these
alterations also manifest in the activities of signaling cascades, we compute pathway activities
for a set of 20 core cancer-associated pathways based on the differential gene expression
of the involved genes (Section 6.4.2.2). Finally, based on the complete expression profile,
ClinOmicsTrail*® provides a clustering with respect to more than 500 breast cancer profiles from
TCGA that allows to assess the tumor’s intrinsic subtype (Section 6.4.2.3).

6.4.2.1 Identification of tumor-driving (epi-)genomic aberrations

Tumors can potentially contain a plethora of mutations that are usually divided into driver
and passenger mutations based on their impact on disease development. Driver mutations
are thereby defined as those that confer a selective growth advantage to the cell [615]. Genes
commonly affected by driver mutations in breast cancer are, e.g., TP53 (mutated in 33% of cases)
[616], PIK3CA (30%) [617], or GATA3 (9%) [618]. For the identification and prioritization of
tumor-specific driver genes, ClinOmicsTrail® uses the IntOGen database [619], which identifies
driver genes based on their predicted role in tumorigenesis and mutation frequency in large

tumor cohorts. ClinOmicsTrail’® provides a prioritized list (sorted by frequency in breast cancer)
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of putative driver genes contained in the tumor. For each of these driver genes, details about
the contained mutations and their potential impact on the protein, as well as copy number and
gene expression scores are shown. The Mutation status column contains color-coded symbols
indicating the predicted severity of a mutation. Clicking on the corresponding symbol opens
additional details on the contained mutation(s), including links to COSMIC and dbSNP for
known variants. Additionally, the prioritized table can be extended by the remaining mutations
for a complete assessment of the tumor’s genetic aberrations.

Mutations contained in a tumor may not only alter the functioning of the corresponding proteins
and affect pathway activities, but they can also modulate a tumor’s response to drugs with
respect to efficacy and toxicity [620]. A prominent example of a pharmacogenomic effect is
the treatment of colon cancer with cetuximab that becomes ineffective in the presence of an
activating mutation in the kirsten rat sarcoma viral oncogene homolog (KRAS) [8]. Besides
somatic mutations, also germline alterations can affect drug sensitivity. Many anticancer drugs
need to be metabolized into their active forms by enzymes in the liver. The estrogen receptor-
targeting drug tamoxifen, for example, requires cytochrome P450 2D6 (CYP2D6) for activation.
However, in cases where the enzymatic activity of CYP2D6 is restricted by a mutation or
its expression is reduced by a chromosomal deletion, a treatment with tamoxifen may be
ineffective [621]. In order to account for such pharmacogenomic effects, ClinOmicsTrail>®
investigates the genomic and transcriptomic state of relevant drug-processing enzymes and
resistance-promoting factors to evaluate the applicability of drugs or the potentially required
adaption in dosage for the considered case (cf. Section 6.4.3). Additionally, for a given mutation,
ClinOmicsTrail*® displays the putative impact of this mutation on a variety of drugs as predicted
by the Genomics of Drug Sensitivity in Cancer (GDSC1000) database [533].

6.4.2.2 Assessment of pathway activities

Tumors are driven by the aberrant activity of key signaling pathways that, e.g., promote tumor
growth or hinder apoptosis [622]. Identifying the involved pathways and quantifying their
deregulation is a major step towards the understanding of the underlying malignancy processes.
In order to obtain an overview of altered processes in a breast tumor, we consider pathway
activities of a set of 20 core breast cancer-relevant pathways [623-625]. These activity patterns
can, in turn, be used to assess characteristics of tumor subtypes and to inform a treatment
decision. For example, tumors with specifically high activities in PIK-FAKT-mTOR signaling
could potentially profit from treatment with an AKT inhibitor (e.g., ipatasertib [626] ) or an
mTOR inhibitor (e.g., everolimus [627]).

Computation of pathway activities: ClinOmicsTrail offers functionality to assess pathway
activities for a set of 20 core breast cancer-relevant pathways. We compute the activity of a
pathway i based on the deregulation scores of the pathway genes I';, weighted by their relevance
w; for the respective pathway’s activity. Algorithm 6.1 provides an overview of the computation
in pseudocode. As different databases provide different gene sets for the respective pathways,
we merge the corresponding gene sets from KEGG [282], GO [424], Reactome [283], and
WikiPathways [628] to obtain a more comprehensive set of genes as the basis for the pathway
activity computation (cf. Section A.8.1.1).
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We hypothesize that targeted drugs are especially effective in cases where their target pathway
is highly active and alternative cancer-driving pathways are not. We take advantage of the
assumed relationship between a pathway’s activity and a corresponding drug’s efficacy to
compute the weights w;. To this end, we consider all 49 breast cancer cell lines from the
Genomics of Drug Sensitivity in Cancer (GDSC1000) database and their sensitivities for a
large panel of drugs targeting various pathways [533]. The authors provided drug sensitivity
scores as IC50 values, i.e. the log-transformed concentration of an inhibitor that decreases the
biotransformation rate of its target’s substrates by 50%. For a given pathway of interest i, we
select the set D; of drugs from GDSC1000 that target this pathway. For each of those drugs
dij € D;, we compute Pearson’s correlation between the drug’s IC50 values and the gene
expression measurements across cell lines. For each of those correlation coefficients cj;, we also
compute a p-value assessing the significance of its deviation from zero (pj;). As we assume
that pathway-activating genes have a negative correlation with IC50, we switch the sign of cjx
by multiplying with —1 to make the final scores more intuitive. This results in two matrices
of dimensions I; x m; each, where [; corresponds to the size of the gene set I'; and m; to the
size of the drug set D;. The matrices are transformed as follows: the correlation coefficients
are z-transformed per drug and then averaged cross drugs yielding a list of correlation-based
scores per pathway ¢;. The p-values are aggregated across drugs using Fisher’s method [300].
The aggregated p-values are then -log10-transformed to obtain scores per pathway and gene p;".
The larger the score pj for a gene k, the more relevant it is as an indicator for the pathway’s
activity. As the scores in p; are all positive, we recover the direction of the gene’s effect, i.e.
whether it acts as an activator or repressor of the pathway, from the sign of the corresponding
correlation-based score ¢jx. The final weights w; are computed using the Hadamard product
[629]: w; = sgn(&;) © p;.

The pathway activity ¢;(t) for a tumor sample t and a pathway i is computed as ¢;(t) = w; - t;,
where t; contains the deregulation scores for the subset of genes in the gene set I';. Pathway

activities per pathway are finally embedded into a range between 0 and 1.

In order to assess the significance of computed pathway activities for a sample under
investigation, empirical p-values can be derived from permutation testing. Based on a user-
defined number of permutations, the scores of differential gene expression are randomly
permuted and the corresponding pathway activities are re-computed. One-sided p-values for
the sample’s (actual) pathway activities are computed relative to the mean of the empirical
background distribution, where a right-sided p-value is computed if the sample’s pathway
activity for a specific pathway is larger than the mean of the background distribution and a
left-sided p-value if it is smaller. In a last step, the derived p-values are adjusted for multiple

hypothesis testing using the Benjamini-Hochberg method [310].
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Input: Normalized gene expression matrix E € R"*? for n cell lines and p genes,

matrix § € R"*¢ of IC50 drug sensitivites for n cell lines and d drugs, lists
of genes belonging to each of the 20 considered pathways i:

[; = {gi1, - i, }, lists for drugs targeting each of the 20 considered
pathways i: D; = {d;y, ..., d;y, }, normalized gene expression vector t € R?

for tumor sample under investigation

Output: Pathway activities ¢;(t) for each of the 20 considered pathways i in

tumor sample t

foreach pathway i in {1,...,20} do

E; < E[;gi1, -, &i1;] //Subset columns of E for pathway genes T’;
S;i < S[;dj1, ..., dim,| //Subset columns of S for pathway-targeting drugs D;
C; < matrix(nrow=/;, ncol=m;) //Matrices to store correlation values
P; < matrix(nrow=I[;, ncol=m;) //and corresponding p-values
forjin{1,..,1;} do
forkin {1,..,m;} do
(cjk, pjk) < computeCorrelationAndPvalue(E;[; g;;],Si[; dix])
Cilj;k] = —1-c
Pi[jik] < pjx
end

end

//Column-wise z-transform C; into C;
C; « matrix(nrow=I;, ncol=m;)
forjin{1,..1;} do

forkin {1,..,m;} do

| &pn < Slsn

end
end
¢; + takeRowAverages(C;) //Take row-wise average
pi < aggregateRowPvaluesUsingFisher(P;)//Row-wise aggregation
p; < —1-logy,(pi)
w;  sgn(&;) © p;

t; < t[gi1, ..., gi1;] //Subset expression vector t for pathway genes T';

$i(t) < wi -t
$i(t) < normalizeToRangeFrom0Tol (¢;(t))

end

Algorithm 6.1  Pseudocode for computation of pathway activities. = Computation of pathway activities for
20 breast cancer-releveant pathways and a fumor sample t. The input data E, S, and D; are derived from
GDSC1000 [533]. The variables ;. and oy stand for the sample mean and sample variance of the k-th column
in C;, respectively. P-value aggregation is performed using Fisher’'s method [300]. The symbol *®’ indicates the
Hadamard product of compontent-wise vector multiplication [629].
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The computed pathway activities are displayed in a radar chart, where each radar axis represents
the activity of a pathway (cf. Figure 6.4). As a reference, the pathway activity patterns of
more than 500 primary tumor samples from the TCGA breast cancer cohort and 45 breast
cancer cell lines [299] can be interactively added to the plot by clicking on the corresponding
sample’s checkbox (cf. right panel in Figure 6.4). The reference samples are sorted in decreasing
order of similarity to the sample under consideration. The similarity is assessed based on the
mean-squared distance of corresponding pathway activity scores. Clicking on the sample name
yields information on clinical markers and in the case of cell lines additionally details on drug
sensitivities and growth rates (cf. Figure A.17).
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Figure 6.4 Radar chart of pathway activities in ClinOmicsTrail®®. The pathway activities of a set of 20 core
breast cancer pathways for the user-provided tumor sample (TCGA-AN-AOXN, Section 6.5.1) are colored in
blue. Reference samples from TCGA as well as breast cancer cell lines can be added to the visualization
interactively. Here, the triple-negative TCGA-BH-A18G (in green) shows a similar activity pattern to the sample
under investigation. The molecular subtype of the respective reference samples is color-coded in the side panel
on the right: basal-like - red, luminal A - yellow, luminal B — orange.

6.4.2.3 Clustering

There are four main molecular subtypes of breast cancer (cf. Section 6.2) that differ in the
composition of relevant receptors and their respective growth rates, but also in their gene
expression patterns [490]. In order to investigate a sample’s intrinsic subtype, we compute
a clustering of the sample under investigation in comparison to more than 500 breast tumor
samples obtained from TCGA [630]. To this end, we use the classic Principal Component
Analysis (PCA) [631] as well as t-distributed Stochastic Neighbor Embedding (t-SNE) [632],
a non-linear dimension reduction technique that captures the similarity of samples in a two-
dimensional space. In the resulting visualization, TCGA’s samples are color-coded according
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to their molecular subtypes [298] (cf. Figure 6.5). The location of the uploaded sample within
this visualization describes its molecular similarity to the TCGA samples and can hence provide
additional evidence for its subtype.
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Figure 6.5 T-SNE clustering in ClinOmicsTrail®®. An uploaded tumor gene expression sample (TCGA-AN-AOXN,
Section 6.5.1) is clustered along with primary breast fumor samples from TCGA. The molecular subtypes of the
TCGA samples are color-coded as indicated by the legend in the lower right corner. The tumor sample under
investigation is indicated by the blue diamond-shaped symbol.

6.4.3 Decision support functionality

Based on the analyses described in Section 6.4.2, key tumor characteristics as well as the
suitability of various types of drugs, both on-label and off-label, can be investigated (cf.
Figure 6.3, fourth column). As a starting point, ClinOmicsTrail®® provides a characterization of
the given tumor regarding its specific genomic and transcriptomic alterations and their impact on
affected signaling pathways (Section 6.4.3.1). The tumor under consideration is also analyzed
with respect to its similarity to other tumors, allowing to classify the tumor subtype not just
on the provided receptor status, but also based on its transcriptomic profile. ClinOmicsTrail>®
assesses a set of standard-of-care breast cancer drugs with respect to a variety of relevant
factors, such as the status of the molecular drug targets, drug-processing enzymes, transporters,
and involved pathways (Section 6.4.3.2). Also, putative candidates for drug repositioning
are indicated and can be further investigated. ~Additionally, the potential suitability of
immunotherapies is determined with respect to neoepitope vaccines and checkpoint inhibitors
(Section 6.4.3.3). Finally, ClinOmicsTrail? performs a first assessment of the eligibility to
participate in clinical trials (Section 6.4.3.4).
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6.4.3.1 Overview of specific tumor characteristics

In order for the user to obtain a comprehensive overview of a tumor’s specific characteristics,
ClinOmicsTrail>® provides an interactive visualization of selected driver genes and signaling
processes within the tumor in the form of a sunburst chart (cf. Figure 6.6). Relevant signaling
pathways and representative genes are displayed in a circular manner. The innermost ring
represents cancer-relevant pathways. Each segment (i.e., pathway) is colored by its inferred
pathway activity, as described in Section 6.4.2. Clicking on a pathway of interest zooms into
this pathway for a focused representation of the data.

Depending on the types of provided omics data, up to seven additional rings are displayed: in
the most comprehensive case the rings indicate (from inside out) sample-specific measurements
of (1) differential gene expression, (2) (differential) methylation scores, (3) copy number
alterations, (4) genomic mutations, (5) the corresponding gene’s name, (6) indicators on
whether the gene is an oncogene or a tumor suppressor, as well as its (7) druggability status.
Somatic mutations are color-coded by the predicted type of mutation (e.g., missense, frameshift,
stop loss). Here, we use the definition of oncogenes and tumor suppressor genes as proposed by
Sanchez-Vegaet al. inarecent publication [633]: Oncogenes are defined as those genes for which
activating mutations (or other upregulating alterations) lead to an activation of their associated
pathways. Analogously, tumor suppressor genes are defined as those genes for which inhibiting
mutations (or other downregulating alterations) contribute to the pathways’ activations.

The sunburst chart is also connected to other third-party resources allowing for a detailed
investigation of specific genes or pathways. For example, clicking on a gene’s name opens details
from NCBI Gene [270]. Additional details on the specific mutation, as well as various scores
indicating its severity (SIFT [221] and PolyPhen [634]), and links to external databases (dbSNP
[226] and COSMIC [612]) can be obtained by clicking on a mutation of interest. Also, known
pharmacogenomic relationships for the contained mutation are displayed.

This interactive overview visualization is fully searchable, zoomable, and extendable. Searching
for a gene or pathway of interest will highlight the respective section in the plot. If one or several
gene(s) of interest are not yet contained in the sunburst chart, these can be interactively added
to the visualization via entering the gene’s name into the search field mentioned earlier. The
respective entries will be appended to the chart in a user-defined category.

6.4.3.2 Assessment of targeted therapies

When faced with the decision of which breast cancer drug(s) to prescribe a patient, clinicians
typically assess a variety of clinical markers such as hormone receptors or menopausal status.
Based on the provided multi-omics tumor data, ClinOmicsTrail>® provides additional insights
by considering several classes of genes, proteins, and pathways that might promote or hinder
the effectiveness of a drug. For a set of 17 FDA-approved, standard-of-care breast cancer
drugs (cf. Figure 6.7), ClinOmicsTrail>® assesses the genomic and transcriptomic status of
respective molecular drug targets, drug-processing enzymes, resistance-promoting factors, and
associated pathways. Relevant factors to consider were obtained from DrugBank [427], the
Therapeutic Target Database [635], and the literature. Since the respective categories reflect
different mechanisms that might (de)sensitize a tumor with regard to the considered drug,
different clinical, genomic, and transcriptomic traits have to be considered in each case. For
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Figure 6.6 Overview of tumor characteristics in ClinOmicsTrail®®.  Breast cancer-relevant driver genes and
pathways are displayed in a circular manner. Genes are grouped according to the pathways they are most
characteristic for. The plot is organized in rings, where the innermost ring displays pathway activities, the second
‘inner’ ring corresponds to gene expression. Depending on the data provided by the user, information on copy
number alterations and mutations are shown in the third and fourth ring, respectively. Gene names are displayed in
the next ring. The second most outer ring indicates whether the gene acts as an oncogene or a tumor suppressor
gene for activating the corresponding pathway. The outermost ring contains indicators on whether or not the
gene is a known drug target. Visualization for sample TCGA-BH-AQDT (cf. Section 6.5.2). * Entry for HER2/neu
(ERBB2), ** MAPK signaling pathway as referred fo in Section 6.5.2.
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many breast cancer drugs, there are known predictive biomarkers that inform the treatment
decision-making process. Aromatase inhibitors, for example, are typically only administered to
postmenopausal women with positive hormone receptor status [636], while amplification of the
HER2/neu favors treatment with trastuzumab [637]. In ClinOmicsTrail®®, predictive biomarkers
like ER status, PR status, or HER2/neu amplification status are assessed first and foremost on
the clinical data provided by the user. However, these clinical indications are also compared to
gene expression and/or copy number data to spot potential inconsistencies in the data, i.e., if
one or both molecular data sets disagree with the provided tumor receptor status.

Another important set of factors for drug efficacy are the molecular drug target(s) of a
compound of interest. Here, it is favorable if the drug target is highly expressed in the tumor.
ClinOmicsTrail*® also investigates whether the drug target contains a somatic mutation and, if
this is the case, assesses the mutation’s severity to determine if the target might have attained
a resistance mutation (e.g., compromised binding affinity of a drug or if the corresponding
protein has lost its function). In this case, the targeting of this protein with a drug is likely
to be ineffective.

When investigating putative drug efficacy, pharmacokinetic mechanisms also have to be
considered. In this regard, ClinOmicsTrail> assesses drug-metabolizing enzymes as well
as efflux transporters. Many drugs require activation by drug-metabolizing enzymes like
cytochromes in the liver [638]. Alterations and especially germline mutations in this gene
family are a major resource of variability in treatment response [639]. ClinOmicsTrail’® uses the
(germline) mutation status of the respective enzymes to determine whether or not drugs can be
metabolized to their active forms. Also, efflux transporters are a potent cause of variability in
drug response and even drug resistance [640]. When highly active, they carry the compound
out of the cell, thus decreasing its intracellular concentration and hence its efficacy. Here,
ClinOmicsTrail*® especially focuses on gene expression data to detect increased transporter
activity, but it also takes somatic mutations into account. However, a high transporter activity
is not always associated with reduced drug efficacy. Some drugs (e.g., tamoxifen or lapatinib)
can inhibit certain transporters (e.g., ABCB1) and hence improve the tumor’s response to other
drugs that are affected by high efflux transporter activities [641, 642].

As a final class of modulators of drug response, we also consider whole signaling pathways.
Here, pathways directly targeted by the compound under consideration should show strong
activities in the tumor. By this, we ensure that the drug actually tackles a disease-driving

mechanism. ClinOmicsTrailb®

assesses the activity of a pathway based on a set of characteristic
pathway-associated genes via their gene expression scores, see Section 6.4.2.

A summary of the rule-based system for drug evaluation is provided in Section A.8.2.

Besides the assessment of on-label drugs, ClinOmicsTrail>® also investigates a set of 23 “driver
targeting drugs’. These are drugs that require the presence or absence of pathological markers,
mutations, or other genomic alterations in the Driver targeting drugs tab of the Driver events view.
These drugs are approved for various cancer types, however, not necessarily for breast cancer.
Still, they could be considered for off-label use. In order to determine whether or not a patient
could be stratified for the administration of the respective drugs, ClinOmicsTrail>® evaluates
the genomic alterations in the tumor with respect to specific point mutations, copy number

alterations, transcriptomic deregulation, and hormone receptor status.
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6.4.3.3 Immunotherapy assessment

One of the central characteristics of tumors is their ability to evade detection and destruction by
the immune system [49]. One such mechanism is the activation of immune-inhibitory pathways
and immune system-suppressing checkpoints like CTLA-4 or PD-1 [82]. These checkpoints
typically balance the immune system’s activation and tolerance. This balance is often impaired
in cancer and can lead to immune evasion of even heavily altered cells that present many tumor
antigens. Typically, recognition of tumor antigens presented on HLA molecules on the surface of
tumor cells by effector T-cells leads to the destruction of the tumor cells. However, in the presence
of an expressed programmed death ligand 1 or 2 (PD-L1/2), this ligand may bind to the PD-1
receptor on the T-cell, inducing an inhibitory signal and preventing the tumor cell from being
destroyed. In such cases, inhibiting either the receptor or the ligand (e.g., by pembrolizumab
binding PD-1 [83]) might restore the immune system’s ability to kill tumor cells. Several studies
across cancer types showed that the effectiveness of such checkpoint inhibitors, amongst others,
correlates with the number of mutations present in a tumor [85, 86]. The more mutations
are contained in a cell, the more likely it is that non-synonymous mutations occur in human
leucocyte antigen (HLA) epitopes that - when presented on the cell surface - may be recognized
by cytotoxic T-cells, which in turn induce cell killing [643]. Tumors with a high mutational load
have the potential to respond well to immune system inducing therapies like antigen vaccination
or adoptive cell therapy [644, 645]. The total number of somatic mutations per coding region
of the genome is defined as Tumor Mutational Burden (TMB) [86]. ClinOmicsTrail> computes
the TMB as the number of somatic mutations per megabase of exon. Moreover, ClinOmicsTrail>®
displays the TMB of tumor samples of interest in comparison to the TCGA breast cancer cohort
(cf. Figure 6.8) for a relative assessment of severity.

As high mutation rates are oftentimes caused by deficiencies in the DNA repair machinery,
ClinOmicsTrail*® also assesses the status of a variety of repair genes, curated by MD Anderson
Cancer Center [646]. Additionally, ClinOmicsTrail®® provides information on the gene
expression and copy number status of HLAs and the checkpoint ligands.

Cancer vaccines: Besides checkpoint blockade, personalized cancer vaccines are another
promising approach to cancer immunotherapy [88, 89]. Cancer vaccines target overexpressed
or altered proteins and HLA presented peptide sequences (neoepitopes) that resulted
from somatic mutations uniquely characterizing the patient’s tumor. They are used to
prime T-cells to recognize these characterizing antigens and destroy the presenting tumor
cells. As the neoepitopes are dependent on both the patient’s tumor mutations and HLA
genotype, cancer vaccines have to be individually designed. Thus, ClinOmicsTrail®® offers
functionalities to predict potential neoepitope vaccine targets based on the identified somatic
mutations and HLA genotype of a patient using the immunoinformatic toolbox ImmunoNodes
[647]. ImmunoNodes provides various classes of epitope prediction methods to compute
(neo-)epitopes and to assess their affinity to the patient’s HLA genotype. Section A.8.4 contains
additional details on the 13 provided methods. The identified epitopes can serve as a basis for the
synthesis of a personalized cancer vaccine, which can be combined with checkpoint inhibitors
to potentially boost the effectiveness of the vaccine [90].
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Figure 6.8 Tumor mutational burden in ClinOmicsTrail® . Visualization of the tumor mutational burden for a sample
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6.4.3.4 Clinical trial matching

In cases where standard-of-care treatment solutions are not applicable due to resistance
mutations or other hindering factors, it might be of interest to examine potential clinical trials
the patient is eligible to enroll in. To this end, ClinOmicsTrail’® links to phase 1II, III, and
IV clinical trials registered in ClinicalTrials.gov and the European Union Clinical Trials Register,
which are recruiting in a large variety of countries. Additionally, ClinOmicsTrail®® makes a first
assessment of the eligibility for various classes of clinical trials listed on BreastCancerTrials.org.
This stratification considers tumor characteristics like the BRCA1/2 mutation status and the
tumor grade, as well as different treatment types, including hormone therapy, PARP inhibitors,
targeted therapy, and immunotherapy.

6.4.3.5 Investigation of deregulated drug targets and signaling processes

For an even more in-depth investigation of deregulated drug targets and altered signaling
processes in the tumor, ClinOmicsTrail®® is natively integrated with its sister projects
DrugTargetInspector (cf. Chapter 5) and GeneTrail2 (cf. Section 4.2). DrugTargetInspector is a
web service for the interactive investigation of drug targets and dysregulated signaling pathways.
GeneTrail2 is a web-interface providing access to different tools for the statistical analysis of
molecular signatures with a focus on enrichment analyses. It offers multiple statistical tests, as
well as a comprehensive collection of biological gene sets to test for. Once omics data sets are
uploaded to ClinOmicsTrail®®, the functionality of both tools is readily available.

6.5 Case studies

In order to show ClinOmicsTrail’®’s rich functionality and its potential to support the
clinical cancer treatment decision-making process, we performed three case studies in which
ClinOmicsTrail*® (i) guides the treatment selection process by identifying pathway activity
patterns driving the tumor under investigation (Section 6.5.1), (ii) assesses a set of drugs
approved for breast cancer treatment by an in-depth investigation of modulators of treatment
success (Section 6.5.2), and (iii) highlights immunotherapy as a potential treatment option in
cases with high tumor mutational burden (Section 6.5.3). Additional supplementary figures for
the three case studies are provided in Section A.8.5.

6.5.1 Pathway activity patterns guiding treatment selection

For the identification of a tumor’s intrinsic subtype, various systems using multigene signatures
have been established, most famously the PAM50 classifier [599] (cf. Section 6.3). However,
the consideration of a broader spectrum of gene expression might draw a more differentiated
picture of a tumor’s characteristics. For instance, the consideration of pathway activity patterns
might be useful to guide the treatment decision-making process.

For illustratory purposes, we considered the tumor sample of a 68-year-old woman
(TCGA-AN-AOXN) with a stage III breast cancer (ER negative, PR positive, HER2 negative) that
was classified as luminal A subtype by PAMS50. ClinOmicsTrail*® provides various analyses for
the in-depth investigation of a tumor’s molecular characteristics and subtype. For an assessment
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of molecular similarities to other breast tumors, the Subtyping tab contains a clustering-based vi-
sualization that embeds the tumor sample under investigation into a ‘neighborhood” of TCGA
BRCA samples with similar gene expression signatures (cf. Section 6.4.3). For our sample of
interest, we can observe that, although it was predicted to be of the luminal subtype, it also has
similarities to the HER2-enriched and basal-like subtypes (cf. Figure 6.5). For a more granular
investigation of the tumor’s characteristics, ClinOmicsTrail>™® computes the pathway activities
of a set of 20 core breast cancer-relevant pathways (cf. Section 6.4.2) that can exhibit subtype-
specific patterns. The pathway activities depicted in the Pathways view show that in our sample
of interest — in contrast to the majority of breast tumors — the PI3K-Akt signaling pathway seems
to be inactive, possibly due to a most likely damaging frameshift mutation in PIK3CA, one of
the pathway’s core activating elements. On the contrary, several pathways related to stem cell
characteristics (e.g., Focal adhesion and HIF-1 signaling) seem to be strongly upregulated (cf.
Figure 6.4, in blue). The activation of these pathways has already been shown to be character-
istic of basal-like tumors [648, 649]. These findings are supported by the fact that the sample
under investigation shows a pathway activity pattern that is very similar to the one of the triple-
negative, basal-like TCGA sample TCGA-BH-A18G, see Figure 6.4. Furthermore, the ten cell
lines most similar to our tumor sample of interest are all triple-negative (cf. Section A.16). The
investigation of these pathway activity patterns might also reveal targets for possible therapeu-
tic intervention. In the considered sample, the MAPK signaling pathway is strongly activated,
most likely due to the upregulation of key pathway components like BRAF, KRAS, and NRAS.
Therapeutic intervention in this pathway might hence be an option. This finding is supported by
the fact that the two cell lines most similar to the sample under investigation regarding pathway
activity patterns (SUM149PT and 185B5) are known to be sensitive against an ERK inhibitor. An-
other potential option suggested by ClinOmicsTrail®® might be a treatment with bevacizumab
as the vascular epithelial growth factor (VEGFA), its molecular target [72], is very strongly up-
regulated (z-score=3.63).

6.5.2 Assessment of standard-of-care breast cancer drugs

The selective estrogen receptor modifier tamoxifen is one of the oldest and most commonly
prescribed breast cancer drugs [650]. Its clinical benefit for the treatment of estrogen receptor-
positive breast cancer is well established by significantly reducing mortality rates and recurrence
[651]. Still, more than 30% of patients with adjuvant tamoxifen treatment relapse or die [652].
This is likely due to de novo or acquired tamoxifen resistance that can be mediated by a variety of
genetic and molecular factors, as well as altered signaling pathways. These resistance-promoting
factors include lowered expression or mutation of molecular drug targets, the impairment of
involved ADME genes, alterations in co-regulatory proteins, and deregulated signaling cascades
[653]. In order to exemplify ClinOmicsTrail’’s thorough assessment of these factors, we
consider the tumor sample of a 41-year-old woman with a stage II, hormone receptor-positive,
HER2-negative breast tumor (TCGA-BH-AQDT). As the considered sample is hormone receptor-
positive and HER2-negative, tamoxifen might be considered as the treatment of choice. In order
to obtain a more comprehensive picture, ClinOmicsTrail®® provides a Drugs view that contains
information on the status of several biomarkers potentially relevant to estimate treatment success
like molecular targets, drug-processing enzymes, and transporters (cf. Figure 6.7). Tamoxifen
targets, besides the androgen receptor (AR), the estrogen receptors 1 and 2 (ESR1/ERg,
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ESR2/ERp), a family of transcription factors that are activated by estrogens, mediating the
activation of a variety of growth-promoting processes [654]. In our sample under investigation,
ESR2 contains a frameshift variant that is likely to affect the protein’s structure severely and
hence might drastically reduce tamoxifen’s affinity to its target ESR2. Besides the actual drug
targets, different ADME genes, including drug-processing enzymes and transporters, play
essential roles in the effectiveness of a tamoxifen-based therapy. A central element in this context
is the Cytochrome P450 family member CYP2D6 that is known to metabolize up to 25% of
commonly prescribed drugs, including the prodrug tamoxifen that needs to be metabolized
into its active form endoxifen [621]. For our given sample, ClinOmicsTrail*® identified a
frameshift variant in CYP2D6 that most likely generates a poor metabolizer phenotype and
hence contributes to a potential resistance against tamoxifen. Another group of relevant
factors are co-regulators of ER-mediated transcription. One such regulatory element is the
cytosine deaminase APOBEC3B, which typically deaminates cytosine to uracil in ER enhancer
regions, thereby activating base excision repair pathways, which in turn promote chromatin
remodeling that eventually help to initiate the expression of ER target genes [655]. Higher
levels of APOBEC3B expression have been associated with poor clinical outcome of tamoxifen
treatment in ER-positive breast cancer [427]. In our sample of interest, we can observe an
increased level of APOBEC3B expression, serving as a further indication in disfavor of tamoxifen.
Finally, the considered sample shows increased levels of MAPK signaling pathway activity and
an upregulation of HER2/neu (ERBB2) (cf. Figure 6.6), which might contribute to resistance
against endocrine therapy via the ligand-independent activation of ER through ERK [653, 656].
To summarize, although the clinical data for the considered sample might point towards a
treatment with tamoxifen, a broad investigation of molecular determinants of treatment success
could highlight several factors that might render tamoxifen ineffective in the considered case.
Besides selective estrogen receptor modulators like tamoxifen, ClinOmicsTrail>® also provides
an in-depth assessment of a variety of other drug classes relevant for breast cancer treatment (cf.
Figure 6.7). Although we could observe an upregulation of ERBB2 expression in our sample
under investigation, trastuzumab and other ERBB-targeting drugs might be impeded by a
missense variant in ERBB2. This mutation could reduce the efficacy of this class of drugs, despite
the fact that it has been classified to only have a moderate impact on the protein’s structure. As
indicated by ClinOmicsTrail®, a putative treatment option for our investigated sample might
be the use of aromatase inhibitors like anastrozole, exemestane, or letrozole. As aromatase
inhibitors are typically prescribed to postmenopausal women [657], a successful treatment will
require additional ovary suppression, which has been shown to significantly improve response
rates in premenopausal women in the SOFT trial [658]. Also, since our sample of investigation
contains BRCA1/2 germline mutations and the poly ADP ribosyl transferase PARP1 is strongly
upregulated (z-score=4.99), PARP inhibitor treatment is suggested as a potential option by
ClinOmicsTrail’°.

6.5.3 Immunotherapy assessment

One of the latest areas of innovation in cancer treatment is immunotherapy, which aims at
(re-)enabling the immune system to recognize and destroy cancerous cells [659]. While
being most established for the treatment of melanoma [660] and lung cancer [661],
immunotherapeutic approaches like checkpoint blockade or cancer vaccines are of general
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nature and not necessarily tumor type-specific. Over the last years, more and more
immunotherapies have been approved for a variety of cancer types [662-664]. Inmunotherapies
are also emerging as a valuable component of treatment regimens in breast cancer. Many studies
show that tumors with a high Tumor Mutational Burden (TMB) are likely to respond well to
an immune system-promoting therapy [644, 645]. In order to evaluate the immunotherapeutic
potential of a breast tumor sample under investigation, ClinOmicsTrail’® assesses the sample’s
TMB in relation to the TCGA BRCA cohort. As a reference, TMBs for 1,044 breast tumor
samples were computed and plotted in a histogram indicating the respective fractions of
samples containing a certain number of mutations (cf. Figure 6.8). In this reference group, the
mutational burden ranges between 3.49 and 148.57 somatic mutations per megabase exon (for
variants called using MuTect2 [210]). In samples with high TMB, the increased mutation rates
are likely to be fostered by deficiencies in the DNA repair machinery [6]. To further underline the
connection between TMB and an impaired DNA repair machinery, we performed the following
analysis: from the aforementioned TCGA BRCA cohort, we selected the 100 samples with the
lowest and highest TMB, respectively. For both groups, we extracted those genes that contained
mutations with a high disruptive functional impact, e.g., via protein truncation, loss of function,
or nonsense-mediated decay, as annotated by Ensembl’s Variant Effect Predictor. These gene
sets were then tested in an Over-Representation Analysis (cf. Section 3.3.3.1) for the enrichment
of a set of 52 repair-related biological categories obtained from GO, KEGG, Reactome, and
WikiPathways. For the 100 samples with low TMB, none of the considered categories were
significantly enriched, whereas for the 100 samples with high TMB, 32 pathways showed a
significant enrichment (cf. Table A.13).

For a convenient assessment of potential deficiencies in the DNA repair machinery,
ClinOmicsTrail>® assesses a variety of repair genes with respect to their mutation status and
(epi-)genetic profile. This information can also be used to guide the immunotherapy treatment-
selection process as tumors with loss of mismatch repair function are likely to avoid immune
system-mediated destruction through the activation of immune checkpoints [665] and hence
might become sensitive to checkpoint blockade.

As a concrete example demonstrating ClinOmicsTrail’’s capabilities for decision support in
immunotherapy, we considered the tumor sample of a 66-year-old woman with a stage 1V,
triple-negative, metastatic breast cancer (TCGA-A2-A0T2). Based on the genomics and tran-
scriptomics data of a tumor sample, ClinOmicsTrail> analyzes potential breast cancer driver
genes and lists their genomic and transcriptomic features, including the effects of contained mu-
tations in the Driver events view. Here, the analysis revealed severe and probably damaging
mutations in TP53, RB1, and ATM. The transcription factor TP53 is an essential tumor suppres-
sor that is commonly compromised in human cancers. The encoded protein is involved in a
variety of cellular processes, including cell cycle arrest, senescence, apoptosis, and DNA repair
[666]. Similarly, RB1 acts as a tumor suppressor by negatively regulating the cell cycle. It is
also involved in stabilizing heterochromatin, thereby maintaining the overall chromatin struc-
ture [667]. Hence, alterations in RB1 can cause genomic instability, fostering the accumulation
of mutations and providing an evolutionary advantage to the affected cancer cells [668]. Finally,
ATM is an important cell cycle checkpoint kinase that regulates various tumor suppressors like
TP53 or BRCA1, acting as key regulators governing genome stability and response to DNA dam-
age [669].
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Besides known driver mutations, ClinOmicsTrail’® also checks the mutation status of a vari-
ety of genes involved in the DNA repair machinery and provides an overview of potentially
impaired genes in the Repair genes tab of the Immunotherapy view. For our sample under inves-
tigation, these results revealed a variety of mostly damaging mutations in various components
of DNA repair (cf. Table 6.2). The impairment of repair mechanisms was also reflected in a
rather high TMB of 13.18 somatic mutations per megabase exon that is illustrated in the Muta-
tional burden tab. Taken together, the mutational burden in combination with the likely impair-
ment of repair mechanisms might render checkpoint blockade (potentially in combination with
DNA-damaging agents [670] or neoepitope vaccination [671]) an effective treatment strategy
in this case [82, 672]. For further assistance in the selection of a suitable checkpoint inhibitor,
ClinOmicsTrail*® provides an overview of the genomic and transcriptomic features of various

druggable checkpoint genes.

Cancer vaccines: With respect to personalized cancer vaccines, ClinOmicsTrail> identifies
tumor-specific neoepitopes that can serve as a basis for vaccine development. Details on the
neoepitope prediction will be described in the following section.

Gene Consequence SIFT PolyPhen Reference
ATM missense variant deleterious probably damaging [669]
APTX missense variant deleterious probably damaging [673]
CCNH missense variant deleterious probably damaging [674]
FANCC missense variant deleterious probably damaging [675]
FANCF missense variant deleterious benign [676]
MSHS5 missense variant tolerated benign [677]
POLG missense variant deleterious possibly damaging [678]
RAD54B  missense variant deleterious possibly damaging [679]
XAB2 missense variant deleterious probably damaging [680]

Table 6.2 Mutated repair genes in sample TCGA-A2-AQT2. The first column contains the HUGO gene symbol of
the respective gene and the second column the effect of the mutation on the protein-coding sequence. Columns
3 and 4 list predictions on the effect of a mutation on the protein function made by SIFT and PolyPhen. The last
column contains literature references explaining the role of the corresponding gene in the repair machinery.

The genomic regions encoding for human leucocyte antigen (HLA) proteins are very
polymorphic, hence the HLA genotype strongly varies between patients. In order to identify
those tumor mutations that are likely to be able to induce an immune response, the patient’s
HLA genotype and its tumor’s somatic mutations have to be taken into account. The HLA
genotype can be experimentally determined (e.g., using sequence-specific oligonucleotide probe
hybridization [681] or serological typing techniques [682]), but also predicted from sequencing
data. For illustratory purposes, we here applied the HLA genotyping algorithm OptiType [683]
to the raw tumor sequencing data for our sample of interest. OptiType predicted the sample to
be of the following genotype: A*02:01, A*24:02, B*15:17, B*40:01, C*07:01, C*03:04.

Within ClinOmicsTrail®, we selected the option Consider only significantly upregulated proteins
in the Cancer vaccines tab of the Immunotherapy view and performed a neoepitope prediction for
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peptides of length 9 using the artificial neural network-based regression method NetMHC [684].
Table A.15 lists all neoepitopes that were predicted to bind to at least on the HLAs.

6.6 Discussion

We presented ClinOmicsTrail®®, a powerful visual analytics tool for breast cancer treatment
stratification. Our tool supports precision medicine (i) by assessing and prioritizing standard-
of-care breast cancer drugs, (ii) by suggesting drugs for off-label use, (iii) by evaluating the
potential of different types of immunotherapy including checkpoint inhibitors and personalized
cancer vaccines, and (iv) by assessing a patient’s eligibility to enroll in clinical trials. To this end,
ClinOmicsTrail’® performs a multitude of analyses on a tumor’s clinical markers, (epi-)genomic,
and transcriptomic alterations to systematically characterize the tumor. This characterization
is based on the tumor’s main driver mutations, its mutational burden, the activity patterns of
cancer-relevant pathways, as well as the status of drug-specific predictive biomarkers, molecular
drug targets, and involved ADME genes.

In order to optimally support clinicians, conciseness and interpretability of the results are
essential. For that purpose, ClinOmicsTrail™® summarizes key tumor characteristics and
additional information on drug-specific biomarkers and modulators of treatment response in
a few comprehensive, yet easily interpretable visualizations, providing clinicians with the most
relevant information at the point of care. Furthermore, we provide extensive documentation
of the web service, ranging from standalone tutorials over additional help and information
along the data upload and analysis steps to interactive explanations of the provided results.
Albeit ClinOmicsTrail® is optimized for the analysis of breast cancer data sets, the underlying
analysis methods and visualization techniques offered by our web service can also be used
for the genetic and molecular characterization of other tumor types by mainly exchanging the
tumor-specific underlying databases. We plan to provide adapted versions for other tumor
types in the near future. The breadth and depth of analyzes and visualizations offered by
ClinOmicsTrail®® make it — although being in a proof-of-principle stage - a promising addition
to existing clinical decision support machineries. The three presented case studies convey a first
impression on the capabilities of the tool, however, can only partly illustrate its full potential.
From a clinical perspective, ClinOmicsTrail>® is a comprehensive tool suite that will be further
validated regarding its benefits in the preparation and conduction of molecular tumor board
meetings. In summary, ClinOmicsTrail® is a powerful integrated visual analytics tool for breast
cancer research in general and therapy stratification in particular, assisting oncologists to find

the best possible treatment options in a deeply personalized way.



Perspectives

In the history of biomedical research and patient treatment, diagnostic capabilities have evolved
from the anatomical, over the cellular, to the molecular level [685]. Nowadays, high-throughput
experimental techniques allow for the determination of comprehensive profiles of a broad range
of biological data (cf. Section 3.1). While the genetic and molecular elucidation of healthy and
aberrant mechanisms has advanced the general knowledge of the causes of numerous diseases
[686], the translational success has been limited for complex diseases like cancer [687] (cf.
Section 2.2). The concept of personalized medicine aims at improving (cancer) treatment via the
tailoring of treatment options to the specific genetic and molecular characteristics of a disease.
Nowadays, personalized medicine comes in various forms, including companion diagnostics
and increasingly also gene panel testing (cf. Section 2.3). While these diagnostic tests have the
potential to achieve considerable successes [110, 564, 688, 689], there are still major limitations
mainly due to the fact these tests cannot capture the high complexity of aberrant processes in
tumors [516, 690] (cf. Section 2.1).

In order to obtain a more comprehensive view on aberrant disease processes and to employ
this information for the identification of biomarkers and for clinical treatment decision-making,
powerful tools and methods are required. They should be able (i) to integrate a variety of
heterogeneous, noisy, and high-dimensional data sets, (ii) to extract a priori biological and
medical knowledge from relevant databases, and (iii) to create explorative tools for intuitive and
concise visualization of the results [691]. Following these principles, the goal of this thesis was
to develop methods and tools to perform multi-omics integrative analyses for decision support
systems in personalized cancer treatment.

In the following sections, we will review the presented work (Section7.1) and highlight
challenges and opportunities for further developments (Section 7.2).

7.1 Summary and discussion

In this thesis, we presented a comprehensive suite of tools and methods for translational
research and clinical decision support in oncology. The provided methods and tools offer
rich functionality for the genetic and molecular characterization of tumors with an emphasis
on deregulated biological processes and the identification of disease-driving regulatory key
players. The identified tumor characteristics are then combined with a priori knowledge from
clinical practice guidelines and relevant medical, pharmacological, and biological databases for
a personalized assessment of various types of treatment options, including standard-of-care

targeted drugs, candidates for drug repositioning, and immunotherapy.
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In order to ensure interoperability and ease of use, our tools are based on a common underlying
framework, called Graviton (cf. Section 4.1). In Graviton, the analysis tools are deployed as
web services, which has the advantage of easy access for users and a single instance, which
allows for centralized maintenance. On the downside, the upload of tremendously large data
sets containing potentially sensitive data is not always feasible.

The analyses provided by the tools in our tool suite are based on the integrated analysis of
different types of omics data sets with a priori knowledge from various databases. The quality of
the analysis results crucially depends on the quality and comprehensiveness of these resources.
Besides potential technical noise and inaccuracies that can occur when capturing omics data
sets (cf. Section 3.1), a ‘bias’ can also be introduced by the sample itself, for example when
biopsies only contain low percentages of tumor tissue or have captured a sub-population of
tumor cells that are not representative (anymore) for the evolving tumor. Hence, in an ideal
world, multiple samples from different locations of the tumor would be the optimal basis for any
analysis. Besides the biological input data, also the content, comprehensiveness, and quality of
databases containing the a priori knowledge used in our analyses are of critical importance (cf.
Section 3.2). Here, a major limitation is given by the current knowledge and representation of
regulatory and signaling pathways and their respective topologies [363, 692].

When investigating aberrant processes in cancer, we work with data of various nature (i.e.,
continuous, discrete, structured) and data of various quality (e.g., noise, non-biological
variance). In order to identify differentially expressed (or methylated) genes (or proteins,
miRNAs), there are several scoring methods (cf. Section 3.3.2), which we also implemented
in our tools (cf. Section 4.1.3). Each of these methodologies elucidates different aspects of
the data and hence should be carefully chosen. For example, when using z-scores, one has to
consider that small changes in genes with low variances are ‘inflated” and cannot necessarily
be distinguished from more substantial changes in genes with higher variances. In contrast
to z-scores, fold changes provide a more direct comparison between two entities, however
neglecting the natural variability of the gene’s expression. Besides the selection of a scoring
method, also which samples are compared to each other is a point to consider. While the
comparison of a tumor sample to a healthy control reveals which pathogenic processes are up-
or downregulated, the comparison of tumor vs. tumor provides a more fine-grained view on the
specific characteristics of the sample of interest in comparison to other tumors of the same type
or subtype. Hence, the consideration of both types of comparisons would be desirable.
However, healthy reference samples are not always available, especially when only a single
biopsy was taken from the tumor. As a remedy, it would be desirable to have a tissue-specific
collection of reference samples, ideally all measured on the same experimental platform to
minimize batch effects.

Genetic and molecular biomarkers are valuable tools to personalize diagnosis, treatment
decision-making, and disease monitoring (cf. Section 2.3). However, the identification of robust
biomarkers from extremely high-dimensional (multi-)omics data sets is a challenging task [402-
404, 693], which is the reason that only few such biomarkers could be translated into clinical
practice [601]. In order to support the identification of meaningful biomarkers for biomedical
research and clinical decision support, we focused on the development of tools and methods
that aim at elucidating causal dependencies instead of yielding ‘black box” predictions that are

solely based on mathematical criteria.
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As a first tool in this context, we presented GeneTrail2 (cf. Section 4.2), which is, at the time
of writing, one of the most comprehensive web services for enrichment analysis. Providing a
great variety of functional annotations and pathway information, GeneTrail2 gives insights into
aberrant biological processes and their functional dependencies. As an example of GeneTrail2’s
capabilities, we demonstrated how GeneTrail2 could support the identification of a molecular
subtype of pancreatic cancer that is characterized by co-activation of the SUMO pathway and the
oncogene MYC and which could be further investigated as a predictive biomarker for targeted
therapy in pancreatic cancer (cf. Section 4.2.3).

When investigating mechanistic dependencies and key elements of pathogenic processes, the
consideration of transcriptional regulators as the actual mediators of occurring aberrations in the
cell is an important aspect. We presented RegulatorTrail (cf. Section 4.3), which provides four
different analysis scenarios and a comprehensive set of analysis methods to identify deregulated
regulatory processes. As one of the implemented methods, we proposed REGgulator-Gene
Association Enrichment (REGGAE). We could show that REGGAE’s unique approach of
combining associations between regulators and their target genes with an enrichment approach
outperforms competing methods in prioritizing the influence of transcriptional regulators (cf.
Section 4.3.3). Moreover, we performed a case study on Wilms tumors in which we could
identify the helix-loop-helix transcription factor TCF3 as a potential master regulator in the
blastemal subtype, which could serve as the basis for the development of stratified treatment
options (cf. Section 4.3.4).

While the presented tools can yield valuable hypotheses on potential disease mechanisms and
corresponding biomarkers, it is clear that these hypotheses have to be further validated in wet-
lab experiments and clinical studies.

Successfully validated biomarkers can then be used, for example, in the treatment stratification
process. As current state of the art in personalized cancer treatment, genetic biomarkers in the
form of specific mutations in selected genes are used to inform the choice of targeted treatment
options (cf. Section 2.3). However, the vast majority of genetic aberrations contained in a tumor
has not yet been assigned any clinical significance [694]. Hence, when reporting only variants
annotated as (likely) pathogenic, many impactful aberrations might not be considered [695].
As a remedy, we additionally consider the predicted functional impact of mutations contained
in the tumor under investigation, as they can provide valuable insights that otherwise might
have been missed (cf. Sections 5.3.2 and 6.4.1). Moreover, for the identification of treatment-
relevant tumor characteristics, we consider additional omics data types like transcriptomics,
methylomics, or proteomics data to provide a multi-faceted picture of the tumor.

As our first tool with a specific focus on the assessment of targeted treatment options for
drug repositioning and clinical decision support, we presented DrugTargetInspector (DTI,
cf. Chapter 5). DTI provides information on deregulated drug targets, enriched biological
pathways, and deregulated subnetworks. We demonstrated DTI's comprehensive functionality
for the analysis of different types of omics data, as well as its ability to prioritize putative
treatment options in several case studies (cf. Section 5.3).

With ClinOmicsTrail’® (cf. Chapter 6), we developed a tool to dive even deeper into clinically

relevant aspects of breast cancer. ClinOmicsTrail®

provides a comprehensive assessment of
standard-of-care targeted drugs, candidates for drug repositioning, and immunotherapeutic

approaches. In three case studies, we demonstrated how ClinOmicsTrail®® could facilitate
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personalized treatment decisions in breast cancer based on actionable, evidence-based results (cf.
Sections 6.5.1 to 6.5.3). In order to optimally support clinicians, conciseness and interpretability
of the results are essential. To this end, ClinOmicsTrail’® summarizes key tumor characteristics
and details on drug-specific biomarkers in a comprehensive, yet easily interpretable way.
Specifically, we predict the activity of tumor-specific signaling pathways by aggregating relevant
genes based on a large body of prior biological and pharmacological knowledge. We believe that
the consideration of tumor aberrations on a ‘higher’ pathway level is of great importance for the
development of reliable and interpretable clinically relevant predictive models. In order to make
the tool as concise and relevant as possible, we focused - for a first proof-of-principle version
of the tool - on treatment-relevant aspects specific to breast cancer. However, the underlying
analysis methods and visualization techniques offered by our web service can also be used for
the genetic and molecular characterization of other tumor types by mainly exchanging the tumor-
specific underlying databases. ClinOmicsTrail is currently under investigation for the use in
Molecular Tumor Board meetings at the university hospital in Tiibingen.

While the assessment of deregulated signaling cascades and pathway activities is of great interest
for basic cancer research and personalized treatment stratification, it is equally challenging. A
major obstacle when trying to model pathway activities is the fact that there is no objectively
measurable ground truth that could be used to optimize or validate the respective models.
Hence, one has to rely on assumed proxies as the sensitivity to drugs targeting specific pathways
or prior knowledge on the regulatory effect of individual genes. Moreover, the fact that biological
pathways and signaling cascades form complex networks makes it even more difficult to link
these observations to the activity of individual pathways. Another surrogate we currently still
mainly use is mRNA expression instead of actual protein levels. Once experimental methods
allow to routinely and comprehensively assess protein levels, the quality of models that aim at
elucidating mechanistic dependencies in cancer is likely to improve.

To summarize, in this thesis, we have presented a comprehensive tool suite for cancer treatment
decision support and translational research. The encompassed tools provide rich functionality
for the genetic and molecular characterization of tumors with an emphasis on deregulated
biological processes and the identification of disease-driving regulatory key players. In several
case studies, we could show that the combination of the tumor characteristics identified by
these tools in combination with a priori knowledge from clinical practice guidelines and relevant
medical, pharmacological, and biological databases facilitates treatment decision support for
various cancer types and several types of treatment options including standard-of-care targeted

drugs, candidates for drug repositioning, and immunotherapy.

7.2 Outlook and conclusion

The tools and methods described in this thesis are a necessary and promising first step towards
the multi-omics integrative analysis of tumors. However, the comprehensive implementation of
precision oncology into routine clinical practice still faces many challenges.

One of the major challenges is that the breadth and depth of molecular and clinical data to
be considered in personalized diagnosis, treatment, and monitoring is likely to keep growing.
Although sequencing costs have decreased substantially during the last decades, to date
genome sequencing is typically only considered for late-stage tumors and oftentimes only using
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somewhat limited panel sequencing techniques. Prospectively, it can be expected that panel
sequencing will be superseded by whole-exome or even whole-genome sequencing in the future,
which will allow for the comprehensive analysis of tumor genomes without any limitation to
predefined candidate genes.

A whole new level of complexity could additionally be introduced by the continuously
developing molecular profiling techniques, which might make high-resolution techniques like
single-cell sequencing feasible for clinical practice, thereby providing an even clearer picture of
tumor subclones and their respective mutation patterns.

Besides the increasing resolution of molecular characterizations of tumors, also other data types,
for example imaging data from radiology scans, need to be integrated and analyzed to obtain
an even more complete perspective on tumors under investigation.

Another important aspect that increases the challenge of integrating and interpreting the data is
that not just a single snapshot of clinical and molecular characteristics should be considered to
describe complex diseases like cancer, but these data should instead be monitored longitudinally.
Also, the patient’s history and potential comorbidities need to be taken into account, as well as
the effects of comedication or combination therapies.

This steadily growing amount of increasingly heterogeneous and complex data types calls for the
continuous development and improvement of bioinformatics and statistical methods to integrate
and analyze these data. An emerging concept whose adoption would support this challenging
task is the concept of FAIR data, where FAIR stands for Findable, Accessible, Interoperable, and
Reusable. While interoperability and reusability of data are typically limited by technical aspects
like inconsistent nomenclatures across different databases or different experimental platforms
and processing pipelines, the regulation of access to sensitive (patient) data accounting for data
security and privacy according to the policies of the General Data Protection Regulation (GDPR)

is a major challenge in itself.

In summary, there is clearly enormous potential in the integration and use of (multi-)omics
data for a better understanding of the molecular mechanisms, processes, and pathways
characterizing complex diseases like cancer. The success of such a holistic model in translational
research and patient care depends on the gradual shift to a comprehensive systems approach,
sustained by data sharing across and between different fields of expertise, accompanied by
corresponding transformations in the political and regulatory environment to foster these
developments.

Taken together, these endeavors have the potential to lead to innovative measures for disease
prevention, early diagnosis, disease monitoring, and real-time decision-making, thus making

precision medicine a forthcoming reality.
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Supplementary Material

This Appendix contains additional information and details on various aspects of the methods,
tools, and analyses presented in the main part of this thesis.

A.1 File formats

The tools and methods presented in the course of this thesis require different types of
standardized file formats as input, some of the more complex ones are presented in the following
sections.

A.1.1 FASTA

The FASTA file format is used to describe nucleotide or peptide sequences. A sequence in FASTA
format begins with a single-line description (starting with ">’), followed by several lines of
sequence data. The bases (or amino acids) are represented by nucleotides from the alphabet
{A,C, G, T} (or single-letter amino acid codes). An example sequence in FASTA format could look
like this:

>Sequence_A
GGTAAGTCCTCTAGTACAAACACCCCCAATATTGTGATATAATTAAAATTATATTCATAT
TCTGTTGCCAGAAAAAACACTTTTAGGCTATATTAGAGCCATCTTCTTTGAAGCGTTGTC
>Sequence_B
GGTAAGTGCTCTAGTACAAACACCCCCAATATTGTGATATAATTAAAATTATATTCATAT
TCTGTTGCCAGATTTTACACTTTTAGGCTATATTAGAGCCATCTTCTTTGAAGCGTTGTC
TATGCATCGATCGACGACTG

A.1.2 FASTQ

The FASTQ file format is an extension of the FASTA file format, which contains additional quality
information for every base in a nucleotide sequence.

Each entry in a FASTQ file is composed of four lines, where each line contains different types
of information. The first line starts with a sequence identifier (starting with ‘@”), followed by
optional descriptions. The second line contains the actual sequence. The third line oftentimes

only contains a '+’ and visually separates the sequence from the fourth line, which contains
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Phred quality scores (cf. Section 3.1.2.3) for every nucleotide using ASCII characters. An

example of a file in FASTQ format could look like this:

@Sequence_A

GGTAAGTCCTCTAGTACAAACACCCCCAATATTGTGATATAATTAAAATTATATTCATAT. .

+

ABBBBFFFFFFFGGGGGGGGGGHHHHHHHHHHGHHFGHHFHGHHHHHGGEHFCGGHDGFB. . .

@Sequence_B

GGTAAGTGCTCTAGTACAAACACCCCCAATATTGTGATATAATTAAAATTATATTCATAT. ...

+

AABBBFFFFFFBGGGGGGGGGGGGFEEGGHHHHHHHFHHFEGHFBEGFHHHHGHHHHHHH. . .

A.1.3 SAM / BAM

The Sequence Alignment/Map (SAM) format is a text-based format to store sequence alignments,

typically between a sequence of interest and a predefined reference. SAM files consist of a header

section and an alignment section. Header lines are marked by '@” and typically contain metadata

on the performed analyses. Each aligned fragment is represented by a row with at least eleven

columns, where the first eleven columns contain the information listed in Table A.1.

Column Field name
QNAME
FLAG
RNAME
POS
MAPQ
CIGAR
RNEXT
PNEXT

O o N O U B W N P

TLEN
SEQ
11 QUAL

—_
(e}

Description

Read name

Record’s flag

Reference name

1-based position on reference
Mapping quality

Compact Idiosyncratic Gapped Alignment Report of alignment
Reference of the next mate/segment
Position of the next mate/segment
Observed length of template

Read sequence

ASClII-encoded Phred base qualities

Table A.1 Description of fields in SAM format. Please refer to the following website for the full format specification:
https://samtools.github.io/hts-specs/SAMv1.pdf.

An example file in SAM format could look like this:


https://samtools.github.io/hts-specs/SAMv1.pdf
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@HD VN:1.3 SO:coordinate

@SQ SN:ref LN:45

@SQ SN:ref2 LN:40

reol 163 ref 7 30 8M4I4M1D3M = 37 39 TTAGATAAAGAGGATACTG *
ree2 0 ref 9 30 1S2I6M1P1I1P1I4M2I * O O AAAAGATAAGGGATAAA *
roo3 0 ref 9 30 5H6M * 0 0 AGCTAA *

roo4 0 ref 16 30 6MI4N1ISM * @ @ ATAGCTCTCAGC *

The binary equivalent to the SAM format is the Binary Alignment/Map (BAM) format.

A.1.4 VCF

The Variant Call Format (VCF) is the preferred format to represent variation data. VCF files are

tab-delimited text files where each variation is given in one row of eight predefined columns

(cf. Table A.2), followed by the mutation status in one or several samples. Metadata on the

performed analyses can be specified in header lines (starting with "##").

Column Field name
#CHROM
POS

ID

REF

ALT

QUAL
FILTER

R N3 O U x WON -

INFO

9 FORMAT

Description

Chromosome

Coordinate - the start of the variant

Identifier

Reference allele (in the reference genome)

Alternative allele (allele found in the sample under investigation)
Score - a quality score

PASS / FAIL - if the variant passed quality filters

Further information - keys in the INFO fields can be defined in
header lines above the table

Information about the following columns (e.g., containing GT/DP,
HET, HOM, RD, AD, AF)

Table A.2 Description of fields in VCF format. Please refer to the following website for the full format specification:
https://samtools.github.io/hts-specs/VCFv4.2.pdf.

An example file in VCF format could look like this:


https://samtools.github.io/hts-specs/VCFv4.2.pdf
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##fileformat=VCFv4.0

##source=myImputationProgramV3.1

##reference=1000GenomesPilot-NCBI36

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT Samplel Sample2

20 14370 rs6054257 G A 29 PASS NS=3;DP=14;AF=0.5;DB;H2 GT:GQ:DP:HQ
0|©:48:1:51,51 1|0:48:8:51,51

20 17330 . T A 3 ql0 NS=3;DP=11;AF=0.017 GT:GQ:DP:HQ 0]|0:49:3:58,50
0]1:3:5:65,3

20 1110696 rs6040355 A G,T 67 PASS NS=2;DP=10;AF=0.333,0.667;AA=T;DB
GT:GQ:DP:HQ 1|2:21:6:23,27 2|1:2:0:18,2

A.1.5 BED

The BED file format is used to describe genomic regions. In this format, a tab-delimited text file is
used that contains one feature per line. Each line contains at least three values: the name of the
chromosome (either just the number or with an additional 'chr’ prefix), the start position of the
feature in standard chromosomal coordinates, and the end position of the feature in standard
chromosomal coordinates. The BED format is, for example, used to describe regions of open
chromatin (cf. Section 4.3.2). When used to display genomic regions in a genome browser,
additional columns can be included. These columns contain additional layout information like
the feature’s display name and drawing options. An example file in BED format could look like
this:

chrl 213941196 213942363
chrl 213942363 213943530
chrl 213943530 213944697
chr2 158364697 158365864
chr3 127477031 127478198

A.1.6 SEG

The SEGmented data (SEG) file format is a tab-delimited text-based format that is used to
describe genomic locations. The first line contains a header describing the composition of each
entry. Besides an optional identifier, the chromosome number and the start and end of a region
of interest are given in terms of their genomic locations. When SEG files are used to store copy
number alterations, these are commonly provided as another column containing log-ratios of the
sample’s copy number in this genomic region in comparison to the copy number in a reference

sample or group. An example file in SEG format could look like this:
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ID chrom loc.start loc.end seg.mean
GenomeWideSNP_416532 1 51598 76187 -0.7116
GenomeWideSNP_416532 1 76204 16022502 -0.029
GenomeWideSNP_416532 1 16026084 16026512 -2.0424
GenomeWideSNP_416532 1 16026788 17063449 -0.1024
GenomeWideSNP_416532 1 17067742 17134834 -0.6868

A.2 Variant Effect Predictor

Ensembl’s Variant Effect Predictor (VEP) [220] is a variant annotation tool that categorizes
variants based on their predicted impact on protein function. VEP distinguishes a large variety
of so-called ‘consequence types’, i.e. different effects a mutation can have on the genomic location
or protein it occurs in. Figure A.1 gives an overview of the major consequence types considered

in our analyses.

<«———|ntergenic
Regulatory region / TF binding site —>

«—— Upstream (within 5 kb)
5 UTR —>|

Coding start wisesl«—— Start lost

Inframe deletion / insertion —> . .
«—— Complex indel (spans intron/exon border)

Splice site (1-3 bp into exon / 3-8 bp into intron) —»
<«—— Synonymous coding, e.g. CTC »CTA

Stop gained, e.g. TAC > TAA —>|
<«—— Non-synonymous coding, e.g. ATA=> ACA

Intronic ——>|

<«<— Frameshift coding, e.g. ATT>ATC T

Coding end  WEEM.«—— Stop lost, e.g9. TGA>TGG
3 UTR —|

<«—— Downstream

Figure A.1 Consequence terms in Variant Effect Predictor. Schematic overview on variont con-
sequences as annotated by Variant Effect Predictor with respect to their genomic location. Fig-
ure adaopted from [696]. Please refer to the following website for the complete specification:

https://www.ensembl.org/info/genome/variation/prediction/predicted_data.html.

A.3 Supplements for Graviton

Graviton is a general framework for the implementation of web-based, integrative, multi-omics
systems-biology tools, which serves as the basis for our specialized analysis pipelines (cf.
Section 4.1).


https://www.ensembl.org/info/genome/variation/prediction/predicted_data.html
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Identifier type Reference
RefSeq [268]

NCBI EntrezGene [270]
HGNC symbols and IDs [272]
Ensembl [273]
UniProt [274]
KEGG [282]
miRBase [278]

Table A.3 Excerpt of identifier types supported by Graviton. Identifier types for Homo sapiens supported by
Graviton and its derived fools. Please refer to https://genetrail2.bioinf.uni-sb.de/mappings.html for a complete

list of supported identifier types across species.

Statistic

(Log) mean fold quotient
Standard score (z-score)
Independent shrinkage t-test
Independent Student’s t-test
Welch's t-test

Wilcoxon- Mann-Whitney test
Signal-to-noise ratio

F-test

Pearson correlation
Spearman correlation
DESeq2

EdgeR

RUVSeq

Table A.4 Entity-level statistics provided by Graviton.
differential expression and methylation.

Reference
[391]
[392]
[393]
[394]
[317]
[395]
[396]
[397]
[343]
[481]
[697]
[698]
[699]

List of scoring methods for computation of scores of


https://genetrail2.bioinf.uni-sb.de/mappings.html
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A.3.1 RESTful APl usage

Using the RESTful API offered by Graviton, analyses can also be programmatically performed.
A code snipped as an example of running a Gene Set Enrichment Analysis using GeneTrail2 in

R is provided in Listing A.1.

A.4 Supplements for GeneTrail2

GeneTrail2 is a web service for the integrated analysis of genomics, transcriptomics,
miRNomics, and proteomics data sets (cf. Section 4.2). Overviews of the provided enrichment
methods, predefined biological categories, and alternative result visualizations are provided in
Sections A.4.1to A.4.3.

A.4.1 Enrichment algorithms

The enrichment algorithms provided by GeneTrail2 consist of methods for the computation of
the enrichment itself (cf. Table A.5) and methods for adjusting p-values in the case of multiple
hypothesis testing (cf. Table A.6).

Enrichment method Reference
Over-Representation Analysis [325]
Weighted Gene Set Enrichment Analysis [326]
Gene Set Enrichment Analysis [327]
Two Sample t-Test [393]
One-Sample ¢-Test [397]
Max-Mean Statistic [700]
Mean of Single Gene Statistic [701]
Median of Single Gene Statistic [701]
Sum of Single Gene Statistic [701]
Wilcoxon Rank-Sum Test [702]

Table A.5 Enrichment algorithms provided by GeneTrail2. This table lists the enrichment algorithms provided by
the web service and their corresponding publications.
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#request session
session.response <- GET("http://localhost:8080/Graviton/api/session")
session.id <- content(session.response)$session

#upload gene expression file

gene.expression.file <- "<path to file>"

upload.url <- paste@("http://genetrail2.bioinf.uni-sb.de/api/upload/matrix?
session=", session.id)

upload.response <- POST(upload.url,
body=1list(file=upload_file(gene.expression.file)), encode="multipart')
gene.expression.resourceld <- content(upload.response)$results$results$id

#define sample and reference set
sg <- toJSON("<list of sample names>")
rg <- toJSON("<1list of reference names>")

#setup scoring
scoring.url <- paste@("http://genetrail2.bioinf.uni-sb.de/api/job/setup/scoring?
session=", session.id)
job.setup.response <- POST(scoring.url,
body=1list (method="1independent-shrinkage-t-test"',
sg=sg, rg=rg, filel=gene.expression.resourceld),
encode="'form')

#run scoring
job.start.response <- GET(paste0®("http://genetrail2.bioinf.uni-sb.de/api/job/start?
session=", session.id))

# query result

job.query.response <- GET(paste0®("http://genetrail2.bioinf.uni-sb.de/api/job/query?
session=", session.id))

scores.resource.id <- content(job.query.response)$results$scoress$id

#setup gsea
gsea.url <- pasted("http://genetrail2.bioinf.uni-sb.de/api/job/setup/gsea?
session=", session.id)

gsea.setup.response <- POST(gsea.url,
body=list(significance=0.05, adjustment="benjamini_yekutieli",
categories= "[\"9606-gene-kegg-pathways\"]",
minimum=2, maximum=700, adjustSeparately=T,
input=scores.resource.id), encode='form')

gsea.start.response <- GET(paste®("http://genetrail2.bioinf.uni-sb.de/api/job/start?

session=", session.id))
gsea.query.response <- GET(paste0("http://genetrail2.bioinf.uni-sb.de/api/job/query?
session=", session.id))

gsea.enrichment.id <- content(gsea.query.response)$results$enrichments$id

#access the results

enrichment.results <- GET(paste0("http://genetrail2.bioinf.uni-sb.de/api/resource/",
"enrichment/", gsea.enrichment.id, "?session=", session.id,
"&categoryName=", "KEGG_-_Pathways",
"&significance=", "0.05"))

Listing A.1  Using Graviton RESTful APl. Code example of how fo run a GeneTrail2 enrichment analysis in R.
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P-value adjustment method Reference
Bonferroni [306]
Sidak [307]
Holm [308]
Finner [309]
Benjamini-Hochberg [310]
Benjamini-Yekutieli [311]

Table A.6 P-value adjustment methods provided by GeneTrail2. This table lists the p-value adjustment methods
provided by the web service and their corresponding publications.

A.4.2 Predefined biological categories

GeneTrail2 provides more than 46,000 biological categories collected from over 30 databases (cf. Table A.7).
Moreover, custom user categories can be uploaded to GeneTrail2 in Gene Matrix Transposed (GMT) file
format (cf. Section A.4.2.1).

Type of category Provided databases
Ontology and phenotype Gene Ontology [424], National Institut on Aging DB [703]

Pathways BioCarta [704], KEGG [282], National Cancer Institut DB
[705], PharmGKB [518], Reactome [425], Small Molecule
Pathway Database [706], WikiPathways [426]

Genomic positions HG19 GRCh37 [707], HG19 GRCh38 [708]

Targets DrugBank [427], TRANSFAC [539], mirDB [428], mi-Records
[709], miRTarBase [538], StarBase [710], PicTar [711], Tar-
getScan [712]

Collections and others ConsensusPathDB [713], Protein families DB (Pfam) [714]

Table A.7 Biological categories predefined in GeneTrail2. This table lists the provided types of categories
and their respective databases, including references to the corresponding publications.  Please refer to
https://genetrail2.bioinf.uni-sb.de/categories.html for a complete list of supported databases across species.

A.4.2.1 GMT file format

In the Gene Matrix Transposed (GMT) file format, every line represents a category (i.e., a gene set). Each
line is divided into columns by tab characters. The first column corresponds to the name of the category
and the second column to an optional description or URL. Each subsequent column defines a category
member [415]:

CategoryA http://test.url/A GeneA GeneB GeneC GeneD
CategoryB http://test.url/B GeneA GeneD
CategoryC http://test.url/C GeneD GeneE GeneH


https://genetrail2.bioinf.uni-sb.de/categories.html
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A.4.3 Additional enrichment views

GeneTrail2 provides various views for the enrichment results. Besides the default view (cf. Figure 4.4) of a
list of enriched or depleted pathways, GeneTrail2 also provides an inverse enrichment view (cf. Figure A.2).
Here, differentially expressed genes are listed in decreasing order of their score of deregulation. For
each gene, the pathways and gene sets the gene belongs to are listed and they can be investigated with
respect to their enrichment status. For the integrative analysis of enrichment results from multiple omics
data sets, GeneTrail2’s comparative enrichment view can be used (cf. Figure A.3). This specialized view
allows comparing several enrichment results side-by-side. Currently, there are two modes for comparison:
intersection and union. The intersection mode only displays categories that are significantly enriched in
all performed enrichment analyses. The union mode displays any category that is significantly enriched
at least once. For the visual analytics-based investigation of dependencies between enriched or depleted
categories, GeneTrail2 also offers a dependency wheel visualization, which provides a circular representation
of altered categories with connecting ribbons indicating the number of shared genes between two categories
(cf. Figure A .4).

Enrichment Inverse enrichment Similarity heatmap
Show | 25 4 entries Search:
Name Contained in
AIMP2 4 HALLMARK MYC TARGETS V2 - 5.476e-4

4 HALLMARK MYC TARGETS V1 - 1.509e-45

BIRC5 4 GO PROTEIN SUMOYLATION - 1.152e-4

CCT2 4 HALLMARK MYC TARGETS V1 - 1.509e-45
CCT4 4 HALLMARK MYC TARGETS V1 - 1.509e-45
CCT5 4 HALLMARK MYC TARGETS V1 - 1.509e-45
CCT17 4 HALLMARK MYC TARGETS V1 - 1.509e-45
CSTF2 4 HALLMARK MYC TARGETS V1 - 1.509e-45
EIF281 4 HALLMARK MYC TARGETS V1 - 1.509e-45

Figure A.2 Inverse enrichment view. For each gene in the considered set, all significantly enriched (or depleted)
categories are listed with their corresponding adjusted p-values. Results for the data set discussed in Section 4.2.3.

A.5 Supplements for RegulatorTrail

RegulatorTrail is a web service for the identification of aberrant transcriptional regulators that are involved
in pathogenic processes (cf. Section 4.3). Additional information for the two case studies we used

RegulatorTrail for is provided in Sections A.5.1 and A.5.2.

A.5.1 Breast cancer case study

In order to compare the capabilities of REGGAE with competing methods, we applied REGGAE and seven
other methods (CSA, RIF1, RIF2, TDD, TED, TFactS, and TFRank, see Section 4.3.1) to a breast cancer data
set and investigated whether we could identify key regulatory factors involved in breast cancer initiation

and progression.
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i= WikiPathways
Number of significant categories: 67

Show 25 v entries Search:| Apoptosis

Name miRNA_top_10_percent_up_regulated.ora.zip mRNA.gsea.zip

Apoptosis- 4 1.65642e-7 4 0.00856156 More...
related
network
due to
altered
Notch3 in
ovarian
cancer

Apoptosis 4 0.0172814 4 0.0000322673 More...
Modulation

and

Signaling

Apoptosis 4 0.00158394 4 0.00005

a
~
©
©

2 More...

Showing 1 to 3 of 3 entries (filtered from 67 total entries)

Previous Next

Figure A.3 Comparative enrichment view. Exemplary result of a comparative enrich-
ment analysis  (intersection  mode). Categories enriched for both analyzed data sets
(MiRNA_top_10_percent_up_regulated.ora.zip and mRNA.gsea.zip) are listed with
their respective adjusted p-values. Details on the analysed data sets can be found here:

https://genetrail2.bioinf.uni-sb.de/help?topic=integrative_analysis_wilms_mrna
_mirna.
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Figure A.4 Dependency wheel visualization. Exemplary result of a dependency wheel visualization for data set

discussed in Section 4.2.3 and enrichment of NIA phenotypes [703]. The width of connecting ribbons indicates the
number of shared genes between two categories.


https://genetrail2.bioinf.uni-sb.de/help?topic=integrative_analysis_wilms_mrna_mirna
https://genetrail2.bioinf.uni-sb.de/help?topic=integrative_analysis_wilms_mrna_mirna
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A.5.1.1 Sample groups

In this section, we describe the breast cancer data set published by Heiser ef al. [489]. The data set contains
gene expression profiles of 46 breast cancer cell lines. We obtained the status of the estrogen receptor (ER)
for each cell line from a study by Neve et al. [490]. After the assignment, we obtained five distinct sample
groups (cf. Table A.8).

Group  Description Samples
1 Estrogen-receptor 600MPE, BT474, BT483, CAMA1, HCC1428, LY2, MCF7,
positive (ER+) MDAMB134VI, MDAMB175VIl, MDAMB361, MDAMB415,
T47D, UACC812, ZR751, ZR7530, ZR75B
2 Estrogen-receptor AU565, BT20, BT549, HCC38, HCC70, HCC202, HCC1143,
negative (ER-) HCC1187, HCC1937, HCC1954, HCC2185, HCC3153, HS578T,

MCF10A, MCF12A, MDAMB157, MDAMB231, MDAMB453,
SKBR3, SUM225CWN, SUM1315MO2

3 Presumably SUMS52PE
estrogen-receptor
positive (ER[+])

4 Presumably SUM149PT, SUM159PT
estrogen-receptor
negative (ER[-])

5 No information 184B5, HCC1395, HCC1419, HCC1806, MCF10F, SUM185PE
available (NA)

Table A.8 Sample groups for REGGAE breast cancer case study. In all analyses presented in Section 4.3.3, we
compared ER+ (Group 1) fo ER- cells lines (Group 2).

A.5.1.2 Parameters and results

Correlation set analysis (CSA): For the Correlation Set Analysis [460], we used the implementation
provided by the RegulatorTrail web service (cf. Section 4.3). For the five lists containing upregulated genes,
we calculated an upper-tailed p-value. All p-values were estimated using a permutation test with 1,000,000

random permutations and an additional pseudo-count.

REGGAE: For the REGGAE analysis, we used the implementation provided by the RegulatorTrail web
service (cf. Section 4.3). For each of the five lists, we sorted the lists decreasingly (with respect to their
t-scores). As described in Section 4.3.3, we first computed Pearson’s correlation coefficients between all
genes and all associated regulators, and based on this information, we built the associated regulator lists
(sorted decreasingly with respect to their association scores). The resulting p-values are adjusted using the
Benjamini and Yekutieli method [311]. Finally, we performed an enrichment analysis using the Wilcoxon
rank-sum test to detect the most influential regulators. All REGGAE analyses were performed using 1,000

random bootstrap replications.

RIFT and RIF2: For the RIF1 and RIF2 analysis [459], we used the implementation provided by the
RegulatorTrail web service (cf. Section 4.3). We used Pearson’s correlation coefficients to compute the
differences in correlation (between the two groups of interest) for each regulator and its target genes in the

analyzed gene lists and the fold changes to assess differential expression.

TDD: For the TDD analysis [457], we implemented a Python script that calculates the respective statistic.
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TED: In order to perform the analysis proposed by Yang et al. [457], we used the binomial test
implemented in the RegulatorTrail web service (cf. Section 4.3). As a reference set, we used all genes
that are targeted by a regulator in the used collection of RTIs. The resulting p-values are adjusted using
the Benjamini and Yekutieli method [311].

TFactS:  In order to perform the analysis proposed by Essaghir et al. [456], we used the hypergeometric
test implemented in the RegulatorTrail web service (cf. Section 4.3). As a reference set, we used all genes
that are targeted by a regulator in the used collection of RTIs. The resulting p-values are adjusted using
the Benjamini and Yekutieli method [715].

TFRank: For the TFRank analysis [461], we used the prototype implementation provided on the authors’
website (http://web.tecnico.ulisboa.pt/aplf/code/tfrank/). We used the unweighted
network given by our collection of RTIs and the standard parameters also provided on the authors’ website.

For each method, the complete results for the five gene sets described in Section 4.3.3, as well as their

respective aggregated results can be accessed via the following link:

Click here to access / download the supplementary file from

www.lara-schneider.de/dissertation/REGGAE_BRCA_Case_study_full_results.xlsx

Method Runtime [s]
CSA* 450.27 (£ 78.76)
REGGAE** 174.98 (£ 1.69)
REGGAE (without bootstrapping) 23.40 (£ 0.36)
RIF1 23.60 (£ 0.28)
RIF2 23.85 (£ 0.10)
TDD 14.86 (£ 0.63)
TED 658.20 (+ 29.80)
TFactS 42.37 (£ 0.23)
TFRank 116.74 (4 4.22)

Table A.9 Runtime comparison for top 250 upregulated genes in REGGAE breast cancer case study. Note:
Runtimes were obtained on an Intel Core i7-3770 processor. *CSA analysis was conducted using 1,000,000
permutations. *REGGAE analysis was performed using 1,000 bootstrap runs. Please note that a major part of
the computation fime of REGGAE (without bootstrapping) is spent on reading-in the large database of regulator-
target interactions.


http://www.lara-schneider.de/dissertation/REGGAE_BRCA_Case_study_full_results.xlsx
http://www.lara-schneider.de/dissertation/REGGAE_BRCA_Case_study_full_results.xlsx
http://www.lara-schneider.de/dissertation/REGGAE_BRCA_Case_study_full_results.xlsx
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A.5.2 Wilms tumor case study

In a second case study, we used REGGAE to identify transcriptional regulators that potentially explain
the differences between blastemal and non-blastemal Wilms tumors (cf. Section 4.3.4.2). To this end, 33
Wilms tumor samples were analyzed (cf. Table A.12). The following section contains the list of the top 50
regulators identified by REGGAE (cf. Table A.10) and a link to download all identified regulators.

Upregulated genes Downregulated genes

Regulator P-value Regulator P-value
RUNX1 (-) 1.22.107180 NR2F2 () 7.83-107116
TCF3 (+) 5.96 - 10163 MAX (+) 3.27-107105
NR2F2 (+) 6.19-107163 TCF3 (-) 3.12-107%
MAX (=) 3.54-1071%7 RUNX1 (+) 1.78-107%
SFPQ (+) 1.06 - 107136 CREBBP (-) 8.51-10778
ELF1 (-) 4.60-107134 ELF1 (4) 1.09 - 1076
KDMS5B (+) 1.68 -10~131 SUMO2 (-) 4.03-1074
HDAC1 (+) 9.85-1071% CREB1 (-) 4.42-10770
SIN3A (+) 2.90-10"123 SMC3 (-) 8.33-1070
CREBI1 (+) 5.84.10-123 UBTF (-) 9.24-1076!
SMCS3 (+) 9.37-10~120 RAD21 (-) 4.72-107%°
CREBBP (+) 7.36-10~119 HDAC1 (-) 1.03 - 10761
SUMO2 (+) 5.37-107115 SMARCC2 (-) 3.84-10761
RAD21 (+) 7.93-10~113 SFPQ (-) 5.60 - 100
FOXP1 (-) 3.66 - 10104 FOXP1 (+) 8.87-10~%
STAT1 (-) 8.03-10-104 KDMS5B (-) 5.10- 10756
UBTF (+) 537107102 STAT1 (+) 2.86-1075°
ZNF384 (+) 297107101 SMAD3 (-) 1.13-10~
SMARCC2 (+) 1.08-10~%* SIN3A (-) 1.99 -10~>0
ERG (-) 2.55-10~% TAF7 (-) 1.78-10~%
TAF7 (+) 6.93-10=% ZNF384 (—) 222-107%
SPI1 (-) 4.17-10% SPI1 (+) 6.10-10~%
HDAC2 (+) 4.41-1078 CEBPB (+) 1.22-107%6
SMAD3 (+) 1.26-1077° ERG (+) 2.65-10738

HOXA4 (+) 2.65-1077° RUNX3 (4) 9.67-107%
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SIX5 (+) 3.44-1077° CTCF (-) 3.51-1073°
CEBPB (-) 2.90-1070 SIX5 (—) 2601073
WDR5 (+) 3.43-107%6 HOXA4 (+) 5.38-10733
KDM4A (+) 1.07 - 10764 FOSL1 (4) 9.67-10%
BMI1 (+) 1.94 10764 STATS5A (+) 3.04-10731
SP4 (+) 2.06 1070 GABPA (-) 4811073
YY1 (+) 3.37-10760 BATF (+) 8.99 10731
BATF (-) 1.39 - 1075 HDAC2 (-) 248-10730
CTCF (+) 2.68-10753 YY1 (-) 5.81-10730
RUNX3 (-) 3.57-107°1 VDR (+) 1.56-107%
STAT5A () 7.98 10751 NR2F1 (-) 212-107%
HOXAG6 (+) 1.82-10~%0 NFATC1 (+) 1.25-10728
MTA3 (+) 8.70-10~% IKZF1 (+) 7.73-10728
GABPA (+) 4.30-10746 FOSL2 (+4) 52910726
CTBP2 (+) 8.20- 10746 CTBP2 (-) 1.48-10724
SMARCC1 (+) 3.08-107% PPARD (+) 3.03-1072
FOSL2 (-) 221-10~# KDM4A (-) 4,07 -10~%
KLF1 (-) 6.81-10~# MTA3 (-) 9.88 1072
NFATC1 (-) 8.68- 104 EP300 () 1.23-10723
MAFK (-) 2.56-10743 HOXAG6 (—) 2.32-107%
VDR (-) 6.54-10743 KLF1 (+) 3.00-10723
EP300 (+) 7.79-10~% SP4 () 6.82-1072
ZBTB33 (+) 2.59-107%° MAFK (+4) 1.17-10722
NR2F1 (+) 5.83-10~% WDRS5 () 1.80-10722
DUX4 (-) 433107 IRF4 (+) 1.38-1072!

Table A.10  Aggregated REGGAE results for upregulated and downregulated genes, respectively. Each ranking
was obtained via a sum-of-rank aggregation of the REGGAE results for input lists of the following sizes: 250, 500,
750, and 1,000, as well as all significantly upregulated (538) and downregulated (317) genes (with p-value < 0.01).
The colors of the gene symboils in the first and third column indicate whether the mean correlation coefficient
between a regulator and its target genes is positive (+) or negative (-).
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The complete list of identified regulators can be accessed via the following link:

Click here to access / download the supplementary file from

www.lara-schneider.de /dissertation /REGGAE_Wilms_Case_study_full_results.xlsx

A.6 Supplements for NetworkTrail

The NetworkTrail web service enables users to detect the most deregulated pathways and subgraphs in
biological networks (cf. Section 4.4). The resulting subgraphs can be downloaded in SIF and NA format,
which can then be visualized in a variety of network visualization tools. Details on these file formats are

provided in the following section.

A.6.1 SIF and NA file formats

The Simple Interaction Format (SIF) is a text-based format that builds graphs from a list of interactions.
Each line in the file describes an interaction, consisting of a source node, the edge type (e.g., ‘activation” or

‘inhibition”), and one or more target nodes:

nodel typeA node2
node2 typeB node3 node4
node3 typeA node4

In order to provide additional information about the nodes in a graph, Node Attribute (NA) files can be
used. An NA file begins with the name of the attribute in the first line. Each of the remaining lines contains
the identifier of a node followed by =" and the value of that attribute. By this, one can, for example, assign

weights to the network nodes:

nodeWeights

nodel = 0.82
node2 = -1.3
node3 = -0.42
node4 = 2.35

A.7 Supplements for DrugTargetinspector

DrugTargetInspector (DTI) is an interactive assistance tool that provides rich functionality for the
integrative analysis of tumor-specific genomics, transcriptomics, and proteomics data sets (cf. Chapter 5).

A.7.1 Provided functionality

The main results page of DTI provides a variety of options for the in-depth analysis of the uploaded data
sets. Many of those can be accessed via the side panel. Figure A.5 provides an overview of the side

panel content. One of the in-depth analyses provided here is the subgraph analysis, in which the most


http://www.lara-schneider.de/dissertation/REGGAE_Wilms_Case_study_full_results.xlsx
http://www.lara-schneider.de/dissertation/REGGAE_Wilms_Case_study_full_results.xlsx
http://www.lara-schneider.de/dissertation/REGGAE_Wilms_Case_study_full_results.xlsx
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deregulated subnetworks rooted in drug targets of interest are computed based on the KEGG regulatory
signaling network (cf. Section 5.2.3.5). To this end, an Integer Linear Programming formulation is used,
which is based on the ‘Subgraph ILP’ described in Section 3.3.3.3 and Table 3.1. In its adapted formulation
for the use in DrugTargetInspector, a specific drug target ¢ is fixed to be the root node, see Table A.11 for
the complete formulation.

Objective
max ¥ w; - x; (A1) Maximize the overall deregulation of the
xeB" subgraph
Subject to
Z xi=k (A.2) Ensures that the subgraph is of size k
i
Z yi=1 (A.3) Ensures thata single root node is selected
i
Ensures that the considered molecular
yr=1 (A4)  drug target t is the root node
B (A5) Ensures that the designated root node is

part of the selected subgraph

Xi—yi— ), <0 Vi (A.6) Ensures connectivity of the subgraph
jeln(i)

Y (xi—yi)— ). x<|C|—1 VC (A7) Prevents disconnected cycles
ieC jeIn(C)

Table A.11 Subgraph ILP formulation. The objective function and the respective constraints are given in the first
column, the second column provides a numbering for reference in the text, and the third column describes the
purpose of the respective formula. The variable C describes cycles formed by the selected nodes.

A.7.2 Wilms tumor data set

In one of the presented case studies for DrugTargetInspector, we investigated Wilms tumor samples of
several subtypes and analyzed their transcriptomic profiles to identify deregulated drug targets and altered
biological pathways that might inform the selection of adjuvant treatment options (cf. Section 5.3.1). For
our analysis, we used a gene expression data set of 37 Wilms tumor samples of different subtypes (cf.
Table A.12).

A.8 Supplements for ClinOmicsTrail®®

ClinOmicsTrail® is a comprehensive visual analytics tool for breast cancer decision support that
provides a holistic assessment of standard-of-care targeted drugs, candidates for drug repositioning, and
immunotherapeutic approaches (cf. Chapter 6). In the following sections, we provide supplementary
information on ClinOmicsTrail’®’s functionality and additional results for the case studies discussed in
Section 6.5.
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A\ Disclaimer

This resource is intended for research use
only, not for diagnostic or clinical
purposes. Information contained on this
website is not a substitute for a doctor's
medical judgment or advice. We do NOT
guarantee for any prediction.

For physicians:

Please consider the Clinical Decision
Guidelines by the European Society for
Medical Oncology or the respective
resource approved for your country.

™ Help

The sortable table contains information on all
significantly deregulated genes, which also
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£ Download score file

& Download annotated .vcf file

X Download ?
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X Download ?
@ Results ?
& Pharmacogenomics ?
List of mutated genes in dataset, for which
pharmacogenomic predictions are available.
Click on ¥ to display details.
EGFR >
SMARCB1 >
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consequence terms can be found here.

Statistics

Figure A.5 Overview of side panel content on DrugTargetinspector’s results page. The side panel on DII's results
page (middle) consists of eleven foldable sub-panels, which unfold when being clicked on. The content of the
respective unfolded sub-panels is shown with color-coordinated borders matching their folded counterparts.
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Figure A.6 Wilms tumor samples’ expression of drug targets. Heat map of Wilms tumor samples and a consensus
set of deregulated drug targets in DrugTargetinspector. Colored cells in the heat map correspond to significantly
upregulated drug targets in the respective samples. White cells indicate that the corresponding drug target was
noft significantly upregulated in the respective sample.
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Histologic phenotype Samples

Blastema (high risk) WS1030TA, WS1030TB, WS1063T2, WS1073TA3,
WS1098TA4, WS1106TA3, WS29T, WS38T,
WS601TB3_1, WS746T1, WSS808TB2, WS881Ta,
WS910Tli, WS910Tre, WS914TA4, WS917T,

WS958T
Diffuse anaplasia (high risk) WS930T, WS930Trez
Stromal type (intermediate risk) WS904T
Focal anaplasia (intermediate risk) WS953T
Epithelial type (intermediate risk) WS991T
Triphasic (intermediate risk) WS1002T, WS1018T (re), WS906T, WS919T
Regressive (intermediate risk) WS927T, WS968T, WS98ST, WS994T, WS933T
Completely necrotic (low risk) WS800T, WS975T
Normal WS1018Ni_1, WS1018Ni_2, WS968Ni, WS878Ni

Table A.12  Wilms tumor data set. Histologic phenotypes and associated risk of relapse for Wilms fumor samples
used in DrugTargetinspector case study. For the analysis using REGGAE (cf. Section 4.3.4.2), the samples prinfed in
bold were used.

A.8.1 Pathway activity measure

ClinOmicsTrail*® offers functionality to assess pathway activities for a set of 20 core breast cancer-relevant
pathways (cf. Section 6.4.2.2). The gene sets representing each of those pathways are discussed in
Section A.8.1.1 and an overview of the pathway activity distribution over different molecular breast cancer
subtypes is shown in Section A.8.1.2.

A.8.1.1 Metapathways for pathway activity computation

For the pathway activity computation approach described in Section A.8.1.2, we consider a set of 20
‘metapathways’. These metapathways are gene sets that we obtain by taking the union of relevant gene sets
from KEGG [282], GO [424], Reactome [283], and WikiPathways [628]. For an overview of the considered

gene sets and their assignment to the metapathways, please download the supplementary file linked below:

Click here to access / download the supplementary file from

www.lara-schneider.de /dissertation /ClinOmicsTrail_Metapathways.xlsx

A.8.1.2 Computation of pathway activity measure

Figure A.7 gives an overview of computed pathway activities for the TCGA breast cancer cohort, grouped

according to their pathological subtypes.


http://www.lara-schneider.de/dissertation/ClinOmicsTrail_Metapathways.xlsx
http://www.lara-schneider.de/dissertation/ClinOmicsTrail_Metapathways.xlsx
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Figure A.7 Subtype-specific pathway activities. Boxplot for pathway activities TCGA breast cancer samples.
Scores of differential gene expression were computed as z-scores comparing a fumor sample against the cohort
of normal samples. Samples color-coded based on subtype given in data set. Blue: HER2-enriched, green: luminal
B, : luminal A, red: basal-like.

A.8.2 Rule-based drug assessment

ClinOmicsTrail’® performs an assessment of a variety of standard-of-care drugs by considering several
classes of genes, proteins, and pathways that might promote or hinder the effectiveness of a drug. For a
set of 17 FDA-approved, standard-of-care breast cancer drugs (cf. Figure 6.7), ClinOmicsTrailb® assesses
the genomic and transcriptomic status of respective molecular drug targets, drug-processing enzymes,
resistance-promoting factors, and associated pathways. Since the respective categories reflect different
mechanisms that might (de)sensitize a tumor with regard to the considered drug, different clinical,
genomic, and transcriptomic traits have to be considered in each case. The following figures provide an
overview of the rule-based assessment applied for biomarkers (Figure A.8), drug targets (Figure A.9),
ADME genes (Figure A.10), transporters (Figure A.11), and pathways (Figure A.12).
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Figure A.8 Biomarker evaluation for rule-based drug assessment. The green checkmark symbol indicates that
there seems to be no impediment for the efficacy of the drug of interest with respect to the considered biomarker.
The blue minus symbol denotes that there might be some impediments and the red cross symbol highlights that
there seem fo be contraindications to the successful freatment with the considered drug. Symbols in parentheses
mean that there are inconsistencies in the data.
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Figure A.9 Drug target evaluation for rule-based drug assessment. The green checkmark symbol indicates that
there seems to be no impediment for the efficacy of the drug of interest with respect to the considered drug target.
The blue minus symbol denotes that there might be some impediments and the red cross symbol highlights that
there seem to be contraindications to the successful freatment with the considered drug. Symbols in parentheses
mean that there are inconsistencies in the data.

*Severe mutations = {frameshift, stop lost, stop gained, start lost}
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Figure A.10 Drug-processing enzyme evaluation for rule-based drug assessment. The green checkmark symbol
indicates that there seems to be no impediment for the efficacy of the drug of interest with respect to the
considered drug-processing enzyme. The blue minus symbol denotes that there might be some impediments
and the red cross symbol highlights that there seem fo be contraindications to the successful treatment with the
considered drug. Symbols in parentheses mean that there are inconsistencies in the data.

*Severe mutations = {frameshift, stop lost, stop gained, start lost}
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They should not be score
up-regulated, except
for special cases. ** >y *O
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Figure A.11 Transporter evaluation for rule-based drug assessment. The green checkmark symbol indicates that
there seems to be no impediment for the efficacy of the drug of interest with respect to the considered efflux
transporter. The blue minus symbol denotes that there might be some impediments and the red cross symbol
highlights that there seem to be contraindications to the successful freatment with the considered drug. Symbols
in parentheses mean that there are inconsistencies in the data.

*Severe mutations = {frameshift, stop lost, stop gained, start lost}

**Special cases: tamoxifen, lapatinib, and abemaciclib that inhibit certain tfransporters
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Figure A.12 Pathway activity assessment for rule-based drug assessment. The green checkmark symbol indicates
that there seems to be no impediment for the efficacy of the drug of interest with respect to the considered
pathway’s activity. The blue minus symbol denotes that there might be some impediments and the red cross
symbol highlights that there seem to be confraindications to the successful freatment with the considered drug.
Symbols in parentheses mean that there are inconsistencies in the data. Low: pathway activitiy score in [0, 0.4),
medium: pathway activity score in [0.4,0.6], high: pathway activity score in (0.6, 1].

A.8.3 Deficient repair machinery and tumor mutational burden

A high tumor mutational load in a cancer sample is likely to be fostered by deficiencies in the DNA repair
machinery [6]. To further underline the connection between TMB and an impaired DNA repair machinery
we compared the 100 TCGA samples with the highest TMB to the 100 samples with the lowest TMB and
tested for enrichment in a set of 52 repair-related biological categories (cf. Section 6.5.3). Additional details
on the considered gene sets and their originating databases can be found in this supplementary file:

Click here to access / download the supplementary file from

www.lara-schneider.de /dissertation /ClinOmicsTrail_Repair_gene_enrichment.xIsx

Table A.13 lists the 32 significantly enriched categories.

Name Number Expected Adjusted p-
of hits score value

GO Biological Process nucleotide excision repair (5) 62 14.9813 1.02E-13

GO Biological Process regulation of DNA repair (5) 46 10.2276 3.40E-11

Reactome SUMOylation of DNA damage response and repair 43 9.6514 1.67E-10

proteins

GO Biological Process non recombinational repair (5) 34 7.20254 7.96E-9

GO Biological Process double strand break repair via nonhomol- 31 6.48229 3.25E-8

ogous end joining (6)

GO Biological Process global genome nucleotide excision repair 31 7.49064 3.42E-7
(6)


http://www.lara-schneider.de/dissertation/ClinOmicsTrail_Repair_gene_enrichment.xlsx
http://www.lara-schneider.de/dissertation/ClinOmicsTrail_Repair_gene_enrichment.xlsx
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GO Biological Process postreplication repair (5)

GO Biological Process double strand break repair via synthesis

dependent strand annealing (7)
GO Biological Process base excision repair (5)
KEGG Nucleotide excision repair

GO Biological Process regulation of double strand break repair
(6)

GO Biological Process transcription coupled nucleotide excision
repair (6)

GO Cellular Component DNA repair complex (4)
GO Biological Process positive regulation of DNA repair (5)
GO Biological Process mismatch repair (5)

GO Biological Process nucleotide excision repair DNA incision

(6)

Reactome Gap-filling DNA repair synthesis and ligation in TC-
NER

KEGG Base excision repair

Reactome Recruitment and ATM-mediated phosphorylation of
repair and signaling proteins at DNA double strand breaks

KEGG Mismatch repair
GO Biological Process interstrand cross link repair (5)

GO Biological Process DNA synthesis involved in DNA repair
(5)

GO Biological Process regulation of double strand break repair

via homologous recombination (7)
WikiPathways Mismatch repair

Reactome Transcription-Coupled Nucleotide Excision Repair
(TC-NER)

GO Biological Process nucleotide excision repair DNA gap
filling (6)

GO Biological Process positive regulation of double strand break
repair (6)

Reactome Mismatch repair (MMR) directed by MSH2:MSH3
(MutSbeta)

Reactome Mismatch repair (MMR) directed by MSH2:MSH6
(MutSalpha)

30

22

26

25

22

32

23

21

19

19

25

17

27

13

17

10

10

17

10

7.20254

3.74532

5.90608

5.90608

4.60962

9.50735

5.18583

5.04178

4.32152

4.75368

7.92279

4.17747

9.9395

2.59291

4.89773

1.87266

2.01671

0.864305

5.90608

2.30481

1.00836

1.44051

1.44051

4.54E-7

4.55E-7

1.42E-6

3.99E-6

4.04E-6

4.04E-6

5.16E-6

3.29E-5

5.23E-5

1.36E-4

1.37E-4

2.98E-4

4.65E-4

5.24E-4

1.16E-3

2.55E-3

3.71E-3

4.21E-3

5.48E-3

6.75E-3

6.75E-3

6.92E-3

6.92E-3
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GO Biological Process nucleotide excision repair DNA damage 11 3.02507 9.71E-3
recognition (6)

GO Cellular Component mismatch repair complex (4) 7 1.15241 9.71E-3
Reactome Gap-filling DNA repair synthesis and ligation in GG- 9 2.30481 1.78E-2
NER

Table A.13 Significantly enriched gene sets from GeneTrail2 Over-Representation Analysis of 52 DNA and
mismatch repair machinery-related gene setfs. The database a respective gene set originated from is given as
a prefix to the name of the gene set in the second column. P-values were FDR-adjusted to a significance level of
0.05.
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A.8.4 Neoepitope prediction

Besides checkpoint blockade, personalized cancer vaccines are another promising approach to cancer
immunotherapy [88, 89]. Cancer vaccines target overexpressed or altered proteins and HLA presented
peptides sequences (neoepitopes) that resulted from somatic mutations uniquely characterizing the
patient’s tumor. They are used to prime T cells to recognize these characterizing antigens and destroy the
presenting tumor cells. As the neoepitopes are dependent on both the patient’s tumor mutations and HLA
genotype, cancer vaccines have to be individually designed. Thus, ClinOmicsTrail® offers functionalities to
predict potential neoepitope vaccine targets based on the identified somatic mutations and HLA genotype
of a patient using the immunoinformatic toolbox ImmunoNodes [647]. ImmunoNodes provides various
classes of epitope prediction methods to compute (neo-)epitopes and to assess their affinity to the patient’s
set of HLA alleles. Details on the 13 methods for neoepitope prediction provided by ClinOmicsTrail>® are
listed in Table A.14.

Method Version Class Reference
ARB 1.0 MHC-I binding [716]
BIMAS 1.0 MHC-I binding [717]
Comblib 2008 1.0 MHC-I binding [718]
NetMHC 4.0 MHC-I binding [684]
NetMHCII 22 MHC-II binding [719]
NetMHClIIpan 3.1 MHCH-II binding [720]
NetMHCpan 3.0 MHC-I binding [719]
PickPocket 1.1 MHC-I binding [721]
SMM 1.0 MHC-I binding [722]
SMMPMBEC 1.0 MHC-I binding [723]
SVMHC 1.0 MHC-I binding [724]
SYFPEITHI 1.0 T-cell epitope [725]
UniTope 1.0 T-cell epitope [726]

Table A.14 Neoepitope prediction method provided by ClinOmicsTrail®®. This table contains the 13 neoepitope
prediction methods from ImmunoNodes employedin ClinOmicsTrail®®. The first column contains the fools’ names in
alphabetical order, the second column the respective version number, the third column the class of the prediction,
and the last column the references to the corresponding publications. Table adapted from [647].

A.8.5 Case studies

The following sections contain additional information and results for the analysis of primary tumor samples

for the three exemplary TCGA breast cancer samples discussed in Section 6.5.
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A.8.5.1 Case Study I: TCGA-AN-AOXN

TCGA sample of a 68-year-old (presumably postmenopausal) woman with stage III breast cancer of TNM
stage T2/N2/MO0. The ER status is negative, PR is positive, and HER2 is not amplified. The tumor sample
was predicted to be of luminal A subtype by the PAM50 classifier [727].
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Figure A.13 Sunburst chart overview for TCGA-AN-AOXN. Breast cancer-relevant driver genes and pathways are
displayed in a circular manner. Genes are grouped according fo the pathways they are most characteristic
for. The plot is organized in rings, where the innermost ring displays pathway activities, the second ‘inner’ ring
corresponds to gene expression. Depending on the data provided by the user, information on copy number
alterations, and mutations is shown in the third and fourth ring, respectively. Gene names are displayed in the next
ring. The second most outer ring indicates whether the gene acts as an oncogene or fumor suppressor gene (TSG)
for activating the corresponding pathway. The outermost ring contains indicators on whether or not the gene is a
known drug target. Genes discussed in the manuscript are highlighted with an asterisk.
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Figure A.14 Rule-based subtyping for TCGA-AN-AO0XN. Based on the hormone receptor and HER2 status of a tumor
sample, as well as the observed growth rates, a classification into the four main breast cancer subtypes luminal A,
luminal B, basal-like, and HER2-enriched can be performed.
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Figure A.15 Clustering results for TCGA-AN-AOXN. The tfumor sample of inferest is clustered along with primary
breast fumor samples from TCGA. The molecular subtypes of the TCGA samples are color-coded as indicated
by the legend below the plot. The tumor sample under investigation is indicated by the blue diamond-shaped
symbol.
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Figure A.16 Radar chart of pathway activities for TCGA-AN-AOXN. The pathway activities of a set of 20 core breast
cancer pathways for the user-provided tumor sample colored in blue. Reference samples from TCGA as well as
breast cancer cell lines can be added to the visualization interactively. The molecular subtype of the respective
reference samples is color-coded: basal-like - red, claudin-low - light blue, HER2-enriched - green, luminal A -
yellow, luminal B — orange, normal-like - purple. Clicking on a reference sample’s name yields additional clinical
and pharmacological information, see Figure A.17.
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GI50 (-log10 transformed molar drug concentration)
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Figure A.17 Drug sensitivity information for cell lines similar to TCGA-AN-AOXN. Similarity was assessed based on

similarity of pathway activity patterns. The triple negative cell lines SUM149PT and 184B5 are most similar to the

sample under investigation Figure A.16. Especially, both cell lines were tested to be sensitive for ERK inhibitors

(highlighted in blue) by Heiser et al. [489].
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Figure A.18 Assessment of standard-of-care drugs for sample TCGA-AN-AOXN. For a set of 17 standard-of-care
breast cancer drugs (left panel), various factors increasing or decreasing the efficacy of a drug are assessed.
Clinical, genetic, and molecular characteristics are listed with an indicator sign on whether they might decrease
efficacy or even cause resistance to the treatment with the drug under consideration. All genes and pathways
are linked to third-party resources where additional details can be found. Each entry also contains the link to a
record or publication that describes the role of the corresponding gene with respect to the drug of interest.
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Figure A.19 Driver mutations in sample TCGA-AN-AOXN. Driver mutations confained in the sample under
investigation. The color-code in the Mufation column indicates the severity of the mutation. Parentheses indicate
a germline mutation. Clicking on the indicator symbol opens a modal with additional details on the specific
contained mutation(s) and their predicted effect on protein functionality.



204 A SUPPLEMENTARY MATERIAL

Overview Subtyping Pathways Drugs Driver events Immunotherapy More
Show all How to interpret the driver mutations?
| Driver mutations Estimated suitability of the _, There seemstobe ., There might besome ¢ There seem to be E
considered drug: noi i contraindications.
Driver targeting
drugs Drug & Target Alteration Indicator

Ado-trastuzumab emtansine HER2 HER2+ x

Afatinib EGFR/HER2 EGFR exon 19 deletion, L858R x

Brigatinib ALK ALK+ v

Cetuximab EGFR KRAS wild type v
Dabrafenib BRAF BRAF V600E mutation x

Enasidenib IDH2 IDH2 mutation x

Erlotinib EGFR EGFR exon 19 deletion, L858R x

Everolimus mTOR HR+, HER2- v

Gefitinib EGFR EGFR exon 19 deletion, L858R x

Lapatinib HER2/ EGFR HER2+ x
Midostaurin FLT3 FLT3+ x

Neratinib HER2 HER2+ x

Olaparib PARP BRCA mutation v
Osimertinib EGFR EGFR T790M mutation x

Palbociclib CDK4, CDK6 HR+, HER2- v
Panitumumab EGFR KRAS wild type v
Pembrolizumab PD-1 PD-L1+ v
Pertuzumab HER2 HER2+ x

Ribociclib CDK4, CDK6 HR+, HER2- v

Figure A.20 Assessment of driver targeting drugs for TCGA-AN-AOXN. This table contains driver-targeting drugs, i.e.
those drugs that require the presence or absence of a specific mutation or other genomic alteration. The listed
drugs are not necessarily approved for breast cancer and hence might be considered as off-label freatment
options.
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A.8.5.2 Case Study II: TCGA-BH-AODT

TCGA sample of a 41-year-old (presumably premenopausal) woman with stage II breast cancer of TNM
stage T1/N1/MO0. Both hormone receptor (ER and PR) are positive, HER? is not amplified. The tumor
sample was predicted to be of luminal A subtype by the PAMS50 classifier [727].
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Figure A.21 Sunburst chart overview for TCGA-BH-AODT. Breast cancer-relevant driver genes and pathways are
displayed in a circular manner. Genes are grouped according fo the pathways they are most characteristic
for. The plot is organized in rings, where the innermost ring displays pathway activities, the second ‘inner’ ring
corresponds to gene expression. Depending on the data provided by the user, information on methylation scores,
copy number alterations, and mutations is shown in the third, fourth, and fifth ring, respectively. Gene names
are displayed in the next ring. The second most outer ring indicates whether the gene acts as an oncogene or
tumor suppressor gene (TSG) for activating the corresponding pathway. The outermost ring contains indicators on
whether or not the gene is a known drug target.
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Figure A.22 Radar chart of pathway activities for TCGA-BH-AODT. The pathway activities of a set of 20 core breast
cancer pathways for the user-provided tumor sample colored in blue. Reference samples from TCGA as well as
breast cancer cell lines can be added to the visualization interactively. The molecular subtype of the respective
reference samples is color-coded: basal-like - red, claudin-low - light blue, HER2-enriched - green, luminal A -
yellow, luminal B — orange, normal-like - purple.
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Figure A.23 Assessment of tamoxifen for TCGA-BH-AODT. For a set of 17 standard-of-care breast cancer drugs
(left panel), various factors increasing or decreasing the efficacy of a drug are assessed. Clinical, genetic, and
molecular characteristics are listed with an indicator sign on whether they might decrease efficacy or even cause
resistance to the treatment with the drug under consideration. All genes and pathways are linked to third-party
resources where additional details can be found. Each entry also contains the link to a record or publication that
describes the role of the corresponding gene with respect to the drug of interest. Clicking on the indicator symbol
in the Germline mutation status column for CYP2D6 will open a window with additional details, see Figure A.24.
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Mutations and Pharmacogenomics for CYP2D6

Mutations
Show | 10 v entries ?
SIFT SIFT PolyPh PolyPh
Chr Position Ref Alt Consequence Impact . olyFhen o . e‘n Known identifiers
score description score description
22 42523943 A G missense variant MODERATE 0.91 tolerated 0 benign
22 42524310 C A missense variant  MODERATE 0.37 tolerated 0.167 benign 1s28371717
1s35742686
22 42524243 CT (o} frameshift variant ' HIGH 1 NA 0 NA COSM5020116
COSM5020117
22 42522613 G C missense variant  MODERATE 0.62 tolerated 0.02 benign

Previous Next

Figure A.24 Detailed view on mutations in gene CYP2D6. Clicking on the indicator symbol of a mutation opens a
modal with additional details on the specific mutations contained in the gene of interest, as well as an estimation
of the mutations severities based on VEP Impact, SIFT, and PolyPhen.
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¢ Indication:

For treatment of early stage HER2-positive breast cancer, or metastatic breast cancer

that substantially overexpress HER2. [provided by DrugBank, Jan 2018]

* Mechanism of action:

Trastuzumab binds to the HER2 (or c-erbB2) proto-oncogene, an EGF receptor-like

protein found on 20-30% of breast cancer cells. The binding leads to antibody
mediated (complement mediated) killing of the HER2 positive cells. [provided by

-

More

How to interpret the results?

Figure A.25 Assessment of trastuzumab for TCGA-BH-AODT. For a set of 17 standard-of-care breast cancer drugs
(left panel), various factors increasing or decreasing the efficacy of a drug are assessed. Clinical, genetic, and
molecular characteristics are listed with an indicator sign on whether they might decrease efficacy or even cause
resistance to the freatment with the drug under consideration. All genes and pathways are linked to third-party
resources where additional details can be found. Each entry also contains the link to a record or publication that
describes the role of the corresponding gene with respect to the drug of interest.
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* Drug class: Aromatase inhibitor

(v) Predictive biomarkers:

Biomarker Status Gene exp.
ER status positive 1.03
PR status positive 2.22

Menopausal status  premenopausal

(J) Molecular drug targets:

Target name Gene expression score

CYP19A1 -0.38

+ Drug-processing enzymes:

Enzyme name Germline mutation status

CYP3A4

(J) Associated pathways:

Pathway name Activity

Steroid hormone biosynthesis medium

¢ Indication:

Mutation status

CNV Indicator Record
-0.0533 (v) ¢
-0.0506 () ¢

* (<]
Indicator Record
() (]
Indicator Record
v ¢
Indicator Record
) (4

Indicated for adjuvant treatment of postmenopausal women with Estrogen Receptor =
(ER)-positive early breast cancer who have received two to three years of
tamoxifen and are switched to the drug for completion of a total of ve consecutive

* Mechanism of action:

Figure A.26 Assessment of aromatase inhibitor exemestane for TCGA-BH-AODT. For a set of 17 standard-of-care
breast cancer drugs (left panel), various factors increasing or decreasing the efficacy of a drug are assessed.
Clinical, genetic, and molecular characteristics are listed with an indicator sign on whether they might decrease
efficacy or even cause resistance to the freatment with the drug under consideration. All genes and pathways
are linked to third-party resources where additional details can be found. Each entry also contains the link to a
record or publication that describes the role of the corresponding gene with respect to the drug of interest.
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Biomarker Status Gene exp. CNV Indicator Record

HER2 amplification negative 1.33 -0.0302 (v) (&

BRCA mutation BRCA1 mutation v (&
+ Molecular drug targets:

Target name Gene expression score Mutation status Indicator  Record
PARP1 4.99 v C
PARP2 0.22 v c

+ Drug-processing enzymes:
Enzyme name Germline mutation status Indicator Record
CYP3A4 v (]
CYP2B6 v @
+ Associated pathways:
Pathway name Activity Indicator Record
PI3K-AKT signaling low v (&)
mTOR signaling low v (&
¢ Indication:
Indicated as monotherapy in patients with deleterious or suspected deleterious
germline BRCA mutated (as detected by an FDA-approved test) advanced ovarian -

Figure A.27 Assessment of olaparib for TCGA-BH-AODT. For a set of 17 standard-of-care breast cancer drugs
(left panel), various factors increasing or decreasing the efficacy of a drug are assessed. Clinical, genetic, and
molecular characteristics are listed with an indicator sign on whether they might decrease efficacy or even cause
resistance to the freatment with the drug under consideration. All genes and pathways are linked to third-party
resources where additional details can be found. Each entry also contains the link to a record or publication that
describes the role of the corresponding gene with respect to the drug of interest.
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A.8.5.3 Case Study lll: TCGA-A2-A0T2

TCGA sample of a 66-year-old (presumably postmenopausal) woman with stage IV breast cancer of TNM
stage T3/N3/M1. The sample is triple-negative (i.e., ER and PR negative, HER2 not amplified) and was
predicted to be of basal-like subtype by the PAMS50 classifier [727].
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Figure A.28 Sunburst chart overview for TCGA-A2-A0T2. Breast cancer-relevant driver genes and pathways are
displayed in a circular manner. Genes are grouped according to the pathways they are most characteristic
for. The plot is organized in rings, where the innermost ring displays pathway activities, the second ‘inner’ ring
corresponds to gene expression. Depending on the data provided by the user, information on copy number
alterations and mutations is shown in the third and fourth ring, respectively. Gene names are displayed in the next
ring. The second most outer ring indicates whether the gene acts as an oncogene or fumor suppressor gene (TSG)

for activating the corresponding pathway. The outermost ring contains indicators on whether or not the gene is a
known drug target.
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Figure A.29 Radar chart of pathway activities for TCGA-A2-A0T2. The pathway activities of a set of 20 core breast
cancer pathways for the user-provided tumor sample colored in blue. Reference samples from TCGA as well as
breast cancer cell lines can be added to the visualization interactively. The molecular subtype of the respective
reference samples is color-coded: basal-like - red, claudin-low - light blue, HER2-enriched - green, luminal A -
yellow, luminal B — orange, normal-like - purple.
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Figure A.30 Drug assessment for TCGA-A2-A0T2. For a set of 17 standard-of-care breast cancer drugs (left panel),
various factors increasing or decreasing the efficacy of a drug are assessed. Clinical, genetic, and molecular
characteristics are listed with an indicator sign on whether they might decrease efficacy or even cause resistance
to the tfreatment with the drug under consideration. All genes and pathways are linked to third-party resources
where additional details can be found. Each entry also contains the link to a record or publication that describes

the role of the corresponding gene with respect to the drug of interest.
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Driver mutations

IntOGen driver + passenger genes v
Driver targeting =
drugs

Gene Gene expression CNV Mutation frequency (# samples) Mutation status

TP53 0.096 -0.331 0.341 (390) (9)
TTN -0.694 -0.307 0.154 (176) Q
MUC16 -0.336 -0.334 0.065 (74) Q
FLG 1.768 0.969 0.043 (49) Q
USH2A -0.095 -0.336 0.039 (45)

DMD -2.886 0.012 0.034 (39) Q
RYR2 -0.670 -0.341 0.032 (37) 0
HMCN1 -1.796 0.976 0.029 (33)

FAT3 -0.346 -0.318 0.029 (33) Q
SYNE2 -0.342 -0.328 0.029 (33) (9)
RYR3 -2.623 -0.355 0.029 (33) (9)
NEB -3.030 -0.316 0.026 (30) Q
CSMD1 -1.250 -0.597 0.024 (28)

ARID1A 3.279 0.313 0.024 (27) Q
MUC12 NA 0.387 0.023 (26)

XIRP2 -0.446 -0.307 0.022 (25) Q
CACNALE 0.692 0.976 0.022 (25) Q

Figure A.31 Driver (and passenger) mutations in TCGA-A2-A0T2. The table contains genes commonly mutated
in breast cancer samples that are also mutated in the sample under consideration. The mutations are sorted
by decreasing frequency. The color-code in the Mufation status column indicates the severity of the contained
mutations. Clicking on the respective symbol will open a modal with additional details on the contained mutations
and their putative effect on protein functionality.
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| Mutational burden &
Mismatch excision repair (MMR)

I Repair genes

Gene Gene expression CNV Mutation status
| Cancer vaccines MSHS -0.332 0.385 Q
MSH6 2.676 0.407 Q

Nucleotide excision repair (NER)
Gene Gene expression CNV Mutation status

DDB1 1.065 -0.337 0

Transcription factor Il human (TFIIH)
Gene Gene expression CNV Mutation status

CCNH -2.907 -0.319 0

Nucleotide excision repair-related
Gene Gene expression CNV Mutation status

XAB2 -0.862 -0.334 0

Homologous recombination
Gene Gene expression CNV Mutation status

RADS54B 1.856 0.396 0

Fanconi anemia

Gene Gene expression CNV Mutation status
FANCC 4.057 -0.331 Q
FANCF 1903 0.381

Figure A.32 Impaired repair genes in TCGA-A2-A0T2. The fable contains genes involved in a variety of repair
processes that are impaired (i.e., mutated) in the sample under investigation. The color-code in the Mutation
status column indicates the severity of the contained mutations. Clicking on the respective symbol will open a
modal with additional details on the contained mutations and their putative effect on protein functionality.
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| Mutational burden Biomarkers for checkpoint blockade immunotherapy -
| Repair genes Gene JZ  Synonym Gene expression CNV Mutation status Drug
cD274 PD-L1 0.445 0.394 5,
cD80 B7-1 1.960 0.396 S
CcD86 B7-2 0.616 0.396 S
CTLA4 CTLA-4 1.157 -0.312 8
HAVCR2 TIM-3 0.719 -0.319
IDO1 IDO-1 0.170 0.362
KIR2DL1 NKAT-1 -0.624 0.380 Q
KIR2DL2 NKAT-6 -0.227 NA
KIR2DL3 NKAT-2 0.319 0.380 Q
KIR2DL4 KIR103 1.808 0.380 Q
KIR2DL5A CD158F NA NA
KIR2DL5B KIR2DLX NA NA
KIR2DS1 CD158H 0.313 NA
KIR2DS2 NKAT-5 -0.422 NA
KIR2DS3 NKAT-7 NA NA
KIR2DS4 NKAT-8 0.902 NA
KIR2DS5 NKAT-9 NA NA
KIR3DL1 NKAT-3 0.417 0.380 0
KIR3DL2 NKAT-4 0.226 0.380 Q
KIR3DL3 KIRC1 1.443 0.380
KIR3DS1 NKAT-10 NA NA .

Figure A.33 Biomarkers for checkpoint inhibition in TCGA-A2-A0T2. The table contains biomarkers for checkpoint
blockade immunotherapy. In cases the listed genes are the molecular targets of immunotherapeutic drugs, the
indicator mark in the Drug column is colored in blue. Clicking on this mark yields additional information on the
targeting drugs.
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Neoepitope A*02:01 A*24:02 B*15:17 B*40:01 C*07:01 Antigen ID
AVWALCYGY 0.17 0.026 0.46 0.076 0.066 ZFP42
FKTTRIIFY 0.084 0.03 0.061 0.061 0.44 AGO2
FLLDMVYRS 0.771 0.05 0.031 0.042 0.074 DOPEY2
FSFGPQPYY 0.104 0.03 0.931 0.062 0.436 ROR1
FSPYNGGAL 0.075 0.059 0.519 0.137 0.16 ABTB2
GELINNTVL 0.057 0.027 0.054 0.841 0.052 GSDMC
GTSPSLIFL 0.437 0.058 0.514 0.198 0.239 SLC13A4
IGTPPSLIF 0.048 0.247 0.533 0.067 0.067 SLC13A4
IGTPTSLIF 0.06 0.301 0.535 0.077 0.087 SLC13A4
LAEVLAFLL 0.197 0.098 0.462 0.146 0.076 DOPEY2
LAFLLDMVY 0.118 0.032 0.741 0.076 0.096 DOPEY2
LAQKAIKQW 0.035 0.091 0.677 0.046 0.054 TRIM24
LLAEVLAFL 0.848 0.144 0.153 0.114 0.139 DOPEY2
MAFLAQKAI 0.167 0.052 0.691 0.089 0.254 TRIM24
MVFVAGQGV 0.426 0.035 0.674 0.125 0.307 SH3BP5L
QAACPPAIF 0.051 0.153 0.519 0.101 0.021 FANCC
RFKTTRIIF 0.048 0.44 0.101 0.096 0.087 AGO2
RVILAKRLY 0.055 0.035 0.649 0.074 0.265 AXDND1
STRFKTTRI 0.066 0.081 0.634 0.062 0.149 AGO2
TIIGTPPSL 0.433 0.113 0.248 0.11 0.067 SLC13A4
TIIGTSPSL 0.451 0.12 0.356 0.128 0.093 SLC13A4
TRFKTTRII 0.044 0.094 0.047 0.08 0.659 AGO2
VLAFLLDMV 0.674 0.083 0.042 0.084 0.039 DOPEY2
VSAVWALCY 0.079 0.077 0.87 0.061 0.17 ZFP42
WEIFSFGPQ 0.049 0.014 0.021 0.583 0.009 ROR1
WTGWVCCVF 0.144 0.257 0.49 0.114 0.041 CENPL
YCTGPCHTF 0.074 0.369 0.571 0.151 0.139 PPP2R3A
YSGGEKPYL 0.192 0.078 0.479 0.078 0.29 COPB2
YSRIPKQSI 0.052 0.062 0.833 0.061 0.196 SVIL
YVVTEAGEL 0.223 0.05 0.441 0.132 0.158 GSDMC
YWQGNLDRF 0.061 0.655 0.111 0.093 0.09 POLR3C

Table A.15 Neoepitope prediction for sample TCGA-A2-A0T2. The table contains all neoepitopes of peptide
length nine that were predicted by NetMHC to bind to at least one of the sample’s predicted HLAs (predicted
by OptiType). Within ClinOmicsTrail®®, we selected the option Consider only significantly upregulated profeins
in the Cancer vaccines tab of the Immunotherapy view and performed neoepitope prediction for peptides of
length 9 using NetMHC. For each HLA, their respective binding offinities are listed in columns 2-6. The last column
contains the gene symbol of the antigen-providing gene. For NetMHC, binding affinity scores can be inferpreted
as fransformed IC50 scores. Red cells indicate no binding, yellow cells stand for weak binders, and green cells
highlight strong binders.
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