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Abstract

Phylogenetic trees are models of the evolutionary relationships among species, with species typically placed
at the leaves of trees. We address the following problems regarding the calculation of phylogenetic trees.
(1) Leaf-labeled phylogenetic trees may not be appropriate models of evolutionary relationships among
rapidly evolving pathogens which may contain ancestor-descendant pairs. (2) The models of gene evolution
that are widely used unrealistically assume that the base composition of DNA sequences does not evolve.
Regarding problem (1) we present a method for inferring generally labeled phylogenetic trees that allow
sampled species to be placed at non-leaf nodes of the tree. Regarding problem (2), we present a structural
expectation maximization method (SEM-GM) for inferring leaf-labeled phylogenetic trees under the general
Markov model (GM) which is the most complex model of DNA substitution that allows the evolution of base
composition. In order to improve the scalability of SEM-GM we present a minimum spanning tree (MST)
framework called MST-backbone. MST-backbone scales linearly with the number of leaves. However, the
unrealistic location of the root as inferred on empirical data suggests that the GM model may be overtrained.
MST-backbone was inspired by the topological relationship between MSTs and phylogenetic trees that was
introduced by Choi et al. (2011). We discovered that the topological relationship does not necessarily hold if
there is no unique MST. We propose so-called vertex-order based MSTs (VMSTs) that guarantee a topological
relationship with phylogenetic trees.



Kurzfassung

Phylogenetische Badume modellieren evolutionére Beziehungen zwischen Spezies, wobei die Spezies typischer-
weise an den Blattern der Bdume sitzen. Wir befassen uns mit den folgenden Problemen bei der Berech-
nung von phylogenetischen Biumen. (1) Blattmarkierte phylogenetische Biume sind moglicherweise keine
geeigneten Modelle der evolutionédren Beziehungen zwischen sich schnell entwickelnden Krankheitserregern,
die Vorfahren-Nachfahren-Paare enthalten konnen. (2) Die weit verbreiteten Modelle der Genevolution gehen
unrealistischerweise davon aus, dass sich die Basenzusammensetzung von DNA-Sequenzen nicht &ndert.
Beziiglich Problem (1) stellen wir eine Methode zur Ableitung von allgemein markierten phylogenetischen
Béumen vor, die es erlaubt, Spezies, fiir die Proben vorliegen, an inneren des Baumes zu platzieren. Beziiglich
Problem (2) stellen wir eine strukturelle Expectation-Maximization-Methode (SEM-GM) zur Ableitung von
blattmarkierten phylogenetischen Bdumen unter dem allgemeinen Markov-Modell (GM) vor, das das kom-
plexeste Modell von DNA-Substitution ist und das die Evolution von Basenzusammensetzung erlaubt. Um
die Skalierbarkeit von SEM-GM zu verbessern, stellen wir ein Minimale Spannbaum (MST)-Methode vor,
die als MST-Backbone bezeichnet wird. MST-Backbone skaliert linear mit der Anzahl der Blétter. Die Tat-
sache, dass die Lage der Wurzel aus empirischen Daten nicht immer realistisch abgeleitet warden kann, legt
jedoch nahe, dass das GM-Modell méglicherweise iibertrainiert ist. MST-backbone wurde von einer topolo-
gischen Beziehung zwischen minimalen Spannbdumen und phylogenetischen Bdumen inspiriert, die von Choi
et al. 2011 eingefiihrt wurde. Wir entdeckten, dass die topologische Beziehung nicht unbedingt Bestand hat,
wenn es keinen eindeutigen minimalen Spannbaum gibt. Wir schlagen so genannte vertex-order-based MSTs
(VMSTS) vor, die eine topologische Beziehung zu phylogenetischen Baumen garantieren.
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Chapter 1

Introduction

This chapter provides an introduction to phylogenetic trees, explains the limitations of current methods that
are used to infer phylogenetic trees, and highlights the steps taken in this thesis towards inferring phyloge-
netic trees under more realistic models of evolution than those that are commonly used. The phylogenetic
terminology that is introduced in this chapter is explained in detail in Chapter 2.

1.1 What are phylogenetic trees?

The word species is Latin for kind or type. A species is canonically defined as a group of organisms
(individual life forms) that are capable of mating with each other, and giving birth to fertile offspring
(de Queiroz, 2005). Darwin (1859) hypothesized that living species have descended from a common origin.
The only illustration in “The origin of species” depicts a birth-death process that started from ancestral
species that have gone extinct, and proceeded to give rise to living species (see Figure 1.1). How do new
species come to exist?

The information that is necessary for the reproduction of organisms is present in the form of deoxyri-
bonucleic acid (DNA) molecules known as genomes. The Dobzhansky-Muller model of speciation states that
if the members of a species split and form mutually exclusive reproducing populations, then, over gener-
ations of isolated reproduction, each population will independently accumulate changes in their genomes,
and members from separated populations will not be able to successfully reproduce, thus forming distinct
species (Johnson, 2008). Phylogenetic trees are models of how species are related to each other. The process
of speciation enables a hierarchical classification of species. Each level of the hierarchical classification is a
taxonomic rank, with species being the lowest taxonomic rank. The term taxa is used instead of species if
the phylogenetic tree under consideration has a higher taxonomic rank at the leaves instead of species.

All organisms are cellular, and are capable of reproducing on their own via the use of molecules that are
synthesized within their cells (Alberts et al., 2002). Viruses are parasites that cannot replicate on their own;
instead, viruses replicate using the molecules that exist within the cells of the organisms that they infect.
Viruses evolve rapidly and don’t easily fit the species definition. The term taxa is used in this thesis to
describe organisms and viruses that are related via common descent.

The functions of organisms are carried out by ribonucleic acid (RNA) molecules and amino-acid molecules
known as proteins. A characteristic feature of RNA molecules and proteins is that they are synthesized as
linear polymers, and are subsequently modified in order to form functional molecules. Genes are DNA se-
quences that contain the information that specifies the order of RNA monomers and amino-acid monomers
in RNA molecules and proteins, respectively, Epp (1997). Genes that are transcribed into RNA, and subse-
quently translated in protein(s) are called protein-coding genes.

The nucleic acids DNA and RNA are polymers of nucleotides. Each nucleotide is comprised of a sugar
(deoxyribose for DNA, and ribose for RNA) that is attached to a phosphate group, and a nucleobase/base
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Figure 1.1: The only illustration in “The origin of species” by Darwin (1859). Time’s arrow is directed from
bottom to top. Species A through L are ancestral species that are hypothesized to have given birth to living
species. The dashed lines indicate genetic lineages.

(see Figure 1.2). The bases that constitute DNA are Adenine (A), Thymine (T), Guanine (G) and Cytosine
(C). RNA is comprised of the bases Uracil (U), Adenine (A), Guanine (G) and Cytosine (C). Adenine
and Guanine are purines, and Thymine, Uracil and Cytosine are pyrimidines. DNA sequences in genomes
form double-stranded helical structures such that a pyrimidine on one strand pairs with a purine on the
complementary strand (see Figure 1.2) . The base pairs A:T and G:C are referred to as Watson-Crick pairs.

New genes are created by (i) gene duplication, (#¢) mutations that transform non-genic genomic regions
to genes, (4i7) gene fusion, and (iv) horizontal gene transfer (Andersson et al., 2015).

1.1.1 Gene trees and species trees

A set of genes is said to be homologous if the genes have evolved from a common ancestral gene (see
Figure 1.3 for a set of homologous HIV-1 pol gene sequences). A gene tree is a tree-structured representation
of the evolutionary history of homologous genes. Two evolutionarily related genes are said to have diverged
from a common ancestral gene if the two genes have accumulated distinct mutations when compared to the
common ancestral gene. The branches of a gene tree are scaled in units of DNA substitutions per site.

Homologous genes are either orthologs or paralogs (Koonin, 2005). Orthologous genes are genes from
different species that have diverged from a common ancestral gene. Paralogous genes are genes that have
evolved from a common ancestral gene via gene duplication that is subsequently followed by divergence.
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Figure 1.2: The structure and composition of ribonucleic acids (RNA) and deoxyribonucleic acids (DNA)
(Figure adapted from Wikimedia (2017)).
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Figure 1.3: A set of orthologous HIV-1 pol gene sequences. The sequences shown above were downloaded
from the HIV sequence database that is hosted at the Los Alamos National Laboratory (HIVLANL). SEAV-
IEW (Galtier et al., 1996) was used to visualize the sequence alignment.



Figure 1.4: Types of gene conversion: (a) conversion between paralogs located on different chromosomes (b)
conversion between paralogs located on the same chromosome, (c) conversion between alleles. The curved
arrows are directed from donor sequence to the acceptor sequence. The acceptor sequence contains a double-
strand break that is repaired using the donor sequence. The straight arrows are oriented in the direction
of the gene conversion process. The illustration shown above has been adapted with permission from Chen
et al. (2007).

A species tree is a tree-structured representation of the evolutionary history of a set of related species.
Gene trees that are constructed using orthologous genes can help infer the evolutionary relationships of the
species from whose genomes the orthologous genes were sampled.

There are limitations to tree-like models of species relationships. Hybridization and horizontal gene
transfer cannot be represented using species trees. Additionally, gene evolution via recombination cannot be
modeled using gene trees.

1.2 Evolution of GC content

DNA molecules are replicated during cellular reproduction. DNA replication is not an error-free process.
Mutations are changes in the DNA sequence of daughter DNA molecules when compared with the cor-
responding DNA sequence in the parental DNA molecule. Mutations that result in the change of a single
nucleotide are known as point mutations. DNA substitutions are point mutations that change one nucleotide
with another nucleotide.

Methylated Cytosine that spontaneously deaminates to Thymine results in a base pair mismatch (G:C
converts to G:T). Subsequently DNA replication at the site containing G:T in the parental strand would
create one of two distinct base pairs G:C and A:T, respectively, in the daughter strands, consequently
reducing the GC content in one daughter strand. Methylated Cytosine is found in the CpG dinucleotides of
genomes.

Transitions are DNA substitutions where a purine is replaced by a purine (e.g., A is replaced by G),
or a pyrimidine is replaced by a pyrimidine (e.g., C is replaced by T). Each transition event results in a
change in GC content. Transversions are DNA substitutions where a purine is replaced by a pyrimidine
(e.g., A is replaced by T or C), or vice-versa. Transversions do not necessarily change GC content. There
are four possible transitions and eight possible transversions. If each nucleotide substitution was equally
likely then the ratio ti/tv of transitions (i) to transversions (tv) would be around 0.5. Empirical findings
suggest that ti/tvis around two and four for Drosophila melanogaster (Begun et al., 2007), and Homo sapiens
(Hodgkinson and Eyre-Walker, 2010), respectively. GC content may change because transitions are more
frequent than transversions.

Double-strand breaks (DSB) that occur either as part of meiosis (a type of cell division that is used to
produce the gametes: sperm cells and egg cells) or due to replication errors such as stalled DNA replication,
can result in cell death if left unrepaired. Gene conversion is one of the end products of repairing DSB
using homologous recombination. Gene conversion usually occurs by replacing the sequence in the gene



that contains the DSB (acceptor sequence) with the sequence from an intact gene (donor sequence) that
is homologous to the acceptor sequence (Chen et al., 2007). Gene conversion can occur between paralogs
or between alleles, i.e., variants of a gene that are found on the same genetic locus (see Figure 1.4). The
repair of the acceptor sequence involves the DNA mismatch repair machinery. Gene conversion is said to
be biased if DNA mismatches are repaired in a manner that is biased towards one purine-pyrimidine pair
over the other. GC-biased gene conversion would increase GC content, whereas AT-biased gene conversion
reduces GC content. GC-biased gene conversion that occurs during meiosis is thought to have contributed
to the non-uniform distribution of GC content along chromosomes (Duret and Galtier, 2009).

1.3 Current approaches for inferring of phylogenetic trees

The commonly used model of evolutionary relationships is a tree with observed species placed at the leaves
and unobserved ancestors placed at branching points. The widely adopted approach to inferring gene trees
involves modeling gene evolution using probabilistic models (Felsenstein, 2003). The probabilistic modeling
approach can be formulated as a combinatorial optimization problem that involves selecting a combination
of phylogenetic tree and model parameters that maximizes the likelihood score. Phylogeny inference via
maximum-likelihood is NP-hard (Chickering, 1996; Roch, 2006; Chor and Tuller, 2006), and the correspond-
ing decision problem is NP-complete.

Leaf-labeled trees may not be appropriate for modeling the relationships among rapidly evolving pathogens
such as viruses that are sampled over similar time-scales as their evolution. Choi et al. (2011) model evolu-
tionary relationships using trees that allow internal nodes to be labeled, and describe a minimum spanning
tree method for constructing generally labeled trees using a clustering algorithm known as Chow-Liu group-
ing. Minimum spanning trees (MSTs) can be computed quickly using fast algorithms (Kruskal, 1956). As
Kalaghatgi et al. (2016b) implemented Chow-Liu grouping, they discovered that Choi et al. (2011)’s proof
of correctness that was based on additive distances was incorrect. Kalaghatgi et al. (2016b) modified a
distance-based clustering method known as neighbor-joining that is popular in the field of phylogeny infer-
ence in order to construct generally labeled trees in a manner that is guaranteed to be correct that distances
are additive. The method introduced in Kalaghatgi et al. (2016b) is called family-joining and is described
in Chapter 3. Kalaghatgi and Lengauer (2017) corrected the proof by Choi et al. (2011) and performed a
detailed analysis of the amount of phylogenetic information that is contained in minimum spanning trees
(see Chapter 4)

Current approaches for inferring phylogenetic trees search through the set of possible phylogenetic trees
in order to find a tree that maximizes the likelihood score. The large computational cost of optimizing
the likelihood score has led to the wide-spread adoption of time-reversible models of gene evolution (Kozlov
et al., 2019; Nguyen et al., 2015; Hohna et al., 2016). It is not possible to identify the location of the root
of a phylogenetic tree under a time-reversible model of evolution (Felsenstein, 1981).Jermiin et al. (2004)
used sequences simulated under a non-stationary model in order to claim that phylogenetic trees inferred
under time-reversible models are systematically biased. The evolutionary history of genes is not known.
Consequently, systematic error in phylogenies inferred using empirical data is determined by measuring the
similarity of distinct gene trees from the same set of species (Naser-Khdour et al., 2019). Systematic error
is inferred if gene sequences tend to be closer to each other on the basis of base composition and not species
relationships. Sheffield et al. (2009) claim to have found evidence for systematic bias in the phylogenetic trees
of beetle mitochondria that were inferred using time-reversible models of sequence evolution. Additionally,
Sheffield et al. (2009) claim to have overcome systematic bias using methods that perform phylogeny inference
under non-stationary models of sequence evolution. Current methods that perform phylogeny inference under
non-stationary models of gene evolution are not scalable, and have not been widely applied (Betancur-R et al.,
2013).

All of the phylogeny inference software that is commonly used makes use of phylogenetic trees with
branch lengths that are scaled in units of substitutions per site. The parameter known as branch length
is utilized to construct time-calibrated phylogenetic trees which are phylogenetic trees with branch lengths
scaled in units of calendar time.
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Figure 1.5: Humans (Homo sapiens) and chimpanzees (Pan trogdolytes) diverged from a common ancestor
(represented as an unfilled circle) around 7 million years ago (MYA). The time-calibrated phylogenetic tree
that is shown above was created using TimeTree (Hedges et al., 2006).

1.4 Time-calibrated phylogenetic trees

The branches of a phylogenetic tree are usually scaled in units of molecular substitutions per site. The rate
at which molecular substitutions take place can be used to scale the branches of a phylogenetic tree in units
of calendar time resulting in the construction of time-calibrated phylogenetic trees. The time-calibrated
phylogenetic tree shown in Figure 1.5 dates the divergence of humans (Homo sapiens) and chimpanzees (Pan
troglodytes) from their most recent common ancestor to a time point around 7 million years ago (Hedges
et al., 2006). Molecular clocks are widely used to construct time-calibrated phylogenetic trees, and are
described below.

The molecular clock hypothesis assumes that the molecular substitution rate (nucleotide substitution
rate or amino-acid substitution rate) is constant (Zukerkandl and Pauling, 1965). Observations of constant
substitution rates of the amino-acid sequences of hemoglobin and cytochrome ¢ among closely related species
provided empirical evidence for the molecular clock assumption (Zukerkandl and Pauling, 1962; Margoliash,
1963).

Each branching point in a phylogenetic tree corresponds to a time point when an ancestral species
diverged into multiple descendant species. Estimates of one or more divergence times are used to calibrate a
molecular clock. Subsequently the calibrated molecular clock is used to scale all branches of the phylogenetic
tree in units of time. Sampling times of rapidly evolving pathogens such as HIV provide an alternate source
of data for calibrating molecular clocks. Models that are used for calibrating molecular clocks are discussed
in Subsection 2.8.3.

1.5 Overview of contributions made in this thesis

The general Markov model (GM; Barry and Hartigan (1987)) is the most complex non-stationary model
of DNA substitutions. In contrast to commonly used models that are parameterized in terms of branch
lengths, the GM model is parameterized in terms of transition matrices (also known as conditional probability
distributions). Currently, there is no scalable method for inferring phylogenetic trees under the GM model.
The main contribution of this thesis is to show that MSTs can be used to constrain the search for phylogenetic
trees, thereby allowing the use of more complex models of gene evolution than the models that are widely
used. We used the minimum spanning tree framework to perform phylogeny inference under the GM model.

The total contributions made in this thesis are: (i) a method that models ancestor-descendant relation-
ship among serially sampled pathogens by placing species at ancestor nodes of phylogenetic trees (Kalaghatgi
et al., 2016a), (i7) a rigorous analysis of the relationship between phylogenetic trees and minimum spanning



trees (Kalaghatgi and Lengauer, 2017), and (4i4) a computationally efficient framework for inferring phylo-
genetic trees under the general Markov model (unpublished).

The following parts of the thesis are structured as described below. Chapter 2 gives a technical overview
of current approaches for inferring phylogenetic trees. Chapters 3, 4, and 5 provide detailed description of
each contribution made in this thesis.



Chapter 2

Background

A brief introduction to some of the graph-theoretic terminology that is used in this thesis is provided in
Section 2.1. Probabilistic models that are used for inferring phylogenetic trees are introduced in Section 2.4.
Approaches to optimize model parameters are discussed in Section 2.5 and Section 2.6. Methods for placing
the root on unrooted phylogenetic trees are discussed in Section 2.8. The chapter concludes with a summary
of the contributions that have been made in this thesis.

2.1 Graph-theoretic terminology

The graph-theoretic notions that are presented here have been adapted from “Data Structures and Network
Algorithms” by Tarjan (1992), and “Phylogeny: discrete and random processes in evolution” by Steel (2016).

Graphs are models of pairwise relationships among objects. Objects are represented by nodes or vertices.
Pairwise relationships between vertices are referred to as edges. Given a set of edges E between vertices in
the set V', a graph G is an ordered pair (V| E).

A graph G is either undirected in which case each edge is an unordered pair of distinct vertices, or G is
directed in which case each edge is an ordered pair of distinct vertices. In order to avoid repeating definitions
for directed graphs and undirected graphs the notation [u, v] is used to either represent an undirected edge
{u,v} or a directed edge (u,v), using the context to resolve the ambiguity. If [u,v] is any edge then u and v
are its ends; [u,v] is said to be incident to v and v, and u and v are said to be incident to [u,v]. If {u,v} is
an undirected edge then v and v are adjacent. A directed edge (u,v) exits u and enters v. An edge [u,u] is
a self-loop.

If v is a vertex in an undirected graph then the degree of v is the number of vertices that are adjacent
to v. If v is a vertex in a directed graph then the in-degree of v is the number of directed edges that enter
v, and the out-degree of v is the number of directed edges that exit v. A vertex v in an undirected graph is
a leaf if the degree of v is one. A vertex v in a directed graph is a leaf if the in-degree of v is one, and the
out-degree of v is zero. Any vertex that is not a leaf is an internal vertex. A terminal edge is an edge that
is incident to a leaf. An internal edge is any edge that is not a terminal edge.

The undirected version of a directed graph can be obtained by replacing each edge (u,v) with the edge
{u,v}. Conversely, the directed version of an undirected graph can be obtained by replacing each edge {u, v}
with the edges (u,v) and (v, u).

An edge-weighted graph is a graph G = (V, E) such that each edge in E is assigned a real number
called the weight of the edge. The edge weights of an edge-weighted graph G = (V, E) are denoted by
w = {w, : e € E}. The terms edge length and edge weight are used interchangeably in this thesis. A
spanning tree of a graph G is a connected subgraph of G with no cycles. A minimum spanning tree (MST)
of an edge-weighted undirected graph G is a spanning tree of G with the minimum sum of edge weights.

Contraction of an edge {u, v} in an undirected graph G = (V, E') comprises the following operations: (7)
adding a new vertex w to V, (ii) adding edges {w,n} to E for each n that is adjacent either to u or to v,



(#4¢) removing u and v from V, and (iv) removing each edge from F that is incident either to u or to v.
Contraction of an edge (u, v) in an directed graph G = (V, E) comprises the following operations: (i) adding
a new vertex w to V, (i7) adding edges (w,n) to E for each n such that there is an edge in E that enters
n and exits either u or v, (i7i) adding edges (n,w) to E for each n such that there is an edge in F that is
exits n and enters either u or v, (iv) removing v and v from V, and (v) removing each edge from E that is
incident either to u or to v.

Vertices a and b are said to be neighbors if there is an edge that is incident to a and b. Given two non-leaf
vertices v and w such that a and b are neighbors of v and w, respectively. v and w are said to swap their
neighbors if a neighbor of w is a neighbor of v, and vice-versa, subsequent to the swap operation.

A path in a graph from vertex vy to vertex vy is an ordered set of vertices (v1,vs,...,vx) such that
[vi,viy1] is an edge for i € [1,...,k — 1]. The path contains vertex v; for i € [1,..., k] and edge [v;, v;41] for
i€[l,...,k—1]. Vertices viand vy, are the ends of the path. An edge [u,v] is contained in a path if there is
an index 7 € [1,...,k — 1] such that [v;,v;41] equals [u,v]. A path is simple if the vertices contained in the
path are distinct. A path in a directed graph is a cycle if k is greater than one, and vy equals vy, and the
edges in the path are distinct. A path in an undirected graph is a cycle if k is greater than one, vy equals
v1, and the edges in the path are distinct. A graph with no cycles is acyclic. If there is a path from vertex v
to vertex w then w is reachable from v. An undirected path in a directed graph is a path in the undirected
version of the graph. The weighted path length p¥(v1,vy) is the sum of edge weights of the edges that are
contained in the path. The unweighted path length p¥%(v1, vg) is the number of edges that are contained in
the path.

An undirected graph is connected if every vertex is reachable from every other vertex, and disconnected
otherwise. An undirected graph is said to be complete if each vertex is adjacent to every other vertex. A
tree is a connected undirected graph with no cycles. A disconnected graph is a forest if each component of
the graph is a tree. A directed graph is said to be weakly connected if the undirected version of the graph
is connected. A directed graph is said to be strongly connected if every vertex is reachable from every other
vertex. The diameter of a tree is the largest unweighted path length of all paths in the tree. A rooted tree
T = (V,E) is a directed graph such that the undirected version of T' is a tree, and all the edges in E are
directed away from a single vertex known as the root. If v and w are distinct vertices in a rooted tree such
that v is contained in the path from the root to w then v is an ancestor of w, and w is a descendant of v. If
(v, w) is an edge in a rooted tree then v is the parent of w, and w is a child of v. The least common ancestor
(lca) of any pair of distinct vertices u and v is the vertex lcar(u,v) that is a common ancestor of u and v
such that no descendant of lcar(u,v) is a common ancestor of u and wv.

A tree traversal is the process of visiting each of the vertices in a rooted tree exactly once. A preorder
tree traversal visits parents before children. The postorder tree traversal visits children before parents.

A graph G4 = (Vs, Ey) is said to be a subgraph of a graph G = (V,E) if V, CV, and E; C E. A subtree
Tv = (Vr,, Er,) of a rooted tree T' = (V, E) is any weakly connected subgraph of T' such that the descendants
in T of each non-leaf vertex in V;, are contained in V; . A subtree 7, = (V,,, E;,) is said to be rooted at
vertex v in V., if each other vertex in V. is a descendant of v. A subtree 7, = (V;,, E;,) of an undirected
tree T,, = (V, E) is a connected subgraph of T such that there is exactly one edge {u,v} in Er such that v
isin V;, and w is in V7\V;, . The subtree 7, of the undirected tree T is said to be rooted at v. The edges of
any subtree are directed away from the root of the subtree.

2.1.1 Phylogenetic trees

A rooted phylogenetic tree T = (V, E) is a rooted tree with two types of vertices in V' = {#, L}: hidden
vertices H representing unknown ancestral gene sequences, and labeled vertices £ representing observed gene
sequences. An unrooted phylogenetic tree is tree with hidden vertices and labeled vertices. Phylogenetic trees
are assumed to be rooted unless specified otherwise.

A leaf-labeled phylogenetic tree is a phylogenetic tree such that each labeled vertex is a leaf (see Figure
2.1A). A generally labeled phylogenetic tree is a phylogenetic tree such that all leaves are labeled but not all
labeled vertices are leaves (see Figure 2.1B). A generally labeled phylogenetic tree with no hidden vertices is



A leaf-labeled rooted phylogenetic tree A generally labeled rooted phylogenetic tree

Figure 2.1: Types of phylogenetic trees. A leaf-labeled phylogenetic tree is shown in panel A. A generally
labeled phylogenetic tree is shown in panel B. Labeled vertices and unlabeled vertices are represented by
filled circles and unfilled circles, respectively.

a fully labeled phylogenetic tree. The phylogenetic trees that are inferred by majority of current software are
unrooted leaf-labeled phylogenetic trees. Phylogenetic trees are assumed to be leaf-labeled unless specified
otherwise. Ultrametric trees are rooted phylogenetic trees such that each leaf is equidistant from the root.

Given an unrooted phylogenetic tree T' = (Vr, E7) and any edge e = {v,w} in Er, consider the subtrees
7, and 7, of T that are rooted at v and w, respectively. Let £, be the set of labeled vertices in 7, and let
L., be the set of labeled vertices in 7,. L., |L,, denotes a split in T,, that is induced by the edge e = {v, w}.
L., and L, are the sides of the split £, |L,, . A split is said to be a trivial split if the cardinality of one
side of the split equals one. Given a rooted tree T),, a group of species is said to be monophyletic if the
species are the leaves of a subtree in 7.

Given an unrooted phylogenetic tree T = (V, Er). The distance between a vertex set Vs C Vr and a
vertex v € Vp\V; is defined as the unweighted path length of the shortest path in 7' from v to a vertex in
Vs. Given a split £, |L,, that is induced by an edge {v,w} the side L,, is said to closer to v in comparison
to w. Conversely L, is said to be closer to w in comparison to v.

Given any non-leaf vertex u of a rooted tree, let u.l and u.r be the children of u. Consider the subtrees
Tu.l and 7, that are rooted at u.l and wu.r, respectively. Without loss of generality (wlog), the subtrees 7,
and 7, , are said to be the left subtree and the right subtree that subtend from vertex u. The imbalance of
a rooted tree, as quantified using Colless’s index (I¢ see equation 2.1; Colless (1982)), is a measure of how
differently sized the left subtree and the right subtree that subtend from each non-leaf vertex are, where the
the size of a subtree is the number of leaves that are contained in the subtree.

Ic = Z (|£7'ul| - |£Tu.7“‘) (21)

uEH

Two special cases of phylogenetic trees are described below. A rooted caterpillar is a rooted phylogenetic
tree such that all hidden vertices are contained in a single path (see Figure 2.2 A). A balanced tree is a
rooted phylogenetic tree for which the path from each leaf to the root contains the same number of edges
(see Figure 2.2 B).

The following restrictions are placed on the degrees of vertices in phylogenetic trees. Non-leaf vertices
in rooted phylogenetic trees are restricted to have an out-degree that is at least one. Non-leaf vertices in
unrooted phylogenetic trees are restricted to have a degree that is at least three. A rooted phylogenetic
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A rooted caterpillar tree A rooted balanced tree

Figure 2.2: Imbalance of rooted phylogenetic trees. The tree shown on panel A is least balanced, and is
known as a rooted caterpillar phylogenetic tree. The tree shown on panel B is maximally balanced, and is
called a rooted balanced phylogenetic tree.

tree T, = (Vr,, ETp) is said to be fully resolved if each non-leaf vertex in Vr, has out-degree two. A fully
resolved rooted phylogenetic tree is also referred to as a bifurcating tree. An unrooted phylogenetic tree
T = (Vr, Er) is said to be fully resolved if each non-leaf vertex in Vr has degree three. Hidden vertices in
rooted phylogenetic trees with out-degree greater than two are polytomies. A hidden vertex in an unrooted
phylogenetic tree is a polytomy if the degree of the hidden vertex is greater than three. Phylogenetic trees
are assumed to be fully resolved unless specified otherwise.

Edge lengths are numerical values that are assigned to the edges of a phylogenetic tree. Edge lengths are
usually scaled in units of substitutions per site. The edge lengths of a time-calibrated phylogenetic tree are
scaled in units of time. The terms edge and branch are used interchangeably in this thesis. Additionally,
the terms edge length and branch length are also used interchangeably. The term phylogeny as used in this
thesis is short for phylogenetic tree.

We define below two graph operations involving the removal of vertices and the insertion of vertices in
phylogenetic trees with undirected edges. Given a phylogenetic tree T = (Vr, Er) with undirected edges
let t denote the edge lengths of edges in Ep. Let vertices u and v be adjacent to a vertex w with degree
two. Suppressing the vertex w involves (i) removing the edges {u, w} and {v, w} from E7, (i) removing the
vertex w from Vr, (i) adding the edge {u,v} to Er, (iv) removing the edge lengths t, ) and tg, .} from
t, and adding the edge length t¢, ,} =ty wy + t{v,w} to t. Conversely, inserting a vertex w along an edge
{u,v} in Er at a non-negative distance ¢ away from u such that § is smaller than ¢, .} involves (i) adding
w to Vp, (ii) removing {u,v} from Ep, (#ii) adding {u, w} and {v,w} to Er, (iv) removing t, .3 from t,
and (U) adding t{%w} =6 and t{v,w} = t{uﬂ)} —d to t.

Given an unrooted phylogenetic tree T' = (Vp, Er) with edge lengths t = {t. : e € Ep} let e = {a,b} be
an edge in Er and let t. in t be the edge length of e. Rooting T along the edge e = {a, b} at a distance d
(such that (s.t.) 0 <0 < tg,3)) from a involves (i) inserting a vertex p at distance § along e away from a,
(ii) directing all edges in B away from p, and (i7i) replacing the length of each undirected edge t(, .} in t
with £(y,) = t{u,0} such that B contains (u,v). Conversely, given a rooted phylogenetic tree T'= (Vr, Et)
with edge lengths t = {t. : e € Ep} let p in Vi be the root of T. Constructing the unrooted version of T'
involves (i) replacing each directed edge in Ep with the undirected version of the edge, (i¢) replacing the
length of each directed edge t(, .) in t with ¢y, ,} = t(y.), and (#it) suppressing the root p.

Given a phylogenetic tree T = (Vr, Er) the edge lengths t of edges in Er are denoted by t = {t. : e €
Er}. An unrooted phylogenetic tree T = (Vr, Er) with edge lengths is equipped with a distance function
dr : Vi x Vo — RT over pairs of vertices in V. The tree-distance dr(u,v) between vertices v and v in Vi
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is the weighted path length p¥(u,v). Tree-distances of T are additive in T, and are referred to as additive
distances of T. Tree-distances of a rooted tree T' = (V, E) is computed on the basis of the unrooted version
of T. The location of the root can not be recovered using tree-distances.

The topology of a phylogenetic tree T = (Vp, E1) is the graph structure comprising the vertex set Vp
and the edge set Ep. Edge lengths are not included in the topology of a phylogenetic tree.

2.2 Three ways to score trees: parsimony, likelihood, and tree
length

Phylogeny inference is a combinatorial optimization problem. The three scores that are commonly used
are parsimony, likelihood and tree length. Parsimony and likelihood are character-based scores and are
defined with respect to (wrt) a leaf-labeled phylogenetic tree T'= (V = {H, L}, E) and a multiple sequence
alignment Xy = {X/ : 1 € LA1 <i <k}, where k is the number of columns in the alignment, and the states
represented by V' are characters from alphabet of size a. The number of leaves in T is denoted by n. Tree
length is a distance-based score, where distances are estimates of tree-distances.

The mazimum parsimony score is the minimum number of state changes required to generate the states
that are observed at the leaves of a phylogenetic tree. Given an assignment to the states in X%, the total
number of state changes ¢ (Xy|X) over edges E is computed as

k
(X | Xr) Z Z 5(X, X

i=1 (u,w)EE

where d(z,y) is the Kroenecker delta function that is defined as

5<x,y>—{; o

The maximum parsimony score ¢.(X.) is computed by selecting a character assignment X, that mini-
mizes the total number of character changes, i.e.,

(X)) = argmin op (Xy | Xr) (2.2)

Xy

The maximum parsimony score can be computed in time O(na?k) using Fitch’s algorithm (Fitch, 1971).
A maximum parsimony estimate is a phylogenetic tree T and character assignment for hidden states Xy
that minimizes the maximum parsimony score. Given a character assignment that minimizes the number of
changes over the edges of a rooted tree, it is possible to change the location of the root without modifying
the maximum parsimony score. Consequently, it is not possible to infer the location of the root using the
maximum parsimony score (Felsenstein, 2003).

The likelihood score is defined on the basis of a probabilistic generative model M. The likelihood score
is computed by (i) conditioning the joint probability distribution over X, wrt observed states X, and (i7)
marginalizing over the a/* possible assignments to the hidden states Xy. It is often necessary to assume
that each column of X, has been generated independently by a common model in order to have a sufficiently
large sample for estimating model parameters. The likelihood score ¢1(M|X.) is defined as

(M| X) H > PH{X:ve VM) (2.3)

=1} :heH

where P({X! : v € V}|M) is the conditional probability distribution over the states in column 4 of the
sequence alignment. The mazimum likelihood score l(Xr) of a tree T is defined as

lr(Xz) = argmax bp (M| X,)
M
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The likelihood score can be computed in time O(na?k) using Felsenstein’s tree pruning algorithm (Felsenstein,
1981). The maximum likelihood estimate (MLE) of phylogenetic trees is the combination of model M and
tree T' that maximizes the likelihood score. Likelihood scores can be used to infer the location of the root if
the underlying Markov model is not time-reversible, as is explained in detail in Section 2.4.

The tree length score is a distance-based score that is defined as the sum of edge lengths, where edge
lengths are usually estimated by regressing weighted path lengths on estimates of tree-distances (Desper
and Gascuel, 2002). Tree length can be computed in time O(n), and the estimation of edge lengths via
ordinary-least-squares regression (OLS) can be performed in time O(n?) (Bryant, 1997). A minimum tree
length estimate is the combination of edge lengths and tree that minimizes tree length. Trees that are inferred
based on tree length are unrooted by definition because distances do not generally contain information about
the location of the root.

2.3 Statistical consistency

An estimator is said to be statistically consistent if, given k samples of data that are generated under a
model 0, the estimated model 0 converges to the generative model 6 as k tends to infinity. Felsenstein (1978)
used a two-state model of evolution to show that the maximum parsimony estimator is not statistically
consistent. On the other hand, the maximum likelihood estimator is statistically consistent (RoyChoudhury,
2014). The minimum tree length estimator is statistically consistent if the distance estimator converges to
tree-distances as sample size k tends to infinity. Developers of distance-based methods use model-based
estimates of tree-distances in order to ensure statistical consistency.
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Figure 2.3: Two hidden Markov models on leaf-labeled rooted phylogenetic trees are shown here. The general
Markov model (GM) is shown in panel A. The GM model is parameterized in terms of transition matrices.
The general time-reversible model (GTR) is shown in panel B. The GTR model is parameterized in terms of
rate matrices. The restrictions that are placed on the rate matrices of the GTR model are shown in panel B.
The observed states of the hidden Markov models are represented by the labeled vertices of the phylogenetic
tree.

2.4 Hidden Markov models on trees

Model-based approaches to phylogenetic tree inference assume that the observed gene sequences have
evolved from a common ancestral sequence according to a tree-structured graphical model. The appeal
of using models for inferring phylogenetic trees is that the parameters of the fitted models enable us to
make statements about the nature of evolutionary processes that have brought about the observed genomic
changes.

The probabilistic models that are used for modeling sequence evolution are hidden Markov models (HMM)
on rooted phylogenetic trees. A HMM M on a phylogenetic tree (T' = V, E) specifies the joint probability
distribution over vertices in V. Each nucleobase is assumed to have evolved independently according to
a common model (independent and identically distributed (iid) assumption). Let seq(v) be the sequence
represented by a vertex v, and let X be the variable representing the character at site i of seq(v). Let X,
denote the ordered set (X}, X2,... X*) of characters in the sequence seq(v) comprising k characters. Let
X, and Xy denote the set of sequences for labeled vertices £ and hidden vertices H.

Two types of hidden Markov models (HMM) on phylogenetic trees will be discussed in this subsection:
discrete-time HMM (DT-HMM) and continuous-time HMM (CT-HMM). DT-HMM are parameterized in
terms of transition matrices. A square matrix P is a transition matrix if (i) each element of P is non-
negative, and (i7) the sum of elements of each row of P equals one. CT-HMM are parameterized in terms of
rate matrices. A square matrix @ is a rate matrix if (i) each off-diagonal element of @ is non-negative, and
(7i) the sum of elements of each row of @ equals zero.

Barry and Hartigan (1987) introduced a DT-HMM on rooted phylogenetic trees that is referred to as
the general Markov model (GM). The parameters of a GM model Mgn = (7,, P) on a phylogenetic tree
T = (V, E) comprise (i) a root probability distribution 7, and (i) the set of transition matrices P = {P, :
e € E} (see Figure 2.3A). Each entry P(a,b) of a transition matrix P specifies the conditional probability
of observing state b given state a. The sum of elements of each row of P equals one.

The Markov models that are commonly used for inferring phylogenetic trees are CT-HMM. A continuous-
time hidden Markov model Mcr = (7, Q,t) on a phylogenetic tree T' = (V, E) is parameterized in terms
of (i) a root probability distribution m,, (i7) the set of rate matrices Q = {Q. : e € E}, and (4it) the set of
edge lengths t = {t. : e € E}. The transition matrix P, for edge e is computed as P, = e%ete.

If a probability distribution 7y satisfies the condition that 7w, = 0 then it follows that 7,P = ,
where P = €@ for any non-zero positive ¢ (Steel, 2016). m, is said to be the stationary distribution of
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Q. The summation —%;7,(7)Q(i,1) is the expected number of substitutions per unit time for a stationary
homogeneous continuous-time Markov process that is defined by the rate matrix @ (Steel, 2016). It is
common to scale @ such that —X;74(7)Q(4,%) is equal to one, where 7, is the stationary distribution of @,
because edge lengths are scaled in units of substitutions per site. A rate matrix @ is said to be a normalized
rate matrix if — ), 7,(7)Q(7,7) equals one. All the rate matrices that are referred to in the following text
are normalized rate matrices unless specified otherwise.

There are two classes of CT-HMM that will be discussed below. The first class of models are time-
reversible models that are characterized by a property that makes it impossible to identify the location of
the root (Felsenstein, 1981). The second class of models are Lie Markov models; Lie Markov models are
a hierarchical family of Markov models that are closed under matrix multiplication (Sumner et al., 2012;
Woodhams et al., 2015).

2.4.1 Time-reversible models

In the following paragraph we define the three constraints that are commonly placed on CT-HMM on
phylogenetic trees: (i) stationarity, (i) homogeneity, and (ii7) time-reversibility.

Given a CT-HMM Mcr = (7,,Q,t) on a phylogenetic tree 7. Mcr is stationary if 7,Q equals O for
each rate matrix @ in Q. Mcr is homogeneous if the rate matrices in Q are identical. A stationary and ho-
mogeneous CT-HMM on a phylogenetic tree Mot = (7,, Q, t) is said to be time-reversible if 7(a) P, )(a,b)
equals m(b) Py, (b, a) for each pair of adjacent vertices u,v. Time-reversibility is enforced by constraining
IIQ to be symmetric for each @ in Q, where II is a diagonal matrix such that II(¢,4) = m(¢). The widely
used general time-reversible (GTR; Tavare (1986)) model is a stationary, homogeneous, and time-reversible
CT-HMM on rooted phylogenetic trees (see Figure 2.3B). The unrestricted model (UNREST; Yang (1994b))
is the stationary and homogeneous CT-HMM on a phylogenetic tree which does not impose any constraints
on the parameters of the rate matrix.

The model parameters of probabilistic models are estimated by maximizing the likelihood score (see
equation 2.3). Time-reversible CT-HMM on rooted phylogenetic trees share the following property that
makes it impossible to infer the location of the root using the likelihood score. Given a time-reversible
CT-HMM Mg = (7,,Q,t) on a phylogenetic tree T,, let T' = (Vr, ET) be the unrooted version of T),. Let
e = {u,v} be any edge in Er, and let § be a non-negative number that is smaller than ¢.. Let Tpe"s be the
phylogenetic tree that is constructed by rooting T' at distance § away from vertex u along edge e = {u,v}.
Let Mff’lg = (77275, Q°%,t%%) be a CT-HMM on T;v‘; such that 7r§75 equals 7, Q? equals Q, and t*? is the
set of edge lengths of T¢°. The likelihood scores £7, (Mrr|X3) and ET:,J (MR |X3) are identical for any edge
e in Er, and any non-negative ¢ that is smaller than ¢, (Felsenstein, 1981). The property of time-reversible
CT-HMM on rooted phylogenetic trees which is that the likelihood score does not depend on the location of
the root is known as Felsenstein’s pulley principle (Felsenstein, 1981).

2.4.2 Lie Markov models

Lie Markov models (Sumner et al., 2012; Fernandez-Sanchez et al., 2015; Woodhams et al., 2015) are
a set of nested Markov models that were designed to ensure statistical consistency in case of incomplete
species sampling (see Figure 2.4). It turns out that the GTR model is not statistically consistent if there is
incomplete sampling (Sumner et al., 2012), as explained in detail below.

Consider the following scenario. The gene sequences of four species l1,l2,l3 and l4 have evolved according
a non-homogeneous Markov model (model A in Figure 2.4). However, sequences are only available for species
l1,15 and l4 because of incomplete sampling (see Figure 2.4 B). The Markov model that is used for inference
is shown in Figure 2.4 C. Assume that each transition matrix shown in Figure 2.4 belongs to a set P of
transition matrices. In order to ensure that the set P of transition matrices is statistically consistent wrt
incomplete sampling, it is necessary that there exists a transition matrix Ps in P such that Ps = P5Ps.
Statistical consistency wrt incomplete sampling is guaranteed if P is closed under matrix multiplication.
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Figure 2.4: Panel A shows a non-homogeneous Markov model on a phylogenetic tree with leaves I;through
l4. Sequences are only available for species [1,lo and I4 because of incomplete sampling (panel B). Let Py be
a transition matrix such that Ps = P3P5 (panel C).

Continuous-time HMM on trees are more widely used for phylogeny inference than discrete-time HMM
on trees because the parameter known as branch length is used to construct phylogeny-based models such as
the molecular clock (see subsection 2.8.3). Consequently, the development of Lie Markov models has been
restricted to CT-HMM (Sumner et al., 2012; Fernandez-Sanchez et al., 2015; Woodhams et al., 2015).

Let e93ts and 9% be continuous-time realizations of the transition matrices P3 and Ps that are shown
in Figure 2.4. Let the rate matrices Q3 and Q5 belong to a set Q of rate matrices. The set Q of rate matrices
is said to form a Lie algebra (Steel, 2016) if

1. Each matrix in Q is closed under addition and scalar multiplication, and
2. The matrix commutator [Q1, Q2] := Q1Q2 — Q2@ for each matrix pair in Q is closed.

An operation on a set S is said to be closed if the operation on elements in S always maps to elements in S.

If a set Q of rate matrices form a Lie algebra then, according to the Baker-Campbell-Hausdoff formula
(Campbell, 1987) it follows that for each pair of rate matrices @1, Q2in Q there exists a rate matrix Q3 in
Q such that

e@1t1+Q2ts _ Qsts (2.4)

Thus, in order to ensure statistical consistency for the case of incomplete sampling, it suffices that the rate
matrices that are used to parameterize a CT-HMM on a phylogenetic tree belong to a set of rate matrices
that form a Lie algebra.

Fernandez-Sanchez et al. (2015) constructed a hierarchy of 37 Lie Markov models such that the rate
matrix of each Lie Markov model is a linear combination of a common set of basis matrices (see Figure 2.5).
A rate matrix Qpi.that forms Lie algebra can be expressed as Q = Ya;B; where B; is a basis matrix and «; is
a non-negative weight. Consequently, each element of a rate matrix that forms Lie algebra can be expressed
as a linear combination of weights. The nomenclature of Lie Markov models is explained below using the
example RY5.6B that is listed in Woodhams et al. (2015). The columns of rate matrix Qprys.6p» are indexed
A, G, C, T. The first two columns are indexed with purines, and the latter two columns are indexed with
pyrimidines. The Lie Markov models have been developed with nucleotide-pair symmetry in mind. The
model RY5.6B has purine/pyrimidine (RY) symmetry which will be explained later in this subsection. Note
that in contrast to the convention of having the rows of rate matrices sum to 0, as has been adopted in this
thesis, the convention used in the development of Lie Markov models is to have the columns of rate matrices
sum to 0. The rate matrix Qprys.¢p is constructed as the linear combination aA 4+ asAs +dD + e1 Ey + ex Ey

—3a+d+e; a+2as +d+ e a-as +d+ e a—as+d+ e

0 _ a+2as+d—e; —3a + d-e; a— ag + d-e; a-as + d-eq (2.5)
RY5.6b = a—as—d+e a—ag—d-+es —3a—d+e a+2ay—d+es ’
a—as—d—ey a—ay—d—ey a+2ay—d—es —3a—d—es
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Figure 2.5: The set of Lie Markov models that have been developed by Sumner et al. (2012) and Fernandez-
Sanchez et al. (2015) (Figure adapted from Woodhams et al. (2015)). Arrows are directed from special
models to more general models. Alternate names of models are shown in parentheses. Model 12.12 is the
GM model. The use of dotted lines and solid lines is for visual clarity. The nucleotide pairing symmetry that
is inherent in each Lie Markov model is not shown in the model name. Boxes that are shaded do not have
distinct RY, WS or MK variants. The shape of the box that outlines model names represents constraints on
the stationary distribution of the Lie Markov model.
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where A, As, D, Ejand E; are basis matrices, and a, az d, e; and ey are non-negative weights. The number 5
in the model name 5.6b indicates the number of free parameters of the model. Rate matrices are constrained
to have non-negative entries in their off-diagonal element. Fernandez-Sanchez et al. (2015) add a non-
negativity constraint, e.g., a + 2a2 + d + e; > 0, for each off-diagonal element. The inequality constraints
define a convex polyhedral cone, enabling a reparameterization of the off-diagonal entries of the rate matrix
as a convex combination of the rays (linearly independent vectors) of the convex polyhedral cone. A set S of
vectors is said to be linearly independent if the no vector v in the set can be derived as a linear combination of
S\v.The number 6 in the model name is the number of linearly independent vectors of the convex polyhedral
cone. The reparameterized version of Qrys.6p is given below

* at+pa B+pa B+pa
a+pa * B+pc B+ pa
B+pc B+pc * a+p
B+pr B+pr a+pr *

where * is set such that each column sums to zero. Note that any modification of the index of the rate matrix
that preserves purine/pyrimidine grouping will result in a row and column permutation operation such that
there is no change in the resulting rate matrix (Woodhams et al., 2015). The suffix “b” in the model name
is used to distinguish between multiple rate matrices that share the same number of free parameters, and
the same number of parameters in the reparameterized versions.

In addition to purine/pyrimidine grouping {{A,G},{C,T}}, two additional groupings have been devel-
oped: {{A,T},{G,C}} which is denoted by WS, and {{A,C},{G,T}} which is denoted by MK (Woodhams
et al., 2015). R, Y, W, S, M, and K are the IUPAC ambiguity codes for the pairs: {A,G}, {C,T}, {A, T},
{G,C}, {A,C}, {G,T}. Six out of 37 Lie Markov models are identical wrt RY, WS, and MK grouping. In
total there are 99 Lie Markov models that have been implemented in IQ-TREE v1.6.1 (Nguyen et al., 2015)
and BEAST v2.0 (Bouckaert et al., 2014).

QRys.60 = (2.6)

2.4.3 Mixture models that account for heterogeneous rate of substitutions across
sites

Base-pair substitutions have been observed to occur at different rates across sites. For example, nucleotides in
the third codon position are substituted more frequently than the nucleotides in the first two codon positions
because of redundancy in the genetic code at the third codon position. There is a family of models that
is commonly modeled to account for site-heterogeneity in substitution rates comprising: (i) the invariable
sites model () restricts a proportion of sites to be invariable by setting edge lengths to zero (Steel et al.,
2000), (i7) a mixture model that draws rates from a discrete Gamma distribution I'y, with & classes (Yang,
1994a), and (ii¢) a mixture model Ry that allows k rates to vary independently instead of constraining the
rates to be drawn from the same probability distribution (Yang, 1995). The free-rate model is known as the
discrete-rate CAT model as implemented in FastTree.

2.5 Tree-search under continuous-time HMM on trees

Let (7, (D) = argmax/{r,(M|D) denote the maximum likelihood score of a phylogenetic tree T,. The
M

maximum likelihood (ML) problem is the combinatorial optimization problem of finding a phylogenetic tree
T, such that E}p (D) is maximum. The total number of distinct rooted phylogenetic trees with n leaves is
H?’:_(? (2i 4+ 1) for n > 2 (Felsenstein, 2003). The total number of distinct unrooted phylogenetic trees with
n leaves is H;:OS(% + 1) for n > 3 (Felsenstein, 2003).

The general approach to approximate the ML problem is to compute initial trees using fast approaches
such as neighbor-joining (Saitou and Nei, 1987) or stepwise addition (Wagner, 1961). Subsequently, the tree
space is explored via tree modification operations such that incremental improvements to 6}0 (D) are smaller
than a threshold that is specified a priori. Tree modification operations that are used in practice are nearest
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Figure 2.6: Nearest neighbor interchange (NNI) moves for unrooted phylogenetic trees operating on the edge

{v,w}.

neighbor interchange (NNI) , subtree prune and regraft (SPR), and tree bisection and reconnection (TBR)
Steel (2016).

Tree modification operations on unrooted phylogenetic trees are described below because the majority of
software implement time-reversible CT-HMM on phylogenetic trees. Tree modification operations on rooted
phylogenetic trees are not described in this thesis.

2.5.1 Searching through tree space

A nearest neighbor interchange (NNI) move involves swapping the neighbors of adjacent non-leaf vertices.
An NNI move on an unrooted phylogenetic tree T' = (V, Er) is defined with respect to any edge {v,w} in
E+ that is not incident to a leaf, and neighbors n, of v and n,, of w, respectively. The two possible NNI
moves involving an edge {v, w} are shown in Figure 2.6.

A subtree prune and regraft (SPR) move involves removing (pruning) a subtree and inserting (grafting)
the subtree at a new location. An SPR move on an unrooted phylogenetic tree T' = (Vr, Er) is defined
with respect to a subtree 7, = (V;,, E;,) of T, an edge {y,z} in Ep\E.,, and a non-negative distance d
smaller than tr, 3. Given a subtree 7,, an edge e = {y, z}, and a distance d, an SPR move involves the
following steps (i) removing the edge {v,w} in Ep such that w is not in V, , (ii) suppressing the vertex w,
(ii1) selecting an edge e = {y, z} in E7\E.,, (iv) adding a vertex z at a feasible distance d from y along the
edge e, and (v) adding the edge {v,2} to Er resulting in a connected graph.

A tree bisection and reconnection (TBR) move involves removing an edge and connecting the subsequently
disconnected components by a newly added edge. A TBR move on an unrooted phylogenetic tree T' = (V, E)
that removes edge {v,w} in F is performed as follows. The edge {v,w} in E is removed resulting in the
construction of connected components C,, = (Vi , E¢,) containing v, and C,, = (Vg,,, B¢, ) containing w,
respectively. Subsequently vertices v and w are suppressed. Finally two edges e, = (yu, 2y) in E¢,, and
ew = (Yw, 2w) In Ec, are selected. A new vertex v’ is inserted along e, at distance d, away y,, and a new
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Figure 2.7: A subtree prune and regraft (SPR) move on an unrooted phylogenetic tree. The SPR move
shown above involves removing the edge colored in orange and adding the edge colored in blue.

Figure 2.8: A tree bisection and reconnection (TBR) move on an unrooted phylogenetic tree. The TBR
move shown above involves removing the edge colored in orange and adding the edge colored in blue.
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vertex w’ is inserted along e,, at distance d,, away y,,. Finally the edge {v’,w’} is added to E,, (see Figure
2.8).

The tree space of rooted phylogenetic trees can be explored using modified versions of the NNI, SPR and
TBR moves described above, and are not explained in detail in this thesis.

Parameter optimization is performed alongside tree modification operations. Approaches for optimizing
the parameters of CT-HMM on phylogenetic trees are described in the following Subsection.

2.5.2 Optimizing the parameters of CT-HMM on phylogenetic trees

The parameters of CT-HMM on phylogenetic trees include the free parameters of rate matrices and edge
lengths. Optimization of the parameters mentioned above involves increasing the likelihood score such that
incremental changes to the likelihood score are below a threshold that is specified a priori. A commonly
adopted strategy is to iteratively optimize rate matrix parameters for fixed edge lengths, and optimize edge
lengths for fixed rate matrix parameters (Yang, 2000). Edge lengths are usually optimized sequentially using
Brent’s method or Newton-Raphson’s method (Bryant et al., 2005; Nocedal and Wright, 2006).

The task of computing the likelihood score (equation 2.3) is computationally demanding. The likelihood
score can be computed in O(nkA?) using a dynamic programming algorithm (Felsenstein’s tree pruning
algorithm) where n is the number of leaves in the phylogenetic tree, k is the number of columns in the
sequence alignment, and A is the number of states in the HMM which is four for DNA substitution models
(Felsenstein, 1981).

The tree pruning algorithm computes the likelihood score in equation 2.3 as follows. The conditional
likelihood L (x) of observing character z at base pair (site) i at an unlabeled vertex u is computed recursively
as

<2Pu v) y|x LZ ) (ZP(U w) ‘.%' ( )) (2‘7)

where v and w are the children of u. The conditional likelihood vector L is the marginal probability
Ll = Y PUXive V) M)
XiheHr, \{u}

where H,, is the set of hidden vertices in the subtree 7, = (V;,, E;,) that is rooted at vertex u. M., is the
set of transition matrices M., = {P. : e € E,, } The conditional likelihood vector L!, at a leaf u is defined
as follows. Let A} be the character that is observed at site ¢ of the sequence that is represented by leaf I.

i 0 z#X]
L() {1 x:Xl

The likelihood score L’ for site i is computed as

= 3w (2) L (@)

where p is the root. Under the iid assumption the total likelihood score L is given by L = II;Li. The log
likelihood score ¢ is computed instead of the likelihood score in order to avoid numerical underflow.

k
{= Z log L*
i=1

The computational burden of computing the log likelihood score is high. One technique that is commonly
used to reduce computational burden is to compute site likelihood scores L* for sites with distinct site
patterns.
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The site pattern for site (base pair) i is the ordered set of characters (X} : I € Lr) that are present in a
column of a multiple sequence alignment. Identical site patterns have identical likelihood scores (Felsenstein,
1981). It is standard practice to compute conditional likelihood vectors for each unique site pattern, and
reuse conditional likelihood vectors for each repeated site pattern (Felsenstein, 1981).

= ZwilogLi

where w? is the number of times that site pattern 4 repeats.

Additionally, conditional likelihood vectors are rescaled in order to avoid numerical underflow, and log
transformed values of scaling factors are added to the log likelihood score (Yang, 2000).

The task of optimizing the lengths of newly added edges, and the lengths of edges that are modified sub-
sequent to a tree modification operation is made less computationally demanding by reusing the conditional
likelihood vectors (see equation 2.7) that correspond to the root vertices of subtrees that are unchanged
subsequent to the tree modification operation.

A commonly used compute-time saving technique is to use a fast-to-compute score that can be used to
avoid tree-rearrangements that are likely to reduce the likelihood score (Hordijk and Gascuel, 2005). The
alternative criterion that is used instead of maximum likelihood is minimum evolution. The score that is
optimized by minimum evolution is tree length.

The parameters of rate matrices are optimized using quasi-Newton methods such as Broyden-Fletcher-
Goldfarb-Shano (Fletcher, 1987; Yang, 2000) or gradient-free methods such as Powell’s method (Powell,
1964; Holder et al., 2008). The computational burden of optimizing the parameters of the rate matrix of a
homogeneous CT-HMM on a phylogenetic tree T, = (Vr,, E1,) cannot be reduced by reusing conditional
likelihood vectors subsequent to each tree-modification operation because a change to any entry of a rate
matrix parameter results in a change in the transition matrix for each edge in Er,. In practice the free
parameters of the rate matrix are optimized infrequently after a considerable number of tree modification
operations have been performed (Sullivan et al., 2005). The use of non-homogeneous CT-HMM further
increases the number of rate matrix parameters that need to be estimated. A brief overview of methods that
perform phylogeny inference under non-stationary non-homogeneous Markov models are presented below.

Galtier and Gouy (1998) introduced a non-stationary non-homogenous CT-HMM that allows base com-
position to vary over each the edges of a phylogenetic tree. Boussau and Gouy (2006) implemented a tree
search algorithm called nhPhyML that searches for maximum likelihood phylogenetic trees under the Galtier
and Gouy (1998) model. Yang and Roberts (1995) implemented a non-homogenous CT-HMM such that the
rate matrix for each edge is a rate matrix of the HKY model. Additionally, Yang and Roberts (1995)
allowed base composition to vary across edges. p4 (Foster, 2004), PHASE (Gowri-Shankar and Rattray,
2007), and PhyloBayes (Blanquart and Lartillot, 2006) perform Bayesian inference via Markov chain Monte
Carlo (MCMC) sampling under non-stationary non-homogeneous CT-HMM. Jayaswal et al. (2005) provide
a method for fitting the general Markov model which takes as input an unrooted phylogenetic tree. In recent
work Williams et al. (2015) developed a MCMC sampling scheme for inferrinxg phylogenetic trees under
non-reversible, and non-homogenous CT-HMM. None of the methods mentioned above are applicable to
large data sets comprising more than 1000 species.

The CT-HMM that are currently implemented by most of the widely used software are stationary, ho-
mogeneous, and time-reversible (RAXML-NG (Kozlov et al., 2019), PhyML (Guindon et al., 2010), FastTree
(Price et al., 2010), RevBayes (Hohna et al., 2016) and BEAST v1.10 (Suchard et al., 2018)). IQ-TREE
v1.6.1 (Nguyen et al., 2015) and BEAST v2.0 (Bouckaert et al., 2014) implement Lie Markov models and
time-reversible models that are not Lie Markov models, such as the GTR model. Bettisworth and Stamatakis
(2020) described a method called RootDigger for placing the root on an unrooted tree using the UNREST
model.

Popular programs that perform model selection for DNA substitution models such as ModelTest-NG
(Darriba et al., 2020), ModelFinder (Kalyaanamoorthy et al., 2017) and Smart Model Selection (Lefort
et al., 2017) evaluate the GTR model, and special cases of the GTR model such as the Tamura-Nei 93 model
(TN93; Tamura and Nei (1993)) and the Hasegawa-Kishino-Yano 85 model (HKY85; Hasegawa et al. (1985)).

22



IQ-TREEv1.6.1 (Nguyen et al., 2015) performs model selection using Lie Markov models and time-reversible
models that are not Lie Markov models, such as the GTR model.

It is common practice to select the most appropriate CT-HMM on phylogenetic trees using criteria such
as Akaike information criterion (AIC; Akaike (1974)), and Bayesian information criterion (BIC; Schwarz
(1978)), which are defined as

AIC = —2log —likelihood 4 2m (2.8)

BIC = —2log —likelihood + m log k, (2.9)

where m is the number of free parameters and k is the number of observations. The number of observations
equals the number of alignment columns.

2.5.3 Matrix exponentiation of rate matrices

It is necessary to exponentiate rate matrices in order compute the likelihood score using CT-HMM. The wide
use of time-reversible CT-HMMs models is commonly justified on the basis of mathematical convenience
because it is always possible to exponentiate time-reversible rate matrices using eigenvalue decomposition
(Felsenstein, 2003). This is because (i) given a time-reversible rate matrix @), the matrix IIQ) is symmetric
where the diagonal matrix IT has the stationary distribution of @ as its diagonal elements, (i7) symmetric
matrices with real entries are guaranteed to be diagonalizable such that the diagonal matrix comprises
real numbers (Golub and Van Loan, 1996), (ii¢) it is mathematically easy to exponentiate diagonalizable
matrices that contain real numbers as explained below. We explain how time-reversible rate matrices are
exponentiated using the derivation given by Bryant et al. (2005). Given a time-reversible rate matrix Q
construct the matrix IT'/2QII~1/2, which is symmetric because it can be constructed by multiplying the
symmetric matrix II-1/2 to the left of IIQ, and multiplying II-'/2? to the right of II1'/2Q. Diagonalize
IY/2QII~'/2 as BDB~'. Note that Q can be factorized as ADA™! where A is II"'/2B. Compute the
matrix exponential e? using the Taylor series expansion as follows.

= (ADA"'ADA™'.. ADA™) B
= Z o (there are k ADA™" terms)

where the matrix exponential of a diagonal matrix D is the diagonal matrix with the scalar exponential e®
as the ¢*" diagonal entry where d; is the i*" diagonal entry of D. IIQ is not necessarily symmetric if the
rate matrix is the unrestricted rate matrix (UNREST). Consequently, it is not always possible to diagonalize

23



the UNREST rate matrix such that the diagonal elements are guaranteed to be real. The alternate way of
exponentiating rate matrices that does not involve eigenvalue decomposition is to numerically approximate
the Taylor series expansion. We used the numerical approximation techniques that are implemented in
the scientific computing package for python, Scipy (Virtanen et al., 2020), and the C++ library Eigen v3
(Guennebaud and Benoit, 2010) in order to exponentiate unrestricted rate matrices.

2.6 Related work on the general Markov model

All popular phylogeny inference software exclusively implements CT-HMM on phylogenetic trees. The
general Markov model (GM) is a DT-HMM on phylogenetic trees. The following section discusses related
work on inferring phylogenetic trees under the assumption that sequences were generated according to a
general Markov model.

2.6.1 Barry and Hartigan’s paper

The GM model on phylogenetic trees was introduced by Barry and Hartigan (1987), who stated that their
model was not identifiable, i.e., it is not possible to identify the GM model using the likelihood score because
there are several models that yield identical likelihood scores. Barry and Hartigan reparameterized the GM
model in terms of edge-wise joint probability matrices, and provided an EM algorithm for optimizing model
parameters. The EM algorithm for the reparameterized version of the GM model has been implemented
by Jayaswal et al. (2005). Additionally, Barry and Hartigan introduced a distance measure which is more
widely known than the general Markov model. The distance measure has come to be known as the logDet
which is defined as follows. Given species u and v, let F{, ,) be the estimated joint probability matrix such
that F, ,)(x,y) is the fraction of sites at which character X, equals x, and X, equals y.

logDet(u,v) = —In |[det(Fy,.))| (2.10)

logDet distances are tree-distances for all uw,v s.t. w # v. The notion of tree-distances is defined wrt
phylogenetic trees with edge lengths. Given a GM model on a rooted phylogenetic tree T),, Steel (1994)
showed that there exists an edge length function A that is defined on the edges of the unrooted version T' of
T, such that logDet distances (see equation 2.10) are additive in T with respect to A. Given a GM model
M on a rooted tree T, logDet distances are additive in the unrooted version of 7" under the assumption
that F{,.) equals the joint probability distribution over &, and &, that is defined by M on T, (Steel,
1994). The widely known distance-based clustering method neighbor-joining (NJ; Saitou and Nei (1987)) is
statistically consistent if distances are tree-distances in the model tree. NJ using logDet distances is one the
most common methods to construct trees under the GM model (Sheffield et al., 2009).

2.6.2 Phylogenetic invariants

The typical approach to tree search involves computing the odds that the observed site patterns were gen-
erated by the combination of tree and parameters of interest, and selecting the combination of tree and
model parameters that has the greatest odds of generating the observed data. Phylogenetic invariants are
a radically different way of finding trees. Invariants of a HMM on a tree are polynomials in site pattern
frequencies that vanish (evaluate to zero) at observed site pattern frequencies if the observed data was gen-
erated by the HMM on trees under consideration (Allman and Rhodes, 2007). Note that invariants provide
a way of selecting topologies without having to concern oneself with parameter estimation. Consequently,
invariant-based methods can be used to infer the topology of a GM model on trees without having to learn
model parameters. A simple example of a phylogenetic invariant will be given below. Consider a GM model
on a two-species tree T = (V = {p,a,b}, E = {(p,a), (p,b)}) . The joint probability over {a, b} is given by

4
P(Xo=j, X =k) =pjx =Y 7p(i)Ppa)(is ) Pl (i k)
=1

24



The joint distribution P(X,, X) can be expressed as a 4 x 4 matrix, with p;; as the entry in row j and
column k, such that each entry is a degree-3 polynomial comprising four terms. The following polynomial,
known as the stochastic invariant, is an example of a phylogenetic invariant.

ijk -1
J:k

The stochastic invariant is a trivial invariant because any joint probability distribution must sum to one.
Invariants can be used to infer the topology of the generative model can be identified if the invariants are
constructed based on topological information about the underlying model. Consider a further simplification
of the example shown above where the state at the root is constrained to be A, i.e., 7, = (1,0,0,0). p;, can
be expressed as

Pik = Tp(1)Pp,a) (1, 5) Pipp) (1, k) = Ppa)(1,5) P (1, k)
It follows that the polynomial pjrpmn — DjmPin is an invariant because
PjkPmn = PjmPkn = P(p,a)(laj)P(p,b)(la k)P(p,a)(lam)P(p,b)(lv k)

In general, invariants can be used to discriminate between competing topologies based on how closely the
corresponding polynomials approach zero if evaluated at observed site pattern frequencies. The construction
of invariants is a daunting task. There are an exponential number of polynomials in an exponential number
of variables that need to be evaluated for an exponential number of tree topologies. Phylogenetic invariants
for the general Markov model do not depend on the location of the root (Allman and Rhodes, 2008).
Consequently, all the invariant-based methods that have been developed for the GM model have either been
used to construct unrooted trees, or to score splits. There are two programs that make use of invariants. The
first program is by Nicholas Eriksson. Eriksson computes unrooted trees in a neighbor-joining like fashion
by identifying splits using singular-value decomposition (Eriksson, 2005). The second program SpitSup
(Allman et al., 2017) takes as input a multiple sequence alignment and a set of splits, and scores the splits by
constructing split-specific invariants and evaluating the invariants using observed site pattern frequencies.
Additionally, SplitSup can perform a scanning window analysis to assign window-specific scores to input
splits.

Pachter and Sturmfels (2005) note that the parameters of the GM model on phylogenetic trees can be
optimized using an expectation-maximization algorithm (EM). An EM algorithm for the GM model on
phylogenetic trees is described in the following Section.

2.6.3 Expectation-maximization

Consider a phylogenetic tree Té At that is constructed by removing one edge and one labeled vertex from
the edge set and the vertex set, respectively, of a rooted caterpillar tree such that each hidden vertex has
exactly one child vertex that is labeled. Té AT resembles the hidden Markov model (Cappé et al., 2005) that
is commonly used for finding DNA sequence patterns (see Figure 2.9 A that was adapted from Pachter and
Sturmfels (2005)). The parameters of the hidden Markov model can be optimized using an expectation-
maximization algorithm (EM; Dempster et al. (1977)), known as the Baum-Welch algorithm (Cappé et al.,
2005).

EM algorithms are a class of algorithms that are used to infer the parameters of models with hidden vari-
ables. If all the variables of interest were observed then the desired maximum likelihood estimates of model
parameters could be inferred in closed form. If there are hidden variables then one can make the problem
of parameter estimation feasible by (7) filling in values for hidden variables using a suboptimal estimate of
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Two views of the rooted caterpillar-like tree

Figure 2.9: A phylogenetic tree with each hidden vertex having one labeled vertex as a child is shown in
panel A. The tree shown in panel A is redrawn in panel B to resemble the hidden Markov model. The Figure
shown above has been adapted from Pachter and Sturmfels (2005).

model parameters, and subsequently (i7) using the complete data set to estimate model parameters. Steps
(i) and (i) are performed iteratively such that the likelihood score increases with each iteration.

Koller and Friedman (2009) describe an EM algorithm for optimizing the parameters of Bayesian net-
works. A Bayesian network generalizes the general Markov model on phylogenetic trees by allowing multiple
parents. The EM algorithm described by Koller and Friedman (2009) makes use of Pearl’s belief propagation
algorithm (Pearl, 1982) for performing the expectation step, and closed-form solutions for the maximization
step. The belief propagation algorithm was developed for the special case of Bayesian networks where the
number of parents is limited to one, in which case the Bayesian network is the general Markov model on
phylogenetic trees.

First, we described the maximization step for the case where there are no hidden variables. Subsequently,
we show how to compute expectation statistics that are sufficient to optimize the parameters of a suboptimal
general Markov model on a leaf-labeled phylogenetic tree.

2.6.3.1 Maximization step:

If there are no hidden variables then the maximum likelihood estimate can be computed in closed form (Koller
and Friedman, 2009). Consider a GM model Mgy on a fully labeled phylogenetic tree Tr = (Viun, Fran)-
Let ), be the normalized observed count matrix for any vertex w in V)1, which can be computed as

k
Z (2.11)

where = denotes nucleotides and d(z,y) is the Kroenecker delta function.
Let C(y,) be the normalized observed count matrix for any edge (u,v) in Egu, which can be computed

??\)—\

as

k
Z ) X (XL y) (2.12)

?vM—‘

C(u v) €T, y

The maximum likelihood estimate (MLE) of parameters of Mgy can be computed in closed form as
follows (Koller and Friedman, 2009):

WﬁdLE(x) = Cp(x), and (2.13)
Cluw(@,y)
Pl (@,y) = % )(x) (2.14)
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Figure 2.10: A general Markov model (GM) on a phylogenetic tree T = (Vip, Er). Each edge e in Er is
labeled with transition matrix F.. The root p is labeled with the root probability distributionm,.

2.6.3.2 Expectation step:

If we have suboptimal estimates of a GM model M on a leaf-labeled phylogenetic tree then the parameter
estimates of M that are guaranteed to improve the likelihood score can be computed using the expected
values of the count matrices listed in equation 2.11 and equation 2.12.

The expected counts Ep[C,(2)] of variable X, can be computed as follows (Koller and Friedman, 2009):

k
Ey [Cry(@)] =) P(X) = 2), (2.15)
i=1
where P(X!) is the marginal probability
P(X}) = > PHX:veVp} M)

Xﬁ:hE’HTp\{u}

Similarly, the expected counts E); W(uﬂ,)(x, y)} of variable pair X, X,, can be computed as follows

k
Ent [Cluwy(@,y)] = > P(Xi =2, X = y), (2.16)
i=1
where P(X! X?) is the marginal probability
P(X;, X)) = > P({X, :v e Vr,}[M)

X} :heHr, \{u,v}

The marginal probabilities listed in equation 2.15 and equation 2.16 can be computed efficiently using
the belief propagation algorithm by Pearl (1982), as described below.

Belief propagation makes use of a graphical structure known as clique tree. Here we define clique trees
for the special case of phylogenetic trees. Given a phylogenetic tree T, a clique tree TCT = (Vyer, Eper)
of T = (Vp, Er) is a undirected tree such that each edge in E7 is represented by a distinct vertex in Vyer.
Figure 2.11 depicts the clique tree for a GM model on the phylogenetic tree shown in Figure 2.10. Each
vertex of a clique tree is referred to as a clique. The scope of a clique is the variable pair that is represented
by the clique. For instance the scope of clique Cp, 1,) is (Ah,, A1,). Operations on a clique tree are defined
in terms of factors which are clique-specific functions that are defined on the variables included in the scope
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P(hz, 1)

Figure 2.11: A clique tree of the phylogenetic tree T' that is shown in Figure 2.10. Each vertex of a clique
tree represents an edge in 7. Each model parameter of the HMM on T is assigned to exactly one vertex of
the clique tree (shown with dashed edges). The parameters 7, and P, ) are assigned to the clique C, p,)-.
Each edge of the clique tree is labeled with the scope of messages that are sent across the edge.

of one of more cliques. Factors provide a means of reparameterizing joint probability distributions in terms
of clique-specific parameters. Three types of factors will be introduced in this section: potentials, messages,
and beliefs.

The potential 1, ., of a clique C(, ) is a measure of co-occurrence of variables X, and &,. The potential
of a clique is initialized using one or more model parameters such that each model parameter is assigned to
one clique, as defined in equation 2.17. An example of parameter assignment is shown in Figure 2.11.

) (@, y) if the factor P, . is assigned to the clique C(, )

P,

(y)Pluvy(z,y) if factors P, ,) and 7, are assigned to the clique C, .

Conditioning on observed data is performed by restricting the potential of cliques that contain an observed
variable in their scope. Consider a clique C, ;) that contains the observed variable &) in its scope. Let the
initial potential qp%%ifl) of Cn,1) be

A T G C
A 089 0.01 0.05 0.05
T 0.06 0.85 0.04 0.06 (2.18)

0.02 0.02 0.95 0.01

C 0.03 0.01 0.01 0.95

D) =

where rows and columns are indexed by nucleotides. Let the observed state X} for X; be G for site i. The
initial potential z/;%‘é‘tl is restricted to state G by setting to zero all entries in each column of wz?fl) that is

not indexed by G, resulting in the following matrix.
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AT G C

A 0 0 005 0
b= T 0 0 004 0 (2.19)

G 0 0 095 0

C 0 0 001 0

A message is a factor that is computed by marginalizing over a variable in the domain of the potential
of a clique. The message 1, is computed by marginalizing 1, ,) over the variable X,,. The message uj for
the factor ¢, ;) shown in equation 2.19 is the column vector

0.05
004
Fh="0.95
0.01

Messages can be multiplied into potentials via matrix multiplication._ The belief 3, . of a clique C,,,
for site i is the marginal probability P(X¢, X}) = ZX,&:heHTp\{u,v} P({X] :v € Vg, }|M). Belief propagation
is an operation on a clique tree that computes the belief of each clique by passing messages along the edges
of a clique tree as defined in Algorithm 1.

Algorithm 1: Belief propagation

Input: A GM model Mgy on T = (V = {H, L}, E), and the observed state for each labeled vertex.
Initialize:
Compute clique tree Ter = (Vor, Ect)
Assign parameters of Mg, to cliques in Ve
Set initial potential d)z';ltv) of each clique C, ) in Vor
Pick any non-leaf vertex in Tt as the root clique, and direct all edges away from the root
Let VY and VB2 be the ordered sets comprising vertices in Vor that are visited in preorder
traversal on Tcr, and postorder traversal on Tor, respectively
Set potential of each clique to the initial potential of the clique
For clique C(, ) in VEt
If w is a labeled vertex
Condition on X, by restricting 1, .,) based on observed state X,
Else
Multiply messages from each child clique into ¥, .
If C(y,w) is not the root clique
Let vertex v represent the variable that is common to C(, ., and the parent clique of C, .
Compute message (1, by marginalizing 1(,,,,) over variable Xy,
Send message ., to parent clique
For clique C, ) in V&
Set belief B, as wzg‘})) multiplied with messages received from each neighbor of C(q4 )
For each child clique C, )
Let vertex v represent the variable that is common to C(, ) and C(,,, (there is exactly one such
variable)
Set Y(q,p) as wz‘;‘%) multiplied with messages received from each each neighbor of C(, ;) except
Clay)
Compute message ji, by marginalizing 14,y over variable x,
Send message (i, 10 Cgy)
Output: Beliefs of each clique
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Executing belief propagation for site i results in computing the marginal probabilities P(X?, X}) for each
pair of adjacent vertices. The marginal probability P(X}) for each variable X,, can be computed by selecting
a probability distribution P(X!, X!) that contains &, in its domain, and marginalizing over the variable
X,. Expected count matrices can be computed using equation 2.15 and equation 2.16. The MLE of model
parameters can be computed using equation 2.13 and equation 2.14 where the observed count matrices are
substituted with expected count matrices.

2.7 Divide-and-conquer approaches

The large computational cost incurred in searching through tree space for maximum likelihood phylogenetic
trees motivated the development of divide-and-conquer methods that compute local phylogenetic trees for
small sets of species, and combine local phylogenetic trees into a global phylogenetic tree. The trees that are
inferred by the divide-and-conquer approaches described below combine local unrooted phylogenetic trees
into a global unrooted phylogenetic tree. The method that is used for constructing local phylogenetic trees
is referred to as the base method. Quartet puzzling (QP; Strimmer and von Haeseler (1996)) is a divide-
and-conquer method that works as follows. First all possible sets of four species are constructed. For each
such quartet of species a quartet with the maximum likelihood is selected. Let {a,b|c,d} denote a quartet
tree that contains the split {a,b}|{c,d}. The selected quartets are combined (the puzzling step) to construct
a global phylogenetic tree. St. John et al. (2003) compare the reconstruction accuracy of QP with neighbor-
joining and find that NJ performs better. The relatively poor performance of QP is because quartet trees
comprising distantly related species are not reliably estimated.

Erdos et al. (Erdos et al., 1999a,b) designed an efficient quartet-based method called the dyadic closure
method that outperforms QP because the dyadic closure method only considers quartets comprising closely
related species. The dyadic closure method was subsequently implemented as a family of methods referred to
as disc-covering methods (DCM). The DCM (Huson et al. (1999)) partition species on the basis of a threshold
graph. Given pairwise distances d over species V' a threshold graph G = (V| E) is constructed by adding
edges {u,v} such that d(u,v) is smaller than a threshold that is selected a priori. The most sophisticated
DCM is Rec-I-DCM3 (Roshan et al., 2004) which stands for recursive-iterative-DCM3. Roshan et al. (2004)
applied Rec-I-DCM3 to search for maximum parsimony (MP) phylogenetic trees. TNT by Goloboff (1999)
is a popular method for finding MP phylogenetic trees. Roshan et al. (2004) used TNT as the base-method
of Rec-I-DCMS3 for inferring local MP phylogenetic trees and report a substantial reduction in compute-time
combined with an improvement in reconstruction accuracy when compared with the use of TNT to infer
global MP phylogenetic trees.

Adkins designed a Kruskal-like agglomerative clustering algorithm that starts with a forest of singletons,
iteratively joins a tree pair, and terminates if the forest is a tree (Adkins, 2010). The tree-pair to join
at each iteration is selected as follows. A tree-pair 77 = (Vi, E1) and Ty = (Va, Ey), and edges {ui,v1}
and {ug,v2} in Eq and Fs, respectively, are selected that minimize the length of the interior edge of the
quartet {uy,vy|us, v2}, where length of the interior edge is computed as follows. First the trees T} and T
are disconnected by removing edges {u1,v1} and {ug,v2}. Subsequently, ancestral sequences are inferred at
u1,v1,u2 and ve. The length of the interior edge is estimated using pairwise distances computed using the
ancestral sequences. Given a tree pair 77 = (V1, F1) and Ty = (Va, E2), and edges {u1,v1} and {ug,v2} in
E; and Es, tree-joining is performed by removing the edges {u1,v1} and {us,vo}, adding vertices wy, ws
and edges {uy,w; },{v, w1 },{us, ws}, {ve, ws}, and {wy,ws}. The algorithm terminates if the the forest is a
tree. Adkins noted that some of the trees and edges selected are incorrect because the algorithm does not
have a global view of how the initial set of observed sequences are related to each other.

Chow-Liu grouping by Choi et al. (2011) improves upon Adkins’s algorithm by using a minimum spanning
tree to maintain a global view. However, Chow-Liu grouping is a distance-based divide-and-conquer method
that uses minimum spanning trees (MSTs) as follows. An MST is computed using pairwise distances.
Subsequently, each non- leaf vertex v of the MST is visited, and a local phylogenetic tree is computed over
the set v U N(v) where N(v) comprises the neighbors of v. The MST is used as a guide tree to join the
local phylogenetic trees into a global phylogenetic tree. Huang et al. (2014) demonstrated that Chow-Liu
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grouping enables distributed computation of local trees followed by merger of local trees with respect to
minimum spanning tree. Chow-Liu grouping is discussed in detail in Chapter 4. In contrast to Adkins’s
algorithm, Chow-Liu grouping does not perform ancestral state reconstruction and thus avoids parameter
estimation that is necessarily required when inferring ancestral states using a Markov model.

In recent work Zhang et al. (2019) presented a minimum spanning tree-based method called incremental
tree construction (INC) for building distance-based phylogenetic trees. INC involves the following steps: (4)
computing an MST M using pairwise distance estimates, (i) selecting the first three vertices of the MST
that are visited by performing a BFS/DFS starting at any leaf of the MST, (iii) constructing a three-leaf
tree T using the vertices selected in step (i7), incrementally growing T' by adding vertices in M that are
adjacent to vertices in T' on the basis of constraints derived from quartet trees constructed using Buneman’s
four point condition (Buneman, 1971). Buneman’s four-point condition is defined wrt to an unrooted tree
T = (V, E) as follows. Any four vertices x,y,u,v in V that satisfy the following inequality

dr(2,y) + dr(u,v) < max {{dr(z,v) + dr(u,y)}, {dr(z,v) + dr(u, y) }} (2.20)

are the leaves of a quartet tree which contains the split {z, y}|{w,v}. INC is similar to Chow-Liu grouping in
that a global constraint tree (the MST) is used to guide tree construction. In contrast to Chow-Liu grouping,
INC does not allow distributed computation of local trees.

Le et al. (2019) implemented INC, and a related method called INC-ML which uses constraints based on
trees provided by ML inference methods such as RAxML in order to incrementally construct a phylogenetic
tree. Le et al. (2019) performed a comparative analysis on simulated data and found that the reconstruction
accuracy of INC-ML was worse than RAxML but much better than INC.

All the divide-and-conquer methods mentioned above compute unrooted phylogenetic trees. A majority
of phylogeny inference software infer unrooted trees. We discuss how unrooted trees are rooted in practice.

2.8 Placing the root on unrooted phylogenetic trees

The phylogenetic trees that are inferred using time-reversible Markov models are unrooted phylogenetic trees.
Unrooted phylogenetic trees are less meaningful than rooted phylogenetic trees. Three methods that are
commonly used for inferring rooted phylogenetic trees are discussed below. The methods are (i) outgroup-
based rooting, (i4) midpoint rooting, and (#i¢) molecular clock based rooting. The current section ends with
a discussion of how molecular clocks can be used to construct time-calibrated phylogenetic tree, i.e., rooted
phylogenetic trees with edge lengths that are scaled in units of time.

2.8.1 Outgroup-based rooting

If one has prior knowledge that the species in a subtree 7, = (V. , E;, ) of an unrooted phylogenetic tree
T = (Vr, Er) are distantly related to species that are not in 7, then it is reasonable to root the tree along
the edge {u,v} in Ep\E,, . The species in 7, are referred to as outgroup, and the species that are not in the
outgroup are referred to as ingroup. For instance if the unrooted phylogenetic tree comprised sequences from
two species of cats and twenty species of dogs then it seems reasonable to consider the cats as an outgroup.

2.8.2 Midpoint rooting

Given an unrooted phylogenetic tree with edge lengths, let p be a path with the longest sum of edge lengths.
Let the end points of p be u and v. Midpoint rooting is performed by selecting an edge and placing the root
p along the edge such that the distance d,, from the root to u equals the distance d,, from the root to v.

2.8.3 Molecular clock based rooting

The existence of a molecular clock was proposed based on the empirical observation that protein sequences
seemed to evolve at a constant substitution rate (Zukerkandl and Pauling, 1965). The rate at which sequences
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evolve is known as substitution rate. Strict molecular clocks assume that the substitution rate is identical for
each edge of a rooted phylogenetic tree. Relaxed molecular clocks allow substitution rate to vary across the
edges of a rooted phylogenetic tree. The discussion in this thesis focuses on strict molecular clocks. Unless
specified otherwise the term molecular clock refers to a strict molecular clock.

A molecular clock imposes constraints on the edge lengths of phylogenetic trees. Two types of constraints
are considered below that differ with respect to rapidity of molecular evolution relative to the time scale
of sampling. Slowly-evolving species, e.g., all living species of the animal kingdom, are modeled as being
contemporaneously sampled. The distance from the root to each species in a time-calibrated phylogenetic
tree of slowly-evolving species is constrained to be identical. Fast-evolving species such as HIV are modeled
as being sampled at distinct time points. The distance from the root to any species in a time-calibrated
phylogenetic tree of fast-evolving species is proportional to the sampling time of the species. The edge
lengths of a rooted phylogenetic tree are said to be clock-like if root-to-leaf distances satisfy the constraints
of a molecular clock. Distance-based methods and model-based methods for rooting phylogenetic trees are
described below.

Distance-based methods root an unrooted phylogenetic tree such that the edge lengths of the rooted
phylogenetic tree best satisfy the clock-based constraints. Mai et al. (2017) provide a method for rooting
phylogenetic trees by minimizing the variance of root-to-leaf distances. Phylogenetic trees of fast-evolving
species can be rooted by placing the root such that the sum-of-squared-errors of regressing path length from
root-to-leaf on sampling time via ordinary-least-squares (OLS) regression is minimized (Rambaut et al.,
2016).

Model-based methods can be used to root an unrooted phylogenetic tree as follows. Given the topology
of a rooted phylogenetic tree, edge lengths are optimized under a CT-HMM according to the constraints of
the molecular clock. The optimal rooted phylogenetic tree is inferred by selecting the combination of rooted
phylogenetic tree topology and constrained edge lengths that maximize the likelihood score (Huelsenbeck
et al., 2002; Rambaut, 2000).

The edge lengths of non-calibrated rooted phylogenetic trees are in units of substitution per site. Calibrat-
ing a phylogenetic tree involves scaling edge lengths in units of calendar time using substitution rates which
are estimated as follows. Substitution rate can be computed by dividing the tree-distance from the ancestor
to its living descendants by the divergence time as follows (Kumar and Hedges, 1998). Let divTime(u,v)
be an estimate of the time since species u and v diverged from their most recent common ancestor a. The
substitution rate A is computed as follows:

— duU
2 x divTime(u, v)

(2.21)

where d,,, is the sum of edge lengths on the shortest path from u to v. The factor of two in the denominator of
equation 2.21 is present because (7) dyy = day+dao for tree-distances, and (i4) dg, = dgy = A X divTime(u, v)
for clock-like distances. A time-calibrated phylogenetic tree can be constructed by scaling edge lengths using
the estimated substitution rate. Probabilistic approaches can also be used for estimating substitution rates
(Rambaut and Bromham, 1998). Molecular clocks for fast-evolving species are calibrated using sampling
times that correspond to leaf ages. For instance root-to-leaf distances can be regressed on sampling times
(Rambaut et al., 2016) via OLS regression. Substitution rate can be computed using the slope of the linear
model that is fitted via OLS.

2.8.4 Drawbacks of current methods for rooting phylogenetic trees

Methods that use molecular clocks for rooting fail if substitution rates vary across species (Li, 1993). Midpoint
rooting usually gives realistic estimates of the location of the root only if the species under consideration
can be split into two sets of pairwise distantly related species. Outgroup-based rooting requires the use of
distantly related species. Methods that rely on the selection of distantly related species have the following
shortcoming. Sequences that corresponding to distantly related species may share common characters due
to independent evolution of the common character during evolutionary history resulting in distantly related
species being erroneously close to each other in the inferred phylogenetic tree. This phenomenon is known as
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long-branch-attraction (Felsenstein, 1978) and is thought to be a source of error for outgroup-based rooting
(Graham et al., 2002).

Molecular clock based rooting gives a realistic estimate of the location of the root if the assumption of
a molecular clock is appropriate. The use of molecular clocks has been criticized because of observation of
variation in the substitution rates among closely related lineages (Li, 1993).

2.9 Summary of contributions made in thesis

2.9.1 Modeling ancestor-descendant relationships using generally labeled trees

Fast-evolving species that have been sampled at distinct time points may contain ancestor-descendant pairs.
Leaf-labeled phylogenetic trees that are commonly used to represent evolutionary relationships do not al-
low sampled species to have ancestor-descendant relationships. In Kalaghatgi et al. (2016a) we developed
a clustering method called family-joining for inferring generally labeled phylogenetic trees that better rep-
resent the evolutionary relationships among fast-evolving species using generally labeled phylogenetic trees
that place species at non-leaf vertices. Family-joining compared favorably with related methods: sampled
ancestors by Gavryushkina et al. (2014) and recursive-grouping and Chow-Liu recursive grouping by Choi
et al. (2011). Family-joining was validated on empirical data using HIV-1 sequences that were sampled from
individuals from a known transmission chain. The inferred phylogenetic tree was compatible with 9 out of
10 transmission events. Further details about family-joining are provided in Chapter 3.

2.9.2 Conditions under which MSTs share a topological correspondence with
phylogenetic trees

Choi et al. (2011) introduced a minimum spanning tree (MST)-based method called CLGrouping, for con-
structing tree-structured probabilistic graphical models, a statistical framework that is commonly used for
inferring phylogenetic trees. While CLGrouping works correctly if there is a unique MST, we observed an
indeterminacy in the method in the case where there are multiple MSTs. We demonstrated the indeter-
minacy of CLGrouping using a synthetic quartet tree and a tree over primate genera. The indeterminacy
of CLGrouping can be removed if the input MST shares a topological relationship with the corresponding
phylogenetic tree. In Kalaghatgi and Lengauer (2017) we introduced so-called vertex order based MSTs
(VMSTs) that are guaranteed to have the desired topological relationship. We related the number of leaves
in the VMST to the degree of parallelism that is offered by CLGrouping. We provided polynomial-time
algorithms for constructing VMSTs and for selecting a VMST with the optimal number of leaves. Details re-
garding the indeterminacy of Chow-Liu group, and a rigorous analysis of algorithms for constructing VMSTs
are provided in Chapter 4.

2.9.3 Structural expectation-maximization under the general Markov model via
a minimum spanning tree backbone

The Markov models that are commonly used in phylogeny inference such as the GTR model are stationary,
homogeneous and time-reversible. Stationary models assume that base frequencies do not change over the
course of evolutionary history. The GC content of bacterial genomes ranges from 13% to 75% across bacterial
species (Agashe and Shankar, 2014) indicating that the assumption of stationarity is unreasonable. The
current strategy of searching through tree space for maximum likelihood phylogenetic trees is computationally
demanding. Simpler models such as the GTR model are used because they have a small number of free
parameters that need to be estimated. The general Markov model (GM; Barry and Hartigan (1987)) is
a non-stationary, non-homogeneous, non-reversible Markov that allows for variation in GC content. A
method for performing tree-search under the GM model is missing. In Chapter 5 we adapt the structural
expectation-maximization framework (Friedman et al., 2002) to perform tree search under the GM model
(SEM-GM). SEM-GM is a computationally expensive method. Inspired by the topological correspondence
between phylogenetic trees and minimum spanning trees due to Choi et al. (2011) we developed a framework
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called MST-backbone for constraining the search through tree space. We applied MST-backbone to improve
the scalability of SEM-GM without loss in performance. On simulated data with substantial variation in GC
content we demonstrated that the use of stationary models leads to a worse performance when compared to
the GM model. We validated our framework on multiple empirical datasets. Our method inferred rooted
trees under the GM model for two experimental phylogeny data sets with recall of 0.8. The unrooted topology
of the inferred phylogenetic trees appeared to be realistic for a majority of empirical datasets. However the
location of the root was not robustly supported. The location of the root was robustly recovered using
stationary homogeneous non-reversible Markov models. Details regarding the MST-backbone framework
and the validation studies are provided in Chapter 5.
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Chapter 3

Modeling ancestor-descendant
relationships using generally labeled
trees

The work that is presented in this chapter has been published in Kalaghatgi et al. (2016a).

Fast-evolving species that have been sampled at multiple time points may contain ancestor-descendant
pairs. The current approach to modeling evolutionary relationships makes use of leaf-labeled phylogenetic
trees. Leaf-labeled phylogenetic trees place all the sampled species at the leaves, and do not model direct
ancestor-descendant relationships. In this chapter we model evolutionary relationships using so-called gen-
erally labeled phylogenetic trees. Generally labeled trees allow sampled species to be placed at non-leaf
vertices. We present a clustering method called family joining (FJ) for constructing unrooted generally la-
beled phylogenetic trees. F.J compares favorably with respect to related methods on simulated data. F.J was
validated using HIV-1 env gene sequences that were sampled from individuals that were part of a partially
known HIV transmission network.

3.1 Current methods for modeling ancestor-descendant relation-
ships

Leaf-labeled phylogenetic trees are widely used to model evolutionary relationships, and are appropriate
models of evolutionary relationships among distantly related species such as the group of extant marine
mammals that includes manatees, walruses, whales, and dolphins (Foote et al., 2015). Pathogens such
as HIV replicate within individuals that are infected with the pathogen. A set of pathogens that are
sampled from individuals that are part of a common transmission network may contain ancestor-descendant
pathogen pairs. The evolutionary relationships of fast-evolving species such as HIV are better represented
using generally labeled phylogenetic trees that allow species to be placed at non-leaf vertices.

To account for ancestor-descendant relationships Jombart et al. (2011) model evolutionary relationships
using a directed acyclic graph (DAG) with no hidden vertices. Fully labeled DAGs do not account for
unsampled ancestral species. Additionally the DAGs that are used by Jombart et al. (2011) are not nec-
essarily connected. A disconnected graph with no hidden vertex does not fully represent the evolutionary
relationships.

Three types of methods are compared in this chapter. The first type is a likelihood-based method called
sampled ancestors (Gavryushkina et al., 2014) that performs Bayesian inference over phylogenetic trees
via Markov chain Monte Carlo sampling. The second type of method performs agglomerative clustering.
The agglomerative clustering methods discussed in this chapter include recursive grouping (RG; Choi et al.

35



(2011)), neighbor-joining with edge contraction (NJe; Saitou and Nei (1987), Choi et al. (2011)), and family-
joining (FJ) which is the method that was developed by Kalaghatgi et al. (2016a). The agglomerative
clustering methods construct unrooted generally labeled phylogenetic trees. The final type of method is a
supertree method called Chow-Liu grouping that uses RG as the base method for constructing unrooted
generally labeled phylogenetic tree.

3.1.1 Sampled ancestor trees

Gavryushkina et al. (2014) provide a method for constructing so-called sampled ancestor (SA) trees that are
rooted generally labeled phylogenetic trees with labeled ancestors restricted to having a single child. The
restriction on the the number of children of a non-leaf labeled vertex seems unnecessary. The authors infer
sampled ancestor trees via Bayesian inference that is performed using Markov chain Monte Carlo (MCMC)
sampling. The procedure of sampling phylogenetic trees via MCMC sampling is not applicable to reasonably
sized data sets comprising more than a few hundred species.

3.1.2 Agglomerative clustering methods

A common feature of all the agglomerative clustering methods discussed in this chapter is the use of so-called
active vertex set V, that is initialized as the set of observed species. V, is partitioned iteratively into one
of more generally labeled phylogenetic trees which are combined in order to construct a connected generally
labeled phylogenetic tree.

Recursive grouping (RG) iteratively partitions closely related vertices in V, into clusters called families
(MacQueen, 1967). The relationships of vertices in a family are modeled as an unrooted generally labeled
phylogenetic tree (Choi et al., 2011) on the basis of distances for each vertex pair, and a distance threshold
€. Vertices in V, that are present in a family are removed from V,. Newly introduced hidden vertices in each
phylogenetic tree are added to V,. This procedure is iterated until a connected unrooted phylogenetic tree
is constructed.

3.1.3 Neighbor joining with edge contraction

Neighbor-joining with edge contraction (NJc) constructs a neighbor-joining tree (Saitou and Nei, 1987).
Subsequently all edges that are shorter than a small threshold € are contracted in order to construct an
unrooted generally labeled phylogenetic tree.

3.1.4 Chow-Liu Recursive grouping

Chow-Liu grouping (CLGrouping) is a minimum spanning tree (MST)-based supertree method that was
introduced by Choi et al. (2011). Choi et al. (2011) provided an application of CLGrouping that uses RG
as the base method for constructing generally labeled phylogenetic trees. The application is referred to as
CLRG. CLRG starts by constructing a minimum spanning tree M over all the labeled vertices. Subsequently
for each non-leaf vertex v;, the vertex set V; consisting of v; and its neighbors is constructed and a generally
labeled phylogenetic tree T; over V; is constructed using RG. The subgraph in M that is induced by V; is
replaced by T;.

Choi et al. (2011) compared the performance of RG, CLRG, and NJc on simulated data where only the
tree topology was varied. In that study, no method clearly outperformed the others.

The work in the current chapter presents a novel agglomerative clustering method called family-joining
(FJ) that constructs generally labeled phylogenetic trees. Additionally, we perform a comparative analysis
on the basis of a large variety of simulation scenarios. Finally we validate FJ using HIV sequences sampled
from individuals that are part of a known HIV transmission network.
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3.2 Family joining: a clustering approach for constructing generally
labeled phylogenetic trees

First we provide a brief description of the main steps of FJ. Subsequently each step is explained in detail.

3.2.1 Overview of family-joining (FJ)

The family-joining (FJ) method takes as input distances d between each species pair, and a distance threshold
€. FJ consists of the two following algorithms. (i) A distance-based algorithm for constructing the topology
of an unrooted generally labeled phylogenetic tree T' = (Vr, E7), and (i7) an algorithm for computing edge
lengths by regressing weighted path lengths in Ep of each pair of labeled vertices on distances between
labeled vertex pairs, via ordinary least squares (OLS) regression.

Tree topologies are inferred using the following agglomeration clustering procedure. A vertex set V is
initialized with the set of species. At each iteration we select from V,, the vertex pair ¢,j that optimizes
the neighbor-joining objective, as defined by Saitou and Nei (1987), see equation 3.1. Subsequently, we
classify the selected vertex pair ¢, j as being either parent-child or siblings on the basis of a threshold e, see
equation 3.2. If they are found to be siblings we check if there is another vertex that is the parent of both
the siblings. If no such vertex is found, a hidden vertex is introduced as the parent of both the siblings.
The distance matrix is augmented by adding distances from the newly introduced hidden vertex to each of
the other vertices in V,, obtained using the formula by Studier and Keppler (1988), see equation 3.5. Rows
and columns of the distance matrix corresponding to the children are removed, and the procedure is iterated
until a connected graph is obtained.

Subsequently, we estimate edge lengths using OLS regression. For efficient calculation of OLS edge
lengths we extended the algorithm by Bryant (1997), which was designed for leaf-labeled trees, to generally
labeled trees. OLS edge lengths may be negative, which has no biological interpretation. To account for this
all edges that are shorter than e, and are incident to a hidden vertex are contracted.

The trees that are constructed by family-joining are unrooted generally labeled phylogenetic trees. In
this chapter two vertices are said to be siblings if they are adjacent to a common vertex. What we refer to as
siblings is referred to as neighbors by Saitou and Nei (1987) in the context of the neighbor-joining algorithm.
Labeled vertices that are adjacent to each other are said to be in a parent-child relationship.

The inference of tree topology is described in Subsection 3.2.2. Edge length estimation is discussed
in Subsection 3.2.3. A time complexity analysis of family-joining is performed in Subsection 3.2.4. The
statistical consistency of family-joining is discussed in Subsection 3.2.6. Methods for selecting the distance
threshold e via model selection is discussed in Subsection 3.3.3.

3.2.2 Inferring tree topology

Given distances d between each pair of labeled vertices L7, and a distance threshold e, the topology of
an unrooted generally labeled phylogenetic tree T = (Vi = {Lr, Hr}, Er) is inferred using the algorithm
GetTreeTopology. Criteria for selecting an appropriate € are discussed later in Subsection 3.3.3. An overview
of GetTreeTopology is provided in Algorithm 2. GetTreeTopology initializes a so-called active vertex set V,
with the set of all labeled vertices. Hp and Erp are initialized as empty sets. GetTreeTopology performs
agglomerative clustering where the following actions are performed at each iteration.

A pair of vertices ¢, j in V, is selected such that 4, j minimize the neighbour-joining criterion (Saitou and
Nei, 1987) given below.

(n = 2)dli, ) = 3 dlisk) = 3G k) (3.1)
ki k#j

where n is the number of vertices in V.

Neighbors ¢ and j are classified as parent-child or siblings based on the following quantity.

font 2(n—2)
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Figure 3.1: An illustration of the family-joining algorithm. The main steps have been labeled with their
worst-case time complexity.
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Figure 3.2: Relation types. Siblings s; and so are leaves that are adjacent to a common vertex. The leaf ¢ is
a child of the vertex p. Filled circles represent labeled vertices, and unfilled circles represent hidden vertices.
The measure A;; is used to classify neighbors i, j as siblings or parent-child.

The motivation for using A(i,7) is as follows. If distances d are additive in T" then it can be easily shown
that:

A(i,j) =0 if ¢ is the parent of j

A(i,j) =d(i,7) if j is the parent of 7 ,

0 < A(i,7) <d(i,j) ifiand j are siblings

The criteria mentioned above are proved as follows. If i is the parent of j then the path from j to any
vertex k # 4,7 will visit ¢ (see Figure 3.2). Thus d(j,k) = d(j,¢) + d(i, k), which gives A(4,j) = 0 and
A(j,1) =d(i,j). If i and j are siblings then d(j, k) = d(j, v) + d(u, k) where u is the vertex adjacent to both i
and j. Similarly d(i, k) = d(i,w) + d(u, k), which gives A(i,j) = d(i,u). It follows that 0 < A(4,7) < d(3, j).
When using distances that are estimated from sequences we use a threshold e for classifying neighbors
as parent-child or sibling. Specifically 4 is the parent of j if |A(4, )| < e. Neighbors i,j are said to be in a
parent-child relationship if
min{|A(i, /)|, |AG, )|} < e (3:2)

If ¢ and j are in a parent-child relationship, then wlog let i be the parent of j. An edge {i,j} is added
to Ep. All distances d(j, m) where m € V,\{j} are removed from d. Subsequently, j is removed from V.

If © and j are found to be siblings then we search for another vertex k in V, that minimizes the following
quantity.

If |d(i, k) + d(k, j) — d(3, j)| < 2¢ then k is the parent of ¢ and j. Edges {k,i} and {k, j} are added to Er and
distances d(l,m) for each I € {i,j} A m € V,\{l} are removed from d. Subsequently, ¢ and j are removed
from V,. We tried one additional criterion for checking if there is a vertex k that is the parent of 7 and j.
We computed

min{|A(k, 1), |A(K, )]}, (3.4)

and considered k to be the parent of ¢ and j if min{|A(k, )|, |A(k, )|} < 2e. We found that reconstruction
accuracy on simulated data was higher when we used the quantity in equation 3.3 as opposed to equation
3.4 (see Supplementary Figure A.4). This is probably because the quantity in equation 3.3 is more robust
to noise in the estimates of large distances. We have used the criterion derived from equation 3.3 in the rest
of this chapter.

If k£ is not the parent of ¢ and j, a hidden vertex h is introduced as the parent of ¢ and j. Edges {h,i}
and {h,j} are added to Ep. Vertices i and j are removed from V,. Vertex h is added to V, and Hr.
Subsequently, distances d(h,m) from vertex h to any other vertex m in V,\{i,j} are calculated using the
following estimate by Studier and Keppler (1988), and added to d.

d(h,m) = (d(i,m) +d(j,m) —d(i,7))/2 form #4,j (3.5)

Subsequently 7 and j are removed from V,, and each distance d(I, m) where I € {i, j}Am € V,\{l} is removed
from d.
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The agglomeration step described above is repeated until the number of vertices in V, is less than four.
After each iteration the number of vertices in V, decreases either by one or two. If V, has reached the size
three, we check using equation 3.3 if there are vertices ¢, j, and k in V, such that k is the parent of both ¢
and j. If we find such vertices, corresponding edges are added. Otherwise a hidden vertex h is introduced
and edges {h,i}, {h,j}, and {h, k} are added to Ep. If V, has reached size two then an edge {i,j} is added
to Ep, where 4, j are the vertices in V.

Algorithm 2: GetTreeTopology.

Input: Labeled vertices £, pairwise distances d for each vertex pair in £, and a distance threshold e
Initialize: Hyr < 9, Er =9, V, < L
While|V,| > 3 do
Pick vertices i, j from V, that minimize equation 3.1
Identify relationship between i, j using equation 3.2
If 4,7 are in parent-child relationship then
Let j be the child
Add edge {i,j} to Er
Remove j from V,
Remove distances d(j, m) from d for each m € V,\{j}
Else
Remove ¢ and j from V,
Pick a k from V, that minimizes equation 3.3
If 4 and j are children of k£ then
Add edges {i, k} and {j,k} to Er
Else
Introduce vertex h, add h to Hr, and add h to V,
Add edges {i, h}and {j, h}to Er
Get distances d(h,m) for each m € V,\{i, j, h} using equation 3.5 , and add the distances to d
Remove distances d(I,m) from d for each I € {i,j} Am € V,\{l}
If |V,| =2 then
1,7 <V,
Add edge {i,j} to Er
Else
Pick i, j, k from V, that minimize equation 3.3
If 7 and j are children of k£ then
Add edges {i, k} and {j,k} to Er
Else
Introduce vertex h, and add h to Hr
Add edges {i,h},{j,h}, and {k,h} to Ep
Output: T = (VT = {CT,’HT},ET)

3.2.3 Estimation of edge lengths

Edge lengths t = {t. : e € Ep} of T = (V, Er) are estimated by OLS. This is done by solving At® = d°
where d€ is the column vector

d(1,2)
d(1,3)
d° = :
d(n—2,n)
d(n—1,n)



containing entries d(7, j) such that i < j. A is the edge incidence matrix of T" and is constructed as follows.

If the m'" entry of d is d;;, then

. (3.6)
0 otherwise

{1 if the path from 7 to j contains e
Ume =
A has the dimension n(n — 1)/2 x |Er| where |Ep| is the number of edges in T, n is the number of labeled
vertices, and t¢ is the column vector of edge lengths that we wish to estimate.

The OLS estimate of edge lengths is given by

te = (A'A)"A'dC. (3.7)

We do not make the assumption that distances are additive for the estimation of OLS edge lengths.
There is a O(n?) algorithm for computing the OLS edge lengths (Bryant, 1997) for leaf-labeled trees. We
show that this algorithm extends to generally labeled trees. The main steps involved in this computation
are computing first A’d® and then (A*A)~tA!'d®. We describe both of these steps below.

Computing Atd¢

The ith entry of A'd®, §!d°, is the sum of all distances d(a,b) such that a € A; and b € B; where A;|B;

is the split that is induced by edge e;. d; is the it column of A. Edges are visited in order of increasing
distance from leaves for efficient computation of A*d¢. The distance dtr (e;) of an edge e; from leaves L is
defined below.

d*T (e;) = argmin p%(v,1)
vee;,leLr
where p¥(v,1) is the unweighted path length of the path in T from v to .
We first compute 6¢d° for every terminal edge e; as follows.

e =" d(i, ) (3.8)

JJ7#

Next we compute §!d® for every internal edge e; which is visited in the order of increasing distance from
leaves. Consider the non-leaf vertex o such that there is only edge e; that is incident to a such that §/d° has
not been calculated. Consider the list £; of edges e;,,...,¢e;,, such that e; and each edge in E; are incident
to a common vertex.

Let Ci\a be the split that is induced by edge e; such that « is closer to C; in comparison to C;. Similarly
Cj, is the side of the split induced by e;, that is closer to .

5td® is computed as follows depending on whether or not « is labeled:

Case 1: Vertex « is not labeled

side =" Y d(a,b)

m

k a€Cjy, ,b€C;
(3.9)
_Zéfkd“—QZ > d(a,b)
k<l a€Cjy, ,beCy
Case 2: Vertex « is labeled.
Sde =" Y d(a,b)+ > d(a,b)
k a€Cy, ,beC; beC;
(3.10)
_Zdtde—QZ > da,b) = > Y dlab)+ Y d(a,b)
k<l aGC bGCgl k bECjk beC;
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Case 1 Case 2 Case 3

Figure 3.3: The three cases for the internal edge ey. Case 1: Both o and 3 are not labeled. Case 2: Only o
is labeled. Case 3: Both « and g are labeled. The triangles represent subtrees.

Computing (A'A)~1(Ald°)

The current section lists the formulae by Bryant (1997) which allows the computation of the OLS estimate of
edge lengths in closed form. Edges can be visited in any order to facilitate the computation of edge lengths.
First we compute the edge length for an internal edge.

Consider the internal edge ey = {«, 8} shown in Figure 3.3 Case 1 such that edges eq,es,..., e are
incident to « but are not incident to 3, and edges €11, €x12, - - -, €, are incident to S but are not incident to
a. Let L4|Lp be the split in T that is induced by {«, 8} such that the side £, is closer to « in comparison
to 5. Let n, and ng be the sizes of £, and L3, respectively.

For each edge e; define W, = Zme A yeB; Pay where A; and B; are the sides of the split induced by edge
e;. The notation p,, is used instead of p%(x,y) to denote the weighted path length of the path from z to y
where edge lengths are determined by OLS. It turns out that W; = §!d°.

For each edge e; such that 1 < i < k, let C; be the side of the split induced by e; that is closer to « in
comparison to . For each edge e; such that k+1 < i < m, let C; be the side of the split induced by e; that
is closer to § in comparison to «. Let n; be the cardinality of C;. Define

v — d Loec Paz, H1<i<k

For the case where neither « nor 3 are labeled Bryant (1997) showed that
W =(nl —2N)Y + NUY +t.,Nv

where N is the m x m diagonal matrix with (n1,ne,...,n,,) on the diagonal, I is the identity matrix,
Y = (Y1,Ya,...,Y,,)T, U is the m x m matrix of ones, v is the vector with ng in positions 1 to k followed
by ne in positions k + 1 to m, W = (Wy, Wa, ..., W,,)T, n is the total number of labeled vertices, and t.,
is the edge length of the edge eg .
Similarly for the internal edge eg
Wo = 0TY + nangte,

Letting X = (nN~! — 21 + U) and substituting Y gives the following estimate of edge length t.,.

Wy —vT X IN-IW
neng — v X1y

(3.11)

te, =

For cases where only « is labeled, and both « and § are labeled, respectively, the derivation of the above
mentioned equations is similar to that described in Bryant (1997) and is provided in Appendix A.1.1.

The formula, equation 3.11, for edge length is valid only if X ! exists. Bryant (1997) showed that X is
invertible as long as there is at most one zero on the diagonal of the matrix (nN~! — 2I). The i'" diagonal
element is zero if n;/n = 2 which occurs if there is an edge where both parts of the split have equal size.
Even in generally labeled trees there can be at most one such edge.

There are two cases to consider for terminal edges depending on whether or not « is labeled (see Figure
3.4). In both cases the derivation of the edge length formula is similar to what has been described for internal
edges and is presented in Appendix A.1.2.
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Case 1 Case 2

Figure 3.4: The two cases for the terminal edge ey. « is not labeled in case 1, and is labeled in case 2. The
triangles represent subtrees.

OLS edge lengths may be negative which has no biological interpretation. After estimating the edge
lengths all edges that are shorter than e and are incident to a hidden vertex are contracted. The length of
every edge that has a negative length is set to 1077. 1077 is smaller than the smallest non-zero distance
estimate computed in any of the simulation scenarios.

3.2.4 Time-complexity analysis of family-joining

At first glance it appears that the neighbor identification step requires 2(n3) time. This can be reduced to
O(n?) with the observation that the neighbor-joining objective can be reformulated as follows (Studier and
Keppler, 1988):

(n—2)d(i,j) — Ri — R,

where R; = Z d(i, k) (3.12)
ki

From equation 3.12 it is evident that initializing each row sum R; with the original distances takes O(n)
time. Updating each R; after each agglomeration step is done by subtracting distances from children and,
if applicable, adding distances to the newly introduced hidden vertices. Thus the process of updating each
R; takes O(1) time. Additionally, storing all the R; in memory requires O(n) space which incurs very little
memory overhead compared to the O(n?) space required to store all the pairwise distances. If all distances
and row sums are stored in memory then identifying the neighbors takes O(n?) time. Note that A;; can also
be reformulated for faster computation as follows.

by 2(n—2)
_d(j,1) i (Xpazi; A0, k) — Xk A0, K))
2 2(n — 2)
Cdd) (G g) + D A0 K)) — (d( 1) + D0 5 A0 F))
-yt 2(n —2)
Cd) | Qi A R)) — (ks A5 K))
— T 7 2(n —2)
_d(j,i)  R;i—R;
~ T 7 2(n —2)°

Thus, once the neighbors {i, j} have been identified, it takes O(1) time to compute both A(4, j) and A(j, ).
It takes O(n) time to find the vertex k which minimizes |d(k, i) + d(k, j) — d(i, 5)|-
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The worst-case time-complexity of GetTreeTopology is O(n?). The time-complexities associated with the
main steps of GetTreeTopology are shown in Figure 3.1.

The worst-case time-complexity of the procedure for estimating edge lengths via OLS regression is given
below. The procedure involved two main steps: (i) computation of A'd¢ , and (ii) computation of edge
lengths in closed form.

Computing A*d¢ involved summation of entries of the distance vector (see equation 3.8). Since each
element of the distance vector is summed over just once, A'd¢ is computed in O(n?) time. Given A’d¢,
each edge length can be calculated in O(n) time (Bryant, 1997). Since there are O(n) edges the worst-case
time-complexity of computing OLS edge lengths is O(n?).

Thus, the worst-case time-complexity of FJ is O(n?) + O(n?) = O(n?).

3.2.5 Vertex augmentation procedure to construct leaf-labeled phylogenetic
trees

We made use of software for simulating sequences under the GTR + I' model (Seq-Gen; Rambaut and
Grassly (1997)), and computing likelihood scores under the GTR + I model (RAxML; Stamatakis (2014)).
The software mentioned above is not designed to handle generally labeled phylogenetic trees. In order
to use Seq-Gen and RAxXML we use the following vertex augmentation procedure that converts generally
labeled phylogenetic trees to leaf-labeled phylogenetic trees. Leaf-to-leaf distances are only slightly perturbed
subsequent to the application of the vertex augmentation procedure.

Let a generally labeled tree T, = (Vr, = {Lr,,Hr,}, Er,) with hidden vertices that have degree
greater than three be given. Let t; be the set of edge lengths of T;. The desired leaf-labeled tree
T, = (Vr, = {Lq, "7}, Er;) with edge length t; is constructed as follows. L, Hr,, E7y, and t; are ini-
tialized as Lr,, Hr,, ET, and t,, respectively.

If there is a labeled vertex [ in 7} with degree greater than one then (i) a new hidden vertex h is added
to Hry, (it) edge {h,m} is added to E7, for each {h,l} in Er,, and {h,l} is removed from Er,, (iii) edge
length t¢p, y = tg1my is added to t; for each ty; ,,,) in t;, and ty; .y is removed from t;, (iv) edge {h,[} is
added to Er, and (v) edge length t;}, ;3 = €sman is added to t;.

If there is a hidden vertex h,, in T; with degree greater than three then (i) a new hidden vertex h,, is
added to Hr,, (i7) vertices i, j that are adjacent to h,, are selected at random, (i) edges {7, b, } and {7, by, }
are removed from Er, and edges {i,h,} and {j, h,} are added to Er,, (iii) edge lengths t¢; .y = t{i ..}
and tg; 5.1 = t{jn,} are added to t;, and edge lengths ty; 5, 1 and tg;; 1 are removed from t;, (iv) edge
{hm,hn} is added to Er,, and (v) edge length t¢p, . 1 = €sman is added to t;.

The vertex augmentation operations mentioned above are performed iteratively until there is no labeled
vertex in 7} that is not a leaf, and there is no hidden vertex in 7; with degree greater than three.

If €sman is set to zero then leaf-to-leaf distances are unchanged subsequent to the vertex augmentation
operations. However RAXML requires does not allow the use of edges with length zero. We set egman to a
small value of 1077,

3.2.6 Statistical consistency

We establish the statistical consistency of FJ by applying it to distances d that are additive in a generally
labeled phylogenetic tree T such that 7" may contain hidden vertices with degree greater than three. We
assume that all edge lengths of T are strictly greater than zero.

Theorem 1. Given distances d that are additive in an unrooted generally labeled phylogenetic tree T, and
any € that is smaller than the smallest entry in d. Let Trjy be the generally labeled tree that is constructed by
applying FJ to distances d, and threshold €. Try equals T.

Proof. We are given T = (Vr = {Lr,Hr}, ET), distances d that are additive in T, and a threshold e.

Let Tmax be the set of all trees such that for each tree To = (Vi, = {Lr,, H1p }, Er) in Tax- (¢) The
leaf-set Lr,equals L1, (i7) The degree of each hidden vertex in T equals three, and (éi¢) d is the additive in
Th. Some of the edge lengths of Ty may be zero.
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Table 3.1: Simulated data sets were constructed by varying either the tree type, fraction of hidden vertices,
type of contracted edge, number of labeled vertices, sequence length or edge length. All settings that were
considered for each parameter are shown below. Default parameter settings are indicated using (d).

’ Tree type \ \ balanced \ random (d) \ caterpillar \ ‘
Fraction of hidden vertices 0.5 0.37 0.25 (d) 0.12 0
Type of contracted edge | leaf/hidden | labeled/hidden | any/hidden (d) | hidden/hidden
Average edge length 0.001 0.004 0.016 0.064 0.256
Number of labeled vertices 20 40 80 160 (d) 320
Sequence length 250 500 1000 (d) 2000 4000

Given any Ty in Thpax, each split in T is a split in Ty. If this were not true then there would be distinct
splits A|B in T, and Ag|By in Ty, and four labeled vertices 4, j, k and [ such that () 4, j would be in A, (i7)
k,l would be in B, (iii) i,k would be in Ay, and (iv) 7,1 would be in By.

Applying Buneman’s 4-point condition (see equation 2.20) would result in the following contradictory
inequalities:

The inequality is strict for T" as all edge lengths in T" are greater than zero.

Thus any tree in Ty,ax can be constructed using the vertex augmentation operation described in Subsection
3.2.5 with €gman set to zero.

Applying the neighbor-joining algorithm using distances in d yields a leaf-labeled tree Ty such that each
hidden vertex in Ty has degree three. Txj belongs to Tmax because d is additive in Txy. It follows that
neighbors in Ty are either parent-child or siblings in 7. Since d is additive any e that is smaller than the
smallest entry in d can be used for correctly classifying neighbors as parent-child or siblings.

It follows that each iteration of the topology construction algorithm of FJ correctly adds parent-child,
and sibling edges. Thus the topology of the tree Tx; is identical to the topology of T'. O

3.3 Comparative analysis on simulated data

3.3.1 Simulation scenarios

Simulated sequences were generated by evolving sequences along the edges of generally labeled trees. The
simulation scenarios that were considered in this study are described below.

Simulated data sets were constructed by varying either the tree type, fraction of vertices that are hidden,
type of contracted edge, number of labeled vertices, sequence length or edge length. Each of these parameters
is described in detail below. An overview of the parameter settings is provided in Table 3.1.

Three types of trees were generated: balanced, caterpillar and random. We chose caterpillar trees because
it has been shown that the accuracy of the neighbor identification step (see equation 3.1), which forms a
part of FJ, is inversely related to tree diameter (St. John et al., 2003). Balanced trees are leaf-labeled
phylogenetics trees with minimum diameter. A random tree T = (Vp = {Lr,Hr}, ET) was generated as
follows. (7) An active vertex set V, was initialized with the labeled vertices L7. Subsequently, the following
steps were performed iteratively until a connected tree was constructed. (i) A vertex pair {4, j} was selected
at random and removed from V,, (i7) a new hidden vertex h was introduced and added to V, and Vr, and
(#i1) edges {h,i}, and {h,j} were added to Ep. The trees that are generated are leaf-labeled phylogenetic
trees such that each the degree of each hidden vertex was three.

The fraction of hidden vertices ranges from zero to (n — 2)/(2n — 2) where n is the number of labeled
vertices. We simulated generally labeled trees by varying the fraction of hidden vertices over this range in
four equal steps.
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Generally labeled phylogenetic trees with the desired proportion of labeled vertices were constructed by
contracting the edges of leaf-labeled phylogenetic trees with degree-3 hidden vertices. Depending on the type
of simulation experiment, the following edges were contracted: leaf/hidden, labeled /hidden, hidden/hidden,
and any /hidden.

Given the topology of generally labeled trees, edge lengths were drawn from the uniform distribution
U(1,100), and scaled such that the expected edge length was equal to a pre-selected edge length average.
The following edge length averages were generated: 0.001, 0.004, 0.016, 0.064, and 0.256 subs/site. Sequence
evolution was performed as follows. A vertex was randomly selected as the root and sequences were evolved
along the edge according to a GTR+T model of substitution (Lanave et al., 1984). The parameters of the
GTR model were set using estimates from a real data set (Waddell and Steel, 1997). The parameters shape
and scale of the I' model were set to 1 which resulted in a moderate variation of substitution rate across
sites. Seq-Gen was used for simulating sequence evolution (Rambaut and Grassly, 1997). Sequence lengths
took values of 250, 500, 1000, 2000, and 4000 bp. The number of labeled vertices (species) took values of
20, 40, 80, 160, and 320. As Seq-Gen only takes leaf-labeled trees as input, the simulated generally labeled
trees were converted to leaf-labeled trees using the vertex augmentation procedure described in Subsection
3.2.5 with egman set to 1077.

Simulation scenarios were defined by varying each parameter over its range while keeping the remaining
parameters fixed at their default setting. This procedure results in 22 simulation scenarios. The default
settings for each parameter are described below.

For the categorical parameters tree type and contracted edge type, the respective default settings were
random and any /hidden. These settings were selected as the defaults as they do not restrict the generation of
generally labeled trees. The continuous parameter, fraction of vertices that are hidden, which has a bounded
range, the midpoint was considered as the default value. For the following continuous parameters with no
upper bound: number of labeled vertices, sequence length, and average edge length, we selected the range
and default settings such that the trend in performance over each parameter range was apparent. The default
setting for the number of labeled vertices was 160, for the sequence length it was 1000 bp, for the average
branch length was 0.016 subs/site.

100 trees and corresponding sequences were simulated for each setting of parameter values.

We provided sampling times for SA which constructs rooted trees under a molecular clock. In order to
provide sampling times we rooted simulated trees along edges that were selected at random. We defined the
sampling time of a labeled vertex as the weighted path length from the root to the labeled vertex. Note that
this method of defining sampling times is equivalent to assuming a strict molecular clock with a clock rate
of 1.0. When substitution rates (subs./site/time) follow a strict molecular clock, the distance from the root
to each labeled vertex is proportional to the time elapsed since divergence from the root. SA recovers the
correct clock rate of 1.0 under the strict molecular clock model in all scenarios except two where the average
branch length is very small (0.001 and 0.004; see Supplementary Figure A.3)

3.3.2 Maximum likelihood distances

The estimated distances that were used in this study are maximum likelihood (ML) distances that were
estimated under the GTR +I' model using RAxMLv8.2.8. The procedure for computing ML distances
is described below. First a maximum parsimony tree was constructed using stepwise addition and the
parameters of the substitution model GTR+TI" were optimized. The optimized substitution model was used
to compute maximum likelihood distances for all species pairs as follows.

Given parameters of a GTR + I' model, and sequences for species [; and l5. Let Ti5 be the two-leaf
phylogenetic tree where [; and [5 are the leaves of the tree. The maximum likelihood distance is the sum of
edge lengths where edge lengths are optimized via maximum likelihood.

3.3.3 Model selection

Values of € are inversely related to the number of hidden vertices and thus inversely related to model
complexity. We performed model selection using three estimates of test error, Akaike information criterion
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(AIC), Bayesian information criterion (BIC), and cross-validation error.

Likelihood was computed using RAxML as follows. RAxML was provided with a tree topology and
edge lengths, and a GTR + I' model was optimized such that tree topology and edge lengths were fixed.
Because RAxML is not designed for generally labeled trees we constructed leaf-labeled trees using the vertex
augmentation operations described in Subsection 3.2.6 with egyman set to 1077,

For computing cross-validation error the original sequence alignment with £ columns was partitioned
into B validation alignments by randomly sampling k/B columns without replacement. For each validation
alignment, the corresponding training alignment was constructed using the complimentary set of k — k/B
alignment columns. This procedure was repeated R times, giving RB training and validation alignments in
total. ML distances were computed for all training and validation alignments. For a fixed value of ¢, FJ trees
were constructed for each training distance matrix. We set R to 10 and tried two values for B, i.e., 3 and 5.
Test error was computed as the residual sum of squares between the fitted distances (weighted path length
on the tree) and the corresponding distances computed from the validation alignment. We then found the ¢
that minimized expected test error as this would yield the most generalizable model.

B
. .o . a2
agmin N (dren(id)  —  dv(id)
b—1 1.7 —_—— —_——

! ]distance in fitted tree  distance in validation set

where T'(e, ) is the tree constructed at threshold € using distances from the b*® training alignment and V (b)
is the b*™® validation alignment. Model selection was performed by identifying the value of € that minimizes
the estimate of test error.

3.3.4 Performance metrics

Reconstruction accuracy was quantified using precision and recall as defined below.

. |Sant(T) N San(7)|

Prg(T,T = < , and
s( ) Sun(T)]
. B San(T) N San(T)]
Res (T, T) = |Sa11(T)| ’

where S,;(7T") and Sau(T) are the set of all splits in the simulated tree T and the reconstructed tree T,
respectively. Note that Sa(T') contains the split of every edge in T, including the terminal edges. Precision
and recall range from zero to one. Precision is equal to one only if all the splits in the reconstructed tree
are present in the simulated tree. Similarly, recall is equal to one only if all the splits in the simulated tree
are present in the reconstructed tree. Note that we do not report Robinson-Foulds (RF) distance in this
chapter since the RF distance would be biased against methods that do not allow polytomies (hidden vertex
with degree greater than three). The Robinson-Foulds distance (RFg(T,T)) is computed as the fraction of
unique splits that are present in one tree and not the other.

~1San(T) N San(7)]

|San(T") U San(T)]

Each of the reconstruction methods that we tested can achieve the highest and the lowest possible value
of recall. Among the reconstruction methods that were compared, only SA can not achieve a precision of

one if the simulated tree contains polytomies. We feel that both precision and recall are important measures
of reconstruction accuracy.

RFs(T,T) =1

3.3.5 Implementation details

We used the sampled ancestors package (Gavryushkina et al., 2014) of BEASTv2.3.0 (Drummond et al.,
2012). The following models were considered: the GTR model for substitution, the four-category T" model
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Table 3.2: Methods with the highest precision. F, N, R, C, and S stand for FJ-BIC, NJc-BIC, RG-BIC,
CLRG-BIC, and SA, respectively.The default setting for each simulation parameter is indicated with (d).

Tree type Balanced Random (d) caterpillar
F F C
Type of contracted edge  leaf/hidden labeled/hidden any/hidden (d) hidden/hidden
F,N F F R
Fraction of hidden vertices 0.5 0.37 0.25 (d) 0.12 0
N N,C F F C
Average branch length 0.001 0.004 0.016 0.064 0.256
C F F F C
Number of labeled vertices 20 40 80 160(d) 320
F F F F F
Sequence length 250 500 1000(d) 2000 4000
F.C F F F.N,C F.N,C

for rate heterogeneity across sites, the strict molecular clock model and the fossilized birth death model
for generating trees. Uniform priors were set for all model parameters. For all datasets, 108 states were
visited using Markov chain Monte Carlo (MCMC) and every 105 state was sampled. The first 5% of the
sampled states were discarded as burn-in and the effective sample size (ESS) was computed for all model
parameters using the R package CODA (Plummer et al., 2006). ESS were found to be greater than 200 for
all parameters across all the MCMC chains indicating that the chains were sufficiently long. The trees that
are produced by BEAST are rooted and contain the maximum number of hidden vertices. The sampled
trees were post-processed by unrooting them and contracting all terminal edges of length zero. We reported
the average precision and recall of the post-processed sampled trees from the true tree.

RG and CLRG require the setting of two thresholds, €5 and ¢;. € is used for performing the relationship
test. RG and CLRG additionally contract branches that are smaller than this threshold. We optimized
€s using BIC. The second threshold, ¢; is used to filter out large distances and only distances below this
threshold are used when performing the relationship test. We set ¢; to a large value of 0.5.

The distance threshold e for NJc¢ was selected using BIC.

3.3.6 Results

We present the results of applying FJ-BIC, NJc-BIC, RG-BIC, CLRG-BIC and SA to all simulated data
sets. For methods which have the suffix BIC, we performed threshold selection by minimizing Bayesian
information criterion (BIC). For FJ, we also tested FJ-AIC and FJ-CV which optimized Akaike information
criterion (AIC), and cross-validation error (CV), respectively. As FJ-AIC and FJ-CV never performed better
than FJ-BIC in any simulation scenario we do not show the results in the current chapter. The results for
FJ-AIC and FJ-CV can be found in Supplementary Figure A.4. A change in precision or recall is considered
to be statistically significant if the corresponding Welch’s t-test has a p-value that is smaller than 0.01. A
method is said to have the highest precision or recall if no other method has significantly higher precision or
recall, respectively.

Tree type

FJ-BIC and NJc-BIC had significantly higher precision and recall on balanced trees than on caterpillar
trees. This behavior is expected, since the accuracy of the step of FJ, in which neighbors are identified,
is inversely related to tree diameter (St. John et al., 2003). Even on caterpillar trees, which have large
diameters, FJ-BIC and NJc-BIC have moderately large (median) precision/recall values of 0.79/0.81 and
0.76,/0.87 respectively (see Figure 3.5A). RG-BIC performs poorly on caterpillar trees in comparison to
balanced trees, which is in agreement with previous work (Choi et al., 2011). In contrast, CLRG-BIC
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Figure 3.5: A comparison of the reconstruction accuracy of all methods in six simulation categories. One

parameter (x-axes) was varied in each category. The default parameter settings are denoted as (d) on each
x-axis. For each parameter setting, 100 data sets were created. Precision is shown in blue and recall is shown

in orange.
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Table 3.3: Methods with the highest recall. F, N, R, C, and S stand for FJ-BIC, NJc-BIC, RG-BIC,
CLRG-BIC, and SA, respectively. The default setting for each simulation parameter is indicated with (d).

Tree type Balanced Random (d) caterpillar
N,S FN,C,S C,S
Type of contracted edge  leaf/hidden labeled/hidden any/hidden (d) hidden/hidden
FN,C N FN,C,S S
Fraction of hidden vertices 0.5 0.37 0.25 (d) 0.12 0
S S FN,C,S N,C,S C
Average branch length 0.001 0.004 0.016 0.064 0.256
S S FN,C,S CN,S N,S
Number of labeled vertices 20 40 80 160 320
N,C N,C N,C,S FN,C,S N,C,S
Sequence length 250 500 1000 2000 4000
C,S S FN,C,S FN,C,S FN,C,S

performs significantly better on caterpillar trees than on balanced trees with median precision/recall values
of 0.89/0.93 and 0.89/0.91, respectively. CLRG constructs an MST and then iteratively applies RG to the
neighborhood of each non-leaf vertex. The better performance of CLRG-BIC on caterpillar trees is most
likely due to the MST being topologically similiar to the caterpillar tree. SA has a median precision and
recall of 0.77 and 0.96, respectively, across all tree types. SA has low precision because SA restricts the
maximum out degree of labeled vertices to two, and the maximum out degree of hidden vertices to three.

Type of contracted edge

FJ-BIC has significantly higher precision than other methods for all types of contracted edges, except hid-
den/hidden. SA has a high median recall of 0.96 for all types of contracted edges. However the recall values
of SA are not significantly higher than those of FJ-BIC if the contracted edge is leaf/hidden. This is due to
a large variance in the performance of SA, quantified with an inter-quantile range of 0.26 (see Figure 3.5B).
SA has high median precision of 0.94 if the contracted edge is leaf/hidden. Contracting leaf/hidden edges
results in trees in which a labeled vertex can have up to one child and all other non-leaf vertices have degree
three. The high performance of SA in this category is because these are the same type of trees which SA
samples when optimizing tree topology. SA has lower performance when any other edge type is contracted.
RG-BIC and CLRG-BIC have significantly higher precision and recall if hidden/hidden edges are contracted,
when compared to precision and recall for other edge types.

Fraction of vertices that are hidden

All methods have a median precision higher than 0.95 (see Figure 3.5C) for leaf-labeled trees which have the
maximal fraction (0.5) of hidden vertices. In this simulation scenario, with a median recall of 0.97, SA has
significantly higher recall than other methods, even though FJ-BIC also has a high median recall of 0.94. A
common trend for each method is that precision reduces and recall rises with a decrease in the fraction of
hidden vertices. FJ-BIC has a median precision and recall greater than 0.89 across all settings of fraction
of hidden vertices. CLRG-BIC has significantly higher precision and recall than other methods when all
vertices are labeled. This is because the CLRG algorithm involves the construction of a MST which should
be topologically similar to the completely labeled tree.

Average edge length

All methods perform poorly on trees with short average branch lengths of 0.001 subs/site with median recall
smaller than 0.8 each (see Figure 3.5D). This is because a significant portion of the simulated sequences are
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identical. Thus, in FJ-BIC, NJc-BIC, RG-BIC, and CLRG-BIC there is a preference for choosing parent-
child relationship over siblings. CLRG-BIC has significantly higher precision than other methods if branch
lengths are either very small or very large. FJ-BIC has high precision if the average branch length is between
0.004 and 0.064. In trees with larger branch lengths there is a high chance that sequences undergo multiple
substitutions at the same site. This effect has been termed site saturation and results in an underestimation
of the evolutionary distance. Additionally, estimates of large distances are associated with large variance
(Hoyle and Higgs, 2003) which results in the selection of wrong neighbors in the neighbor-joining step.
CLRG-BIC has higher performance for trees with large branch lengths because the input to CLRG-BIC is
the MST and the construction of the MST is probably robust to noise in distance estimates. The performance
of SA is not greatly affected by long branches.

Number of labeled vertices (species)

RG shows significant reduction in precision/recall as tree size (number of species) is increased with corre-
sponding median values changing from 0.88/0.75 (5 labeled vertices) to 0.83/0.61 (80 labeled vertices) (see
Figure 3.5E). The change in precision and recall shown by SA is not significant. FJ-BIC and CLRG-BIC
show a significant drop in precision with increasing tree size, but recall does not change significantly. Even
for trees with 320 species, FJ-BIC has high median precision and recall of 0.92 and 0.9 respectively. NJc-BIC
shows significant reduction in both precision and recall with increasing tree size , with median precision /recall
changing from 0.93/0.93 to 0.89/0.91.

Sequence length

The performance of all methods improves with increasing sequence length. For all settings of sequence
length, FJ-BIC is one of the best performing methods (see Figure 3.5F). FJ-BIC is among the methods
with significantly high recall for sequences of length 1000 bp to 4000 bp. SA is one of the methods with
significantly high recall for all settings of sequence length.

3.3.6.1 Summary of results

For the simulations performed using the default parameter settings, the methods listed in order of decreasing
median precision are FJ-BIC (0.93), NJe-BIC (0.9), CLRG-BIC (0.89), RG-BIC (0.82), and SA (0.77), and
the methods listed in order of decreasing median recall are SA (0.96), NJc-BIC (0.92), CLRG-BIC (0.92),
FJ-BIC (0.91) and RG-BIC (0.63). In 15 out of the 22 simulated scenarios FJ-BIC is among the methods
with significantly high precision (see Table 3.2). In 17/22 simulated scenarios SA is among the methods with
significantly high recall (see Table 3.3). In 13/22 simulated scenarios NJc-BIC is among the methods with
significantly high recall. FJ-BIC has a median recall that is greater than 0.9 in 16/22 simulated scenarios.
The remaining scenarios are (i) trees with 20 species (recall of 0.89), (i7) trees in which branches are very
short (0.001 and 0.004 subs/site; recall of 0.6 and 0.84 respectively), (iii) caterpillar trees (0.81), and (iv)
trees constructed using short sequences (250 and 500 bp; recall of 0.77 and 0.85 respectively).

3.3.7 Comparison of time-complexities and run times

We report the worst-case time-complexity for the clustering procedures. FJ and NJ run in time O(n?).
RG runs in time O(n?) which makes it infeasible to run on large datasets. CLRG runs in O(n?logn +
n;03 .. (MST)) where n; is the number of non-leaf vertices of the MST and 6,,ax(MST) is the largest vertex
degree in the MST. Model selection with BIC or AIC requires the repeated optimization of the likelihood
function with respect to parameters of the substitution model. Computing the likelihood with Felsenstein’s
tree pruning algorithm (Felsenstein, 1981) takes O(nA?L) time where L is the sequence length and A is the
size of the alphabet. A is four for genetic sequences and 20 for protein sequences. We used RAxML for
computing likelihoods, and optimizing parameters of substitution model. SA performs Bayesian inference
by MCMC sampling, a stochastic procedure whose runtime depends on how easily the MCMC chain moves
through the space of trees and model parameters. The observed run times (see Figure 3.6) suggest that
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Figure 3.6: A comparison of run times of all methods in the scenario where the number of labeled vertices
was varied. Run times are shown on a log-scale.

FJ-BIC and NJc¢-BIC are the fastest methods for trees containing up to 320 species, with both the methods
having a median run time of 5.4 and 4.8 minutes respectively. CLRG-BIC took around 9.3 minutes to
reconstruct trees containing 320 species and showed the slowest growth in run time. RG showed the largest
growth in run time taking 4.8 hours for reconstructing trees with 320 species. SA was run with MCMC
chain-length set to 10® states. SA took around two hours to construct trees containing 20 species and 30
hours for constructing trees containing 320 species.

3.4 Validation of family joining using HIV transmission network
data

We applied FJ-BIC to a dataset of HIV-1 subtype C env gene sequences that were sampled from 11 hosts
who are part of a partially known transmission chain (Lemey et al., 2005; Vrancken et al., 2014). We
discarded 31 sequences which had gaps and analyzed the remaining 181 sequences of length 1376 bp. The
hosts are labeled A, B,C,D,E,F,G,H,I, K, and L. Sequences from multiple time points are available for
A, B,C,D,FE, and H. The sampling times for all sequences are known. All the host pairs who were involved
in a transmission event are known, and were inferred by interviewing the hosts. The direction of transmission
is known for all transmission events except for the transmission between A and B.

Additionally we compared the bootstrap support of branches in the FJ-BIC tree with the branches in the
maximum likelihood tree constructed using RAxMLv8.2. (Stamatakis, 2014). We first identified the most
appropriate model of substitution using JModelTest2 (Darriba et al., 2012). The models that we considered
were limited to the set of time-reversible Markov models that were made available by JModelTest2. Variants
of all available substitution models which included a parameter for invariant sites (I) and/or a Gamma
model (T') for across-site rate variation were also tested. GTR-+T'+I was the best model, i.e., the one with
the smallest AIC score. We constructed a tree with RAxML using the original sequence alignment and the
GTRCATI model of substitution, which we refer to as the RAxML tree. The CAT model is an alternative
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Figure 3.7: The FJ-BIC tree of 181 HIV-1 env gene sequences sampled from hosts involved in a known
transmission chain. Each vertex is represented by a circle whose inner color is black if the vertex is labeled
and white if the vertex is hidden. The outer color of each circle indicates the host of the corresponding
vertex. Edges indicating transmission events have been labeled. 9/10 transmission events are compatible
with the FJ-BIC tree. The red box highlights the transmission event B — I which is not compatible with
the FJ tree.

to the Gamma model that enables fast computation (Stamatakis, 2006). We inferred a generally labeled tree
using FJ-BIC.

The FJ-BIC tree was rooted assuming a strict molecular clock model. We define the optimal position of
the root as that position which minimizes the sum of squared residuals (RSS) of regressing distances from
the root to each labeled vertex against sampling times. We searched for the optimal position of the root as
follows. First we placed the root at the midpoint of each edge, and selected the edge that minimized the
RSS. Subsequently, we searched along the edge for the position of the root which minimized the RSS.

Compatibility of the FJ-BIC tree with known transmission events

In order to check if the known transmission events are compatible with a rooted tree we needed to label all
hidden vertices with a host. Hidden vertices were visually labeled with hosts via maximum parsimony. The
labeling that we applied resulted in the minimum possible total cost of 10 (see Figure 3.4).

Given a rooted tree with all vertices labeled with a host, we define a transmission event (X — Y') to be
compatible with the tree if there is an edge that exits a vertex labeled X and enters a vertex labeled Y. 9
out of 10 transmission events are compatible with the FJ-BIC tree. The direction of transmission between
A and B is not known. The FJ-BIC tree suggests that A was infected by B. The branch of the FJ-BIC tree
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Figure 3.8: Left: Comparing the support of common branches in the FJ-BIC tree and the RAXML tree.
Right: Supports for branches that are only present in either the FJ-BIC tree or the RAXML tree.

that suggests this transmission event has been labeled with the known transmission event A < B. 8 out
the remaining 9 transmission events are compatible with the FJ-BIC tree and branches indicative of these
transmission events are labeled in Figure 3.4. The transmission event B — I is not compatible with the
FJ-BIC tree (red solid box in Figure 3.4) which may be due to insufficient sampling. Only three sequences
were available from host I. It is possible that the polytomy present inside the red dotted box in Figure 3.4
may be resolved if more sequences from I were available, in such a way that the resulting tree would be
compatible with the transmission B — I.

Branch support in the FJ-BIC tree and the RAxML tree

The bootstrap support of an edge is defined as the number of bootstrap replicate trees that contain the split
that is induced by the edge. Given trees 77 and T5 that have the same set of labeled vertices. An edge e;
in 77 is said to be contained in T5 if the split in 77 that is induced by e; is contained in T5. The bootstrap
support of edges in the FJ-BIC tree and the RAxML tree were computed using 1000 replicates. Since each
labeled vertex is a leaf in all bootstrap RAxML trees, all terminal branches of the RAXxML tree trivially
have a support of one. The support of a terminal edge in the generally labeled tree that are constructed by
FJ-BIC is not necessarily one.

75 internal edges were common to the FJ-BIC tree and the RAXML tree. The median (IQR) supports for
the common edges were 0.73 (0.43) and 0.76 (0.38) in the FJ-BIC and the RAxML tree respectively. Supports
for the common edges in both trees were strongly correlated (Pearson’s p = 0.84, see Figure 3.8). There
are 44 and 103 internal edges that are present only in the FJ-BIC tree and the RAxML tree respectively
with lower median (IQR) edge supports of 0.22 (0.28) and 0.18 (0.33) respectively (see Figure 3.8). The 124
terminal edges in the FJ-BIC tree have a median (IQR) branch support of 0.95 (0.16).

On average an internal edge in the FJ-BIC tree has a higher support than an internal edge in the RAxML
tree. 36% of FJ-BIC edges and 25% of RAxML edges have bootstrap supports greater than 0.7.
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3.5 Summary and Outlook

In this chapter a distance-based clustering method called FJ for constructing generally labeled trees was
presented. Given pairwise distances between 320 species, FJ-BIC took around 5.4 min (+0.76) to estimate
a tree. The FJ algorithm treats short edges as unreliable and identifies an optimal threshold for contracting
short edges by minimizing test error. We tested three methods: FJ-AIC, FJ-BIC, and FJ-CV, which minimize
AIC, BIC and CV error, respectively. BIC was the best model selection criterion. When compared with
related methods FJ-BIC was the best at reconstructing generally labeled phylogenetic trees across a wide
range of simulation settings. FJ-BIC was applied to HIV sequences sampled from individuals that were
involved in a known transmission chain. The FJ-BIC tree was compatible with ten out of eleven transmission
events. On average, internal edges in the FJ-BIC tree were found to have higher support than internal edges
in the tree constructed using RAxML. A method for reconstructing phylogenetic trees with high precision
circumvents the need for time-consuming bootstrap analyses.

As part of this study we tried implementing the distance-based supertree method by Choi et al. (2011)
called Chow-Liu grouping because we were interested in better understanding how minimum spanning trees
can be used in the inference of phylogenetic trees. During our attempt at implementing CLGrouping with
NJ as the base method we discovered that given the input distances that are additive in a phylogenetic
tree T' there are instances where the phylogenetic tree that is reconstructed using CLGrouping(NJ) differs
from T. Since NJ is guaranteed to recover T if NJ is applied to distances that are additive in 7', the
indeterminacy of CLGrouping appeared to stem from an issue with the input MST that is used by the
supertree method. Additionally, we noticed that if we used the MST that was constructed by the authors’
Matlab implementation of CLGrouping then there was no indeterminacy in CLGrouping(NJ). The cause of
indeterminacy of CLGrouping is clarified in the following chapter.
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Chapter 4

Topological relationship between MSTs
and phylogenetic trees

The work that is presented in this chapter has been published in Kalaghatgi and Lengauer (2017).

Choi et al. (2011) claimed that minimum spanning trees (MSTs) constructed using tree-distances share a
topological relationship with corresponding phylogenetic trees. We discovered that the topological relation-
ship does not necessarily hold if the MST is not unique. We proposed so-called vertex-order based MSTs
(VMSTs) that are guaranteed to share a topological relationship with phylogenetic trees. We show that the
number of leaves in a VMST is an indicator of the amount of phylogenetic information that is contained in
the VMST. Additionally, we provide a polynomial-time algorithm for selecting a VMST with the maximum
amount of phylogenetic information.

4.1 Motivation

Choi et al. (2011) introduced a distance-based divide-and-conquer method called Chow-Liu grouping (CLGroup-
ing). The distances that are used in this chapter are tree-distances that are defined on phylogenetic trees.
CLGrouping makes use of the minimum spanning trees (MSTs) of a graph structure that is referred to as
the distance graph. Distance graphs are constructed as follows. Given distances d for each vertex pair in V'
the distance graph G = (V, E) is an edge-weighted undirected complete graph over V such that for any edge
{u, v} the edge-weight wy, 1 equals the distance d(u,v).

CLGrouping consists of two stages. The first stage involves the construction of a minimum spanning
tree (MST) M of the distance graph G. The second stage iterates over the non-leaf vertices of M and, for
each non-leaf vertex i that is visited, a vertex set V; comprising i and the neighbors of 7 is constructed.
Subsequently a phylogenetic tree T; is constructed using distances between vertices in V;. In the final step of
the iteration, the graph in M, which is induced by V; is replaced by T; (see Figure 4.1E for an illustration).
If 7 is not the first vertex to be visited then V; may contain newly introduced hidden vertices. Let h; be a
hidden vertex that was introduced when processing the labeled vertex j. The distance from h; to a labeled
vertex [ in V; is computed as d(h;,l) = d(j,1) — d(j, h;). The distance between two hidden vertices h; and
hy is computed as d(h;, hi) = d(j, k) — d(4, h;) — d(k, hy).

The order in which the non-leaf vertices are visited is not specified by the Choi et al. and does not seem
to be important. CLGrouping terminates once all the non-leaf vertices of M have been visited once.

This procedure is called Chow-Liu grouping because the MSTs that are constructed using tree-distances
are topologically equivalent to Chow-Liu trees (Chow and Liu, 1968), for certain probability distributions.
Please refer to Choi et al. (2011) for further details.

Choi et al. (2011) compared the reconstruction accuracy of neighbor joining (NJ; (Saitou and Nei, 1987)),
a popular distance-based clustering method, with CLGrouping(NJ) which is an application of CLGrouping
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Figure 4.1: The example used to demonstrate that CLGrouping may not reconstruct the correct tree if there
are multiple MSTs. The phylogenetic tree T" that is used in this example is shown in panel A. The distance
graph G of T is shown in panel B. Two MSTs of G, Mo and My are shown in panels C and D, respectively.
Panels E and F show the intermediate steps, and the final result of implementing CLGrouping using Mo
and My respectively. CLGrouping reconstructs the original phylogenetic tree if it uses Mo but not if it is
uses M.

that uses NJ as the base method. Choi et al. (2011) showed that CLGrouping(NJ) is more accurate than
NJ at reconstructing phylogenetic trees with large diameter. Huang et al. (2014) showed that CLGrouping
affords a high degree of parallelism because phylogenetic tree reconstruction can be performed independently
for each vertex group.

Unless specified otherwise each mention of CLGrouping in the following text in this chapter refers to the
application of CLGrouping with NJ as the base method. Additionally, distances that are used in this chapter
are assumed to be tree distances. Unless specified otherwise the proofs that are included in this chapter are
applicable to generally labeled phylogenetic trees.

4.2 Indeterminacy of Chow-Liu grouping

4.2.1 A quartet tree

We demonstrate the indeterminacy of CLGrouping for the quartet tree T' (Figure 4.1). Two MSTs My and
Mo of the distance graph G of T" were constructed by hand. The intermediate steps, and the final result of
applying CLGrouping to My and Mo are shown in Figure 4.1E and Figure 4.1F, respectively. CLGrouping
reconstructs the original phylogenetic tree if it is applied to the VMST My but not if it is applied to My .
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4.2.2 A primate phylogenetic tree

In this subsection we demonstrate the indeterminacy of CLGrouping using the phylogeny over the primate
genera (Pozzi et al., 2014). CLGrouping will infer the correct topology if the input MST shares the topological
relationship with phylogenetic trees that was introduced by Choi et al. (2011).

Methodological details

The primate phylogeny was downloaded from the TimeTree database which is a comprehensive collection of
published phylogenies (Hedges et al., 2006; Kumar and Hedges, 2011; Hedges et al., 2015). The branches of
the primate phylogeny are scaled in units of calendar time. The primate phylogeny contains three branches
of length zero that cannot be inferred from the corresponding tree metric. A modified primate phylogenetic
tree T was constructed by contracting all branches of length zero. One hundred MSTs were constructed using
the following procedure. Kruskal’s algorithm was applied to the edges of the distance graph of T that were
arranged in a randomly shuffled order. We applied CLGrouping to each MST, and computed the topological
distance between each output phylogeny and the primate phylogeny using the Robinson-Foulds distance
(Robinson and Foulds, 1981). The Robinson-Foulds distance (RFg(T,T)) is computed as the fraction of
unique splits that are present in one tree and not the other.

[San(T) N San(7)|
|Sanl(T) U San(T)|

where Sa(T) is the set of all splits that are contained in the tree T

We selected a CLGrouping tree that maximizes the RF distance from the primate phylogeny. The selected
CLGrouping tree is 0.4 RF distance away from the primate phylogeny and is shown in Figure 4.2. In order
to enable a visual comparison we rooted the CLGrouping tree at the midpoint of the least imbalanced edge.
The primate phylogeny is an ultrametric tree and has been rooted such that the root is equidistant from the
leaves. As can be seen, both the trees in Figure 4.2 are substantially different.

RFs(T,T) =1

Topological relationship between MSTs and phylogenetic trees

The correctness of CLGrouping depends on a topological relationship between MSTs and phylogenetic trees
that was introduced by Choi et al. (2011).

In order to establish the topological relationship between minimum spanning trees and phylogenetic trees
Choi et al. (2011) introduced the notion of a surrogate vertex.

The surrogate vertex of a hidden vertex is the closest labeled vertex w.r.t. tree distance. Choi et al.
(2011) claim that minimum spanning trees can be constructed by contracting all edges along the path from
each hidden vertex h to the surrogate vertex of h. In the example shown in Figure 4.1, the MST Mo can be
constructed by contracting the edges {h1,11}, and {ha,l3}. Clearly there is no selection of surrogate vertices
such that My can be constructed by contracting the path between each hidden vertex and the corresponding
surrogate vertex.

Choi et al. (2011) assume that for any MST there exists a selection of surrogate vertices such that the
MST can be constructed by contracting paths between each hidden vertex and the corresponding surrogate
vertices. The indeterminacy of CLGrouping only occurs if there are multiple MSTs. The problem of selecting
surrogate vertices for the case where multiple labeled vertices are closest to hidden vertices is discussed below.

Let the surrogate vertex set S(h) of a vertex h be the set of all labeled vertices that are closest to h.
Consider two hidden vertices hy and hs, such that there are multiple labeled vertices, [; and Is, that are
common to the corresponding surrogate vertex sets S(h;) and S(hz). Choi et al. (2011) assume that it is
always possible to apply the following tie-breaking rule for implicitly selecting the corresponding surrogate
vertices. A labeled vertex that is common to S(hy1) and S(hg) (either I3 or lp) is selected as the surrogate
vertex of both h; and hs.
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Figure 4.2: Left: The empirically established phylogeny T over primate genera (Hedges et al., 2006; Pozzi
et al., 2014). Right: A phylogeny that was constructed by applying CLGrouping to an MST of the distance
graph of T'. The edges that are highlighted in red correspond to splits that are contained in one tree but not

the other tree.

Figure 4.3: The phylogenetic tree that is used to demonstrate that the tie-breaking rule as defined by Choi
et al. (2011) cannot be applied in general.
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This rule for selecting surrogate vertices cannot be applied in general. We demonstrate this with an exam-
ple. For the tree shown in Figure 4.3 we have S(h1) = {l1,12}, S(h2) = {la, 15}, and S(h3) = {l1,12,13,14,15}.
There is no selection of surrogate vertices that satisfies the tie-breaking rule.

4.3 Vertex order based MSTs

In order to construct an MST that is guaranteed to have the desired topological correspondence with the
phylogenetic tree, we propose the following definition of a surrogate vertex.

Definition 1. Given a phylogenetic tree T = (Vp = {Lr,Hr}, Er) and distances dr that are additive in
T, let there be a total order <y over the set of all labeled vertices of T'. The vertex order based surrogate
vertex of a vertex v in Vp is the labeled vertex in L7 that is closest w.r.t. dp, and smallest w.r.t to the
vertex order <y. That is,
s(v) = argmin (dr(l,v),l<, ),
leELT

where [, is the rank of [ in the order <y, and the lexicographic order is applied to the ordered pair following
“argmin” in the formula.

The inverse surrogate set S~1(I) of a labeled vertex [ is the set of all vertices whose surrogate vertex is
l. Note that each labeled vertex is contained in its inverse surrogate set.

In order to ensure that the surrogate vertices are selected on the basis of tree distances and vertex order,
it is necessary that information pertaining to vertex order is used when selecting the edges of the MST. We
use Kruskal’s algorithm (Kruskal, 1956) for constructing the desired MST. Since Kruskal’s algorithm takes
as input a set of edges sorted w.r.t. edge weight, we modify the input by sorting edges with respect to edge
weight and vertex order as follows. It is easy to modify other algorithms for constructing MSTs in such a
way that vertex order is taken into account.
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Definition 2. Given an edge-weighted graph G = (V, E), and a total order <y over the vertices in V. Let
W{y,v} be the weight of the edge {u,v}. Edges in E are sorted w.r.t. edge weight and vertex order using the
lexicographic order that is defined below. Let the sorting be defined using the total order <g. For each pair
of edges {a,b} and {c,d} in E,

{a,b} <g {c,d}, if and only if

(Wia,py, min(ac,,bey ), max(ac,,bey)) < (Wieqy, min(c<,,, d<y, ), max(c<,,d<, ))

where the tuples are compared lexicographically
The modified algorithm for constructing a vertex order based MST (VMST) is described in Algorithm 3.

Algorithm 3: Constructing a vertex order based MST (VMST)
Input: (G =(V,E),<y)
E_, < edges in E ordered w.r.t. edge weight and vertex order
M, < MST constructed by applying Kruskal’s algorithm to E.,,
Output: M.,

Using the notion of VMSTs we will prove Lemma 1, and consequently show that the indeterminacy of
CLGrouping can be removed if CLGrouping is applied to a VMST.

Lemma 1. Adapted from parts (i) and (i) of Lemma 8 in Choi et al. (2011). Given a phylogenetic tree
T = (Vp, Er) and a total order <, over the labeled vertices in T, let G = (Vg, Eq) be the distance graph of
T. Let M = (Viy, Epr) be the VMST constructed by applying Algorithm 3 to (G,<r,). The surrogate vertex
of each hidden vertex is defined with respect to the tree metric dr and a vertexr order as given in Definition
1. M 1is related to T as follows.

1. If 1 € Vay and h € S71(I) s.t. h # [, then every vertex in the path in T that connects [ and h belongs
to the inverse surrogate set S~!(1).

2. For any two vertices that are adjacent in T', their surrogate vertices, if distinct, are adjacent in M, i.e.,
for all 4,j € Vp with s(i) # s(j),

(0,5} € Br = {s(i),5(j)} € Enr.

Proof. (i). Assume that there is a vertex u on the path between h and [, such that s(u) = k # I. Since
s(u) = k implies that (dr(u,k), k<, ) < (dr(u,l),l<, ), we have dr(u,k) < dr(u,l), with equality holding
only if k., <l .

There are seven ways to position k w.r.t. h,u, and [ (see Figure 4.4). We only consider the general
positions.

For case 1 we have dr(h,l) < dr(h,k)
&dr(h, j) +dr(j,u) + dr(u,l) < dr(h, j) + dr(j, k)
&dr(j,u) + dr(u, 1) < dr(j, k)
=dr(u,l) < dr(u,j) +dr(j, k)
<dr(u,l) < dr(u, k) (contradiction since s(u) = k)

61



General cases Special cases

-

Case 1: G-
h j

o

u

k

L (10)=% Case 6 OO @@
T

O

i d R ouw k1
Case 2: OO0 &
hoow % )
"% 1
O

B o
h

Case 3: @——C—-C—@
k h u

Case 4: O---O---@---@
h u

Figure 4.4: The cases that were considered in the proof of Lemma 1 part (7). Each case specifies one of
the seven possible positions of a labeled vertex k& w.r.t. hidden vertices h and w, and a labeled vertex [.
Hidden vertices are represented with white circles and labeled vertices are represented with black circles.
Each dashed line represents a path between the two vertices at its end points. The condition on top of each
solid arrow describes how the special cases can be constructed from the corresponding general cases.

For case 2 we have

dr(h,1) < dr(h, k)
&dr(h,u) +dr(u, j) + dr(f,1) < dp(h,w) +dr(u, §) + dr (5, k)
©dr(u, j) + dr(j,1) < dr(u, j) + dr(j, k)
<dr(u,l) < dr(u,k) (contradiction since s(u) = k)

For case 3 we have dr(h,l) < dr(h,k)
<dr(h,u) +dr(u,l) < dr(h, k)
=dr(u,l) < dp(h, k) + dr(h,u)
<dr(u,l) < dr(u,k) (contradiction since s(u) = k)

For case 4 we have dr(u, k) = dr(u,l) + dr(l, k)

=dr(u, k) > dr(u,l) (contradiction since s(u) = k)

(#2). Consider the edge {i,j} in Ep such that s(i) # s(j). Let V; and V; be the vertex sets of the
connected components that are constructed by removing the edge {i, j}, such that V; and V; contain ¢ and j,
respectively. Let £; and £; be sets of labeled vertices that are defined as V; N Vi and V; N Vi respectively.
From part (7) of Lemma 1 we know that s(i) € £; and s(j) € £;. Consider the labeled vertices l; € £;\{s(7)}

and I; € £;\{s()}.
We have

It follows that

dr(li,l;) = dp(li, i) + dr(i,7) + dr(l, 5)
Z dT(S(Z)7Z) + dT(ZﬂJ) + dT(S(])7J)
= dr(s(i),s(j5))

dr(s(i),5(5)) < dr(ls, 1), (4.1)
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with equality holding only if
5(i)<v < li<v and S(j)<v < lj<v. (42)

The cut property of MSTs states that given a graph G = (V| E), for each pair V;,V; of disjoint sets
such that V3 UV, = V| each MST of G contains one of the smallest edges (w.r.t. edge weight) which have
one endpoint in V7 and the other endpoint in V5. Thus M contains at most one of the following edges
{li, 5}, {s(9),1;},{li,s(5)} and {s(i),s(j)}. Note that the vertex order based MST M is constructed using
edges that are sorted w.r.t. edge weight and the vertex order <y . Let the ordered set of edges be defined
using the total order <g over F.

From equations (4.1) and (4.2) we have

(dT(S(i)’ S(j))amin(s(i)<v7S(j)<v)7max(3(i)<vvS(j)<v)) < (dT(li’ lj)vmin(li<v7lj<v)’max(li<v’lj<v))

Thus, according to Definition 2, it follows that {s(i),s(j)} <g {l;,1;}. Through a similar construction it can
be shown that {s(i),s(j)} <g {s(9),l;} and {s(i),s(j)} <g {l;,s(y)}. It follows that {s(i),s(j)} € Eny. O

CLGrouping can be shown to be correct using Lemma 1 and the rest of the proof that was provided by Choi
et al. (2011).

The authors of CLGrouping provide a Matlab implementation of their algorithm. The implementation
takes as input a distance matrix which has the following property: the row index, and the column index
of each labeled vertex is equal. The MST that is constructed in the authors implementation is a vertex
order based MST. The vertex order is equal to the order over the column/row indices of the labeled vertices.
The implementation provided by Choi et al. (2011) correctly reconstructs the model tree even if there are
multiple MSTs in the underlying distance graph.

4.4 An optimality criterion for selecting vertex order

4.4.1 Split information in a VMST

Consider a minimum spanning tree to be a generally labeled unrooted phylogenetic tree with no hidden
vertices. The notion of split that is usually only used for unrooted phylogenetic trees can be easily extended
to minimum spanning trees. In the following lemma we will show that each split that occurs in a VMST is
also contained the corresponding phylogenetic tree.

Lemma 2. Given a phylogenetic tree T = (Vp = {Lp,Hr}, Er). Let M = (Vay, Epr) be a VMST of T.
Each split V,|Vy, in M is a split in T.

Proof. Without loss of generality let {a,b} in Ej; be the edge that induces the split V,|V} such that V,
contains a, and V}, contains b.

From Lemma 1 part (i) we know that a and b are the surrogate vertices of hidden vertices that are
adjacent in T'. Let h, and h; be hidden vertices in Hp that are adjacent in 7" such that a is the surrogate
vertex of h,, and b is the surrogate vertex of hy.

Consider the split Ly, |Lp, in T that is induced by edge {hg, hp} in Er. Without loss of generality let
L, contain a, and let £y, contain b.

From Lemma 1 it follows that M is constructed by contracting paths in T" between each hidden vertex
and the corresponding surrogate vertex. By construction of M from path operations it follows each vertex
in V, is contained in £, but not L. Conversely each vertex in V; is contained in £, but not L£,. Since
VouVy=Lr =L, ULy, and V, NV, = @ = L, N Ly, it follows that each split in M is a split in T O

Consider an unrooted phylogenetic tree T and a corresponding VMST M. Each terminal edge in M
induces a trivial split in 7. Each internal edge in M induces a nontrivial split in 7. With respect to
maximizing the number of non-trivial splits, an optimal VMST would have the minimum number of leaves.

In the context of parallel programming, Huang et al. (2014) showed that it is possible to parallelize
CLGrouping by independently constructing phylogenetic trees over the vertex group that is associated with
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Figure 4.5: Each panels above shows (i) an ultrametric tree (left), (#4) a VMST with the maximum number
of leaves (VMST ax, top right), and (#i7) a VMST with the minimum number of leaves (VMST ;,, bottom
right). The edge contraction operations in orange and blue were used to construct VMSTSs with the maximum
number of leaves, and minimum number of leaves, respectively. The difference in the number leaves between
VMST ax and VMST,;, is largest for the caterpillar tree shown in panel A, and smallest for the balanced
tree shown in panel B.

each non-leaf vertex, and merging them in order to construct the full phylogenetic tree. The step involving
tree mergers requires a shared memory architecture.

Thus, with respect to parallelism, an optimal VMST would have the maximum number of vertex groups,
and equivalently, the minimum number of leaves.

4.4.2 Tree shape

In order to relate the shape of a phylogenetic tree to the number of leaves in a corresponding VMST, we
consider ultrametric caterpillar trees and ultrametric balanced trees (Semple and Steel, 2003).

A VMST of a rooted phylogenetic tree is constructed by suppressing the root of the phylogenetic tree,
followed by contracting paths in the unrooted phylogenetic tree between each hidden vertex and the corre-
sponding surrogate vertex.

Consider an ultrametric caterpillar tree. There exists a vertex-order based MST VMST,,.x which has a
star topology that can be constructed by contracting edges between each hidden vertex and one labeled vertex
that is in the surrogate vertex set of each hidden vertex (see Figure 4.5 A). VMST,,,x has the maximum
number of leaves and does not contain any information regarding the splits of the phylogenetic tree.

Instead, if a vertex-order based MST VMST,,i, was to be constructed by contracting edges between each
hidden vertex h and a labeled vertex that is adjacent to h, then the number of the vertex groups would be
n — 2, where n is the number of vertices in the phylogenetic tree. VMST,,;, has the minimum number of
leaves (two), and the maximum amount of split information about the phylogenetic tree.

Consider a phylogenetic tree T' = (Vr = {Lr, Hr}, E7) which is an ultrametric balanced tree. For each
leaf lyin L7 there is another leaf ls in L1 such that [; and l; are adjacent to the same hidden vertex h in
Hr. Since I; and Iy are closest to h, the surrogate vertex of A is either Iy or l5. In each VMST of T', either
I or Iy will be a leaf in the VMST. Since this is true for all leaves in L, each VMSTs of T' will have |Lp|/2
leaves (see Figure 4.5 B).

Whether or not the phylogenetic trees that are estimated from real data are ultrametric depends on the
set of organisms that are being studied. Genetic sequences that are sampled from closely related organisms
have been estimated to undergo substitutions at a similar rate, resulting in ultrametric phylogenetic trees
(dos Reis et al., 2016). With respect to the phenomenon of adaptation by natural selection, phylogenetic
trees are caterpillar-like if there is strong selection; the longest path from the root represents the best-adapted
lineage.
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Figure 4.6: Panel A shows a generally labeled phylogenetic tree T' with surrogate vertices selected such
that the edge contraction would construct the VMST with the minimum number of leaves shown in Panel
B. Panel C shows the VMST (in red) superimposed with the common laminar family and the MST union
graph. Additionally, each vertex has been labeled with the corresponding -

4.4.3 Overview of our approach

Our approach to selecting optimal VMSTs makes use of three notions, (i), the maximum degree 0.y of each
vertex across all MSTs, (i%), the so-called MST union graph which is a graph containing all the edges that
are present in at least one MST, and, (ii), a common structure over the MSTs that can be defined as a
laminar family.

The intuition behind our approach is as follows. From Lemma 1 it follows that each non-leaf vertex of a
VMST is a surrogate vertex. Thus we want to choose a vertex order such that we maximize the number of
distinct surrogate vertices. In Section 4.5, we show that such a vertex order can be constructed by arranging
vertices in order of non-decreasing dy,ax- In Section 4.4.4 we show how the common laminar family and the
MST union graph can be used to compute d,.. The construction is exemplified graphically in Figure 4.6.

On a related note, the general problem of selecting an MST with the minimum number of leaves (MLMST)
is in NP-complete by reduction from the Hamiltonian path problem. MLMST specializes the problem of
finding spanning trees with the minimum number of leaves which is also in NP-complete by a similar
reduction (Salamon and Wiener, 2008).

4.4.4 A structure that is common to all MSTs of a graph

In this subsection we will prove the existence of a so-called common laminar family over the vertex set
of an edge-weighted graph G. A collection F of subsets of a set S is a laminar family over S if, for any
two intersecting sets in F, one set contains the other. That is to say, for each pair Si1,59 in F such that
|Sl| < |SQ|, either S1 NSy =@, or S1 C Ss.

The common laminar family defines a representation of a tree structure that is common to each MST of
G. The notion of a laminar family has been utilized previously by Ravi and Singh (2006) for designing an
approximation algorithm for computing a minimum-degree MST.
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Semple and Steel (2003) note that each rooted phylogenetic tree can be uniquely described as a laminar
family over the set of labeled vertices. Laminar family representations of rooted phylogenies are used for
comparing and combining information from multiple rooted phylogenetic trees. Later in this section we show
that the laminar family representation of an ultrametric tree is equivalent to the common laminar family.

Lemma 3. Given an edge-weighted graph G = (V, E) with k distinct weight classes W = {wq,wa, ..., wi},
and an MST M of G, let F; be the forest that is formed by removing all edges in G that are heavier than w.
Let C; be the collection comprising the vertex set of each component of F;. Consider the collection F which
is constructed as follows: Fo = {Ui?:lCi} U V. The following is true:

1. F¢ is a laminar family over V

2. Each vertex set in F¢ induces a connected graph in each MST of G

Proof. (i). Consider any two vertex sets Vi and V5 in F. Let wy and ws be the weights of the heaviest edges
in the subgraphs of M that are induced by V; and V5, respectively. Let F} and F5 be the forests that are
formed by removing all edges in M that are heavier than w; and ws, respectively. Let C; and Cs be the
collections comprising the vertex set of each component in F; and Fy, respectively.

By construction, we have V; € C; and V5 € C5. Consider the case where wi; = wy. Since C; = (s, it
follows that Vi NV, = @. If wy # wo, then without loss of generality, let wy < ws. F5 can be constructed by
adding to Fi all edges in M that are no heavier than wy. The vertex set of each component in Fj that is
not in Fy induces a connected subgraph in exactly one component of Fy. If Vi € C; N Cy then Vi NV, = @.
Otherwise, if V1 € C1\Cq, then V] is a subset of exactly one set in Cy. This implies that either Vi C Vs, or
ViNVe =@. Thus F¢ is a laminar family over V.

(74). Let V; be the vertex set of a component in the graph G; of G that is created by removing all edges in
G; that are heavier than w;. It follows that V; induces a connected graph in each minimum spanning forest
of G;. Consider an MST M of G. Removing all edges in M that are heavier than w; constructs a minimum
spanning forest F' of G. Thus V; induces a connected graph in M. It follows that V; induces a connected
graph in each MST of GG. By construction V; € F¢. O

4.4.5 Ultrametric trees

Semple and Steel (2003) note that the hierarchical structure of a rooted tree can be represented using a
laminar family. We show that the laminar family Fr that represents an ultrametric tree 7' is equivalent to
the laminar family F¢ that is common to all the MSTs of the distance graph associated with T

Lemma 4. We are given an ultrametric tree T = (Vip, E7) and the corresponding distance graph G. Let F¢
be the laminar family that is common to each MST of G. Let Fr be the laminar family representation of T.
The following is true.

Fr = Fc.

Proof. Consider a vertex set Vi, C Fr. Let w be the largest distance between vertices in V,,. Consider the
forest F), that is constructed by removing all edges in G that are heavier than w. V,, induces a connected
component C,, in F,, since each pairwise distance between vertices in V,, is not larger than w. Since the
distance between each vertex in V,, and each vertex in Vp\V,, is larger than w, it follows that C,, does
not contain any vertex that is not in V,,. Since the common laminar family Fc contains the vertex set of
each component in F, it follows that V,, C F¢. Since this is true for each vertex set in Fr, it follows that
Fr = Fc. O

Note that the laminar family representation Fr of a rooted tree, and the corresponding common laminar
family F¢, are not equivalent in general. See Figure 4.7 for an example.

66



FC Z{{l3}7{l4}7{l5}7{l37l4}={l37l41l5}}

FT :{{lg},{l4},{l5},{ /;‘/n} a{l3;l4;l5}}

Figure 4.7: The equivalence between the laminar family representation Fr of a rooted phylogenetic tree,
and the common laminar family F¢, is not true in general.

4.4.6 Computing the common laminar family and the MST union graph

In this subsection we present an algorithm for constructing the common laminar family and the MST union
graph. The MST union graph of a graph G is the subgraph of G that contains all the edges that are present
in at least one MST of G.
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Algorithm 4: Construct the common laminar family F¢o and the MST union graph Gy

Input: G = (Vg, Eg)
Initialize:
M = (Vyy, Epp) « singleton graph over Vi
Gy = (Vu, Ey) + singleton graph over Vg
Fo +— Vg
Eg< < edges in Eg that are sorted in order of increasing weight
Wprevious — weight of the lightest edge in Eg
Vi — @
Functions:
Chu(v) : Returns the vertex set of the component of M containing v
Fp(v) : Returns id of the component of graph M containing v
Upr(u,v): Adds edge {u,v} to Epr and updates component ids
for {u,v} in Fg<
Weurrent <— weight of {u, v}
if Weurrent > Wprevious
for {u,v} in E,
U]u (u7 ’U)
E,+— 9
for v in V,
Fo +— Foc U C]u(v)
Vi — @
else if Fiy(u) # Fa(v)
Ey < Ey U{{u,v}} // ensures that Gy contains all the edges that are present in at least one
MST of G
E, + E,U{{u,v}}
Vi Vi U{u}

wprevious <~ Wcurrent

Output: F¢,Gy = (Vy, Ey)
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Lemma 5. Given an edge-weighted graph G = (Vg, Eg) with k distinct weight classes W = {wy,wa, ..., wg},
the outputs Fo and Gy of Algorithm 4 are the common laminar family of G, and the MST union graph of
G, respectively.

Proof. Algorithm 4 adds edges to the singleton graph M in order of increasing weight, in such a way that
M does not contain any cycles. From Kruskal (1956), we know that M is an MST of G.

Consider the forest F; that is constructed by removing all edges in M that are heavier than w;. By
construction, F¢ includes the vertex set of each component of F;. Let C; be the collection comprising the
vertex set of each component of F;. It follows that Fo = {UleCi} U V. From Lemma 3, we know that F¢
is the common laminar family of G.

Ey is constructed by adding the lightest edges that are incident to vertices in different components. The
cut property of MSTs states that given a graph G = (V, E), for each pair Vi, V5 of disjoint sets such that
V1 UV, =V, each MST of G contains one of the lightest edges which have one endpoint in V; and the other
endpoint in V5. It follows that each edge in Ey is present in at least one MST of G. O

4.5 Selecting VMSTs with the minimum number of leaves

4.5.1 Implicitly selecting optimal surrogate vertices

Lemma 6. We are given a phylogenetic tree T', the corresponding distance graph G = (V, E). Let F¢ be the
common laminar family of G. Let Gy = (Viy, Ey) be the MST union graph of G. Let h be a hidden vertex
in T such that there is a leaf 1 in S(h) that is adjacent to h. Let V; be a vertex set in F and let w; be the
corresponding edge weight. Then the following is true:

1. Let N(v) be the set of all vertices that are adjacent to vertex v in Gy. Let C(v) be a smallest sub-
collection of F that covers N(v) but not v. Among all MSTs, the maximum vertex degree dmax(v) of

v is |C(v)].
2. dmax(l) < dmax(v) for each vertex v in S(h)

Proof. (i). Let N(v) = {j1,Jo,-.-,Jx} be the neighbors of v in Gy. Let M be an MST of G. Let C(v) =
{c1,¢2,...,¢m} be a smallest sub-collection of F that covers N(v) and does not include v.

Let C(v) contain a set ¢; that covers multiple vertices in N(v). Let j; and js be any two vertices in ¢;.
Let w; be the heaviest weight on the path between j; and js in M. The edges {v, j1} and {v, jo} are heavier
than w;. If they were not, then we would have v € ¢;. Since v, j; and js are on a common cycle, each MST
of G can only contain one of the two edges {v,j1}, and {v, jo}. It follows that, for each set ¢; € C'(v), each
MST can contain at most one edge which is incident to v and to a vertex in ¢;. Thus the maximum number
of edges that can be incident to v in any MST is the number of vertex sets in C(v), i.e., dmax(v) = |C(v)].

(73). Let N(I) and N(v) be the neighbors of I and v in Gy, respectively. Let j € N(1)\S(h). The weight
of the edge {j,1} € Ey is given by dr(j,1). dr(j,h) > dr(v,h) since j ¢ S(h). Thus dr(l,j) > dr(l,v), and
consequently v € N(1). We have dr(j,1) = dr(j, h) + dr(h,1) = dr(j,h) + dr(h,v) = dr(j,v). Consider the
MST M = (Viy, Epr) that contains the edges {I,v} and {l,h}. Consider the spanning tree M’ that is formed
by removing {l,h} from F); and adding {v,h}. M’ and M have the same sum of edge weights. Thus we
also have j € N(v). Consequently N(I) C N(v). Let C () and C(v) be the smallest sub-collections of F such
that C(I) covers N(I) but does not contain I, and C(v) covers N(v) but does not contain v. C(v) covers
both N(I) and N(v) since N(I) C N(v). Thus |C(l)| < |C(v)|. From part (i), we know that |C(1)| = dmax(1)
and |C'(v)] = dmax(v). Thus dmax(!) < dmax(v). O

4.5.2 Computing a VMST with the minimum number of leaves

Theorem 2. We are given a phylogenetic tree T and the corresponding distance graph G. Let M be the
vertex order based MST that is computed using Algorithm 5. Among all VMSTs of G, M has the minimum
number of leaves.
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Algorithm 5: Construct a minimum leaves VMST (MLVMST)

Input: G = (V, E)
Fo <the common laminar family of G
F7 <sets of Fe ordered in order of decreasing size
Gy +the MST union graph of G
Omaz <—empty array
foriin V
N (i) <—neighbors of ¢ in Gy
Omaz () < 0
for C in .7-'5:
if CNN(i) # @ and CN{i} = &
6maa: (Z) «— 6maa: (Z) +1
N(i) + N(i)\C
<44 A total order over V such that u«, < v, = Omaz(t) < dpmaz(v)
M, + VMST constructed by applying Algorithm 3 to (G, <.)
Output: M,

Proof. Let S(h) be the set of vertices that are closest to h w.r.t the tree metric dy that is associated with
T. From Lemma 6(ii), we know that if there is a leaf [ in S(h) that is adjacent to h in T then, among all
vertices in S(h) dmax(l) is smallest. By construction of <,, among all vertices in S(h), the vertex rank [, of
I is the smallest. It follows that Algorithm 5 implicitly selects [ as the surrogate vertex of h. Since each leaf
in T is adjacent to at most one hidden vertex, the vertex order that is selected by Algorithm 5 maximizes the
number of distinct leaves that are selected as surrogate vertices. M is constructed by contracting the path
in T between each hidden vertex and the corresponding surrogate vertex. Contracting the path between a
hidden vertex and the corresponding surrogate vertex increases the degree of the surrogate vertex. Thus,
among all vertex order based MSTs, M has the minimum number of leaves. O

4.5.3 Implementation details and time complexity analysis

Algorithm 5 takes as input an edge-weighted graph G = (V, E') and performs the following actions. First, the
common laminar family F¢ and the MST union graph Gy are constructed by applying Algorithm 4 to G.
Subsequently, a vertex order <y is computed on the basis of F- and Gy. Finally, a VMST is constructed
by applying Algorithm 3 to (G, <v).

Algorithms 3 and 4 are variants of Kruskal’s algorithm and were implemented using a disjoint-set data
structure with balanced Union, and Find with path compression (Tarjan, 1975). The functions Fj; and Uy
correspond to a Find operation and a Union operation, respectively. A disjoint-set data structure can be
represented as a forest with self-loops and directed edges. Each vertex points to its parent. The root of a
component points to itself. A Find operation on a vertex v deletes the edge (v,v,,) that enters its former
parent v, . and adds the edge (v, v,) that enters the root of the component that contains v. A Union operation
takes as input the roots of two components and creates an edge that exits the root of the smaller component
and enters the root of the larger component, breaking ties arbitrarily. The function Cps(u) is designed to
return the set of vertices that are in the same component as u. C}; is implemented as follows. We store the
vertex set of a component in the root of the component. Each time we perform a union operation Uy (ry,72)
we combine the vertex sets and store the combined vertex set in the root of the component containing r;and
T9.

The main steps of Algorithms 3 and 4 are (i), sorting O(n?) edges and, (i), performing O(n?) Find
operations and O(n) Union operations, where n is the number of vertices in V. Step () can be done using
mergesort in time O(n?logn?), which simplifies to O(n?logn). Step (i) takes time O(n?a(n?,n)) where
is the inverse of Ackermann’s function (Tarjan, 1975). Since a(n?,n) < logn, both the algorithms complete
their computations in time O(n?logn).
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In addition to calling Algorithms 3 and 4, Algorithm 5 sorts the sets in F¢o and computes yax for each
vertex in V. Fe has O(n) sets which can be sorted using mergesort in time O(nlogn). For each vertex,
dmax can be computed in time O(n).

Thus the total time complexity of Algorithm 5 is O(n? logn).

4.6 Summary and Outlook

The current chapter identified the conditions under which MSTs constructed using tree-distances dp share
a topological relationship with phylogenetic trees T'. The topological relationship that was introduced by
Choi et al. (2011) states that MSTs can be constructed by contracting paths in phylogenetic trees between
hidden vertices and their corresponding surrogate vertices. We showed that the indeterminacy in the proof
by Choi et al. (2011) occurred because surrogate vertices were not properly defined in the case that there
are multiple labeled vertices that could each be the surrogate vertex of a hidden vertex. We removed this
indeterminacy by ensuring that surrogate vertices are uniquely defined on the basis of a vertex order over
labeled vertices. Subsequently we provided an algorithm for constructing vertex-order based MSTs (VMSTs)
that are guaranteed to share the topological relationship with phylogenetic trees. We related the number of
leaves in a VMST to the number of non-trivial splits, which showed that VMSTs with the minimum number
of leaves contained the maximum amount of information about phylogenetic trees. Finally we provided a
polynomial-time algorithm for constructing VMSTs with the fewest number of leaves.

The proofs in this chapter required the use of tree-distances. Empirical estimates of evolutionary distances
such as the Hamming distance, or model-based maximum likelihood distances are not additive in general. In
the following Chapter we present an MST-based framework called MST-backbone that constrains the search
for maximum-likelihood phylogenetic trees. In the following chapter we do not assume that distances are
additive, and we do not make use of VMSTs in MST-backbone.
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Chapter 5

Structural EM under the general
Markov model via an MST backbone

The work that is presented in this chapter is unpublished.

The current approach to inferring model-based phylogenetic trees involves searching through tree space
via tree-modification operations. The size of tree space is exponential in number of leaves. Consequently,
popular software for phylogenetic tree inference make simplifying model assumptions about sequence evolu-
tion in order to reduce the number of free parameters, and facilitate fast search through tree space. The most
commonly adopted assumption are stationarity and homogeneity. The stationarity assumption is violated
by empirical observations of large variation in GC content (Agashe and Shankar, 2014). Currently available
methods for inferring trees under non-stationary Markov models are limited to small data sets comprising
less than 100 species due to high computational cost (Foster, 2004). The current chapter introduces a min-
imum spanning tree (MST) framework called MST-backbone that constrains the search for model-based
phylogenetic trees. We extend the structural expectation-maximization (SEM) framework for phylogenetic
tree inference (Friedman et al., 2002) in order to enable searching through tree space for maximum-likelihood
trees under the general Markov model (GM). The GM model is a non-stationary, non-homogeneous and non-
reversible Markov model that allows GC content to evolve through evolutionary history. We show on simu-
lated data that it is possible to reconstruct large phylogenetic trees without loss of accuracy. We validated
our method on six empirical data sets. Additionally, we compared our method with IQ-TREE, a phylogeny
inference software that implements the largest selection of time-reversivle and irreversible stationary homoge-
nous CT-HMM. We found that the unrooted topology of trees reconstructed by MST-backbone(SEM-GM)
and IQ-TREE were realistic for five data sets. The location of the root as inferred by the GM model was
accurate for two experimental phylogeny data sets but showed signs of overfitting for two virus data sets.
We found that trees that are rooted under the UNREST model using MST-backbone(SEM-GM)+UNR, and
IQ-TREE are realistic for four data sets.

To the best of our knowledge, there is currently no method that performs tree search under the general
Markov model (GM; Barry and Hartigan (1987)). We extend the structural expectation-maximization (EM)
framework by Friedman et al. (2002) in order to perform tree search under the GM model. We refer to this
method as SEM-GM. In order to improve the scalability of SEM-GM we designed an easily implementable
threshold-based divide-and-conquer framework called MST-backbone. We refer to the MST constrained
tree-search method as MST-backbone(SEM-GM).

The structure of this chapter is as follows. SEM-GM and MST-backbone are described in Section 5.1
and Section 5.2, respectively. We performed a comparative analysis of MST-backbone(SEM-GM) with three
popular software packages: FastTree v2.1.10 (Price et al., 2010), RAXML-NG v0.8.1 (Kozlov et al., 2019),
and IQ-TREE v1.6.1 (Nguyen et al., 2015) using sequences that were simulated under non-stationary Markov
models. We validated MST-backbone(SEM-GM) on empirical data and discovered that the location of the
root was unrealistic for a majority of data sets. Subsequently, we performed model selection using BIC and
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found that the UNREST model was selected for five empirical data sets. We compared the trees rooted under
UNREST (Yang, 1994b) with trees inferred by IQ-TREE under non-reversible stationary and homogeneous
Lie Markov models. Results of the comparative analysis on simulated data is described in Section 5.4. The
comparative analysis with IQ-TREE on empirical data is described in Section 5.5. The chapter concludes
with a summary of results, and an outlook on how the methods described in this chapter might impact
current research in phylogeny inference.

5.1 A structural EM algorithm for the general Markov model

Expectation-maximization algorithms (EM) are a class of algorithms that are commonly used to infer the
parameters of models with hidden variables (Dempster et al., 1977). Friedman (1997) designed an EM
algorithm called structural EM for inferring Bayesian networks with hidden vertices. Friedman et al. (2002)
applied SEM to infer phylogenetic trees under the GTR model. In this chapter we adapt SEM to the GM
model, and refer to the method as SEM-GM.

The search problem of finding maximum likelihood phylogenetic trees given sequences of extant species
(leaf vertices) is NP-hard (Chickering, 1996; Roch, 2006; Chor and Tuller, 2006), and the corresponding
decision problem is NP-complete. If sequences of all species (extinct and extant) were available then the
decision problem that corresponds to the search problem of finding maximum likelihood phylogenetic trees
is P because maximum likelihood fully labeled phylogenetic trees can be found in polynomial-time (Chow
and Liu, 1968).

The general principle of EM algorithms is as follows. If there are no hidden variables then observed
statistics are sufficient to compute optimal estimates of model parameters using closed-form solutions. If there
are hidden variables then, given suboptimal estimates of model parameters, it is possible to compute expected
statistics over hidden variables that are sufficient to optimize parameters using closed-form solutions. In
the following Subsection, we consider the case where there are no hidden variables, i.e, we are interested in
finding maximum likelihood fully labeled phylogenetic trees. Subsequently, we show how to compute expected
statistics such that we can simplify the problem of finding maximum likelihood leaf-labeled phylogentic trees.

5.1.1 Inferring maximum likelihood fully labeled phylogenetic trees

Chow and Liu (1968) showed that the undirected version of a maximum-likelihood Markov model M on a
fully labeled phylogenetic tree T%{JE = (Vtkunl, Erun) 18 @ maximum mutual information spanning tree Tfl‘\l/[ﬁ
of the edge-weighted complete graph Gan = (Vian, Ean) over Vi with edges in Ey) weighted using mutual
information scores. A maximum mutual information spanning tree is a maximum weight spanning tree of
Gan- The mutual information score I(X,; X,) for any edge {u,v} in E,j is computed as

PX,=z,X, =
I(Xy; Xy) ZZP u =, va)10g< (( —x)P(XUZy:)q))

where the entries in the probability distributions P(X,,) and P(X,,X,) are estimated using observed se-
quences as follows. Let C, be is the fraction of sites at which the observed sequence seq(u) equals = , and
let C,,,.y be the fraction of sites at which seq(u) equals # and seq(v) equals y. The observed count matrices
C, and Clu,v) are computed as

k
Z (5.1)

o \

and

k
]' 7
Clun (@ = Z ) % §(XEy) (5.2)
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where §(z,y) is the Kroenecker delta function that is one if = equals y, and is zero otherwise. P(X, = z) is
estimated as C\, (), and P(X, = x, X, = x) is estimated as Cluv)(,y)

Consider a complete graph GM! over all labeled vertices whose edges are weighted with mutual information
scores. A maximum mutual information spanning tree TM of GM! can be computed in polynomial time
using Prim’s algorithm (Prim, 1957). Given TM! the maximum-likelihood estimate of the fully labeled tree

T%{JE can computed in polynomial time as

k

TYVE = arg max WMLE XZ | I (1\1:[1;}];: LA (5.3)
PEVfun (w0)eE
u,v P

where edges E, are directed away from the vertex p in Vi that is selected as the root, and the maximum
likelihood estimate of model parameters M are given by the following closed-form solutions (Koller and
Friedman, 2009):

Wg/ILE(CU) = Cp(x), and (5.4)
Cluw(,y)
P @) = =g 5= (5.5)

In the following Subsection we describe how to perform the expectation step.

5.1.2 Expectation (E) step

Given a hidden Markov model M on a rooted leaf-labeled phylogenetic tree T' = (Vr,, Et, ), let L1, and Hr,
be the set of labeled vertices and hidden vertices, respectively. The expected counts Fjs Wu (x)] of a hidden
vertex u can be computed as follows (Koller and Friedman, 2009).

k
Ey [Cu()] =Y P(XL =), (5.6)
i=1
where P(X!) is the marginal probability

P(X}) = > P{X}:veVr,}M)
X,i:hGHTP\{u}

Similarly, the expected counts Ejs [é(u’v)(x, y)} for any vertex pair u,v can be computed as follows

k
M [Cluwy (@,9)] =Y P, =2, X =), (5.7)
i=1
where P(X?, X!) is the marginal probability
P(X!, X} = > P{X!:v eV, }|M)

X} :heHr, \{u,v}

P(X!, X% for adjacent vertices u and v can be computed efficiently using belief propagation as de-
scribed in Section 2.6.3.2. P(X!, X!) for non-adjacent vertices u,v is computed in order of increasing un-
weighted path length from u to v on T}, as follows: consider a path (vi,vs,...,v,—1,v,) in the undirected
version of T, such that P(X; ,&; ) is known and we are interested in computing the marginal prob-
ability P(X! ,X} ). Note that variables X} and X} are independent if conditioned on X; . Thus

V17" T Un 1
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P(X} | X}, Xl) equals P(X] |X; ). This enables us to decompose the joint marginal probability

n—1"7

P(X), X5 X)) as P(X, X, P, | XS ).
The marginal probability P(le1 , Xjn) can be computed as follows:
P(X,, X0 )= > PXL,XL LX) = PXL, XL PXL XL ) (5.8)
X'Z}vzfl X$7171

where P(X} |X! ) is computed from the joint probability distribution P(X{ , X7 ).

5.1.2.1 Maximization (M) step

The maximization step of SEM-GM is similar to the case of fully labeled phylogenetic trees with the difference
being that observed count matrices are substituted with expected count matrices. The log-likelihood score
increases subsequent to each iteration of an expectation step and a maximization step. The log-likelihood
score is said to converge if successive increment of the log-likelihood score is smaller than a preselected
log-likelihood threshold (known as convergence threshold). We used a convergence threshold of 1072 log-
likelihood units.

5.1.3 Transformation into a bifurcating tree

The rooted phylogenetic tree T}, that is computed by the maximization step is not necessarily a bifurcating
tree. In the case that T}, is not a bifurcating tree we transform it into a bifurcating tree 7}, and compute a
GM model My,; on Ty; using the steps described in Algorithm 6, such that the log-likelihood score remains
unchanged.

The proof of correctness of Algorithm 6 is provided below.

Lemma 7. The output of Algorithm 6 is a rooted bifurcating phylogenetic tree such that log-likelihood remains
unchanged.

Proof. The removal of edges incident to hidden vertices in cases (i) through (ii7) results in the construction
of the singleton hidden vertices that are used in cases (iv) through (vi).

We use conditional likelihood vectors in order to show that the likelihood score for any site i remains
unchanged subsequent to the operations applied for each case considered by Algorithm 6. Note that P, .,
denotes the conditional probability P(X,|X,)

Case (i): T, contains a hidden leaf h.

Let D(v) be the set of children of the parent v of h. The conditional likelihood vector L is computed as
follows

Ly (x) = (Z Po.n) (yx)LZ(y)> 11 (Z P(v,d)(2|x)sz(Z)>

Y deD(v)\{h} z

= <Z Py py (yx)) H <Z P(v,d)(z|z)Lﬁi(z)> (Li (y) equals one for all y because h is not observed)
y

deD(v)\{h}

z

H (Z P(U’d)(z|x)Lfi(z)> (Each row of P, ) sums to one)

deD(v)\{h}

z

Case (ii): T, contain a hidden vertex h with in-degree one and out-degree one.
Let u and v be the parent and child, respectively, of h. The conditional likelihood vector L¢ is computed
as follows
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Algorithm 6: Transform non-canonical tree to leaf-labeled bifurcating tree

Input: A non-bifurcating tree 7, = (Vr,, E1,), and a GM model M = (7,,P = {P. : e € Er,})
While T, is a non-bifurcating tree do:

Case (i): T, contains a hidden leaf h
Let v be the parent of h
Remove edge (v, h), and matrix P, ;)

Case (i1): T, contain a hidden vertex h with in-degree one
and out-degree one
Let u and v be the parent and child, respectively, of A
Remove edges (u, h) and (h,v), and add edge (u,v)
Remove matrices P, ;) and P .y, and add matrix P, ) such that
Pluwy =Peu,n)Pin,w)

Case (i#i): The root is a hidden vertex with out-degree one
Let 73" denote the current root probability distribution
Compute new root probability distribution 72" as
ﬂ-:)lew(y) = 2 7T;C)ur(x)[)(p,v) (.’L‘, y)

,where v is the child of p

Remove edge (p,v) and matrix P

Set v as the new root of T,

pyv)

Case (iv): T, contains a non-leaf labeled vertex (

Let D(1) be the children of I, and let h be a singleton
vertex.
Add edge (h,1), and add matrix P, ;) = I (identity matrix)
for each vertex v in D(l) do

Remove edge (I,v), and add edge (h,v)

Remove matrix and P ,), and add matrix Py, ) = P .)
if [ has a parent u then

Add edge (u,h) and matrix P, py = P,

Remove edge (u,[) and matrix P,
else set h as the root

Case (v): T, contains a hidden vertex hy with out-degree greater than two
Let w and v be a two children of h; selected at random, and let ho be a
singleton vertex.
Remove edges (hi,u) and (hy,v), and add edges (ha, h1), (ha,u), and (hs2,v)
Remove matrices Py, ) and Py, .), and add matrices P,,,u); Pny,v), and Py, p,)ysuch that
P(h27u) = P(hl,u)a P(hz,v) = P(hl,v)a and P(hz,hl) =1 (identity matrix)

Set Th; as Ty < 1), and set My; as My < M
Output: T},; and the GM model My; on Ty
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deD(u)\{h} \ =
= (Zp(u n (yle) ZPUw (w]y) L, (w )) 11 (ZP@@)(ZI:C)LZ(Z))
deD(u)\{h} \ =
= ( (prv (wly)Pa, h>(y|$)> (w)> 1T <2P<u,d>(zlw)LZ(Z)>
deD(u)\{h} \ =
= (Z P(u v) ’LU|.%')L;L}(’LU)> H (Z P(u’d)(zx)LQ(z)> (Where P(u,v) = P(u,h)P(h,v))
deD(u)\{h} \ 2

Case (i2i): The root is a hidden vertex with out-degree one.
Let 75" denote the current root probability distribution.
The likelihood L? for site i is computed as

(Zw;%w;(x))

(ngur@);ap,v)(mxwy))

(Zzﬂwr Plou9l2)L <y>>

- <Zij26W<y>Lz<y>> (where 7™ () = 3 75" ()Pl 012)

x

Case (iv): T, contains a non-leaf labeled vertex .
The conditional likelihood vector L} of a labeled vertex [ with children D(l) is defined as

Li(z) = X/(x) ]] (ZPu,d)(ZII)LZ(Z))

deD(l)

=x'@) ] (Zp(md)(ZIx)Lé(Z)) (5.9)

deD(h)\{l}

where h is the hidden vertex that is referred to in the operations defined for case (iv).
Consider the conditional likelihood vector Li of the hidden vertex h.
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(o= TI (zp(h,d)<z|x>Lz<z>>

deD(h) \ z

—(Zp(h,l><y|x>Lf<y>> II (me,d)(zix)%(z))

deD(mM\{i}

= <Z P(hyl)(y|x)2(l"(y)> H (Z P(h,d)(z|:17)Lfi(z)> (because Lj = A} for labeled leaves)

Y deD(h)\{l}

= Py (z]2) X} (2) H (Z Pih,a) (z|x)L2(z)> (because Py ) is the identity matrix )
deD(h)\{l}

=Xz ] (Z P(h,d)(z|$)LZ§(Z)> (5.10)

deD(h)\{1}

The conditional likelihood vectors L}L and Lf are unchanged (see equation 5.9 and equation 5.10)

Case (v): T, contains a hidden vertex h; with out-degree greater than two. Let D; be the set of all
children of hy prior to the operations performed in case (v). Let D, be D1\{u,v}

The conditional likelihood vector Lf, prior to transformation operations is given by

(Zp(hl ) (ylz) L > (Z Phy ) (ylz) Ly (y )) 1T <ZP(}U,d)(Z|x)Lf1(Z)>

d€ Dy, z

= (thgu (ylz) Ly, ( > (Zth’U (ylz) Ly (y > H (Zp(h1,d)(z|x)Lil(Z)>

deDU’U
(because P(h27u) = P(hl,u)v and P(hgﬂ)) = P(hl,v))

=L, [] (ZPhl z|lz) LY (2 ))

d€Dyy

= (Z Py iy (y|2) L, (y)) H (Z P(hhd)(zx)Lil(z)> (because Py, 5,y is the identity matrix)

Y d€ED v

It follows that the log-likelihood score remains unchanged after the transformation operation. The algo-
rithm terminates only if none of the cases apply, which will happen only if 7}, is a leaf-labeled phylogenetic
tree. O

5.1.4 Initial estimate of the general Markov model on a rooted phylogenetic
tree

The expectation step requires an initial estimate TS of the rooted phylogenetic tree, and initial estimates
of the parameters of a general Markov model M° on T0 We compute the initial estimates as follows. An
unrooted phylogenetic tree TN = (Vpns, Epns) is constructed by applying neighbor-joining (Saitou and Nei,
1987) to normalized Hamming distances. TN is rooted along the midpoint of an edge that is selected at
random in order to construct the initial estimate of the rooted tree TS The parameters of a general Markov
model M° = (7, P® = {P) : ¢ € Ero}) on T are estimated as follows.

Given an as&gnment of Characters to Xy, the parsimony score parsp, (Xy,) is the sum of character changes
over edges
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k
parsy (X)) =3 30 LX) £ X))

i=1 (uv)€Er,

We compute a character set X, that minimizes the parsimony score using Fitch-Hartigan’s algorithm
(Fitch, 1971; Hartigan, 1973). Given an assignment of characters that minimizes the parsimony score, we
compute counts for each hidden vertex, and each vertex pair by treating each vertex as a labeled vertex.
Subsequently, we compute the initial estimate of root probability using equation 5.4, and we compute the
initial estimate of each transition matrix using equation 5.5.

5.2 MST-backbone: a divide-and-conquer framework for constrain-
ing search through tree space

Structural EM is a computationally expensive procedure (Friedman et al., 2002). We designed an MST-
based framework called MST-backbone for constraining the search through tree space. The design of MST-
backbone is inspired by a topological relationship between MSTs and unrooted phylogenetic trees (Choi
et al., 2011) which is described below. Given an unrooted phylogenetic tree T' and distances dr that are
additive in T, let M be an MST that is computed using d7. The topological relationship can be described
in terms of splits as follows. Each edge of M induces a split in T'. It follows directly that each vertex set V;
that induces a subtree of M is the leaf-set of a subtree in T'.

The correspondence between MSTs and phylogenetic trees holds for a subset of all possible MSTs
(Kalaghatgi and Lengauer, 2017). Additionally, the topological correspondence holds only if MSTs are com-
puted using tree distances. We do not assume that distances are additive in this Chapter. MST-backbone is
a divide-and-conquer method that builds a global phylogenetic tree T' by combining local phylogenetic trees.
The main steps of MST-backbone are (i) computing a minimum spanning tree (MST); (i7) selecting smallest
mutually independent vertex sets Vi and V. comprising more than s vertices each such that (a) V, induces
a subtree in M, (b) V5 UV, induces a connected subgraph in M; (ii#i) computing a local phylogenetic tree ¢
over Vi U V,; (iv) updating the global phylogenetic tree T' by adding edges in subtrees of ¢ that are induced
by Vs; (v) updating the MST; and (vi) rooting the global unrooted phylogenetic tree (see Figure 5.1 for an
illustration).

Each step of MST-backbone is explained in detail below. See Algorithm 7 for an overview of MST-
backbone.

Initialization A minimum spanning tree (MST) M is computed using the Hamming distance for each
sequence pair in X, where £ represents the set of labeled vertices (species). We used Prim’s algorithm
(Prim, 1957) for computing the initial MST. The global phylogenetic tree T = (Vr, Er) is initialized by
adding £ to Vp, and setting E7 to the empty set @.

Selecting vertices of the MST Given a subtree size threshold s, select a smallest subtree 75 = (Vj, Ey)
of M comprising more than s sequences. Subsequently, perform a breadth-first-search (BFS) on M starting
at the root of 74, and selecting s vertices V. such that V. and V; are mutually exclusive.

Computing local phylogenetic trees An ML phylogenetic tree Té over V5 UV, is inferred using SEM-
GM. A maximum a posteriori (MAP) sequence seq™AF (h) for each hidden vertex h is computed as
= argmax P(X} = x)

T

MAP,i
X,
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Select a vertex set Vs comprising s vertices such Vs induces a
subtree in the MST. Start a breadth-first-search at the root of the
subtree that is induced by Vs (vertex labeled a), and stop if s vertices
have been visited such that Ve and Vs have no vertices in common.

(ii)

Suppress the root, and select the forest F comprising all
non-singleton subtrees that are induced by the vertices Vs.
Edges of selected subtrees are highlighted in orange.
Vertices x and y are the roots of the selected subtrees.

v) 1 oX
....’ : 0.‘y

Update the MST by removing vertices that are leaves in F,
and adding the roots of selected subtrees (x and y)

(ii)

(¢]

Fit a general Markov (GM) model on a rooted phylogenetic tree using
SEM-GM. rindicates the root. Grey vertices represent the maximum a
posteriori (MAP) estimate of ancestral sequences.

(iv)

Update the global phylogenetic tree T by adding undirected edges
in selcted subtrees.

(vi)

Iterate over steps (i) through (v), and stop if T is a connected graph.
Root T at a vertex by fitting a GM model via SEM-GM such that the
undirected topology is constrained to be T.

Figure 5.1: An illustration of the main steps of MST-backbone
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Algorithm 7: Improving the scalability of SEM-GM using MST-backbone

Input: Distances d for species in £, and a subtree threshold size s
Initialize: A global phylogenetic tree T'= (Vp, Ep) as Vi < L and Ep + @
M = (Vyr, Epr) + a minimum spanning tree (MST) computed using d
While T is not connected do
If M contains a subtree 7, = (V;, E;) with more than s vertices, and |Vjs| — |Vs| > s then
Select a smallest subtree 75 of M containing more than s vertices
Select s vertices V, of M that are visited using a BFS starting at the root of 7y
such that V., NV, =@
Compute a ML phylogenetic tree t, over vertices V, UV, by performing tree search using
SEM-GM
Construct ¢ by suppressing the root of t,, and select the largest non-singleton subtrees 7
of ¢ that are induced by V;
Add edges of each selected subtree to global phylogenetic tree T’
Update M by removing leaves of subtrees, and adding the root of each subtree.
Else
Compute a ML phylogenetic tree t, over all vertices in Vj; using SEM-GM
Construct an unrooted phylogenetic tree ¢ by suppressing the root in ¢,,
and add all edges in t to T
Construct a rooted tree T, using SEM-GM such that the undirected topology of T}, is constrained to
be T.
Output: 7T,

where P(X; = ) is the marginal probability for observing character x at site i for the sequence seq(h) that
is represented by vertex h, and X,llv[ AP 45 the character at position i in seq™AP (R).

The location of the root as inferred in Té is not necessarily an optimal location of the root in the
global phylogenetic tree. An unrooted phylogenetic tree T! is constructed by suppressing the root in Tfl).
Subsequently, the subforest F, of T" is selected such that (i) the leaves of each subtree in F, are a subset of

Vs, and (i4) no component of F; is a singleton vertex.

Updating the global phylogenetic tree The global phylogenetic tree 79 = (Vr,, Er,) is updated as
follows. Non-leaf vertices of F are added to Vr,. All edges of Fy are added to ET,.

Updating the MST Vertices that are leaves in F, are removed from V;;. The root of each subtree in 7
is added to Va;. MAP sequences of each root are used to compute the Hamming distances d(r,v) for each
root r in Fg, and each vertex v in Vay N {V; UV.}. A new MST is computed using Prim’s algorithm using
the newly computed distances.

Rooting the global phylogenetic tree The global phylogenetic tree T is rooted using structural EM
such that the undirected topology of the rooted tree T is restricted to be identical to 7. Restricted SEM-
GM (rSEM-GM) is performed as follows: (i) Root TY9 = (V,, E,;) at a hidden vertex in Vj that is selected
at random, (i) Estimate MP sequences for hidden vertices, and initialize the parameters of a GM model
(see Subsection 5.1.4), (iii) root T9 at a hidden vertex in V, by maximizing expected log-likelihood score,
(iv) compute MLE of GM model parameters (equations 5.4 and 5.5). Steps (ii4) and (iv) are performed
iteratively until the log-likelihood score converged.
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5.3 Model selection

We implemented a model selection framework that selects the optimal number of rate matrices of a CT-HMM
using BIC. Time-reversible models were not included in the model selection framework because we wanted to
investigate whether or not phylogenetic trees that are rooted under CT-HMM are biologically meaningful. We
validated phylogenetic trees using non-genetic information pertaining to evolutionary relationships. Model
selection was performed as follows.

A rooted phylogenetic tree T, = (V,, E,) is inferred using MST-backbone(SEM-GM). A maximum a
posteriori (MAP) estimate of ancestral sequence seqMAF (h) is inferred for each hidden vertex h in V,. The
edge length ¢, of any edge e = (u,v) in E,, is defined as the Hamming distance between sequences seqMAT (u)
and seqMAF (v). The change in base frequency Aj(u,v) for each edge (u,v) in E, is computed as follows:

Ap(uv) = > |ful@) = fol@)] (5.11)

ze{A,C,G,T}

)

where f, () is the fraction of characters in seqMAP (u) that are 2. We construct CT-HMM on the basis of
a base frequency threshold ey as defined below. Given a base frequency threshold ef, vertex-specific rate
categories are assigned to each vertex in V, as follows. The rate category of each vertex v in V), is denoted
by veat- The rate category pecat of the root is set to zero. Vertices are visited by performing a preorder tree
traversal. Each non-root vertex c that is visited is assigned the rate category of its parent p if Ay(p, ¢) is not
larger than €, otherwise ccat, is set to peat+1. A distinct UNR rate matrix Q7 is defined for each rate category
i. The rate category Q(,.) for each edge (p,c) in E, is defined as Q°=t. The root probability distribution
7, is defined as the stationary distribution of the rate matrix ”<»¢. The number of free parameters equals
(11 x r) + |E,|, where r is the number of rate catergories.

Parameter estimation is performed by optimizing edge lengths, and rate matrices, iteratively until the
log-likelihood score converges, using a convergence threshold of 1072 log-likelihood units. Edge lengths are
optimized using Newton-Raphson (details provided in Section B.1). Note that the transition matrix P, for
each e in F/, is computed as the matrix exponential P, = e@ete Tt is necessary to constrain the elements of
Q. because it is possible to scale (). and t. such that the product Q.t. remains unchanged. The rate matrix
Q' for each rate category i is optimized using a simplex method called Nelder-Mead (Nelder and Mead,
1965) subject to the restriction that a non-diagonal element of Q° was constrained to be one. Subsequently,
each rate matrix is scaled in order to construct a normalized rate matrix. Threshold € is initially set to the
largest observed change in base composition. For each subsequent iteration, €; is set to the largest observed
change in base composition that is smaller than the value of €, for the previous iteration. Model selection
is terminated if BIC increases between successive iterations. We refer to the model selection framework
described above as UNRmodelSelector in the following text.

5.4 Comparative analysis on simulated data

Current software performs tree-search under stationary and homogeneous Markov models. Empirical studies
suggest that violation of the stationarity assumption leads to the construction of phylogenetic trees where
species are incorrectly grouped close to each other due to similarity in base composition (Foster and Hickey,
1999; Nabholz et al., 2011). We compared the reconstruction accuracy of MST-backbone(SEM-GM) with
three widely used software: FastTree v2.1.10 (Price et al., 2010), RAXML-NG v0.8.1 (Kozlov et al., 2019),
and IQ-TREE v1.6.1 (Nguyen et al., 2015) using sequences simulated under non-stationary Markov models.

Phylogenetic trees that were used for simulating sequence evolution were generated using the R package
apTreeshape v1.4.5 (Bortolussi et al., 2006). Rooted phylogenetic trees were generated by sampling from
the uniform distribution over rooted trees. A general Markov model was constructed for each phylogenetic
tree as follows. The root probability distribution 7, was generated by sampling each element of 7, from the
uniform distribution U(0,1) and scaling such that the sum of the entries in 7, was equal to one. Transition
matrices P were generated as follows. Each diagonal element of P was sampled from the uniform distribution
U(Pmin, 1), where ppi, was varied from 0.99 to 0.7. Smaller values of pp,i, result in greater change in GC
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Table 5.1: Percentage of simulated sequences that reject the null hypothesis of homogeneity in base compo-
sition. Median and inter-quartile range (shown in parentheses) are listed below.

’ Drmin \ Median edge length \ p < 0.05 (%) ‘

0.7 0.15 (0.064) 89.8 (0.8)
0.8 0.1 (0.043) 83.2 (2.5
0.9 0.05 (0.022) 68.0 (8.3)
0.95 0.025 (0.012) 53.5 (19.9)
0.99 0.005 (0.004) 19.9 (34.8)
0.995 | 0.0025 (0.0014) 25 (19.1)

content. Each non-diagonal element of P was sampled from the uniform distribution U(0, 1) and scaled such
that the sum of elements of each row of P was equal to one.

In order to check for systematic error caused by using stationary homogeneous Markov models, we
simulated non-stationary non-homogeneous sequence evolution. We varied the amount of sequence change per
edge by setting ppi, to 0.995, 0.99, 0.95, 0.9, 0.8, and 0.7. We measured edge length for each setting of ppi, in
order to facilitate comparison with simulation experiments that are usually performed using continuous-time
Markov models (see Table 5.1). The length of each edge (u,v) was computed as the normalized Hamming
distance between simulated sequences seq(u) and seq(v). The largest setting of pmin (0.995) corresponds
to short edges (0.0025 subs/site). We included this setting because RAXML-NG and IQ-TREE perform
extensive search and are good at recovering short edges. The smallest value of ppin (0.70) corresponds to
large edges (0.15 subs/site). We included this setting in order to generate sequences with large change in
base composition. In order to compare scalability we set ppi, to 0.99, and varied the number of leaves from
1000 to 5000 in increments of 1000 leaves. Sequence length was set to 1000 base pairs which is comparable
to the number of columns in the empirical alignments (ranging from 128 bp to 2214 bp, see Table 5.5) that
we analyzed.

Chi-square test for significance in variation of base composition was performed for each simulation scenario
using a p-value cut-off of 0.05 (implemented in the stats package of SciPy (Virtanen et al., 2020)). The
percentage of sequences that exhibited significant deviation in base composition when compared with the
average base composition ranged from 89.8% for pmin of 0.7 to 2.5% for pmin of 0.995 (see Table 5.1).
The number of sequences that reject the null hypothesis are large (19.9% for average edge length of 0.005
subs/site) because the size of the tree is not taken into account when performing the test. The large inter-
quartile-range of 19.9% for pyi, of 0.95 and 34.8% for pp,in of 0.99 can probably be attributed to variance in
the imbalance of trees that are sampled from the uniform distribution over rooted trees. It may be possible
that the number of sequences that show significant deviation in base composition increases with increasing
imbalance of the model tree. The chi-square test that we have used is commonly used by practitioners of
phylogeny inference (Nguyen et al., 2015).

5.4.1 Measures of reconstruction accuracy

We measured the extent to which the rooted topology, and the unrooted topology of the simulated trees
were recovered using the following metrics. A rooted phylogenetic tree 7}, specifies a hierarchical clustering
C(T,) over labeled vertices as follows.

C(T,) ={L;, :v eV}
where £, is the set of labeled vertices in the subtree 7, in T}, that is rooted at v. We measured reconstruction

accuracy using recall values. Rec(T?, T”) is the fraction of clusters in the model tree that are present in the
estimated tree. Rec(T?,T?) is computed as
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Table 5.2: Accuracy (Re%™ ™ ) with which the unrooted topology was recovered. Median and inter-quartile
range (shown in parentheses) of recall values are listed below, and were computed using 100 replicates.

’ Pmin \ MST-backbone(SEM-GM) \ FastTree \ RAxXxML-NG \ IQ-TREE ‘
0.7 0.88 (0.014) 0.81 (0.035) | 0.75 (0.04) | 0.82 (0.061)
0.8 0.95 (0.009) 0.87 (0.044) 0.9 (0.03) 0.93 (0.063)
0.9 0.99 (0.004) 1.0 (0.0) 1.0 (0.0) | 1.0 (0.034)
0.95 1.0 (0.001) 1.0 (0.0) 1(0.0) 1.0 (0.036)
0.99 0.98 (0.0045) 0.99 (0.005) | 0.98 (0.004) | 0.98 (0.034)
0.995 0.92 (0.013) 0.92 (0.013) | 0.92 (0.013) | 0.92 (0.014)
. T T
Rec(T?,T°) = w (5.12)

IC(T,)l

Reg(T?, T/’) is the fraction of splits in the model tree that are present in the estimated tree. Reg(T”, T/’) is
computed as

|S(T) N S(T)|
S(T)

where S(T) is the set of splits in the unrooted phylogenetic tree T that is constructed by suppressing the
root of simulated tree T,. A split is said to be a trivial split if the smallest side of the split contains one
labeled vertex. A singleton cluster is said to be a trivial cluster. Ref™™" and Re2°™™" are recall values that
have been computed using nontrivial clusters and nontrivial splits, respectively. Re%11 and Ref‘g“ are recall

values that have been computed using all clusters, and all splits, respectively.

Res(T,T) = (5.13)

5.4.2 Systematic error due to model misspecification

A Markov process is an information destroying process. The amount of sequence information that is lost is
proportional to edge length. A general trend in recall values is that each method has high recall values for
Pmin values that range from 0.9 to 0.99, and the recall values decrease as puyi, is lowered to 0.8, and 0.7, and
recall values decrease as pp;y, is increased to 0.995 (see Table 5.2). The relatively lower recall values for pyin,
of 0.7 and 0.8 are probably because of greater information loss over each edge. The reduction in recall value
as Pmin 1S increased to 0.995 is probably because there are some edges where no change takes place.

That said, MST-backbone(SEM-GM) outperformed competing methods at reconstructing the unrooted
topology for pmin values of 0.7 and 0.8. The relatively better performance of MST-backbone(SEM-GM) for
small values of pn, is probably because of large amount of change in base composition that takes place
across each edge. The high Rec of all methods for simulation scenarios where pp;, ranges from 0.9 to 0.99
seems odd at first glance given that the number of sequences that deviate in base composition ranges from
20% to 68%. The results suggest that edge length is a better predictor of reconstruction accuracy than the
total number of sequences that exhibit significant deviation in base composition.

MST-backbone(SEM-GM) + rSEM-GM has similar Rec values when compared with IQ-TREE except
for the marginally worse performance of MST-backbone(SEM-GM) + rSEM-GM at ppin of 0.95 (Rec of
0.94 vs 0.95), and the marginally better performance of MST-backbone(SEM-GM) + rSEM-GM at pyi, of
0.7 (Rec of 0.83 vs 0.81).
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Table 5.3: Accuracy (Ref™"") with which the rooted topology was recovered. Median and inter-quartile
range (shown in parentheses) of recall values are listed below, and were computed using 100 replicates.

’ Prmin \ average edge length \ MST-backbone(SEM-GM) + rSEM-GM \ IQ-TREE ‘

0.7 0.15 (0.064) 0.83 (0.033) 0.81 (0.042)
038 0.1 (0.043) 0.9 (0.045) 0.9 (0.046)
0.9 0.05 (0.022) 0.93 (0.038) 0.95 (0.035)
0.95 0.025 (0.012) 0.94 (0.037) 0.95 (0.038)
0.99 0.005 (0.004) 0.93 (0.035) 0.93 (0.035)
0.995 | 0.0025 (0.0014) 0.87 (0.044) 0.87 (0.034)

5.4.2.1 Scalability

We compare the worst-case time complexity and the CPU time of the algorithms implemented in MST-
backbone(SEM-GM) and rSEM-GM with the algorithms implemented by FastTree, RAXML-NG, and 1Q-
TREE. A comparison of CPU times is shown in Figure 5.2. The number of rate categories was set to one
because simulated sequences were generated using a common rate category across sites. All methods were run
using a single thread in order to facilitate a fair comparison with our method which has not been developed
for distributed computing.

MST-backbone(SEM-GM) computes Hamming distances in time O(n2k) where n is the number of input
sequences and k is the number of alignment columns. Maximum parsimony spanning trees (MSTs) of the
complete graph G = (V, F) over input sequences are computed using Prim’s algorithm, which as implemented
in the boost graph library (Siek et al., 2000), takes time O(|E|log|V]). The number of edges |E| is n(n—1)/2.
Thus the total time complexity of computing the initial MST is bounded from above by O(n?logn). The
time complexity of updating the MST is bounded from above by O(nlogn). The total time complexity of

computing the MST and updating the MST is O(n?logn) + O(L x nlogn)=0(n?logn), where ny;, is
.

the size of smallest local phylogenetic tree. The time complexity of each iteration of SEM-GM is dominated
by the time required to compute expected counts which is bounded from above by O(n?ak;) (Friedman
et al., 2002), where n; is the number leaves in the local phylogenetic tree, a is the size of the alphabet, and k;
is the number of distinct columns in the alignment comprising the sequences represented by the leaves in the

2 3
local phylogenetic tree. Thus the total time complexity of steps involving SEM-GM is O (n X nn;;xakl)
min
where ny.x is the size of the largest local phylogenetic tree. The cumulative time required to compute the
local phylogenetic trees grows linearly in the number of input sequences under the assumption that npy .y is
substantially smaller than the total number of sequences.

The total time complexity of MST-backbone(SEM-GM) is dominated by time O(max{n2k,n*logn}).
However, the CPU time that is taken by MST-backbone(SEM-GM) scales linearly with the number of input
sequences n (see Figure 5.2 B). This is because CPU time is dominated by the time required to perform
SEM-GM which involves computationally expensive floating-point arithmetic, whereas the computation of
Hamming distances, and the computation of MSTs involves relatively cheaper integer type based arithmetic.
The global unrooted phylogenetic tree T is rooted using restricted SEM-GM. The time complexity of each
iteration of restricted SEM-GM is bounded from above by the O(na?k) steps that are required to compute
expected counts via belief propagation on clique trees (Koller and Friedman, 2009), where n is the number of
leaves. The CPU time taken to root the global phylogenetic tree via restricted SEM-GM scales quadratically
in the number of leaves (see Figure 5.2 A). This may be because the number of iterations of restricted
SEM-GM that are required for the convergence of the log-likelihood score scales linearly with the number of
leaves.

FastTree employs a large list of heuristics in order to quickly perform tree search (Price et al., 2010).
The main heuristics employed by FastTree are (i) extensive use of tree length score instead of likelihood
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Figure 5.2: A comparison of CPU times used by MST-backbone(SEM-GM), RAXML-NG, and IQ-TREE
is shown in panel A. MST-backbone(SEM-GM) + rSEM-GM is the time taken to root the global unrooted
phylogenetic tree that is computed by MST-backbone(SEM-GM). Error bars represent inter-quartile range
computed using 20 replicates.

score, (i4) restriction of SPR moves to moves that can be performed in linear time, (4i7) optimization of edge
lengths via ML using Brent’s line search, an operation that takes as input the conditional likelihood vectors
of the vertices that are incident to the edge under consideration, i.e., Brent’s line search does not require a
tree traversal, (iv) optimizing the time-reversible rate matrix only once. The operation that optimizes rate
matrices necessarily involves tree traversal and computationally expensive floating-point arithmetic.

RAXML-NG and IQ-TREE are orders of magnitude slower than MST-backbone(SEM-GM) and FastTree
because they optimize edge lengths using Newton-Raphson, an operation that involves O(n) floating-point
arithmetic operations where n is the number of leaves in the global tree. Additionally, IQ-TREE and RAxML-
NG repeatedly optimize the rate matrix. That said, the CPU times used by RAXML-NG and IQ-TREE do
not increase exponentially because the SPR moves that are employed by these programs are restricted in
order to avoid evaluating the likelihood score for trees that are unlikely to improve the likelihood score. MST-
backbone(SEM-GM)+rSEM-GM is substantially faster than RAXML-NG and IQ-TREE. This is probably
because the log-likelihood score of the general Markov model convergences faster via EM in comparison to the
slower convergence of the log-likelihood score of CT-HMMSs which are optimized via numerical optimization
techniques such as Newton-Raphson and BFGS.

5.4.3 Subtree size threshold

MST-backbone(SEM-GM) is a threshold-based framework for constraining search through phylogenetic

tree space. We measured the effect of varying subtree size threshold on reconstruction accuracy using

simulated data with pyi, set to 0.99. We varied subtree size from 10 to 40 and measured Regf)Iltriv and

Rel™ Y, Median values of Re2™™ and Rel™ ™ were 0.98 and 0.93, respectively (see Table 5.4). There

was no significant change in either Re2>™"™ or Refy™™" across subtree size thresholds, suggesting that any
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Table 5.4: Comparison of recall values for MST-backbone(SEM-GM) at different subtree sizes. Sequences
were simulated by setting ppin to 0.99. Median and inter-quartile range (in parentheses) values are reported
below, and were computed using 100 replicates.

subtree size ‘ RegOntrlv ‘ RencOntrlv ‘
10 0.93 (0.0045) | 0.93 (0.035)
20 0.98 (0.0055) | 0.93 (0.038)
30 0.98 (0.005) | 0.93 (0.0383)
40 0.98 (0.006) 0.93 (0.041)

reasonable threshold can be selected when implementing MST-backbone.

5.5 Validation on empirical data

Two datasets were selected where GC content varied across species. The first data set comprised beetle
mitochondrial gene sequences exhibiting large variation in GC content (Sheffield et al., 2009). The second
data set comprised 16S ribosomal RNA (16S rRNA) sequences of bacteria, archaea, and eukaryotes (Hug
et al., 2016). Ribosomes are essential RNA-protein complexes that are used by all known forms of life to
synthesize proteins. We downloaded 1425 16S rRNA sequences from the supplementary material provided
by Hug et al. (2016).

The true evolutionary history of genes is not known in general. We selected two experimental phylogeny
data sets where gene sequences were evolved in vitro according to a specified phylogenetic tree (Sanson
et al., 2002; Randall et al., 2016). An experimental phylogeny setup performs in vitro simulation of sequence
evolution along the edges of a phylogenetic tree. Sequences are evolved in flasks using error-prone polymerase
chain reaction (PCR). Flasks can be treated as species in the context of experimental phylogenetic trees.
Evolutionary relationships are represented by a fully labeled phylogenetic tree over flasks. Sequences from an
ancestral flask are sampled subsequent to PCR runs, and sampled sequences are used to start PCR runs in
the flasks that descend immediately from the ancestral flask. We analyzed sequences from the experimental
phylogeny data sets that were generated by Sanson et al. (2002) and Randall et al. (2016). The sequences for
Randall et al. (2016) were obtained directly from the authors. The sequences for Sanson et al. (2002) were
downloaded using Genbank ids that were provided by the authors (Sanson et al., 2002). The experimental
phylogeny for Randall et al. (2016) comprised 19 leaves and 330 ancestors. The experimental phylogeny
for Sanson et al. (2002) comprised 16 leaves and 15 ancestors. In the following we use Randall2016 and
Sanson2002, respectively, to refer to sequences obtained from Randall et al. (2016) and Sanson et al. (2002).

Additionally, we selected two virus data sets (HIV and Influenza A H3N2) for which the collection times
of viruses are known. Rapidly evolving pathogens such as the Influenza virus facilitate the observation of
molecular evolution on a time scale of years. We downloaded all Influenza A H3N2 virus sequences from the
GISAID data base (Shu and McCauley, 2017) whose collection times ranged from 1968 to 2017. Subsequently,
we discarded all duplicate sequences, and created a smaller data set by sampling at random at most five
sequences per year of collection. The resulting data set comprised 156 sequences. The high mutation rate of
viruses such as HIV enables the reconstruction of transmission networks from phylogenetic trees (Ratmann
et al., 2019). We validated MST-backbone(SEM-GM) using 181 HIV env gene sequences that were sampled
from 11 individuals that were involved in a partially known transmission network (see Figure 5.6 A). The
direction of transmission involving individuals A and B is not known. The HIV sequences were made available
by Vrancken et al. (2014) on the HIV Los Alamos National Laboratory database (HIVLANL).

We performed multiple sequence alignment using MAFFTv7.3.3 (Katoh et al., 2002; Katoh and Stand-
ley, 2013) and removed all alignment columns that contained gaps or ambiguous characters because MST-
backbone(SEM-GM) is a prototype method that is not designed to handle gaps or ambiguous characters.
The size of the alignment constructed using MAFFT and the size of the trimmed alignment is shown in Table
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Table 5.5: Results of chi-square test, and alignment size

Gene type p < 0.05 (%) | Original alignment (bp) | Trimmed alignment (bp)
16S rRNA 19.3 1947 971
mt ATP6 33.33 750 652
mt ATPS8 83.33 218 128
mt COX1 11.11 1549 1530
mt COX2 44.44 689 659
mt COX3 44.44 792 712
mt CYTB 11.11 1156 1085
mt ND1 50.0 988 902
mt ND2 5.56 1099 890
mt ND3 50.0 361 337
mt ND4 16.67 1391 1249
mt ND4L 77.78 306 234
mt ND5 16.67 1773 1649
mt ND6 38.89 561 308
ExpPhylo Randall2016 0 678 678
ExpPhylo Sanson2002 0 2236 2214
H3N2 0 1701 1701
HIV 0 2873 1357

5.5. We used trimmed alignment to quantify the extent to which empirical data violated the stationarity
assumption using a chi-square test with a p-value cutoff of 0.05 (see Table 5.5).

5.5.1 Test for violation of stationarity assumption

19.3% of 16S rRNA sequences showed significant deviation in base composition. All of the mitochondrial
genes exhibited large variation in base composition. More than 70% of two mitochondrial gene sequences,
ATP8 and ND4L, had significantly different base composition in comparison to the average base composition.
None of the experimental phylogeny data sets, and none of the virus data sets exhibited any significant
variation in base composition. We performed model selection to select simpler non-reversible models for
each data set because the general Markov model has a large number of free parameters. The results of model
selection are shown in the following Subsection.

5.5.2 Results of model selection

The experimental phylogeny data sets comprise leaf sequences and ancestral sequences. We wanted to
compare the effect of including ancestral sequences in the experimental phylogeny data sets on reconstruction
accuracy. We constructed two alignments for each experimental phylogeny data set, one containing leaf
sequences and ancestral sequences, and one containing only leaf sequences.

Our model selection framework selected one UNREST (UNR) matrix for all gene alignments except for
three mitochondrial genes, COX1, CYTB and ND1 where two UNR matrices were selected. Additionally,
we performed model selection using IQ-TREE because IQ-TREE implements the largest number of time-
reversible and non-reversible Markov models. The results of model selection are presented in Table 5.6. The
Lie Markov models that are implemented in IQ-TREE are stationary and homogeneous. The stationary
and homogeneous version of model 12.12 is the UNREST model. We refer to model 12.12 as UNR in the
following text. IQ-TREE reports the results of model selection using AIC, AIC corrected for small sample
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Table 5.6: Models selected by us and by IQ-TREE. The Lie Markov models that are implemented in 1Q-
TREE are stationary and homogeneous. The stationary and homogeneous version of 12.12 is UNREST.
Models shown in bold are time-reversible.

Number of UNREST Model selected using IQ-TREE
Data type .
matrices selected
using BIC
AIC AlCc BIC
16S rRNA 1 1212 R, 12121 R; 12.12 Rg
ATP6 1 RY8.18+1+TI"y RY8.18+1+1'y RY8.18+1+1'y
ATPS 1 WS8.18+1+4Ty4 WS8.18+1+T1y WS8.18+1+T1y
COX1 2 MK10.34+Rs MK10.34+Rs RY8.18+R3
COX2 1 12.12 Ry 12121 R3 GTR F1R;
COX3 1 12.12+1+Ty 12.12+1+Ty WS10.34+1+4+ T4
CYTB 2 12.12+1+1y 12.12+1+Ty 12.12+Ty
ND1 2 RY10.12+R3 RY10.12+ R3 RY8.18+1+TI'y
ND2 1 12.12+1+1y 12.12+1+Ty 12.12+1+Ty
ND3 1 MK10.34+Ty4 MK10.34+4T4 TIM+F+T'y
ND4 1 MK10.34+1+Ty | MK10.34+1+Ty4 RY8.18+1+1'y
ND4L 1 MK10.34+ R3 TVM+F+Rs | K3Pu+t+F-+I+1y
ND5 1 RY10.124+14+Ty | RY10.12414Ty | RY8.10a+I+Ty
ND6 1 MK10.34+T4 MK10.34+T4 RY8.18+Ty
Sanson2002All 1 WS6.6+T"y WS6.6+T, TVMe+Ty
Sanson2002Leaf 1 TVMe TVMe TVMe
Randall2016All 1 12.12+1+1y JC TVMe+Ty
Randall2016Leaf 1 12.12+ Ry 12.12+ Ry WS10.12+4+7+Ty4
H3N2 1 12.12+ R, 12.12+Ty RY8.17+Ty
HIV 1 TVM-+F+Ry TVM+F+Ry TVM-+F+Ry
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size (AICc), and BIC. AIC and BIC are defined in equation 2.8 and equation 2.9, respectively. AICc is
computed as

2m? +2m

k—m-—1

where m is the number of free parameters, and k is the sample size which is equal to the number of alignment
columns for phylogeny inference.

Non-reversible models were selected by IQ-TREE for all but two empirical datasets on the basis of AIC.
The symbols I,I';and R in the mixture models that are selected by IQ-TREE account for heterogeneity of
substitution rate across sites (see Subsection 2.4.3). The symbol F indicates that the stationary distribution
is set to the sample estimate of the base composition of the sequence alignment. The time reversible models
that were selected by IQ-TREE are (7) the GTR model, (i7) the transition model (TIM; Posada et al. (2003)),
(791) the Jukes-Cantor model (JC, Jukes and Cantor (1969)), (iv) the transversion model (TVM; Posada
et al. (2003)), and (v) the transversion model with equal base frequency (TVMe). The rate matrix of the
transition model allows a different rate for each transition and a two rates for transversions.

We wanted to compare the trees constructed by MST-backbone(SEM-GM) and subsequently rooted by
UNR — hereafter called MST-backbone(SEM-GM) + UNR — , with rooted trees inferred using IQ-TREE.
We inferred rooted trees using IQ-TREE via the non-reversible models that were selected on the basis of
AIC. There were two datasets, Sanson2002 leaf and HIV, where IQ-TREE selected time-reversible models.
We inferred rooted trees for Sanson2002 leaf and HIV using IQ-TREE via the UNREST model allowing for
two free rate categories, i.e., UNR +Ry. We chose two rate categories because the genes included in HIV
and Sanson2002 leaf are protein-coding genes; nucleotides in the third codon position evolve faster than the
nucleotides in the first codon position and the second codon position due to degeneracy in the genetic code
at the third codon position (Bofkin and Goldman, 2006).

We compared the CPU times used by MST-backbone(SEM-GM) and IQ-TREE to infer phylogenies.
Additionally we compared the CPU times used by UNRmodelSelector and IQ-TREE to perform model
selection (see Table 5.7). The most notable difference is the time required for IQ-TREE to perform model
selection in comparison to the the time required for UNRmodelSelector to select an optimal number of rate
matrices on the basis of the BIC score. IQ-TREE took less than a second to perform model selection whereas
UNRmodelSelector took around 25 days for the largest dataset (Randall2016 all) comprising 349 sequences,
for a single bootstrap replicate. The reason for the drastic time difference is because IQ-TREE employs a
fast EM method to perform model selection (Kalyaanamoorthy et al., 2017), whereas UNRmodelSelector
optimizes branch lengths and rate matrices by optimizing the log-likelihood score instead of the expected
log-likelihood score. Our initial attempt to optimize rate matrices and branch lengths using EM met with
issues involving lack of convergence of the log-likelihood score. MST-backbone (SEM-GM) inferred unrooted
phylogenies 12 times faster (on average) than IQ-TREE took to infer a rooted phylogeny under the model
selected selected by 1Q-TREE.

AICc = AIC +

5.5.2.1 Beetle mitochondrial genomes

Jermiin et al. (2004) used simulated data to establish that phylogeny inference under stationary models
of gene evolution may lead to systematic error, a result that is in agreement with our simulation based
comparative analysis. It is difficult to make decisive statements regarding systematic error using empirical
data, except in the case of experimental phylogenies, because the true evolutionary history of species has not
been observed and is inferred via comparative analysis. Sheffield et al. (2009) used evolutionary relationships
among beetles that were established on the basis of morphological similarity in order to check for systematic
error in phylogenies inferred using beetle mitochondrial genes that exhibited large variation in GC content.
The established relationships among the beetles include (i) the monophyly of six species in the infraorder
Cucugiformia, (ii) the monophyly of four species in the superfamily Elateroidea, and (iii) sister relationship
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Table 5.7:

A comparison of CPU times used by MST-backbone(SEM-GM), UNRmodelSelector, and 1Q-

TREE. MSTB(SEM-GM) is short for MST-backbone (SEM-GM). UNR ms is short for UNRmodelSelector.
The columns indexed by IQ-TREE inf and IQTREE ms are populated with the times used to infer a rooted
phylogeny and perform model selection, respectively. The times shown below are the average times taken
for one bootstrap alignment.

Data set aln cols (distinct) | leaves | MSTB(SEM-GM) | UNR ms IQ-TREE inf | IQ-TREE ms
16S rRNA 971 (739) 100 Oh:2m:17s 4d:22h:11m:46s | 0h:4m:9s Oh:0m:9s
mt ATP8 128 (99) 18 Oh:0m:1s 1h:07m:51s Oh:9m:0.1s Oh:0m:0.1s
mt ND4L 234 (186) 18 Oh:0m:1s 3h:30m:15s Oh:0m: 8s Oh:0m:0.01s
mt ND6 308 (249) 18 Oh:0m:3s Oh:26m:01s Oh:0m:8s Oh:0m:0.03s
mt ND3 337 (243) 18 Oh:0m:2s 1h:12m:00s Oh:0m:11s Oh:0m:0.04s
mt ATP6 652 (426) 18 Oh:0m:3s 1h:25m:05s Oh:0m:41s Oh:0m:15s
mt COX2 659 (405) 18 Oh:0m:3s 2h:54m:37s Oh:0m:17s Oh:0m:3s
mt COX3 712 (417) 18 Oh:0m:4s 7h:43m:32s Oh:0m:33s Oh:0m:23s
mt ND2 890 (674) 18 Oh:0m:6s 2h:05m:26s Oh:0m:29s Oh:0m:3s
mt ND1 902 (557) 18 Oh:0m:3s 3h:24m:23s Oh:0m:18s Oh:0m:4s
mt CYTB 1085 (646) 18 Oh:0m:8s 10h:08m:09s 0h:0m:19s 0h:0m:33s
mt ND4 1249 (832) 18 Oh:0m:7s 7h:27m:16s Oh:0m:17s Oh:0m:35s
mt COX1 1530 (759) 18 Oh:0m:8s 11h:25m:47s Oh:0m:15s Oh:0m:14s
mt ND5 1649 (1086) 18 Oh:0m:6s 9h:19m:10s Oh:0m:19s Oh:0m:5s
Randall2016 all | 678 (341) 349 Oh:0m:4s 25d:5h:39m:44s | Oh:5m:5s Oh:0m:0.1s
Randall2016 leaf | 678 (293) 19 Oh:0m:2s Oh:51m:27s 0h:0m:5s Oh:0m:0.01s
Sanson2002 all 2214 (98) 31 Oh:0m:1s Oh:38m:05s Oh:0m:2s Oh:0m:0.01s
Sanson2002 leaf | 2214 (96) 16 Oh:0m:1s Oh:06m:11s 0h:0m:2s 0h:0m:0.01s
H3N2 1701 (588) 156 Oh:0m:14s 4d:19h:39m:32s | Oh:5m:51s Oh:0m:0.3s
HIV 1357 (488) 181 Oh:0m:52s 9d:6h:29m:44s | O0h:10m:36s Oh:0m:2s
¢ Elateroidea (Polyphaga)
# Cucujiformia (Polyphaga) 4‘:2
¢ Misc. Polyphaga | N
o Tetraphalerus bruchi | o
e Qutgroup
—e
L
L
 —
 —
e
)
Figure 5.3:  The established phylogenetic tree of the beetles that were analyzed in this study. Edge

lengths are set to a common value for better illustrating evolutionary relationships, and are not biologically

meaningful.
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Table 5.8: Number (and name) of established evolutionary relationships that are compatible with inferred
gene trees.

Data set | rSEM-GM UNRmodelSelector | IQ-TREE

ATP6 0/3 0/3 0/3

ATPS 0/3 0/3 0/3

COX1 0/3 0/3 0/3

COX2 1/3 (Cucugiformia) | 1/3 (Cucugiformia) | 1/3 (Cucugiformia)
COX3 0/3 0/3 0/3

CYTB | 0/3 0/3 0/3

ND1 0/3 0/3 1/3 (Cucugiformia)
ND2 0/3 0/3 1/3 (Elateroidea)
ND3 0/3 0/3 0/3

ND4 0/3 0/3 0/3

ND4L 0/3 0/3 0/3

ND5 0/3 0/3 1/3 (Cucugiformia)
ND6 0/3 0/3 0/3

between the suborders Polyphaga and Archostemata constituting, 12 species and 1 species, respectively, (see
Figure 5.3).

Sheffield et al. (2009) constructed a concatenated alignment of 13 mitochondrial genes and inferred phy-
logenetic trees using a software that performs Bayesian inference via MCMC sampling using time-reversible
models (MrBayes v3 Ronquist and Huelsenbeck (2003) and PhyloBayes (Blanquart and Lartillot, 2006), ),
and four software that perform Bayesian inference via MCMC sampling using nonstationary Markov mod-
els: p4 (Foster, 2004), PHASE (Gowri-Shankar and Rattray, 2007), and nhPhyML (Guindon et al., 2010).
Sheffield et al. (2009) found that the consensus tree inferred by MrBayes and PhyloBayes violated all es-
tablished evolutionary relationships among beetles. The consensus trees inferred by p4 and PHASE were
in agreement with all established relationships. Trees inferred by nhPhyML agreed with the established
relationships varied depending on the input tree. The authors used the tree inferred by p4, and the tree
inferred by neighbor joining using LogDet distances as input trees. The bootstrap consensus tree that was
inferred by nhPhyML using the tree inferred by p4 as the starting tree (nhPhyML-p4) was compatible with
all established relationships. However, the consensus tree inferred by nhPhyML using a neighbor-joining tree
computed using LogDet distances as the starting tree (nhPhyML-NJLogDet) was not compatible with any
established relationship.

Genes have individual evolutionary histories that are not necessarily identical. Additionally, individual
genes may evolve at different rates. The conflicting results of PhyloBayes, p4 and phase may have resulted
due to use of a concatenated alignment. We inferred a separate tree for each mitochondrial gene. We inferred
phylogenetic trees using MST-backbone(SEM-GM)+rSEM-GM, MST-backbone(SEM-GM)+UNR. The re-
sults on simulated data suggest that the number of sequences that violate the assumption of homogeneity
in base composition are not a reliable indicator of systematic error. Consequently the rooted trees inferred
using IQ-TREE might be accurate estimators of mitochondrial gene relationships even though there is sub-
stantial variation of GC content among gene sequences. We used IQ-TREE to infer a rooted tree for each
mitochondrial gene using the non-reversible mixture model that was selected via AIC (see Table 5.6).

Four out of thirteen gene trees that were inferred using IQ-TREE were compatible with one out of three
established relationships each. One out of thirteen gene trees that were inferred by us was compatible
with one out of three established relationships. The gene trees that were inferred by IQ-TREE for COX2,
ND1, and ND5 were compatible with the monophyly of Cucujiformia, and the gene tree that was inferred
by IQ-TREE for ND2 was compatible with the monophyly of Elateroidea. The gene tree for COX2 that
was inferred by MST-backbone(SEM-GM) and rooted using rSEM-GM was compatible with the monophyly
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Figure 5.4: Phylogenetic trees of 16S rRNA gene that were (i) inferred using MST-backbone(SEM-GM) and
rooted using restricted SEM-GM (panel A), (i%) inferred using MST-backbone(SEM-GM) and rooted using
a single UNR matrix (panel B), (ii¢) inferred using IQ-TREE under the model UNR +R7 (panel C).

of Cucujiformia. The gene tree for COX2 that was rooted under the CT-HMM that was selected using
UNRmodelSelector was compatible with the monophyly of Cucujiformia. None of the gene trees that were
inferred by us and none of the gene trees that were inferred using IQ-TREE were compatible with all
established relationships. The poor empirical support for IQ-TREE may be because IQ-TREE performs tree
search under stationary models. Sheffield et al. (2009) found that Mr. Bayes and PhyloBayes, software that
perform Bayesian inference under stationary models, were also unable to reconstruct trees that supported
all established relationships. The poor performance of MST-backbone(SEM-GM) could be because of lack
of extensive search through tree space.

5.5.2.2 16S RNA

There are three domains of life: the prokaryotic domains — archaebacteria (archaea) and eubacteria (bacte-
ria) — and the eukaryota (Woese et al., 1990). We used the three domain classification to validate phyloge-
netic trees inferred using MST-backbone(SEM-GM), and IQ-TREE. The bootstrap support for three domain
classification was greater than 95% for the unrooted trees inferred by MST-backbone (SEM-GM) and 1Q-
TREE (see Figure 5.5). All consensus trees discussed hereafter have been constructed using sumtrees.py
v4.4.0 (Sukumaran and Holder, 2015, 2010) by collapsing all edges with bootstrap support smaller than
70%. The phylogenetic tree that was inferred by MST-backbone(SEM-GM) + rSEM-GM was rooted among
bacteria. We rooted the tree that was inferred using MST-backbone(SEM-GM) using a single UNR matrix
which was the model that was selected by UNRmodelSelector. The rooted phylogenetic tree that was in-
ferred using MST-backbone(SEM-GM) + UNR was placed at a bacterium. Subsequently, we checked the
placement of the root as inferred by IQ-TREE under the UNR+ R; model that was selected by IQ-TREE
using AIC. The phylogenetic tree that was inferred by IQ-TREE was rooted among archaea. It is generally
accepted that the two prokaryotic domains, bacteria and archaea, have evolved independently from a com-
mon ancestral cell and thus the root should be ancestral to the lca of bacteria, and the lca of archaea and
eukaryota (Lake et al., 2009). It may be possible that horizontal gene transfer of the ribosomal RNA gene
makes it difficult to obtain a realistic location of the root.
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Figure 5.5: Bootstrap consensus phylogenetic trees of 16S rRNA genes inferred using MST-backbone(SEM-
GM) and rooted under a single UNR matrix (panel A), and the bootstrap consensus phylogenetic tree
inferred using IQ-TREE under the UNR + R; model (panel B). All edges with bootstrap support less than
70% are contracted.

5.5.2.3 Experimental phylogeny

Experimental phylogenies are ideal hypotheses for falsifying inferred evolutionary relationships because
true evolutionary relationships are part of experimental design. We measured reconstruction accuracy of
phylogenetic trees that were inferred using all sequences using recall computed with all splits, i.e., Refg”, and
recall computed with all clusters, i.e., Regl. The reconstruction accuracy of phylogenetic trees that were

inferred using leaf sequences was measured using recall computed using all non-trivial splits, i.e., Reg™"",

and recall computed using all non-trivial clusters, i.e., Re‘é?“triv. We measured recall values for the complete
alignment and bootstrapped alignments.

MST-backbone(SEM-GM) recovered almost all the splits in the experimental phylogeny if all sequences
were used (Re‘fqn values of 0.99 and 1.0, for Randall2016 and Sanson2002, respectively, see Table 5.9), with a
reduction in accuracy if only leaf sequences were used (Re2™™" values of 0.86 and 1.0, for Randall2016 and
Sanson2002, respectively). IQ-TREE recovered splits with Re%ll values of 0.98 and 1.0 for Randall2016All and
Sanson2002Al1l, respectively., with a reduction in accuracy if only leaf sequences were used (Rers‘Ontriv values
of 0.94 and 1.0, for Randall2016 and Sanson2002, respectively). IQ-TREE recovered splits with significantly
lower recall values (p < 0.01) than MST-backbone(SEM-GM) for Randall2016All and Sanson2002Leaf,
where significance was calculated using recall values for bootstrap data sets. IQ-TREE recovered splits with
significantly higher recall values for Randall2016Leaf (p < 0.01).

Phylogenetic trees that were inferred by MST-backbone(SEM-GM)-+rSEM-GM recovered clusters with
high Reg1 values of 0.94 and 0.93, for Randall2016 and Sanson2002, respectively, and relatively lower Reg?“triv
values of 0.82 and 0.79, for Randall2016 and Sanson2002, respectively. It appears that it is possible to infer
rooted phylogenetic trees under the general Markov model. We wanted to check if recall values would
change substantially if we rooted trees under simpler CT-HMM. Phylogenetic trees were inferred using
MST-backbone(SEM-GM)-+UNR. Additionally, phylogenetic trees were inferred under the non-reversible
model that was selected by IQ-TREE using AIC. IQ-TREE selected a time-reversible model (TVMe) for
the Sanson2002Leaf data set. We inferred rooted trees using IQ-TREE for Sanson200Leaf under the model
UNR+Rs.
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Table 5.9: Recall for experimental phylogeny data sets for complete alignment with recall at the 25"
percentile and the 75" percentile for bootstrap alignments shown in parentheses. MSTB(SEM-GM) is short
for MST-backbone(SEM-GM). Phylogenetic trees were inferred using IQ-TREE using the model selected via
AIC, except for Sanson2002Leaf where the model UNR+ Ry was used.

Data set MSTB(SEM-GM) | rSEM-GM UNR IQ-TREE

Splits Clusters Clusters Splits Clusters

Randall2016Al11 0.99 (0.82-0.85) 0.94 (0.76-0.79) | 0.96 (0.76-0.81) | 0.98 (0.82-0.84) | 0.96 (0.76-0.88)

)
Randall2016Leaf | 0.86 (0.75-0.87) | 0.82 (0.59-0.76) | 0.76 (0.59-0.71) | 0.94 (0.81-0.94) | 0.88 (0.76-0.88)
Sanson2002A1 | 1.0 (0.97-1.0) 0.93 (0.87-0.93) | 0.9 (0.87-0.9) | 1.0 (0.97-1.0) | 0.9 (0.87-0.9)
Sanson2002Leaf | 1.0 (1.0-1.0) 0.79 (0.79-0.79) | 0.79 (0.79-0.79) | 1.0 (0.92-1.0) | 0.79 (0.71-0.79)

IQ-TREE recovered clusters with higher Rezé“ and Re'&omrivvalues on bootstrapped data sets when com-
pared with rooting via rSEM-GM and rooting under UNR for Randall2016. and relatively lower Reg™"" val-
ues of 0.82 and 0.79, for Randall2016 and Sanson2002, respectively. All methods for constructing rooted trees
had similar recall values on bootstrapped alignments for the Sanson2002 dataset, although Reég1 for MST-
backbone(SEM-GM) +rSEMGM was 0.93 compared to Re2! values of 0.9 and 0.9 for MST-backbone(SEM-
GM)+UNR, and rooting using IQ-TREE. Recall values are lower for bootstrap alignments compared to the
original alignment because there are fewer distinct site patterns that contain information for rooting trees.

5.5.2.4 HIV transmission network

HIV spreads through inter-personal contact making it possible to use transmission history to falsify inferred
evolutionary relationships. A rooted pathogen phylogenetic tree is said to be compatible with a transmis-
sion event if pathogens from the recipient have descended from pathogens of the transmitter. We inferred
phylogenetic trees using 181 HIV env gene sequences that were sampled from 11 individuals that were part
of a transmission network (see Figure 5.6).

The phylogenetic tree for HIV that was inferred by MST-backbone(SEM-GM)+rSEM-GM was not rooted
realistically because it was rooted at a sequence from individual C' which is not compatible with the transmis-
sion from B to C (see Figure 5.6). We rooted the tree that was inferred using MST-backbone(SEM-GM) with
a single UNR matrix, and found that the tree was compatible with nine out of ten transmission events (see
Figure 5.6 A). The transmission event B—1 was not compatible with the phylogenetic tree. We performed
model selection using IQ-TREE and found that IQ-TREE selected the time-reversible model TVM+F-+Ry.
We inferred phylogenetic trees using IQ-TREE with the UNR +Rs model because we wanted to check if
rooted trees inferred by IQ-TREE with the UNR + R model were compatible with transmission history.
The rooted tree that was inferred by IQ-TREE was compatible with all transmission events (see Figure
5.6 B). A reason why the phylogenetic tree that was inferred by MST-backbone(SEM-GM) and rooted
with a single UNR matrix was not compatible with the transmission B—1I could be because the initial tree
for SEM-GM, which is the neighbor-joining tree, is suboptimal, and that SEM-GM gets stuck in a local
optima. The HIV tree that was inferred using FJ-BIC, which is a modification of neighbor-joining, was
not compatible with B—1I (see Figure 3.4 in Chapter 3 ). The consensus tree for MST-backbone(SEM-
GM)+UNR and IQ-TREE had poor bootstrap support. Out of a total of 179 clusters, only 48 clusters for
MST-backbone(SEM-GM)+UNR were supported, and only 44 clusters for IQ-TREE were supported (see
Figure 5.8).
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Figure 5.6: Panel A: The known HIV transmission network of 11 individuals. The direction of transmission
is known for all transmission events except for the transmission between patients A and B. Panel B: A
phylogenetic tree inferred via MST-backbone(SEM-GM)+rSEM-GM.
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Figure 5.7: Rooted HIV phylogenetic trees labeled with transmission edges. Panel A shows trees inferred
using MST-backbone(SEM-GM)+UNR. Panel B shows trees inferred using IQ-TREE. The transmission
B — I is not compatible with the tree inferred using MST-backbone(SEM-GM)+UNR.
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Figure 5.8: Bootstrap consensus trees for HIV as inferred by MST-backbone(SEM-GM)+UNR, (panel A),
and IQ-TREE with the model UNR + Ry (panel B).

5.5.2.5 Influenza A H3N2

Under the assumption of a strict molecular clock, the number of character changes that accumulate in a
sequence are proportional to the collection time of the sequence. The Influenza A H3N2 virus exhibits a
strict molecular-clock-like evolution (Gojobori et al., 1990). We validated inferred phylogenetic trees by
measuring the Pearson’s correlation coefficient of collection times with weighted root-to-leaf path lengths in
inferred phylogenetic trees.

The phylogenetic tree that was inferred under the GM model had a Pearson’s correlation coefficient of -
0.92 indicating that the location of the root was not realistic (see Figure 5.9A). We performed model selection
as described in Section 5.3 in order to select the optimal number of distinct rate matrices. The UNR model
was selected as the optimal model. Collection times were highly correlated with root-to-leaf path lengths in
the phylogenetic tree that inferred with MST-backbone(SEM-GM)-+UNR model with a Pearson’s correlation
coefficient of 0.99 suggesting that the inferred phylogenetic tree accurately represents the evolutionary history
of the Influenza A H3N2 virus (see Figure 5.9B). The phylogenetic tree inferred using IQ-TREE: UNR +
Ry seemed realistic because collection times were correlated with root-to-leaf path lengths with Pearson’s
correlation coefficient of 0.99. Collection times were highly correlated with root-to-leaf path lengths in the
consensus phylogenetic tree for MST-backbone(SEM-GM)+UNR (Pearson’s p of 0.99) and IQ-TREE: UNR
+ Ry (Pearson’s p of 0.99) (see Figure 5.10).
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Figure 5.9: Phylogenetic trees for Influenza H3N2 as inferred by MST-backbone(SEM-GM)+rSEM-GM
(panel A), MST-backbone(SEM-GM)+UNR (panel B), and IQTREE:UNR+ Ry (panel C). The leaves of
each phylogenetic tree have been colored according to year of sampling.
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Figure 5.10: Bootstrap consensus trees for H3N2 as inferred using MST-backbone(SEM-GM)+UNR (panel
A), and IQ-TREE with UNR+ Ry (panel B). The leaves of each phylogenetic tree have been colored according
to year of sampling.
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5.6 Summary and Outlook

Time-reversible hidden Markov models such as the GTR model are widely used for inferring phylogenetic
trees. The GTR model is widely used because homogeneous Markov models enable fast search through tree
space by allowing the reuse of conditional likelihood vectors of roots of subtrees that are not changed due to
tree modification operations. The GTR model makes restrictive assumptions about the nature of sequence
evolution such as stationarity of base composition. Comparison of GC content across species has established
that base composition have evolved over the course of evolution. Phylogenetic tree inference under more
realistic non-stationary non-homogenous Markov models is limited to small number of species due to the
computational burden of optimizing the parameters of non-stationary non-homogeneous Markov models.

Inspired by the topological correspondence between MSTs and phylogenetic trees, we designed a threshold-
based framework for inferring phylogenetic trees called MST-backbone. We developed a method called
SEM-GM for performing tree search under the GM model.

MST-backbone(SEM-GM) demonstrated higher recall in comparison to RAXML-NG and IQTREE for
simulated data that were evolved under non-stationary non-homogeneous Markov models with average edge
length greater than 0.1 substitutions per site. The recall values for MST-backbone(SEM-GM) did not
significantly vary with threshold suggesting that MST-backbone(SEM-GM) is effectively threshold-free (see
Table 5.4). The CPU time taken to infer a global unrooted phylogenetic tree via MST-backbone(SEM-GM)
and FastTree increased linearly with number of leaves whereas the CPU time for MST-backbone(SEM-
GM)+rSEM-GM, RAXML-NG and IQTREE increased quadratically with number of leaves.

Empirical phylogenetic trees rooted under the GM model were realistic for experimental phylogeny data
sets. The topology of the unrooted phylogenetic tree was realistic for all data sets except the beetle mi-
tochondrial data set by Sheffield et al. (2009). The location of the root was not realistic for the Influenza
trees and the HIV trees that were inferred under the GM model. Realistic rooted trees were inferred for
the Influenza data set and the HIV data set if trees were rooted under the UNR model (either using MST-
backbone(SEM-GM)+UNR, or IQTREE) suggesting that the GM model may be over-parameterized for
empirical data sets that contain sequences with limited variation in GC content.

Sheffield et al. (2009) reported that phylogenetic trees inferred under non-stationary non-homogeneous
HMM recovered established evolutionary relationships whereas phylogenetic trees inferred under the GTR
model did not. The phylogenetic trees inferred by MST-backbone(SEM-GM) did not support the established
relationships. Although it is possible that the lack of empirical support for the trees inferred by MST-
backbone(SEM-GM) is because the GM model is over parameterized, note that the consensus phylogenetic
tree inferred by PhyloBayes under a non-stationary non-homogeneous Markov model did not recover any of
the established evolutionary relationships.
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Chapter 6

Conclusions

Phylogenetic trees are essential for better understanding the molecular basis of phenotypes via compara-
tive analysis. In practice, phylogenetic trees are inferred by solving a combinatorial optimization involving
searching through tree space, and parameter optimization. A commonly used strategy for finding optimal
phylogenetic trees is to search through the set of phylogenetic trees via tree modification operations (Sta-
matakis, 2014). Parameter optimization involves CPU-intensive operations that optimize the parameters of
the hidden Markov model (HMM) that is used to model sequence evolution. Homogeneous Markov mod-
els such as the general time-reversible model (GTR) are widely used in order to reduce the computational
burden of parameter optimization.

The GTR model assumes that base composition (including GC content) remains constant throughout
evolutionary history. The widespread variation of GC content across species indicates that the stationarity
assumption of the GTR model is violated in practice. Complex Markov models such as the general Markov
model (GM) by Barry and Hartigan (1987) allow GC content to vary across species, and may be more realistic
than the GTR model. Additionally the GM model allows inferring rooted phylogenetic trees, whereas the
trees inferred by the GTR model are unrooted.

We implemented a method called SEM-GM for performing tree search under the GM model. SEM-
GM adapts the structural expectation maximization framework by Friedman (1997) to the GM model. We
implemented a minimum spanning tree framework called MST-backbone in order to improve the scalability
of SEM-GM. We validated our method extensively using multiple empirical data sets. We found that the
experimental phylogenetic trees were accurately reconstructed via MST-backbone(SEM-GM)-+rSEM-GM.
The rooted topology of the trees rooted under the GM model seemed to be incorrect for the pathogen datasets.
We found that the pathogen trees that were rooted under the UNR model were realistic, however the location
of the root was not robust across bootstrap replicates for the HIV. The unrooted ribosomal phylogenetic tree
supported the expected monophyly of bacteria, archaea, and eukaryotes. Sheffield et al. (2009) report that the
phylogenetic trees of beetle mitochondrial that were inferred under the GTR model were incorrect whereas
phylogenetic trees inferred under non-stationary Markov models were correct w.r.t. independently established
evolutionary relationships. The phylogenetic trees that were inferred by MST-backbone(SEM-GM) did not
support any established evolutionary relationship. Note that the beetle mitochondrial phylogenetic trees
that inferred by PhyloBayes, a method that searches for optimal phylogenetic trees under non-stationary
Markov models, also did not support any established evolutionary relationship (Sheffield et al., 2009).

The design of MST-backbone was inspired by the topological relationship between minimum spanning
trees (MST) and phylogenetic trees proposed by Choi et al. (2011). Choi et al. claimed that given distances
that are additive in a phylogenetic tree, an MST that is constructed using the tree-distances shares a
topological relationship with the phylogenetic tree. In Kalaghatgi and Lengauer (2017) we showed that
MSTs constructed using tree-distances do not necessarily share the topological relationship introduced by
Choi et al. We introduced so-called vertex order based MSTs (VMSTs) that are guaranteed to share a
topological relationship with phylogenetic trees. We related the number of leaves in a minimum spanning
tree to the number of non-trivial splits of a phylogenetic tree, showing the a VMST with the fewest number
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of leaves contained the maximum amount of non-trivial split information about a phylogenetic tree.

Rapidly evolving pathogens such as Influenza and HIV enable the study of molecular evolution over short
time scales. Pathogens collected at multiple time points from infected individuals may contain ancestor-
descendant pairs. The standard model of evolutionary relationships is a leaf-labeled phylogenetic tree that
does not allow species to be placed at ancestral vertices. In Kalaghatgi et al. (2016a) we developed a method
called family-joining (FJ) for modeling ancestor-descendant relationships using generally labeled trees. FJ
constructs generally labeled trees by contracting short edges using a threshold that is selected using BIC.
FJ was validated using HIV sequences sampled from individuals that were part of a common transmission
network. The HIV tree that was inferred by FJ was rooted under a strict molecular clock. The rooted HIV
tree was compatible with nine out of ten transmission events.

In conclusion we state that minimum spanning trees enable large scale inference of phylogenetic trees
under non-stationary Markov models such as the general Markov model. The unrooted topology can be
recovered using MST-backone(SEM-GM) but it may be necessary to perform model selection under simpler
non-reversible CT-HMM in order to recover a realistic location of the root. The GTR model need not be
used for the sake of computational ease.
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Appendix A

Supplementary material for Chapter 3

A.1 OLS estimate of edge length for generally labeled trees

In what follows we show that the edge length formula, equation A.1 that was derived by Bryant (1997) for
leaf-labeled trees is also applicable for generally labeled trees. We follow the terminology that was defined
in Chapter 3.

A.1.1 Internal edges

Consider the internal edge ey = {a, 8} shown in Figure A.1 such that edges ey,...e; are incident to a but
are not incident to 3, and edges exy1 ... e, are incident to 8 but are not incident to a. Let £,|Lg be the
split that is induced by {«, 8} such that L, is closer to « in comparison to 5. Let n, be the cardinality of
L, and let ng be the cardinality of Lg.

For each edge e;, define Wy = A, yeB,; Pzy Where A; and B; are the sides of the split defined by edge
e;. The notation p,, is used instead of p¥(x,y) to denote the weighted path length of the path from = to y
where edge lengths are determined by OLS. It turns out that W; = 67 d°.

For each edge e; such that 1 < i < k, let C; be the side of the split induced by e; that is closer to « in
comparison to 8. For each edge e; such that k+1 < i < m, let C; be the side of the split induced by e; that
is closer to 8 in comparison to a. Let n; be the cardinality of C;. Define

Yy, — ercipawa if1<i<k
i ZajeCip’&w ifk4+1<i<m

If both a and 8 are not labeled (Case 1 in Figure A.1) it can be shown that Bryant (1997)
W = (nl — 2N)Y + NUY + t.,Nuv

where N is the m x m diagonal matrix with (nq,ne,...,n,,) on the diagonal, I is the identity matrix,
Y =1,Y,...,Y,,)T, U is the m x m matrix of ones, v is the vector with ng in positions 1 to k followed

Case 1 Case 2 Case 3

Figure A.1: The three cases for the internal edge eg. Case 1: Both a and 8 are not labeled. Case 2: Only
« is labeled. Case 3: Both a and [ are labeled. The triangles represent subtrees.
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by n, in positions k + 1 to m, W = (Wy, Wa, ..., W,,)T, n is the total number of labeled vertices, and t.,
is the edge length of the edge eg
Similarly for the internal edge ey,
WO = QTX + nanﬂteo

Letting X = (nN~! — 21 + U) and substituting Y gives the following edge length estimate.
Wy — o' X" IN-ITW
nang — vl X1y

teg =

For cases where only o and both « and 3 are labeled, respectively, the derivation of the equations are similar
to that described in Bryant (1997) and is described below.

Case 2: « is labeled and f is not labeled

For edges e; incident to o, s = 1...k, we have

Wz’:z szy

T€A; yEB;
m
S35 3D SISy
j=1,j#ixeC; yeCy zeC;
k m
= 2 2 D Gactpa)t D D D (s tte +P0) + Y Pas
j=1,j#ixeC; yeC; j=k+1zeC; yely z€C;
k m
= Y Vit Y+ Y [0V Y 4 nngte] + Y
Jj=1j#1 j=k+1

=n—-n—-1)Y,+n,Yi+...+Y, 1 +Yi+... +Y,) +ningte, +Y;

m
=(n—-2n,;)Y; +n; Z Y; + ningte,
j=1

For edges e; incident to 8,9 =k + 1...m, we have

Wi:Z mey

z€A; yeB;
m

= 2 2 D Pt ) P

j=1,#4izeC; yGCj zeC;

m

=22 D et tpa)+ DL DD (Paetp)+ ) (Por +teo)

j=1z€C; yeCj j=k+1,j#iz€C; yeC; zeC;

m
= (Z n;Y; +niYj + ninjte,) + ( Z n;Yi +n;Y;) + Y + nite,
Jj=1 J=k+1,5#1

=n—-n;—1D)Yi+nYVi+...+Yio1+ Y1+ ... + Vi) +ni(ng — Dte, + Vi + nite,
=(n—2n;)Y; +n; iY] + niNate,
j=1
In matrix form,
W =(nl -2N)Y + NUY +t.,,Nv
S NnmN -2l +U)Y =W — t,,Nv
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Setting X = (nN~! — 21 + U) and rearranging, we get
Y=X'N"'W-t,X""v

For the internal edge ey we have

Z Z DPay + Z Z (teo erﬂ-r)

M»

i=1 j=k+1x€C;,yeCj j=k+1zeC;
k m m
= 2 X Parttetpa)trsta+ DY
i=1j=k+12€C;,yeCy j=k+1
k m m
=0 D it mingte, +nY;) +nste, + > Y;
i=1 j=k+1 j=k+1
k m
- Znﬁy P + (0 = ngte, +npte, + ) Y
i=1 j=k+1 j=k+1

=0T Y + nangte,
After substituting Y and rearranging we get,

Wo — QTX_lN_lw
nong — v X1y

te, =

Case 3: o and 3 are labeled

For edges e; incident to «, 2 = 1...k, we have

Wi= > Y puy

T€A; yEB;
m
= Z Zzpwy +Zpaw+zp,8w
| J=L1.j#i2€C; yeC; zeC; zeC;
k m
= Z Z Zpaw+pay + Z Z Zpaw+teo+p5y +22paa:+niteo
Lj=1j#izeC; yeC; j=k+1zeC; yeCj zeC;
m
= Z ’an;‘ + ’nlYY] =+ Z ani + nin + nmjteO + 2Y; + niteO
Li=1,j7#1 j=k+1

:(n—ni—2)m+ni(Y1+...+Yi_1+Yi+1+...+Ym)+niteo(1+2nj)+2Yi
j=k+1

m
=(n-2n)Y; +n; ZY] + ningte,
j=1

By symmetry, for edges e; incident to 3, i =k + 1...m, we have,

m
W, =(n—2n;)Y; +n; Z Y; + ninate,
i=1

In matrix form,
W =(nl -2N)Y + NUY +t.,Nv
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Case 1 Case 2

Figure A.2: The two cases for the terminal edge eg. « is not labeled in case 1, and is labeled in case 2. The
triangles represent subtrees.

For the internal edge ey we have

=k+12€C;,ycC; j=1z€C; j=k+1zeCy

k m k m
WOZZ S0 bt D et paa| | YN b +ppa | e

m

k m
= Z Z Z Paz + teg + Dy +(na+nﬁ_1)t€0+ZY}
j=1

i=1 j=k+12€C;,ycCj

k m m
=3 n;Y; + ninjte, + 1Y | + (na +npg — Dte, + Y _Y;
Li=1j=k+1 j=1
k m m
= (ng—1) ZYl+ a—1) Z 5/}+(na_1)<nﬂ_1)t60+(”a+n,@_1)teo+zyj
i=1 j=k+1 j=1

m
= ngZYi + Na Z Yi + nangte,
i=1 i=k+1

= QTX + nanﬂteo
After substituting Y and rearranging we get,
Wy — o' X" IN"'W
nong — v X"y

te, =

A.1.2 Terminal edges

Consider the terminal edge ey shown in Figure A.2 with adjacent edges e1,es...e,,. €g is incident to the
vertices a and 3. The respective sizes of the sides of the split defined by ey are n, and ng. Since eg is
a terminal edge the leaf g is labeled. There are two cases to consider depending on if « is labeled or not
labeled.

If «v is not labeled (Case 1 in Figure A.2), the edge length formula given by Bryant (1997) is

Wy —vIT X IN“IW
neng — v X1y

teg =
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where ny, = (n — 1), ng = 1 and k = m. If « is labeled (Case 2 in Figure A.2), the edge length formula can
be derived as follows.
For edges e; incident to a we have,

Wizz szy

zEA'yGB'
Z Z pry+z pomc"'pﬁx
#ixeC; yelj zeC;
m
Z Z Z Pax +pocy Z (2Pag + tey)
j=1,j#izeC; yeCy zeC;

m
Z [n;Y: +n;Y;] + 2Y; + ngte,
=15

m
=(m—ni—2)Yi+n; Y Y;+2Vi+nit,
j=1,j#i
=(n—2n;)Y; +n; Z Y; + nite,
j=1

In matrix form,

W = (nI —2N)Y + NUY +t.,Nuv

For the terminal edge eg we have,

I+t60

(XI + t(’[) t?g

izg

= QTX + Nangpte,

where n, = (n — 1), ng =1 and k =m.
After substituting Y and rearranging we get,

Wo — T X IN-1W

t
© neng —vT X1y

O:
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Figure A.3: Rate of the strict molecular clock that is estimated by SA. The true rate of the strict molecular
clock is 1.0 subs. /site/time in all simulation scenarios.

A.2 Molecular clock rate inferred by SA

A.3 Comparison of various FJ-based methods
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Figure A.4: A comparison of various FJ-based methods. FJ-BIC is the method that is presented in the main
paper. FJ2-BIC checks if siblings have a parent using the criterion shown in equation 3.4 of the Chapter 3.
FJ-AIC uses AIC for model selection. FJ-3CV and FJ-5CV performs model selection using 3-fold CV and
5-fold CV respectively.
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Appendix B

Supplementary material for Chapter 5

B.1 Optimizing edge lengths

Given a continuous-time hidden Markov model Mgt = (m,,Q,t) on a rooted phylogenetic tree T, =
(Vr,,Er,), Mct is parameterized in terms of (i) a root probability distribution 7,, (i7) the set of rate
matrices Q = {Q. : e € Er,}, and (iii) the set of edge lengths t = {t. : e € Er,}. The transition matrix P.
for edge e is computed as P, = e@ete.

Edge lengths were optimized with Newton-Raphson using a convergence threshold of 10™* substitu-

tions/site, as described below.
e ot? Ote

, where ¢ is the log likelihood score, t! and t are the updated edge length and the current edge length,
2

0
Ot, o2
The current Section lists the equations for computlng the first and second order partial derivatives of the
log likelihood score with respect to an edge length. Assuming i.i.d. we have

(= Zwi log L

, where w' is the number of times that the site pattern for site i is repeated, and L’ is the likelihood score
for site i. L is computed as follows:

respectively, e = tS.

L'=Y "m,(x)L}(x)

, where Lﬁj is the conditional likelihood for site i that is computed recursively using the following equation
that applies for each non-leaf vertex of T'.

where v and w are the children of u, and u has two children.
P(u ’U) — eQ(u,u)t(u,u)

The first derivative of log likelihood taken with respect to any edge length ¢, ;) can be computed as
follows
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ol _ Z wfl y OL!
8t(a,b) ; Lt 8t(a’b)

where

OL* 317 (2)
ot Z (@ at
(a,b) (a,b)
Li
u(?) can be calculated as

Let v and w be the children of u. Given an edge (a,b) the first derivative 5
(a,b)

follows.

AL (z) OP 0 (ylT)
CASGL AN T (y) 4 Prawy (y] Py (27) L
Tias) (E Mias) (y) + Pluw (ylz) 8t ) E (uw) (2]7) Ly, (2)

0Py (2]7) o 8Lfv(z)>

(%: o Z Ot(ab) T Bty

where v and w are children of wu.

M — Q(u,v)eQ(“’v)t(u'v) if t(aab) = t(u’“)
Ot (a,p) 0 otherwise

OL: (x)
6t(a7b)

equals zero for any x if u is a leaf.

Li
OL, () simplifies as follows for any u that is not a leaf. Let b and ¢ be the two

6t(a’b)
children of a. Let pr(p,a) be the directed path in T from root p to a.

The expression for

> [Qap)eQenian] (y|x)Lz(y)> <zz: P(a7c)(z|x)Li(z)> ifu=a

Y

OL: (x) .
= oL ,
Ot (q.p) ZPuv( |z )at(y)> (E P(uﬁw)(z|x)L§U(z)> if u # a, and u, v are in pr(p,a)
and v are in the directed path from p to a0 otherwise
(B.1)

The second derivative of log likelihood taken with respect to the edge length ¢, ) can be computed as

follows
02¢ L1 2L 1 oL \?
oz, Xi:w <U i, <Li at(a,b)) )
where
9L e )32U( z)
= s
at2 o Ot 1)

Let v and w be the children of u. Given an edge (a, b), such that b and ¢ are the children of a, the second

2Lz
O°Ly(2) of any w that is not a leaf can be calculated as

derivative 2
(a b)
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3 [ ?a7b)6Q(a,b)t(a,b):| (yz)Lé(y)) (Z P(a7c)(z|z)Li(z)> if u equals a
Y z

M — 82 7 ( )
0?t (4.1 > Py lr) 77— 5% ) (Z P(u’w)(z|x)qu(z)> if w is not a, and u, v are in pr(p,a)
Y (a,b) z
0 otherwise
(B.2)
. . . 0?LE () .
, where pr(p,a) is the directed path in T from p to a. o2 equals zero for any x if u is a leaf.
(asb)

B.1.1 Avoiding numerical underflow using scaling factors

Each element of a conditional likelihood vector is a product of fractions (see equation 2.7). The computation
of entries of conditional likelihood vectors is susceptible to numerical underflow for large trees. We applied
the commonly used technique of scaling each conditional likelihood vector with a small scaling factor, and
storing the log transformed value of the scaling factor (Yang, 2000). We used a similar technique to scale
the first derivative and the second derivative, respectively, of the conditional likelihood vector.

The scaling factor sf(Lf) of any vector L¢, is defined as the entry in L(u) that has the largest absolute
value. Scaling a vector involves dividing each element of the vector with the scaling factor of the vector. A
log transformed factor lgsf(u) is computed recursively for each vertex as follows.

lgsf(L:) = log(sf(L%,)) + 1gsf(L!) + 1gsf(L,)

, where v and w are the children of u. lgsf(L?) is zero if u is a leaf. L{, is computed using scaled conditional
likelihood vectors as follows.

1= (5 P50 et

where L¢ is the conditional likelihood vector that is obtained by scaling L.
Log likelihood ¢ is computed as follows.

0= w (lgsf(L,) +log L")
, where

L'= Zﬂp(x)f’p(x)
oL () . 0*Li(x)

; and the second derivative —

tab) 0t (a.p)
B.1, and equation B.2, respectively, using scaled versions of conditional likelihood vectors, and derivatives
of conditional likelihood vectors.

The first derivative of log likelihood w.r.t. to any edge length #(, ;) is computed as follows

The first derivative

are computed recursively using equation

15/4 , o
Ot (a,p) Ot (ap)
, where
o oL , 1 oL
= exp | lgsf P — lgsf (L* X — = B.3
8t(a,b) P <g <8t(a’b)> & ( p)> L 8t(a¢b) ( )



i i
The log transformed factor lgsf ( ) for the first derivative of conditional likelihood vector L
Ot (a) O (a0)
is computed as follows.
oL, )
log 5 + 1gsf(L}) + lgsf(L?) if u equals a
6L1 (a b) .
u ) = oL, OL! ,
lgst (875(@ b)> log (sf ( )) + lgsf( ‘ ) +1gsf(L?,)) if u is not a, and u, v are in pr(p, a)
’ é)t(mb) at(%b)
0 otherwise

The second derivative of log likelihood w.r.t. to any edge length #(, ;) is computed as follows

520
at2 Z otz

(a,b) (a,b)
, where

i exp | lgsf 62[/ lgsf (L’) X L oL < oF >2 (B.4)

= X —_— —_— p— .

875%@7})) 81‘%@ b) , L at(a’b) at(a’b)

82 z 27114

The log transformed factor 1gsf ( o, ) for the second derivative of conditional likelihood vector BT C
(a,b)

is computed as follows. Let b and ¢ be the two children of a. Let pr(p,a) be the directed path from the root
p to vertex a.

0?L, , , )
log | sf % + 1gst(Ly) + 1gsf(LY) if u equals a
PL, () o )
ooy, 0Ly, O’L;, o .
0%t (a,p) log | sf 5 + lgsf 5 +1gsf(L:) if u is not a, and u is in pr(p,a)
8t(a7b) 8t(
0 otherwise

The optimization procedures for estimating edge lengths were implemented in C+-+. We used double for
storing the derivatives of conditional likelihood vectors. We found that the exponents in equation B.3 and

equation B.4 were within the range of permissible values for double for all empirical data sets and simulated
i 2 i
and L X —— was within the range
2
ot t(a,b) 8t(a b

of permissible values for double for each site i, where L is the number of columns in the multiple sequence
alignment. We concluded that we avoided numerical underflow and numerical overflow in the computation
of the first derivatives and the second derivatives, respectively, of the log likelihood score for each data set.

data sets that were analyzed. Additionally, we found that L x
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