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Truth and proof are central to mathematics. Proving (or disproving)
seemingly simple statements often turns out to be one of the hardest
mathematical tasks. Yet, doing proofs is rarely taught in the class-
room. Studies on cognitive difficulties in learning to do proofs have
shown that pupils and students not only often do not understand or
cannot apply basic formal reasoning techniques and do not know how
to use formal mathematical language, but, at a far more fundamental
level, they also do not understand what it means to prove a statement
or even do not see the purpose of proof at all. Since insight into the
importance of proof and doing proofs as such cannot be learnt other
than by practice, learning support through individualised tutoring is
in demand. 
This volume presents a part of an interdisciplinary project, set at the
intersection of pedagogical science, artificial intelligence, and (com-
putational) linguistics, which investigated issues involved in provisio-
ning computer-based tutoring of mathematical proofs through
dialogue in natural language. The ultimate goal in this context, ad-
dressing the above-mentioned need for learning support, is to build
intelligent automated tutoring systems for mathematical proofs. The
research presented here has been focused on the language that stu-
dents use while interacting with such a system: its linguistic proper-
ties and computational modelling. Contribution is made at three
levels: first, an analysis of language phenomena found in students'
input to a (simulated) proof tutoring system is conducted and the va-
riety of students' verbalisations is quantitatively assessed, second, a
general computational processing strategy for informal mathematical
language and methods of modelling prominent language phenomena
are proposed, and third, the prospects for natural language as an input
modality for proof tutoring systems is evaluated based on collected
corpora.
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Abstract

Truth and proof are central to mathematics. Proving (or disproving) seemingly
simple statements often turns out to be one of the hardest mathematical tasks.
Yet, doing proofs is rarely taught in the classroom. Studies on cognitive
difficulties in learning to do proofs have shown that pupils and students not
only often do not understand or cannot apply basic formal reasoning techniques
and do not know how to use formal mathematical language, but, at a far
more fundamental level, they also do not understand what it means to prove a
statement or even do not see the purpose of proof at all. Since insight into the
importance of proof and doing proofs as such cannot be learnt other than by
practice, learning support through individualised tutoring is in demand.
This thesis has been part of an interdisciplinary project, set at the intersection

of pedagogical science, artificial intelligence, and (computational) linguistics,
which investigated issues involved in provisioning automated tutoring of
mathematical proofs through dialogue in natural language (see Chapter 1). The
ultimate goal in this context, addressing the above-mentioned need for learning
support, is to build intelligent tutoring systems for mathematical proofs. The
focus of this thesis is on the language that students use while interacting
with such a system: its linguistic properties and computational modelling.
Contribution is made at three levels: first, an analysis of language phenomena
found in students’ input to a (simulated) proof tutoring system is conducted
and the variety of students’ verbalisations is quantitatively assessed, second, a
general computational processing strategy for informal mathematical language
and methods of modelling prominent language phenomena are proposed, and
third, prospects for natural language as an input modality for proof tutoring
systems is evaluated based on collected corpora.

Proof tutoring corpora (Chapter 2)
In order to learn about the properties of students’ language in naturalistic
interactions with a tutoring system for proofs, two data collection experiments
have been conducted. Both experiments were carried out in the so-called
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Wizard-of-Oz (WOz) paradigm, that is, subjects interacted with a system
simulated by a human. The interaction with the simulated system was
typewritten. The language of the experiments was German; no constraints
on the students’ language production were imposed. Naïve set theory and
binary relations were selected as the mathematical domains. In the set theory
experiment, studentswere tutored using one of three tutoring strategies differing
in the granularity of pedagogical feedback. In the binary relations experiment
students were assigned to one of two experimental conditions: one group was
shown study material formulated using mainly natural language (verbose),
while the other group received mainly formalised content. The hypothesis
was that the students’ language would reflect the study material presentation
format. The key lesson learnt from the experiments is that mathematics is a
difficult domain for the Wizard-of-Oz setup. While WOz is an established
research methodology in interactive systems, mathematics as a domain is
challenging to the wizards due to the time-pressure on response generation
related to maintaining a believable system setup. Certain interface features, in
particular, the copy–paste mechanism and the ease with which it enables text
reuse – in our case, stringing mathematical expressions together – produced
substantial cognitive load on the wizards. In future experiments, support for
the wizard, for instance, consisting of automated detection of mathematical
expression errors, should be considered. The collected corpus comprises
59 dialogues with 1259 student turns and constitutes the source data for all the
analyses.

Students’ language in computer-based proof tutoring
Qualitative analysis (Chapter 3) The language of informal proofs in
textbook discourse has been previously modelled based on mainly ad hoc
analyses, rather than systematic corpus studies. The language of informal
proofs has been described as precise, exhibiting no ambiguity and little
linguistic variation, and consisting of stereotypical, formulaic phrasings in
which natural language is used for the most part to express logical connectives.
Contrary to these observations, our analysis of proof tutoring corpora shows
that the language of students’ proofs is rich in linguistic phenomena at all
levels: lexical, syntactic, semantic, and discourse-pragmatic. The following
utterances illustrate proof statements from our data:

x ∈ B =⇒ x /∈ A
B enthaelt kein x ∈ A
B contains no x ∈ A
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A hat keine Elemente mit B gemeinsam.
A has no elements in common with B.

A enthaelt keinesfalls Elemente, die auch in B sind.
A contains no elements that are also in B

A ∩B ist ∈ von C ∪ (A ∩B)
A ∩B is ∈ of C ∪ (A ∩B)

Nach der Definition von ◦ folgt dann (a, b) ist in S−1 ◦R−1

By definition of ◦ it follows then that (a, b) is in S−1 ◦R−1

wenn A vereinigt C ein Durchschnitt von B vereinigt C ist,
dann müssen alle A und B in C sein
If A union C is intersection of B union C, then all A and B must be in C

Students’ input is for the most part highly informal and ranges from worded
entirely in natural language, using a variety of syntactic constructions, through
part-worded–part-formalised to entirely formalised; the longest mathematical
expression consisted of 145 characters. Mathematical symbols and natural
language are tightly interleaved and parts of mathematical expressions have
to be interpreted in the context of natural language scope-bearing words
(as in the second utterance). Symbols are also used as a kind of shorthand
for natural language and wording can follow spoken language syntax when
a formal expression is written down in its vocalised form (the last example).
Moreover, natural language wording is imprecise, resulting in ambiguity
in domain interpretation (e.g. ‘‘contain’’ as subset or membership). Discourse
phenomena include domain-specific referring expressions (e.g. ‘‘the left side’’)
and contextual operators (‘‘analogously’’, ‘‘the other way round’’). Since
the use of mixed language and the imprecision phenomena are systematic,
the key two requirements on a computational interpretation component are
(i) integrating the semantic import of the symbolic expressions into the
meaning of their cotext and (ii) representation of the imprecise concepts and an
appropriatemapping to their mathematical interpretations. Frequently recurring
complex clause structures in paratactic and hypotactic configurations call for
a parsing method in which complex multi-clause utterances can be modelled
with sufficient generality. For German specifically, the different word order in
main clauses and subordinate clauses need to be modelled in a systematic way.

Quantitative analysis (Chapter 4) In order to assess the diversity in
students’ language production, a quantitative analysis of students’ language has
been carried out. First, a typology of students’ utterances has been constructed.
The typology focuses on solution-contributing utterances (utterances which
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directly or at a meta-level contribute to the proof being constructed), with the
remaining subcategories grouped into one class (meta-level communication).
Second, utterances have been preprocessed into verbalisation patterns which
abstract away the specific mathematical expressions used and the domain
terminology. Quantitative analysis is performed at three levels: the students
contributions are characterised in terms of their language ‘‘modality’’ (natural
language vs. symbolic notation), the binary relations corpus is characterised in
terms of differences in the language production between the two study material
conditions, and, finally, the distribution of utterance types in both corpora is
analysed. Proof-contributing utterances are further analysed with respect to
their function in the proof under construction (proof steps, declarations of proof
strategy, etc.) and the type of content verbalised in natural language (logical
connectives only, domain-specific vocabulary, etc.) Language diversity along
these dimensions is quantified in terms of type–token ratios over the normalised
linguistic patterns, frequency spectra, and pattern-vocabulary growth curves.
The conducted analyses show that the language of students’ discourse

in proofs is not as repetitive as one might expect. Students use complex
natural language utterances not only during meta-communication with the
tutor, but also when contributing proof steps. The majority of utterances
contain some natural language. Only 28 utterance verbalisations occurred
in both data sets. Frequency spectra and the pattern growth curves show
the degree to which the language is diverse. The majority of verbalisations
are idiosyncratic (single-occurrence patterns). Not surprisingly, the majority
of the meta-level communication are the students’ requests for assistance:
requests for hints, definitions, explanations, etc. Interestingly, there is a
relatively large number of discourse markers typical of spoken interaction.
This suggests that participants had an informal approach to dialogue style
and treated it much like a chat, adapting spoken language, which they would
have otherwise used in a natural setting, to the experiments’ typewritten
modality. The key conclusion from the analyses is that in a tutoring setting,
even the seemingly linguistically predictable domain of mathematical proofs
is characterised by a large variety of linguistic patterns of expression, by a
large number of idiosyncratic verbalisations, and that the meta-communicative
part of discourse which does not directly contribute to the solution has a
conversational character, suggesting the students’ informal attitude towards the
computer-based dialogues and their high expectations on the input interpretation
resources. This calls for a combination of shallow and deep semantic processing
methods for the discourse in question: shallow pattern-based approaches for
contributions which do not add to the proof and semantic grammars for the
proof-relevant content, in order to optimise coverage.
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The analysis of the binary relations data revealed differences in the use
of natural language and mathematical expressions between the two study
material conditions. The verbose-material group tended to use more natural
language than the formal-material group and the dialogue turns of the subjects
in the verbose group contained more, but shorter, mathematical expressions.
The formal material group tended to use longer formulas, and less natural
language. Since the analysis of tutors’ contributions showed no significant
difference between the two conditions in the dialogue behaviour with respect
to natural language and mathematical expression production, the differences
in dialogue styles were at least partly due to the format of the study material
presentation having a priming-like effect. These results have implications
for the implementation of tutorial dialogue systems. On the one hand, more
natural language, be it resulting from a verbose presentation of the study
material or from the students’ individual preference for a particular language
style, imposes more challenges on the input understanding component. In the
context of mathematics, this involves a reliable and robust parser and discourse
analyser capable of interpreting mixed natural language and mathematical
expressions. On the other hand, prompting for more symbolic language by
presenting students with formalised material imposes stronger requirements on
the mathematical expression parser since longer expressions tend to be prone
to errors. The same holds of the copy–paste functionality: while convenient
from the user’s point of view, it may lead to mistakes of sloppiness while
revising the copied text. This, in turn, calls for flexible formula parsing, error
correction, and specific dialogue strategies to address formulas with errors.

Computational processing of informal proofs (Chapters 5 and 6)
Taking into account the range of linguistic phenomena in students’ input and
the need for a principled syntax–semantics interface for the proof contributing
content, we propose a deep grammar-based approach to informal proof lan-
guage. Processing of mixed language consisting of natural language words
and mathematical expressions is achieved by abstracting over the symbolic
notation in the course of parsing. Mathematical expressions are represented
in terms of their syntactic types whose possible interactions with the natural
language context is explicitly modelled in the grammar. Parsing is performed
using a combinatory categorial grammar which builds a semantic dependency
representation of the parsed input. The semantic representation is based on
the Praguian notion of tectogrammatics, a language analysis level which con-
siders the linguistic meaning of utterances, that is, meaning independent of
their context. Tectogrammatical representations are further interpreted in the
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context of the mathematical domain in a stepwise fashion. First, imprecise
lexemes are mapped to general concepts through a semantic lexicon. Then,
the general concepts are mapped to mathematical domain concepts through a
linguistically-motivated domain-ontology.
We propose methods of processing several language phenomena which

systematically recur in the data, and which are critical for automated proof
tutoring. This includes modelling basic syntactic phenomena (German word
order in recurring constructions in mathematics, the mixed language, and
the syntactic irregularities characteristic of the mathematical domain) and
basic semantic imprecision phenomena. Moreover, we analyse a subset of
interesting phenomena, which are not as frequent in the corpora, but which
are highly complex from a computational processing point of view: the
semantic reconstruction of the ‘‘the other way round’’ operator, reference to
symbolic notation and propositions, and automated correction of mathematical
expressions. Because the data is sparse, preliminary algorithms are proposed
and evaluated in proof-of-concept studies or corpus studies are conducted as
a preliminary step towards algorithm development. The processing methods
proposed confirm that deep parsing using categorial grammars which build
tectogrammatical (domain-independent) linguistic meaning representations of
the analysed input, lends itself well to modelling a number of phenomena found
in students’ informal mathematical language.

Prospects for natural language-based proof tutoring (Chapter 7)
The final contribution of this work is a corpus-based performance assessment
of the parsing component, the key part of the proposed input interpretation
architecture. The collected corpora of learner proofs are used as data for an
intrinsic evaluation which focuses on proof-contributing utterances. Grammars
encoding verbalisation patterns are systematically tested in simulation exper-
iments as follows: Grammars are built only based on utterances which recur
in the development data. The recurring utterances stem from 42 dialogues.
Parsers based on grammar resources constructed in this way are tested on an
increasing number of dialogues. Performance is evaluated on two data sets:
the data set constructed from utterances used for grammar development and
on a blind set consisting of verbalisation patterns which occurred only once.
Context-free grammars, developed and tested in the same manner, are used
as baseline. Coverage (percentage of test set parsed) and parse ambiguity are
reported.
The results show that hand-crafted semantic resources based on combina-

tory categorial grammars outperform context-free grammars on the coverage
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measures while remaining at a manageable ambiguity level. Moreover, they
confirm our previous conclusion that the language used by students to talk
about proofs is characterised by a large degree of diversity not only at a
shallow level of specific phrasing, but also at a deeper level of syntactic
structures used. Considering that only 59 dialogues have been available for
analysis, we believe that the two corpora are insufficient, in the sense that
they are not representative enough, for a robust proof tutoring system to be
implemented at the present stage. First, the set of recurring verbalisations
is small. This is against the intuition that the language of proofs should be
small and repetitive. Grammars based on the set theory resources do not scale
sufficiently even within-domain. Resources based on the binary relations data
scale better within-domain, while, across-domains the difference in perfor-
mance over within-domain data is negligible. More data would need to be
collected in order to draw definitive conclusions. Interestingly, the results point
at a methodological issue for WOz-based data collection strategy in the domain
of proofs: Wizard-of-Oz experiments, logistically complex by themselves and
in this case also cognitively demanding on the wizards, should cover multiple
domains of mathematics rather than a single domain per experiment, as ours
did, in order to provide more variety of proof verbalisations at one trial.
Nevertheless, considering that the promising coverage growth results are

based on a small number of partially modelled dialogues, we also conclude
that as far as language processing is concerned, natural language as the input
mode for interactive proofs is a plausible alternative to menu-based input or
structured editors, provided that more data and human resources for grammar
development are available. We plan to conduct analogous linguistic analysis
of authentic proofs appearing in mathematical publications in order to verify
prior claims as to the linguistic proprieties of this genre and to apply processing
methods proposed in this thesis in order to assess the prospects for automated
knowledge extraction from scholarly mathematical discourse.





Zusammenfassung

Wahrheit und Beweis sind zentrale Teile der Mathematik. Die Wahrheit selbst
scheinbar einfacher mathematischer Sätze zu beweisen (oder zu widerlegen)
stellt sich oft als eine der schwierigsten mathematischen Aufgaben heraus.
Dennoch wird in der Schule selten gelehrt, wie man Beweise führt. Studien
zu kognitiven Schwierigkeiten beim Beweisen lernen, haben gezeigt, dass
Studenten nicht nur formale Beweistechniken häufig nicht verstehen oder nicht
anwenden können und nicht wissen, wie die formale mathematische Sprache
zu benutzen ist, sondern sogar auf einer weitaus grundlegenden Ebene nicht
verstehen, was es bedeutet, einen Satz zu beweisen, oder die Notwendigkeit,
Beweise zu führen, überhaupt nicht einsehen. Da Einsicht in die Bedeutung
des Beweises und Beweisen selbst nur durch Üben gelernt werden kann, ist
Lernunterstützung durch individuelles Tutoring (Nachhilfe) gefragt.
Diese Arbeit ist Teil eines interdisziplinären Projektes, das an der Schnitt-

stelle zwischen Pädagogik, künstlicher Intelligenz und (Computer-)Linguistik
angesiedelt war und das sich mit der Untersuchung von automatisiertem Tu-
toring mathematischer Beweise in natürlichsprachlichem Dialog beschäftigt
hat (siehe Kapitel 1). Das Fernziel in diesem Kontext, in Bezug auf den oben
angesprochenen Bedarf nach Unterstützung beim Lernen, wäre die Entwick-
lung von intelligenten automatisierten Tutoring-Systemen für mathematische
Beweise. Der Schwerpunkt dieser Arbeit liegt auf der Sprache, die die Stu-
denten während der Interaktion mit einem solchen System verwenden: ihre
sprachlichen Eigenschaften und ihre Modellierung mit dem Computer. Unser
Beitrag findet auf drei Ebenen statt: Zuerst wird eine Analyse der sprachlichen
Phänomene in den Studentenäußerungen zu einem (simulierten) tutoriellen
System zum Beweisen durchgeführt und die Vielfalt der Verbalisierungen wird
quantitativ bewertet. Als nächstes wird eine allgemeine Verarbeitungsstrategie
für informelle mathematische Sprache und Methoden zur Modellierung von
prominenten sprachlichen Phänomenen vorgeschlagen, und drittens werden
die Perspektiven für natürliche Sprache als Eingabemodalität für ein tutorielles
System für Beweise auf Grundlage von verfügbaren Korpora evaluiert.
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Korpora zu mathematischem tutoriellen Dialog (Kapitel 2)
Um etwas über die Eigenschaften von Studentensprache in plausiblen Interak-
tionen mit einem tutoriellen System für Beweise zu lernen, wurden zwei Serien
von Datenerhebungsexperimenten durchgeführt. Beide Versuche wurden im
Rahmen des sogenannten Wizard-of-Oz (WOz)-Paradigmas durchgeführt, d.h.
die Versuchspersonen interagieren mit einem System, das vollständig durch
einen Menschen simuliert wird. Die Interaktion mit dem simulierten System
geschah mittels Tastaturinput; es gab keine Einschränkungen bezüglich der
Sprachproduktion der Studenten. Die Experimente fanden auf Deutsch statt.
Als mathematische Domänen wurden naive Mengenlehre und binäre Rela-
tionen ausgewählt. Im Experiment zur Mengenlehre wurden Studenten mit
je einer von drei tutoriellen Strategien unterrichtet. Diese unterscheiden sich
in der Granularität des pädagogischen Feedbacks. Im Experiment zu binären
Relationen wurden die Studenten einer von zwei experimentellen Bedingungen
zugeteilt: eine Gruppe bekam Lehrmaterial gezeigt, das überwiegend in natürli-
cher Sprache (verbose) formuliert war. Die andere Gruppe erhielt hauptsächlich
formalisierte Inhalte. Die Hypothese war, dass die Studentensprache die Prä-
sentationsform des Lehrmaterials widerspiegeln würde. Die Haupterkenntnis
aus den Experimenten ist, dass Mathematik für Wizard-of-Oz-Experimente
eine schwierige Domäne ist. Obwohl WOz eine etablierte Forschungsmetho-
de in der Entwicklung von interaktiven Systemen darstellt, ist die Aufgabe
für den Wizard sehr anspruchsvoll. Dies ergibt sich aus dem Zeitdruck bei
der Generierung von Systemantworten, der aus der Notwendigkeit resultiert,
ein glaubwürdiges Setup aufrechtzuerhalten. Bestimmte Funktionalitäten der
benutzten Schnittstelle, insbesondere der Copy-Paste-Mechanismus und die
Leichtigkeit, mit der es die Wiederverwendung von Textbausteinen erlaubt
– in unserem Fall mathematische Ausdrücke zusammenzustellen, – erzeugen
eine zusätzliche kognitive Belastung des Wizards. In zukünftigen Experimen-
ten sollte daher Unterstützung für den Wizard, zum Beispiel in Form von
automatischer Erkennung von Fehlern in mathematischen Ausdrücken, be-
rücksichtigt werden. Die gesammelten Korpora umfassen 59 Dialoge mit 1259
Studenten-Dialogbeiträgen.

DieSprache der Studenten in computerbasiertenBeweis-Tutoring
Qualitative Analyse (Kapitel 3) Die Sprache informeller Beweise wurde
bisher nur in Lehrbuch-Diskursen untersucht und vor allem auf Grundlage von
ad hoc Analysen modelliert. Sie wurde als präzise und stilistisch ‘‘formelhaft’’
beschrieben, zeige keine Mehrdeutigkeiten und wenig sprachliche Variation
und bestehe aus stereotypischen Formulierungen, in denen natürliche Sprache
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hauptsächlich dazu benutzt werde, logische Verknüpfungen auszudrücken. Im
Gegensatz zu diesen Beobachtungen zeigt unsere Korpusanalyse, dass die
Sprache der Studentenbeweise reich an sprachlichen Phänomenen auf allen
Ebenen ist: lexikalisch, syntaktisch, semantisch und diskurs-pragmatisch. Die
folgenden Äußerungen zeigen beispielhaft Aussagen aus Beweisen in unseren
Korpora:
x ∈ B =⇒ x /∈ A
B enthaelt kein x ∈ A
A hat keine Elemente mit B gemeinsam.
A enthaelt keinesfalls Elemente, die auch in B sind.
A ∩B ist ∈ von C ∪ (A ∩B)
Nach der Definition von ◦ folgt dann (a, b) ist in S−1 ◦R−1

wenn A vereinigt C ein Durchschnitt von B vereinigt C ist,
dann müssen alle A und B in C sein

DieÄußerungen der Studenten sind überwiegend informell und reichen von rein
in natürlicher Sprache mit einer Vielzahl von syntaktischen Konstruktionen,
über teils-in-Worten-teils- formal-formuliert bis hin zu vollständig formalisiert;
der längstemathematischenAusdruck bestand aus 145 Zeichen.Mathematische
Symbole und natürliche Sprache sind eng miteinander verflochten und Teile
von mathematischen Ausdrücke müssen im Kontext skopustragender natür-
lichsprachlicher Wörter interpretiert werden (die zweite Äußerung). Symbole
werden auch als eine Art Kurzschrift für natürliche Sprache verwendet und der
Wortlaut folgt mitunter der Syntax gesprochener Sprache, wenn ein formaler
Ausdruck in der Form geschrieben wird, wie er auch gesprochen wird (das letz-
te Beispiel). Darüber hinaus ist der Wortlaut natürlicher Sprache ungenau, was
zu Unklarheiten bei der Interpretation innerhalb der Domäne führt (‘‘enthal-
ten’’ als Teilmenge oder Element einer Menge). Diskursphänomene beinhalten
domänenspezifische referierende Ausdrücke (z.B. ‘‘die rechte Seite’’) und
kontextuelle Operatoren (‘‘analog’’, ‘‘ umgekehrt’’). Da die Verwendung von
gemischter Sprache und die Ungenauigkeitsphänomene systematisch sind, sind
die zwei wichtigsten Anforderungen an eine Komponente zur automatischen
Interpretation (i) die Integration des semantischen Gehalts der symbolischen
Ausdrücke in die Bedeutung ihres Kontextes und (ii) die Repräsentation der un-
genauen Konzepte und eine entsprechende Zuordnung zu ihrer mathematischen
Interpretationen. Häufig wiederkehrende komplexe Satzstrukturen in paratakti-
scher und hypotaktischer Konfigurationen erfordern eine Analysemethode, bei
der komplexe Äußerungen aus mehreren Teilsätzen in ausreichend allgemeiner
Form modelliert werden können. Für das Deutsche im Speziellen müssen die
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verschiedenen Wortstellungen in Haupt- und Nebensätzen in systematischer
Weise modelliert werden.

Quantitative Analyse (Kapitel 4) Um die Vielfalt bei der Sprachproduk-
tion der Studenten zu beurteilen, wurde sie quantitativ analysiert. Zunächst
wurde eine Typologie der Studentenäußerungen konstruiert. Die Typologie
konzentriert sich auf die zur Lösung beitragenden Äußerungen (Äußerungen,
die zu dem aktuellen Beweis direkt oder auf einer Meta-Ebene beitragen),
während die restlichen Unterkategorien alle zu einer Klasse (Meta-Ebene-
Kommunikation) zusammengefasst werden. Als nächstes wurden Äußerungen
zu Verbalisierungsmustern vorverarbeitet, die von den spezifischenmathemati-
sche Ausdrücken und der spezifischen Terminologie der Domäne abstrahieren.
Eine quantitativeAnalysewird auf drei Ebenen durchgeführt: Zunächst wird die
Studentensprache in Bezug auf die sprachliche ‘‘Modalität’’ (natürliche Spra-
che vs. symbolische Notation) charakterisiert. Das Korpus zum Thema binäre
Relationen wird in Bezug auf Unterschiede in der Sprachproduktion zwischen
den beiden Lehrmaterialstypen charakterisiert. Schließlich wird die Verteilung
der Äußerungsarten in beiden Korpora analysiert. Zum Beweis beitragende
Äußerungen werden darüber hinaus mit Bezug auf ihre Funktion im aktuellen
Beweis (Beweisschritte, Erklärungen der Beweisstrategie, usw.) und die Art
der Inhalte, die in natürlicher Sprache verbalisiert sind (nur logische Verknüp-
fungen, domänenspezifisches Vokabular, usw.), analysiert. Die Sprachvielfalt
entlang dieser Dimensionen wird durch das Type-Token-Verhältnis über den
normalisierten sprachlichen Muster, Frequenzspektren und Wachstumskurven
von Mustervokabular quantifiziert.
Die Ergebnisse zeigen, dass die Sprache im Studentendiskurs über Beweise

nicht so repetitiv ist, wie man erwarten könnte. Studenten verwenden komplexe
natürlichsprachliche Äußerungen nicht nur während der Meta-Kommunikation
mit dem Tutor, sondern auch, wenn sie Beweisschritte beitragen. Die Mehr-
zahl der Äußerungen enthält zumindest teilweise natürliche Sprache. Nur
28 Verbalisierungen von Äußerungen traten in beiden Datensätzen auf. Die
Frequenzspektren und die Muster-Wachstumskurven zeigen das Ausmaß der
Vielfalt in der Sprache. DieMehrheit der Verbalisierungen sind individuell und
treten nur ein einziges Mal auf. Es ist nicht überraschend, dass die Mehrheit
der Studentenäußerungen auf Meta-Ebene Bitten um Hilfe sind: um Hinweise,
um Definitionen, um Erläuterungen usw. Interessanterweise gibt es eine rela-
tiv große Anzahl von Diskursmarker, die typisch für gesprochene Interaktion
sind. Dies deutet darauf hin, dass die Teilnehmer eine informelle Einstellung
gegenüber dem Dialogstil hatten und ihn ähnlich wie einen Chat behandelt
haben, indem sie gesprochene Sprache für den geschriebenen Dialog adaptiert
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hatten, die sie sonst in einer Situation mit einemmenschlichen Tutor verwendet
hätten. Die wichtigste Schlussfolgerung aus den Analysen ist, dass in einem
tutoriellen Kontext auch die scheinbar sprachlich vorhersehbare Domäne ma-
thematischer Beweise durch eine große Vielfalt sprachlicher Ausdrucksmuster
und eine große Anzahl von idiosynkratischen Verbalisierungen geprägt ist,
und dass der meta-kommunikative Anteil des Diskurses, der nicht direkt zur
Lösung beiträgt, Konversationscharakter hat, was die informelle Haltung der
Studenten gegenüber dem computerbasierten Dialog und ihre hohen Erwartun-
gen an den Ressourcen zur Eingabeinterpretation nahelegt. Dies erfordert eine
Kombination von flachen und tiefen semantischen Verarbeitungsmethoden für
den Diskurs: flache musterbasierte Ansätze für diejenigen Beiträge, die nicht
zum Beweis führen, und semantische Grammatiken für die beweisrelevanten
Inhalte, um die Abdeckung zu optimieren.
Die Analyse der Daten zu binären Relationen ergab Unterschiede in der

Nutzung von natürlicher Sprache und mathematischen Ausdrücken zwischen
den beiden Lehrmaterialstypen. Die Gruppe, die wortreiches Lehrmaterial
bekam, verwendete tendenziell mehr natürlichsprachliche Ausdrücke als die
Gruppe, die formelreiches Lehrmaterial bekam. Auch enthält das sprachli-
che Material der Probanden der Gruppe mit wortreichem Lehrmaterial mehr,
aber kürzere mathematische Formeln. Die Gruppe mit formelreichem Lehr-
material dagegen benutzte tendenziell längere Formeln, dafür aber weniger
natürliche Sprache. Da die statistische Analyse der Tutorenbeteiligung keinen
signifikanten Unterschied im Dialogverhalten des Tutors in Bezug auf die
Produktion natürlichsprachlicher versus mathematischer Ausdrücke zwischen
den beiden Versuchsgruppen zeigte, sind diese Unterschiede im Dialogstil
zumindest teilweise auf die Form der Lehrmaterialspräsentation zurückfürbar;
der Lehrmaterialtyp scheint eine Priming-Wirkung auf die Sprachproduktion
der Probanden gehabt zu haben. Die Testergebnisse über den Einfluss der
Lehrmaterialspräsentation haben Auswirkungen auf die Implementierung von
tutoriellen Dialogsystemen. Auf der einen Seite stellt der intensive Gebrauch
von natürlicher Sprache, sei es aufgrund einer wortreichen Präsentation des
Lehrmaterials oder individueller Präferenzen des Studenten für einen be-
stimmten Sprachstil, eine Herausforderung für das Eingabeanalysemodul eines
Dialogsystems dar.
Fürs Verstehen der Fachsprache der Mathematik wird ein zuverlässiger,

robuster Parser sowie ein Diskursanalysemodul benötigt, das in der Lage ist,
eine Mischung aus natürlichsprachlichen und mathematischen Ausdrücken zu
interpretieren. Wenn man, auf der anderen Seite, die Studenten dazu anregt,
eine formelreiche Sprache zu benutzen, indem man ihnen entsprechendes
Lehrmaterial zeigt, wachsen dadurch die Anforderungen an den Parser für
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mathematische Ausdrücke, weil längere Ausdrücke tendenziell fehleranfälliger
sind. Das gleiche gilt für die Copy-Paste-Funktionalität: Auch wenn diese
Eingabehilfe aus der Sicht des Benutzers praktisch ist, kann sie zu Flüchtig-
keitsfehler bei der Überarbeitung von kopiertem Text führen. Dies wiederum
erfordert eine flexible Syntaxanalyse mathematischer Formeln, Fehlerkorrek-
tur und spezifische Dialogstrategien für den Umgang mit fehlerbehafteten
Formeln.

Computerbasierte Verarbeitung informeller Beweise (Kapitel 5
und Kapitel 6)

Unter Berücksichtigung der Bandbreite linguistischer Phänomene in der Ein-
gabe seitens der Studenten und der Notwendigkeit einer prinzipiellen Syntax-
Semantik-Schnittstelle für Inhalte, die zum Beweis beitragen, schlagen wir
einen Ansatz zur Verarbeitung informeller Beweissprache vor, der auf dem
Formalismus der Tiefengrammatik beruht.
Die Analyse der natürlichen Sprache gemischt mit mathematischen Aus-

drücken wird durch Abstraktion von Formeln im Verlauf des Parsings erreicht.
Mathematische Ausdrücke werden durch ihre möglichen syntaktischen Typen
repräsentiert, derenWechselwirkungen mit dem natürlichsprachlichen Kontext
explizit in der Grammatik modelliert werden. Der Parsingvorgang wird unter
Verwendung einer kombinatorischen Kategorialgrammatik ausgeführt, die ei-
ne semantische Dependenzrepräsentation der analysierten Eingabe erstellt. Die
auf dieser Weise erhaltene semantische Struktur gründet auf Tektogrammatik,
eine von der Prager Schule postulierte multistratale Sprachanalyse, die sprach-
liche Bedeutung von Äußerungen unabhänging von ihren Kontext betrachtet.
Tektogrammatische Darstellungen werden dann schrittweise in Bezug auf ihre
mathematische Domäne interpretiert. Zunächst werden ungenaue Lexeme mit
Hilfe eines semantischen Lexikons auf allgemeine Konzepte abgebildet. Dann
werden allgemeine Konzepte durch eine sprachlich motivierte Ontologie auf
Konzepte der mathematischen Domäne abgebildet.
Es werden Sprachverarbeitungsmethoden vorgeschlagen für Phänomene,

die systematisch in den Daten wiederholt auftreten und somit entscheidend
für ein automatisiertes Unterrichten von mathematischen Beweisen sind. Da-
zu gehört die Modellierung grundlegender syntaktischer Phänomene (Wort-
stellung in wiederkehrenden Konstruktionen in der Mathematik, gemischte
Sprache, und syntaktische Unregelmäßigkeiten als Merkmal der betrachte-
ten Domäne) und grundlegende Phänomene von semantischer Ungenauigkeit.
Darüber hinaus wird eine Teilmenge von interessanten Phänomenen analy-
siert, die zwar nicht zahlreich in Korpora aufzufinden, jedoch aus Sicht der
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Computerverarbeitung sehr komplex sind: die semantische Rekonstruktion des
‘‘umgekehrt’’-Operators, das Verweisen auf symbolische Notation und Pro-
positionen, sowie das Korrigieren mathematischer Ausdrücke. Da die Daten
spärlich sind, werden vorläufige Algorithmen vorgeschlagen und in Proof-of-
Concept-Studien evaluiert. In einigen Fällen werden Korpusstudien als erster
Schritt zur Entwicklung von Algorithmen durchgeführt. Die Verarbeitungs-
methoden bestätigen, dass tiefensyntaktische Analyse mit Kategorialgram-
matiken, die domänen-unabhängige Repräsentationen sprachlicher Bedeutung
der analysierten Eingabe aufbauen, sich gut zur Modellierung einer Reihe von
Phänomenen in der informellen mathematischen Sprache der Studenten eignen.

Perspektiven natürlichsprachlicher Beweis-Tutor-Systeme (Ka-
pitel 7)

Der letzte Beitrag der vorliegenden Arbeit ist eine korpusbasierte Leistungs-
bewertung der Parser-Komponente, also des wesentlichen Bestandteils der
vorgeschlagenen Strategie zur Eingabe-Analyse. Die gesammelten Korpora
von Lernerbeweisen werden als Datensammlung für eine intrinsische Auswer-
tung herangezogen, die auf solche Äußerungen im Dialog abzielt, die zum
Beweis wesentlich beitragen. Grammatiken, die Versprachlichungsmuster ko-
dieren, werden systematisch in Simulationsexperimenten wie folgt getestet:
Grammatiken werden nur auf Grundlage von Äußerungsmustern erstellt, die in
den ausgewählten Arbeitsdaten wiederholt vorkommen. (Die wiederkehrenden
Äußerungen stammten aus 42 Dialogen.) Parser, die auf so gebauten Gram-
matikressourcen basieren, wurden auf einer zunehmenden Zahl von Dialogen
getestet. Die Leistung wurde auf zwei Datensätzen ausgewertet: ein Datensatz,
der aus Äußerungen gebaut wurde, die für die Grammatik-Entwicklung ge-
nutzt wurde, und ein Blind-Satz bestehend aus Verbalisierungsmustern, die nur
einmal aufgetreten sind. Kontextfreie Grammatiken, die in der gleichen Weise
entwickelt und getestet wurden, wurden als Baseline verwendet. Abdeckung
(Anteil des Test-Sets, das geparst werden kann) und Parser-Mehrdeutigkeit
werden angegeben.
Die Ergebnisse zeigen, dass manuell erstellte semantische Ressourcen auf

der Basis kombinatorischer Kategorialgrammatiken kontextfreien Gramma-
tiken überlegen sind, was die Abdeckung angeht, aber dennoch ein noch
handhabbares Maß an Ambiguität aufweisen. Außerdem bestätigen sie unsere
bisherige Schlussfolgerung, dass die Sprache, die Studenten verwenden, um
über Beweise zu sprechen, von einem großen Maß an Vielfalt gekennzeichnet
ist, nicht nur auf einer flachen Ebene von spezifischen Formulierungen, sondern
auch auf der tieferen Ebene der benutzten syntaktischen Strukturen.
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Da nur 59 Dialoge für die vorliegende Untersuchung zur Verfügung stan-
den, glauben wir, dass die beiden Korpora unzureichend sind, in dem Sinne,
dass sie zum aktuellen Zeitpunkt nicht repräsentativ genug sind für die robuste
Implementierung eines Dialogsystems fürs Lehren mathematischer Beweise.
Erstens ist die Menge von wiederkehrenden Sprachmustern klein. Dies wider-
spricht der Intuition, dass die Sprache der Beweise klein und repetitiv sein
sollte. Grammatiken, die auf Ressourcen zur Mengenlehre basieren, lassen
sich selbst innerhalb der gleichen Domäne nicht gut übertragen. Ressour-
cen auf Grundlage der Daten von binären Relationen sind besser innerhalb
der Domäne übertragbar, doch der Unterschied zur Performanz in fremden
Domänen ist vernachlässigbar. Mehr Daten müssten gesammelt werden, um
endgültige Schlüsse zu ziehen. Interessanterweise deuten die Ergebnisse auf ei-
ne methodische Frage für WOz-basierte Datenerfassungsstrategien im Bereich
von Beweisen hin: Wizard-of-Oz Experimente, die per se logistisch komplex
und in diesem Fall auch kognitiv anspruchsvoll für den Wizard sind, sollten
mehrere Domänen innerhalb der Mathematik abdecken, nicht nur eine einzige
Domäne pro Experiment, wie im der vorliegende Studie. Dadurch würde man
eine größere Vielfalt von Beweisverbalisierungen erzielen. Wenn man aber
bedenkt, dass die vielversprechenden Ergebnisse zur Abdeckung einer immer
wachsenden Anzahl von linguistischen Phänomenen auf einer relativ kleinen
Anzahl von teilweise modellierten Dialoge fußen, stellen wir dennoch fest,
dass, was die Sprachverarbeitung angeht, die natürliche Sprache als Eingabe-
Modus für interaktive Beweise eine plausible Alternative zu menübasierter
Eingabe oder Struktur-Editoren ist, vorausgesetzt, dass sowohl mehr Daten als
auch mehr Fachläute für Grammatikentwicklung zur Verfügung stehen. Wir
planen, unter anderem, analoge linguistische Analysen von authentischen Be-
weisen durchzuführen, die in mathematischen Publikationen erschienen sind,
um Behauptungen bezüglich linguistischer Eigenschaften dieses Genres zu
prüfen und um die Perspektiven für einen automatisierten mathematischen
Wissenserwerb aus dieser Art von Diskurs zu beurteilen.
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Introduction

Why can’t Johnny prove?

Dreyfus suggests that there are possibly twomain reasons: proving is unlike any
calculation-oriented task that students are confronted with before they get to the
point where proofs become the central mathematical activity. The transition to
the kind of knowledge needed for proving is complex and difficult; especially
since the criteria for judging acceptability of proofs are not clear cut (Dreyfus,
1999).1 Multiple other educational studies which attempted to understand the
cognitive mechanisms involved in learning to do proofs and the obstacles that
learners encounter in the process, showed that fundamental difficulties arise
for students already in recognising the very nature of proof, that is, what a
proof is and its role in mathematics (Bell, 1976; Michener, 1978; Chazan,
1993; Moore, 1994; Sierpinska, 1994; Anderson, 1996; Almeida, 2000; Hanna,
2000, among others). This is not surprising, since, from a pedagogical point of
view, there is little agreement on the notion of proof even among mathemati-
cians and mathematics teachers (Davis and Hersh, 1981; Hersh, 1997a; Knuth,
2002) and the role of proof and the criteria of proof’s validity vary between
mathematics foundations (Hanna, 1995). There is also little agreement as to the
pedagogical methods suitable for teaching to do proofs. Almeida (2000) points
out that while for mathematicians a proof is the culminating point in theory
development which involves intuition, trial, error, speculation, conjecture,
and finally proof, in university courses students encounter a rather different
model: definition, theorem, proof. As a result, students tend to think of proofs
merely as exercises in demonstration and explanation rather than as a way of
gaining insight into a problem. They exhibit ‘‘a lack of concern for meaning,
a lack of appreciation of proof as a functional tool’’ (Alibert and Thomas,
1991), sometimes even do not recognise the need for proof at all (Drey-
fus, 1999; Almeida, 2000; Selden and Selden, 2003), or merely recognise
1Do check out the reference for the source of the opening line.
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that they are supposed to give ‘‘some’’ proof (Almeida, 2000). Hersh
summarises this situation as follows:

When you’re a student, professors and books claim to prove things. But
they don’t say what’s meant by ‘‘prove.’’ You have to catch on. Watch
what the professor does, then do the same thing.
Then you become a professor, and pass on the same ‘‘know-how’’ without
‘‘knowing what’’ that your professor taught you. (Hersh, 1997b, p. 50)

The symbolic notation is only a low-level factor which, however, often also
constitutes a serious cognitive barrier in understanding mathematical concepts
(Moore, 1994; Dorier et al., 2000; Booker, 2002; Downs and Mamona-Downs,
2005).
Whatever Johnny’s fundamental problem in grasping the point of proof, an

uncontroversial claim is this: all mathematics teachers would agree that key in
acquiring proving skills is practice. Practise, practise, practise! One just has
to do a lot of proofs. Well, what if Johnny could practise doing proofs on his
computer?...
The project of which this work was part aimed at realising this very idea.

It investigated the issues involved in provisioning intelligent computational
systems which would help students learn to do proofs the way that a good
teacher would do it: by engaging a student in an argumentative dialogue,
trying to guide him towards discovering a reasoning path leading to a
proof. Tutoring interactions of this kind, involving flexible dialogue and
encouraging self-explanation, have been shown to improve learning (Moore,
1993), whereas natural language would mitigate problems with mathematical
notation identified by Moore (1994) by letting students ‘‘capitalise’’ on their
skills and ‘‘compensate’’ for weaknesses: students unskilled in notation could
still get credit for valid proofs. In this work we address one aspect of the project:
the language of informal mathematical discourse, its linguistic properties and
computational processing. We situate the problem in the context of three
scenarios in which understanding the language of proofs is relevant: tutoring,
interaction with automated mathematics assistance systems, and document
processing. We focus, however, on students’ language in the context of
tutoring.

Generally speaking, the term ‘‘mathematical discourse’’ may be broadly
understood to refer to any kind of discourse which concerns mathematics:
from scientific discussions among mathematicians or classroom discussions
between students and teachers, through mathematical textbooks and scientific
publications, to popular science prose. The discourse may be concerned
with analysis of historical developments in mathematics, the evolution of
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understanding of mathematical concepts and of the language used to name
them, discussions of examples, explications of mental representations (ways of
thinking about a concept), or simply statements ofmathematical facts. Steenrod,
Halmos, Schiffer, and Dieudonné (1973) and Bagchi and Wells (1998) refer to
the latter kind of mathematical discourse as the mathematical register.
Bagchi and Wells loosely define mathematical register as ‘‘text in a

natural language, possibly containing embedded symbolic expressions, [that]
communicates mathematical reasoning and facts directly’’. Since mathematical
register focuses on mathematical facts and the formal structure, it is presumed
that ‘‘statements in mathematical register [can] be translated into a sequence
of statements in a formal logical system such as first order logic’’ (ibid.)
Examples ofmathematical register includemathematical definitions, statements
of theorems, and proofs of theorems. The core contributions of this thesis
concernmathematical discourse –mathematical register – in this narrow sense.2
The most prominent surface characteristic of mathematical discourse is its

familiar mixture of symbols and natural language. While, in principle, proofs
can be presented using the symbolic mathematical language alone – as in formal
logic, for instance – this presentation style is not common in communicating
mathematics. Halmos (1970) argues that symbolic notation does not have to
dominate in a proof for it to make a ‘‘better’’ proof.
Support for open-ended natural language in proof tutoring systems requires

that the language understanding component be capable of building a symbolic
representation of the learners’ input which can be translated into an input
representation of a deduction system responsible for reasoning tasks. With the
view to provisioning such input processing capabilities we collected a corpus
of learner proofs constructed in natural language interactions (in German) with
an anticipated dialogue-based tutoring system simulated by a human. Using
qualitative and quantitative analysis methods, in this thesis we attempt to
answer the following questions based on this data:

• What language phenomena emerge in naturalistic dialogues with a proof
tutoring system?

• Does the range of linguistic verbalisations tend to be limited or is the
language diverse? Is the students’ language affected by the way the study
material is presented?

• Given the range of language phenomena in informal mathematical
discourse, what is an appropriate approach to processing this kind

2Whenever we use the term ‘‘mathematical discourse’’ or ‘‘mathematical language’’, we have
in mind mathematical register as defined here and its language, respectively. Other types of
mathematical discourse are outside the scope of this work.
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of language? What semantic representation provides the appropriate
meaning abstraction for further semantic processing of the identified
language phenomena?

• Can a systematic procedure be defined which would take informal proof
steps as input and return as output a representation suitable for translation
to a domain reasoner’s language? What parameters are involved? What
processing subcomponents and resources are needed?

• What is the prospect for automated tutoring of proofs in natural
language?

We show that students’ language in computer-assisted tutoring of ma-
thematical proofs is rich in complex linguistic phenomena (Chapter 3) and
characterised by a large variety of verbalisations, and that students tend to use
the kind of language that they are confronted with in the learning materials
they use for study (Chapter 4). Based on the insights from the linguistic
analysis, we propose an architecture for computational processing of proof
language based on a deep semantic grammar and a strategy for processing the
mixed natural and symbolic language typical of mathematics (Chapter 5). We
show how to model selected recurring phenomena systematically in a semantic
framework and propose initial algorithms for those complex phenomena which
would require further data collection for a more thorough analysis and evalua-
tion (Chapter 6). Finally, we show that the grammar formalism on which our
language processing architecture crucially relies, provides good generalisations
in modelling linguistic phenomena (Chapter 7), which lets us conclude that
the language modelling strategy we propose is a viable contribution towards
computational processing of informal mathematical discourse.
Parts of the work presented here had been published in collaborative

articles. Material from the following previously published articles is included:
Chapter 2: (Benzmüller et al., 2003a; Wolska et al., 2004b; Benzmüller

et al., 2006)
Chapter 3: (Benzmüller et al., 2003b)
Chapter 4: (Wolska and Kruijff-Korbayová, 2006a; Wolska, 2012)
Chapter 5: (Wolska and Kruijff-Korbayová, 2004a,b; Wolska, 2008; Wol-

ska et al., 2010)
Chapter 6: (Wolska and Kruijff-Korbayová, 2004a; Wolska et al., 2004a;

Gerstenberger andWolska, 2005;Horacek andWolska, 2005a,c;
Wolska and Kruijff-Korbayová, 2006b; Horacek and Wolska,
2006a,b,c)



Chapter 1

Background and related work

This chapter introduces the project within which this work has been set and
summarises the state of the art in modelling mathematical discourse. We start
by presenting target scenarios envisaged for our approach to computational
interpretation of mathematical language. After introducing the basic notions
relevant when talking about discourse processing in our domain, a high-level
architecture of a system for processing mathematical language in the target
scenarios is outlined. The tasks of each of the system components are briefly
summarised. The reminder of the chapter is dedicated to a discussion of
related work. We briefly report on processing user input in an existing proof
tutoring system, on formal models of mathematical language, implemented
systems for processing mathematical discourse, controlled natural languages
for mathematics, and annotation of mathematical proofs. The chapter closes
with a discussion of implications for our approach.

1.1 Target scenarios

The research reported in this thesis stems from a larger project, DIALOG,whose
objective was an empirical investigation into the issues involved in modelling
natural language interaction with a mathematics assistance system (Pinkal
et al., 2001, 2004).1 While the core focus of the DIALOG project was
on interactive tutoring, the linguistic analysis of mathematical language, the
language interpretation methods we propose and the evaluation results we
report are relevant in the context of processing mathematical discourse in
general, be it tutorial dialogue or mathematical prose. We envisage three
application scenarios and larger architectures in which they can be applied.
1DIALOG was part of the ‘‘Resource-adaptive cognitive processes’’ Collaborative Research
Centre funded by the Deutsche Forschungsgemeinschaft as Sonderforschungsbereich 378.
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The first scenario and the main motivation of this work, formulated in the
introduction, is computer-based interactive tutoring of mathematical proofs
and is related to the project from which this work stems. The ultimate goal
in this context is the provision of systems for tutoring mathematical proofs by
means of flexible dialogue in natural language. Target users of such systems are
learners of mathematics and mathematics teachers contributing proof exercises.
The linguistic material which needs to be interpreted in this context are the
utterances which learners enter while communicating with the system, be
it proof steps or meta-level speech acts, such as requests for explanation of
domain concepts. The second, related scenario is interactive proof construction
with the help of human-oriented automated deduction systems. The goal in
this case is the provision of natural language user interfaces for theorem
provers, possibly embedded within larger mathematical document authoring
environments. Potential users of such applications are mathematicians or
teachers preparing course materials or textbooks. Different variants of this
scenario might involve not only different degrees of linguistic richness, but
also different degrees of interaction flexibility: the proof language might be
unconstrained or it might be a controlled natural language, proofs might be
constructed either incrementally step by step, each step being verified at a time
(much like in interactive proof assistance systems) or complete proofs could
be checked at once as self-contained discourses. The linguistic material to be
interpreted in this context are proof steps of different complexity constructed
by a user of an automated deduction system, a mathematician or a student. The
third scenario involves computational processing of mathematical documents,
textbooks or scientific publications, such as those found in arXiv,2 the online
preprints archive. The goal in this case is to enable search, information retrieval,
and knowledge extraction in scholarlymathematical documents. Computational
interpretation of proof discourse in this context would be a step towards
transforming documents into a machine-understandable representation and,
in a further perspective, towards automated verification of published proofs.
While no interactive proof construction is involved here, this scenario involves
authentic mathematical discourse as it is routinely written and published by
mathematicians. In terms of authenticity of the linguistic material it is therefore
closer to the first scenario and rather more challenging than the second.
Common to the three scenarios is that, ultimately, mathematical content

expressed in natural language – mathematical proofs – needs to be processed
by a reasoning component, an automated theorem prover or a proof checker,
in order to verify its validity. Previous work in the latter scenario relied on
a dedicated reasoning system whose proof representation language directly
2http://www.arxiv.org

http://www.arxiv.org
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reflected the discourse structure representation used for modelling proofs at
the linguistic level (Zinn, 2006). By contrast to this work, we do not assume
that the reasoner is directly linked with the language understanding component
by means of its internal representation. Instead, we construct a symbolic
representation of the linguistic meaning of a proof discourse fragment and
rely on a dedicated procedure to interface between this representation and a
formal proof representation required by one of the existing automated deduction
systems. Below we outline a general architecture of a system for interactive
processing of natural language proofs in the scenarios mentioned above.

1.2 High-level system architecture

Before presenting the architecture, we introduce the terminology which we will
use when talking about the system’s components and the interpretation strategy.
The macrostructural discourse unit of interest in our scenarios is a proof.

In the context of a mathematical document, it could be of course another
mathematical discourse entity, such as a definition of a concept, a statement
of a theorem. An elementary discourse unit in a proof is a proof step which
can consist of a number of elements (an assertion, inference rule(s), etc.) The
basic notions relevant in the context of discourse/dialogue processing are a
communicative unit, a contribution, and a discourse model:

Communicative
unit

By a communicative unit we mean a scenario-specific
unit of communication from the point of view of the
macrostructure of the discourse under analysis. In the
dialogue-based tutoring scenario a communicative unit
is a dialogue turn which a learner composes while inter-
acting with the tutoring system. In the interactive proof
construction scenario, depending on the mode of user in-
teraction, a communicative unit may be a single sentence
which constitutes a proof statement or a multi-sentence
discourse segment which constitutes an entire proof. In
the document processing scenario, it is a discourse seg-
ment which comprises an entire proof in a document. As
an elementary communicative unit we consider a clause.
A communicative unit may consist of one or more utter-
ances in a dialogic discourse or sentences in a narrative
discourse.

Contribution,
Proof contribution

In dialogue and conversation analysis contribution is
a basic unit, a segment ‘‘contributed’’ by a dialogue
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participant. It is often used synonymously with the term
‘‘turn’’. A turn may consist of one or more utterances, in-
tentional, meaningful communicative acts in an interaction.
In the tutoring scenario, utterances adding information to the
solution being constructed we will call solution-contributing
utterances. A proof contribution is a solution-contributing
utterance which expresses proof-relevant content, that is, one
or more proof steps or parts thereof. A more detailed ty-
pology of utterances in the (proof) tutoring scenario will be
presented in Chapter 4. More generally, contributions which
express domain-relevant content we will call domain contri-
butions. Examples of domain contributions include solution-
contributing utterances or students’ requests for explanation
of a concept, for instance: ‘‘What is a powerset?’’.

Discourse
model

Adiscoursemodel is a symbolic representation of the discourse
structure built up incrementally out of (parts of) discourse
segments. It represents discourse segments’ semantics and
discourse-level relations (for instance, rhetorical relations)
between segments or parts thereof. By semantics of a discourse
segment we mean its linguistic (domain-independent) and
domain-specific interpretation. In particular, it is possible that
the former is known (has been constructed), while the latter is
not (domain interpretation of the linguistic content could not be
assigned). Depending on the linguistic content of the discourse
segments, discourse relations between segments or elementary
units may be unknown (underspecified) as well. In dialogic
discourse, a discourse model is part of a dialogue model,
which is, in turn, a symbolic representation of the dialogue
structure and includes a model of the state of the dialogue at
any point of interaction and a model of the dialogue flow.

Independently of the scenario, we assume that mathematical language in-
terpretation is part of a larger modular mathematical discourse processing
architecture whose components perform specialised tasks specific to the sce-
narios outlined above. Figure 1.1 depicts the place of the language interpretation
process within a system for processing mathematical discourse, be it dialogic
or narrative. The language interpretation process operates on communicative
units. In this thesis, we focus on the semantic processing of a subset of proof
contributing utterances. The process comprises a number of subprocesses
whose purpose is to build a symbolic representation of proof contributions’
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Figure 1.1: Language interpretation process in the overall architecture
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Figure 1.2: High-level architecture of a system for processing mathematical
discourse

semantics both at the domain-independent and the domain-specific levels. In
the approach we propose, these representations mediate between the textual
natural language presentation of the proof contributions and a formal proof
representation language constructed at the interface to a domain reasoner.
Figure 1.2 schematically presents a generalised view of an architecture of a
computational system for processing mathematical discourse in the context
of the described scenarios. It comprises the core modules of such a system,
including components specific to the different scenarios. Modules common
to the three scenarios are marked with solid lines. The module marked with
dashed-lines, Tutoring, is an additional module specific to the tutoring scenario.
The language interpretation processes are part of the input interpretation
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module; ‘‘input’’ is a communicative unit relevant in the given scenario.
Semantically processed contributions are incorporated into a discourse model
and, subsequently, the relevant domain-level units (proof steps, parts thereof,
or entire proofs) are translated into a formal language of a reasoner. Below we
elaborate on the tasks of each of the architecture components.

Text extraction The purpose of the text extraction module is to identify
and isolate the linguistic material relevant for analysis. Text extraction oper-
ates at the interface between the input acquisition module (a graphical user
interface (GUI), for instance) and the input interpretation module. Its task is to
deliver the text of communicative units in a format which the language interpre-
tation module expects. This may involve stripping unnecessary markup from
the original input or extracting the relevant units from a larger mathematical
discourse (for instance, extracting proofs from a mathematical document).3

Input interpretation In general, the task of the input analysis module is
two-fold. First, it is to construct a representation of the linguistic meaning and
the domain interpretation of the input contributions. Second, given the linguistic
meaning and depending on whether the contribution has an interpretation in the
mathematical domain (is a domain contribution), it is to identify and separate
within the contribution’s symbolic representation the parts which convey proof
steps (proof contributions), and thus should be passed on to a reasoner, and
the parts which a reasoner does not process, but which, in case of the tutoring
scenario, should be processed directly by the dialogue processing component.
The core focus of this thesis is an interpretation strategy for proof contributions
and will be discussed in more detail in Chapters 5, 6 and 7.

Discourse/dialogue processing Discourse processing addresses prag-
matic (in the technical sense of the word) phenomena, that is, semantic
phenomena beyond the level of compositional semantics of an utterance and
the lexical meaning of words from which the utterance is composed. This
includes processing discourse cohesion phenomena (resolving referring ex-
pressions, etc.), rhetorical phenomena (identifying rhetorical relations between
elementary discourse units), discourse structure phenomena (identifying larger
segments expressing a certain purpose), and recognising the illocutionary force
of utterances (the functional role of utterances in a discourse).
3We include this process for the sake of completeness, however, we do not address it any further
in this work. Likewise, we do not address user interface issues. We assume that the input to the
language processing component contains only proof contributions, that is, one or more utterances
which convey proof steps or parts thereof.
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In a dialogue processing architecture a discourse model is a part of a
dialogue model, a structured representation of the state of dialogue at any
point of interaction, the so-called ‘‘information state’’, and of the flow of
interaction in the given domain. The latter is a representation of dialogue
structure which controls the dialogue progression and specifies ways in which
the information state is to be updated following each contribution. Dialogues
may be represented as frame structures (see, for instance, (Bobrow et al., 1977)),
state transition graphs (e.g., (Metzing, 1980; McTear, 1998)), information state
representations with update rules (Traum et al., 1999), a combination of those
(e.g., a state transition graph with information state update rules (Lemon and
Liu, 2006; Horacek and Wolska, 2005d; Buckley and Wolska, 2007, 2008a)),
or as a probabilistic system (e.g. (Young, 2000)). The purpose of the dialogue
structure model is to drive the interaction forward by selecting a dialogue move
to be contributed following a contribution of a dialogue system’s user.4

Proof representation processing Proofs are structured discourseswhose
core elements are mathematical statements along with references to other state-
ments which justify the validity of the inferences; these may be theorems or
lemmata, or previously inferred statements. Proofs may be expressed in an
informal language admitting of arbitrary natural language verbalisation, as in
textbooks or mathematical publications, or in a formally defined language, as in
formal logic or automated deduction systems. Linguistic properties of informal
proof language will be discussed in Chapter 3. Proof discourse understanding
consists in, firstly, understanding the language of the discourse and, secondly,
recognising, understanding, and verifying the validity of (i) the individual
statements, (ii) the relations between them, and (iii) the macrostructure of the
proof. The latter involves, for instance, identifying the justifications of proof
4A dialogue move is a dialogue contribution which expresses a communicative intention, for
instance, that of requesting information or requesting that some action be performed (a command).
Examples of taxonomies of dialogue moves developed for dialogue and dialogue systems research
include DAMSL (Allen and Core, 1997), DATE (Walker and Passonneau, 2001), or DIT++ (Bunt,
2009). The notion of a dialogue move stems from the notion of a speech act (Austin, 1962; Searle,
1999). In speech act terms, ‘‘information request’’ or ‘‘command’’ describe the utterance’s
illocutionary force, that is, the speaker’s intention expressed in uttering certain words.
Some dialogue contributions have an implicit or explicit meta-level communicative function
of facilitating the maintenance of the state of knowledge shared between dialogue participants,
the ‘‘common ground’’. These contributions are called ‘‘grounding moves’’ and include, for
instance, requests for clarification or acknowledgements. Grounding is a meta-communicative
process in conversational interaction which interlocutors employ to establish whether the other
party has understood what has been said as intended (Isaacs and Clark, 1987; Clark and Schaefer,
1989; Clark and Brennan, 1991; Clark, 1996). See, for instance, (Traum, 1994; Matheson et al.,
2000; Li et al., 2006; Bunt et al., 2007) for research on computational models of grounding.
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steps (be it those explicitly stated or those left implicit) and the larger reasoning
structure into which statements are organised; this structure may result from
the choice of the proof method, as in, for instance, proofs by induction or
proofs by cases. Proof representation processing is concerned with both of
these aspects: the proof language and the proof structure.
The first proof representation related task is to mediate between the

symbolic representation of the proof contributions constructed by the language
understanding module and that of a domain reasoner. Introducing a dedicated
interface between these representations ensures modularity of the overall
architecture and a clear separation of linguistic processing and domain reasoning
(see Section 5.1 for further motivation of the interpretation architecture design).
From a practical point of view, this task consists in defining a translation
between the symbolic representations of proof contributions produced by the
language understanding process and the language of an automated prover or
proof checker which serves as the domain reasoner.
The second proof representation processing task is to build and maintain

a representation of the proof constructed in the course of dialogue: of the
statements themselves, the relations between them, and of the overall structure
of the proof. This may, moreover, involve storing correctness evaluations of
proof contributions, obtained from a domain reasoner, or other evaluations
relevant in deciding on further actions; for instance, granularity or relevance
evaluations. In the tutoring scenario, proof contributions evaluated as invalid
or inappropriate in the given context may also need to be stored in order to
provide the tutoring module with information which may be useful in deciding
on the immediate response and an overall pedagogical strategy to adopt.5

Domain reasoning By domain reasoning in the context of the presented
scenarios we mean theorem proving. Generally speaking then, a domain
reasoner needed for this task is an automated deduction system, however, the
detailed task specification is dependent on the scenario and its requirements.
Automated deduction has been an active research area of artificial intel-

ligence for over 30 years. Many automated theorem provers exist, however,
not all of them can be immediately used in the scenarios in question. Theorem
provers differ in their proof automation capabilities (the extent to which they
can make inferences or produce entire proofs automatically), in the require-
ments as to the level of detail in the proofs they can verify (whether they can
5In the DIALOG project publications we referred to the module performing proof representation
processing tasks in the software systems’ jargon as the ‘‘Proof Manager’’. More details on the
proof structure processing tasks can be found in (Benzmüller and Vo, 2005; Benzmüller et al.,
2009) and on the issues related to automated evaluation of granularity in (Schiller et al., 2008).
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reason at the level of abstraction at which humans do, in particular, whether
they can infer omitted proof steps and parts of proof steps; this is related to
the previous point: automation capabilities), and in the type of information
they can provide about the automatically inferred steps (for instance, whether
they can be queried about inference rules applied in an automated derivation).
They also differ in the formal languages in which proofs must be specified in
order to be processed. In fact, there is no ‘‘standard’’ proof language for deduc-
tion systems. This is due, among others, to the fact that the systems are based
on different underlying mathematical foundations – set theory, type theory –
which ‘‘speak’’ different languages. The high-level representations proposed
by Autexier et al. (2004) and Autexier and Fiedler (2006) are ‘‘assertion-level’’
representations which admit of underspecification typical of proofs produced
by humans. The differences in the input languages to theorem provers is
the main reason why dedicated translations into specific proof languages are
needed; in our architecture, this translation is the responsibility of the proof
representation processing module discussed above.
Without making claims as to which existing theorem prover would be best

suited for the considered scenarios, the requirements on the reasoner can be
summarised as follows: In the document processing scenario, a proof checker
would be needed for a proof verification task. The proof checker would have to
handle human-oriented underspecified proofs. The interactive theorem proving
scenario would require a proof checker, although a fully-fledged theorem
prover would certainly be of help to a proof author.6 Tutoring is perhaps the
most demanding of the three scenarios because of the properties of proofs
produced by learners. First, similarly to the other scenarios, learner proofs
tend to omit proof steps or parts of proof steps, therefore mechanisms of
reconstructing missing proof parts are necessary. Second, learners are prone
to producing false proof steps, therefore, fast falsification is required. Third,
special functionality may be needed in order to support tutoring, for instance,
in deciding on whether a contributed correct step is relevant in the given proof
context and of appropriate granularity, or in generating tutoring hints. In the
DIALOG projectΩmega (Siekmann et al., 2003) was intended as the reasoning
system. More details on this system and on how it was adapted to support the
kinds of proofs which students produced in our experiments and tutoring itself
can be found in the following publications: (Vo et al., 2003; Autexier et al.,
6We are not aware of large scale evaluations of theorem provers handling formalisations of proofs
published in mathematical articles nor of theorem provers supporting natural language input;
however, see (Wagner et al., 2007) for an attempt in this direction and (Vershinin and Paskevich,
2000; Verchinine et al., 2008) and Naproche (http://www.naproche.net [Accessed: 2006]) for
controlled natural language approaches.

http://www.naproche.net
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2004; Benzmüller and Vo, 2005; Autexier et al., 2009; Benzmüller et al., 2009;
Autexier et al., 2012). Proofs from the corpora collected in the project were
also used in a case study with Scunak (Brown, 2006a,b).

Tutoring In the tutoring scenario, the tutoring module is responsible for the
pedagogical aspects of the interaction. It is the tutoring module that decides
which dialogue move is to be performed once a learner’s contribution has been
grounded4 at the communicative level and how it should be realised by the
generation process (discussed below).
Automated tutoring relies on symbolic or probabilistic models of pedagog-

ical strategy which, effectively, drives the dialogue. In order to decide on a
dialogue action, a pedagogical strategy model typically refers to the history
of the learner’s performance in prior and current interactions or assessments,
the so-called learner/student model (VanLehn, 1987; Elsom-Cook, 1993). The
teaching strategy itself may comprise a static model of pedagogical knowledge
on tutoring in the given domain (see, for instance, (Rosé et al., 2001; Zinn
et al., 2003; Fiedler and Tsovaltzi, 2003; Tsovaltzi et al., 2004)) or a complex
adaptive symbolic or stochastic model which adjusts its behaviour based on,
among others, interaction variables and a learner model (Dzikovska et al.,
2007; Forbes-Riley and Litman, 2009; Tsovaltzi, 2010). Recent work on peda-
gogical strategy models for intelligent tutoring systems takes into account such
aspects of interaction as learner’s uncertainty as well as affect and emotions
in tutoring (see, for instance, (Litman and Forbes-Riley, 2004; D’Mello et al.,
2007; Porayska-Pomsta et al., 2008)).

Response generation/Realisation The complexity of the response ge-
neration task, the categories of responses and their form, depends on the
scenario. In the case of the tutoring domain it also depends on the adopted
pedagogical strategy, since it directly influences the range of dialogue moves
needed to realise the pedagogical dialogue actions; which may, in turn,
also influence the range of dialogue moves contributed by learners during
interaction. Response types may range from simple acknowledgements,
through evaluative or corrective feedback, to hints of various complexity; for
instance, hints on omitted proof elements in the document processing scenario
or pedagogical hints motivated by a teaching strategy in the tutoring scenario.
Dialogue move taxonomies for the tutoring scenario have been proposed, for
instance, in (Marineau et al., 2000; Porayska-Pomsta et al., 2000; Tsovaltzi and
Karagjosova, 2004; Wolska and Buckley, 2008; Campbell et al., 2009).
The standard language generation process comprises three phases, each

of which involves a number of substeps (Reiter and Dale, 2000): (i) content
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and structure determination, that is, selection of information, communicative
goal(s), to be communicated and selection of the larger structure in which
it should be communicated, (ii) sentence/utterance planning or so-called
microplanning, that is, lexical selection, syntactic structure selection, etc., and
(iii) surface realisation, that is, producing the surface form of the utterance(s)
to be communicated from the representation constructed in the previous two
steps (putting the abstract representations of communicative goals into words).
In the tutoring context, the first two phases are of course influenced by
the tutoring process and the pedagogical strategy it realises. In particular,
a pedagogical strategy might not only determine the pedagogical content
and the dialogue moves to be communicated at a given dialogue state, but
also influence the high-level decisions as to how a pedagogically motivated
communicative goal is to be broken down into atomic communicative goals,
how these atomic goals should be related to one another in rhetorical terms,
down to specifying the lexemes to be used as well as the mood and mode of
the utterance(s) to be generated. We do not elaborate any further here on the
generation process itself nor on the methods employed in building language
generation components in tutorial dialogue systems because in the overall
architecture the generation process does not interact directly with the semantic
interpretation process which is the main focus of our work. However, further
discussion of response generation issues in the context of mathematics tutoring
can be found, for instance, in (Callaway et al., 2006), while issues involved in
natural language verbalisation of proofs, for instance, in (Huang and Fiedler,
1997; Holland-Minkley et al., 1999; Horacek, 2001a; Fiedler, 2005).

The processes outlined above constitute the core of an architecture for math-
ematical discourse processing for the scenarios we introduced in the beginning
of this chapter. A complete computational system would of course include
processes and components which we will not discuss here. Their purpose and
functionality would depend on the larger application scenario. For instance, in
the tutoring scenario the proof tutoring system might be embedded in a larger
environment for learning mathematics, such as LeActiveMath (Melis et al.,
2001, 2006) which is itself a complex system incorporating dedicated com-
ponents for curriculum development, exercise sequencing, learner modelling,
and others. In the interactive proof construction scenario, proofs might be con-
structed in a mathematical document authoring environment with sophisticated
mathematical expression editing capabilities, requiring a complex graphical
interface; as in, for instance, (Wagner et al., 2007; Wagner and Lesourd, 2008).
Finally, mathematical document processing for knowledge extraction, infor-
mation retrieval, and semantic search, would necessitate a range of components
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providing support for content-oriented services, such as management of digital
libraries of mathematical documents and storage of mathematical knowledge
in structured repositories, both of which are active areas of research in the
Mathematical Knowledge Management and Digital Mathematical Libraries
communities. The arXMLiv project, aiming at migrating arXiv documents into
an XML-based representation, is an example of an effort in this direction.7
While the described scenarios are diverse in terms of their purposes, the

functionalities they are intended to offer, the users they target, and, possibly,
the language style of their proof discourses (more or less verbose), they all
require that the mathematical language is computationally processed in order
to enable automated proof checking. In the following section we give a brief
overview of related work on modelling and processing mathematical language.

1.3 Related work

The early history of attempts at building systems for natural language mathe-
matics – Abrahams’ Proofchecker (1963), Bobrow’s STUDENT (1964), and
Simon’s Nthchecker (1990) – has been summarised in (Zinn, 2004). We do
not repeat the summaries here and refer to Zinn’s dissertation’s Section 2.1
for an overview. In this section, we briefly outline related work on modelling
mathematical discourse by pointing out five directions of this research: (i) in-
teractive natural language tutoring of proofs, exemplified by the EXCHECK
system, (ii) formal (theoretical) models of mathematical discourse, (iii) imple-
mented systems for processing mathematical discourse, (iv) controlled natural
languages for proofs, and (v) proof annotation languages.

1.3.1 Natural language proof tutoring with EXCHECK
Patrick Suppes’ group at the Stanford University Institute for Mathematical
Studies in the Social Sciences (IMSSS) were among the pioneers in large-scale
computer-assisted instruction (CAI). The IMSSS research on computer-based
teaching of mathematics dates back to the 1960s8 and has encompassed a multi-
tude of domains, including, aside from various areas of mathematics, Slavonic
languages, music, and computer programming. In fact, the IMSSS systems
from the 1970s and their successors have continued being used in university-
level tutoring; for instance, the VALID system for symbolic logic (Suppes,
7XML, eXtensible Markup Language, is a generic document encoding scheme for machine-
readable documents (http://www.w3.org/TR/REX-xml [Accessed: 2006]). Further information on
arXMLiv can be found at http://kwarc.info/projects/arXMLiv [Accessed: 2006].
8The early history of this research is reported in (Suppes, 1974).

http://www.w3.org/TR/REX-xml
http://kwarc.info/projects/arXMLiv
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1981) and its successors at the Carnegie Mellon University (Scheines and Sieg,
1994) or the EPGY proof environment at Stanford (McMath et al., 2001).
EXCHECK is one of the IMSSS systems developed in the mid-70s.

Since then, different versions of the system have taught Stanford students in
university-level courses on elementary logic, axiomatic set theory, and proof
theory.9 Much like in our experiments, a student working with EXCHECK
would be presented with lesson material in the domain of interest (set theory,
for instance) and asked to prove theorems from this domain.
EXCHECK was designed with specific goals in mind (see (Smith and

Blaine, 1976)) two of which are most relevant here. First, it was intended
to serve as a base and a practical laboratory for research on natural language
processing. Mathematics was chosen as the domain of foremost interest
because on the one hand, its semantics is well-understood, while on the
other hand, informal mathematics and its language offer interesting research
problems from the point of view of both automated problem solving as well
as natural language processing. Second, proof tutoring was intended to be
realised at a level appropriate for human problem solving, rather than driven
by the requirements of an underlying proof checking system. Already at the
time of EXCHECK did the IMSSS researchers observe that informal proofs, in
particular, students’ proofs, substantially differ from formal proofs which can
be verified by proof checkers or constructed by automated deduction systems.
EXCHECK was intended to bridge this gap and as such was among the first,
if not the first automated system addressing human-level theorem proving.10
The DIALOG project was in fact driven by the same motivations and goals as
those behind the EXCHECK research (Benzmüller et al., 2009).
There is a number of interesting aspects to the EXCHECK system and

similarities with the tutoring system for mathematical proofs envisioned in the
DIALOG project.11 First, EXCHECK allows students to construct proofs in
an interactive manner. That is, the system and a student engage in a dialogue
in which the student constructs a proof with the help of the system step by
step. Second, EXCHECK proofs can be formulated in a ‘‘natural style’’ which
9Numerous articles related to the IMSSS research on CAI, in particular the EXCHECK system,
are available on Suppes’ corpus website (http://suppes-corpus.stanford.edu [Accessed: 2006]).
It would be impractical to cite all the relevant published work here because the resulting list of
references would probably be almost as long as this chapter itself. Therefore, we only cite those
papers which specifically address or mention those aspects of the systems which are of particular
interest here; that is, language and dialogue processing. An overview of the systems and of
empirical studies during the first decade of the systems’ use can be found in (Suppes, 1981).
10See (Autexier et al., 2004; Benzmüller and Vo, 2005; Autexier and Fiedler, 2006) for a discussion
on human-oriented proofs and automated deduction in the context of the DIALOG project.

11As a convention we will use present tense when talking about the EXCHECK from the 70s; even
if the modern EXCHECK-based systems differ from the original version in functionality.

http://suppes-corpus.stanford.edu
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Table 1.1: Fragment of the EXCHECK input language; examples of formal
expressions (left) and their natural language verbalisations (right)

Formal Informal
(A x)(E y)(x sub y) For every x there is a y such that x is a subset of y

Function(F) & F:A -> B F is a function and F maps A into B

{x : x neq x} = 0 The set of all x such that x is not equal x is empty

(A A){Dinfinite(A) IFF For all A, A is Dedekind-infinite just in case
(E C)(C psub A & C := A)} there is a C such that C is a proper subset of A

and C is equipollent to A

(∀x)(x ∈ A → x ∈ B) For all x, if x is in A then x is in B

(∀x)(x ∈ B) For all x, x is in B

is close to the standard mathematical practice. In particular, proofs can be
informal in the sense that not all the steps of reasoning must be specified.
Moreover, EXCHECK admits of certain flexibility in the language style of the
input: proofs can be written using either symbolic mathematical expressions
or in ‘‘mathematical English’’. Table 1.1 shows examples of inputs which it
can interpret: both symbolic expressions as well as their corresponding natural
language verbalisations are shown; see (Smith and Blaine, 1976; McDonald,
1981) (punctuation and capitalisation preserved).
As the examples illustrate, the range of complexity of the EXCHECK input

statements is quite broad, encompassing from simple to compound formulas
as well as utterances formulated entirely in natural language. This coverage
is achieved by explicit authoring of input utterances, that is, specifying the lan-
guage fragment by means of a grammar. EXCHECK has been conceptualised
as an environment for both authoring proof exercises and tutoring. As part
of the exercise authoring process a content developer must define a language
fragment to talk about the mathematical theory in question, that is, formulate
natural language sentences, such as those exemplified in Table 1.1, which a
student can use. This is done by explicitly writing a context free grammar
for the anticipated language fragment as well as ‘‘macro templates’’ which
transform the parse outputs directly into the internal representation of the proof
checker. The language processing component of EXCHECK, CONSTRUCT,
is presented in detail in (Smith, 1974) and (Smith and Rawson, 1976). While
there are limitations on the complexity of the natural language which can be
interpreted by the system (for instance, the utterance ‘‘Everything is in B’’,
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which is a possible paraphrase of the licensed input utterances ‘‘(∀x)(x ∈ B)’’
and ‘‘For all x, x is in B’’, cannot be parsed), the EXCHECK/CONSTRUCT
system is the most impressive of the implemented systems, considering its
coverage and the fact that the system has been actually used in teaching proofs;
see (Suppes and Sheehan, 1981) and the other reports on the university-level
computer-assisted instruction at Stanford on the Suppes’ corpus website.

1.3.2 Formal analysis of mathematical language
By formal analysis of mathematical language we mean systematic studies on
formal semantics of the mathematical register. Within this line of research,
Fox (1999) focuses on certain ‘‘non-schematic’’ occurrences of variable letters
in mathematics which cannot be modelled in the standard way as referring
expressions and proposes to extend theories of discourse interpretation for
mathematics with Fine’s theory of arbitrary objects (Fine, 1983).
Ganesalingam (2009) gives a formal analysis of a wide range of phenomena

in mathematical language, focusing in detail on ambiguity in the symbolic
mathematics. His syntactic analysis is based on a context-free grammar and
semantics ismodelled in a variant of Discourse Representation Theorymodified
for the language of mathematics. A formal type system is developed to account
for ambiguity in the mixed, symbolic and natural language. Ganesalingam’s
ultimate goal is to ‘‘build programs that do mathematics in the same way as
humans do’’. Our goals in this thesis are, by comparison, much more modest
and, of course, practically-driven. Two comments are made in relation to our
work (Ganesalingam, 2009, p. 23): ‘‘The material produced by [users with
‘little to fair mathematical knowledge’] is not related to the formal dialect of
mathematics’’ – as we will show, students’ mathematical language exhibits
phenomena found in textbooks as well as a range of other language phenomena
– and ‘‘[(Wolska and Kruijff-Korbayová, 2004a)] treats material in German,
whereas we focus exclusively on English’’, which seems to suggest that the
language phenomena found in German might be substantially different from
those found in English. We translate our German examples preserving the
syntax and semantics as closely as possible, in order to illustrate the cross-
linguistic nature of the language phenomena found in our data. Neither Fox’
nor Ganesalingam’s analyses appear to be actually implemented.

1.3.3 Processing natural language proofs
Attempts at computational processing of informal natural language proofs have
been so far based on constructed examples or restricted to short exemplary



48 Students’ Language in Computer-Assisted Tutoring of Proofs

discourses. Ranta (1994, 1995b, 1996) analyses mathematical language in
terms of Martin–Löf’s type theory and in subsequent work builds a proof
editor with natural language input based on a formalisation in the Grammatical
Framework (Ranta, 1995a). The final analysis in (Hallgren and Ranta, 2000)
appears to be oriented towards building appropriate type representations based
on the input to the proof editor, rather than towards principled account of
linguistic phenomena. A type-theoretical approach motivated by similar goals
to Hallgren and Ranta’s is also presented in (Callaghan and Luo, 1997).
Baur’s (1999) approach is based on the LKB system (Copestake, 2001).

Parsing is performedwith aHead-DrivenPhrase StructureGrammar (HPSG) (Pol-
lard and Sag, 1994) adapted for mathematical language, with λ-DRT based
semantic construction (Bos et al., 1994). Basic phenomena found in an example
proof from Chapter 2 of (Bartle and Sherbert, 1982) are addressed.
Likewise, Zinn (2004, 2006) uses exemplary proofs from Hardy and

Wright’s Introduction to the theory of numbers (1971) to illustrate his approach.
Zinn claims that ‘‘[t]he syntactic constructions of informal mathematical
discourse are relatively easy, stylised or formulaic and more or less in line
with English grammar rules’’ and refers to Trzeciak’s (1995) collection of
‘‘standard phrases’’ for mathematical texts noting that ‘‘most mathematical
arguments could be expressed by instantiating and combining these textual
components’’ (Zinn, 2004, p. 56). His linguistic analysis is partly guided by
rules of good writing style in mathematics, such as those in (Knuth et al., 1989).
More detailed analysis is dedicated to anaphora and conditionals (Zinn, 2004,
p. 69). Computational processing is based on vanEijck andKamp’sλ-DRT (van
Eijck andKamp, 1997). AsGanesalingamobserves, it often lacks generalisation
(it assumes, for instance, that all mathematical constants (‘1’, ‘2’, ‘3’, etc.)
are explicitly modelled in the lexicon), however, it appears that Ganesalingam
is not right in claiming that embedded symbolic expressions should not be
accessible for reference, as Zinn’s account predicts (Ganesalingam, 2009,
p. 20); consider ‘2’ being accessible in ‘‘2 + 15 is prime’’. We will return to
this when we discuss indirect anaphora in Section 3.2.2.5.
Natho (2005) and the TU Berlin Zentrum für Multimedia in Lehre und

Forschung (MuLF) group developed mArachna, a language processing system
for extracting knowledge from mathematical text.12 The language addressed is
German, therefore we review the approach in somewhat more detail.
12Between February 2005 (the time of publication of Natho’s thesis) and 2008 around 20 arti-
cles related to mArachna have been published by MuLF researchers (http://eprints.mulf.
tu-berlin.de [Accessed: 2012]). A system based on phrase structure grammar was presented in
the articles from 2005 and 2006; a system based on HPSG in the articles from 2007 and 2008.
Because the conceptual design and the actual text within the two sets of mArachna publications
largely overlap, we will cite only one paper in which the information we refer to can be found.

http://eprints.mulf.tu-berlin.de
http://eprints.mulf.tu-berlin.de
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Table 1.2: Natho’s language structures in mathematical texts

Structure
type

Template Meaning

Implication

[VERB1] A, (so/dann) [VERB2] B

A ⇒ B
wenn A [SEIN/GELTEN], dann [SEIN/GELTEN] B
wenn A [GELTEN], dann [GELTEN] B
falls A [VERB], dann [VERB] B
B [VERB] (nur/höchstens) dann, wenn A

A ist hinreichend für B
A ⇒ Bdies ist hinreichend für B

dies ist eine hinreichende Bedingung für B

A ist notwendig für B
B ⇒ Aeine notwendige Bedingung dafür ist B

aus A folgt B

A ⇒ B
A dies hat zu Folge, dass / man kann folgern, dass B
A folglich [VERB] B
A, dies impliziert B
A, daraus ergibt sich / daraus erhalten wir B
A, das bedeutet B

Equivalence

A ist äquivalent zu/gleichbedeutend mit B

A ⇔ B
A [gelten] genau dann, wenn B [gelten]
A [gelten] dann und nur dann, wenn B [gelten]
A [sein] hinreichend und notwendig für B

Quantifier

Für alle/jedes/ein beliebiges x...

∀x...Jedes/zu jedem x...
Alle x...
Sei x beliebig...

Es gibt ein x...
∃x...Für ein geeignetes x gilt...

[SEIN/HABEN] ein x...

Set
theoretic

...ist Element von... ...∈......kommt in...vor

Assumption
(es) sei... / ist...

assumption:...für...gegeben (ist/sei)...
es gelte...
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Like Zinn, Natho claims that the range of linguistic constructions in math-
ematical language is limited (Natho, 2005, p. 108), sentences with logical
operators and quantifiers are in most cases simple, short, clear, and easily
comprehensible, syntactic and semantic ambiguities are avoided through the
use of phrasings with fixed meaning; Table 1.2 (p. 49) shows typical construc-
tions (Natho, 2005, Section 3.3.3). The number of verbs used in mathematics
‘‘appears to be small’’. The most frequent verbs in German are: ‘‘sein’’
(be), ‘‘heißen’’ (be called/named), ‘‘existieren’’ (exist), ‘‘geben’’ (be given;
corresponds to the English existential construction there is/are), and ‘‘folgen’’
(follow). Natho claims that mathematical expressions exhibit specific syntax
that is in principle simple yet ‘‘incompatible with the syntactic structures of
natural language’’ (2005, p. 108; emphasis added).13 Some of the analyses are
not linguistically informed; for example, on page 129, phrases ‘‘absolut kon-
vergent’’ and ‘‘linear unabhängig’’ are given as examples of phrases with two
adjectives one after the other (‘‘zwei Adjektive hintereinander angeordnet’’).
Linguistic analysis in mArachna is based on a four-level ‘‘linguistic

classification scheme’’. The Sentence Level and the Word and Symbol
Level describe ‘‘the characteristic sentence structures, which are commonly
found in mathematical texts’’ and ‘‘[schematize] single symbols, words, and
their relations between each other’’ (Grottke et al., 2005a). Assumptions,
propositions, and properties are identified based on ‘‘stereotypical syntactic
constructs and common phrases within their sentence structure’’ (Grottke
et al., 2005c). This approach is similar to Zinn’s, however, the authors
of mArachna seem to be unaware of this work. Mathematical expressions
are ‘‘generally’’ separated from the surrounding text and represented in the
MathML14 format. The authors do not say in which cases what other procedures
are applied. Simple mathematical expressions within text are ‘‘replaced by
placeholders’’ (Jeschke et al., 2008)while ‘‘some simple symbols and equations
can be replaced by natural text elements’’ (Natho et al., 2008). Unfortunately,
there are no examples to illustrate this substitution. mArachna does not seem
to account for syntactic and semantic interactions between the two language
modes, mathematical expressions and natural language, however, the authors
plan to extended it to process ‘‘more complex formulae’’ using ‘‘syntactical
analysis similar to those used in computer algebra systems in combination with
contextual grammars (e.g. Montague grammars) to correlate the information
given in a formula with information already provided in the surrounding natural
13‘‘Mathematische Symbolfolgen wie z.B. Formeln weisen eine Ihnen eigene Syntax auf, die
zwar prinzipiell einfach ist und auch durch die Prädikatenlogik strukturiert wird, jedoch nicht
kompatibel zur syntaktischen Struktur der natürlichsprachlichen Texte ist.’’

14http://www.w3.org/MathML; see also the section on annotation languages further in this chapter.

http://www.w3.org/MathML
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language text’’ (Jeschke et al., 2007a,b). The authors suggest that ‘‘[u]sing this
approach should enable mArachna to integrate formulae and their informational
content in the network created by the analysis of the natural language text’’.
Unfortunately, there is no specific information as to the use of Montague
grammars to process mixed language and the provided description is too vague
to draw conclusions and let alone to compare the method with our proposal.
Chomskian analysis of an example sentence is shown in (Natho, 2005).15

Unfortunately, details of processing are not elaborated. A later approach uses
TRALE (Müller, 1999), aHead-Driven Phrase StructureGrammar parser which
‘‘has been extended by expanding the dictionary and grammar to include the
specifics of mathematical language’’ (Natho et al., 2008). The output provides
a ‘‘comprehensive syntactic and even some partial semantic information about
each sentence’’. Neither details on the HPSG resources nor examples of lexical
entries are provided. TRALE’s output ‘‘is transformed into an abstract syntax
tree, symbolising the structure of the analysed sentence’’.
Because TRALE cannot process mathematical expressions, formulas and

terms must be processed separately from natural language, however, neither
processing complex mathematical expressions nor interpretation of mathemat-
ical expressions within the surrounding natural language context has been
implemented (Natho et al., 2008). Jeschke et al. (2008) mention that the
symbols and equations (at this point unanalysed) are ‘‘tagged with an identity
number, and treated like a noun in the NLP analysis’’, that is, the same way as
in the approach based on phrase-structure grammar; see (Grottke et al., 2005b).
The semantic analysis in the HPSG-based system ‘‘is implemented in the

form of embedded JavaScript interpreter’’ which categorises the syntax trees
‘‘according to typical structures characteristic for specific mathematical entities
and semantic constructs’’ (Natho et al., 2008). The trees are subsequently
transformed into triple structures using ‘‘external JavaScript rules [which]
map typical mathematical language constructs onto the corresponding basic
mathematical concepts (e.g. proposition, assumption, definition of a term,
etc.)’’ The triples are annotated with the information about ‘‘the context within
the original document’’ and about their ‘‘classification within the context of
the final OWL documents... [that is] [f]or each element of the triples it has
to be decided if they represent OWL classes or individuals – complicating the
semantic analysis’’ (ibid.). Due to the general vagueness of the descriptions it
is hard to relate the approach to other approaches and to our proposal.

15‘‘Durch Transformationen wird der Satz in seine Einzelbestandteile zerlegt, Phrasen ersetzt und
Verben umsortiert. Dadurch entstehen strukturierte Satzbausteine, die syntaktisch nach dem
Chomsky-Modell analysiert werden können’’ (Natho, 2005, p. 126).
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1.3.4 Controlled (natural) languages for proofs

SAD (Verchinine et al., 2007), Naproche16 and MathNat (Humayoun and
Raffalli, 2010) are examples of interactive proof construction systems based on
controlled natural languages (CNL) which allow users to enter proof steps using
a language that is close to natural language. CNL-based approaches assume that
the vocabulary and the range of syntactic structures is a predefined subset of a
natural language. Semantic interpretation can thus be restricted to processing
the specific constructions allowed by the CNL grammar. The above-mentioned
CNLs, however, do not offer a lot of flexibility of linguistic expression,
for instance, as far as embedding symbolic mathematical expressions within
natural language or using referring expressions are concerned. Humayoun and
Raffalli claim to resolve certain types of referring expressions within their
MathNat system, however, the reference phenomena addressed appear to be
based on an exemplary constructed discourses rather than on real data and they
are of course restricted to the scope of their CNL. Therefore, it is not clear how
well the reference resolution methods would perform on a larger scale.17
Isar, of the Isabelle/Isar framework, while not a CNL, is a formal proof

language designed for human readability (Wenzel, 2007). The MIZAR
language (Trybulec, 1978; Rudnicki, 1992) and the SAD’s ForTheL (Vershinin
and Paskevich, 2000) were designed with the same motivation. While flexible
in the sense that they enable defining new language constructs which can
be immediately used within the constructed discourse, the price is that the
discourses need to be self-contained, in that the vocabulary – all lexemes and
their semantic interpretations – needs to be formally specified in the proof
document. Since in this thesis we are interested in natural language proofs we
will not elaborate on controlled natural languages any further.

1.3.5 Proof annotation languages
In parallel to computational processing, manual annotation of proofs has been
proposed as a methodology for studying mathematical discourse or as part of
semi-automated processing. Because manual annotation is not an approach
that we can consider in a practical scenario of tutoring we discuss markup
languages for mathematics only briefly for the sake of completeness.

General languages for annotating mathematics Several markup lan-
guages for mathematical documents have been developed for the purpose of
16http://www.naproche.net
17MathNat is a successor of the DemoNat project whose goal was to develop a natural language-
based proof tutor for French; see http://wiki.loria.fr/wiki/Demonat [Accessed: 2006].

http://www.naproche.net
http://wiki.loria.fr/wiki/Demonat
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displaying mathematics in web browsers or in the context of the semantic
web. MathML and OpenMath are languages for representing the structure and
semantics of mathematical notation.18 OMDoc19 (Kohlhase, 2006) is a general
semantics-oriented markup for mathematical knowledge which extends Open-
Math to entire discourses. sTeX20 markup, developed by the OMDoc’s author,
enables semantic annotation of mathematics directly within LATEX documents.

Proof Markup Language ProofML (Schröder and Koepke, 2003) is a
linguistically motivated markup for proofs focusing on sentence and discourse-
level semantic phenomena, such as logical structure (the scope of the premises
and consequents markup), linguistic quantification devices (quantificational
determiner, restrictor, and scope markup), distributive and collective readings
of plurals, and ellipsis. While semantically annotated mathematical documents
would be extremely valuable for studying the relations between the linguistic
and logical structure of proofs, we are not aware of any ProofML-annotated
corpora (other than the three-sentence proof in the paper’s appendix).

MathLang The purpose of MathLang (Kamareddine andWells, 2001, 2008)
is to enable semi-automatic computerisation of mathematics written in ‘‘com-
monmathematical language’’ – the language and style in whichmathematicians
routinely write – into any language of any proof checker. The assumption is
that a scientist, while working on a mathematical paper, would annotate his/her
own document by explicitly identifying and labelling segments of text using
MathLang markup. Unlike ProofML, MathLang distinguishes different levels
(‘‘aspects’’) of annotation granularity – the Core Grammar aspect (CGa), the
Text and Symbol aspect (TSa), and the Document Rhetorical aspect (DRa) –
which from a computational linguistics point of view correspond to the follow-
ing processing steps: grammatical analysis, analysis of symbolic mathematical
expressions, lexical and type semantic analysis, and discourse analysis. Here
we only briefly outline certain peculiarities of the CGa and the TSa aspects.
The CGa is a kind of type system inspired byWeak Type Theory (Nederpelt

and Kamareddine, 2001; Kamareddine and Nederpelt, 2004) and de Bruijn’s
mathematical vernacular. Its markup, shown in Table 1.3, is partly linguistically
and partly domain-motivated and corresponds to the annotation of grammatical
categories and certain types of discourse segment categories in text. Each
colour-coded annotation box is annotated with semantics. The semantics of
18http://www.w3.org/Math, http://www.openmath.org [Accessed: 2006]
19http://www.omdoc.org [Accessed: 2006]
20https://trac.kwarc.info/sTeX [Accessed: 2006]

http://www.w3.org/Math
http://www.openmath.org
http://www.omdoc.org
https://trac.kwarc.info/sTeX
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a coloured box is indicated in the form of ‘‘interpretation attributes’’ which
symbolically represent the domain interpretation of the boxed text fragment.
A CGa analysis of the sentence ‘‘There is an element 0 in R such that

a + 0 = a’’ is shown in Figure 1.3.21 At the semantic level, the blue term
boxes, are tagged with attributes 0 and plus. The statement box is tagged eq.
The complete CGa annotation of the sentence is shown in Figure 1.4. A text
segment colour-coded in this manner can be rewritten in MathLang’s abstract
syntax (Kamareddine et al., 2006) by reading off the annotations:

{ 0 : R; eq ( plus ( a, 0 ), a ); };

The link between the ‘‘common mathematical language’’ and formal interpre-
tation is established by the TSa level and facilitated by souring annotations
which, unlike the CGa categories, are somewhat less linguistically-informed.
Kamareddine et al. (2007a) observed that in mathematics the surface

language does not always directly ‘‘match’’ the intended domain interpretation.
As an illustration of a simple phenomenon which motivated souring, consider
the well known convention of chaining equations:

0 + a0 = a0 = a(0 + 0) = a0 + a0

Its obvious interpretation is a conjunction with some terms duplicated (shared):

0 + a0 = a0 ∧ a0 = a(0 + 0) ∧ a(0 + 0) = a0 + a0

The purpose of souring is to recover the intended meaning, while preserving
the imprecise surface realisation in expressions such as above.22 In line
with MathLang philosophy, souring is a tagging task. ‘‘Sour bits’’ are
added to the text by means of special boxed annotations with a thick frame
and a distinct colour. The authors claim that re-ordering, sharing/chaining,
and list manipulation transformations are required in order to handle certain
phenomena. From a linguistic point of view, these correspond to linearisation,
aggregation, and certain types of ellipsis phenomena in natural language.
The MathLang souring transformations with examples are illustrated in

Table 1.4 (from (Lamar, 2011, p. 78)). A reordering transformation is performed
when the linear order of words or symbols does not agree with the order defined
in the formal language. As an example of this phenomenon Lamar notes that
21Examples from (Kamareddine et al., 2007a,b, n.d.).
22The term souring was invented by analogy with the notion of syntax sugaring in programming
languages. ‘‘Syntactic sugar’’ is added to programming languages in order to make their
syntax easier to read and write for humans. Here, the opposite is needed: For the purpose of
computerisation and formalisation, the content which is not realised on the surface must be
restored. Therefore, one can think of the common mathematical language as ‘‘sweet’’ and of the
formalisation language as ‘‘sour’’ (Kamareddine et al., 2007a).
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Table 1.3: MathLang’s Core Grammar categories

Category Description Example

term a mathematical object ‘‘a+b’’, ‘‘an additive identity 0’’,
‘‘
√

2’’
set a collection of objects ‘‘N’’
noun a family of objects which share

common characteristics
‘‘ring’’, ‘‘number’’

adjective amodifierwhich constructs new
nouns; for instance, by refining
old ones

‘‘Abelian’’, ‘‘even’’

statement a unit which has a truth value,
describe mathematical proper-
ties

‘‘a = a’’, ‘‘P lies between Q and R’’

declaration a unit which gives a signature to
a new term, set, noun, adjec-
tive, or statement

‘‘Addition is denoted a+ b’’

definition a unit which defines new sym-
bols

‘‘A ring is...’’, ‘‘A number p is prime
whenever...’’

context a unit which sets preliminaries
prior to a step; for instance, a
statement, a declaration or a
definition restricted to a spe-
cific part of a document

‘‘Given a ring R,...’’

step a statement, a declaration
or a definition, a succes-
sion/sequence thereof (i.e. a
phrase/block), or a context

‘‘We have...’’

There is an element 0 in R such that a + 0 = a

Figure 1.3: An example MathLang CGa analysis

There is 0 an element 0 in R R such that eq plus a a + 0 0 = a a

Figure 1.4: MathLang CGa analysis with semantic annotations
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the formal set membership notation and the linearisation of the prepositional
phrase with ‘‘in’’, on the one hand, and, on the other hand, the order of
arguments of the verb ‘‘contain’’, whose intended interpretation is that of set
membership, do not ‘‘match’’: We write and say a ∈ R and ‘‘a in R’’, but
‘‘R contains a’’. Thus, he suggests, in the latter case the arguments must be
reordered so that the intended representation, in(a,R), can be obtained. To
this end, the clause ‘‘R contains a’’ is annotated with position information and
this annotation is used to transform it to the formal representation, uniform
to all expressions whose intended meaning is that of set membership. Shared
and loop–hook tags are used when a segment has to be duplicated. A typical
example involves the previously mentioned chaining equations. Folding and
mapping annotations are used in list contexts to repeat a segment for each
element of a list when the intended repetition was suppressed or elided. A
typical example is quantification over multiple variables, that is, clauses such
as ‘‘for all x, y, z,...’’ In the formal language the quantifier is recovered
(‘‘unfolded’’) for each bound variable. This is achieved by repeating the
appropriate annotated segment. While, admittedly, aggregation and ellipsis
resolution do require that a discourse-level interpretation process recovers the
underlying semantics, for instance, by means of a coindexing mechanism,
in a way analogous to the effect of the souring transformations, clearly, a
linguistically informed grammar and a principled syntax–semantics interface
would enable analysis without the reordering transformations.

1.4 Discussion

As the second part of this chapter shows, processing natural language proofs
has been an ‘‘ongoing research project’’ for decades. In fact, processing
students’ natural language proofs had been done previously and on a large
scale (at Stanford). Processing mathematical prose is not a new direction
in natural language processing either. So is the problem solved? Far from
it. Although several approaches to computational processing of mathematical
discourse have been proposed, it appears that most of the recent work on
the natural language of mathematics has focused on theoretical models (Fox,
Ganesalingam) whereas the coverage of the implemented approaches have
been anecdotal. Baur and Zinn process only a small set of sentences. Baur
models 3 proofs; around 30 sentences in total, of which some have the
same syntactic structure. Zinn ‘‘[is] only aware of [his system] being able
to completely process the two example constructions in [his] ch. 7’’ (Zinn,
2004, p. 199). That’s 9 sentences. mArachna appears to exist as a proof
of concept implementation that demonstrates the feasibility of the approach
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Table 1.4: MathLang souring transformations

Phenomenon Boxed annotation ExamplesMathLang terminology

Linearisation
Re-ordering

position i
in position 2 R

R contains
position 1 a

a

in a
a

R
R

Aggregation
Sharing/chaining

shared
hook–loop

eq x
x =

shared y
y

eq
=

z
z

and eq
x =

hook
y

eq loop
= z

and eq
x y

eq
y z

Ellipsis
List manipulation

map, fold-right,
fold-left, base,
list

map Let list a
a and b

b belong to R a ring R

a R b R

fold-right forall
for all

list
a , b in R

base eq
a + b = b + a

forall a R forall b R eq
a + b = b + a
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‘‘[f]or selected text elements’’ (Jeschke et al., 2007b,a). The running example
of a definition of a group consists of 5 sentences. The descriptions of mArachna
are too vague, therefore we are not convinced of the scalability of the approach.
Unlike Zinn’s approach which relies on a tight correspondence between the

representations produced by linguistic analysis and the representation used for
reasoning, we argue that an architecture for processing mathematical discourse
and an interpretation strategy for processing mathematical language should be
designed in a modular fashion, rather than be coupled with a prover, in order
to be flexible enough to support the different application scenarios outlined
in the beginning of this chapter. In particular, the semantic representation
should be independent of the reasoner system’s input representation, so that
the functionality is not bound to a specific deduction system. The interpreted
linguistic meaning representation which we propose as the semantic output
representation does possess this property.
In practice, with the exception of Ranta’s GF, no reusable grammar

resources for mathematical language appear to exist. We do not use GF for two
reasons: First, we choose Combinatory Categorial Grammar because it is an
expressive grammar formalism with a perspicuous syntax–semantics interface,
which enables modelling complex linguistic phenomena in a transparent
way (Steedman, 2000; Baldridge, 2002); for instance, complex coordination
phenomena, notoriously difficult for grammar formalisms, or word order
phenomena. Moreover, the parser implementation which we use produces
logical forms which can encode domain-independent linguistic meaning, such
as those we would like to obtain, in terms of dependency semantics. Our
approach is related to Ranta’s in the sense that Categorial Grammar is also
a kind of type system. Our grammar’s design is, however, linguistically-
motivated and, as we will show in Chapter 7, it provides good linguistic
generalisations. Second, the concrete grammars in GF appear to exist for a set
of constructed examples. In this work, we wanted to model actually recurring
phenomena based on authentic linguistic data. To this end, we collected a
corpus of students’ interactions with a simulated system, in order to investigate
language phenomena naturally occurring in this discourse genre. The following
chapter motivates the choice of data acquisition methodology and outlines the
setup of the data collection experiments.



Chapter 2

Corpus acquisition

This chapter summarises two corpus collection experiments conducted to
acquire authentic data on pedagogical, mathematical, and linguistic aspects
of proofs constructed by students in naturalistic computer-mediated tutorial
dialogue interactions. The first experiment was the first, to our knowledge,
medium-scale effort to collect empirical data on human–computer tutorial
dialogues on mathematical proofs, on the use of natural language in proof
tutoring, and on dialogue phenomena specific to such interactions. The proof
exercises in this experiment concerned naïve set theory. Building on the
insights from the first experiment we conducted another experiment on proofs
in binary relations. This time we were interested in two issues: first, in the
language production – in particular, factors that influence the character of the
language that students use – and second, in the issue of proofs’ granularity –
argumentative complexity – specifically, in the differences between granularity
appropriate from a pedagogical point of view and that required by automated
deduction systems. Before summarising the experiments and presenting the
corpora, we discuss the motivation for collecting new data, rather than using
existing data (such as textbook proofs or proofs extracted from scientific
publications). After summarising alternative dialogue research methods, we
motivate our choice of methodology, a system simulation.

2.1 Motivation

Proofs are central to doing and knowing mathematics and omnipresent in
mathematical discourse. The language of informal proofs can be studied based
on the enormous body of printed and electronic mathematical publications. In
the introductory chapter, we already mentioned Baur’s and Zinn’s work on
computational processing of textbook proofs based on isolated examples from
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specific texts (see p. 47). Since we are motivated by the same ultimate goal –
automating the linguistic interpretation of proofs – a question arises whether
our language processing method could be based on the study of the same kind
of data. Although this idea seems rather attractive, mainly due to the ease of
access to research material, there are reasons why textbook proofs alone should
not guide the computational analysis when the aim is to process (i) students’
proofs, (ii) constructed in a dialogue interaction, and (iii) with a computer.
Mathematical textbooks are written by expert mathematicians. The ‘‘writ-

ing styles’’ of experts differ from the styles of novices in maths. They even
differ among mathematicians themselves; proofs of the same theorem pre-
sented by different authors may be entirely different even if the underlying
proof ‘‘idea’’ and structure are the same. Even the same mathematician might
produce different proofs depending on to whom the proof is addressed:

[...] the style of writing need not be the same when you address yourself
to an expert or to a beginner. [...] For research monographs, I would
[...] consider as satisfactory [...] allowing some looseness in the general
organisation, the skipping of a lot of proofs or comments which are trivial
for experts, etc. On the contrary, when it comes to textbooks aimed at
beginners, I am entirely in agreement with Halmos regarding the necessity
of a very tight organisation, and I would even go beyond him with regard
to the ‘‘dotting of the i’s’’; this may well be annoying to the cognoscenti,
but sometimes it will prevent the student from entertaining completely
false ideas, simply because it has not been pointed out that they are absurd.

(Dieudonné in (Steenrod et al., 1973))

A common property that expert mathematicians’ proofs should share –
aside from validity which in the case of textbooks we take for granted – is that
a proof should be convincing from an argumentative point of view: it should be
presented in such way and with such level of detail that a reader to whom it is
addressed can accept it as a proof of the given proposition. Again, educational
material, such as textbooks, requires special attention to detail:

[...] in a researchmonograph a great many things may remain unsaid, since
one expects the expert reader to be able to fill in the gaps; [...however,
even in that case...] you may very often skip a single line of a proof, but
never two consecutive ones. For textbooks, on the contrary, [...] all the
details must be filled with only the exception of the completely trivial
ones. (Dieudonné, ibid.)

By contrast, proofs produced by novices in a learning setting often differ
from those published in textbooks in that they are invalid (use invalid inferences
or state false propositions), incomplete, or otherwise inappropriate from a ped-
agogical point of view (use inappropriate representations, omit necessary parts
of argumentation) or contain formal inaccuracies (Selden and Selden, 2003).
Proofs constructed in a dialogic tutoring interaction may moreover contain
discarded unsuccessful starts, false conjectures and conclusions corrected in
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the course of tutoring either by the student or the tutor, restarts, or changes
of strategy. These kinds of discourse disfluencies are typical of dialogue
in a pedagogical setting and are not often found in written narrative texts.1
Doing proofs in an interaction with a tutor has a character of an argumentative
dialogue in which the learner has to provide arguments to show that, on the
one hand, a proposition in question holds or does not hold, and, on the other
hand, that he has a deep understanding of the mathematical objects involved,
the relations among them, of the method employed to find the proof, and of
the theorem’s mathematical implications, rather than that he can merely state
a theorem or a definition. Thus, analysis of experts’ proofs would omit proof
aspects typical of learner presentations and of dialogic interaction. Textbook
proofs can give a general idea of the expectations of the given textbook’s author
as to how rigorous students’ proofs should be. However, since our goal is to
understand and model students’ proofs, we need a corpus of students’ proofs.
Interpretive studies into proving and problem solving often use research

designs that involve collecting corpora of students’ problem solving and interac-
tion with tutors in the classroom or out-of-school laboratory settings. Common
designs in qualitative research include clinical methods, teaching experiments,
and classroom research (Kelly and Lesh, 2000). Data collection techniques
include open-ended surveys, structured task-based interviews, stimulated re-
call interviews, think-aloud protocols, field notes and video-/audio-taping of
classroom activities (ibid.). Most studies involve interactions between students
and human tutors or between peer students. While some studies do report
on educational uses of computer programs such as Computer Algebra Sys-
tems (Schneider, 2000; Heid and Edwards, 2001), proof tutor systems (Suppes
and Morningstar, 1972; Suppes, 1981; Goldson et al., 1993; Scheines and Sieg,
1994; Abel et al., 2001; Borak and Zalewska, 2007) or web-based environments
for learningmathematics, also learning to prove (Ravaglia et al., 1999a,b;Melis
et al., 2001, 2006; Hendriks et al., 2010), at the time this project began there
was no available data on natural language computer-based tutoring of proofs.
Therefore, in order to learn about the characteristics of tutorial dialogues on
proofs, in particular, about the students’ language, we performed a series of
controlled experiments to collect data in our target scenario.
In the reminder of this chapter, after discussing methodological consid-

erations, we present an overview of the data collection experiments. The
experimental design and an overview of the data collected in the first experi-
ment were summarised previously in (Benzmüller et al., 2003a,b; Wolska et al.,
2004b) and in the second experiment in (Benzmüller et al., 2006; Benzmüller
et al., 2006; Wolska and Kruijff-Korbayová, 2006a).
1Lakatos’ Proofs and refutations is of course an example of a notable exception.
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2.2 Methodological considerations

The choice of research methodology adopted to investigate the structure and
properties of discourse, depends, among others, on the availability of prior
data in the area of interest and on the ultimate research setting: theoretical
(basic research) vs. practical (applied). Early foundational studies in prag-
matics and conversation analysis, such as those of Austin, Searle, and Grice,
whose goal was to construct theoretical models of human communication,
were predominantly based on introspection or on studies of human–human
dialogues. In applied research on dialogue systems, the adopted methodology
should facilitate computational modelling and identification of requirements on
the functionality of the systems’ subcomponents. Functional and technical re-
quirements can be determined using several methodologies, including studying
similar systems through literature research, analysis of existing data, conduct-
ing user interviews to elicit knowledge on the domain and task, by field-study
observations of humans performing the task in question, by rapid prototyping,
or partial and full-scale simulations (McTear, 2004). In dialogue systems
design, two of the most commonly employed methods are analysis of large
collections of (transcribed) human–human dialogues and system simulations.
The motivation for choosing the research methodology in this project was

two-fold: First, the goal was to obtain a corpus of students’ dialogues on proofs.
Second, it was to identify functionality requirements for subcomponents of a
prototype system, based on the analysis the collected data. Especially relevant
for the work presented in this thesis were the requirements on the input
interpretation module. Below we briefly discuss frequently applied research
methodologies, and then present the general design of a Wizard-of-Oz study,
the experimental paradigm we adopted.

Related corpora As the fields of speech and dialogue research mature and
dialogue systems, also spoken dialogue systems, slowly become commercial re-
ality rather than purely academic research (Dahl, 2004; McTear, 2004) corpora
collected in academic projects become available to the dialogue research com-
munity through organised initiatives, such as the LDC or SIGdial.2 Similarly,
as deployed Intelligent Tutoring Systems actually enter classrooms (Anderson
et al., 1995; Koedinger et al., 1997; VanLehn et al., 2005), samples of inter-
actions become available. However, most existing tutorial dialogue corpora,
do not concern formal domains such as ours. Notable exceptions are the data
related to Ms. Lindquist (Croteau et al., 2004), PACT (Popescu and Koedinger,
2000), and AGT (Matsuda and VanLehn, 2005), but the interfaces of those
2http://www.ldc.org, http://www.sigdial.org [Accessed: 2006]

http://www.ldc.org
http://www.sigdial.org
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systems support prescripted menu-based user input or only short natural lan-
guage responses, thus the interactions with those systems do not represent the
kind of flexibility in the use of natural language and dialogue that we aim at.3

Analysis of human–human interaction Study of human–human inter-
action is an established methodology in dialogue research employed to inform
theoretical modelling and computational implementation of discourse and dia-
logue processes; see (Grosz, 1978; Reichman, 1985; Clark, 1996) to mention
just a few. Non-interventionist research, such as observation of student–teacher
interactions in a naturalistic classroom setting or field studies of human tutoring,
is also commonly employed in the mathematics education community (Kelly
and Lesh, 2000). When specific research questions are asked, controlled
experiments, for instance, one-to-one semi-structured clinical interviews, are
conducted (Ginsburg, 1981). Data analysis in those settings is based on
transcripts of audio and/or video recordings of student talk (with or without
a teacher), debriefing questionnaires, and/or post-experiment interviews with
the subjects conducted by the experimenter. Observations of human tutoring
have also been used in Intelligent Tutoring Systems research to identify those
characteristics of human tutoring that make tutor-assisted instruction produce
a larger difference in learning gains than classroom instruction (Bloom, 1984)
and to investigate the weaknesses and limitations of the state-of-the-art auto-
mated tutoring; see, for instance, (Merrill et al., 1992; Aleven and Koedinger,
2000; Heffernan and Koedinger, 2000; Person and Graesser, 2003).
While studying human tutoring in complex problem-solving tasks, such as

proofs, is interesting in itself, empirical evidence indicates that humans behave
differently when they interact with other humans than when they interact with
machines (Richards and Underwood, 1984; Morel, 1989; Fraser and Gilbert,
1991; Dahlbäck et al., 1993; Yankelovich et al., 1995; Bernsen et al., 1998;
Pirker et al., 1999; Shechtman and Horowitz, 2003). Most of the studies cited
here concern spoken dialogue. Richards and Underwood (1984) and Morel
(1989), for instance, found that, aside from speaking more slowly and clearly,
in man–machine interaction humans use a more restricted language, both in
terms of syntax and vocabulary, ask fewer questions, and avoid complex or
potentially ambiguous anaphoric references. In a study on tutoring, Rosé and
3A corpus of learner interactions with an ITS for teaching calculus has been collected within
the LeActiveMath project (http://www.leactivemath.org [Accessed: 2006]). However, the
LeActiveMath corpus is not publicly available. DemoNat (http://wiki.loria.fr/wiki/Demonat
[Accessed: 2006]) is another project on automated natural language tutoring of proofs. A sample of
French dialogues obtained in simulated interactions has become available, however, the corpus
is too small to make generalisations as to the properties of the discourse and as to what language
phenomena occurring in French would also occur in other languages.

http://www.leactivemath.org
http://wiki.loria.fr/wiki/Demonat
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Torrey (2005) found that students contribute more self-explanation if they
believe that they are interacting with a human than when they believe that
they are interacting with a computer. Users also ‘‘align’’ with the system
in terms of linguistic style; this phenomenon has been exploited in attempts
to shape (or to a certain extent control) users’ input (Leiser, 1989; Ringle
and Halstead-Nussloch, 1989; Zoltan-Ford, 1991; Brennan and Ohaeri, 1994;
Tomko and Rosenfeld, 2004). Thus, when performing experiments which
involve unrestricted human–human interactions one has to bear in mind that
the complexity of the obtained data might be greater, possibly even beyond
the scope of a realistic computer-based scenario, than in an experiment in the
target scenario involving a machine. This may in turn lead to specification
of unrealistic functionality requirements and it may be difficult to formulate
conclusions about how a corresponding man–machine interaction might look.

Rapid prototyping Rapid prototyping (McTear, 2004; Dahl, 2004) is a
methodology typically employed in commercial systems if the task complexity
allows the designers to build a system’s subcomponents quickly by anticipating
possible target interactions or by interviewing the prospective users about their
expectations. A prototype system is an autonomous application which includes
the core of the domain-relevant processing, which, however, may not have the
full functionality of the final system; for example, the range of accepted user
utterances or the linguistic variation in the generated output may be limited.
Such a limited-functionality system may then be used in pilot usability tests to
inform further development. Because of the complexity of our target task and
the fact that little data exists on dialogue-based computer tutoring of proofs,
early prototyping was not considered as a methodology to be adopted.

Partial and full-scale simulations When the complexity of the task
scenario is considerable and there is no existing system with the anticipated
functionality, a simulation may be conducted in order to collect data on how
humans interact in the scenario in question. Aside from giving insight into
language phenomena and interaction patterns, analysis of the obtained data can
serve to lay out functionality requirements for the system’s subcomponents.
Simulations, often referred to as Wizard-of-Oz experiments, have been long
employed in the human factors research, experimental psychology, usability
engineering, and also dialogue systems (Gould et al., 1983; Kelley, 1984).4

4‘‘Wizard-of-Oz’’ is an obvious reference to a character in the 1900 children’s story TheWonderful
Wizard of Oz by Baum, in which Oz, the terrible ruler of the Emerald City, turns out to be a
marionette operated by a little old man behind a screen who pulls at strings to make the puppet’s
eyes and mouth open. The term was coined by Kelley. Another term he used was OZ Paradigm
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The idea of a Wizard-of-Oz (WOz) experiment is that a human (the wizard)
simulates the role of a hypothetical intelligent application in a laboratory
setting by providing the system’s responses to the experiment participants (the
subjects/users). In the case of spoken interaction, the wizard, for instance,
types responses on the keyboard and voice output is synthesised by a text-to-
speech system. The subjects and the wizard are physically separated during
the experiment to exclude communication outside the mediation interface.
The experiment may be conducted with the subjects’ prior knowledge of the
simulation, however, in order to elicit natural behaviour, participants are often
made to believe that they are interacting with a computer.5 The decisive factors
in adopting the WOz methodology for our studies were the following:

Authenticity of data The collected data is a believable sample of interactions
in the target scenario in that the ‘‘human factor’’ causing differences
between interactions with humans and machines is removed.

Affordability Building a simulation environment is typically easier and less
costly than building a fully-fledged application or even a prototype.
Simulation environments created in previous projects might be reused
provided that the new setting is sufficiently similar to the one for which
the original tool was developed and that the tool fulfils the requirements
of the user interface in the new setting.6

Iterative design Kelley (1984) and later Fraser and Gilbert (1991) pro-
posed a WOz-based multi-stage methodology of principled, empiri-
cally grounded iterative development of complex applications which
comprises six steps of system development:

1. Task analysis The structure of the task is investigated;
2. Deep structure development Data access functions for the wizard
are developed;

3. First run of WOz (simulation) The system is fully simulated;
4. First-approximation processor The corpus from the simulation
phase is analysed and the first approximation of the input under-
standing subcomponent is developed;

5. Second run of WOz (intervention) The system is partially simu-
lated: the component developed in step 4. is integrated into the

and OZ stood for ‘‘Offline Zero’’, a reference to the fact that the wizard interprets the input and
responds in real time (see http://musicman.net [Accessed: 2006]). PNAMBIC (Pay No Attention
to the Man Behind the Curtain) is another early name of the technique (Fraser and Gilbert, 1991).
5For ethical reasons, the deceit should be disclosed during debriefing after the experiment.
6A dedicated simulation tool enabling alternative methods for mathematical formula entry has been
built for each experiment; for the motivation, see (Fiedler et al., 2004; Benzmüller et al., 2006).

http://musicman.net
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simulation environment and the wizard simulates the remaining
parts or intervenes, when necessary, to keep the dialogue flowing;

6. Cross-validation Final application testing.

Steps 4., 5., and 6. can be repeated in a cycle an arbitrary number of
times.7 In the process of successive iterations, the initial prototype is
gradually refined and the application takes over the functions simulated
by the wizard. Thus, partial simulations provide a way of empirically val-
idating various aspects of an interaction model before its final validation
in usability experiments with an implemented autonomous system.

User-centred empirical approach The main purpose of a WOz experiment
is for researchers to observe the users’ behaviour during interaction with
the anticipated system and to evaluate the use and effectiveness of its
interface, rather than the overall quality of the entire system. In this
sense, the method is by design user-centred.

Support of exploratory research Studies of human–computer interaction can
be carried out without a commitment to application development.

Since Gould and colleagues and Kelley, the WOz technique has been
applied in a variety of settings and tasks and to address diverse research
questions, also in (tutorial) dialogue systems research. Given the complexity
of the tutoring domain and the benefits of an empirical design, we considered
the WOz paradigm an appropriate methodology to achieve our initial goal
of data collection. Two points about the WOz methodology have to be
kept in mind though. A major problem in a real-time simulation involving a
human substituting for a machine is the significant cognitive load on the wizard.
The wizard must perform the following tasks in the shortest possible time while
preserving consistency of responses and avoiding erroneous transmissions to
the user: (1) intercept the input (this may involve just listening to the transmitted
audio or reading text on a screen, but also, in the case of multi-modal input,
pointing gestures and graphical events), (2) interpret it, (3) perform the
problem-solving task (this may involve accessing information from a database
or performing reasoning related to the current task state), and (4) generate
a response. It is clear that the wizard’s task is demanding and that flawless
behaviour borders on impossible. Not surprisingly, a recurring observation
reported in WOz studies is that the users found the simulated system slow. This
is because wizards tend to pay attention to task-level precision and the quality
of the output at the sacrifice of response-time. Some of the cognitive load
7Fraser and Gilbert’s cycle is in essence the same: the second or subsequent experimental phases
collapses this loop into one step; the pre-experimental phase corresponds to steps 1. and 2., the
first experimental phase to step 3.
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can be relieved by using a setup with an interface in which the wizard’s GUI
contains menus of precompiled responses (Dahlbäck and Jönsson, 1989) or by
using a multi-wizard setup (Francony et al., 1992; Salber and Coutaz, 1993).8
The second issue that should be kept in mind is that unrestricted simu-

lation, that is, one in which the subjects’ and the wizards’ behaviour is not
intentionally constrained, be it by the interface (making it reflect a realistic
system’s implementation) or by interaction protocols (shaping the interaction
to correspond to a realistic system’s capabilities; in our case, computationally
plausible semantic analysis, tutorial dialogue modelling, language generation,
and reasoning), produces data which correspond to an idealised system, one
with all the processing capacities of a human. To remedy this, the experimental
setup can be designed in such way that it limits the interaction in certain
aspects, so that it corresponds more closely to the anticipated realistic system.
Our design decisions are summarised in the following sections.

2.3 Experimental setup

The basic philosophy underlying iterative incremental methodologies is to
start simple and to increase complexity in subsequent iterations. Our design
decisions reflect this philosophy in that in the technical aspects we favour the
simpler over the more complex. The aspect of the interaction which we left
unrestricted was the use of language. Below we briefly outline how we shaped
interaction in the domain of mathematics (the interaction modality, constraints
on the communication language, and the user interface for mathematical
notation) and motivate the choice of the manipulated variables.

Mode of interaction In most real-life situations tutors communicate with
students using spoken language. This is certainly true of one-on-one tutoring. At
schools and universities, written communication is used in exams, homeworks,
and nowadays also in student–tutor email exchanges. (An exception is remote
schooling, where written communication may be used more often than in the
typical scenario.) Mathematics is a special science in that in principle it can
be communicated using its language of symbols, mathematical notation, alone.
The informal language of mathematics consists of a mixture of natural language
and symbolic notation.9 Typically, in one-on-one tutoring, knowledge and
8In our second experiment, due to the difficulty that our tutors experienced in mentally processing
long formulas under stress, we modified the experimental setup in order to make it possible for
the tutors to start processing the subjects’ input before it was submitted. We will return to this
when we discuss the second experiment in Section 2.6.
9Mathematical language will be discussed in more detail in Chapter 3.
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explanations are conveyed with speech, while writing serves those situations
where visualisation or formality are needed. Thus, we need both languages
to explain maths: justify the inferences in words and express mathematical
facts (proof steps) either with words or formulas. The question is whether to a
computer-based tutor we should speak or type.
Speech is the most natural form of human communication. It is also the

preferred modality in computer-mediated task-oriented dialogues (Rudnicky,
1993; Allen et al., 1996). However, textual interaction has the advantage of
easy access to the prior discourse history (Herring, 1999; Gergle et al., 2004),
which is relevant in tutorial dialogues as it helps the student keep track of
what he has learnt and which tasks he has solved. While there are a few
spoken tutoring systems (Mostow and Aist, 2001; Schultz et al., 2003; Litman
and Silliman, 2004), to date the majority of dialogue-based tutors operate in
typewritten mode (Rosé and Freedman, 2000; Heffernan and Koedinger, 2002;
Zinn et al., 2002; Michael et al., 2003).
Speech may be preferred by users because it is faster to produce, but

speech is certainly harder for a machine and, especially with mathematics
as the domain, adds complexity to the interface implementation. Whereas
considerable progress has been made in Optical Character Recognition towards
recognising handwritten mathematical expressions10 and programs capable of
speaking mathematical notation do exist,11 interfaces which enable speech
input for maths or which combine speech and writing are not common.
Interestingly, the main question is not whether the state-of-the-art automatic
speech recognition (ASR) systems are in general powerful enough to support
recognition.12 The more fundamental question is: How should we speak
math... to a computer? Although seemingly trivial – since we ‘‘speak math’’
whenever we talk about math – there is more to the question than it appears.
The math we speak is typically accompanied by symbolic notation; relevant
groupings are indicated by pauses and changes of speech tempo. Typically,
there is no access to these features of speech in off-the-shelf ASR systems.13

10Blostein and Grbavec (1997) give an overview; see also the InftyProject, its publications and
references therein (http://www.inftyproject.org [Accessed: 2006]).

11Raman’s ASTER system (1994; 1997; 1998) is probably best known; Design ScienceMathPlayer
plug-in is another example.

12There is a caveat here: typically, interpretation grammars in commercial ASR are finite-state. A
mathematical expression parser needs more expressive power because of recursive subexpression
embedding (Fateman, n.d.b).

13Consider speaking this simple set expression: A ∩ (B ∪ C). In English, you probably produce
something along the lines of ‘‘A intersection <pause> B union C’’, with a marked pause after
‘‘intersection’’ and with ‘‘B union C’’ spoken faster as one chunk of information. For an ASR
system, one would probably have to produce something along the lines of ‘‘A intersection open
parenthesis B union C close parenthesis’’.

http://www.inftyproject.org
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Moreover, if both spoken and written input is to be used (typed on the keyboard
or handwritten with a stylus) synchronisation becomes an issue.14
But is learning influenced in any way by the modality in the first place?

So far, there is no evidence. In a study which compared human–human
and human–computer spoken and typed tutorial dialogues Litman and col-
leagues (2005) found that while spoken dialogue is more effective in that tasks
are faster accomplished, the augmented, spoken interface brings no significant
difference in the learning gain by comparison with typed input. Interestingly,
speech recognition errors do not negatively affect learning either (Pon-Barry
et al., 2004; Litman et al., 2005). Thus, the above-discussed issues, the lack
of corpora of computer-based proof tutoring, and the exploratory nature of our
study make the simpler typewritten modality an obvious choice.

Use of natural language Since our central research objective was to
collect data on the use of language in authentic computer-mediated tutoring,
that is, as it should be if a computer system could have all the reasoning
capacities of a human, we did not restrict the wizards nor the subjects in their
language use. In one experimental condition of the first experiment the wizard
followed a specific tutoring protocol which restricted his interaction and his
use of language. The language production of the subjects and the wizards was
otherwise not constrained in the other conditions and in the second experiment.
Our goal was to find out how the participants cope with the need for natural
language and mathematical expressions in proofs (given the limitations of the
typewritten setup and the lack of spoken communication) and what language
phenomena emerge as a consequence; for instance, whether the language turns
out to be simple with little ambiguity, like in the experiments of Richards
and Underwood (1984) or Morel (1989), and if not, whether the resulting
language would have such complexity and diversity that the coverage of a
parsing grammar in a prototype system would be poor.15

User interface for mathematical notation User interface design is one
of the crucial elements in achieving natural, efficient communication with a
computer. Plausible options for mathematical notation which do not involve
speech, include: typing on a keyboard (mathematical expressions will typically
14For further issues in combining speech and writing in interfaces for mathematics, for an answer
to the question of how we can and should speak math, and a description of a system prototype,
see (Fateman, n.d.b). Math Speak & Write (Guy et al., 2004) and TalkMaths (Wigmore et al.,
2010) are other examples of experimental systems.

15We attempt to answer these questions in Chapter 3 and Chapter 4, respectively. In Chapter 7 we
evaluate the coverage of implemented parsing grammars based on the collected corpora.
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have annotation or markup; as in LATEX), GUI buttons, structured editors (as in
EPGY TPE’s ProofEd (McMath et al., 2001) or MathsTiles (Billingsley and
Robinson, 2007)), or – the most complex alternative – handwriting16
The advantage of structured editors is that they provide templates for

mathematical notational constructs and can internally encode the information
on their valid types making immediate validation and diagnosis of semantic or
syntactic errors possible. A structured editor area in a GUI, however, explicitly
separates the natural language from the mathematical symbolic language while
not guaranteeing that no mathematical notation will appear in the text entry
area. LeActiveMath studies on tutoring calculus report on this issue (Callaway
et al., 2006; Dzikovska et al., 2006). Structure-rich markup languages, such
as MathML or OpenMath,17 which are typically the internal representation in
structured maths notation editors, are too complex to be typed in by dialogue
participants. LATEX, however, combines structured in-line markup and is
conceptually simple enough to be suitable for the tutoring setting, especially
if the mathematical domain does not involve excessively complex notational
constructs. Therefore, while the user interface implemented for the first
experiment offered only buttons for entering mathematical symbols, in the
second study our interface enabled also LATEX-like entry of math.

Experimental conditions The main goal of the experiments was to collect
data on authentic human–computer tutorial dialogues about mathematical
proofs. Thus, with respect to the language behaviour in dialogues in our
setting, the experiments were of exploratory nature with the general design
facilitating collection of linguistic data. However, both experiments also
manipulated one variable related to different aspects of our scenario.
In the first experiment, the exploratory part of was focused on the natural

language aspects of the interaction. The experimental part concerned the
pedagogical aspects: three tutoring styles – minimal-feedback, didactic, and
Socratic – were compared with respect to their effect on learning. In a
completely randomised design, subjects were split into three groups and
tutored by the same tutor according to three predesigned algorithms. The
purpose of the manipulation was two-fold: First, it was to test the effectiveness
and completeness of hinting categories formalised for Socratic tutoring before
the experiment. Second, it was to identify limitations of the predesigned hinting
algorithm and to propose improvements based on data analysis.
16FFES (Smithies et al., 2001), Infty (Fujimoto et al., 2003), JMathNotes (Tapia and Rojas, 2004),
WebMath (Vuong et al., 2010), and Mathellan (Fujimoto and Watt, 2010) are examples of such
interfaces; see also the surveys in (Zhang and Fateman, 2003; Fateman, n.d.a).

17http://www.w3.org/Math, http://www.openmath.org

http://www.w3.org/Math
http://www.openmath.org
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In the second experiment, we were interested in the factors that might
influence language styles in dialogues on proofs. Specifically, we wanted to
find out whether students’ language production would differ depending on the
study material’s presentation form. The subjects were split into two groups
and, before tutoring, provided with reading material presented in a formal or
a verbose style. More details on this aspect of the second experiment follow
in Section 2.4.3 of this chapter. The analysis of language production the two
conditions will be presented in Section 4.3.2 of Chapter 4.

2.4 Overview of the experiments

The reminder of this chapter summarises the setup of the experiments and
presents an overview of the collected data. We first summarise the common
aspects, then elaborate on the two experiments, and finally describe the corpora.

2.4.1 Common aspects
In both experiments the subjects were Saarland University students. With the
exception of one subject in the second experiment, they were native speakers of
German. The non-native speaker had been living in Germany for about 20 years
and her German was assessed to be at near-native fluency; data of this subject
were included in the analyses. The subjects’ prior knowledge in mathematics
declared in interviews ranged from little to fair. All the wizards (tutors) were
native speakers of German with experience in teaching mathematics.
The subjects were solving proofs with a tutoring system simulated in

a Wizard-of-Oz setup described in Section 2.2. During the experiment
the subjects and the wizard(s) were seated in separate rooms connected
through a voice channel, and with a one-way window between the rooms. In
case of technical problems unrelated to solving exercises, the subjects could
communicate with an experimenter via a microphone and speakers.
An experiment session started with an introduction to the experiment by the

experimenter who informed the subject about the recording and logging setup,
explained the procedures, handed out the study material, and demonstrated the
interface. The study material was presented on paper and included domain
knowledge required to solve the exercises. It was available to the subjects
throughout the duration of the session. After the introduction, the subjects
filled out a background questionnaire and were allowed a study time.
The proof problems concerned fundamental mathematics. The subjects

were not taught a particular proof, but were allowed to propose their own
solution. The expectation was that the tutor (wizard) would recognise the
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subject’s line of reasoning and guide the tutorial dialogue accordingly. The
subjects were instructed to enter proof steps rather than complete proofs at once
in order to prompt dialogue. They were also asked to think aloud while solving
the exercises. In both experiments the subjects were audio- and video-recorded.
The subjects were interacting with the simulated system through a GUI

which included a designated input entry area for composing messages to the
system. The GUI included a button bar with mathematical symbols and a
read-only dialogue history area which displayed the previous student and tutor
turns. The subjects could enter their utterances using a keyboard (typing) or
a mouse (clicking on the mathematical symbol buttons). Before starting a
session they were shown the GUI’s functionality and allowed a short time to
familiarise themselves with the interface.
The subjects were told that they were participating in an evaluation of

an intelligent tutoring system with conversational capabilities which could
understand and respond in German, thus they could use both natural language
and mathematical notation while solving exercises. No restrictions on the form
or style of the language were specified during the introduction to the interface.
In the minimal feedback condition of the first experiment (see ‘‘Tutoring’’ in
Section 2.4.2) the wizard used precompiled text as responses. In the other
tutoring conditions and in the second experiment, the wizard was unconstrained
in formulating his turns. After the experiment session, the subjects filled out a
survey questionnaire and were informed about the simulation. Participation in
the experiments was remunerated.

2.4.2 The first experiment
The setup of the first experiment was the following:

Persons A mathematics graduate with experience in teaching was hired to
play the role of the wizard. Before the experiment he was trained on the use of
the interface and on the predefined tutoring algorithms. In order to distribute the
cognitive load involved in tutoring in the WOz setup, two helpers, the authors
of the tutoring algorithms, assisted the wizard. The fourth person involved was
the experimenter who introduced the procedure, answered non-task-related
technical questions during the experiment, and debriefed the subjects after the
experiment.

Subjects Twenty two subjects participated in the experiment. Their back-
grounds were in humanities or sciences. No prerequisites on completed
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coursework in mathematics were set as criteria for participation. Maths
knowledge at the level required for university admission was assumed.

Procedure An experiment session consisted of three phases. First, the
subjects were given a pretest. Second, they interacted with the simulated
tutoring system. Tutoring was performed in one of the three tutoring conditions
described further in this section. Third, the subjects solved a posttest exercise
and were debriefed. A three-phase experiment session lasted about two hours.

User interface The graphical user interface developed for the first experiment
consisted of three areas: the button bar, the dialogue history, and the input
line. The button bar contained buttons with mathematical symbols relevant
in the domain. The dialogue history displayed the prior dialogue turns in a
non-editable mode. The wizard’s interface, aside from the same components,
contained a larger main area in which the wizard selected the answer evaluation
categories (see ‘‘Tutoring’’ further in this section) and hint categories.

Domain and proof exercises The proofs in the first experiment concerned
naïve set theory. The main reasons for choosing this domain were that,
first, naïve set theory is not too complex and so fundamental that not a lot
of background knowledge is required and, second, it has been previously
formalised for proof automation (Suppes and Sheehan, 1981; Benzmüller and
Kohlhase, 1998; Ravaglia et al., 1999a; Benzmüller et al., 2001). For simple
problems within its decidable fragment, wrong proof steps can be identified by
a model generator by searching for counterexamples (Benzmüller et al., 2001).
In this respect naïve set theory is a good domain of choice for a prototype
system. The following exercises were used:18

Pretest K(A) ∈ P (K(A ∩B))
Dry-run K((A ∪B) ∩ (C ∪D)) = (K(A) ∩K(B)) ∪ (K(C) ∩K(D)))
Powerset A ∩B ∈ P ((A ∪ C) ∩ (B ∪ C))
Complement If A ⊆ K(B), then B ⊆ K(A)
Posttest K(A ∪B) ∈ P (K(A))

The Dry-run, Powerset, and Complement proofs were used during the
tutoring session. The easy Dry-run proof was presented first and served as a
warm-up exercise. The remaining two proofs were presented in random order.
A time limit of 30 minutes per exercise was imposed.
18K stands for set complement and P for powerset.
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Study material Subjects were given a handout with mathematical content
needed to solve the proof tasks: an introduction to naïve set theory, definitions
of concepts, theorems, and lemmata. The was time limit on preparation.

Tutoring The tutoring strategy was the manipulated variable in the first
study. The subjects were split into three groups and randomly assigned to one
of the three tutoring conditions: minimal feedback, didactic, and Socratic. In
the minimal feedback condition (control group), the tutor used standardised
phrasing to inform the student only of the correctness and completeness of his
proof steps. The prescripted phrasing was ‘‘Das ist richtig/nicht richig’’ (This
is correct/incorrect) and ‘‘Das ist unvollständig oder nicht ganz korrekt’’ (This
is incomplete or inaccurate). The tutor did not answer students’ questions;
the response to all questions was phrased ‘‘Das kann ich nicht beantworten’’
(I cannot answer this). In the didactic condition, the tutor disclosed the next
correct step whenever the student would stop making progress or explicitly
request help. The tutor answered students’ questions. In the Socratic condition,
the tutor executed a predesigned hinting algorithm to help the student discover
the solution by guiding him towards it. The tutor was supported by the
helpers, the authors of the Socratic algorithm, in deciding which hint should
be realised. Surface realisation of the hints was left to the tutor. The null
hypothesis was that the students’ performance in the three conditions would
not differ statistically. Performance was measured based on scoring the pretest
and posttest performance and, unexpectedly, confirmed the hypothesis.19
The tutor’s responsibilities included the following tasks: (i) evaluating

the student’s proof step in one of the following answer categories: correct,
incomplete accurate, complete partially accurate, incomplete partially accurate,
and wrong; the assigned category was saved in the session log file together
with the dialogue transcript, (ii) decide what dialogue move to make next (for
instance, inform about correctness status, give hints, etc.), and (iii) verbalise
it. At the end of each exercise, the tutor summarised the entire proof or, if the
student did not complete the proof, presented a valid proof to the student.

2.4.3 The second experiment

Persons Four tutorswere invited to play the role ofwizards in the experiment;
the wizards were effectively also subjects in the experiment: by observing
multiple tutors we wanted to find out whether acceptability of different proof
19The pedagogical aspects of the experiment have been presented in more detail in (Tsovaltzi et al.,
2004; Tsovaltzi, 2010).
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step sizes (granularity) varies between teachers. The tutors’ background with
respect to teaching mathematical proofs was the following:
Tutor 1 Senior lecturer from the Saarland University with several years of experience

in lecturing a course Foundations of Mathematics
Tutor 2 Professional mathematics teacher, with a few years of teaching experience

who participated in our first experiment
Tutor 3 Recent Saarland University graduate with a degree in teaching mathematics
Tutor 4 Doctoral student at the SaarlandUniversity Institute of TheoreticalMathematics

with several years of experience as a TA in various mathematics courses

One helper was operating the audio and the video equipment, overseeing
the recording and the technical side of the experiment in general. Two
experimenters took turns in taking the responsibility for communicating with
the subjects. The experimenter also decided which exercises the subject should
solve (see ‘‘Domain and proof exercises’’ further in this section).

Setting The subjects and the experiment team were seated in separate rooms.
Thewizards and the experimenter could see the subject on a display transmitting
signal from a dome-camera in the subject’s room. The subject’s computer
was running screen capture software. In the original setting the wizards could
not see the screen capture feed as we did not want them to be influenced by
subjects’ false starts which were not submitted to the system. However, already
on the first day of the experiment, it turned out that mathematical expressions
produced by subjects were so complex that wizards’ response times became
unacceptably long. Since the wizards knew that short response time was
important, under this stress condition there was more chance for mistakes in
evaluating subjects’ contributions. We therefore decided to transmit the screen
capture feed to an additional display, so that the wizards could start evaluating
the expressions as the subjects typed. In some cases of extremely long formulas
this proved critical in making the wizards’ task feasible.20

Subjects Thirty seven students with different educational backgrounds
participated in the experiment. A prerequisite for participation was to have
taken at least one university level mathematics course.

Procedure Before tutoring, the subjects were shown how to operate the
interface, presented with the study material, and allowed 25 minutes study
time. Next, they interacted with the simulated system. The subjects were then
debriefed and filled out a questionnaire. A session lasted about two hours.
Pretests and posttests were not administered due to time constraints. Conducting
20We will return to the formula length problem in Chapter 4 (Section 4.3.2).
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further experiments was unfortunately impossible for logistic reasons. Lack of
test data did not allow us to perform an analysis of the relation between the
linguistic properties of students’ discourse and learning; see, for instance, (Ward
and Litman, 2006) for an interesting study on cohesion.

User interface The interaction between the subject and the wizard was medi-
ated by a chat environment built on top of a customised version of TEXmacs, a
LATEX editor operating in thewhat you see is what you getmode.21 The interface
offered multiple options for inserting mathematical expressions: LATEX com-
mands (\cup for set union, etc.), their German counterparts (\Vereinigung
for set union, etc.) as well as traditional GUI buttons. The editor supports
copy–paste functionality which enabled copying text from the prior dialogue.
Dialogue history was displayed in read-only mode. The available mathemati-
cal expression commands were printed on a handout. Before the session, the
experimenter instructed the subjects on using the GUI and showed the different
formula input modes. The subjects had a few minutes time to familiarise
themselves with the GUI. The session log files contain information on the
mode in which mathematical expressions were inserted.

Domain and proof exercises The proof exercises were in the domain of
binary relations. Theorems and definitions in binary relations build on naïve set
theory and the conceptual complexity of the domain is comparable to naïve set
theory. The reason for choosing a new domain was, among others, to facilitate
testing of the scalability of the input interpretation component.22
The subjects were asked to prove the following four theorems:

Let R, S, and T be binary relations on a setM .
Exercise W (R ◦ S)−1 = S−1 ◦R−1

Exercise A (R ∪ S) ◦ T = (R ◦ T ) ∪ (S ◦ T )
Exercise B (R ∪ S) ◦ T = (T−1 ◦ S−1)−1 ∪ (T−1 ◦R−1)−1

Exercise C (R ∪ S) ◦ S = (S ◦ (S ∪ S)−1)−1

Exercise E Assume R is asymmetric. If R is not empty (i.e. R 6= ∅), then R 6= R−1

Exercises W, A, B, and C were selected in such way that once solved they
may be used as justifications in the subsequent proofs. C is a theorem if S is
symmetric, but not in the general case. The subjects were expected to provide
an argument for this. W was a warm-up exercise and E was presented only to
those subjects who had difficulties completing the initial exercise.
21http://www.texmacs.org [Accessed: 2006]
22Results will be shown in Chapter 7.

http://www.texmacs.org
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The subjects started with exerciseW and normally followed with A, B, and
C, in this order. The experimenter was monitoring progress on a screen capture
display. If he noticed that a subject was struggling with the warm-up exercise,
he could at any time ask the subject to stop and move on to E. Once W was
completed or the subject was asked to proceed to E, he could spend as much
time on the exercise(s) as needed. There was no time limit on the completion
of individual exercises, however, sessions were kept to about 2 hours.

Study material The content of the study material, adapted from (Bronstein
and Semendjajew, 1991), reviewed definitions and basic theorems in binary re-
lations. Inspired by findings on alignment effects observed in human–computer
dialogues (see discussion in Section 2.2, p. 63), we wanted to find out whether
a similar effect would be induced by the presentation style of the study material
in computer-based tutoring. To this end, two study material versions were
prepared: in one content was presented in a formal way, using mainly formulas,
in the other the same content was presented in a verbose way avoiding formal
notation and using natural language instead. Figure 2.1 (p. 78) illustrates the
difference in the presentation of the definition of the subset relation.
The subjects were randomly assigned to the formal (FM group) or ver-

bose (VM) study material condition and given the corresponding handout.
They were also provided with an example proof, shown in Figure 2.2 (p. 78),
formulated using natural language and formulas, and allowed 25 minutes to
revise. Our hypothesis was that the language the subjects would use to solve
exercises would reflect the study material’s format, that is, the subjects would
‘‘align’’ to the presentation format. This hypothesis was confirmed.23

Tutoring The second experiment had two objectives: the first was to
obtain more linguistic data on proofs and to verify our hypothesis concerning
language production. The second objective was to obtain data on pedagogically
acceptable granularity of proofs – that is, argumentative complexity: the level of
detail in proofs, the number of reasoning gaps which can be left in – in a tutoring
setting. To this end, we asked the tutors to indicate explicitly their judgements
on granularity of every proof step the students proposed. By analysing tutors’
granularity judgements, we wanted to find out what characterises pedagogically
acceptable and unacceptable steps, whether acceptability differs between tutors,
and how the granularity compares with the level of detail required by automated
deduction systems, specifically, the Ωmega system (Siekmann et al., 2003).24

23The analysis of the language production in the two conditions is discussed in Chapter 4.
24For a data-driven model of proof step granularity based on our corpus see (Schiller et al., 2008).
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SindA,B Mengen und gilt ∀x(x ∈
A ⇒ x ∈ B), so heißt A eine
Teilmenge von B. Man schreibt
dafür A ⊆ B.

Sind A,B Mengen und gilt daß
jedes Element von A auch Element
von B ist, so heißtA eine Teilmenge
von B. Man schreibt dafür A ⊆ B.

(IfA andB are sets and ∀x(x ∈ A⇒ x ∈
B) holds, thenA is called a subset ofB. We
write A ⊆ B.)

(IfA andB are sets and every element ofA
is also an element of B, then A is called a
subset of B. We write A ⊆ B.)

Figure 2.1: Definition of the subset relation in the formal (left) and ver-
bose (right) presentation in the second experiment.

Theorem
Sei R eine Relation in einer MengeM . Es gilt: R = (R−1)−1

Beweis
Eine Relation ist definiert als eine Menge von Paaren. Die obige Gleichheit
ist demnach eine Gleichung zwischen zwei Mengen. Mengengleichungen
kannman nach dem Prinzip der Extensionalitaet dadurch beweisen, dass man
zeigt, das jedes Element der ersten Menge auch Element der zweiten Menge
ist. Sei also (a, b) ein Paar inM ×M , dann ist zu zeigen (a, b) ∈ R genau
dann wenn (a, b) ∈ (R−1)−1. (a, b) ∈ (R−1)−1 gilt nach Definition der
Umkehrrelation genau dann wenn (b, a) ∈ R−1 und dies gilt nach erneuter
Definition der Umkehrrelation genau dann wenn (a, b) ∈ R, was zu zeigen
war.

(Let R be a relation on a setM . It holds that R = (R−1)−1 A relation is defined as a set of
pairs. The equation above expresses an equality between sets. Set equality can be proven by
The Principle of Extensionality. We show that every element of one set is also an element of
the other set. Let (a, b) be a pair in M ×M . We have to show that (a, b) ∈ R if and only
if (a, b) ∈ (R−1)−1. (a, b) ∈ (R−1)−1 holds by definition of the inverse relation if and
only if (b, a) ∈ R−1. This in turn holds by the definition of the inverse relation if and only if
(a, b) ∈ R, which was to be proven.)

Figure 2.2: Example proof from the second experiment
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Table 2.1: Number of subjects per tutor and study material condition in the
second experiment

Tutor No. of subjects Row totalsFM-group VM-group
Tutor 1 2 4 6
Tutor 2 8 2 10
Tutor 3 6 6 12
Tutor 4 4 5 9
Column totals 20 17 37

The tutors were presented with general guidelines on Socratic tutoring, but
unlike in the first experiment, they were not provided with any tutoring algo-
rithm. There were no restrictions on the tutors’ language production. The tutors
were asked to annotate the students’ proof contributions with answer cate-
gories along three dimensions: correctness (correct/partially correct/incorrect),
relevance (relevant/limited relevance/not relevant), and granularity (appropri-
ate/too detailed/too coarse-grained). Annotations were inserted during the
tutoring session, however, they were not visible on the subject’s end of the
interface. The tutors were also provided with a headset microphone and asked
to record a spoken commentary on their responses. This gave us a record of
justifications of tutors’ decisions and their comments on the tutoring process.
Table 2.1 shows the number of subjects per tutor and study material

condition. The assignment of study material format to subjects and of tutors
to subjects was quasi-random; the tutors did not know to which experimental
condition a given subject was assigned.25

2.5 Overview of the corpora

The main output of the experiments are two corpora of human–computer
tutorial dialogues on mathematical proofs. The first corpus, C-I, comprises
22 dialogue log files. Aside from the students’ and tutors’ turns the log files
include time-stamps for each turn, answer category annotations for student
turns, and hint category annotations for tutor turns. There are 775 turns in
total, of which 332 are student turns (43%) with 443 utterances.26 The second
corpus, C-II, comprises 37 log files with time-stamp information, answer
category annotations, and the information on the mode in which mathematical
25Distribution of subjects between study material and tutors is not uniform due to subject dropout
and due to an error in the WOz software in the beginning of the experiment.

26The criteria for utterance-boundary annotation will be presented in Chapter 4 (Section 4.2.1).
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Table 2.2: Basic descriptive information on the two corpora

C-I C-II
(Set theory) (Binary relations)

Subjects/Sessions 22 37
No. Turns 775 1906
Mean No. turns per session (SD) 35 (12) 51 (19)
No. students’ turns (% No. turns) 332 (43%) 927 (49%)
Mean No. students’ turns per session (SD) 15 (6) 25 (10)

symbols were inserted. C-II consists of 1906 turns of which 927 are student
turns (49%) with 1118 utterances. Table 2.2 summarises basic descriptive
information on the two corpora. Figures 2.3 and 2.4 at the end of this chapter
(pp. 82 and 83) show example dialogues from C-I and C-II, respectively. In
the figures and throughout this thesis, where relevant, student and tutor turns
are labelled ‘‘Sm’’ and ‘‘Tn’’;m and n denote turn numbers. If it is clear from
the context that students’ language is meant, ‘‘S’’ labels are omitted.

2.6 Summary and conclusions

We presented two experiments conducted with the goal of collecting data
on authentic human–computer tutoring of mathematical proofs. In order to
motivate the experiments, we first discussed experts’ and learners’ proofs
and pointed out differences between them. We outlined alternative sources
of data in dialogue research and motivated the decision to conduct data
collection experiments, rather than to refer to existing sources, such as textbooks
or available tutoring corpora. We also discussed the differences between
human–human and human–computer interactions which justified the decision
for the human–computer, rather than the human–human setup of the experiment.
We presented a general overview of the simulation methodology we pursued
and motivated our experimental design decisions.
The key lesson learnt from the experiments is that mathematics is a difficult

domain for the Wizard-of-Oz setup. First, mathematical proofs are demanding
on the wizard. Given that the response time is of major importance in a
simulation, the wizard needs support in reconstructing the students’ reasoning.
In the first experiment, helpers were assisting in making sure that the students’
utterances are correctly checked. In the second experiment, we found out early
on that the tutors had difficulties visually parsing longmathematical expressions
produced by the learners and consequently responses were delayed. Some of
the wizards voiced this issue themselves. Therefore, we changed our original
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setup in the course of the experiment to allow the wizards to see the subjects’
input as they typed by transmitting the screen capture output in real-time to an
additional computer monitor in the wizards’ room. It is interesting that this
cognitive overload in processing formulas was observed already in a relatively
simple domain. Certainly, one of the main problems was that the mathematical
expressions which the students produced were indeed of considerable length.
Even simple formula preprocessing, such as syntactic validation, would be
helpful here. Perhaps in more complex domains, it would even make sense to
let the wizard listen on the subjects’ self-talk through an audio channel.
The second observation concerns the user interface. The TEXmacs interface,

while certainly more flexible and more convenient for the users than the simple
GUI from the first experiment, may have been the ‘‘culprit’’ that introduced
the problem discussed above. The copy–paste mechanism turns out to be a
mixed blessing: on the one hand, it is certainly convenient for the users, but on
the other hand, copying ad libitum from the dialogue history makes the input
not only more prone to errors of sloppiness, but also unnecessarily complex.
It is not clear how to cope with this problem. Since copy–paste is currently
standard in computer programs, suppressing it in a tutoring system appears
unnatural. An interim solution could be, for instance, to highlight in some way
the copy–pasted parts of the input for the wizard. It is interesting that even
though the second interface was better suited for combining natural language
and mathematical expressions (formulas could be composed without switching
between the keyboard and the mouse) C-I also contains utterances in which
natural language and formulas are tightly interleaved.
Our decision as to the mode of interaction, typewritten vs. spoken,

was probably right. Technical problems which we experienced during the
experiments were easier to solve in this simpler setup. Also, we have two
corpora acquired in similar conditions (comparable), so the language processing
strategy we propose can be evaluated on both sets of data. As we will show
in Chapter 4 the subjects’ language production strongly differs between the
two data sets; we believe that even the combined set of dialogues is not
representative enough for building an input understanding component of a
deployable system at this point. While it would be certainly interesting to see
how speech and writing could be built into a WOz experiment on tutoring
proofs, this would be a project in itself, outside of the scope of this work.
The next chapter, Chapter 3, presents the language of mathematical proofs

and reviews the language phenomena which we identified in the dialogues at
a qualitative level. The following chapter, Chapter 4, presents a quantitative
analysis of the diversity of the students’ verbalisations and the differences in
the language production in the two conditions in the second experiment.
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T1: Bitte zeigen Sie: A ∩B ∈ P ((A ∪ C) ∩ (B ∪ C)) !
Please show A ∩B ∈ P ((A ∪ C) ∩ (B ∪ C)) !

S1: (A ∪ C) ∩ (B ∪ C)) = C

T2: Das ist falsch. Nach der Distributivität gilt: (A∪C)∩(B∪C) = (A∩B)∪C.
Somit gilt auch: P ((A ∪ C) ∩ (B ∪ C)) = P ((A ∩ B) ∪ C). Wie geht es
nun weiter?
This is wrong. By distributivity we have: (A∪C)∩(B∪C) = (A∩B)∪C. Therefore,
we also have P ((A ∪ C) ∩ (B ∪ C)) = P ((A ∩B) ∪ C). How does it go on?

S2: (A ∩B) muss in P ((A ∪ C) ∩ (B ∪ C)) sein, da (A ∩B) ∈ (A ∩B) ∪ C
(A ∩B) must be in P ((A ∪ C) ∩ (B ∪ C)) since (A ∩B) ∈ (A ∩B) ∪ C

T3: Was meinen Sie mit: (A ∩B) muss in P ((A ∪ C) ∩ (B ∪ C)) sein?
What do you mean by: (A ∩B) must be in P ((A ∪ C) ∩ (B ∪ C))?

S3: da P ((A∪C)∩ (B ∪C)) nach Distributivgesetz gleich P ((A∩B)∪C) ist
muss (A ∩B) in P ((A ∪ C) ∩ (B ∪ C)) enthalten sein.
since by distributivity P ((A∪C)∩ (B ∪C)) equals P ((A∩B)∪C) (A∩B) must
be contained in P ((A ∪ C) ∩ (B ∪ C))

T4: Was meinen Sie mit: muss (A∩B) in P ((A∪C)∩ (B ∪C)) enthalten sein.
Meinen Sie Element oder Teilmenge?
What do you mean by: (A∩B) must be contained in P ((A∪C)∩ (B ∪C)). Do you
mean element or subset?

S4: (A ∩B) ∈ P ((A ∩B) ∪ C)
T5: Meinten Sie vorhin wirklich: (A ∩B) ∈ (A ∩B) ∪ C?

Do you really mean (A ∩B) ∈ (A ∩B) ∪ C?

S5: ja
yes

T6: Das ist falsch, denn (A ∩ B) ⊆ (A ∩ B) ∪ C. (A ∩ B) und (A ∩ B) ∪ C
sind Mengen und keine Elemente voneinander. Was folgt als nächstes?
This is wrong because (A ∩B) ⊆ (A ∩B) ∪C. (A ∩B) and (A ∩B) ∪C are sets
and not elements of each other. What follows next?

...

Figure 2.3: Example dialogue from the set theory corpus (C-I).
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...

S9: (R ∪ S) ◦ T = {(a, b)|aRb ∧ aSb} ◦ T
T9: Das ist nicht richtig!

That is not correct

S10: = (R ∪ S) ◦ T = {(a, b)|aRb ∨ aSb} ◦ T
T10: Die Gleichheit zum vorigen Schritt ist nicht gegeben!

The equality with the previous step does not hold

...

S12: = {(a, b)|∃c(c ∈M∧((a, c) ∈ {(a, b)|aRb}∧(c, b) ∈ T )}∪{(a, b)|∃c(c ∈
M ∧ ((a, c) ∈ {(a, b)|aSb} ∧ (c, b) ∈ T )}

T12: Ja, das ist richtig!
Yes, that’s correct

S13: Wollen zeigen (S ◦ T ) = (T−1 ◦ S−1)−1

Want to show...

T13: Ja. Sie koennen jedoch Ergebnisse von vorhergehenden Aufgaben benutzen.
Yes. Note that you can use the results of the previous exercises.

...

S17: Damit gilt: (T−1 ◦ S−1)−1 ∪ (T−1 ◦R−1)−1 = (S ◦ T ) ∪ (R ◦ T ) =
With that it holds...

T17: Korrekt!
Correct!

S18: = (R ◦ T ) ∪ (S ◦ T )
T18: Auch korrekt!

Also correct!

S19: Nach Aufgabe A ist dies (R ∪ S) ◦ T
By exercise A this is...

T19: Genau richtig!
Exactly correct!

S20: Damit folgt die Behauptung
With that the theorem follows

T20: Gut! Vielen Dank! Druecken Sie nun den Knopf fuer die naechste Aufgabe!
Good! Thank you! Press the button for the next exercise!

...

Figure 2.4: Example dialogue from the binary relations corpus (C-II).





Chapter 3

Language phenomena in mathematical proofs

In this chapter we discuss language phenomena in students’ proofs. The
discussion is based on an analysis of the corpora presented in Chapter 2,
however, where relevant, we point out that certain phenomena occur system-
atically both in mathematical prose and tutorial dialogue. We show that the
range of linguistic phenomena in dialogues includes those found in textbooks,
but also a range of phenomena specific to the dialogue setting. Language
phenomena are classified with respect to their lexical, syntactic, semantic, and
context-dependent nature, and exemplified with utterances from the corpora.
The presentation of language phenomena is preceded by an introduc-

tion in which mathematical language is presented from two perspectives:
as a special language and as a language acquired in parallel with mathe-
matical understanding. We characterise the properties of special languages,
so-called sublanguages, to show that the language of mathematics can be
considered a sublanguage, that certain phenomena we identify in our data are
its features as a member of this class, and that therefore they are likely to be
found in other corpora of mathematical discourse as well.
Next, we refer to observations from cognitive science of mathematics

in order to point at a relation between the language used to communicate
mathematics and the stage of mathematical understanding. Themodel proposed
by Tall, which we summarise, suggests that certain phenomena in the students’
mathematical language – specifically, imprecision of linguistic expression
leading to ambiguity – may recur because they are linked to the level of
understanding. Again, this lets us conclude that certain linguistic phenomena
in students’ language have a systematic nature and prioritise modelling those
phenomena in a discourse processing architecture.1

1The language of mathematics has been subject of analysis, motivated by goals similar to ours
in the doctoral dissertations of Zinn (2004), Natho (2005), and Ganesalingam (2009). We
will sometimes refer to those works in order to avoid repetition, however, certain overlap is
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3.1 Introduction

In the following two sections, we briefly present mathematical language from
two perspectives: as a sublanguage and as a language acquired in parallel
with mathematical understanding. These two views help explain some of the
phenomena observed in the corpora.

3.1.1 Mathematical language as a special language
Language is a type of code. Natural language is a code which enables
communication of meanings by means of words. From the perspective of
its purpose as a means of communication, language is a system consisting
of a vocabulary and grammar rules that makes linguistic behaviour possible.
A sublanguage, or special language, as opposed to the general language, is a
language used by a particular community (social or professional, for instance)
or used to talk about specialised topics, a limited subject matter, for example,
within a particular discipline (Harris, 1968; Sager, 1972; Hirschman and Sager,
1982; Grishman and Kittredge, 1986).
Sublanguages tend to diverge from the general language in that they are

characterised by a systematic recurrence of non-standard or even ungram-
matical structures, stylistic patterns, high frequency of certain constructions,
conventionalised phrasings, by the use of specially created terminological
systems and special written notation whose verbalisation may require adher-
ing to commonly agreed rules (Kittredge and Lehrberger, 1982; Linebarger
et al., 1988; Grishman and Kittredge, 1986). Typical examples of special
languages are the language of law, with its characteristic style and choice of
wording, hardly comprehensible to the layman, the language of medicine and
pharmacology, with their Latin terminology and frequent use of abbreviations,
or the language of chemistry. The latter is particularly interesting in that it
has developed different code systems to refer to chemical elements and com-
pounds, the first-class entities in the world of chemistry; for example, referring
to the substance commonly known as water we can say or write hydrogen
monoxide using a technical term (linguistic code), or H2O (symbolic code),
or draw a graphical representation of the compound’s structure (visual code).
The formal language of mathematics can be considered a special language
which, much like the language of chemistry, combines a subset of a natural
language with a special kind of written code whose vocabulary, unlike that of
natural language, does not consist of words (in the sense of words of English

unavoidable. The discussion of language phenomena presented in this chapter benefited from
monographs and articles on mathematical discourse by Halmos (1970), Steenrod et al. (1973),
Knuth et al. (1989), and Bagchi and Wells (Bagchi and Wells, 1998; Wells, 2003, n.d.).
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or German), but solely of special symbols typically limited to numbers, letters,
multi-character abbreviations, and graphical signs, which can be combined
according to prescribed rules to form expressions of arbitrary complexity. This
written symbolic code is a kind of conventionalised notational system that
makes rigorous and formal mathematics possible.
The mathematical language we know from school classes, university

lectures, and textbooks – the informal mathematical language – certainly does
not consist of the symbolic language alone. Especially while teaching and
learning we do not use such a linguistically limited form of expression to
communicate mathematics. In fact, the symbolic notation often constitutes a
serious cognitive barrier in understandingmathematical concepts (Moore, 1994;
Dorier et al., 2000; Booker, 2002; Downs and Mamona-Downs, 2005). The
language we do use, ever since we first encounter mathematics in preschool, is
our mother-tongue. We start by informally talking about mathematical objects
in natural language in order to understand the concepts intuitively. Gradually,
we learn the mathematical terminology – the technical terms that name the
concepts – observe that certain commonwords from everyday vocabulary name
mathematical notions, acquiring ‘‘mathematical meaning’’, and we adopt the
new usage. At the same time, much like learning a foreign language, we
learn the new language of mathematical notation and combine it with natural
language. This process of learning the ‘‘mathematical language’’ is not a
trivial one, but the success in understanding mathematics has been shown to
crucially depend, among others, on the learner’s ability to master the ways of
mathematical communication; Sfard (2000, 2001) views the process of learning
mathematics as developing a special type of discourse.
Efficient communication of mathematics relies heavily on the interaction

of the two languages: the natural language (linguistic code) and the language of
mathematical notation (symbolic code). The two languages can be thought of
as two modes of expression which can be not only flexibly exchanged, but also
interleaved. In this sense, informal mathematical language can be considered
‘‘multi-modal’’; the symbolic and natural language modes are integrated into
the syntax of the special language of mathematical discourse.
It is useful to realise in the context of mathematics tutoring that mathe-

matical style and language, in particular, the level of formality in expressing
mathematical statements, evolves as learners develop deeper mathematical
understanding. Tall (2004b) refers to the different stages of mathematical
cognitive development as three worlds of mathematics and explicitly points
at a relation between the stage of understanding in the course of learning and
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the properties of the language used to communicate mathematics. In the next
section we briefly review Tall’s theory.2

3.1.2 Learning mathematics and mathematical language
From the point of view of cognitive development, understanding (also mathe-
matical) and creative thinking is crucially dependent on three basic human
cognitive activities: perception, action, and reflection (Skemp, 1987, 1979).
Perception is concerned with objects and their attributes. Objects can be
manipulated using acquired action schemas which, in turn, can themselves
be perceived as objects (in the sense that they are mental units) and become
subject of thought processes. More sophisticated mental objects can be formed
through reflection on perception and actions. This stepwise development
model is based on the Piagetian tripartite theory of abstraction: empirical
(objects), pseudo-empirical (actions), and reflective (actions and operations as
objects of thought) (Piaget, 1985). Other stratified models are conceptually
related in that they share the underlying common distinction between the three
stages of cognitive development: interaction with the environment (enactive
stage), mental representations and operations on them (iconic thinking), and
abstract reasoning (symbolic/formal thinking). In mathematics, for instance,
the notion of a number, the construction of natural numbers, and the extension
of the notion of a number (cardinal numbers) are based on abstraction and
generalisation using sets (objects) and counting (action) and form an axiomatic
and definitional basis for formal proofs in domains in which numbers are
objects.
Building on existing established theories of cognitive development, David

Tall formulated a theory of mathematical thinking in terms of (not necessar-
ily sequential) transitions between three ‘‘worlds’’ of mathematics which are
distinct, but interrelated, and which reflect the tripartite structure of cognitive
development outlined above. He claims that the three ‘‘worlds’’ are charac-
terised by different mechanics and ways of operating, different forms of proof,
and, most interestingly in our context, different use of language.

Tall’s Three Worlds of Mathematics3 The conceptual–embodied or
embodied world is the world of experiences with our physical and mental
reality: our perceptions of things we sense and interpret. Early conception of
2Incidentally the structural ambiguity in the reading of ‘‘and’’ in the next section’s title is actually
appropriate: on the one hand, the theory points at a dependency between learning mathematics
and the mathematical language used at different stages of learning, on the other hand, it is
concerned both with learning mathematics and with learning mathematical language.
3The following two paragraphs summarise the main ideas from (Tall, 2004a) and (Tall, 2004b).
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numbers and arithmetics are largely set in the embodied world: a single object
is associated with the number one, a group consisting of one object and another
object, with the number two, etc. Early counting is also embodied. Through
reflection and development of language, we can envisage idealised concepts
which do not exist in reality, for instance, an infinite line that is perfectly
straight and infinitely thin or non-euclidean geometries.
The second world, proceptual–symbolic or proceptual world, is the world

of symbols used for calculations. Their crucial property is their dual role: that
of denoting processes or actions and concepts. For instance, the notation 1 + 1
represents both the process of addition (counting) and the concept of a sum (an
action encapsulated in a concept representing the result of counting). This dual
nature of mathematical symbolism has been also emphasised by Sfard (1991).
Within the proceptual world we move to more involved number concepts:
from fractions and negative numbers through rational and irrational numbers
to complex numbers. Complex numbers and operations on them are examples
of evidence that symbol manipulation can be performed without reference to
the embodied world. They can be, however, also represented as points in a
plane, giving them an embodied interpretation. An abstraction of the notion
of mathematical operation leads also to more sophisticated general concepts,
such as limits.
The third world, the formal–axiomatic or formal world, is the world

of formal definitions that specify properties of mathematical structures (for
instance, groups, fields, vector and topological spaces) using formalised
axioms. There are no embodied representations in this world, only formal
symbolic representations. New objects can be defined using existing axiomatic
definitions and their properties can be deduced in formal proofs through which
new theorems can be established, thus building new coherent formal theories.
The embodied world, inhabited by objects and actions on them, is thus

linked to the basic activity of perception. The proceptual world with actions on
objects, reflections on these actions and their symbolic representations (which,
in turn, are also objects that can be processed) is linked to the basic activity of
performing an action. Finally, the formal world of axioms can be linked to the
activity of reflection upon the properties and relationships between the objects
in the embodied and the proceptual worlds. Tall points not only at the fact that
the three worlds reflect the different ways of understanding mathematics, but
also at the fact that language operates differently in each of these worlds.

The language in the Three Worlds of Mathematics In the embod-
ied world the use of language starts with references to everyday experiences
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with mathematical objects. Once basic categories of objects are named
(‘‘point’’, ‘‘line’’, ‘‘circle’’, ‘‘square’’, or ‘‘triangle’’) their properties are
described: for instance, squares and triangles ‘‘have sides’’; squares are ‘‘four-
sided figures with all sides equal and (at least) one right angle’’, and so on.
Moreover, similar or related objects can be prescribed: a ‘‘four-sided figure
with opposite sides equal and (at least) one right angle’’ is a ‘‘rectangle’’. With
such descriptive definitions focusing on properties of objects a learner can build
first complex object hierarchies; squares are special kind of rectangles, for
instance. In the embodied world the language is mainly used as a descriptive
and prescriptive tool. The linguistic devices include (complex) noun phrases
that name concepts, property-naming adjectives, adverbs that further qualify
properties, and basic common verbs (such as ‘‘is’’, ‘‘has’’, ‘‘contains’’) to talk
about relations between the objects.
The action-based proceptual world needs language which can talk about

actions (processes or algorithms, for instance) and which includes derived or
related lexical forms to talk about objects that correspond to the actions. For
the process of counting we need ordinal and cardinal numbers, for summation
or adding, we need the notion of a sum, etc. The conscious use of the flexibility
of language to name processes and concepts represented symbolically and
the realisation that symbols denote both processes and concepts is a major
factor in mathematical comprehension, in particular, in developing calculating
and symbol manipulation skills. An additional function of language in the
procept world is to narrate or report on the conducted operations (for instance,
in the form of a self-talk or an internal monologue), to specify operations that
need to be performed, and to manage progress (by asking questions, stating
completion of calculations, etc.) The main function of the processes is to
perform calculations, while the main function of the language is to perform
speech acts that correspond to the calculations; hence the use of ‘‘action’’
verbs, performative speech acts, and the imperative mood in the internal
monologue.
The formal world uses technical language. It is based on everyday lan-

guage, however, if everyday words are used, they are used in a precisely
defined technical sense: a field is not a kind of area, the word ‘‘set’’ is not
synonymous with ‘‘group’’, an identity does not care about its psychologi-
cal identification, ‘‘group theory’’ is not another name for the theory of the
crowd, and a zero ideal is not an oxymoron. Aside from common words
with new technical meaning, the formal language uses technical termino-
logy invented specifically for the given mathematical domain or reserved for
technical use; in the ‘‘real world’’, it would sound rather odd to remark casually
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about a woman: ‘‘I like her deep brown eyes and the gentle ellipsoid of her
face.’’ Finally, the formalworld, is theworld of symbolic language. Definitions,
theorems, and proofs in the formal world refer to axioms unambiguously
expressed in a formal notation. Here, the language is a means of formalisation.
A peculiar characteristic of the formal world is that the structures defined
in terms of axiomatic properties do not at all need to have corresponding
embodied counterparts.

The point of this somewhat lengthy introduction to the chapter was to show
that because of the nature of mathematical language as a special language
and given the type of user we have in mind, a mathematics learner, a lot of
the phenomena we will describe can be considered universally characteristic
of our setting. Tall’s theory, in particular his observations on the students’
language, explain some of the phenomena in our mathematical dialogues:
the use of imprecise language to express mathematical concepts (discussed
in Section 3.2.2.4), the use of certain types of anaphora in referring to
objects expressed in symbolic language (Section 3.2.2.5), verbalisation of
symbolic expressions (Section 3.2.1.2), or the action verbs ‘‘narrating’’ proof
construction (Section 3.2.2.4). Moreover, and most importantly, they point at
the fact that these properties of the language (its imprecision, recurrence of
certain reference phenomena, the occurrence of action verbs) are an inherent
part of (students’) verbal expression in mathematics. Thus, the phenomena
we discuss in the next section, in particular, those characteristic of informal
language, are not specific to our corpora alone, but rather can be expected to
be found in other corpora of students’ mathematical language as well.

3.2 The language of mathematical proofs

Natural language can be considered inherently unsuitable for mathematics
because its interpretation is strongly dependent on context and because of
its notorious main flaws – imprecision and vagueness – which tend to lead
to ambiguities in interpretation. Yet, in spite of these ‘‘imperfections’’,
natural language was for a long time the sole medium for communicating
mathematics.
Before symbolism was introduced in the sixteenth century, all of mathe-

matics was done in ordinary language. In early algebra, solutions to what we
now know as polynomial equations were presented as worded rules in Arabic.
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In his Short book of al-jabr and al-muqābala, al-Khwārizmı̄, an eighth century
Persian mathematician, considered quadratic equations such as this:

Property and ten things equals thirty-nine

(x2 + 10x− 39 = 0 in today’s notation) and presented solutions as follows:

Take the half of the number of things, that is five, and multiply it by itself,
you obtain twenty-five. Add this to thirty-nine, you get sixty-four. Take
the square root, or eight, and subtract from it one half of the number of
things, which is five. The result, three, is the thing. (Kvasz, 2006, p. 292)

In the sixteenth century, Cardano still worked with worded equations (cubus
and thing equal number for x3 + bx − c = 0; ibid.) and it was not un-
til Descartes and Viète that the first symbolic language for equations and
manipulation of formulas was introduced. However, counting, numbers, sim-
ple calculations, and ‘‘natural language mathematics’’ had existed since the
Babylonian civilisation (ca. 2000–1600 BC); even earlier, since the Sumerian
times (ca. 3000–2300 BC) already. Al-Khwārizmı̄’s description of finding
the unknown is in fact perfectly comprehensible even if it sounds more like
a worded recipe or an algorithm4 (for a method known as ‘‘completing the
squares’’) rather than the kind of solution with which we are more familiar
nowadays (using the discriminant).
What the example illustrates is that natural language, however imprecise,

is flexible and remarkably expressive in that using words (nouns, indefinite
and definite descriptions, cardinals) we can name (abstract) objects and we
can further refer to these objects in the subsequent discourse using a range of
linguistic devices. For instance, in the English translation of the reproduced
text, the noun phrase ‘‘the half of the number of things’’ introduces a new entity
of a number type into the discourse as well as refers to an entity previously
introduced with the noun phrase ‘‘ten things’’ in the problem description. The
new entity is further referred to with its name, ‘‘five’’, in the parenthetical
clause and evoked again with a pronoun ‘‘it’’. In order to follow the solution,
the reader must just keep track of the discourse referents, much like in ordinary
discourse, and perform the mathematical operations simultaneously. Natural
language words such as ‘‘a thing’’, ‘‘something’’ serve as placeholders, or
natural language variables, for which no symbolic representation existed at the
time. The introduction of symbolism for variables by Viète lead to a revolution
not only in written mathematics, but also in mathematical thinking.
4Nota bene, the origin of the word is al-Khwārizmı̄’s name.
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Unlike natural language, the symbolic language ofmathematics has not been
evolving over many centuries. Most of basic algebra and calculus notation was
established in the seventeenth and eighteenth centuries by Oughtred, Leibniz,
and Euler and conventionalised to a large extent within a short time. Set theory
notation is due to Peano and Cantor (late nineteenth century) and Russell,
Landau and Bourbaki (twentieth century). Most of the calculus notation is due
to Leibniz and Euler (late seventeenth and eighteenth century), and to Gauss,
Weierstrass, and Cauchy (from the nineteenth century on).5
In the following sections we ‘‘deconstruct’’ the language of mathematics.

The analysis is performed from point of view of a computational linguist
whose aim is to design and implement a language processing architecture for
mathematical discourse. The task of the interpretation component in such an
architecture is to bridge the gap between the informal language of proofs and a
formal language of a mathematics assistance system which performs reasoning
tasks (a proof checker or an automated theorem prover); see Section 1.2.
Considering these practical aims, philosophical aspects of mathematics and
mathematical discourse – the nature of the universe of discourse, the existence
of mathematical entities – will not be even touched upon here.
We first analyse the symbolic component alone (Section 3.2.1) and then the

familiar informal mode in which natural language is interspersed with symbolic
notation (Section 3.2.2). The sections have a similar structure: we break the
language down to its lexicon, its syntax, semantics, and discourse-pragmatic,
context-related phenomena. Most of the example utterances are directly quoted
from our corpora, preserving the original spelling and capitalisation; some of
the quoted mathematical statements are also false. In the English translations
we attempt to reproduce the phenomena present in the German originals in
order to show that they appear across languages, however, where this is difficult
or impossible, we provide additional explanation.

3.2.1 The symbolic language
According to the oft-repeated slogan, all mathematics is is a language. On a
cursory look, in a mathematical paper or textbook one sees hardly anything but
its ‘‘alien’’ symbol system which typically stands out displayed in indented
formulas centred on the page. The title of Ervynck’s detailed analysis of
mathematical symbolic language and its syntactic structure, Mathematics as
a foreign language, emphasises precisely this point (Ervynck, 1992). In this
5Cajori’s A History of Mathematical Notations is the classic source on the subject of mathematical
symbolic language. A resource on the earliest uses of mathematical symbols is maintained at
http://jeff560.tripod.com/mathsym.html [Accessed: 2007].

http://jeff560.tripod.com/mathsym.html
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section, we analyse the symbolic language of mathematics from a linguistic
point of view: we look at its lexicon, syntax, discuss semantic and pragmatic
phenomena, in particular, its ambiguity, surprising imprecision, context- and
convention-dependence, and ‘‘ungrammaticality’’ (ill-formedness) in symbolic
expressions constructed by learners.

3.2.1.1 Lexicon
The mathematical symbols’ vocabulary typically includes the lowercase and
the uppercase (stylised) letters of Latin, Greek, and exceptionally old German
and Hebrew alphabets, numbers, multi-character abbreviations, and a range
of non-alphanumeric iconic signs and punctuation symbols. Unlike in natural
language, arbitrary identifiers can be defined to stand for any concept so long
as consistency is maintained. Of course, arbitrary reassignment of known
symbols or assignment of new symbols to concepts for which exiting symbols
are widely used would be counter-productive and might introduce unnecessary
confusion, therefore it is not practised.
Letters, numbers, and their bracketed sequences name mathematical ‘‘in-

dividuals’’ in a given domain (be it primitive objects or complex structures,
such as (x, y) or {1, 2}) and constitute atomic terms of the formal language.
In principle, the symbolic vocabulary is infinite: letters can be subscripted or
superscripted with numbers or punctuation (typically apostrophes) to obtain an
infinite repository: x, x1, x2,... or x′, x′′, x′′′,... In practice only a small subset
of the infinite lexicon is mentioned explicitly; infinite collections of objects are
marked with an ellipsis symbol (like in the preceding sentence).
Mathematical operators (relation, function, and binder and quantifier sym-

bols) are typically represented by iconic signs (=,√ , <, ⊂, +, ∪, ∨, ∀, etc.),
accent- and punctuation-like symbols ( ,̂ ′, !), mnemonic abbreviations (lim,
sin, Im) and letters (Σ, Π, ∂, d). New abbreviations and graphical signs are
continuously introduced as new mathematical objects are being defined.
Operators come with the notion of arity, that is, information on the number

of arguments they take, and with information on the types of operands to which
they can be applied; this is analogous to predicate–argument structures of
natural language relational lexemes and sortal restrictions on their arguments.
In standard mathematical texts, the addition operator, +, for example, takes
exactly two arguments, while the summation operator, Σ, three arguments:
the conditions on the lower and upper summation bounds and the expression
representing the terms being added, of which the first two (the summation
bounds) can be left implicit if they are clear from the context; this is often
the case if summation ranges from minus to plus infinity, for instance, or
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if the summation range is given in the text preceding the occurrence of the
symbolic expression.6 The sortal restrictions on the operands are specified by
the domain of the concept (relation or function) for which the operator stands in
the given context. The domain, in turn, is specified in the concept’s definition.
The previously mentioned +-symbol, for instance, is typically defined as an
addition operator in (all) number domains, hence, the expression π + e does
not violate the sortal restrictions if by π and e we mean the two real numbers,
however, the corresponding operation on sets is denoted by the set union
operator, ∪.
Much like natural language needs punctuation symbols, the comma and

the full-stop, to delimit clauses and sentences, mathematical language uses
parentheses and brackets (square, curly, angle brackets) to delimit the scope
of mathematical operators. In some formal texts, a square or a bolded dot is
used as an additional scope-defining punctuation in order to reduce the number
of parentheses.7 Brackets have also a grouping function in the notation of
mathematical objects. For instance, by convention, pairs are enclosed in round
parentheses, while sets in curly brackets ((1, 2) is an ordered pair with 1 as the
first and 2 as the second coordinate, while {1, 2} is a set with these elements).
Also certain punctuation-like symbols serve to denote mathematical con-

cepts. For instance, single vertical lines denote the absolute value of an
expression (|x|) and pairs of vertical lines, the norm of a vector (‖x‖). Primes
and accents (circumflex, check, tilde) tend to have a modifying function: they
introduce an object in some way related to the object they modify. Likewise,
functionally related objects often receive the same letter names distinguished
by primes or accents; for instance, in f ′, a prime marks the derivative of a
function f , X̂ might be chosen to name the closure of X . Primes also mark
collections of objects of the same type: x′, x′′,...
Horizontal and diagonal lines may also act as typographical separators, as

in the set comprehension notation ({x|x > 7}) or in the notation for fractions
( 7

17 or 7/17). The comma is used in enumerations, much like in natural
language: ∀x, y 6= 0...

3.2.1.2 Syntax
Mathematical expressions are built according to rules of syntax which are often
introduced only informally. Inmathematics textbooks, examples of expressions
with particular operators are typically presented together with the definition of
6We will return to the role of context in Section 3.2.1.4.
7Saving on parentheses is common in logic and meta-mathematics; see, for example, the use of
dots in Principia Mathematica.
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the given concept and with natural language phrases illustrating how the given
expression is to be ‘‘pronounced’’, as in the following definition from Bartle
and Sherbert (1982):8

If A denotes a set and if x is an element, we shall write
x ∈ A

as an abbreviation for the statement that x is an element of A, or that x
is a member of A, or that x belongs to A, or that the set A contains the
element x, or that x is in A.

In formalised systems, such as formal logic or proof theory, the syntax of the
formal language (the complete range of licensed expressions, or well-formed
formulas) is explicitly introduced inductively. Inductive syntax definitions
follow a definition schema that starts with an introduction of atomic terms
(constants and variable symbols and conventions for obtaining an infinite
set of those; for instance, using primes or numerical subscripts), followed
by a definition of complex terms (including operator symbols that combine
atomic terms into complex terms), and finally formulas are defined in terms
of operators which introduce statements (stand for logical connectives and
predicates). An inductive syntax definition typically closes with a statement
that no expressions other than the ones introduced are licensed in the given
formal system. The language of first order predicate logic, the simplest
language suitable for representing mathematics, may be formulated as follows:

The set of symbols consist of (countably infinite) sets of:
constants (7, π, 13

27 , ⊥, . . .)
individual variables (x, y, z, x′, x′′, A, B, C, . . .)
n-ary functions (+, −, cos, ∪, . . .)
n-ary predicates (<, ⊆, =, . . .)
logical connectives (∨, ∧,⇒, . . .)
quantifiers (∀, ∃)

The set of atomic terms consists of all constant and individual variable
symbols.
If t1,. . . ,tn are terms and f is an n-ary function, then ft1. . . tn is a
term.
If t1,. . . ,tn are terms and P is an n-ary predicate, then Pt1. . . tn is
an atomic formula.
IfA andB are formulas and x is a variable, then∼A,A⇒ B,A∨B,
A ∧B,A⇔ B, ∃xA, ∀xA are formulas.

8Boldface type preserved from the original.
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V = { <IND_VAR>,<SET_VAR>, <SET_CONST>, <SET_FUNC>, <MEMB_PRED>, <SET_PRED>
<OPEN_PAR>, <CLOSE_PAR>, <VRTCL_BAR>, <TERM>, <FORMULA> }

T = { x, y, z, x1, . . . , A, B, C, . . . , ∅,∩,∪, \, . . . ,∈,⊆, =, . . . , [, ], | }
S = set_expression

P :
<IND_VAR> ::= x | y | z | x1 | . . .
<SET_VAR> ::= A |B | C | . . .
<SET_CONST> ::= ∅
<SET_FUNC> ::= ∩ | ∪ | \ | . . .
<MEMB_PRED> ::= ∈
<SET_PRED> ::= ⊆ |= | . . .
<OPEN_PAR> ::= {
<CLOSE_PAR> ::= }
<VRTCL_BAR> ::= |

SET_EXPRESSION ::= <TERM> | <FORMULA>
<TERM> ::= <SET_VAR> | <SET_CONST> | <TERM> <SET_FUNC> <TERM> |

<OPEN_PAR> <IND_VAR> <VRTCL_BAR> <FORMULA> <CLOSE_PAR>
<FORMULA> ::= <TERM> <SET_PRED> <TERM> | <TERM> <MEMB_PRED> <TERM>

Figure 3.1: Fragment of a context-free grammar for set expressions

The syntax of symbolic mathematical expressions, at least of their con-
siderable subset, can be described in terms of context-free grammars (CFG).9
A CFG for a subset of set theory expressions is shown in Figure 3.1.10 The pro-
ductions generate well-formed, however, structurally ambiguous expressions
such as A ∩ B ∈ A ∩ B ∪ C. 7 ∗ 7 + 7 is an analogous structure from arith-
metics (neither set union and intersection nor addition and multiplication are
associative). These kinds of structural ambiguities in mathematical expressions
are common, however, they are immediately resolved based on the assump-
tions about conventional operator precedence (see Section 3.2.1.4). Grouping
parentheses, which are part of the grammar, can be used to explicitly delimit
ambiguous expressions, especially if non-default interpretation is intended.
9A context-free grammar, G, is a tuple (V, T, P, S), where V and T are finite sets of variables
and terminal symbols, respectively, P is a finite set of productions of a form A → α (with
A ∈ V and α ∈ (V ∪ T )∗), and S is the start symbol. Context free languages, generated
by context-free grammars, were invented independently by Chomsky and Backus in the 1950s;
the general idea dates back to Post’s work on string rewriting production systems in the
1920s. Already Backus observed that algebra expressions can be analysed in terms of context-
free grammars, while Wells (1961) and Anderson (1977) were among the first to apply the
formalism in computational analysis of mathematical expressions. Fateman points at context-
sensitive semantics of mathematical expressions and argues for the need of a more expressive
formalism (Fateman, n.d.a); see also (Fateman, n.d.b).
10The grammar is presented in the Backus-Naur form. The abbreviated rule names for the terminal
symbols stand for individual variables (IND_VAR), set variables (SET_VAR), set constants
(SET_CONST), set functions (SET_FUNC), the membership predicate (MEMB_PRED), set
predicates (SET_PRED), and opening/closing parentheses (OPEN_PAR/CLOSE_PAR). The
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(a)
<formula>

<term> <set pred> <term>

<term><set func><term> ⊆ C

A ∩ B

(b)
⊆

∩ C

A B

Figure 3.2: Tree representations of a mathematical expression; (a) Chomsky-
style tree generated by the context free grammar in Figure 3.1, (b) head-daughter
dependency-style

Internal structure Symbolic mathematical expressions can be represented
as derivation trees of the CFG fragments that generate them. These trees
correspond to phrase structure trees of natural language sentences and represent
hierarchical constituency of the expressions’ internal structure. For instance,
based on the grammar in Figure 3.1, the set expression A ∩ B ⊆ C
can be represented as shown in Figure 3.2 on the left. The three’s nodes
are labelled with the names of production rules and leaves are the terminal
symbols (symbols from the vocabulary of the context-free language). The
tree on the right represents the same expression in another diagrammatic
presentation, with the operators at the tree-internal nodes and the operands at
the leaves. This representation emphasises the relational nature of the operators
and the recursive properties of the hierarchical structure of mathematical
expressions: each complex expression has one main operator,11 the root of the
tree, and any number of atomic or complex subconstituents, subformulas, and
subterms, which, in turn, can be identified by their main operator nodes and
by tracing the subtrees headed by those nodes.12 Note that some elements of
the (sub-)structures may be omitted. We will return to this when we discuss
underspecification.

vertical bar, |, denotes alternative productions. The grammar is obviously oversimplified (it does
not, for instance, make a distinction between sets of different order: sets vs. sets of sets); it is
meant only as an illustration.

11Chains of like terms, for instance, in iterated equations or in set expressions, such asA∪B∪C∪D,
can be thought of as right branching trees with the first operator in the chain as the root.

12There is empirical evidence that both experienced mathematicians as well as learners perceive
mathematical expressions in terms of their syntactic structure, that is, our internal represen-
tation of mathematical expressions is based on the phrasal structure of the expressions’ parse
trees (Kirshner, 1987; Jansen et al., 1999, 2000, 2003).
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Written notation Mathematical expressionswritten down on paper, a black-
board or rendered on a computer screen are of two-dimensional character. The
vertical dimension is manifested, for instance, in the notation of fractions: the
numerator is written above the denominator, the vertical structure emphasised
by the fraction bar. Similarly in the notation for integration, limits, and iterated
sum and product, the bounds are written above and below the operator symbol.
Along the horizontal dimension, symbolic expressions are linearised in

a certain order. An interesting property of the internal tree structure of
mathematical expressions is that theymay be presented in different linearisation
variants; much like word order in natural language. An expression can be
written in the infix notation (operators linearised between operands they
act upon), in the Polish notation, also known as prefix notation (operators
precede the operands), or in the inverse Polish notation (operators follow the
operands).13 While there is a consistency in modern Western mathematics to
linearise expressions with binary operators in the infix notation, there is little
consistency in linearisation of different unary operators: the factorial symbol, !,
is postposed with respect to its operand, the negation symbol,∼ or¬, preposed,
the root symbol, √ , preposed, in the notation for derivatives, the prime, ′, is
postposed, while d and ∂ preposed, powers of trigonometric functions may
be either infixed (sin2x) or postposed ((sin x)2), etc. There is a special
compact infix notation for writing down a series of formulas in a chain. If
the relation between the objects is transitive, the terms can be iterated in a
sequence: . . . = . . . = . . .; similar notation is common for implication (⇒) and
equivalence (⇔). A variant of the chain notation can occur with dual relations
(for instance, . . . < . . . > . . . or . . . ⊂ . . . ⊃ . . .).
The hierarchical internal structure, linearisation convention, and explicit

delimitation of certain subexpressions give rise to a number of visually salient
subparts of symbolic mathematical expressions which can be identified by
their spatial location or marked delimitation. First, the horizontal dimension
comes with the left- and rightwards orientation with respect to a certain
point (or vertical line) of reference: the root of an expression’s (sub-)tree
(see Figure 3.2b). Second, the vertical dimension comes with the up- and
down-ward orientation with respect to a certain horizontal line (or point) of
reference: the topographic centre-line of a (sub-)expression in the linearised
form (for instance, the fraction bar or a line running through the centre of an
iterated summation symbol).14 Third, due to marked delimitation, bracketed
13Paired symbols written on both sides of an expression (such as parentheses or absolute value
vertical bars) are said to be in an outfix/circumfix or mixfix/tranfix notation.

14Mathematical expressions’ topographic properties of this kind are exploited in mathematical
OCR; see, for instance, (Fujimoto et al., 2003; Tapia and Rojas, 2004).
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expressions also form distinguishable objects which, in turn, may embed other
bracketed expressions.
Now, the purpose of this and the previous section, in which we illustrated

the internal structure of mathematical expressions and their written form, is
to lead up to a later discussion on referring in Section 3.2.2.5. Visually
recognisable forms in mathematical notation give rise to a range of natural
language spatial expressions which can be used to refer to the respective
subparts of mathematical notation, exploiting its internal tree- and spatial
structure and the relative location of its elements. We can, for instance, identify
a term to the left of the main operator of an expression and refer to it as ‘‘the
left term’’, ‘‘the term on the left-hand side’’, or ‘‘the left side’’ (keeping in
mind the internal tree structure of the expression)15 or identify a term enclosed
in parentheses to the right of the main operator and refer to it as ‘‘the term
in brackets on the right’’ or ‘‘the right bracket’’. In a language interpretation
architecture, referents of these expressions need to modelled. We will return to
this in Section 6.3.

Verbalisation Aside from referring to salient parts of notation, as exem-
plified above, we also read symbolic expressions out loud. Vocalisation
routinely accompanies writing in a form of think-aloud (for instance, at the
blackboard) or internal monologue. In mathematical textbooks, examples of
natural language verbalisationmay accompany introduction of new symbolism,
as in the paragraph on set membership notation, cited earlier in this section,
illustrates (see p. 96). In mathematical articles, a comment on wording may
accompany introduction of new notion which the given article defines for the
first time. Wording of ‘‘known’’ concepts is rarely explicitly stated in textbooks
and certainly never in articles.16 Learners must simply sooner (or later) ‘‘pick
it up’’ in the classroom on their own. It is useful to realise that in the tutoring
context this may result in misconceptions as to how symbolic expressions
should be meaningfully read. Booker (2002) discusses difficulties that learners
experience in understanding mathematics as a result of inconsistencies in the
language used to talk about mathematics, especially its symbolism, and as a
result of the fact that the verbal language bears no connection to the symbolic
language used to record mathematical facts. Likewise, Thompson and Ruben-
stein (2000) stress the importance of teaching how to verbalise mathematics
15‘‘Left’’ and ‘‘right’’ make sense with infix operators; the referring expression ‘‘the left side’’
fails in the context of

∑
n, but succeeds in the context of

∑
n+m. Referring expressions of

this kind may also introduce ambiguities. Consider, for instance, ‘‘the left side’’ in the context
of
∑

n+m =
∑

m+ n.
16‘‘Known’’ in inverted commas because what is assumed to be known is often left implicit...
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and even suggest vocalisation of symbolic notation as one of oral strategies in
teaching.17
While we are not aware of systematic studies addressing the linguistic

structure of symbolic expressions spontaneously verbalised by expert mathe-
maticians or learners,18 it appears that in many cases, verbalisation of symbolic
expressions follows the rules of syntax of the natural language in question,
whereas the syntactic structures used in verbalisation reflect the object or propo-
sition status of the entity which the expression denotes. Hence, terms (objects)
are verbalised using noun phrase syntax, while formulas (propositions) using
verb phrases.19
There is often more than one way of verbalising a given symbolic expres-

sion. For instance, the symbol for a function of one variable, x, written as f(x)
can be verbalised in English as a bare noun phrase ‘‘f of x’’ or simply ‘‘f x’’,
a function of two variables, x and y, written as f(x, y) can be verbalised as
‘‘f of x and y’’ or ‘‘f of x y’’, etc. Arithmetic expressions can be verbalised in
different ways bringing out their process or concept nature. The term 2 + 2,
for instance, can be verbalised as a cardinal number, ‘‘two plus two’’ (with the
word ‘‘plus’’ in the function of preposition, ‘‘two, with two added’’) or as co-
ordinated cardinals, ‘‘two and two’’ (with the conjunction, ‘‘and’’, conveying
17Thompson and Rubenstein mention an example of a misconception about reading the logarithm
notation which surfaced only by coincidence when a student in the class actually read an
expression log28 out loud as ‘‘log of two to the eighth’’. They refer to Usiskin who argued that
‘‘[i]f a student does not know how to read mathematics out loud, it is difficult to register the
mathematics’’ (Usiskin, 1996, cited in (Thompson and Rubenstein, 2000)).

18But see (Karshmer and Gillan, 2003; Gillan et al., 2004) for a cognitive psychological study on
understanding key issues in reading and understanding mathematical equations.

19There is a number of studies addressing speech interfaces for mathematical notation in the
context of voice navigation in scientific documents and in the context of access to mathematics
for the visually impaired. Since Raman’s pioneering work on ASTER (Raman, 1994, 1997)
there has been growing interest in various aspects of spoken interfaces for mathematics. (See,
for instance, (Stevens et al., 1996; Fateman, n.d.a; Guy et al., 2004; Ferreira and Freitas, 2004;
Fitzpatrick, 2002, 2006; Fateman, n.d.b) and references therein.) Pontelli et al. (2009) survey
(multi-modal) accessible mathematics. Existing speech-enabled systems include MathTalk,
MathSpeak, MathGenie MathPlayer, LAMBDA, AudioMath, TalkMaths. Fateman, among
others, discusses a number of problems related to vocalisation of symbolic mathematical
expressions, in general, however, studies aimed at accessibility necessarily tend to focus on
wording which conveys the semantics unambiguously, independently of whether the proposed
wording would be actually spontaneously produced by humans. Unique interpretation is ensured,
among others, by special ‘‘lexical indicators’’, keywords which signal grouping. For instance,
the expression (a+b)/(c+d)might be verbalised as ‘‘a plus b all over quantity c plus d’’, where
‘‘all’’ signals the end of a term, ‘‘over’’ is short for ‘‘divided by’’ and ‘‘quantity’’ signals a start
of a new grouping (Fateman, n.d.b). Fitzpatrick (2002; 2006) argues for effectiveness of speech
prosody and standardised prosodic effects; see (O’Malley et al., 1973; Streeter, 1978; Stevens
et al., 1996; Ferreira and Freitas, 2005) for investigation of prosodic correlates of mathematical
expression structures.
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aggregation). The equality symbol can be verbalised as the verb ‘‘equal(s)’’ or
with a copula construction (‘‘be’’ in the sense of identity) or using action verbs,
such as ‘‘make’’ or ‘‘give’’, which bring out the process–concept duality of
the symbolic language (see (Sfard, 1991; Tall, 2004b)). The specific worded
realisation depends on context (the term 2 + 2 in isolation or within running
text is not likely to be realised as ‘‘two and two’’, but rather as ‘‘two plus
two’’, whereas in an equation both phrasings are possible, as in 2 + 2 = 4.).
Aside from valid syntactic structures, symbolic expressions are sometimes

verbalised using irregular syntax.20 There is a range of symbolic forms which
can be verbalised using idiosyncratic syntax which does not correspond to
their internal structure. In English, arithmetic expressions can be worded as
instructions (commands) in imperative mood. For instance, 2 + 2 − 1 = 3
can be realised as ‘‘two add two take away one leaves three’’, which basically
comprises four ellipted utterances (‘‘(To/We have) two (objects/items), add two
(objects/items), remove one (object/item),...’’) Another class of irregularities
comprises ungrammatical utterances. In English, this can be illustrated with
the verbalisation of set expressions, for instance, ‘‘A union B equals B union
A’’ for A ∪ B = B ∪ A. With ‘‘A’’ and ‘‘B’’ treated as proper noun
categories, and ‘‘union’’ as a common noun, the structure ‘‘A union B’’ is
ungrammatical, yet such constructions are routinely used to read expressions
of this form. Examples of language artefacts related to irregular syntax in
vocalisation which occurred in our corpora will be shown in Section 3.2.2.3.

3.2.1.3 Semantics
However formalised, mathematical expressions are often written in an under-
specified way.21 Omission of information may lead, in turn, to ambiguity.
Classical lexical ambiguity is also found in mathematical language. In the
following, these phenomena and the role of context and convention in disam-
biguation are briefly discussed.

Underspecification Frequently occurring forms of underspecification in
the symbolic notation are omission of notation elements and suppression of
parameters both of which can be explained in pragmatic terms as adherence to
Maxims of Quantity and Manner in mathematics (see Section 3.3).
20Only two examples are shown here; data collection would be needed for a systematic analysis of
the phenomenon.

21By underspecificationwemean here omission of information, rather than underspecified semantic
representation in a technical sense.
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Table 3.1: Examples of ambiguous symbols, (a), and alternative notational
conventions, (b)

(a) (b)
⊃ superset ‘‘A is a proper subset of B’’ A ⊂ B

proper superset A ( B
implies

= number, set, function equality ‘‘A is a subset of B’’ A ⊂ B
index assignment (as in

∑∞
n=0) A ⊆ B

name assignment (f(x) = x2 + 1)
(x, y) open interval ‘‘p implies q’’ p⇒ q

ordered pair p→ q
inner product p ⊃ q
single-dimensional vector Cpq

Delimitation symbols, in particular, brackets are one type of commonly
omitted notation elements. From a formal point of view, unbracketed expres-
sions may be considered syntactically ambiguous; the expression 2 + 2 ∗ 2
could be (in principle) interpreted as another name either for 8 or 6. This
kind of underspecification is, however, typically immediately resolved based
on assumptions on operator precedence. While operator precedence is rarely
explicitly stated, in some domains (for instance, basic arithmetics) it is con-
sidered ‘‘common knowledge’’, an obvious part of general conventions in the
given domain (discussed further in Section 3.2.1.4).
Wells (2003) points out another common type of underspecification in

the symbolic expressions: suppression of arguments (parameters) of certain
types of operations. An obvious example of suppression of parameters is the
notation using primes for derivatives of functions of one variable. Indexed sums
or products are often written with imprecisely specified summation bounds,
however, in many cases, the omitted parameters are either explicitly stated
in the natural language text surrounding the symbolic expression or can be
inferred from it. For instance, if in a given paragraph or section n is declared
to be a natural number, an underspecified expression

∑
n can be interpreted as∑n=∞

n=0 or
∑n=∞

n=1 , depending on whether the adopted convention is for the set
of natural numbers to include 0 or not.

Ambiguity Ambiguities in the symbolic language result from the fact that
mathematical symbols are often polysemous. One symbol may denote different
objects depending on the context in which it is used, in particular, on the
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subarea of mathematics in question; this can be considered a special case of
lexical ambiguity in mathematical language.
The omnipresent equality sign, =, is a notorious example of a polysemous

symbol. Depending on context, the equality sign takes different types of
operands as arguments and is interpreted accordingly.22 Object naming
symbols, certain punctuation, and typographical layout have the same property;
for instance, the dot may occur as the multiplication symbol, the decimal
separator, or as punctuation separating the bound variable(s) and the body in
a quantified formula, a superscripted number may be interpreted as a power
operator (22, x2), except in the context of functions, where it may denote
the n-th derivative (d2F (x)

dx2 ), unless it is a −1, in which case it is an inverse
function (f−1), unless, of course, it is indeed an exponent ((sin x)−1). Even
special layout elements can be polysemous; consider the horizontal bar in 7

13
vs. dy

dx . Table 3.1a shows other examples of polysemous notation and their
interpretations.
Given the abundance of polysemy, it is no wonder that learners struggle

with notation (Moore, 1994; Dorier et al., 2000; Downs and Mamona-Downs,
2005). However, an experienced reader can in most cases disambiguate
the symbolic notation instantaneously using context and his knowledge of
mathematical conventions.

3.2.1.4 Conventions and context
The use and the interpretation of the so-called ‘‘formal’’ mathematical language
is to a large extent governed by convention and the mathematical context.
Although in principle any symbol can be defined to denote any object (for
instance, the symbol A could be declared to stand for the subset relation)
certain traditional conventions are generally followed and the knowledge of
these conventions is assumed of the recipient of a mathematical text.
By convention, certain symbols have fixed interpretations (ℵ0, ∞, ∅, or

the Arabic and Roman number symbols), while others systematically evoke
preferred readings in specific contexts (π, e, <,

∑
,
∏
, ε, δ, i, etc.). Objects

of certain types are typically denoted by specific symbols. For instance,
functions are typically denoted by the primed, sub- or super-scripted letter f ,
groups by uppercase G, relations by uppercase R (following the mnemonic
convention), summation index variables by n or i, and sets by uppercase letters
from the beginning of the alphabet. Also by convention, functionally related
objects tend to be denoted by the same letter names distinguished by accents
(circumflex, check, tilde, bar) or primes (X̂ might be chosen to name the
22Multi-purpose use of operators corresponds to function or method overloading in programming.
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closure of X), upper-case letters tend to be used for structures (structured
mathematical objects) and lower-case letters for the elements of structures,
primes are used to mark collections of objects of the same type (x′, x′′,. . . for
the elements of a set X), and stylised letter shapes and typefaces for specific
distinguished objects (blackboard bold style or German Altschrift, fraktur, for
specific number sets: reals, integers, complex).
The choice of symbols itself is also a matter of convention. For instance,

the subset relation is denoted as ⊂ by some authors and as ⊆ by others,
open/closed intervals may be denoted as (., .)/[., .] or as (., .)/< ., . >, the
cardinality of a set S as K(S), K(K(S)), ‖S‖, etc. National and cultural
conventions may differ; for instance, in Western Europe and North America,
the symbols ∃ and ∀ are used for the existential and the universal quantifier
respectively, while in Eastern Europe

∨
and

∧
are still used, although the

Western convention tends to take over. Also, different conventions are applied
in mathematics and in natural sciences or engineering; for instance, in algebra
vectors are denoted by boldface letters from the end of the alphabet (x) while
in physics the arrow notation is common (~Vx for the x-component of a velocity
vector), the imaginary part of a complex number is denoted with i in maths
and typically with j in engineering.23 Table 3.1b shows other examples of
notational alternatives.
Knowledge of mathematical conventions plays a role in interpreting sym-

bolic notation, in particular, in interpreting expressions which appear am-
biguous. Already in elementary arithmetics we are taught that multiplication
should be performed before addition, hence, the expression 2 + 2 ∗ 2 can be
unambiguously interpreted without parentheses. This interpretation exploits the
notion of precedence among operators, that is, rules that state which operators
must be applied first or which operators have ‘‘higher’’ and which ‘‘lower’’
precedence.24
Finally, interpretation of the symbolic notation depends on context, both

the textual context as well as the mathematical domain context in which the
given notation is used. For instance, in the context of binary relations, (x, y)
is not likely to denote an interval and in the context of complex numbers,
the lowercase i is reserved for the imaginary part of a complex number
and when a summation index over complex numbers is used, it should be
different from i. Similarly, concatenation is interpreted with respect to context;
23See (Libbrecht, 2010) for further examples and (Kohlhase and Kohlhase, 2006) for a discussion
on communities of practice in mathematics and implications for representing notation.

24A thorough precedence table can be found on the Mathematica website: http://reference.
wolfram.com/language/tutorial/OperatorInputForms [Accessed: 2007].

http://reference.wolfram.com/language/tutorial/OperatorInputForms
http://reference.wolfram.com/language/tutorial/OperatorInputForms
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while 77 denotes a natural number, 7x typically denotes multiplication, 3 1
2

addition, whereas sin x functional application.

3.2.1.5 Errors in the symbolic language
Learning the language of mathematics, much like learning a foreign language,
involves making mistakes. Therefore, it is not surprising that symbolic
expressions produced by students are prone to errors, both of form and
substance. While texts written by mathematicians contain only valid and
pertinent statements (or at least, published mathematics, should contain only
those), learners’ discourse may contain statements that are false or irrelevant
in the given context. These are errors of substance, of pragmatic nature.
Diagnosing and addressing these types of errors requires knowledge beyond
the mere knowledge of the symbolic language, namely, the knowledge of the
given domain, the ability to reason within this domain and, in the case of
tutorial dialogue, the knowledge of pedagogical criteria (for instance, what is
an appropriate size of a proof step from a pedagogical point of view).
In general, before a semantic and pragmatic evaluation of a symbolic

expression can take place, the expression must be ascertained to be meaningful
in the given symbolic language. An expression iswell-formed when it conforms
to the rules of syntax for expressions from the given mathematics subarea or
to the rules of admissible simplified presentations (for instance, rules which
permit to reduce the number of parenthesis without introducing ambiguity;
we mentioned this already in Section 3.2.1.1.) Well-formedness concerns an
expression’s structure, its syntax and the properties of the lexical identifiers of
which it is composed.
There is a range of errors affecting the form of mathematical expressions

which render them ill-formed and thereby meaningless. Unlike mathematical
textbooks and research publications, in which most errors of form can be
most likely attributed to unfortunate typographical oversight and only rarely to
misconstrued reasoning or lack of knowledge, students’ writing may contain
errors which are due to genuine misconceptions. Moreover, computer-based
mathematics can be additionally error-prone due to keyboarding or interface
problems. Students’ input may be especially affected in this respect because the
blackboard and paper still remain the primary media for written mathematics
up to the level of university education.
Generally speaking, errors of form in the symbolic language can be

categorised into two broad classes of structural and semantic errors. Structural
errors affect the syntactic structure ofmathematical expressions, while semantic
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errors affect their semantic interpretation.25 Expressions with structural errors
cannot be parsed by a normative grammar for terms and formulas in the given
domain. Expressions with semantic errors, while structurally valid, cannot be
assigned a meaningful interpretation or, in case of truth-valued expressions,
are simply false. A well-formed and semantically meaningful proof step may
be still inappropriate for pragmatic reasons: it may be irrelevant for the given
task or, even if relevant, it may be too much of an ‘‘argumentative shortcut’’,
too large a step. Pragmatic errors arise at the level of proof steps (rather than
individual symbolic expressions) and in the given proof discourse context.
An analysis of the two corpora revealed a number of further subcategories

of form errors produced by learners. Among structural errors there are
two subcategories: Segmentation errors are possibly an artefact of keyboard
input and are due to omitting white-space or punctuation (in the notation
for pairs, (sr) in place of (s, r), for instance) resulting in fused identifiers.
Delimitation errors arise from inappropriate use of parentheses: opening or
closing parenthesis are omitted (Parenthesis mismatch), both parentheses are
omitted in a termwhich requires bracketing (Missing parentheses), or double (or
more) unnecessary parentheses are used (Superfluous parentheses). Finally, a
constituent, atomic or complex, may be omitted resulting in a Constituent
structure error corresponding to invalid predicate–argument structure in natural
language. Among semantic errors, a distinction can be made between lexical
errors and correctness errors. Lexical errors arise from inappropriate use
of identifiers: an expression may contain an identifier which has not been
defined in the given context (Unknown identifier) or a known identifier is
used inappropriately (Inappropriate identifier). As a result of the latter an
expression becomes ill-typed: some of the expression’s operators are applied
to incompatible operands; this corresponds to a violation of sortal restrictions
in natural language. Correctness errors have to do with validity of truth-valued
expressions. The two subclasses of pragmatic errors have to do with relevance
and granularity of proof steps. An overview of the error categories is shown in
Table 3.2.26

25While we are not aware of systematic studies dedicated solely to form errors in the symbolic
language, there is a number of related studies in the larger context of mathematics learning
disabilities; see (Magne, 2001) for an extensive bibliography on special educational needs in
mathematics and also, for instance, (Kennedy et al., 1970; Hall, 2002; Melis, 2004) for error
patterns in problem solving in general.

26The classification summarises only observations based on the two collected corpora. Thus, it
is not meant as exhaustive. Our preliminary error categorisations were presented in (Horacek
and Wolska, 2005b, 2006b) and issues related to generating responses to erroneous statements
in (Horacek and Wolska, 2007, 2008).



108 Students’ Language in Computer-Assisted Tutoring of Proofs

Table 3.2: Categories of errors in students’ mathematical expressions

Error category Description Code
Structural errors Expression ill-formed I
Segmentation Omission of white-space or punctuation I-1
Delimitation Inappropriate use of grouping symbols I-2
Parentheses mismatch Opening or closing parenthesis missing I-2-a
Missing parentheses Required parentheses omitted I-2-b
Spurious parentheses Extra parentheses I-2-c

Constituent structure Constituent missing I-3

Semantic errors Incorrect or unknown identifiers or invalid statement II
Unknown identifier Identifier not defined in context II-1
Wrong identifier Known identifier used incorrectly II-2
Correctness error False statement II-3

Pragmatic errors Logical argument invalid or inappropriate III
Relevance error True expression unrelated to solution III-2
Granularity error Inappropriate proof step size III-3

Table 3.3 shows examples of flawed expressions from C-I and C-II and
their corresponding error categories given the identifiers defined for the proof
exercises in the experiments.27 Examples (e1)–(e5) illustrate structural errors.
In (e1) not only a space between the operator symbol P and the identifierC, but
also the parentheses required for the powerset operator are missing; as a result,
the token PC is an unknown identifier (lexical error). The expression (e2) is
incomplete (closing bracket missing), (e3) is structurally ambiguous because
the required brackets have been omitted, whereas in (e4) duplicate brackets
are unnecessary. In (e5) the second constituent in the pair object is missing.
Examples (e6)–(e17) illustrate semantic errors. The lexical errors in (e6) are
most likely due to sloppy keyboarding: not only are the set identifiers a and b
in the wrong case, but also the symbol p is used in place of the set identifier
B; even if we accepted the lower-case symbols as a typos, p would still be an
example of inappropriate identifier use (operator in place of a variable). In (e7)
undeclared variables, x and y, are used even though a previous declaration
was made for the given context, b and a. Examples (e8)–(e11) illustrate the
27Defined symbols were: A,B,C,M for first order sets, R, T, S for relations, x, y, z for
individual variables, P for the powerset of a set, K for set complement, and −1 for the inverse
relation, as well as basic naïve set theory and predicate logic symbols. Erroneous symbols are
boxed; empty boxes denote omitted symbols. Previous context, where relevant, is shown in
square brackets. Error codes refer to Table 3.2.
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Erroneous expression Error code

(e1) P ((A ∪ C) ∩ (B ∪ C)) = PC ∪(A ∩B) I-1, I-2-b, II-1

(e2) ∃z ∈M : ((x, z) ∈ R ∧ (z, y) ∈ T ) ∨ ((x, z) ∈ S ∧ (z, y) ∈ T ) I-2-a

(e3) (a, b) ∈ ( R ◦ T ) ∩ ( S ◦ T ) I-2-b

(e4) (R ∪ S) ◦ T = ( ((R ◦ T ) ∪ (S ◦ T )) ) I-2-c

(e5) S−1 ◦R−1 = {(x, y)|∃z(z ∈M∧ (x, y ) ∈ S−1 ∧ (z, y) ∈ R−1)} I-3

(e6) ( p ∩ a ) ∈ P ( a ∩ b ) II-1

(e7) [(b, a) ∈ (R ◦ S), z ∈M ] . . . ( x , z ) ∈ R und ( z , y )∈ S II-1

(e8) (x ∈ b ) 6∈ A II-1, II-2

(e9) A ⊆ K(B) then A 6∈ B II-2

(e10) [M : set ] . . . (x, y) ∈ M II-2

(e11) x ⊆ K(A) II-2

(e12) (T−1 ◦S−1)−1 ∪ (T−1 ◦R−1)−1 ⇔ (y, x) ∈ (T−1 ◦S−1)∨
(y, x) ∈ (T−1 ◦R−1)

II-2

(e13) (R ∪ S) ◦ T = {(x, y)|∃z(z ∈M ∧ (x, z) ∈ { x | x ∈ R ∨
x ∈ S} ∧ (z, y) ∈ T )} II-2

(e14) ∃z ∈M : (x, y) ∈ R ◦ T ∨ (x, y) ∨ S ◦ T II-2
(e15) (R ◦ S)−1 = {(x, y)|∃z(z ∈ M ∧ (y, z) ∈ R−1 ∧ (z, x) ∈ S−1)}

⊆ S−1 ◦R−1 II-3

(e16) P ((A ∩B) ∪ C) = P (A ∩B) ∪ P (C) II-3

(e17) [(s, r) ∈ (R ◦ S)−1] . . . (s, r) ∈ R ◦ S II-3

Figure 3.3: Examples of invalid symbolic expressions from students’ proofs

common confusion of the subset and membership relations on sets. In (e8)
there is additionally an unknown symbol b. In (e10) the student appears to think
thatM contains pairs (is a relation) whereasM was declared as a set in the task
definition. A type mismatch arises due to a wrong operator in (e11) and (e12).
In (e13), the same variable, x, is used in two contexts in which it would have to
be of different types: first as an element of a pair and then as an element of a set.
In (e14) unrelated operators have been confused: ∨ in place of ∈. (e15)–(e17)
are examples of logically incorrect statements: in (e15) and (e16) a stronger
and weaker assertion, respectively, is expected (about equality of sets rather
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Table 3.3: Possible sources of symbol confusion and the resulting errors

Possible error source Examples of confused symbols Error category
Dual operator {⊆,⊇}, {⊂,⊃}, {∩,∪}, {∧,∨} II-3, III-2
Stronger/weaker relation {⊂,⊆}, {⊆,=}, {⊃,⊇}, {⊇,=} II-3, III-2
Conceptually related {⊆,∈, ⊂}, {⊇,3,⊃}, {⇔,=} II-2, II-3, III
Typographical artefact {∪,∨}, {∩,∧}, {K,P}, {a, b}, {P,B} II, III

than inclusion, or vice versa). A logical error in (e17) is caused by swapped
variables. Among pragmatic errors, shown in Figure 3.4,28 (1) illustrates a
step which the tutor considered irrelevant (definition instantiation in S20) and
(2) and (3) are step size errors: in (2) the student restates the proposition to
be proven, an open goal, in his second step (too coarse-grained) and in (3)
the tutor considered spelling out the definition unnecessary (too detailed). As
mentioned previously, pragmatic errors are of different nature than structural
and semantic errors; recognition of these errors involves not only reasoning
but also pragmatic criteria, for instance, pedagogical criteria stemming from
the adopted pedagogical strategy and the student model.
A closer look at the most common erroneous expressions reveals a pattern

within the class of semantic errors which may be due to systematic misconcep-
tions that students have about pairs of set theoretic and logical operations. A
subclassification of semantic and pragmatic errors with respect to their possible
source is shown in Table 3.3. Often recurring errors result from students
confusing operators which are ‘‘dual’’, in a broad sense of the word, with
respect to each other. Examples of these include the logical conjunction and
disjunction (dual with respect to negation), the set union and set intersection
(dual with respect to set complement; analogous to the former), and (partial)
order relations on sets (subset vs. superset); example (e14) in Table 3.3 illus-
trated erroneous conjunction in place of disjunction. Confusion about ordering
relations results, moreover, in statements which are weaker or stronger than
the expected statements, as in (e15) and (e16). A large number of errors have
to do with confusion about the set hierarchy (sets vs. sets of sets) and the
set membership and set inclusion relations which are conceptually related, as
in (e8)–(e11). Misconceptions related to these concepts have been previously
discussed by Zazkis and Gunn (1997) and Bagni (2006). Set equality and
logical equivalence, as in (e12), are another pair of confusable relations; see,
for instance, (Kieran, 1981; Sáenz-Ludlow andWalgamuth, 1998; Knuth et al.,
28Tutors’ evaluations of correctness, granularity, and relevance of the steps are shown in angular
brackets along with the corresponding categories from Table 3.2.
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(1) S: Es bleibt zu zeigen: (R ∪ S) ◦ S = (R ∪ S) ◦ S−1

T: 〈correct, appropriate, relevant〉
Ist diese Aussage allgemein gueltig?
Is this statement valid for the general case?

S: Ja.
Yes.

T: 〈incorrect / II-3, appropriate, relevant〉
Koennen Sie das beweisen?
Can you prove it?

S: Es sei (x, y) ∈ (R ∪ S) ◦ S, also gibt es ein z ∈M mit (x, z) ∈ R ∪ S
und (z, y) ∈ S
Let (x, y) ∈ (R ∪ S) ◦ S, then there is a z ∈M such that (x, z) ∈ R ∪ S

T: 〈correct, appropriate, irrelevant / III-2〉
Ihre Folgerung stimmt.
Your conclusion is correct.

(2) S: (R ∪ S) ◦ T = (R ◦ T ) ∪ (S ◦ T )
T: 〈correct, appropriate, relevant〉

Das ist richtig!
That’s correct!

S: (R ◦ T ) ∪ (S ◦ T ) = (T−1 ◦R−1)−1 ∪ (T−1 ◦ S−1)−1

T: 〈correct, too coarse-grained / III-3, relevant〉
Wie kommen Sie darauf? Gehen Sie in kleineren Schritten vor!
How did you come arrive at this? Please use smaller steps!

(3) S: Wenn (x, z) ∈ S−1 und (z, y) ∈ R−1, dann gilt S−1 ◦R−1

If (x, z) ∈ S−1 and (z, y) ∈ R−1, then S−1 ◦R−1 holds
T: 〈partially correct, too detailed / III-3, relevant〉

Meinen Sie vielleicht (x, y) ∈ S−1 ◦R−1?
Do you mean (x, y) ∈ S−1 ◦R−1, perhaps?

Figure 3.4: Examples of proof steps inappropriate in terms of relevance and
granularity.

2005) for a discussion on students’ problems with equality and equivalence.
The last group of errors, involving unrelated symbols, may be simply artefacts
of typographic or shape similarity, or genuine typo or oversight errors.
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What is interesting and relevant from the point of view of computational
processing is that the tutors rarely rejected utterances with Delimitation errors,
even if more than one was present:

(4) S: ∃z(z ∈M ∧ (((x, z) ∈ R ∧ (z, y) ∈ T ) ) ∨

( (x, z) ∈ S ) ∧(z, y) ∈ T ))) =
∃z(z ∈M ∧ (x, z) ∈ R ∧ (z, y) ∈ T ) ) ∨
∃z(z ∈M ∧ (x, z) ∈ S ∧ (z, y) ∈ T )

T: 〈correct, appropriate, relevant〉
Bis auf Klammerung korrekt. Fahren Sie fort!
Correct up to bracketing. Go on!

Tutors accepted ill-formed steps of this type in 53 cases. Only in 7 cases did
they explicitly request a correction. This means that tutors tended to focus on
the proving task, rather than low-level syntactic details. Ideally, a cooperative
system should behave analogously, which, in turn, means that it needs a robust
parser for mathematical expressions. In Section 6.4 we present a preliminary
study aimed at automated correction of errors of some categories.

3.2.2 The informal language
While the formal language of mathematics consists of symbolic expressions,
the most prominent characteristics of the informal language is the familiar
combination of natural language phrases and symbolic expressions, with
symbolic expressions smoothly embedded into the natural language text. In
this section we turn to this informal language.

3.2.2.1 Multi-modality
A typical sentence from a mathematical proof, be it in a textbook or in tutorial
dialogue, may look, for instance, as follows:
(5) Wenn x ∈ B dann x /∈ A

If x ∈ B then x /∈ A

(6) K(A ∪B) ist laut DeMorgan-1K(A) ∩K(B)
K(A ∪B) is by DeMorgan-1K(A) ∩K(B)

(5) is a prototypical conditional statement. (6) states an equality between two
sets and provides a justification. The equality is expressed with a predicate
worded in natural language, ‘‘ist’’ (is), and two symbolic expressions,K(A∪B)
andK(A)∩K(B), denoting sets. The justification is expressed in words using
an adverbial construction, ‘‘nach + Dative’’ (by). While the equality could
be stated with the equality sign, there is no standard symbolic notation for
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justifications of proof steps in narrative mathematical text; justifications are
thus signalled in natural language.29
In the tutorial dialogues in our corpora, this kind of embedding of symbols

within natural language occurs also in variants which are rather not frequently
found in textbooks or publications:
(7) A ∩B ist ∈ von C ∪ (A ∩B)

A ∩B is ∈ of C ∪ (A ∩B)

(8) Nach der Definition von ◦ folgt dann (a, b) ist in S−1 ◦R−1

By definition of ◦ it follows that (a, b) is in S−1 ◦R−1

(9) A auch ⊆ B
A also ⊆ B

In (7) and (8) the set membership symbol, ∈, and relation composition symbol,
◦, have been used as a kind of shorthand for a part of the object of the
main predicate, ‘‘to be an element of’’ or prepositional phrase ‘‘(definition) of
composition relation’’. These examples illustrate two tendencies in informal
mathematical discourse: one towards natural language verbalisation and the
other towards a telegraphic style. The same sentence could be expressed more
economically using a symbolic expression alone, yet wording is perhaps more
natural. In (9) an additive adverb is verbalised within the formula. There is no
symbolic notation corresponding to the intended meaning of ‘‘auch’’ (also),
however, from the mathematical point of view, the adverb does not add any
mathematical content, so it could be omitted altogether.30
The most interesting characteristic of the two language modes which

form the informal mathematical language is that they are complementary and
interchangeable with respect to each other: they can be flexibly interleaved,
either one, the other, or both can be used to express the same mathematical
content, and different parts of mathematical content can be expressed using
one mode or the other. Examples (10) through (14) illustrate these properties:

(10) x ∈ B =⇒ x /∈ A
(11) Wenn x ∈ B dann x /∈ A

If x ∈ B then x /∈ A

(12) B enthaelt kein x ∈ A
B contains no x ∈ A

(13) A hat keine Elemente mit B gemeinsam.
A has no elements in common with B.

29(Unlike in tabular presentations, such as Fitch-style natural deduction, in which rule names,
typically abbreviated, are placed in a dedicated layout area, along with references to line labels.)

30We will return to the discussion of pragmatic aspects in mathematical discourse in Section 3.3.
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(14) A enthaelt keinesfalls Elemente, die auch in B sind.
A contains no elements that are also in B

All the above utterances express the same content: the claim that the sets
A and B are disjoint. They do this, however, using different language modes:
(10) using symbols alone, (11) and (12) using mixed language, and (13) and
(14) using natural language with only the set names expressed as symbols. The
difference between (11) and (12) is in what is verbalised: the implication in (11)
and the relation between the set elements in (12).31 While in (11) the symbolic
and natural language parts form independent constituents, there is a constituent
overlap of a kind between the symbolic and natural language parts in (12): the
scope of the worded negation ‘‘kein’’ (no) is only over x, which is a part of
the symbolic expression following it. Similar interaction and textual context
dependence can occur with other scope-bearing natural language word classes,
such as (generalised) quantifiers (all, every, any, only, etc.) The scope of the
overlap (that is, of the quantifier) depends on the semantic context. If B is a
set whose elements are mathematical formulas, the expression x ∈ A could be
considered a mention of a particular element of this set. In this case the scope
of negation would be over the entire expression. Constructions of this type
can be found in textbooks and publications. (13) and (14) show that the same
content can be naturally expressed using words alone with only atomic terms,
set variables, expressed as symbols, and that various syntactic constructions
can be employed. In (13), a complex predicate ‘‘gemeinsam haben’’ (have in
common) is used; ‘‘haben’’ (have) is a kind of support verb here; the actual
lexical meaning is expressed by the adverb ‘‘gemeinsam’’. In (14) a complex
noun phrase with a relative clause post-modification is used.
Much like symbolic language can be fluently embedded within natural

language, the opposite is also possible: natural language can be incorporated
into symbolic expressions. This occurs when there would be no benefit of
the symbolic presentation because the focus is not on the formalisation of the
worded concept; that is, if the symbolic representation is not relevant and
would only cause unnecessary additional cognitive load on the part of the
reader. Consider for example the following expressions which introduce a
certain number set:
A = { p | p ∈ Z ∧ ∃x ∈ Z, p = 2x+ 1 }
A = { p | p ∈ N ∧ (∀x ∈ N, ∀y ∈ N, p|xy ⇒ p|x ∨ p|y) }
A = { p | p ∈ N ∧ ¬∃x ∈ N, ∃y ∈ N (x < p ∧ y < p ∧ xy = p) }

31A classification of proof contributions with respect to the type of content worded in natural
language will be presented in Chapter 4 (Section 4.3.4).
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A = { p | p ∈ N ∧ ∃x ∈ N, p = x+ 2
∧ ¬∃x ∈ N,∃y ∈ N, ((x+ 2) ∗ (y + 2) = p)}

and their counterparts in informal language with natural language wording:

A = { p | p is odd }
A = { p | p is prime }
Unless the purpose of these examples were to symbolically formalise the
notions of an odd or a prime number, the natural language presentation of a
familiar concept is preferred. These examples show that the symbolic notation,
merited for its brevity and succinctness, is not always that brief. Hence, natural
language wording is also preferred for concepts whose formalisation is difficult
or complex. We will return to this and related issues when we discuss Gricean
Maxims in mathematical discourse in Section 3.3. What all the examples in
this section illustrate is that parsing symbolic expressions in the context of
natural language surrounding them is a basic requirement that a computational
interpretation module for mathematical language must fulfil.

3.2.2.2 Lexicon
The vocabulary of the mixed language of mathematics consists of the vocab-
ulary of the symbolic notation and the vocabulary of natural language. The
latter follows its own morphology and orthography rules. As illustrated above
the two language modes can be tightly interleaved. The vocabulary of symbols
may be used to substitute entire natural language phrases (π for ‘‘the ratio of the
circumference of a circle to its diameter’’ or∈ for ‘‘is an element of’’/‘‘belongs
to’’) which often do not even form linguistic constituents (∀ for ‘‘for all’’,⇔
for ‘‘if and only if’’, or 6∈ for ‘‘is not an element of’’). Mathematical symbols
typically do not undergo linguistic inflectional processes in writing32 other than
acquiring genitive forms, as in ‘‘x’s value’’ or ‘‘A’s elements’’.
The lexicon of mathematical language consists of a subset of the lexicon of

ordinary language, the general lexicon, and a terminological part specific to the
mathematical domain, the terminological lexicon. In this respect, mathematical
language is lexically more complex than everyday language.

Technical vocabulary Many mathematical words have Greek or Latin
origin: ‘‘isosceles’’, ‘‘asymptotic’’, ‘‘idempotent’’, etc. There is also a set
of lexemes coined as neologisms, for instance, ‘‘pathocircle’’, ‘‘polygenic’’,
32In verbalisation they do of course.
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‘‘ultraradicals’’.33 Some lexemes from the general lexicon acquire special
technical meaning in the context of mathematics (meaning restriction or
specialisation) and in most cases the new meanings are impossible to guess:
the terms ‘‘group’’ or ‘‘field’’ are such examples. In the process of meaning
specialisation, a common word may also obtain a new grammatical category,
for instance, ‘‘integral’’: an adjective in the general lexicon, a noun in the
mathematical terminology.34 Thompson and Rubenstein (2000) discuss lexical
phenomena in mathematical language from the point of view of potential
problems which may arise during learning. Table 3.4 summarises a fragment
of their classification.35

Multi-word lexical units A multi-word expression is a general term for
different kinds of linguistic units consisting of two or more words, be it
phrasal lexemes, phraseological units or multi-word lexical items. These
include: named entities (names of places, persons, organisations, etc.),
33Examples from Mathematics and the imagination by Kasner and Newman.
34An interesting resource on the earliest uses of mathematical terminology is main-
tained at http://jeff560.tripod.com/mathword.html [Accessed: 2007]. Becker’s work
retraces the evolution of mathematical concepts in the 19th century and the
changes in the terminology and the semantics of the language used (Becker, 2006).
A digression: A lot of mathematical terminology (technical terminology in general) in

Western languages – English, German, and French – have the same etymological roots:
Latin, Greek, or Arabic. (See (Schwartzman, 1994) for the origins of English mathematical
terms.) By contrast, Polish terminology bears no resemblance to the Western counterparts:
compare, for instance, ‘‘integral’’/‘‘Integral’’/‘‘intégrale’’ vs. ‘‘całka’’, ‘‘differential’’/ ‘‘dif-
férentielle’’/‘‘Differential’’ vs. ‘‘różniczka’’, or ‘‘derivative’’/‘‘dérivée’’ vs. ‘‘pochodna’’. A
lot of the Polish terminology is due to Józef Jakubowski’s translations of French works and
Jan Śniadecki’s contributions to popularising mathematics. Śniadecki believed that in order for
mathematics to be accessible, it should use national terminology and the vocabulary should be
derived from common words by analogy with their use in known contexts (Śniadecki, 1813).

35Only one example from each mathematical area is given. For further examples, see
the original source. The category descriptions are reproduced as in the original text,
except we do not refer to English since the phenomena are cross-linguistic. A sim-
pler classification was previously proposed by Shuard and Rothery: Mathematical words
are classified into three types: (i) technical words (those which have meaning only in
mathematics; for instance, ‘‘square centimeters’’), (ii) lexical words (those which have
a similar meaning in mathematics and in everyday language, for instance, ‘‘reminder’’,
‘‘origin’’), (iii) everyday words (those which occur both in everyday language, but can
have both similar and different meanings in mathematics and everyday language, for in-
stance, ‘‘points’’, ‘‘change’’); (Shuard and Rothery, 1984), as reported in (Raiker, 2002).
The importance of understanding the differences in word usage between everyday language

and mathematical language in the process of learning mathematics has been also discussed
in (Kane et al., 1974; Usiskin, 1996; Raiker, 2002), to mention just a few. Booker (2002)
attributes the difficulties that children experience in mathematics to the inconsistencies in the
language and a lack of connections between the way ideas are represented, the language to talk
about them, and the symbols used to record them.

http://jeff560.tripod.com/mathword.html
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Table 3.4: Excerpt of Thompson and Rubenstein’s (2000, p. 569) classification
of lexical phenomena in mathematical language

Lexical phenomenon Examples
Words shared by mathematics and every-
day language, but with distinct meanings

prime, imaginary, right (angle), combi-
nation, tree

Words shared with natural language, with
comparable meanings, the mathematical
meaning being more precise

equivalent, limit, similar, average, and

Terms found only inmathematical context quotient, asymptote, quadrilateral, out-
lier, contrapositive

Words with more than one mathematical
meaning

inverse, base, round, range, dimension

Modifiers that change mathematical
meaning in important ways

value vs. absolute value, root vs. square
root, bisector vs. perpendicular bisector,
number vs. random number, reasoning
vs. circular reasoning

Idiomatic mathematical phrases at most, one-to-one, if-and-only-if,
without loss of generality

idioms (‘‘get off scot-free’’ and ‘‘Bob’s your uncle’’), phrasal collocations
(‘‘make a claim’’, ‘‘take a stand’’), conventional metaphors (argument is
journey: ‘‘follow an argument’’, argument is balance: ‘‘shaky argument’’,
argument is war: ‘‘defend an argument’’), proverbs and sayings (‘‘As you saw,
so shall you reap’’, ‘‘The truth will out’’, ‘‘Unless a miracle happens’’), similes
(‘‘lie like a pro’’, ‘‘cunning as a fox’’), and routine formulae (‘‘you know what
I mean’’, ‘‘beyond any doubt’’). We used the more general term ‘‘multi-word
units’’ here, rather than ‘‘multi-word expressions’’, because the latter, under
current interpretations, are typically associated with non-compositionality of
meaning. Mathematical discourse is abound in multi-word units; some of
which are non-compositional.
The obvious multi-word named entities, aside from numeric expressions,

include names of theorems, lemmata, conjectures, hypotheses, and axioms,
which are often named after the researcher who introduced them, for instance,
‘‘Peano’s Axioms’’. Named entities of this type often appear in different
syntactic, lexical, and spelling variants, for instance, Peano’s Axioms are also
known as ‘‘Dedekind-Peano axioms’’ or ‘‘Peano postulates’’, the name of De
Morgan’s laws can also be referred to as ‘‘De Morgan laws’’ or ‘‘the laws of
De Morgan’’.
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The tutorial dialogue corpora contain numerous occurrences of multi-word
names of set theory and binary relation theorems and lemmata which were
presented to the students in the study material. Below are examples of students’
references to the De Morgan’s laws (left) and to the distributivity laws (right)
found in the corpora (spelling and capitalisation preserved):

DeMorgan-Regel-1 Distributivitaet von Vereinigung ueber den Durchschnitt
DeMorgan-1 Distributivität von Vereinigung über Durchschnitt
deMorgan-Regel-1 Distributivitaet von Durchschnitt ueber Vereinigung
de-Morgan-Regel 1 DAS GESETZ DER DISTRIBUTIVITIT VON
De-Morgan-Regel-2 VEREINIGUNG UBER DURCHSCHNITT
de morgan regel 2 der Distributivitaet 1

In the study material, the two De Morgan laws were labelled ‘‘De Morgan
Regel 1’’ and ‘‘De Morgan Regel 2’’ and distributivity laws ‘‘Distributivität
von Vereinigung über Durchschnitt’’ and ‘‘Distributivität von Durchschnitt
über Vereinigung’’. As the examples illustrate, learners misspell the names
and segment them in non-standard ways (hyphens in place of white-space, for
instance), even those which were presented to them in a specific form.36
Moreover, a number of technical terms in mathematics (names of objects

and relations) are multi-word units, for instance, ‘‘degrees of freedom’’ or
‘‘dot product’’. Much as in the case of named entities, different lexical variants
denoting the same object may exist, for instance, ‘‘δ function’’, ‘‘Dirac’s
delta function’’, and ‘‘Dirac’s delta’’ name the same concept. Multi-word
constructions which incorporate symbolic expressions, such as ‘‘δ function’’
or ‘‘α-stable’’ (stochastic process), are not uncommon. Set theory itself has a
few multi-word domain terms: ‘‘the universal set’’ (‘‘die Universelle Menge’’
in German) or ‘‘the powerset’’ (‘‘Potenzmenge’’, a compound in German).
Finally, certain conventional mathematical phrasings can be considered

domain-specific collocations or routine formulae in the sense of Wray and
Perkins (2000).37 Examples include natural language translations of proposi-
tional connectives, such as ‘‘A if and only if B,’’ ‘‘A and B’’, ‘‘if A, then
B’’, and other fixed phrases, such as ‘‘without loss of generality,’’ ‘‘what was
to be shown,’’ or ‘‘This completes the proof.’’38 (A full-text search for ‘‘This
completes the proof’’ in the entire arXiv returned over 29000 hits.)39 All of
them have German, also multi-word, counterparts and occurred in our corpora.
36Of course, the examples can be recognised automatically using simple string matching.
37‘‘[A] sequence, continuous or discontinuous, of words or other meaning elements, which is, or
appears to be, prefabricated: that is, stored and retrieved whole from memory at the time of use,
rather than being subject to generation analysis by the language grammar’’ (ibid.).

38A thematic list of most common English formulaic phrasings can be found in (Trzeciak, 1995).
39Full text search performed on http://arxiv.org/find on August 21, 2010.

http://arxiv.org/find
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Abbreviations Much like ordinary language, the language of mathematics
uses abbreviations, i.e. shortened forms of words and phrases: initialisms,
acronyms, or syllabic abbreviations. Aside from those found in ordinary
language, e.g. ‘‘e.g.’’ or ‘‘i.e.’’ in English, mathematics uses its own domain-
specific abbreviations: references to sides of mathematical formulas, ‘‘the
left-hand side’’ and ‘‘the right-hand side’’, are often abbreviated with ‘‘l.h.s.’’
or ‘‘LHS’’ and ‘‘r.h.s.’’ or ‘‘RHS’’, the end of a proof is signalled with the
Latin ‘‘q.e.d.’’ or ‘‘QED’’, a well-formed formula is a ‘‘wff’’, ‘‘if and only
if’’ is shortened to ‘‘iff’’, etc. Some abbreviations are used in specific subareas
of mathematics more often than in others: in probability theory, for instance,
some of the standard terms are often abbreviated: ‘‘almost surely’’ with ‘‘a.s.’’,
‘‘infinitely often’’ with ‘‘i.o.’’, ‘‘almost every’’ or ‘‘almost everywhere’’ with
‘‘a.e.’’ Some abbreviations are so specific that without the knowledge of the
particular field in which they are used, it is impossible to unfold them, for
instance, the French-origin ‘‘càdlàg’’ or ‘‘cadlag’’ and its English equivalent,
‘‘RCLL’’. Examples of German abbreviations which occurred in the two
corpora include different spelling variants of the following:
General language abbreviations:
d.h. das heißt (this means)
bzw. beziehungsweise (respectively)
Bsp. Beispiel(e) (example(s))
z.B. zum Beispiel (for example)

Maths-specific abbreviations:
o.B.d.A. ohne Beschränkung der Allgemeinheit (without loss of generality)
q.e.d. quod erat demonstrandum
s.t. such that

While most abbreviations are specific to the natural language of the discourse,
Latin abbreviations, such as ‘‘q.e.d.’’, are used internationally. Interestingly,
one of our students consistently used the English ‘‘s.t.’’ in the German
discourse.

3.2.2.3 Syntactic phenomena
In general, the natural language part of the informal language of mathemat-
ics follows the syntax of the national language of the discourse, English,
German, etc.40 While in textbook and publication proofs most utterances
40(Up to certain irregularities discussed further in this section.)
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(or sentences in this case) are in indicative mood, tutorial dialogue contains
also other clause types (all examples from C-II):
Indicatives state unqualified mathematical facts,
Interrogatives ask questions, for instance, requesting a definition of a

concept: ‘‘Was ist eine inverse Relation?’’ (What is an
inverse relation?)

Imperatives command to perform actions, for instance, to state proof
steps or give help: ‘‘Gib mir doch mal ein konkretes Bespiel
wie man Beweise in der Mengenlehre loest!’’ (Give me a
concrete example of a proof in set theory!) or ‘‘erklaere
die Definition R ◦ S in Worten!’’ (explain the definition of
R ◦ S in words!)

Exclamatives express emotions: ‘‘Schwachsinn!’’ (Nonsense!) or ‘‘Das
beantwortet meine Frage nur zur Haelfte!’’ (That’s only
half an answer to my question!)

All the syntactic clause structures can be found in learner proofs in tutorial
dialogue. The most frequent type of construction is the conditional. Zinn
discusses conditionals in mathematics at length in his Chapter 4 (Zinn, 2004).
We will not repeat the discussion on conditionals here nor in the section on
semantics. Below, we only illustrate the complexity of the syntax of utterances
involving conditionals found in the learner corpora, with three examples:

(15) wenn A ⊆ K(B), dann A 6= B, weil B 6= K(B)
if A ⊆ K(B), then A 6= B, because B 6= K(B)

(16) ∀(x, y) gilt: wenn (x, y) ∈ (R ◦ S)−1 dann (x, y) ∈ S−1 ◦R−1

und wenn (x, y) ∈ S−1 ◦R−1 dann (x, y) ∈ (R ◦ S)1

∀(x, y) it holds: if (x, y) ∈ (R ◦ S)−1 then (x, y) ∈ S−1 ◦R−1

and if (x, y) ∈ S−1 ◦R−1 then (x, y) ∈ (R ◦ S)−1

(17) fuer (a, b) ∈ (R ∪ S) ◦ T gilt: entweder (a, x) ∈ R oder (a, x) ∈ S,
weil (a, b) ∈ (R ∪ S), wenn (a, b) ∈ R oder (a, b) ∈ S
und gleichzeitig gilt (x, b) ∈ T
for (a, b) ∈ (R ∪ S) ◦ T it holds: either (a, x) ∈ R or (a, x) ∈ S
because (a, b) ∈ (R ∪ S) if (a, b) ∈ R or (a, b) ∈ S
and at the same time (x, b) ∈ T holds

The quoted utterances contain multiple clauses: subordinated or coordinated
and subordinated. Their clause patterns can be summarised as:

wenn A dann B weil C
wenn A dann B und wenn C dann D
entweder A oder B weil C wenn D oder E und F
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Extended concatenation of clauses is unusual both in spoken and in written
language. However, many occurrences of conjoined clauses of this kind can be
found in our learner corpora. In terms of computational processing, this calls
for a grammar formalism in which complex multi-clause utterances of this type
could be modelled with sufficient generality. (In a context-free grammar, every
instance of clause ordering would have to be modelled explicitly in order to
obtain all the possible structural analyses; a suboptimal solution.) Specific to
German is, moreover, the difference in word order between main clauses and
subordinate clauses. The former exhibit the so-called verb-second word order
(roughly speaking, the inflected verb is the second constituent), while the latter
exhibit verb-last order (the inflected verb is the last constituent). The resulting
dependencies require that the grammar formalism be expressive enough for the
syntax–semantics interface to return valid interpretations.
Aside from clause structure complexity, informal mathematical language

is also characterised by certain syntactic idiosyncrasies due to its mixed nature.
Students’ language in tutorial dialogue exhibits, additionally, syntactic irregu-
larities which are normally never found in textbooks or scientific publications.
These characteristics are illustrated in the following sections.

Syntactic categories ofmathematical expressions In Section 3.2.2.1
(p. 113), we showed examples ofmathematical expressions smoothly integrated
into the syntax of natural language:

(18) K(A ∪B) ist laut DeMorgan-1K(A) ∩K(B)
(19) Wenn x ∈ B dann x /∈ A
(20) B enthaelt kein x ∈ A
(21) A auch ⊆ B
(22) A ∩B ist ∈ von C ∪ (A ∩B)
In (18) and (19) symbolic expressions, terms and formulas, are used in place

of complete valid constituents: subject and object noun phrases in (18) andmain
and dependent clauses in (19). This kind of symbolic expression embedding
is easy to explain. The key observation here is that mathematical expressions
can be naturally interpreted as corresponding to two linguistic syntactic types:
clauses and noun phases, and the consistency in how mathematical expressions
are embedded into natural language context stems from this correspondence.
In most cases, mathematical formulas (proposition denoting) correspond to
natural language clauses, while mathematical terms (object or type denoting)
and mentions of mathematical formulas, as in ‘‘A ⊆ B is a formula’’,
correspond to noun phrases. This is in turn because in the symbolic language
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formula-forming operators correspond to natural language predicates (with
‘‘be’’ as a support verb if the operator does not have a verb reading), term-
forming operators to natural language relational nouns, and atomic terms
(variables and constants) to nouns.41 (19) is a grammatical sentence under
the standard grammar of German (and English) because the formulas’ main
operators fill in for the predicates (or their parts, as in the case of ∈).
The next example, (20), illustrates another recurring type of embedding of

symbolic expressions which on the surface have an appearance of formulas.
The presence of a natural language sentential predicate signals the need for
syntactic reinterpretation of the formula such that the utterance is paraphrased
as ‘‘B contains no xwhich is an element ofA’’. Under this interpretation, only
the left-hand side of the formula is in the scope of the negation word preceding
it, filling the role of a direct object of the main verb, ‘‘contain’’, pre-modified
by the negation word. The remaining part of the expression serves as a post-
modifying restrictive relative clause, of which the formula-forming operator is
themain predicate (with ‘‘be’’ as a support verb). Thus, the syntactic chunk ‘‘no
x ∈ A’’ is read as ‘‘no x which is in A’’.42 Several observations can be made
here: First, the interaction of symbolic expressions of type formula with the left
linguistic context appears to be an artefact of formulas being written in infix
notation. Thus, ‘‘contains x ∈ A’’ is licensed, whereas the same expression in
prefix notation, ‘‘contains ∈ x A’’, would not result in a meaningful reading
and it is questionable that a postfix notation, ‘‘contains x A ∈’’, would read
naturally. Second, the distribution of linguistic contexts which license such a
reading is not random and includes categories which form valid constituents
with individual-denoting (as opposed to eventuality-denoting) words in their
right context: in English and German these are transitive verbs, nouns and
adjectives, quantifiers, and negation words.43 Finally, only individual-denoting
constituents of a symbolic expression can interact with the preceding context.
In order to recover the reading, a meaningful object-denoting substructure
must be identified in the symbolic expression, based on its parse tree: the
subexpression to the left of the main operator is the one which enters into a
dependency relation with the left context, while the other substructure headed
by the top-node becomes its dependent.
Finally, the last two examples show that mathematical expression ‘‘frag-

ments’’ can be also embedded into natural language text. In (21) an adverb
41Formula mentions, such as the one presented, must be reinterpreted to be treated as a whole, a
‘‘name’’, in order to arrive at the right interpretation. The question of how to treat mathematical
terms semantically – as definite descriptions, for instance – can be left aside at this point.

42Alternative readings could be ‘‘no x such that it is in A’’ or ‘‘no such x that x is in A’’.
43The list is based on an ad hoc analysis of textbook discourse. A further more systematic analysis
of a large corpus of mathematical discourse is needed.
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modifies a sentential predicate expressed in the symbolic language. (22) shows
that formula-forming operators, which otherwise serve as predicates, can serve
as names of objects formed by their predication. Here, the symbol ∈ (‘‘be an
element of’’) fills in for the nominal object of the predicate ‘‘be’’; similarly,
⊆ could be used in place of the noun ‘‘subset’’ and ∪, an object-forming
operator, would work in ‘‘A ∪B is a ∪ of A and B’’ (a constructed example).
The latter two constructions illustrate a tendency towards telegraphic style

in learner language in which symbolic notation is used as a kind of shorthand
for the corresponding natural language wording. While the latter two forms
are perhaps too informal to be encountered in textbooks, it is plausible that
they can occur in written student homeworks or exams. In a computational
processing framework this calls for a lexicon representation and an approach
to parsing which would enable systematic treatment of symbolic expressions
embedded within text, be it complete constituents or fragments, on a par with
natural language lexemes and phrases.

Irregular syntactic constructions As a sublanguage, informal math-
ematical language admits of constructions which outside of mathematical
discourse would be considered syntactically invalid. One type of syntactic
irregularity is an artefact of how symbolic notation is verbalised (discussed
in Section 3.2.1). For instance, an expressionA∪B, when spoken, will be typ-
ically read from left to right as it is written by substituting words for symbols:
‘‘A union B’’, resulting in a construction which is not only ungrammatical,
but does not yield the intended semantics of ‘‘the union of A and B’’ under
any standard interpretation of compounds of this type either.44 Example (23)
illustrates a similar construction in German which appeared in C-I:

(23) wenn A vereinigt C ein Durchschnitt von B vereinigt C ist, dann
müssen alle A und B in C sein
If A union C is an intersection of B union C, then all A and B must be in C

Here, the student uses the construction ‘‘NP vereinigt NP’’ twice. This is
a corrupt German participial construction with the verb ‘‘vereinigen’’ (unify)
which in its grammatical predicate–argument structure requires a prepositional
phrase ‘‘mit +Dative’’ (with). Another irregular syntactic construction resulting
from writing an expression as it is spoken is illustrated below:

(24) Wenn (b, z) in R ist, ist dann a in R hoch minus eins?
If (b, z) is in R, then is a in R to minus one?

44The expression A ∪ B corresponds to a natural language construction involving two nouns, A
andB, and a relational noun ‘‘union (of)’’. In an analogous construction in natural language, for
instance ‘‘friend of Peter and Paul’’, the alteration ‘‘Peter friend Paul’’ is ungrammatical.
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In this example, the student verbalises the notation of inverse relation as
‘‘hoch minus eins’’ (to minus one), the way it is normally read aloud when
exponentiation is involved. The construction ‘‘hoch number’’ is syntactically
marked: ‘‘hoch’’ as a modifier of a number category appears exclusively in the
mathematical context, and normally only in spoken verbalisation.45 The fact
that it is found in type-written tutorial dialogue suggests that the learner adopted
an informal conversational style of interaction and assumed that understanding
spoken language style should be within the capabilities of the system’s input
interpretation component. Interestingly, non-canonical telegraphic syntax of
this kind appears also in mathematical textbooks. Natho (2005, p. 109) quotes
the construction ‘‘f injektiv’’ (f injective) with the copula verb omitted. This
type of syntactic reduction is another manifestation of telegraphic style.

Syntactic ambiguities Finally, natural language structures, especially
complex multi-clause utterances, are prone to syntactic ambiguities. A struc-
tural ambiguity introduced by the worded coordination is illustrated below:

(25) x ∈ B und somit x ⊆ K(B) und x ⊆ K(A) wegen Voraussetzung
x ∈ B and therefore x ⊆ K(B) and x ⊆ K(A) given the assumption

Exemplary alternative readings can be represented schematically as follows:

[ [ A und somit B ] und [ C wegen D ] ]
[ [ A und somit [ B und C ] ] [ wegen D ] ]
[ A und somit [ [ B und C ] [ wegen D ] ] ]

The previously presented examples (15) through (17) (p. 120) exhibit similar
structural ambiguities. Since domain inference is needed to evaluate propo-
sitional content, a linguistic interpretation module alone cannot identify the
most likely reading. However, its parser should be capable of parsing complex
conjoined clauses of this type and identifying structurally ambiguous readings,
be it by representing them in a compact way or enumerating alternative parses.

3.2.2.4 Semantic phenomena
Ordinary language and the language of mathematics sometimes use the same
vocabulary, but its mathematical meaning differs from its meaning in natural
language.46 Quantifiers and connectives are examples of such words, often
confused by learners. The natural language quantifier ‘‘any’’ can be used
either in the existential (as in ‘‘Did you see any movie lately?’’) or universal
45The word ‘‘hoch’’ (highly/upwards) is an adverb in German and usually appears in participial
constructions such as ‘‘hoch kompiliziert’’ (highly complicated).

46Examples of confusable vocabulary were shown when discussing the lexicon; see p. 115.
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(as in, ‘‘Any dream will do.’’) sense. This ‘‘sloppiness’’ of natural language
may lead to a confusion when ‘‘any’’ is used in a routine however imprecise
mathematical construction ‘‘for any’’. A similar problem arises with ‘‘and’’
and ‘‘or’’. As a logical connective in mathematics ‘‘and’’ has a unique
meaning: that of a truth functional conjunction. In natural language, however,
‘‘and’’ can have other meanings than that of a logical conjunction: for
instance, that of a discourse marker introducing a rhetorical relation denoting
result, implication, or temporal sequence, or that of an additive particle. In
mathematics the meaning of ‘‘A or B’’ can be paraphrased as ‘‘either A
or B or both’’ and, naturally, different truth conditions apply to inclusive and
exclusive disjunction. While natural languages typically do have a linguistic
device to express the exclusive meaning (for instance, ‘‘either . . . or . . . ’’ in
English) ‘‘or’’ may be used in both contexts. The following sections illustrate
imprecision and other semantic phenomena in informal mathematical language
which require special processing resources for computational interpretation.

Imprecision While mathematics is the precise discipline par excellence, its
informal language is remarkably imprecise. Consider the following examples:

(26) B enthaelt kein x ∈ A
B contains no x ∈ A

(27) also gilt ferner, da A und B keine gemeinsamen Elemente haben, dass
K(A), definiert als U \A, die Menge B enthält
therefore since A and B have no common elements, K(A), defined as U \ A, contains
the set B

(28) daraus folgt, dass (z, y ∈ R−1 und (x, z) in S−1

from that it follows that (z, y ∈ R−1 and (x, z) in S−1

(29) (A∩B)muss in P ((A∪C)∩ (B∪C)) sein, da (A∩B) ∈ (A∩B)∪C
(A ∩B) must be in P ((A ∪ C) ∩ (B ∪ C)) since (A ∩B) ∈ (A ∩B) ∪ C

In the first two utterances, the students used the predicate ‘‘enthalten’’
(contain); in (26), B, a first order set, is its subject and x, a set element,
its object. In (27), K(A), a first order set, is the subject and B, also a first
order set, the object. The predicate ‘‘contain’’ is imprecise (ambiguous). In
the context of set theory, containment may refer to subset/superset or element
relation. In the context of symbolic mathematical expressions, containment
could be also interpreted as structural composition; one expression being a
structural subexpression of another.47 In (26) the element relation is meant,
while in (27) the subset relation is intended. Similarly ambiguous is the locative
47If in the previous context there would have been an assignment of B to a formula in which
x ∈ A is a subexpression, the structural composition reading would be plausible.
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prepositional phrase with ‘‘in’’ in the next two examples. In (28) the element
reading is intended. In (29), while the element reading more plausible, it is
not clear whether the student realises the difference between the two relations
considering the error in the dependent clause (A, B, and C are first order sets).
The examples illustrate the fact that in informal mathematical language

mathematical concepts are named using common words which are imprecise
(recall the examples from Table 3.4 on page 117) but which do have precise
mathematical interpretations.48 The same common word or construction may
be used to name a class of conceptually relatedmathematical notions, especially
if they are conceptualised as precisified subclasses of a more general concept,
as is the case with different types of containment above.
In fact, in the course of learning mathematics, students are often explicitly

told to conceptualise mathematical concepts as analogous to specific real-
world images, that is, to build conceptual metaphors in their minds which
visualise mathematical notions. Lakoff and Núñez (2000) take a radical stance
on mathematical understanding in Where mathematics comes from, claiming
that all of mathematics is a mental product which arises from our embodied
minds, everyday experiences, and from human mind’s unconscious empirical
cognitive mechanisms, such as metaphors and image schemata. In line with
Lakoff’s prior cognitive linguistic theories, Lakoff and Núñez attribute (almost
all) mathematical understanding to the process of understanding layers of
mathematical conceptual metaphors, that is, inference-preserving mappings
between conceptual domains: a source domain, from which metaphorical
expressions are drawn, and a target domain, the domain which is being
interpreted. Mathematical metaphors make it possible to understand complex,
abstract mathematical notions (targets) in terms of simple, concrete notions
from our everyday reality (source domains). For example, abstract sets can
be understood via the (physical) container metaphor: The notion of a set is
conceptualised as a container; a set is a container with things in it. The things
may be simple things or sets of things. Given this image, we can conceptualise
different configurations involving containers: one container inside another, as
in the former examples, or two containers with different things in them:

(30) B vollstaendig ausserhalb von A liegen muss,
also im Komplement von A
B has to be entirely outside of A, therefore in the complement of A

(31) dann sindA undB vollkommen verschieden, haben keine gemeinsamen
Elemente
then A and B are completely different, have no common elements

48Also Halmos (1970, p. 144) comments on natural language wording used for set relations.
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‘‘Lying outside’’, (30), and ‘‘being different’’, (31), are informal natural
language descriptions of an empty intersection of sets. The mental image of
a container evokes a vague relation of similarity between containers (here,
the property of two containers being different) and relations and properties
associated with containers, such as location (here, of one container’s content).
Although the authors do not make specific claims as to the language

phenomena resulting from the mapping, the theory explains the fact that the
language used to talk about sets reflects the language used to talk about
the source domain of the metaphor, containers: hence, we talk about sets
‘‘containing’’ elements, to express the set membership relation, and about
sets ‘‘being contained in’’ or simply ‘‘being in’’ another set, to express the
subset relation. The resulting ambiguity in the interpretation of the specific
mathematical set relation meant is an artefact of the imprecision of the
natural language phrasing. However, since the phenomenon is systematic, a
computational interpretation component needs a representation of the imprecise
concepts and an appropriate mapping to the possible specific mathematical
interpretations. Notice moreover that this kind of ambiguity appears also in
textbook discourse (recall, for instance, the previously quoted definition of
set membership from (Bartle and Sherbert, 1982); see p. 96 of this chapter)
which all the more motivates this as a basic requirement for a computational
processing architecture. In our domain model specific mathematical relations
are subsumed under more general relations reflecting the conceptual structure
discussed above; see Section 6.2.1.
The metaphor mechanism can result in further imprecise wording: Follow-

ing the container metaphor, students can of course talk about smaller and larger
containers when referring to sets’ cardinalities:

(32) Der Schnitt von zwei Mengen ist kleiner gleich der kleineren dieser
Mengen, also ist das Komplement des Schnitts größer gleich das
Komplement der kleineren Menge
The intersection of two sets is smaller equal the smaller of these sets, so the complement
of the intersection is larger equal the complement of the smaller set

Note that while natural language introduces imprecision, it is an imprecision
in the sense of ambiguity, that is, a discrete set of possible interpretations
(precisifications) exists. Mathematics is in general void of vagueness in that
mathematical concepts are precisely defined. There exist, however, technical
terms, also used in definitions, which are inherently vague. Consider, for
instance, the mathematical uses of ‘‘almost all’’ (all except for finitely many
or all except for a countable set) or ‘‘sufficiently large’’ (greater than some
number).



128 Students’ Language in Computer-Assisted Tutoring of Proofs

Contextual operators Consider the following two examples from the
corpora:

(33) Wenn alle A in K(B) enthalten sind und dies auch umgekehrt gilt,
muß es sich um zwei identische Mengen handeln
If all A are contained inK(B) and this also holds the other way round, these must be
identical sets

(34) S5: es gilt natürlich: P (C ∪ (A ∩B)) ⊆ P (C) ∪ P (A ∩B)
it holds of course: P (C ∪ (A ∩B)) ⊆ P (C) ∪ P (A ∩B)

S6: nein doch nicht... andersrum
no not that either... the other way round

‘‘Umgekehrt’’ and ‘‘andersrum’’ or their English counterpart, ‘‘the other
way round’’, are complex operators which require contextual interpretation. In
the first example, (33), ‘‘the other other way round’’ is ambiguous: the clause
‘‘and this also holds the other way round’’ may be interpreted as ‘‘und alle
K(B) in A enthalten sind’’ (and allK(B) are contained in A) or as ‘‘und alle
B in K(A) enthalten sind’’ (and all B are contained in K(A)), the intended
interpretation. Under the first interpretation, the entire dependent substructures
of the head verb ‘‘enthalten’’, A and K(B), are involved, whereas under
the second, only parts of substructures, A and B, are involved (the directly
dependent nodes, but not their dependents; assuming we analyse mathematical
expressions in terms of dependency syntax as in natural language analysis).
In (34) the entire dependent subtrees of the predicate expressed in the symbolic
language, ⊆, are involved, however, the scope of the semantic reconstruction
involves content which appeared two dialogue turns prior to the turn with the
operator; following S5 the tutor uttered ‘‘Wirklich?’’ (Really?) upon which
the student revised his proof step in S6 with ‘‘the other way round’’.
‘‘The other way round’’ is a typical example of a contextual operator.

Kay (1989) defines contextual operators as ‘‘lexical items or grammatical
constructions whose semantic value consists, at least in part, of instructions to
find in, or impute to, the context a certain kind of information structure and
to locate the information presented by the sentence within that information
structure in a specified way’’. Other items which have this property and
which have been discussed in the linguistic literature include ‘‘respective’’,
‘‘respectively’’, and ‘‘vice versa’’ (Fraser, 1970; McCawley, 1970; Kay,
1989). Interpretation of operators of this type is non-trivial precisely due
to their contextual and parasitic nature: the context needed for interpretation
may span multiple clauses (or even dialogue turns in our case), it may contain
multiple candidate arguments for the operator, and the candidates may appear in
a variety of syntactic and semantic-dependency configurations. Computational
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interpretation must involve identifying the scope of the semantic reconstruction
and a transformation process which recovers the implicit propositional content.
While the scope of ‘‘the other way round’’-like operators may span a

number of clauses, the scope of ‘‘analogously’’, another contextual operator,
may span entire larger discourses, as the following examples illustrate:

(35) S13: (R ◦ T ) ist definiert als {(x, y)|∃z(z ∈M ∧ (x, y) ∈ R
∧ (y, z) ∈ T )}
(R ◦ T ) is defined as {(x, y)|∃z(z ∈M ∧ (x, y) ∈ R ∧ (y, z) ∈ T )}.

S14: (S ◦ T ) ist genauso definiert.
(S ◦ T ) is defined in the same way.

S15: (S ◦ T ) ist analog definiert.
(S ◦ T ) is defined in an analogous way.)

(36) Der Beweis von (T−1 ◦ S−1)−1 = (S ◦ T ) ist analog zum Beweis
von (T−1 ◦R−1)−1 = (R ◦ T ).
The proof of (T−1 ◦ S−1)−1 = (S ◦ T ) is analogous to the proof of
(T−1 ◦R−1)−1 = (R ◦ T ).

(37) Der Beweis geht genauso wie oben
The proof goes the same way as above

In (35) interpreting ‘‘analog’’ (analogously) requires an appropriate vari-
able substitution in the definition of composition of relations which the student
formulated two turns earlier. Note that the tutor did not accept the student’s
phrasing with ‘‘genauso’’ (the same way) and asked for clarification: ‘‘Was
heisst ‘genauso’?’’ (What do you mean by ‘the same way’?).49 In (36), how-
ever, ‘‘analogously’’ is used in place of an entire proof which spanned about
15 student turns. In this case, the complete previous proof object would have to
undergo a rewriting transformation involving multiple variable substitutions.
In the case of definition, (35), the phrasing ‘‘genauso’’ was not accepted,
however, following (37) the tutor accepted it in the case of a larger proof.
This is justified because here ‘‘the same’’ is plausible to refer to the high-level
proof structure, rather than the specific variable instantiations, as is the case of
definition. ‘‘Proofs by analogy’’ of this type occur frequently in textbooks and
publications.
From a computational point of view, interpreting ‘‘analogously’’ or

‘‘genauso’’ in the case of proof steps or entire proofs, would involve, first, iden-
tifying candidate objects in the previous discourse representation, which could
undergo a transformation and, second, identifying parallels between the object
currently under discussion and the candidate objects retrieved from the previous
49The tutor apparently overlooked a typo in the variable naming.
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discourse. While in the case of ‘‘the other way round’’ the transformation is
at the level of linguistic entities and can operate on linguistic representations,
the transformation needed for ‘‘analogously’’ does not operate on linguistic
entities, but rather on domain objects built up by a domain reasoner based on
discourse analysis: a deduction system’s proof or proof step representations,
and is therefore outside of the scope of this thesis. Our approach to semantic
reconstruction of ‘‘the other way round’’ will be presented in Chapter 6.

Adjectives Mathematical adjectives are interesting from the point of view
of their semantic properties and their computational representation. Consider,
for instance, the terms ‘‘left inverse’’ and ‘‘right inverse’’. In a set with a
binary operation, ∗, and an identity element e, a is a left inverse and b is a right
inverse if a∗b = e. However, by convention, an element is called an ‘‘inverse’’
(or ‘‘two-sided inverse’’) when it is both a left inverse and a right inverse with
respect to ∗. Thus, from the point of view a taxonomy of mathematical objects
the is-a relation holds in a counter-intuitive direction: it is not always the case
that a left inverse is-an inverse and a right inverse is-an inverse, which would
be the case if prenominal modification worked the way it usually works with
adjectives in natural language. The cases of ‘‘ideal’’ and ‘‘left/right ideal’’ are
analogous in this sense. Typical attributive adjectives also exist in mathematics;
‘‘monotonic/monotone’’, as in ‘‘monotonic function’’, is an example.
The second class of interesting adjectives are those which can be used

predicatively. Examples of such adjectives include properties of relations, such
as symmetry, commutativity, etc. When expressed in an adjectival form they
are part of copular constructions such as the one illustrated below:

(38) Da die Mengenvereinigung kommutativ ist, . . .
Since set union is commutative, . . .

When formalised mathematically, commutativity of a binary operation ∗
on a set is defined as x ∗ y = y ∗ x for all set elements x and y; for set union
this would be instantiated as A ∪ B = B ∪ A, where A, B are sets. In this
representation, a functional operator is involved and a structural result is de-
fined. In natural language, as in (38), commutativity is predicated of set union.
Informally, this could be represented symbolically as Commutative(∪), that
is, a property is predicated of a function. Thus, the structure of the two
representations is different and needs to be mapped. The same holds of
other relation and function properties such as ‘‘symmetric’’, ‘‘distributive’’,
‘‘connected’’, etc. In general, the meaning of mathematical adjectives, de-
noting properties of mathematical objects, is formally defined. A language
understanding component needs to be able to represent a mapping between the
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natural language adjectival use and the formal representation. In particular, in
a tutorial dialogue system, this mapping has to link to an automated deduction
system’s internal representation, so that the validity of an assertion such as (38)
can be verified.

Verbs In the course of problem solving learners verbalise ‘‘actions’’ which
they intend to perform on terms and formulas before they actually carry out the
formal operation. The following examples illustrate this:

(39) Ich zerlege jetzt die Potenzmenge:P (C∪(A∩B)) ⊇P (C)∪P (A∩B)
I’m now splitting the powerset: P (C ∪ (A ∩B)) ⊇ P (C) ∪ P (A ∩B)

(40) Ich schätze die Vereinigung der Teilmenge ab P (C)∪P (A∩B) ⊇
P (A ∩B) ⊇ A ∩B
I’m estimating the union of the subset P (C) ∪ P (A ∩B) ⊇ P (A ∩B) ⊇ A ∩B

(41) Nun wendet man das Relationenprodukt nochmals an, oder?
The relation product should be applied now, right?

(42) damit kann ich den oberen Ausdruck wie folgt schreiben:
K((A ∪B) ∩ (C ∪D)) = K(A ∪B) ∪K(C ∪D)
thus I can write the above expression as follows:
K((A ∪B) ∩ (C ∪D)) = K(A ∪B) ∪K(C ∪D)

This kind of language is characteristic of Tall’s procept world (see Section 3.1.2
(p. 88)) in which focus is on actions, procedures, and algorithms. In order to
obtain a complete interpretation of the intended proof step a formalisation of
meanings of such ‘‘actions’’ would be needed.
The information about the fact that elements of the procept language

occurred in a student’s solution could be useful for the tutoring system’s peda-
gogical module to reason about the student’s knowledge state. This, however,
means that an automated system would have to be able to verify whether the
result of the operation actually performed on a symbolic expression can be
indeed considered an instance of ‘‘splitting’’, ‘‘estimating’’, ‘‘applying’’, or
‘‘(re-)writing’’. This would in turn mean that the semantics of these actions
would have to be operationalised. While ‘‘applying’’ a lemma or a theorem
or ‘‘rewriting’’ an expression could be formalised in relatively straightforward
way50 a symbolic operationalisation of ‘‘splitting’’ is not so obvious; notice
moreover that in the quoted example (39) the argument of the verb ‘‘split’’ has
to be type recast: it is not the powerset object that is being ‘‘split’’, but rather
50(for instance, as a two-place function which takes arguments of types math expression and
theorem and returns a result of type math expression which should have the property that it can
be derived from the original math expression in one step using theorem)
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the term headed by the powerset operator. Further similar examples will be
discussed in the next section when we talk about bridging references.

3.2.2.5 Discourse phenomena
The discussion of discourse phenomena in mathematical discourse should
perhaps start with an introduction on denoting. Mathematics is a tricky area in
this respect; we will not attempt even a brief digression into the philosophical –
ontological or epistemic – aspects of mathematics as these areas are outside of
the scope of this work. The purpose of this section is far more down-to-earth:
in the following sections, we will merely illustrate a number of discourse
reference phenomena in proofs. In relation to referring, two points need to be
mentioned about the universe of discourse.
Mathematics is about mathematical objects and, even more importantly,

relations between them. At the conceptual level, mathematical discourse
talks about mathematical entities, makes statements, propositions or claims,
about these entities and ascribes mathematical properties to both the entities
and the propositions. Mathematical objects – non-physical, timeless and
spaceless, formally defined abstract entities – are evoked in mathematical
discourse by their names. The words that name them are technical terms of
mathematics. Mathematical objects in the domains of our corpora include sets,
relations, and operations on sets and relations (set union, intersection, relation
composition, etc.) which are themselves mathematical objects too.
Although in principle all of mathematics can be done in the mind and

mathematical concepts can be considered purely mental constructs which
do not need words, mathematics is of course communicated: in natural
language, as in our experiments, or using other means, such as diagrams or
graphs. Words, phrases, and sentences of the formal mathematical language,
mathematical expressions, are symbolic textual representations ofmathematical
objects, relations, and propositions. This structured textual notation can be
written in a precise formal way (as is the case in formal logic or proof
theory) or semi-formally. We already discussed properties of the symbolic
language in Section 3.2.1. The written representations are of course themselves
mathematical objects and mathematical discourse talks about them as well.
Thus, among reference phenomena, aside from the usual anaphoric references,
other types of references are to be expected in mathematical discourse:
references to the textual mathematical signs (notation) or their parts and
references to mathematical propositions or sets of propositions which form a
proof or part of a proof, that is, larger mathematical discourse objects. We
discuss and illustrate these phenomena in the following sections.
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Referring to domain objects Both definite and bare noun phrases can be
used as specific references to refer to domain objects or as generic references to
refer to domain concepts. For instance, ‘‘die Vereinigung’’ (the union) in (43)
is a specific reference, whereas ‘‘die Potenzmenge’’ (the powerset) in (44) is a
generic reference to powerset as a type:

(43) Die Vereinigung der Mengen R und S enthaelt alle Element aus R
und alle Element aus S.
The union of the sets R and S contains all elements from R and all elements from S

(44) und für die Potenzmenge gilt: P (C∪ (A∩B)) = P (C)∪P (A∩B)
and for the powerset it holds: P (C ∪ (A ∩B)) = P (C) ∪ P (A ∩B)

The interpretation of the reference ‘‘Potenzmenge’’ in (45) below is unclear:

(45) S1:A ⊆ (A ∪ C) , B ⊆ (B ∪ C), also (A ∩B) ⊆ ((A ∪ C) ∩ (B ∪ C))
A ⊆ (A ∪ C) , B ⊆ (B ∪ C), thus (A ∩B) ⊆ ((A ∪ C) ∩ (B ∪ C))

S2: Potenzmenge enthaelt alle Teilmengen, also auch (A ∩B)
Powerset contains all subsets, thus also (A ∩B)

S2 in (45) can be interpreted as an informal paraphrase of the definition of a
powerset, in which case the reference is generic, or the learner may have meant
the powerset of the specific instance of a set in S1, ((A ∪ C) ∩ (B ∪ C)), in
which case the reference is specific.
Aside from evoking defined objects, mathematical discourse may contain

references to named theorems, lemmata, definitions, or proofs. These are also
mathematical objects and are often referred to by their proper names as in (46):

(46) Ich benutze das Extensionalitaetsprinzip
I’m using the Extensionality Axiom

The definite noun phrase ‘‘das Extensionalitaetsprinzip’’ (Axiom of Exten-
sionality) is a non-anaphoric reference to a class of statements intentionally
equivalent to the following:

A = B ⇔ ∀ x (x ∈ A⇔ x ∈ B), where A, B : sets
Other examples of named mathematical objects of this type in our domains
include: ‘‘De Morgan Regeln’’ (De Morgan Laws) or ‘‘Distributivgesetz’’
(Distributive property). Proof methods or strategies, likewise, have names,
for instance, ‘‘indirect proof’’ or ‘‘proof by contradiction’’, ‘‘(Cantor’s)
diagonal proof’’; specific proofs can be named entities as well, for instance,
‘‘the Euclid’s proof’’ (of the Pythagorean theorem), ‘‘the Wiles’ proof’’, or
‘‘the Hales proof’’. In most contexts, occurrences of these references are
non-anaphoric.
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Referring to (parts of) symbolic notation When mathematics is com-
mitted to written form, referring devices can be also used to relate to symbolic
expressions in discourse or to their parts. Both direct – anaphoric – and
indirect – bridging – references to (parts of) symbolic notation can be found in
mathematical discourse. Both types of references are illustrated below.

Direct reference In direct reference a coreference relation exists between
two discourse referents: the one introduced by a referring expression (anaphor)
and another one introduced previously (antecedent); the two expressions denote
the same entity. Prototypical anaphoric references are pronouns:51

(47) Da, wennA ⊆ K(Bi) sein soll,AElement vonK(Bi) seinmuss. Und
wenn Bi ⊆ K(A) sein soll, muss esi auch Element vonK(A) sein.
Because if it should hold that A ⊆ K(B), A must be an element ofK(B).
And if it should hold that B ⊆ K(A), it must be an element ofK(A) as well.

(48) S1: Wie ist R ◦ S definiert?
How is R ◦ S defined?

T1:R ◦ S := { (x, y) | ∃zi(zi ∈M ∧ (x, zi) ∈ R ∧ (zi, y) ∈ S}
S4: ist zi nur fuer die Definition eingefuehrt oder hat esi

einen anderen Sinn?
is z introduced only for the definition or does it have a different meaning?

In (47), the pronoun ‘‘es’’ (it) refers to a term in a formula, a set variable
B in the previous clause. The syntactic function of the anaphor, subject of
the clause, is parallel to the syntactic function of the antecedent in the formula
verbalisation. Syntactic parallelism between the anaphor and a candidate
antecedent is used in computational anaphor resolution as a strong indicator
of coreference. Similarly, in (48) the pronoun ‘‘es’’ is referring to a variable
naming a member of a set, x, which was first introduced earlier in the dialogue.
Coreference between variables in mathematics depends on the type of

denotation the given variable has (specific unknown vs. continuous unknown
vs. arbitrary fixed object, and so on), the logical structure of the argument
(function and scope of the discourse segment in which the variable occurs), and
quantification (the samevariables in two existentially quantified formulas do not
necessarily corefer).52 The very notion of a variable, the meaning of variables,
and quantification have been shown to cause learners major difficulties (Epp,
1999; Dubinsky and Yiparaki, 2000; Selden and Selden, 2003). A typical error
in the use of variables from one of our corpora is shown in the examples that
follow.
51Coreferring discourse entities are marked with matching subscripts.
52See (Kapitan, 2002) for a discussion on the nature of variables in mathematics.
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(49) S18: Daraus folgt (R ∪ S) ◦ T = {(x?, y) | ∃z(z ∈M
∧ (x, z) ∈ {x? | x? ∈ R ∨ x? ∈ S} ∧ (z, y) ∈ T )}
From that follows (R ∪ S) ◦ T = . . .

T19:Was bedeutet die Variablei xi bei Ihnen?
What is the meaning of the variable x?

S19: xi hat zwei Bedeutungen esi kommt in zwei verschiedenen
Mengen vor
x has two meanings it appears in two different sets

T20: Benutzen Sie bitte fuer die zwei verschiedenen Bedeutungen
von x zwei verschiedene Bezeichnungen.
Please use two different designations for the two different meanings of x.

In (49) the same name, x, is introduced to denote different entities which
are moreover of different types: a variable in a pair and a set member variable
in a set constructor. This kind of ambiguous designation is infelicitous a proof,
so the tutor asks for clarification, ‘‘Was bedeutet die Variable x bei Ihnen?’’
(‘‘die Variablei xi’’ is an example of appositional anaphoric reference). An
anaphor appears also in the clarification subdialogue: the pronoun ‘‘es’’ in the
second clause of S19 corefers with x in the preceding clause and in the tutor’s
turn, however, a coreference chain cannot be established with the previous
occurrences of x due to the ambiguous designation.
In the last examples pronominal adverbs refer to terms and formulas, (50)

and (51), and an anaphoric epithet identifies an expression by its type, (52):

(50) S1: [ R ◦ S ]i := {(x, y) | ∃z(z ∈M ∧ (x, z) ∈ R ∧ (z, y) ∈ S)}
S2:Nun will ich das Inverse [ davon ]i

Now I want the inverse of that
(51) Dann gilt fuer die linke Seite, wenn [ C ∪ (A ∩B) ]i

= [ (A ∪ C) ∩ (B ∪ C) ] der Begriff A ∩B dann ja schon dadrin
und ist somit auch Element [ davon ]i.
Then for the left side, if C ∪ (A ∩ B) = (A ∪ C) ∩ (B ∪ C) the term A ∩ B is
already there and thus also an element of it

(52) T: [ R ◦ S := { (x, y) | ∃z(z ∈M ∧ (x, z) ∈ R ∧ (z, y) ∈ S)} ]i.
S: So, und was ist dasM in [ der Formel ]i?

Right, and what is theM in the formula?

Other examples of anaphoric epithets include ‘‘the term’’, ‘‘the variable’’,
‘‘the constant’’, named results of operations (‘‘the sum’’, ‘‘the union’’,
‘‘the factors’’), named parts of symbolic expressions (‘‘the denominator’’), etc.

Indirect reference Bridging is a term introduced by Clark (1975) for
definite noun phrases identifying a referent which has not been introduced
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explicitly, but which is ‘‘associated’’ with a previously evoked entity.53
Bridging references can be used to identify mathematical expressions by their
typographical features or physical properties (‘‘the left side’’), the linear order
of their constituents (‘‘the first term’’), their structural groupings or delimited
subexpressions (‘‘the bracket’’), or the type of object they denote (‘‘the
complement’’, when it refers to a term headed by the complement operator).
The following dialogue fragment exemplifies the phenomenon:

(53) T1: Bitte zeigen Sie: A ∩B ∈ P ((A ∪ C) ∩ (B ∪ C))!
Please show: A ∩B ∈ P ((A ∪ C) ∩ (B ∪ C))!

S1: Distributivitaet von Vereinigung ueber Durchschnitt:
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) Hier dann also:
C ∪ (A ∩B) = (A ∪ C) ∩ (B ∪ C) Dies fuer [ die innere
Klammer ]i. Auf [ der linken Seite ]j A ∩B. Hierfuer gilt
Fall 10: Falls A ∈ P ((A ∪ C) ∩ (B ∪ C)) und B ∈
P ((A ∪ C) ∩ (B ∪ C)) = A ∩B ∈ P ((A ∪ C) ∩ (B ∪ C))
Distributivity of union over intersection: . . . So here: . . . This for the inner
bracket. On the left side A ∩B. Case 10 applies here: If . . . and . . .

S2: Dann gilt fuer [ die linke Seite ]j , wenn C ∪ (A ∩B)
= (A ∪ C) ∩ (B ∪ C) der Begriff A ∩B dann ja schon
dadrin und ist somit auch Element davon.
Then for the left side it holds, if . . . the term A ∩B is already
there and thus also an element of it

S3:A ∩B auf [ der linken Seite ]j ist ∈ von C ∪ (A ∩B),
was ja nur durch C erweitert wird. Es kommt auf
[ der rechten Seite ]k ja nur C als Vereinigungsmenge
zu A ∩B hinzu.
A ∩B on the left side is ∈ of C ∪ (A ∩B), which is extended
only by C. On the right side is only C intersected with A ∩B.

The definite noun phrases ‘‘die innere Klammer’’ (the inner bracket), ‘‘die
linke Seite’’ (the left side) and ‘‘the right side’’ refer to structural parts of the
formula in T1 and they are all used in a bridging sense: ‘‘the left side’’ and
‘‘the right side’’ refer to the terms left and right of the top-node operator in
the formula (rather than to the general areas to the left and right, respectively)
while ‘‘the inner bracket’’ refers to a bracketed subterm embedded in another
bracketed term, rather than to a bracket itself in the sense of a grouping element.
(In English, of course, yet another interpretation of the reference ‘‘bracket’’,
without the adjectival modification, would be possible in algebra. Lexical
interpretation is, as always, dependent on the domain; here, mathematical
53Other terms used for this kind of reference are ‘‘indirect anaphora’’ (Chafe, 1972, 1976),
‘‘associative anaphora’’ (Hawkins, 1978), or ‘‘inferrable’’ (Prince, 1981).
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subarea). The reference ‘‘die innere Klammer’’ is in this case unfortunately
ambiguous: the singular ‘‘Klammer’’ may refer to either (A ∪ C) or (B ∪ C)
both of which are bracketed subterms of the term P ((A ∪ C) ∩ (B ∪ C)); the
plural ‘‘Klammern’’ was most likely intended, but mistyped.
The next set of examples, (54) through (56), illustrate bridging references

to terms by means of the names of objects which the terms denote:

(54) T1: Bitte zeigen Sie: [K((A ∪B) ∩ (C ∪D)) ]? = ([K(A) ]?
∩ [K(B) ]?) ∪ ([K(C) ]? ∩ [K(D) ]?)!
Please show: ...!

S2: de morgan regel 2 auf [ beide komplemente ]i angewendet
de morgan rule 2 applied to both complements

(55) S2: hab mich verschrieben [ P ((A ∪ C) ∩ (B ∪ C)) ]?
= [ P (C ∪ (A ∩B) ]?
made a typo P ((A ∪ C) ∩ (B ∪ C)) = P (C ∪ (A ∩B)

S5: habe probleme mit [ der potenzmenge ]i, kann siei nicht
ausrechnen bzw mir siei vor augen fuehren!
have problems with the powerset, can’t calculate it, can’t see it

(56) S33:Nach Aufgabe W ist (S ◦ (S ∪R)−1)−1 = [ ((S ∪R)−1)−1

◦ S−1 ]i
By Exercise W: ... holds

S34:Diesi ist nach Theorem 1 gleich [ (S ∪R) ◦ S−1 ]j
This is by Theorem 1 equal to (S ∪R) ◦ S−1

S35: Ein Element (a, b) ist genau dann in [ dieser Menge ]j ,
wenn es ein z ∈M gibt mit (a, z) ∈ S ∪R und (z, b) ∈ S−1

An element (a, b) is in this set if and only if there is an x ∈M
such that (a, z) ∈ S ∪R und (z, b) ∈ S−1

The quantified noun phrase ‘‘beide Komplemente’’ (both complements) in S2
of (54) refers to a pair of terms headed by the complement operator in T1.
The plural in this case is multiply ambiguous. First, there is an ambiguity
between the distributive and collective reading, and second, there are five
complement-headed terms in the preceding formula. It is clear, however, that
only two pairs of those are equally plausible as antecedents: K(A) and K(B)
orK(C) andK(D); in fact, DeMorgan rule has to be applied to both, pairwise.
There are two ways of interpreting the definite noun phrase ‘‘der Potenz-

menge’’ (the powersetDat.) in S5 of (55). On the one hand, it may be referring
to a term headed by the powerset operator in S2 (rather than the powerset oper-
ator itself) which contains the following expression: P ((A∪C)∩ (B ∪C)) =
P (C ∪ (A ∩ B)). Under this interpretation, the reference is ambiguous since
there are two powerset-headed subexpressions. On the other hand, it is more
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plausible to interpret it non-anaphorically, as a generic reference. Since the
student had a general problem in understanding the concept of a powerset, it is
unclear which one he meant.
In (56) the definite noun phrase ‘‘diese Menge’’ (this set) in S35 is again

a bridging reference to the set defined by the composed relation denoted by
(S ∪R) ◦S−1 in S34. Yet another related type of bridging reference, of which
we did not have examples in our corpora, are references to structures by means
of their underlying objects; in the context of groups, for instance, given a setG
and a binary operation ∗, one could refer to ‘‘the groupG’’. Bridging references
of this kind occur frequently in textbook discourse.54 (56) also exemplifies
a discourse deictic reference to a part of a mathematical expression: ‘‘dies’’
(this) in S34 points at the term on the right-hand side of the equality in S33.

Ganesalingam suggests that Zinn’s analysis of structuredmathematical terms
which makes their subterms available for reference is incorrect: ‘‘[Zinn’s anal-
ysis] frequently makes incorrect predictions about anaphor, even though this is
one of the great strengths of Discourse Representation Theory. For example,
consider the discourse: ‘2 + 15 is prime. It is divisible by 1 and 17 (only).’
Zinn’s analysis incorrectly predicts that ‘2’ is an available anaphoric antecedent
at the end of this discourse (Zinn, 2004, pages 106–7)’’ (Ganesalingam, 2009,
p. 20). Considering the phenomena illustrated above, Zinn’s analysis ap-
pears well-justified; even the quoted example could continue along the lines
of ‘‘The left term is prime’’, for which, clearly, ‘2’ would need to be an
available antecedent. In fact, Zinn’s example (93a) on the quoted page 106:
‘‘1, 1, 2, 3, 5, 8, 13, 21, ... in which [ the first two terms ]...’’ also supports
this, as do his other examples (43c–e) on page 74 which illustrate the same
phenomenon (albeit under an unfortunate heading of ‘‘Deictic form’’).
The question of which substructures of mathematical expressions should

be available for reference does not have an obvious answer. In Section 3.2.1.2
we tried to show that certain substructures of mathematical expressions can
be considered salient: they are valid constituents, in terms of the expression’s
tree structure, and they are distinct in the Western-tradition infix notation.
Constituent structure analysis is also supported by studies on human perception
of mathematical expressions (Jansen et al., 1999, 2000, 2003). These studies
and the observations on referring from our corpora suggest that both atomic
and complex subterms (along with information on their bracketing) should be
available for reference. Now, the operator nodes of the expressions would
need to be modelled too if meta-level discussion on mathematical expressions
54Wells (2003, p. 239) points out that this is an example of parameter suppression.



LANGUAGE PHENOMENA IN MATHEMATICAL PROOFS 139

were to be allowed (a student could refer to ‘‘the plus sign’’ for instance), as
well as the type of their result (see examples (54) and (56)). That is, not only
‘‘K’’ and ‘‘◦’’ as the symbols themselves can be candidate antecedents, but the
expressions headed by the operators need to be available, as already mentioned,
along with the information on the type of objects they denote (here: a set; the
type of the result of the complement operation and of relation composition).

Referring to propositions Both in our data as well as in narrative
mathematical discourse pronouns, demonstratives, and adverbial pronouns are
used to refer to propositions as well as sequences of propositions which form a
proof. The examples below illustrate this:

(57) S11: ∃z ∈M , so dass (x, z) ∈ S−1 und (z, y) ∈ R−1

∃z ∈M such that (x, z) ∈ S−1 and (z, y) ∈ R−1

T18: Richtig. Wissen Sie, ob ein solches z existiert?
Correct. Do you know whether such z exists?

S12: Nein
No

T19: Erinnern Sie sich daran, dass [ es ein z gibt mit (x, z) ∈ S−1

und (z, y) ∈ R−1 ]i.
Do you remember that there is a z such that (x, z) ∈ S−1 and (z, y) ∈ R−1.

S13: Ja, ich habe esi vorausgesetzt
Yes, that was the assumption

(58) S7: Also ist [ (z, x) ∈ S und (y, z) ∈ R ]i und damiti auch
[ (y, x) ∈ R ◦ S ]j
Therefore (z, x) ∈ S and (y, z) ∈ R holds and by that also (y, x) ∈ R ◦ S

S8: [ Somit ]j ist (x, y) ∈ (R ◦ S)−1

Given that it holds that (x, y) ∈ (R ◦ S)−1

In (57), the pronoun ‘‘es’’ (it) is used (S13), as in ordinary discourse, to refer
to a proposition, in this case, an assumption restated in the tutor’s turn (T19).
More interesting are references using adverbial pronouns exemplified in (58).
‘‘Damit’’ (with this) in S7 refers to the proposition stated in the first conjunct
of the coordinated clauses. ‘‘Somit’’ (with that) in S8 may refer to the
conjunction of the assertions in S7 or only to the last assertion (marked with j
in the example). On the one hand, in most cases, as here, references of this kind
are underspecified in terms of their scope. On the other hand, their function
is to signal the logical structure of the argument: the antecedent of ‘‘somit’’
or ‘‘damit’’ provides justification for the subsequent statement. In order to
resolve the scope of such references, and so to reconstruct the intended logical
structure of the proof, domain reasoning is needed.



140 Students’ Language in Computer-Assisted Tutoring of Proofs

Table 3.5: Categories of solution-related student contributions

Category Description
Proof contributions
Proof step Contributes a proof step or part of a proof step
Proof strategy States a solution strategy to be adopted
Proof structure Signals solution structure
Proof status Signals the status of the (partial) solution

Meta-level
Self-evaluation States an evaluation of own step
Restart Signals that a new attempt at a proof is being started
Give up Signals abandoning the solving task

Signalling proof structure and status Proofs are structured discourses.
The discourse structure and linguistic realisation of a proof are dictated by the
employed reasoning: the proof method and the sequence of inferences. Certain
proof types have a characteristic form and elements: a proof by induction
includes a base step part and an inductive step, a proof by contradiction starts
with the assumption of the negated proposition and ends with a contradiction,
and proof by cases comprises a sequence of case distinctions. The logical
structure of the reasoning is made explicit in a proof using linguistic means:
there exists conventional wording typically used to signal the proof method
employed, the proof step elements (assertions, justifications, etc.), and the end
of the proof. Aside from these proof components, students’ proofs constructed
in an interactive setting contain contributions which are typically not found in
textbooks nor scientific publications. Table 3.5 shows a classification of student
contributions which add information about the solution being constructed, that
is, contain information related to the proof.55
From the point of view of their function, solution-related contributions

can be divided into object-level and meta-level types. At the object-level,
that is, at the level of the actual proof, we found four categories of contribu-
tions in the corpora: Proof steps are the actual complete or partial proposed
steps in a proof. A minimal proof step consists of a proposition. The
proposition may be an inferred assertion or an assumption. A complete in-
ferred proof step consists of an assertion and a justification (a warrant) of
the validity of the inference (by reference to proved claims or axioms and
valid inference rules). The assertion can be formulated as a formal statement
or a natural language statement in an indicative or conditional/hypothetical
mood. A justification of a claim can be signalled using discourse connec-
tives (in German: ‘‘aber’’, ‘‘und’’, ‘‘weil’’, ‘‘da’’, ‘‘dann’’, etc.; in English:
‘‘thus’’, ‘‘hence’’, ‘‘therefore’’, ‘‘because’’, etc.), other adverbial connectives,
55A broader characterisation of utterance types in our corpora will be presented in Chapter 4.
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such as those discussed in the previous section (‘damit’’, ‘‘somit’’, ‘‘deshalb’’,
‘‘also’’), or descriptively using appropriate wording, for instance, ‘‘aufgrund
des Extensionalitaetsprinzips’’, ‘‘aus Symmetriegründen’’ (Due to extension-
ality/symmetry), or ‘‘Begründung: . . . ’’ (Justification: . . . ) Much like the
adverbial pronouns, discourse connectives are scope bearing, but their scope
is in many cases underspecified.56 In most cases, moreover, the link between
a new proposition and the previous propositions is not overtly given at all.
Note that underspecification manifested in unclear scope of discourse markers
signalling the logical structure in proofs is present also in textbooks. Again, in
order to resolve the underspecified scope, human-level deductive reasoning is
needed, that is, knowledge beyond mere semantic interpretation.
A declaration of proof strategy is a statement which does not bring the

proof forward, but based on which the intended line of reasoning to follow
can be anticipated. It can be signalled using wording such as ‘‘Beweis durch
⊆ und ⊇’’ (Proof by ⊆ and ⊇) or ‘‘es genügt zu zeigen...’’ (it is enough to
show...), etc. By proof structurewe mean explicit signals of a proof’s structural
composition. This includes utterances such as ‘‘Schritt 1:’’ (Step 1) or ‘‘Ich
mache eine Fallunterscheidung’’ (I’m making a case distinction). Proof status
is a category for utterances which signal the current state or status of the proof,
for instance, ‘‘q.e.d.’’, ‘‘Damit ist insgesamt gezeigt...’’ (With that we have
shown...), or a more informal ‘‘Hälfte geschafft’’ (Half done).
Unlike proofs in textbooks or scientific publications, students’ solutions

may be invalid (false) or not goal-oriented; a student may be going in the
wrong direction or may not know at all how to proceed. In proofs constructed
with tutor’s assistance, students can communicate this kind of meta-level
information about their solution to the tutor. While all the proof contribution
categories are also found in scientific publications, the latter contribution
types are more likely to appear only in pedagogical contexts. Among meta-
level solution-related communication, three types of contributions were found
in the corpora: Self-evaluations are student’s own evaluations of the validity,
granularity, or relevance of a proof step (or steps) which he proposed. Examples
of such utterances include: ‘‘ich habe die falsche Richtung benutzt’’ (I used the
wrong direction (of an implication)) or ‘‘Korrektur:...’’ (Correction:...); the
latter being an implicit self-evaluation. If a solution attempt is not successful,
a student can restart and try a new solution signalling that the previous one
is abandoned: ‘‘Ich beginne den Beweis neu’’ (I’m starting the proof anew)
56Adverbs such as those mentioned here take two arguments, both of which may span multiple
assertions. In English, one argument immediately follows and the other may take scope over just
the previous assertion (here: a previous step) or over a larger discourse (here: a number of proof
steps, along with their justifications; a subproof).
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or ‘‘Wieder von vorne’’ (Once again from the beginning). Finally, if a
student cannot find a solution, he may decide to give up: ‘‘Ich gebe auf’’ (I’m
giving up), ‘‘Bitte die richtige Antwort!’’ (Show me the right solution, please!).

3.3 Pragmatic aspects of mathematical discourse

From a pragmatic57 point of view the main purpose of the language of
mathematics is to convey ‘‘mathematical content’’, that is, factual propositional
information about mathematical objects, relations, and properties. Thus, on the
one hand, in Brown and Yule’s terminology mathematics is a transactional
discourse (Brown and Yule, 1983). On the one hand, a mathematical proof
is a form of persuasive discourse, a ‘‘validating act’’, in which the speaker
(the proof’s author) is attempting to convince the hearer/reader that certain
mathematical facts hold (Hersh, 1993). A proved mathematical assertion
becomes a theorem and can be invoked in another proof to make new
inferences. Assertions without proofs can only appear if they are postulated to
be true (axioms), locally assumed to be true (hypotheses), or explicitly declared
as such (conjectures). From a pedagogical point of view a proof is also an
educational tool: by constructing a proof a learner is attempting to convince,
himself and the teacher that his argumentation is based on understanding,
rather than on mere repetition of memorised theorems and lemmata, and he
is discovering relations between mathematical concepts, thereby deepening
his understanding (Hanna, 1990; Sfard, 2001); hence the importance of the
learner showing (justifying) how the proposed proof steps have been derived.
Much like in any other dialogue situation, participants ofmathematical dialogue
follow certain cooperative principles58 and make assumptions as to the stock of
knowledge that is shared between them. On the part of the tutor, cooperativity
involves contextual interpretation: resolving underspecified scopes, covert
arguments, and references, both in the natural language and in the symbolic
notation (discussed in Section 3.2.1.3) as well as resolving semantic ambiguities
which are due to imprecise language (Section 3.2.2.4). At the proof-level,
57(in a technical sense of the word)
58Grice’s Cooperative Principle (Grice, 1975) states that a conversational contribution should be
made ‘‘such as is required, at the stage at which it occurs, by the accepted purpose or direction
of the talk exchange.’’ Cooperative communication is governed by conversational maxims:
Quality: Try to make your contribution one that is true. 1. Do not say what you believe to be
false. 2. Do not say that for which you lack evidence; Quantity: 1. Make your contribution
as informative as is required (for the current purposes of the exchange). 2. Do not make your
contribution more informative than is required; Relation: Be relevant; Manner: Be perspicuous.
1. Avoid obscurity of expression. 2. Avoid ambiguity. 3. Be brief. Avoid unnecessary prolixity.
4. Be orderly.
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it involves filling in the gaps in coarse-grained reasoning. These concern also
mathematical prose. From the pedagogical point of view, cooperativity may
also involve ignoring certain low-level errors in favour of the higher goal of
teaching mathematical argumentation (Section 3.2.1.5).

Unlike in other areas of human activity, in mathematics the truth of claims
has the central place; the Gricean maxim of quality is a sine qua non.59 There
are interesting aspects to how the other Gricean maxims regulate mathematical
proofs. The maxim of quantity is manifested in the differences in level of
detail, granularity, between various mathematical expositions. What is too
much and too little information depends on the author’s assumptions as to what
the addressee knows – the common ground – and the purpose of the exposition.
A mathematical textbook for novices differs in the level of detail from a
scientific paper intended for experts; see also Chapter 2 (p. 60). Violation of
the maxim may result in incomprehensible textbooks (overestimated assumed
knowledge: too much information omitted) or in tedious mathematical articles
(underestimated assumed knowledge: too much information included). In a
tutoring setting, it is the tutor who, based on his assumptions on the student’s
knowledge, monitors the level of detail. A poorly performing student may be
required to make some reasoning steps and justifications explicit which a good
student may be allowed to skip; examples of tutor’s reactions to the granularity
of students’ proof steps were shown in Section 3.2.1.5.60
There are two interesting aspects to relevance in the context ofmathematics:

one concerns the mathematical content and the other the informal language.
Earlier in this section we said that the purpose of mathematical discourse is
to communicate facts. In receiving mathematical discourse, the relevance of
the presented content should be taken for granted: if something is said, it must
be relevant and said for a reason. A mathematical proof does not admit of
arbitrary facts if it is to fulfil its purpose of persuading, but rather only of those
facts that make the addressee more convinced. An irrelevant assumption may
lead to undesired implicatures. Halmos (1970, p. 138) illustrates this with the
following example: ‘‘‘If R is a commutative semisimple ring with unit and
x and y are in R, then x2 − y2 = (x − y)(x + y)’ The alert reader will ask
himself what semisimplicity and a unit have to do with what he had always
59Paradoxically, the Quality Maxim is routinely flouted in one of the standard proof methods:
proof by contradiction, in which a false statement is stated to be assumed to be true. This,
however, serves the method’s purpose of showing that the assumption is invalid by reaching a
contradiction, thereby proving the original proposition.

60Granularity in human reasoning has been discussed byHobbs (1985) and in proofs byRips (1994).
A computational framework for evaluating granularity for proof tutoring has been proposed
in (Benzmüller and Vo, 2005; Autexier and Fiedler, 2006; Schiller et al., 2008).
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thought was obvious.’’ Likewise, irrelevant notation should be omitted and
certain propositions, while true, may be unnecessary from the point of view of
the argument. Students, however, do contribute irrelevant steps; we showed
examples of such proof contributions in Section 3.2.1.5.61
The other aspect of relevance concerns the language of mathematical dis-

course. The formal language of mathematics, due to the nature of mathematics
itself, is void of emphatic expressiveness and redundancy typical of natural
language. Attitude or sentiment towards presented facts, any information which
cannot be expressed in the formal language, or repetition of previously stated
information is superfluous from themathematical point of view.62 However, in-
formal mathematical discourse, especially in pedagogical context, does contain
this kind of ‘‘irrelevant’’ content: statements may be reworded, paraphrased, or
repeated for emphasis in order to facilitate understanding and recall or because
of the limits of the addressee’s attention span. Both the student and the tutor
may explicitly linguistically mark informationally redundant contributions in
order to bring out the fact that they are (or should be) already part of common
ground.63 Certain linguistic expressions may be used as part of mathematical
‘‘jargon’’ or for stylistic reasons to make the text ‘‘read more naturally’’.
Linguistic means to convey this extra-mathematical content include adverbs,
as in the previously quoted ‘‘A also ⊆ B’’ (see p. 113) or discourse markers
which do not contribute information on the logical structure of the proof, such
as ‘‘moreover’’ or ‘‘now’’. From the point of view of mathematics, even
naming theorems is unnecessary, but it makes communication of mathematics
easier. There is no need for this kind of information in a formal representation
in an automated reasoner; for computational processing of learner language
this means that shallow methods could be used to identify such lexical material
and to simplify the input preserving only the relevant content.
The maxim of manner is manifested in how proofs are presented. A remark-

able property of formal mathematics is its precision. A formal proof contains
no ambiguity, however, the symbolic notation may render it unreadable, a
violation of the maxim of manner; recall the formal notation for sets of odd
numbers and primes on page 114.64 While an informal proof presented in
natural language may contain ambiguities and irrelevant linguistic content (the
kind mentioned above), it is typically cognitively easier to follow than a formal
61Computational aspects of evaluating relevance of proof steps are further discussed in (Benzmüller
and Vo, 2005).

62(Except, of course, in formal systems in which formulas are explicitly reiterated.)
63See (Karagjosova, 2003) for a linguistic analysis and (Buckley and Wolska, 2007) for a
computational model.

64As Halmos famously remarked ‘‘The best notation is no notation’’ (1970, p. 144). Gillman
coined the term symbolitis for overuse of symbols in mathematical writing (Gillman, 1987, p. 7).



LANGUAGE PHENOMENA IN MATHEMATICAL PROOFS 145

proof consisting of mathematical notation alone. The mode of presentation of
mathematical discourse depends, in turn, on the purpose of the exposition and
the intended addressee: In the tutoring setting different factors play a role than
in textbooks or scientific publications. (Which brings us back to the motivation
for collecting data specific to the tutoring setting; see Section 2.1 of Chapter 2.)

3.4 Conclusions

In the beginning of this chapter we presented mathematical language from the
point of view of its properties as a sublanguage and as a kind of ‘‘foreign’’
language which students have to master in the course of learning mathematics.
We have shown that phenomena typical to sublanguages, such as symbolic
representations (Sections 3.2.1 and 3.2.2.1), deviant rules of grammar and
recurrence of certain characteristic constructions (Section 3.2.2.3), and phe-
nomena typical of various stages of mathematical cognitive development, such
as imprecision of linguistic expression leading to ambiguity (Sections 3.2.2.4
and 3.2.2.5) or self-talk describing actions on the objects of discourse (Sec-
tion 3.2.2.4), indeed occur in our corpora. Thus, modelling these phenomena in
a language processing architecture for students’ proofs should receive priority.
As we mentioned earlier, the examples in Section 3.2.2.1 show that a me-

thod of parsing symbolic expressions tightly interleaved with natural language
is the fundamental functionality required for a computational interpretation
module for mathematical language. Neither Zinn nor Natho offer a transparent
computational solution to this problem although both do mention examples
of such constructions. Zinn models constants and variables, effectively, as
individual referents in DRSs with operators in complex terms and formulas
as predicates in the DRSs’ conditions and shows how to model only simple
cases of appositive noun phrases and copula constructions in mixed language
where the symbolic expression forms an atomic constituent (see Section 5.2 of
(Zinn, 2004)). The approach lacks generalisation (individual atomic terms in
the lexicon), modularity (single module for processing symbolic expressions
and natural language), and is somewhat cumbersome by comparison with our
approach proposed in (Wolska and Kruijff-Korbayová, 2004a). Natho claims to
analyse the natural language and the symbolic language separately inmArachna
(see (Natho, 2005, Section 3.3.3, discussion of Example 3.3.16, p. 121)). While
examples of constructions with scope-bearing words interacting with parts of
mathematical expressions are mentioned (for instance, ‘‘Es gibt ein e ∈ G...’’
(There is an e ∈ G); p. 143) no illustration of how they are handled is given
and the result of analysis of the symbolic expressions is not integrated into the
final interpretation result. In the ‘‘Outlook’’ section of (Natho et al., 2008),
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which appears to be the most recent publication of the mArachna group,
the authors say that ‘‘[including the content of formulas in the analysis
and representation...] is not implemented. However, we are investigating
an approach to rectify this deficiency. Therefore the use of a syntactical
analysis, similar to those used in computer algebra systems in combination with
contextual grammars (e.g. Montague grammars) to correlate the information
given in a formula with information already provided in the surrounding natural
language text, is proposed.’’ However, no further details on how the Montague
grammars would be realised are provided.
The presence of abbreviations, especially those with full stops, introduces

extra complexity into computational sentence-boundary detection and word-
tokenisation for mathematical discourse (Grefenstette and Tapanainen, 1994).
A common approach is to create a lexicon of frequent abbreviations to
help disambiguate occurrences of full stops (Reynar and Ratnaparkhi, 1997;
Walker et al., 2001; Mikheev, 2002); see, for instance, (Schmid, 2000; Kiss
and Strunk, 2006) for unsupervised approaches. Clearly, for mathematical
discourse, a domain-specific abbreviations lexicon is needed.
The existence of two subsets of lexica in mathematical discourse, general

and domain-specific (Section 3.2.2.2), motivate the need for modularity in the
lexicon representation. First, a general lexicon should comprise general natural
language vocabulary and the basic vocabulary of logic, necessary for any branch
of mathematics. Second, separate domain-specific lexica should be accessed
in specific contexts, depending on the mathematical domain of discourse. Both
lexica should include a representation of multi-word expressions. A plausible
approach would be to identify fixed phrases, such as ‘‘dann und nur dann’’
(if and only if ), already at the preprocessing stage using shallow methods and
to encapsulate them for further processing. Domain-specific lexica should, in
turn, link to appropriate knowledge bases with formalised knowledge on the
given domain.65 The approach we propose in Chapter 5 is based precisely
on this type of abstraction over domain-specific terminology; in Chapters 4
and 7 we show that even upon this lexical abstraction the students’ language
nevertheless proves surprisingly linguistically diverse.
Since imprecision phenomena are systematic and imprecision is coopera-

tively resolved, a computational interpretation component needs a represen-
tation of the imprecise concept names and an appropriate mapping to the
possible specific mathematical interpretations. Notice moreover that this kind
of ambiguity appears also in textbook discourse (recall, for instance, the previ-
ously quoted definition of set membership from (Bartle and Sherbert, 1982);
65MBase (Kohlhase and Franke, 2001) is an example of such a resource. See (Fiedler et al., 2002;
Horacek et al., 2004) for a discussion on the interface issues.
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see p. 96 of this chapter) which all themoremotivates this as a basic requirement
for a computational processing architecture. In order to account for discourse
references to parts of mathematical expressions, three issues have to be taken
into account: First, the set of substructures of mathematical expressions which
are relevant to resolving references must be identified, for instance, by a
systematic corpus study and by observations on common usage of references
to specific mathematical expression parts. Second, symbolic representations of
these entities must be included in the domain knowledge representation. And
third, the substructure entities must be available for reference in the discourse
model. An anaphor resolution algorithm needs to identify plausible reference
scopes within complex symbolic expressions within which antecedent search
should be performed. We address some of these issues in Section 6.3. Aside
from cooperative interpretation of imprecise language, cooperative interpreta-
tion of ill-formed expressions is needed. The fact that the tutors hardly ever
explicitly requested that errors in the symbolic language be corrected suggests
that focus should be on problem solving; that is, an intelligent tutoring system
should be capable of cooperative reaction even if formulas are ill-formed. In
Section 6.4 we show results of a pilot study on error correction based on the
common sources of errors showed in Section 3.2.1.5.
Finally, frequent occurrence of complex clause structures in paratactic and

hypotactic configurations calls for a grammar formalism in which complex
multi-clause utterances could be modelled with sufficient generality. (In a
context-free grammar, every instance of clause ordering would have to be
modelled explicitly in order to obtain all the possible parses; a suboptimal
solution.) For German specifically, the different word orders in main clauses
and subordinate clauses need to be modelled in a systematic way. This requires
an expressive enough grammar formalism with a syntax–semantics interface
capable of constructing appropriate semantic representations. Moreover,
structurally ambiguous readings (Section 3.2.2.3) need to be represented (be it
in a compact underspecified way or by enumerating alternative parses) since the
linguistic processing module is not in a position to disambiguate the intended
reading. In Chapter 5 we motivate the choice of Combinatory Categorial
Grammar as a grammar formalism which enables perspicuous modelling of
various phenomena observed in the corpora, in Chapter 6 we show how we
model basic German syntax relevant for mathematical discourse, and finally, in
Chapter 7 we show that categorial grammars we have developed based on our
data provide better linguistic generalisations than context-free grammars, while
remaining at manageable levels in terms of ambiguity. Before presenting our
approach to modelling language phenomena, in the next chapter, we analyse
the diversity of students’ productions in quantitative terms.





Chapter 4

Quantitative analysis of the students’ language

In this chapter we quantitatively analyse the diversity in the students’ language.
Both corpora described in Chapter 2 are used as data. The analysis is performed
at a ‘‘shallow’’ level in the sense that we only look at linguistic verbalisation
patterns and at the patterns’ shallow (quantitative) characteristics. The purpose
of the analysis is to verify two hypotheses: The first hypothesis stems from
prior claims made based on textbook mathematical discourse which suggested
that the language of proofs tends to be simple and repetitive (Zinn, 2004; Natho,
2005); we postulate, to the contrary, that the students’ language is complex
and diverse. The second hypothesis is that the language of students’ interaction
is influenced by the style of presentation of the study material (see ‘‘Study
material’’ in Section 2.4.3). The analysis is moreover intended to inform
and motivate the choice of computational input processing methodology for a
tutoring system for mathematical proofs.
We start by classifying the students’ utterances within their dialogue con-

text. Next, we outline the preprocessing procedures. The results are presented
as follows: First, the students’ language is characterised in terms of linguistic
‘‘modality’’ (natural language vs. symbolic notation). The binary relations
corpus is characterised in terms of differences in the language between the two
studymaterial conditions. Then, we look at the distribution of utterance types in
both corpora. Proof contributing utterances are further analysed with respect to
their function in the proof under construction (proof steps, declarations of proof
strategy, etc.) and the type of content verbalised in natural language (logical
connectives only, domain-specific vocabulary, etc.) Linguistic diversity along
these dimensions is quantified in terms of type–token ratios over the normalised
linguistic patterns, frequency spectra, and pattern-vocabulary growth curves.
Material presented in this chapter appeared in (Wolska and Kruijff-Korbayová,
2006a; Wolska, 2012).
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C-I
S1: Wenn A ⊆ K(B), dann A ∩B = ∅

(If A ⊆ K(B), then A ∩B = ∅). . .
S5: inK(B) sind alle x, die nicht in B sind

(inK(B) are all x which are not in B). . .
C-II

S1: Ich moechte zunaechst (R ◦ S)−1 ⊆ S−1 ◦R−1 beweisen
(First I would like to prove (R ◦ S)−1 ⊆ S−1 ◦R−1)

S2: Sei (a, b) ∈ (R ◦ S)−1

(Let (a, b) ∈ (R ◦ S)−1). . .
S6: Nach der Definition von ◦ folgt dann (a, b) ist in S−1 ◦R−1

(By definition of ◦ it follows then that (a, b) is in S−1 ◦R−1). . .
S8: Der Beweis geht genauso wie oben, da in Schritt 2 bis 6 nur Aequivalenz

umformungen stattfinden
(The proof goes exactly as above since in step 2 to 6 there are only
equivalences)

S9: wie kann ich jetzt weitermachen?
(how can I continue now?). . .

S11: 1. Fall: Sei (a, b) ∈ R
(1. Case: Let (a, b) ∈ R)

S12: Ich habe mich vertippt. Korrektur: Sei (a, z) ∈ R
(I made a typo. Correction: Let (a, z) ∈ R). . .

S17: Ich habe gezeigt: (a, b) ∈ (R ∪ S) ◦ T ⇒ (a, b) ∈ R ◦ T∨ (a, b) ∈ S ◦ T
(I have shown: (a, b) ∈ (R ∪ S) ◦ T ⇒ (a, b) ∈ R ◦ T ∨ (a, b) ∈ S ◦ T ). . .

S24: Dann existiert ein z, so dass (a, z) ∈ (R ∪ S) und (z, b) ∈ T
(Then there exists an z such that (a, z) ∈ (R ∪ S) and (z, b) ∈ T )

S25: Nach Aufgabe A gilt (R ∪ S) ◦ T = (R ◦ T ) ∪ (S ◦ T )
(By Exercise A (R ∪ S) ◦ T = (R ◦ T ) ∪ (S ◦ T ) holds). . .

S29: Da die Mengenvereinigung kommutativ ist, koennen wir dieses in student 25
einsetzen und erhalten die Behauptung
(Since set union is commutative, we can use what’s in student 25 and obtain
the theorem). . .

Figure 4.1: Examples of students’ utterances from both corpora



QUANTITATIVE ANALYSIS OF THE STUDENTS’ LANGUAGE 151

Solution-contributing Other Uninterpretable
Proof contribution Help request
Proof step Yes/No
Proof strategy OK
Proof structure Agree
Proof status Address
Meta-level Answer
Self-evaluation Cognitive state
Restart Self-talk
Give up Session

Discourse marker
Politeness/Emotion/Attitude (P/E/A)

Figure 4.2: Typology of students’ utterances

4.1 Utterance typology

Students’ contributions in tutoring interactions may fulfil several functions.
Examples of dialogues from both corpora were already shown in Chapter 2
(pp. 82, 83), however we did not point out different functional types of students’
utterances. Figure 4.1 shows two further excerpts which exemplify utterance
types found in our data. As the examples illustrate, students contribute not
only proof steps – complete or incomplete, as in C-I S5 (a justification of the
statement is not given), explicit or implicit, as in C-II S8 (instead of a proof step,
a high-level description of a set of steps is given) – but also other content which
adds to the solution indirectly, as in C-II S1 (a solution strategy is described)
or C-II S11 (a proof structure to follow, case distinction, is signalled) or which
does not add to the solution at all, as in C-II S9 (help is requested).
In order to investigate linguistic diversity of students’ language at a level

corresponding to different contribution types, we designed a typology of stu-
dents’ utterances based on the two corpora. The present classification builds on
previously proposed dialogue move taxonomies for tutorial dialogue (Marineau
et al., 2000; Campbell et al., 2009; Becker et al., 2011) and has been adapted
specifically for the proof tutoring domain based on the analysis of our data.
The classifications by Marineau et al., Campbell et al., and Becker et al. model
students’ contributions at a high-level and are too coarse-grained at the task-
level (here: proving) for our purposes. Our previous classification presented
in (Wolska and Buckley, 2008) was designed with dialogue modelling in mind,
rather than analysis of language diversity or input interpretation, and it does
not make distinctions which are relevant here either.
The classification we propose, shown in Figure 4.2, has a shallow hierar-

chical structure focusing on Solution-contributing content. All the non-solution
contributing utterances are grouped into one category, Other, with an extra



152 Students’ Language in Computer-Assisted Tutoring of Proofs

classUninterpretable for utterances whose semantics or pragmatic intent could
not be interpreted; for instance, because they were cut off mid-utterance. The
distinction between the Solution-contributing class and Other is that with solu-
tions the student is adding information to the solution he is constructing, be it by
contributing a step or steps, changing the meta-level status of the solution (for
instance, stating that a new attempt at a solution will be made) or by signalling
a revision or an evaluation of an already contributed solution. The Other class
may also comprise utterances which express students’ knowledge, but only
those explicitly elicited by the tutor (Answer). The classification of utterances
which do not contribute solution steps is coarse-grained for two reasons: First,
we are mainly interested in the analysis of students’ proof language. Second, as
will become clear in Section 4.3.3 the frequency of the Other utterance types
is in general low; with the exception of Help requests.
The Solution-contributing utterances are subdivided into two classes: Proof

contributions with four subclasses (Proof step, Proof strategy, Proof structure,
Proof status) and Meta-level contributions with three classes (Self-evaluation,
Restart, Give up). The classes are described below and exemplified:

Proof step Contributes a proof step or part of a proof step. Examples
of utterances of this type include C-I S1 and S5 and C-II S2
and S6 in Figure 4.1, as well as, for instance, the utterance
‘‘Begruendung: A ⊆ (U \ B)’’ (Justification: . . . ) which
specifies only the justification of a proof step.

Proof strategy States a solution strategy already adopted or about to be
adopted. Examples include ‘‘Ich benutze das Extensionali-
taetsprinzip’’ (I’m using the Extensionality Axiom), ‘‘Beweis
durch ⊆ und ⊇’’ (Proof by ⊆ and ⊇).

Proof
structure

Signals the structure of the solution being constructed, as in
C-II S1 in Figure 4.1 or ‘‘Ich mache eine Fallunterscheidung’’
(I’m making a case distinction), ‘‘Hinrichtung’’ (Forward
direction).

Proof status Signals the status of a (partial) solution: ‘‘Damit ist eine Inklu-
sion bewiesen’’ (And so one subset relation is shown), ‘‘q.e.d.’’

Self-
evaluation

States an evaluation of own step: ‘‘Ich habe mich vertippt’’
(I’ve made a typo), ‘‘Schwachsinn’’ (Nonsense), or ‘‘Korrek-
tur’’ (Correction:).

Restart Signals a new attempt at a proof: ‘‘neuer Anfang’’ (new start)
or ‘‘Wieder von vorne’’ (Once again from the beginning).

Give up Signals abandoning the solving task: ‘‘Ich moechte die
Antwort wissen’’ (I would like to know the solution), ‘‘ich
gebe auf’’ (I’m giving up).
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The non-solution-contributing utterances are subdivided into 11 subclasses:
Help request Requests assistance explicitly: ‘‘Ich brauche einen Tip’’ (I

need a hint), ‘‘bin ich auf dem richtigen Weg?’’ (am I on the
right track?)

Yes/No A ‘‘yes’’ or ‘‘no’’ answer
OK A simple acknowledgement: ‘‘okay’’
Agree Expresses agreement: ‘‘du hast natuerlich recht’’ (of course

you’re right)
Address Provides a non-elicited reaction to a contribution: ‘‘Das beant-

wortet meine Frage nur zur Haelfte!’’ (This answers my ques-
tion only halfway!), ‘‘Die Klammer koennte ich nach meinem
Dafuerhalten auch ganz woanders setzen!’’ (The bracket could
just as well be in a different place if you ask me!)

Answer Provides an elicited non-Yes/No answer to a question:
T: ‘‘Was sind moegliche Eigenschaften von binaeren Relatio-
nen?’’ (What are possible properties of binary relations?)
S: ‘‘symmetrisch’’ (symmetric)
T: ‘‘Was bedeutet die Variable x bei Ihnen?’’ (What does the
variable x mean?)
S: ‘‘x hat zwei Bedeutungen es kommt in zwei verschiedenen
Mengen vor’’ (x has two meanings it is in two different sets)

Cognitive
state

Expresses the state of knowledge or understanding: ‘‘ich weiss
nicht, was ich mit den Tips anfangen soll’’ (i don’t know what
i can do with these hints!), ‘‘Das weiss ich’’ (I know that.)

Self-talk Expresses an unelicited comment: ‘‘Fraglich was ist unter-
schied zwischen = und ∩’’ (The difference between = and
∩ is questionable), ‘‘Muss mit der Differenz zusammenhaen-
gen’’ (Must have something to do with the difference.)

Discourse
marker

The utterance has a sole discourse marker function: ‘‘Na ja’’
(Right...), ‘‘Also gut’’ (Good then.)

Session Expresses a meta-level statement related to the tutoring session
itself: ‘‘Allerdings ist Aufgabe E (wie Du es bezeichnest) bei
mir Aufgabe A!’’ (Actually Exercise E (as you call it) is called
Exercise A here!), ‘‘wie waere es, Aufgabe W nach hinten
zu verschieben und mit Aufgabe A zu starten?’’ (how about
postponing Exercise W and starting with A?)

Politeness/
Emotion/
Attitude
(P/E/A)

Expresses politeness in a conventional way or the speaker’s
emotion or attitude: ‘‘Sorry!’’, ‘‘Ich werde Dich im Geschaeft
umtauschen’’ (I will exchange you at the shop!), ‘‘Keine
PAnik’’ (Don’t panic), ‘‘NERV!’’ ([annoyance])



154 Students’ Language in Computer-Assisted Tutoring of Proofs

Note that the classification can be mapped to previously proposed clas-
sifications of dialogue actions in tutoring. For instance, the category Proof
contribution corresponds to Assertions in (Marineau et al., 2000), Contribute
domain content in (Wolska and Buckley, 2008), Information Exchange : As-
sert in (Becker et al., 2011), and comprises the categories Solution-step and
Solution-strategy from (Buckley and Wolska, 2008b). Following the general
scheme proposed in (Campbell et al., 2009) our class of Proof contributions
which do not explicitly signal informational redundancy would be coded in the
Novelty dimension for steps contributing new content (C-II S17 is a counter-
example) and in the Motivation dimension as Internal or External, depending
on whether they have been elicited by the tutor. Utterances in the Motivation:
External category would be found, among others, in our Answer category.
The presented utterance typology has been developed by an exhaustive

analysis of all students’ utterances in all dialogues from the two corpora and
based on the insights from applying our previous tutorial dialogue coding
scheme presented in (Buckley and Wolska, 2008b) and its generalisation pre-
sented in (Wolska and Buckley, 2008).1 Over multiple annotation cycles, we
arrived at a reference annotation which will be used in the following sections.
At present, the utterance typology has not been applied by independent anno-
tators and evaluated in terms of inter-coder agreement. Notice, however, that
classification of utterances into the critical categories, the solution-contributing
classes, does not require linguistic knowledge, but rather knowledge of mathe-
matics, in particular, proof methods. Assuming clear understanding of proof-
related notions, no ambiguity is expected. Therefore, multiple annotations
have not been performed. Moreover, the classification has been designed in
such way that cross-category confusion is minimised. Among the Other class,
Help request, Agree, Cognitive state, Session, Yes/No, OK, Discourse marker
are clear-cut. The first four are semantically clearly distinguishable, while
the latter three can be considered for the most part lexically defined. Within
the remaining four classes confusion may arise between Address and Self-talk,
however, there were only two instances of the latter and the distinction was
made only because in the dialogue context the Self-talk utterances appear to
refer to the students’ own contribution and have a character of think-aloud
comments, whereas Addresses tend to refer to the tutors’ contributions. The
distinction between the elicited Answer and the non-elicited Address appears
clear-cut. Utterances such as ‘‘The hint was rather lousy’’ could be mistakenly
classified as P/E/A (that is, interpreted as expressing an attitude towards the
tutor’s hint, a plausible alternative), however, this can be avoided by placing
the decision question targeting theCognitive state class higher in the annotation
1Utterance identification guidelines we followed will be presented in the next section.
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scheme’s decision tree. Within the Solution contributing utterances,Meta-level
types are clear-cut. A confusion may arise between Proof strategy and Proof
structure if an annotator should not understand the notion of proof strategies,
however, again, the frequency of the classes is low relative to the frequency of
the majority classes, Proof step and Help request.

4.2 Preprocessing

Three preprocessing transformations have been performed on the students’
data before the analysis: First, utterance boundaries have been identified,
second, mathematical expressions have been normalised, and third, a number
of textual normalisations have been performed with the goal of abstracting over
domain-specific terminology and eliminating spelling and writing mechanics
differences. Details of corpus preprocessing are outlined below.

4.2.1 Turn and utterance preprocessing
Turns in both corpora have been sentence-tokenised based on a standard set
of end-of-sentence punctuation. Word-tokenisation was performed using a
standard tokeniser. The outputs were verified and manually corrected where
necessary.
Turns were then segmented into utterances. While a sentence is typically

defined as a unit of speech containing a subject and a predicate, there is
no precise linguistic definition as to what constitutes an utterance. Broadly
understood, an utterance is an intentional, meaningful communicative act in
an interaction. An utterance may consist of a word, a phrase, or a complex
sentence with embedded clauses. It may form a complete turn, but a turn
may also consist of more than one utterance. For the purpose of this study,
in particular also for the purpose of utterance type annotation, the notion of an
utterance was operationalised as follows:

• An utterance never spans more than one turn or one sentence;
• Multiple clauses conjoined with conjunctions (‘‘und’’ (and), ‘‘oder’’
(or), ‘‘aber’’ (but), ‘‘weil’’ (because), ‘‘für (for), ‘‘also’’ (so), ‘‘wenn’’
(if ), ‘‘als’’/‘‘wann’’ (when), etc.) were considered one utterance;

• Multiple clauses conjoined without conjunctions were considered sepa-
rate utterances;

• ‘‘If-then’’ constructions, also omitting the words ‘‘if’’ or ‘‘then’’, were
considered a single utterance;
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• The following non-sentential fragments, not containing a subject, were
considered utterances: noun phrases, discourse markers (also inserts,
such as ‘‘acha’’, ‘‘oh’’, ‘‘naja’’, ‘‘schoen’’ (nice)), colloquial subject-
drop phrasings in indicative and interrogative mood, ellipted ques-
tions (for instance, ‘‘Fertig?’’ (Done?)), politeness phrases (such as
‘‘sorry’’, ‘‘Danke’’), exclamatives (‘‘Weitere Hilfe!’’ (Further help!)),
non-sentential answers to questions, including acknowledgements, for
instance, ‘‘ok’’, ‘‘klar’’ (that’s clear), as well as yes/no answers.

Examples of tokenised multi-utterance turns from Figure 4.1 are shown
below (vertical bars mark token boundaries, 〈u〉 and 〈/u〉 utterance boundaries;
here and further: ‘‘O’’ labels original utterances, ‘‘P’’ preprocessing results):

O: Dann gilt auch : Alle x, die in B sind, sind nicht in A
P: 〈u〉|Dann|gilt|auch|:|Alle|x|,|die|in|B|sind|,|sind|nicht|in|A|〈/u〉
O: 1. Fall: Sei (a, b) ∈ R
P: 〈u〉|1.|Fall|:〈/u〉 〈u〉Sei|(a, b) ∈ R|〈/u〉
O: Ich habe mich vertippt. Korrektur: Sei (a, z) ∈ R
P: 〈u〉|Ich|habe|mich|vertippt|.|〈/u〉 〈u〉|Korrektur|:|〈/u〉
〈u〉|Sei|(a, z) ∈ R|〈/u〉

4.2.2 Preprocessing mathematical expressions
In both corpora, mathematical expressions were identified semi-automatically,
using a regular expression grammar. The grammar comprised a vocabulary
of letters, mathematical symbols (unicode or LATEX), brackets, braces, delim-
iters, etc. The parser’s output was manually verified and corrected where
necessary.2 The quantitative analyses were conducted based on turns and
utterances in which the identified mathematical expressions have been sub-
stituted with a symbolic token MATHEXPR. As we will show in Chapter 5
utterances preprocessed this way can be parsed using a lexicalised grammar
if the information on the expression’s type – term or formula – is known.
With this in mind, we therefore also classify the symbolic expressions into
one of the following categories: (i) atomic terms: VAR, for set, relation, or
individual variables, (ii) non-atomic terms: TERM (object-denoting expres-
sions) or _TERM_ (term-forming operation symbols appearing in isolation,
2We do not report precision results on mathematical expression identification and parsing as it is
not the focus of this work. It is assumed that an end-to-end system provides an entry method
for mathematical expressions which would enable clear, possibly real-time, identification of
mathematical expressions. This could be accomplished by explicitly defining ‘‘math mode’’
delimiters, for instance, as key combinations indicating the start and end of mathematical
expression strings or as textual delimiters analogous to the $-symbols in LATEX.
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as in the example utterance (8) in Section 3.2.2.3 of the previous chapter;
underscores denote non-realised (missing) arguments), etc. and (iii) formulas,
FORMULA, for truth-valued statements, _FORMULA_ (statement-forming
operators appearing in isolation), etc. Examples of utterances from Figure 4.1
before and after mathematical expression preprocessing are shown below:

O: Da A ⊆ K(B) gilt, alle x, die in A sind sind auch nicht in B
P: Da MATHEXPRFORMULA gilt, alle MATHEXPRVAR, die in

MATHEXPRVAR sind sind auch nicht in MATHEXPRVAR
O: Nach der Definition von ◦ folgt dann (a, b) ist in S−1 ◦R−1

P: Nach der Definition von MATHEXPR _TERM_ folgt dann
MATHEXPR TERM ist in MATHEXPR TERM

4.2.3 Textual normalisations
Following extensive research into the properties of spoken and written dis-
course (Chafe and Tannen, 1987; Biber, 1988), recent studies on computer-
mediated communication (CMC) – or electronic discourse more generally –
have shown that, much like spoken language differs from written language,
the language of type-written computer-mediated communication shares some
properties with spoken language, however, it also possesses textual and linguis-
tic characteristics which are not typical of standard written language (Maynor,
1994; Crystal, 2001; Hård af Segerstad, 2002; Baron, 2003). Among those
non-standard characteristics are: frequent use of abbreviations and acronyms,
use of all capitals or all lower-case script, extensive use of certain punctuation
marks or lack or incorrect (random) use of punctuation (for instance, excessive
use of the exclamation mark, lack of or incorrect use of commas, lack of valid
end-of-sentence punctuation), and the use of emoticons. Type-written tutorial
dialogue shows qualities which are found both in spoken and written language
and those of CMC. It is prone to textual ill-formedness due to the informal
setting and the telegraphic nature of the linguistic production.
In order to avoid the effects of CMC-specific qualities of the learners’

productions at the utterance-level, prior to the quantitative analysis learners’
utterances were normalised with respect to certain writing mechanics phenom-
ena (alternative spelling variants, capitalisation, punctuation) and with respect
to the wording of common abbreviations. A number of lexical normalisations
were performed on lexemes and phrases in order to avoid spurious diversity
due to domain-specific terminology and task-specific contextual references.
Different lexical realisations of single and multi-word domain terms and con-
ventional speech acts were substituted with symbolic tokens representing their
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lexical, in case of the former, or communicative, in case of the latter, types.
Discourse-specific references were likewise normalised. General language
expressions and references other than those mentioned below as well as general
mathematical terms (such as ‘‘assumption’’, ‘‘definition’’, for instance) were
not normalised. All the normalisations were performed semi-automatically;
the results of a preprocessor were reviewed and corrected manually in case of
errors. Details of textual normalisations are summarised below.

Spelling The German Umlaute were replaced with their underlying vowels
and an ‘‘-e’’ and eszett ligatures with double ‘‘s’’. Misspellings were identified
and corrected using German aspell, a Linux spell-checker, whose dictionary
has been extended with a custom dictionary of relevant domain terms.

Punctuation Repeated consecutive occurrences of the same punctuation
symbols were replaced with a single occurrence (‘‘!!!’’ with ‘‘!’’; ‘‘....’’
with ‘‘.’’, etc.) Punctuation in abbreviations, missing or incorrect, has been
normalised (‘‘bzw.’’ for ‘‘b..zw’’ ‘‘d.h.’’ for ‘‘d.h’’, etc.). In the final analyses
intra-sentential and end of sentence/utterance punctuation was ignored.

Abbreviations Upon correcting punctuation, different correct and incorrect
lexical variants of common abbreviations were substituted with symbolic
tokens. These included, BSP for different spelling and capitalisation variants
of ‘‘z.B.’’ (e.g.), BZW for ‘‘bzw.’’ (respectively), OBDA for ‘‘o.B.d.A.’’
(without loss of generality), DH for ‘‘d.h.’’ (that is), QED for ‘‘q.e.d.’’, ST for
‘‘s.t.’’ (such that), OK for ‘‘ok’’, ‘‘oki’’, ‘‘Okay’’, etc.

Common speech acts and inserts Conventional expressions of grat-
itude, such as ‘‘Danke’’, ‘‘VIELEN DANK’’ and apologies, for instance,
‘‘Tut mir leid’’, ‘‘Sorry’’, ‘‘Verzeihung’’, were substituted with tokens
THANKYOU and APOLOGY, respectively. ‘‘Ja’’/‘‘Nein’’ responses were
substituted with YESNO. Conversational inserts and other discourse markers,
such as ‘‘So’’, ‘‘Na ja’’, were substituted with DISCOURSEMARKER.

Domain terms and domain-specific references Different lexical vari-
ants of nominal and adjectival domain terms which were included in the
preparatory material have been mapped to a single form, DOMAINTERM.
If single-word domain terms were part of a multi-word term which can
be considered a named entity, the multi-word term was normalised. For
instance, ‘‘DE-MORGAN-1’’, ‘‘DeMorgan-1’’, ‘‘DeMorgan-Regel-1’’, ‘‘de
morgan regel 2’’ all mapped to DOMAINTERM, as did ‘‘Distributivitaet von
Vereinigung ueber den Durchschnitt’’ as a multi-word term (a name of a state-
ment/theorem), as well as ‘‘symmetrisch’’ as a single-word term. Non-deictic
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references to proof exercises, such as ‘‘Aufgabe W’’ (Exercise W ), theorems
provided in the preparatory material, such as ‘‘Theorem 9’’ or ‘‘9’’, parts of
proof structure, such as ‘‘Schritt 1’’ (Step 1), or turns in the dialogue history,
such as ‘‘Student 25’’3, were mapped to the token REFERENCE. Deictic
references, such as ‘‘obiges’’ (the above) were not normalised.
Different conventional wordings used to signal the end of a proof, such as

‘‘quod erat demonstrandum’’, ‘‘was zu zeigen war’’ (which was to be shown),
‘‘woraus der beweis folgt’’ (from which the proof follows), ‘‘Damit ist der
Beweis fertig’’ (which completes the proof ), etc., were mapped to the token
corresponding to the ‘‘q.e.d.’’ abbreviation, QED.

Capitalisation The analyses were performed on corpus utterances norma-
lised as above with case-insensitive matching. Examples of utterances from
Figure 4.1 preprocessed as outlined in this section are shown below:
dann existiert ein MATHEXPR so dass MATHEXPR und MATHEXPR
nach REFERENCE gilt MATHEXPR
da DOMAINTERM DOMAINTERM ist koennen wir dieses in

REFERENCE einsetzen und erhalten die Behauptung
nach REFERENCE und REFERENCE gilt MATHEXPR

Further in this chapter we will refer to students’ contributions preprocessed
in this way as ‘‘verbalisation patterns’’, ‘‘utterance patterns’’, or simply
‘‘patterns’’. Whenever we say ‘‘turns’’ or ‘‘utterances’’ we mean turns or
utterances preprocessed as described here.

4.3 Diversity of verbalisation patterns

We begin the quantitative analysis with a high-level overview of the amount
of natural language in the students’ contributions by looking at the distribution
of turns and utterances formulated using mathematical symbols alone, natural
language alone, and using natural language interleaved with mathematical
symbols and at differences in the amount of natural language between the two
studymaterial conditions in C-II. Next, we focus on utterances formulated using
some natural language. We first look at the distribution of utterance types in the
two corpora. Then we take a closer look at Proof contributions, in particular the
Proof step category, in terms of the type of verbalised content. We summarise
the most frequently occurring linguistic forms – verbalisation patterns – by
3References of this form are artefacts of our dialogue display interface. In the dialogue history,
student turns were numbered and labelled ‘‘Student 1’’, ‘‘Student 2’’, etc. while tutor turns were
labelled ‘‘Tutor 1’’, etc.
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category, and analyse the growth of diversity of forms with the increasing
corpus size. In all analyses we consider the two corpora separately and a corpus
consisting of the two corpora combined into one data set (C-I&C-II).
Two frequency counts are reported in the tables throughout this chapter:

‘‘Total’’ denotes the number of turn/utterance instances (that is, ‘‘vocabulary
size’’; ‘‘vocabulary’’ here are verbalisation patterns). ‘‘Unique’’ is the number
of distinct patterns. The ratio of these measures is known as ‘‘type–token
ratio’’. The two raw frequencies rather than the summarised measure are
provided because the number of tokens is different for each cell in the tables, so
the raw counts are more informative. We also plot frequency spectra. Spectra
visualisations are typically used with word frequencies to show a frequency
distribution in terms of the number of types by frequency class; a frequency
class is a set of (sets of) instances with the same number of occurrences in the
data. In other words, they show how many distinct types (y-axis) occur once,
twice, and so on (x-axis), thus revealing the degree of skewness of the types
distribution; the earlier the tail with y around 1 starts, the more idiosyncratic
the types. We use verbalisation patterns as units of analysis.4

4.3.1 Mathematical symbols vs. natural language
As the first approximation of linguistic variety in learner proof discourse,
we analyse the students’ contributions in terms of the two types of content
modalities: natural language and symbolic expressions. Table 4.1 (p. 161)
shows the distribution of turns and utterances in both corpora with respect
to natural language and symbolic content. ME denotes turns and utterances
consisting of symbolic expressions alone, NL those consisting of natural
language alone (as in C-II S8 or C-II S29), and ME & NL consisting of natural
language interleavedwithmathematical expressions (C-I S1, C-II S6, C-II S24).
The majority of turns and utterances contain some natural language (turns:

54% NL/ME&NL vs. 46% ME in C-I and 70% vs. 30%, respectively, in
C-II; utterances: 57% NL/ME&NL vs. 43% ME in C-I and 73% and 27%,
respectively, in C-II). There are 640 turn-level NL/ME&NL patterns in C-I
and C-II considered in isolation and 626 in C-I&C-II and 728 utterance-level
patterns in C-I and C-II in isolation vs. 700 in C-I&C-II. This means that
there are only 14 NL/ME & NL turn-level patterns and only 28 utterance-
level patterns which occur both in C-I and C-II. Verbalisation patterns which
occurred in both corpora are shown in Table 4.2 (p. 162). Overall, 69% of the
utterances in C-I&C-II contain some linguistic material, among which there
4The zipfR package (Evert and Baroni, 2007) was used to generate frequency spectra. Only the first
15 frequency classes are shown since frequency of the larger classes oscillated between 0 and 5.
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Table 4.1: Descriptive information on learner proof discourse in terms of
content modality: symbolic (ME), natural language (NL), andmixed (ME&NL)

C-I C-II C-I&C-II
Unique / Total Unique / Total Unique / Total

Turns 147 / 332 497 / 927 628 / 1259
ME 2 / 153 2 / 274 2 / 427
NL 34 / 51 134 / 162 163 / 213
ME & NL 111 / 128 361 / 491 463 / 619

Utterances1 200 / 443 531 / 1118 702 / 1561
ME 2 / 189 1 / 300 2 / 489
NL 64 / 92 185 / 278 240 / 370
ME & NL 134 / 162 345 / 540 460 / 702

1A single occurrence of an utterance consisting of a question mark alone
(in C-II) is included in the NL category.)

are 700 distinct patterns. There is proportionally more natural language in C-II
even though, as we will show in the next section, the participants in the formal
material condition were less verbose than those in the verbose condition.

4.3.2 The effect of the study material presentation
Recall that the second experiment was set up to test a hypothesis concerning
the students’ language production. The hypothesis was that the presentation of
the study material, formal vs. verbose, would influence the students’ language,
resulting in proofs formulated using mainly symbolic language (formal) or
using mainly mixed or natural language (verbose condition). C-II comprises
927 students’ turns (Table 2.2), 471 in the FM group and 456 in the VM group.

Measures In order to investigate the differences in dialogue styles with
respect to language production we first compared general dialogue character-
istics in terms of content modality (mathematical expressions, ME, vs. mixed
language, ME & NL, vs. natural language alone, NL) and session lengths mea-
sured as total number of turns. Then, we compared the following session and
turn characteristics: number of mathematical expressions (ME tokens), number
of natural language tokens (NL tokens), and mathematical expression lengths
in characters (ME-length). By ME tokens we mean the number of mathemat-
ical expressions normalised as described earlier; counted were occurrences of
formulas, terms, and single character tokens intended to represent relation or
set symbols. ME-lengths were computed by counting all characters intended
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Table 4.2: Verbalisation patterns found in both corpora

Solution-contributing patterns Other
es gilt MATHEXPR was ist MATHEXPR
dann ist MATHEXPR ich brauche hilfe
also ist MATHEXPR warum nicht
MATHEXPR und MATHEXPR YESNO
daraus folgt dass MATHEXPR OK
daraus folgt MATHEXPR THANKYOU
damit ist MATHEXPR APOLOGY
damit gilt MATHEXPR DISCOURSEMARKER
somit ist MATHEXPR
dann ist MATHEXPR und MATHEXPR
das heisst MATHEXPR
aus MATHEXPR folgt MATHEXPR
MATHEXPR ist DOMAINTERM
also gilt MATHEXPR und MATHEXPR
also gilt auch MATHEXPR
MATHEXPR ist DOMAINTERM von MATHEXPR
also ist auch MATHEXPR
das gleiche gilt fuer MATHEXPR
DOMAINTERM
QED

to form a mathematical expression, including punctuation and single character
tokens for variables and constants; ill-formed expressions were included.5
If parametric assumptions were met (as per Shapiro-Wilk and Levene

tests), two-sided independent samples t-test was used to compare the means of
the above-mentioned measures between groups; otherwise the Mann-Whitney-
Wilcoxon test was used. The significance level was set at 0.05. Statistical
differences are marked in bold; standard deviations in parentheses.

Turns by content modality Table 4.3 shows the absolute numbers and
proportions of students’ turns which consisted of mathematical expressions
alone (ME), natural language alone (NL), and of the mixed language (ME &
NL). The largest proportion of turns in the FM-group consisted of mathematical
expressions alone, while in the VM-group of a mixture of mathematical
5The figures differ from those in (Wolska and Kruijff-Korbayová, 2006a) for two reasons: here we
excluded turns generated automatically when the student clicked on the next exercise or ended
the session and we include punctuation as tokens. The overall comparison results are not affected.
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Table 4.3: Distribution of students’ turns by content modality and study
material

Content modality FM-group VM-group
(N=471) (N=456)

ME 200 (42%) 74 (16%)
ME & NL 184 (39%) 307 (67%)
NL 87 (18%) 75 (16%)

Table 4.4: Means and standard deviations of session lengths

Measure FM-group VM-group
(N=471) (N=456)

Session length 48.50 (15.89) 55.06 (22.78)

expressions and natural language. Also, the proportion of turns consisting of
symbolic material alone was larger in the group presented with formalised
material; 42% of all student turns in the FM-group vs. 16% in the VM-group.

Session length Table 4.4 shows descriptive information on session lengths.
The dialogues in the VM group tended to be longer, however, the difference in
the session lengths between the two conditions is not statistical (p>0.10).

Students’ language production Finally, we compare the students’ lan-
guage production per session and per turn in detail. The average number
of mathematical expression tokens per session was 35.11 (18.67) and the
average number of natural language tokens was 119.73 (98.82). The average
mathematical expression length in the dialogues was 17.35 (20.55) characters.
Table 4.5 summarises two sets of measurements: mean numbers of natural

language tokens (NL tokens), mathematical expression tokens (ME tokens),
and mean mathematical expression length (ME-length). The top part of the
table shows the averages for the entire sessions (per session). The bottom part
shows the same measurements averaged for turns (per turn).
While there was little difference between the VM- and FM-groups in

the number of turns which contained natural language words alone (see
Table 4.3), the average number of natural language words per session and turn
is higher in the VM-group (p<0.05). The average number of mathematical
expressions per session and turn was also higher in the VM-group (p<0.01),
however, the average math expression length was significantly higher in the
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Table 4.5: Means and standard deviations of the language production measures

Measure FM-group VM-group
ME tokens 26.95 (10.49) 44.70 (21.74)
NL tokens 93.00 (89.03) 151.18 (103.03)

Pe
rs
es
si
on

ME-length 27.79 (17.64) 12.45 (8.85)

ME tokens 1.14 (1.12) 1.67 (1.70)
NL tokens 3.95 (5.65) 5.63 (6.02)

Pe
rt
ur
n

ME-length 32.53 (27.71) 15.69 (14.16)

FM-group (p<0.01). Note that the longest mathematical expression had 145
characters in the FM-group and 110.00 in the VM-group. The relatively large
ME lengths may be an artefact of the interface’s copy–paste mechanism.
Students tended to copy formulas from the previous dialogue or the study
material into their input-line and modified or extended them, thus building
longer and longer expressions; recall that we recorded the students’ screen (see
Section 2.4.3 of Chapter 2) and were able to observe this behaviour.
The same analysis of tutor turns showed that the difference in tutors’ lan-

guage production between the two conditions was not significant. Interestingly,
systematic and statistical differences were found when comparing student to
tutor language behaviour; for instance, students’ vs. tutors’ NL/ME-token
distributions. In both conditions, tutors used more natural language and fewer
mathematical expressions than students. We did not analyse the the ME-length
distributions further due to the previously-mentioned copy–paste artefacts.
From this point on we focus on a subset of the data: we look only at student

utterances which contain natural language (NL and ME & NL categories in
Tables 4.1 and 4.3). We start by looking at the distribution of utterance types.

4.3.3 Distribution of utterance types

The distribution of utterance types is shown in Table 4.6.6 The majority
of utterances are solution-contributing (74% in C-I, 67% in C-II), and most
of them are proof steps. This is not surprising, of course. Proofs in the
second experiment involved considering cases and proving both directions of a
bi-conditional, which resulted in explicit verbalisations of proving strategy and
proof structure, and in students signalling that a part of a proof is completed.
Among non-solution-contributing types, the largest class, 51%, are help

requests: from general requests (‘‘Hilfe!’’ (Help!)) to specific requests, for
6Only the utterance types with more than five occurrences will be discussed here. Utterance types
with lower frequency of occurrence are too sparse for any conclusions about their wording.
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Table 4.6: Distribution of utterance types

C-I C-II C-I&C-II
Unique / Total Unique / Total Unique / Total

Solution-contributing 149 / 187 335 / 548 465 / 735
Proof contribution 143 / 180 326 / 539 450 / 719
Proof step 138 / 171 287 / 469 407 / 640
Proof strategy 4 / 4 25 / 30 29 / 34
Proof status 1 / 5 7 / 24 7 / 29
Proof structure - / - 7 / 16 7 / 16

Meta-level 6 / 7 9 / 9 15 / 16
Self-evaluation 2 / 2 5 / 5 7 / 7
Restart 1 / 2 3 / 3 4 / 5
Give up 3 / 3 1 / 1 4 / 4

Other 46 / 64 193 / 267 231 / 331
Help request 16 / 16 136 / 154 149 / 170
Yes/No 1 / 18 1 / 24 1 / 42
Cognitive state 15 / 15 15 / 16 30 / 31
Politeness/Emotion/Attitude 2 / 3 14 / 21 14 / 24
Discourse marker 1 / 1 1 / 21 1 / 22
Answer 5 / 5 14 / 15 19 / 20
OK 1 / 1 1 / 6 1 / 7
Address 1 / 1 5 / 5 6 / 6
Session - / - 4 4 / 4
Agree 2 / 2 1 / 1 3 / 3
Self-talk 2 / 2 - / - 2 / 2

Uninterpretable 3 / 3 4 / 4 7 / 7

instance, to provide a definition (‘‘Wie lautet die Definition der Operation−1?’’
(What’s the definition of −1?) or ‘‘Erklaere die Definition R ◦ S in Worten!’’
(Explain the definition of R ◦ S in words!)), or questions about propositions
(such as ‘‘Ist (a, z) in R?’’ (Is (a, z) in R?) or ‘‘Elemente von (R ◦ S) ◦ T
sind Tripel der Form (x, y, z), oder?’’ (Elements of (R ◦ S) ◦ T are triples
of the form (x, y, z), right?)). The second largest category are closed-class
types, Yes/No and OK, which make up 15% of non-solution-contributing
utterances. The second largest open-ended verbalisations class are meta-
cognitive statements on the state of knowledge (or, for the most part, lack
thereof), 31 occurrences. Statements such as ‘‘Keine Ahnung mehr wie der
Nachweis korrekt erbracht werden kann’’ (No idea how the proof can be
correctly produced) or ‘‘Verstehe die definition nicht’’ (Don’t understand
the definition), can be also interpreted as indirect requests for help. Only one
wording appeared more than once, ‘‘Dann weiss ich nicht weiter’’ (So I’m lost).
Aside from two expressions of gratitude (‘‘Danke’’/‘‘Vielen Dank’’) and

the four variants of apologies (‘‘Tut mir leid’’/‘‘Entschuldigung’’/



166 Students’ Language in Computer-Assisted Tutoring of Proofs

1 2 5 10

0
10

0
20

0
30

0
40

0
50

0
60

0

Frequency class

N
um

be
r o

f t
yp

es
 w

ith
 g

ive
n 

fre
qu

en
cy

All utterance types
Solution−contributing utterances
Other utterances

Figure 4.3: Frequency spectra: Utterance types (x-axis log-scaled)

‘‘Verzeihung’’/‘‘Sorry’’), the remaining expressions of emotions and atti-
tude were idiosyncratic, spanning positive (‘‘Das macht Spass mit Dir’’ (It’s
fun!)) and negative polarity (‘‘Wollen Sie mir nun Mathematik beibringen
oder wollen Sie mich pruefen???’’ (Do you want to teach me math or is this a
test???), ‘‘NERV!!’’ ([annoyance])). Not surprisingly, idiosyncratic were also
other open-ended classes, Answers and Addresses, whose content is entirely
determined be the preceding context (the tutor’s turn which triggered them).
It is interesting that there were 22 occurrences of discourse markers and

that they had a colloquial character, the kind typical of spoken language: ‘‘na
doll’’, ‘‘na ja’’ (oh well), ‘‘oh’’, ‘‘hm’’, ‘‘ach so’’ (oh, I see), ‘‘halt’’ (hang
on). The variety of discourse markers suggests that the subjects treated the
dialogues much like spoken interaction, even though they were typewritten.
Figure 4.3 shows the frequency spectra of all the utterance types and the

two major classes. The distribution of distinct verbalisations is heavily skewed.
In all categories, the number of patterns occurring three to five times is less
than 10. The tail of patterns with frequency 1 starts between 5-10 occurrences.
In the ‘‘All types’’ set, the frequency-1 class covers 597 instances, whereas the
remaining classes together 475 (44%). The frequency spectra also show that the
data is sparse and even though some utterance types have a high frequency of
occurrence (Table 4.6) they consist of mainly idiosyncratic linguistic patterns.
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4.3.4 Proof contributions
Aside from the three classes of proof-level descriptions – proof strategy,
structure, and status (see Table 4.2) – in the analysis that follows we distinguish
three subclasses of proof steps. The subcategorisation takes into account
the type of content expressed in natural language and the type of linguistic
knowledge which needs to be encoded in order for formalisation to be possible.
The simplest case for translation are steps in which natural language is used

only for logical operators (connectives and binders/quantifiers) or to signal
proof step components, and where no discourse context nor domain-specific
linguistic information is needed for interpretation. By proof step componentswe
mean elements of a deduction system’s proof language such as the declarative
proof script language presented in (Autexier et al., 2012). In order to formalise
proof steps of this kind, the only knowledge needed is that of the vocabulary
and syntax of the natural language of logic (logical connectives) and of the
proof structural markers (proof discourse connectives); that is, only a basic
interpretation lexicon. Examples of this class of verbalisations include:

Wenn A ⊆ K(B), dann A ∩B = ∅
If A ⊆ K(B), then A ∩B = ∅

Sei (a, b) ∈ (R ◦ S)−1

Let (a, b) ∈ (R ◦ S)−1

We will refer to this class as Logic & proof step components.
The second and third class of verbalisations are those which require con-

textual and domain knowledge for interpretation and formalisation. If beyond
the type of content described above, only domain concepts (here: from set
theory and binary relations) and discourse references have to be translated,
then the proof step belongs to the category Domain & context. The domain
concepts may be named using single or multi-word terms or using informal
wording, such as the locative prepositional phrase with ‘‘in’’ to stand for the
set membership relation. Examples of the second class of proof steps include:

inK(B) sind alle x, die nicht in B sind
inK(B) are all x which are not in B

Nach der Definition von ◦ folgt dann (a, b) ist in S−1 ◦R−1

By definition of ◦ it follows then that (a, b) is in S−1 ◦R−1

Nach Aufgabe A gilt (R ∪ S) ◦ T = (R ◦ T ) ∪ (S ◦ T )
By Exercise A it holds that (R ∪ S) ◦ T = (R ◦ T ) ∪ (S ◦ T )

In the last example, the reference ‘‘Aufgabe A’’ (Exercise A) needs to
be resolved. Note that the utterance ‘‘Es gilt nach Definition ausserdem



168 Students’ Language in Computer-Assisted Tutoring of Proofs

S−1 ◦ R−1 =...’’ (By definition it moreover holds that...) still belongs to the
class Logic & proof step components because no domain-specific vocabulary
is used; the word ‘‘definition’’ is in the basic lexicon of mathematics and ‘‘by
definition’’ expresses justification in general.
The third class comprises steps which are not spelled out explicitly, but

rather as high-level meta-descriptions of a (possibly complex) transformation
which needs to be performed. An example of such a descriptive step is C-II S8
in Figure 4.1: The proof goes exactly as above since in step 2 to 6 there are
only equivalences. Other examples include:

Analog geht der Fall, wenn (a, z) ∈ S
The case for (a, z) ∈ S is analogous

de morgan regel 2 auf beide komplemente angewendet
de morgan rule 2 applied to both complements

(S ◦ T ) ist genauso definiert
(S ◦ T ) is defined the same way

Complex proof steps of this kind will be referred to as Meta-level description.
The three subclasses of Proof contributions are summarised below:

Logic & proof step
components

Only logical connectives and components of a proof
step need to be interpreted.

Domain & context Domain terminology and contextual references need
to be interpreted (as well as, possibly, logical con-
nectives and proof step components).

Meta-level description An indirect proof step specification needs to be
interpreted (as well as, possibly, all of the above).

An alternative classification, designed with a motivation similar to ours,
has been proposed by Wagner and Lesourd (2008). It is also verbalisation-
oriented, however, it is imprecise. First, it is not clear whether the class simple
connections accommodates utterances with adverbs or adverbial phrases, such
as ‘‘Moreover, as previously shown, it follows that...’’ Second, and more
importantly, the distinction between weakly verbalised and strongly verbalised
formulas is unclear. Weakly verbalised formulas are defined as those ‘‘where
some relations or quantifiers are partly verbalised’’, while strongly verbalised
formulas as those ‘‘where all relations and quantifiers are fully verbalised’’.
Based on these definitions it is not clear why the example ‘‘a is the limit
of (an)n∈N ’’, given in the paper, should be classified as weakly verbalised,
whereas ‘‘For all ε holds: there exists a n0(ε) ∈ N with...’’ as strongly
verbalised; clearly, the set membership relation in n0(ε) ∈ N is not verbalised.
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Table 4.7: Descriptive information on proof contributions

C-I C-II C-I&C-II
Unique / Total Unique / Total Unique / Total

Proof step 138/ 171 287 / 469 407 / 640
Logic & proof step components 54 / 80 136 / 286 175 / 366
Domain & context 78 / 85 140 / 171 216 / 256
Meta-level description 6 / 6 11 / 12 16 / 18
Proof strategy 4 / 4 25 / 30 29 / 34
Proof structure - / - 7 / 16 7 / 16
Proof status 1 / 5 7 / 24 7 / 29

Table 4.7 shows descriptive statistics on proof contributions, with proof
steps subclassified as described above. Not surprisingly, the wording of proof
contributions which refer to proof-level concepts – proof strategy and proof
structure – is diverse. Wording of proof status utterances is repetitive; indeed,
most often only the end of the proof is signalled explicitly and most often
using the abbreviation ‘‘q.e.d.’’7 Now, also not surprisingly, within the class
of proof steps, the more complex the content, the more varied the wording.
Meta-level descriptions of proofs are almost entirely idiosyncratic. Only
two utterance patterns occurred more than once: ‘‘MATHEXPR ist analog
definiert’’ (MATHEXPR is defined analogously) and ‘‘das gleiche gilt fuer
MATHEXPR’’ (The same holds for MATHEXPR). Wording in the Domain
& context category is also diverse: 92% of instances are distinct in C-I, 82%
in C-II, and 84% overall. Most repetitive patterns are found in the Logic &
proof step components class: 67% of all utterance instances in this category are
distinct in C-I, only 47% in C-II, and 48% in both corpora combined. Overall,
63% of proof step verbalisations (from all the three categories) are distinct.
Figure 4.4 shows the frequency spectra of the three proof step categories in

the combined corpus, C-I&C-II. Again, the distribution is heavily skewed. In
the largest category, Domain & context, 210 out of 216 unique patterns occur
only once or twice; that is 97% (191 patterns occur once; 75% of all instances
in this category). In the Logic & proof step components category, around 150
out of the 175 unique patterns, 73%, occur once or twice, and there are only
8 patterns with at least five instances of occurrence (128 patterns occur once,
35% of instances in this category). Table 4.8 shows the top-10 most frequent
linguistic patterns in the three classes of proof steps from the combined corpus,
C-I&C-II, with their frequency of occurrence. Recall, moreover, that only 20
solution-contributing utterances occurred in both corpora (see Table 4.2).

7Recall that the different spelling and verbalisation variants of ‘‘q.e.d.’’ have been normalised.
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Table 4.8: Top-10 most frequent utterance patterns expressing proof steps

Type Linguistic pattern Frequency
sei MATHEXPR 54
es gilt MATHEXPR 13
wenn MATHEXPR dann MATHEXPR 12
also MATHEXPR 12
dann ist MATHEXPR 11
also ist MATHEXPR 9
MATHEXPR und MATHEXPR 8
MATHEXPR ist dann MATHEXPR 7Lo

gi
c
&
pr
oo
fs
te
p

co
m
po
ne
nt
s

daraus folgt MATHEXPR 7
daraus folgt dass MATHEXPR 7
nach REFERENCE MATHEXPR 7
DOMAINTERM 7
nach REFERENCE ist MATHEXPR 4
MATHEXPR nach REFERENCE 3
DOMAINTERM von MATHEXPR ist DOMAINTERM MATHEXPR 3
aus REFERENCE folgt MATHEXPR 3
wegen der formel fuer DOMAINTERM folgt MATHEXPR 2
oder MATHEXPR wegen DOMAINTERM von MATHEXPR 2

D
om
ai
n
&
co
nt
ex
t

nach REFERENCE gilt MATHEXPR 2
nach DOMAINTERM gibt es ein MATHEXPR mit MATHEXPR 2
MATHEXPR ist analog definiert 2
das gleiche gilt fuer MATHEXPR 2
gleiches gilt mit MATHEXPR 1
DOMAINTERM auf beide DOMAINTERM angewendet 1
der fall MATHEXPR verlaeuft analog 1
der beweis von MATHEXPR ist analog zum beweis von MATHEXPR 1
beweis geht genauso wie oben da in REFERENCE bis REFERENCE nur

DOMAINTERM umformungen stattfinden 1
analog geht der fall wenn MATHEXPR 1

M
et
a-
le
ve
ld
es
cr
ip
tio
n

andersrum 1
die zweite DOMAINTERM ergibt sich aus der umkehrung aller bisherigen

beweisschritte 1

4.3.5 Growth of the diversity of forms
Finally, we are interested in how the diversity of forms evolves with an
increasing number of dialogues. Specifically, we would like to know how
many dialogues are needed to have observed most of the verbalisation patterns.
Figure 4.5 (p. 172) shows a plot of a variant of the type–token (vocabulary

growth) curve (Youmans, 1990). Verbalisation patterns are used as vocabulary.
On the x-axis is the number of dialogues seen. Rather than the raw type count,
the y-axis shows the proportion of observed pattern types out of all pattern
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Figure 4.4: Frequency spectra: Proof step types (x-axis log-scaled; y-axis range
extended to match Figure 4.3 for comparison)

types in the given corpus.8 For the C-I&C-II plot, the corpora were combined
and 10 random dialogue sequences were drawn from the combined set.
What can be seen from the graphs is that the pattern vocabulary grows

linearly, showing, however, a large variance over the 10 samples drawn,
especially in the combined data set. The tendency is similar in both corpora: on
average, half of the patterns have been seen at about 40% of the data sets and
80% of the patterns at about 75-80% of the data set in C-I (ca. 17 dialogues)
and 70-75% in C-II (ca. 26 dialogues). In the combined corpus, however,
depending on the sample drawn, half of the patterns can have been seen already
about 30-40% into the data set. Likewise, around 80% of the patterns, for some
samples, have been seen about 65-70% into the data set (ca. 35-40 dialogues).

4.4 Conclusions

The results show that the language of students’ proofs is not as repetitive
as one might expect. Students produce complex utterances during meta-
communication and when contributing proof steps. 57% of utterances in C-I
and 73% in C-II contained natural language. More natural language in C-II
8198 NL + ME & NL patterns in C-I, 530 in C-II, and 700 in C-I&C-II; see Table 4.1 (p. 161).
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Figure 4.5: Growth of verbalisation patterns over 10 randomdialogue sequences

may be due to the higher complexity of binary relations proofs. However, set
theory is very naturally expressed in natural language, so gaining insight into
why this was the case requires further investigation.
An analysis of the C-II data revealed differences in language production

between the two study material conditions. The VM-group tended to use more
natural language than the FM-group and subjects’ dialogue turns contained
more, but shorter, mathematical expressions. The FM-group tended to use
more and longer formulas overall, and less natural language. Since there was
no significant difference between tutors’ dialogue behaviour with respect to
language production between conditions, the differences in dialogue styles
must have been at least partly due to the study material format having a
priming-like effect. Another factor that may have contributed to the differences
could involve students’ individual differences in mathematical skills or specific
dialogue styles of subject–wizard pairs having to do with the student’s skills.
The results on the influence of the study material presentation have

implications for the implementation of tutorial dialogue systems. On the one
hand, more natural language, be it resulting from a verbose presentation of
the material or from the students’ individual preference for a particular style,
imposes more challenges on the input understanding component. In the context
of mathematics, this involves a reliable, robust parser and discourse analyser
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capable of interpreting the mixed language. On the other hand, prompting for
more symbolic language by presenting formalised material imposes stronger
requirements on the mathematical expression parser since longer expressions
tend to be prone to errors. The same holds of the copy–paste functionality:
while convenient for the user, it may lead to sloppiness in revising the copied
text. This, in turn, calls for flexible formula parsing, error correction (such as
the one we present in Section 6.4), and dialogue strategies addressing formulas
with errors (such as those we proposed in (Horacek and Wolska, 2007, 2008)).
From the pedagogical point of view, the study material format should be

adequate to the tutoring goals: in teaching formal proofs more rigour should be
imposed than in informal proofs. The material should be also adapted to the
skills of the student: formal presentation may lead to an inefficient dialogue
with a novice, centering around such issues as syntactic formalities, instead
of the higher-level goal of teaching problem solving (recall the discussion
in Chapter 2). The general issue arising here is what study material format
a tutoring system should present to the student. An advantage of verbose
material, including worded explanations, is that a novice can compensate for
lack of familiarity with formal notation and still attempt to construct proofs.
Advanced students may be able to express proofs formally anyhow, while
the verbosity of the material might encourage them to produce conceptual
sketches of proofs typical of skilled mathematicians. This assumes that
the tutoring system’s interpretation and dialogue management modules can
handle a variety of discourse and dialogue phenomena, including telegraphic
fragmentary utterances and informal descriptions (discussed in Section 3.2.2).
The wording of proof steps is surprisingly diverse and the language in the

two corpora different. Among the 28 verbalisation patterns common to both
corpora there were 20 proof steps, of that the majority in the Logic & proof
step components type. The low number of common patterns is reflected in
the type–token plot (Figure 4.5) which exhibits a steady increase with only
one area of slower growth in the combined corpus, about 20-25% into the
data set. The difference in the linguistic diversity of the proof language (the
proof contributions class) in the two corpora can be also seen in the different
distributions of distinct linguistic patterns (Table 4.7). In the Logic & proof
step components class, 67% of the verbalisations were distinct in C-I and 47%
in C-II. In the Domain & context class, 92% of all the verbalisations were
distinct in C-I and 82% in C-II. That is, the language in C-II appears more
repetitive. In both corpora, however, the language in the latter class is more
heterogeneous than in the former.9 The frequency spectra and the pattern
growth curves show further the degree to which the language is indeed diverse.
9The Meta-level descriptions are too sparse to draw conclusions (18 occurrences overall).
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In the Logic & proof step components class, around 75% of the distinct types
were single-occurrence utterances. In the Domain & context class, around 90%
of the types were single-occurrence.
Not surprisingly, the majority of the meta-level communication are stu-

dents’ requests for assistance: requests for hints, definitions, explanations, etc.
Out of the 170 help requests, 149 (88%) were distinct verbalisations; 136
single-occurrence patterns. A further subclassification of help requests might
reveal more homogeneity in the wording within subcategories. The relatively
large number of discourse markers typical of spoken interaction suggests that
participants had an informal approach to dialogue and treated it like a chat,
adapting spoken language, which they would have used in a natural setting, to
the experiments’ typewritten modality. This is a known phenomenon (Hård af
Segerstad, 2002). The diversity of verbalisations may be partly due to this.
The key conclusion which can be drawn from the analyses is that in

a tutoring setting, even the seemingly linguistically predictable domain of
mathematical proofs is characterised by a large variety of linguistic patterns of
expression, a large number of idiosyncratic verbalisations, and that the meta-
communicative part of discourse has a conversational character, suggesting the
students’ informal attitude towards computer-based dialogues and their high
expectations of the input interpretation resources. This calls for a combination
of shallow and deep semantic processing: shallow pattern-based methods
for contributions which do not add to the proof and semantic grammars for
proof-relevant content, in order to optimise coverage. In the next chapter
we propose a language processing architecture for analysing students’ proof
language. In Chapter 7, we show that deep lexicalised grammars for parsing
proof contributions provide better generalisation and thus better scalability in
terms of coverage than a phrase-based formalism.



Chapter 5

Processing informal mathematical discourse

In this chapter we describe an architecture for processing informalmathematical
discourse. We start by motivating the general properties of the architecture
and of the interpretation strategy which we propose. Then we present the
high-level interpretation processes, discuss their components and the employed
methods of language analysis. The presentation of the interpretation strategy
for mathematical discourse is divided into two parts: In Section 5.2.3, we
present the basic approach to processing mathematical language motivated
by the most prominent language phenomena discussed in Chapter 3 and in
Section 5.3 we show a complete walk-through analysis of an example utterance
from the corpus. In the following chapter, Chapter 6, we show how we
model selected language phenomena found in our corpora in more detail and
discuss various extensions to the basic resources for processing a subset of the
language phenomena. Material presented in this chapter appeared in (Wolska
and Kruijff-Korbayová, 2004a; Wolska et al., 2010).

5.1 Rationale of the approach

The approach to mathematical discourse processing which we adopt rests on
a number of well-motivated design principles: The underlying philosophy
of our approach is modularity, that is, encapsulation of information required
for the different processing tasks and of the processes themselves, and pa-
rameterisation. We argue that in order to be able to address the peculiarity
of mathematical discourse, that of fluently interleaving natural language and
mathematical notation (discussed in Chapter 3), the interpretation strategy for
mathematical language should be such that the information contributed by
the two language modes can be seamlessly integrated into the semantics of
utterances presented in the mixed language. We propose to achieve this by
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means of encapsulation of symbolic content and a uniform processing strategy,
the same for utterances presented in natural language as well as those presented
in mixed language. Considering the complexity of the language phenomena
and the fact that we are aiming at a uniform analysis of language phenomena
of various complexity, we argue for deep linguistic analysis as a method of
providing a systematic and consistent account of the mixed-language discourse
and propose a stepwise interpretation process in which a representation of the
utterance’s semantics is gradually enriched with more specific information.
Finally, we argue that the output representation produced by the language pro-
cessing component should not be specific to a proof representation language
of a particular deduction system. It should be rather a linguistically-motivated
output representation, independent of a domain reasoner. In the following
sections we briefly elaborate on the motivation behind these design decisions.

Modularity and parameterisation Modularity in complex systems is a
desirable feature as such because, among other reasons, rigorous definition
of the modules’ interfaces facilitates exchange of processing methods. In
language processing, modularity is a natural choice because the individual
linguistic processing tasks are structurally and functionally different. In the
case of mathematical discourse, it is also motivated by the fact the specification
of the processes of certain architecture components needs to be parameterised
with respect to a number of variables (which we will discuss in Section 5.2.1)
in order to facilitate portability across scenarios. First, at the level of the larger
architecture, the linguistic analysis (which operates on language input) and
domain reasoning (which operates on constructed symbolic representations
of proof contributions) need to be clearly separated (see Figure 1.2, p. 37).
Second, the architecture encapsulates language processing subcomponents
which process input in a stepwise fashion, contributing information at different
levels of granularity of linguistic analysis. Thus, similarly to Zinn’s (2006) and
mArachna’s (Jeschke et al., 2008) approaches, we argue for a highly modular
architecture for processing mathematical discourse. However, our architecture
includes components whose processes are functionally self-contained and
which the other approaches integrate into larger components (for instance,
mathematical notation processing) or do not mention at all (for instance,
parsing mixed language or interpretation of imprecise wording).

Encapsulation of mathematical expressions and uniform process-
ing As illustrated in Section 3.2.2.1 (p. 112), mathematical notation can be
seamlessly embedded into natural language. While in certain contexts, the
presence of symbolic expressions may be a source of deviation from the norms
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of natural language syntax,1 symbolic expressions behave just like other lin-
guistic entities in that they enter into grammatical and semantic relations with
other constituents in a sentence (or dialogue utterance). Therefore, we propose
to treat mathematical notation constituents the same way as linguistic content,
while abstracting from the individual symbols of which they are composed.
In other words, we argue for uniform processing of the two language modes
at the level of utterance or sentence syntax in which meaningful constituents
of mathematical expressions as wholes, rather than symbols individually, are
treated as tokens by the natural language parser.
The interpretation process we propose comprises a number of steps during

which mathematical expressions are first encapsulated and subsequently anal-
ysed as structured linguistic constituents represented as special lexical or clausal
units (‘‘pseudo-lexemes’’) in the parser’s grammar. In the course of parsing,
content encapsulated in this way is treated on a par with natural language lexical
units. This approach is superior to that of representing individual symbols
of mathematical notation within the parser’s lexicon, as proposed by Zinn
(see (Zinn, 2004, Section 5.2)) because it supports modularity and parameter-
isation: parsing mathematical expressions can be delegated to a mathematical
notation parser which has access to its own resources and parsing knowledge
adapted to the notation format and mathematical domain in question. Clearly, it
is also superior to mArachna’s approach in which mathematical notation within
sentences is not at all analysed in the context of the natural language within
which it is embedded (see (Jeschke et al., 2008)), which obviously results in
information loss.2 More details and example analyses will be presented in
Sections 5.2.2, 5.2.3, and in Chapter 6.

Deep linguistic analysis Traditionally, two approaches to language pro-
cessing are distinguished in computational linguistics: ‘‘shallow processing’’
typically refers to approaches based on more or less coarse-grained lexico-
syntactic information, such as information on word classes (parts of speech),
phrase (noun phrases, verb phrases, predicate–argument structures) and clause
structure, or statistical word cooccurrence information, but without or with
only limited access to semantics. Information and document retrieval is usually
performed based on this kind of ‘‘shallow’’ information. At the other end of the
spectrum is ‘‘deep processing’’ which uses semantic parsers to construct sym-
bolic representations of (possibly underspecified) semantics, so-called logical
1Non-standard syntax is, however, characteristic of sublanguages of which mathematical language
is an example. We discussed these phenomena in Sections 3.1.1 and 3.2.2.3.
2The same approach, proposed originally in (Wolska and Kruijff-Korbayová, 2004a), has been
also adopted in LeActiveMath project (Callaway et al., 2006).
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form, based on the sentence’s surface form. Logical forms represent context-
independent (literal) meaning of sentences (utterances) and they are typically
based on a logic notation, such as the Montagovian (simply-typed) lambda
calculus or other quantified or quantifier-free languages (see, for instance, (Al-
shawi and Crouch, 1992; Copestake et al., 1995)). Shallow processing offers
robustness – while the result of processing may not always be correct, a result
is always produced – however, while it is possible to produce some semantic
representation based on shallow processing, the representation may be incom-
plete.3 Considering the fact that we aim at a formal representation which can
be reliably mapped to an input language of a deduction system, we argue for a
deep processing approach for mathematical discourse.
The advantage of a deep approach is that the syntax–semantics interface,

that is, the mapping of lexico-syntactic forms to logical forms, is well-defined
and ensures precision in meaning assignment thanks to this explicit definition.
Semantic representations are derived in a principled way based on the notion of
compositionality of meaning.4 Deep semantic parsers use carefully hand-crafted
grammars, typically lexicalised grammars, which encode language phenomena
based on principled linguistic analysis. Examples of such formalisms are Head-
driven Phrase Structure Grammar (Pollard and Sag, 1994), Lexical-Functional
Grammar (LFG) (Bresnan, 2001), or Categorial Grammar (CG) (Ajdukiewicz,
1935; Bar-Hillel, 1953; Lambek, 1958).
As the core of our processing architecture we propose Combinatory Catego-

rial Grammar (CCG) and a dependency-based semantic representation. CCG is
a variant of categorial grammar in which categories (categorial grammar types)
associated with lexemes are combined using a set of rules (Steedman, 2000).
The specific ‘‘multi-modal’’ variant of CCG and its implementation, which we
adopt, provide a way of controlling derivations by restricting rule application
by means of features on categories and modes on category-building operators
(more in Section 5.2.3.1). These mechanisms are particularly relevant when
modelling languages with relatively free word order, such as German. Our
semantic representations, produced in parallel with syntactic derivations, are
based on the Praguian notion of tectogrammatics and reflect the semantic
dependency structure of the parsed sentences (Sgall et al., 1986). Semantics
3A variety of language processing architectures can be described as hybrid approaches, that is,
approaches which either use both shallow and deep methods for processing language or attempt
to integrate various processing components. Heart of Gold (Schäfer, 2006) is an example of a
hybrid system in which such an integration is done in a principled way using (R)MRS as semantic
representations (Copestake et al., 2005).
4The notion of ‘‘logical form’’ goes back to the work of Tarski, Russell, and Frege. The ‘‘Principle
of compositionality’’ is due to Frege. Work on ‘‘translation’’ of natural language into logic dates
back to the early 70s and the work of Montague, Partee, Dowty, May, and Cooper, among others.



PROCESSING INFORMAL MATHEMATICAL DISCOURSE 179

in this sense is context-independent and models the literal meaning of the
utterances. Thus, our basic formalisation of the language of mathematics
is in terms of the linguistic meaning of mathematical content, modelled as
semantic dependency structures. These structures are formally represented
using Hybrid Logic Dependency Semantics (HLDS) (Baldridge and Kruijff,
2002), a semantic formalism based on the syntax of hybrid modal logic (Black-
burn, 2000). Linguistic meaning is subsequently interpreted in the context of
mathematical domain and the semantic representation is enriched with domain-
specific information (see below). Details on parsing and further processing
of the dependency structures will follow in Section 5.2.3 of this chapter and
Section 6.1 of the next chapter. An illustration of semantic interpretation based
on transforming dependency structures will be shown in Section 6.2.2 when
discussing the interpretation of the ‘‘the other way round’’ operator.

Stepwise interpretation Similarly to many other language processing
systems, the architecture we propose for processing mathematical language
is based on a sequence of analysis steps which attempt to provide gradually
more specific information about the input under analysis. Once high-level
information on the structure of a communicative unit is known (that is,
information on the utterance units’ boundaries and the boundaries of symbolic
mathematical expressions within the utterance units) meaning assignment starts
with semantic parsing (briefly outlined above). At this stage, our basic semantic
representation is domain-independent and represents the linguistic meaning of
an utterance under consideration in terms of a dependency structure. Subsequent
analysis steps operate on this representation attempting to assign amore precise,
domain-specific, interpretation to its elements. These subsequent interpretation
processes enrich the original semantic representation with further information
if it can be found based on dedicated resources: a semantic lexicon and
a linguistically-motivated domain model. The resulting output representation
can be thought of as an interpreted dependency structure. The interpretation
process will be further elaborated in Section 5.2.3.2, while more details on the
structure of the interpretation resources will be presented in Section 6.2.1.

Linguistically-motivated reasoner-independent output representa-
tion In the architecture for processing mathematical discourse which we
envisage – recall Figure 1.2 (p. 37) – domain reasoning and language process-
ing tasks are clearly separated. The reason for this is that a generic language
interpretation component does not have knowledge to reason about discourse
at the domain level; that is, reason about the proofs. Linguistic analysis is
what it is: it is an analysis of the language itself. While certain inferences



180 Students’ Language in Computer-Assisted Tutoring of Proofs

can be made based solely on the verbally expressed content (for instance,
sortal restrictions violations), many domain-specific mathematical inferences
cannot. For instance, it is impossible to decide on the scope of a sentence-initial
discourse marker ‘‘hence’’, which introduces a conclusion from one or more
previously stated proof steps, without the knowledge of the logical structure
of the proof. Therefore, we argue that the core linguistic analysis in a system
for processing proofs may stop short of any interpretation which requires
knowledge of mathematics beyond the knowledge of the language used to talk
about mathematics. The representation itself should be linguistic, rather than
express the communicated mathematical content directly in a formal language
of logic or of a specific deduction system. On the contrary: in order to facilitate
portability, the output representation of the language interpretation process
should not be specific to any deduction system. HLDS-based interpreted
semantic dependency representations have this property. Translation of the
semantic representations into an input language of a domain reasoner should be
performed by the proof representation processing component – see Section 1.2
– as this translation is entirely reasoner-specific, that is, dependent on the input
language of the deduction system employed for domain reasoning tasks.

In the following sections, we present a modular architecture for processing
informal mathematical discourse designed according to the principles discussed
above. We first introduce the core components of the architecture and then
elaborate on our approach to computational interpretation of informal proof
discourse in the scenarios introduced in Chapter 1. The presentation of the
interpretation strategy proper is divided into two parts: First we present the
basic analysis steps which address a set of simple, but frequent linguistic
phenomena and illustrate the analysis process with a walk-through example.
Methods of modelling specific selected phenomena in students’ language are
presented in Chapter 6.

5.2 Language processing architecture

The language processing architecture we propose for mathematical discourse
is built on a pipeline of (standard) larger language processing subcomponents:
preprocessing, parsing, and sentence- and discourse-level interpretation. Their
design and functionality is motivated by the properties of mathematical lan-
guage, discussed in Chapter 3. The overall architecture is shown in Figure 5.1.
In the reminder of this chapter we present the individual processing components
and their functionality, including the core contribution of this thesis: an interpre-
tation strategy for the language of mathematical proofs. Details on how specific
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Figure 5.1: Architecture for processing informal mathematical language

language phenomena are processed will be presented in the next chapter. When
discussing the interpretation strategy we focus on proof contributions and do
not address other types of communicative units. Non-solution-contributing
utterances would lend themselves better to shallow processing methods since,
first, they do not need a translation to formal language, and second, due to
the variety in their verbalisations (discussed in Section 4.3.3). We start by
introducing three obvious variables with respect to which a larger system for
processing mathematical language must be parameterised.

5.2.1 Parameters
In order to facilitate portability across scenarios, the language processing
system is parameterised with respect to the following three variables:

• the natural language of the contributions,
• the mathematical domain, and
• the format of the mathematical notation.
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Parameterisation with respect to the input language is a obvious: parsing
is language-specific, hence the architecture’s input analyser should support
grammars, or language models in general, of different natural languages in
which proof contributions can be expressed. The language models, in turn,
should comprise appropriate terminological lexica for themathematical subarea
of the given discourse. (These are also dependent on the mathematical domain
of the proof discourse under analysis.) Before syntactic and semantic analysis
can proceed, preprocessingmodules prepare the input for parsing by identifying
utterances, (multi-)word units, and elements of mathematical notation within
the input communicative units. Sentence (or utterance) and word boundary
detection by themselves are language specific. The process of identification
and analysis of mathematical notation, however, must be specialised both
with respect to a mathematical domain (the set of symbols used and their
semantics differ across domains; recall the discussion in Section 3.2.1) and
also with respect to the natural language of the input (in English, for instance,
the token ‘‘a’’ needs to be disambiguated between an indefinite article and a
mathematical symbol). Identification of symbolic mathematical expressions
within natural language needs to be moreover parameterised with respect to
the input format in which mathematical expressions are entered. LATEX (Knuth,
1986) is a de facto standard for mathematical document formatting for scientific
publications. While the document processing scenario would most likely
involve LATEX-based documents, possibly further processed using a dedicated
mathematical document processing system, such as LaTeXML (Stamerjohanns
et al., 2010), tutoring environments and web-based interactive proof checkers
would typically offer a graphical user interface with buttons for entering
mathematical symbols. In this case, the underlying representation format
for mathematical expressions might be MathML or OpenMath5 or, as was
the case with our corpora, a custom format for representing mathematical
symbols as ASCII text, for instance, for the purpose of storing interaction
logs. In Figure 5.1 (p. 181) the components marked with � in the top left
corner are those whose resources are specific to the natural language, � marks
dependency on mathematical domain, and � marks processing which depends
on both the language and the mathematical domain.

5.2.2 Preprocessing
By ‘‘preprocessing’’ in language technology one understands the part of text
processing whose purpose is to prepare the input for the analysis proper.
Typical preprocessing steps include sentence and word boundary detection
5http://www.w3.org/MathML, http://www.openmath.org

http://www.w3.org/MathML
http://www.openmath.org
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(or tokenisation), simple stemming or full morphological analysis, part of
speech tagging, that is, identifying a lexeme’s word class, etc.
Our parsing process is based on a lexicalised grammar, that is, all word

forms aswell as theirword classes are explicitly specified in the parser’s lexicon.
Therefore, in the present architecture, input is not stemmed nor part of speech
tagged. However, preprocessing mathematical discourse, as well as any type of
technical discourse which uses mathematics as its formal language, aside from
the standard sentence andword tokenisation, involves identifying and analysing
symbolic mathematical expressions as well as identifying domain terms, the
technical vocabulary of the special language. Figure 5.2 shows a general
preprocessing pipeline for mathematical discourse. The three preprocessing
steps are outlined in the following sections. For the low-level ‘‘normalisation’’
step, please refer to Section 4.2.3 (p. 157).

5.2.2.1 Sentence and word tokenisation
The purpose of the tokenisation process is to segment the input contributions
into utterances (or possibly sentences) and word-like units (tokens), that is,
identify utterance and word boundaries. As we have pointed out before,
sentence and word boundary detection is language specific. Moreover, in order
to account for the symbolic expressions embedded within the natural language
text, the process distinguishes between tokens which are natural language
lexemes and those which form part of symbolic mathematical expressions.
Although conceptually simple, in general, automatic sentence and word

tokenisation are non-trivial tasks; see (Grefenstette and Tapanainen, 1994) for
a discussion of tokenisation issues. Approaches to sentence boundary detection
in narrative text range from simple heuristics to statistical, machine learning
approaches; see, for instance, (Reynar and Ratnaparkhi, 1997; Palmer and
Hearst, 1997; Mikheev, 2000; Silla Jr. and Kaestner, 2004; Kiss and Strunk,
2006). In dialogue-based interaction input may be ill-formed, in particular,
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punctuation may be omitted. In the two collected corpora, 40% of utterances
either lacked the final punctuation or the utterance final punctuation was
non-standard, for instance, a comma or colon were used, as in (59) and (60):

(59) Dann ist (A ∪ C) = A, und (B ∪ C) = B , daraus folgt der Beweis,
A ∩B ∈ P (A ∩B)
Then (A ∪ C) = A, and (B ∪ C) = B, the proof follows from this, . . .

(60) das wars: wenn A ⊆ K(B), dann sind A und B verschieden,
haben keine gemeinsamen Elemente , daraus folgt, dass B ⊆ K(A)
sein muss
that’s it: ifA ⊆ K(B), thenA andB are different, have no common elements, it follows
from that that B ⊆ K(A) must hold

Since tokenisation issues are not the main focus of this work, we im-
plemented only simple procedures for the tokenisation step of preprocessing,
which, however, ensured that our entire data set is correctly processed. Sen-
tence and word tokenisation of both corpora has been performed using a set of
regular expressions, as in the method proposed byGrefenstette and Tapanainen.
Sentence and word tokenisers were iteratively tuned in such way that both
corpora have been correctly processed, that is, we adjusted and extended
the regular expressions, reprocessed the data, and verified the accuracy by
inspecting the results, until the corpora were processed without errors. For
the purpose of the evaluation presented in Chapter 7, utterances have been
manually segmented as described in Chapter 4. Since we focus on semantic
analysis, we do not address the tokenisation step any further in this thesis.

5.2.2.2 Domain term identification
Mathematics, a specialised domain, is rich in technical vocabulary: domain
terms which name objects about which mathematical discourse treats. Clearly,
an architecture for processing mathematical discourse needs to be capable of
identifying and interpreting mathematical terminology. Examples of technical
vocabulary from both of our corpora as well as other mathematical subareas,
both single and multi-word units, were presented in Section 3.2.2.2 (p. 115).
Because our experiments were set in only two mathematical domains, set
theory and binary relations, and covered only small subsets of those domains,
the set of technical terms appearing in the corpora is not large: there are 111
instances of nominal (noun phrase) domain terms in the set theory corpus and
250 instances of nominal domain terms in the binary relations corpus.
Terminology identification and extraction as well as identification of multi-

word expressions are research subareas in their own right. The currently
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prevalent approaches to domain term and multi-word unit identification are
based on corpus statistics and machine learning; examples of recent work
include (Frantzi et al., 2000; Pazienza et al., 2005) or (Kubo et al., 2010).
Given the restricted scope of our experiments we employed a simple lexicon-
based approach to identifying domain terms. For the purpose of the analyses in
Chapter 4 and the evaluation in Chapter 7, domain terms have been identified
based on a list extracted from the collected corpora and the background reading
material. The list included all wording variants of single- and multi-word
nominal units (examples of different wording variants of deMorgan’s Laws and
Distributivity of Union over Intersection have been shown in Section 3.2.2.2;
p. 115). In order to account for misspellings and inflectional suffixes, a simple
fuzzy matching procedure based on string edit distance (Levenshtein) has been
implemented. Output of the domain term tagger has been verified and corrected
manually. Since in this thesis we do not focus on domain term identification as
such, we ascertained that the terminology lists are exhaustive for the collected
corpora. We do not address the domain term identification process any further.
However, important from the point of view of the interpretation strategy is how
domain terms are treated during processing.
In the approach we propose, nominal single- and multi-word domain terms,

once identified, are abstracted over in the course of syntactic and semantic
parsing. The meaning of domain terms is incorporated into semantic represen-
tations at the interpretation stage, following semantic parsing. In practice, as
part of preprocessing, we substitute each occurrence of a domain term with a
symbolic token which represents it; as described in Section 4.2.3. This can
be considered a kind of textual normalisation step. In our implementation the
string DOMAINTERMwas used to represent technical terminology. We argue
that this approach is well-motivated and adequate for mathematical discourse
for two reasons: First, once a lexical unit is identified as a domain term, its in-
terpretation requires also domain knowledge and not just the sentence context.
(Recall the ‘‘left ideal’’ example from Section 3.2.2.4 of Chapter 3.) Second,
separating the two analysis processes enables better resource management. The
parsing lexicon becomes smaller and focused on sentence-level phenomena,
while domain terms can be handled by a dedicated noun phrase grammar with
a terminological lexicon comprising solely noun phrase forming word classes:
articles, adjectives, participles, nouns, and prepositions.

5.2.2.3 Processing mathematical expressions
Unlike typical genres which are commonly addressed in natural language
processing, for instance, news text or general narrative prose, mathematical
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discourse requires that the symbolic mathematical expressions, mathematical
notation which forms an inherent part of content, be interpreted in the context
of the natural language within which they are embedded. To date, large scale
efforts at processing scientific discourse tend to address higher level tasks (for
instance, argumentative structure identification, author attribution, or citation
graph analysis) ignoring altogether the semantic import of the content expressed
using the symbolic language. In scenarios involving proof interpretation, in
which constructing a semantic representation of content is the computational
task, bringing the two languages together is a sine qua non. Yet, as we had
previously pointed out, existing systems for processing mathematical discourse
do not analyse the symbolic content at all (see (Jeschke et al., 2008) and the
overview in Section 1.3.3, p. 47) or merely gloss over phenomena related to the
interaction of natural language and mathematical notation (see (Zinn, 2004)).
In this work, we propose a method of achieving a systematic analysis of

the mixed language by viewing the symbolic expressions within utterances at
the level of their syntactic types and treating these types on a par with natural
language. To achieve this, processing symbolic mathematical expressions
embedded within utterances comprises three subtasks:

• Identification, that is, delimiting symbolic expressionswithin the natural
language text,

• Parsing and annotation: analysing their structure and semantics and
marking the relevant information on the expressions’ derivation trees,

• Interpretation in context, that is, integrating the symbolic expressions
into the syntax and semantics of the utterances in which they appear.

The identification subtask is clear: the purpose of this process is to
recognise mathematical expressions within the surrounding natural language
text. As we pointed out when discussing parameters in Section 5.2.1, how
this process is performed depends on the language of the input contributions,
on the mathematical subarea of the discourse, and on the encoding format of
the mathematical symbols. Once identified, every mathematical expression
is parsed by a mathematical expression parser. In the approach we propose,
the parser performs four tasks: it constructs the expression’s dependency-style
derivation tree,6 identifies the expression’s high-level syntactic type, identifies
certain salient substructures, and annotates the derivation tree with the type
and substructure information. We distinguish eight types of mathematical
expressions. The two obvious basic types are TERM and FORMULA. Their
definitions are standard: TERM is the type of ontological mathematical objects.
6See Figure 3.2 (p. 98) and the discussion in Section 3.2.1.2 (p. 95).
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FORMULAS are sentences, expressions with a truth value. The remaining six
types are derived from the basic two and account for incomplete expressions.
We will return to those in Section 6.1.3. Once an expression’s derivation
tree has been constructed, its root node is annotated with information about
the expression’s type. We also annotate nodes which head visually salient
substructures: the head nodes of bracketed subexpressions and the head nodes of
the subexpressions to the left and to the right of the root node.7 This information
is relevant for reference resolution which we will discuss in Section 6.3.
Once the mathematical notation is parsed and analysed, parsing utterances

with embedded symbolic expressions proceeds based on utterance representa-
tions in which the specific mathematical expressions has been abstracted over.
As with domain terms, the original mathematical expressions are substituted
with tokens which represent their types: mathematical expressions which de-
note terms are substituted with the token TERM (for instance, A ∪ B and
K(A) ∩K(B)) and those which denote truth values are substituted with the
token FORMULA (for instance, A ∪ B = B ∪ A); likewise, partial expres-
sions are substituted with their respective tokens. These tokens are, in turn,
represented in the parser’s lexicon. In the course of syntactic and semantic
parsing, the parser operates on the pseudo-lexemes, and not on the original
mathematical expressions; more details follow in Section 5.2.3.1 of this chapter
and in Sections 6.1.2 and 6.1.3 of the next chapter. This approach is superior
to the one proposed by Zinn of encoding every lexeme of the mathematical
vocabulary as part of the utterance parser’s lexicon: in our approach the two
parsing tasks, which can be performed independently, are clearly separated,
thereby improving modularity of the overall architecture and reducing the
complexity of the utterance parsing grammar.

The mathematical expression parser implemented for the purpose of the
evaluation in Chapter 7 takes word-tokenised text as input and finds math-
ematical expression substrings using regular expressions. Identification of
mathematical expressions within natural language text is based on: single
character tokens (including parentheses), multi-character tokens consisting
only of known relevant characters, mathematical symbol codes (unicodes
and LATEX-commands in C-I and C-II, respectively), and newline charac-
ters. Multi-character candidate tokens are further segmented into operators
and identifiers by inserting the missing spaces. A basic precedence-based
parser which builds dependency-style tree representations of the mathematical
expressions found in the corpora has been implemented. The parser uses
7Recall the discussion on the structure of mathematical expressions in Section 3.2.1.2 (p. 95).
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Figure 5.3: Interpretation strategy for informal mathematical language

a knowledge resource with information about all the mathematical symbols
used by the learners in both corpora. We also implemented a correction proce-
dure for ill-formed expressions, based on typical errors found in mathematical
expressions constructed by students (see Section 3.2.1.5, p. 106). A preliminary
evaluation of the algorithm will be presented in Section 6.4 of the next chapter.
As with domain terms, for the purpose of the analyses and evaluation presented
in Chapters 4 and 7 the formula parser’s outputs were verified and corrected by
hand. In principle, an external component could be integrated into the imple-
mented processing architecture, so long as for every mathematical expression
it can provide its type (FORMULA, TERM or the fragment expression types)
as well as access functions to retrieve meaningful subcomponents of symbolic
expressions (left-/right-hand side, (nested) bracketed subexpressions, etc.)

5.2.3 Core interpretation strategy for proof discourse
Basic processes involved in understanding informal proof language are (i) syn-
tactic and semantic parsing of proof contributions viewed as linguistic dis-
courses, independently of their specialised domain, whose goal is to construct
representations of the contributions’ linguistic meaning, and (ii) interpretation
of the linguistic meaning representations within the domain (domain of proving
in general on the one hand and, on the other hand, the specific mathematical
domain with which the given proof is concerned) and in the context of prior
discourse. Once a domain interpretation is found, the interpreted semantic
representations can be translated into formal representations which serve as
input to a domain reasoner.
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The complete utterance-level interpretation process is represented schemat-
ically in Figure 5.3. In the following sectionswe present the two core processing
steps and a walk-through analysis of a typical utterance from the first corpus
(C-I). We focus here on a general strategy for processing the sublanguage
of informal mathematical discourse in which natural language and symbolic
expressions can be interleaved.

5.2.3.1 Parsing
The first stage of interpretation consists of syntactic and semantic analysis of
the proof contributions. The task of the syntactic–semantic parser is to construct
representations of the linguistic meaning of utterances and syntactically well-
formed language fragments. As the linguistic meaning we understand an
encoding of the content of an utterance which represents the utterance’s
decontextualised semantics, where by ‘‘decontextualised’’ we mean meaning
independent of the domain of discourse, the context in which the utterance
appears, of the utterance’s intentional content, and illocutionary force. In this
sense, linguistic meaning can be thought of as the literal reading of an utterance
perceived without reference to any special knowledge of the situation in which
the utterance was observed.

Linguistic meaning representation To represent the linguistic meaning
we adopt the notion of tectogrammatics, the Functional Generative Descri-
ption’s (FGD) representation of the utterance’s semantic dependency structure.
FGD is a linguistic theory and a formal grammar formalism being developed
by the Prague School of linguistics since the 1960s (Sgall et al., 1986).
At the heart of the framework is the notion of dependency, originally due
to Tesnière, which describes subordination relations between the words in an
utterance. Building on Tesnière (1959)’s work, FGD views the utterance in
terms of interlinked layers of description which correspond to different levels
of meaning: morphological, analytical (surface syntax), and tectogrammatical
(deep syntax/semantics). The tectogrammatical layer is conceptually related to
logical form, however, differs in coverage: while it does operate at the level
of deep semantic roles and accounts for topic–focus articulation, it does not
address such aspects of meaning as, for instance, the interpretation of plurals
and does not resolve the scope of quantifiers or negation.
In FGD the central unit of description is a valency frame, a structure

which consists of an autosemantic lexical unit (a verb, a noun, or an adjective,
for instance) which constitutes the frame’s head, and a set of its possible
obligatory and optional complementations, that is, syntactically dependent
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autosemantic units in certain relations to the head. The head of a valency frame
explicitly specifies the tectogrammatical relations (TR) of its dependents (or
‘‘participants’’, in the Praguian terminology). A distinction is drawn between
inner participants and free (adverbial) modifications, also called ‘‘functors’’.
Inner participants of a valency frame (arguments; corresponding to theta roles,
deep cases, or Tesnière’s actants), are the lexeme-specific arguments of the
head. Five types of inner participants are distinguished (Sgall et al., 1986):8

Actor The ‘‘first actant’’, the agent performing an action or the bearer
of a property (‘‘a cat sleeps’’),

Patient/
Objective

The object affected by the action and the primary function of the
direct complement of a verb, (‘‘to pet a cat’’),

Addressee The primary function of the indirect object (‘‘to give a cat to
a child),

Origin The source or initial state of an object (‘‘to let a cat out of a bag’’),
Effect The effect of an action; a primary function of a predicative

complement of verbs such as ‘‘nominate’’, ‘‘elect’’, or a result
adverbial (‘‘to choose a cat as a pet’’).

Free modifications (adjuncts or circumstantials) express additional information
about the head. A large set of free modifications has been proposed for
English (Hajičová et al., 2000; Hajičová, 2002). The most common include:

• Locative and directional modifications, such as Location, Where to,
Where from;

• Modifications expressing manner: Extent, Means, Regard, Norm (‘‘to
act in accordance with the law’’, ‘‘to build a machine after a model’’),
Criterion (‘‘according to the weather report . . . ’’);

• Causal modifications: Cause (‘‘. . . because . . . ’’), Condition (‘‘If . . . ,
then . . . ’’), Aim, Result,Concession; these relationsmay be also realised
by prepositional phrases, for instance, ‘‘for personal reasons’’ (Cause),
‘‘under the circumstances’’, ‘‘in this case’’ (Condition), ‘‘for the sake of
clarity’’ (Aim);

• Temporal modifications: When, Since when, Till when, How long, For
how long;

• Rhematisers and sentence adverbials: Modality, Attitude;
• Paratactic construction functors: Apposition, Conjuction, Disjunction.

8In the examples, the fragment which contains the dependent node in the given relation to the head
is underlined.
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lovePRED
[

vmod ind

dmod decl

]

Actor Patient

man
[

a-node-aux Every

a-node-num sg

]

woman
[

a-node-aux a

a-node-num sg

]

Figure 5.4: Simplified tectogrammatical tree of the sentence ‘‘Every man loves
a woman’’

Valency and modification concerns not only verbs, but also nouns, adjec-
tives, and some adverbs. Among free modifiers occurring with nouns there
are, for instance, Identity (‘‘the notion of identity’’, ‘‘the steamboat Titanic’’),
Material (‘‘a cup of coffee’’), or Appurtenance (‘‘the dog of my cat’s’’). Par-
ticipants and free modifications can be obligatory or optional. Inner participants
are prototypically obligatory and only one inner participant of a given type is al-
lowed to cooccur with one head. Free modifications are prototypically optional.
A tectogrammatical dependency structure is a tree with the semanteme which
represents the head of an utterance at the root, and with dependent arguments’
semantemes at the linked nodes. Only autosemantic words (content bearing
words) are represented as nodes of the tectogrammatical layer. Function words
are typically represented as attributes of the relevant content words. The nodes
(or edges) are labelled with the tectogrammatical relations in which they stand
to their directly superordinate nodes.
Figure 5.4 shows an example of a simplified tectogrammatical analysis of

the notorious linguistic example: ‘‘Every man loves a woman’’. The lemma
‘‘love’’ is the main predicate (PRED) and the root of the tectogrammatical layer.
The valency frame of the transitive verb ‘‘love’’ specifies two participants: an
Actor, here filled by the lexeme ‘‘man’’ and a Patient, here filled by ‘‘woman’’.
The node contains grammateme information on the verb’s mood (vmod:
indicative) and deontic modality (dmod: declarative). The nodes representing
both dependents contain references to the analytical layer’s auxiliary nodes’
information about the quantifier and indefinite modification (a-node-aux), as
well as to morphological information about the number (a-node-num).9

9For a formal definition of tectogrammatics, see (Sgall et al., 1986, p. 150). The tree description
presented here is somewhat simplified. For instance, in treebank annotation, a technical node
for the tree’s root is introduced, which we omitted here. In annotated corpora, references to
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The tectogrammatical relations which we use in the semantic representations,
unlike surface grammatical roles, provide a generalised view of the relation
between (domain-specific) content and the linguistic realisation. To derive
our set of semantic relations we generalised and simplified the collection of
Praguian tectogrammatical relations in (Sgall et al., 1986; Hajičová et al.,
2000). The main reason for this simplification is that certain relations need to
be understood metaphorically in the mathematical domain.
The most commonly occurring relations in our domain are Cause, Con-

dition, and Result-Conclusion which coincide with rhetorical relations in the
argumentative structure of the proof:

(61) Da [ A ⊆ K(B) gilt ]Cause alle x, die in A sind sind nicht in B
Because A ⊆ K(B) holds all x which are in A are not in B

(62) Wenn [ A ⊆ K(B) ]Condition dann A ∩B = ∅
If A ⊆ K(B) then A ∩B = ∅

(63) Somit ist [ . . . ]Result
With this it holds that . . .

Justifications of inference we interpret as Criterion relations:

(64) [ nach deMorgan-Regel-2 ]Criterion istK((A ∪B) ∩ ...)=...)
according to De Morgan rule 2 it holds that ...

(65) K((A ∪B)) ist [ laut DeMorgan-1 ]Criterion (K(A) ∩K(B))
. . . equals, according to De Morgan rule1, . . .

Other relations are grouped into the classes HasProperty and GeneralRelation
(for adjectival and clausal modification), for example:

(66) dann muessen alla A und B [ in C ]HasProperty-Location enthalten sein
then all A and B have to be contained in C

(67) Alle x, [ die in B sind ]GeneralRelation . . .
All x that are in B . . .

(68) alle elemente [ aus A ]HasProperty-From sind inK(B) enthalten
all elements from A are contained inK(B)

where HasProperty-Location denotes a HasProperty relation of type Location,
GeneralRelation is a general relation, as in relative clause complementation,
the analytical layer’s annotations are used instead of the actual forms. In general, because FGD
analysis as such is not our focus, here and in further examples we simplify the representations
and omit a lot of information which constitutes part of FGD analyses. We do not show the
analytical layer and the links to the tectogrammatical layer. At the tectogrammatical layer we
omit morphological grammatemes as well as information on topic–focus articulation. Detailed
guidelines on tectogrammatical annotation for English can be found in (Cinková et al., 2006).
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Table 5.1: Example categories of Categorial Grammar

Linguistic category CG category
Sentence S
Noun phrase NP
Intransitive verb S\NP
Transitive verb (S\NP)/NP
Ditransitive verb ((S\NP)/NP)/NP
Adjunct S/S

and HasProperty-From is a HasProperty relation of type Direction-From or
From-Source. All relations which do not need to be translated into a formal
representation are grouped in the category Other.

Meaning construction with Combinatory Categorial Grammar To
construct the linguisticmeaning representationswe useCombinatoryCategorial
Grammar; more precisely,Multi-Modal CombinatoryCategorial Grammar. We
built a lexically specified grammar for a fragment of German and use an open
source CCG parser to directly construct semantic dependency representations
analogous to those of the tectogrammatical level described above.
Categorial Grammars are a family of syntactic theories and grammar

formalisms which are closely related to Dependency Grammars in that both
stem from research on type theory and category theory. Foundation which lead
to the development of CGs was laid by Leśniewski, Ajdukiewicz, Husserl, and
Russell in the 1920s and 30s, and was extended by Bar-Hillel and Lambek in
the 50s. CGs explicitly define syntax in the lexicon by associating lexical units
of a language with categories of two types: elementary (atomic) types and
complex (functional) typeswhich are built up using a category-building operator
(denoted with a slash). When modelling linguistic data the types might encode
syntactic information on predicate–argument structure, subcategorisation, word
order of the object language, etc. Table 5.1 shows examples of atomic categories
associated with sentences and nouns and functional categories of English verbs
and adjuncts (sentential modifiers).10
In the Type Logical, or deductive, tradition of Categorial Grammar, which

builds on the Lambek calculus and van Benthem’s and Moortgat’s categorial
10We use the so-called result-first notation for syntactic categories. The signs α\β and α/β
denote functional types from β to α, where the location of the argument, β, is indicated by the
direction of the slash: left (\) or right (/) of the functor α, respectively. The sign α\β is thus to
be interpreted as forming a category α if an argument of category β is found immediately to its
left.
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systems (Lambek, 1958; van Benthem, 1987; Moortgat, 1988), parsing is
viewed as deduction. On this view, the slash, which builds up partial
categories, is considered as a kind of a logical implication operator. The slash
(and other operators) together with a set of axioms (inference rules) define a
proof theory. For instance, the application rule (slash elimination) corresponds
to the Modus Ponens rule of classical logic. Examples of basic inference rules
of type logical grammar are shown in Table 5.2. Parsing, that is, determining
whether a linguistic expression is well-formed, amounts to finding a proof in
the proof system of the given categorial logic.
Combinatory Categorial Grammars, due to Szabolcsi and Steedman, are

based on a set of explicitly specified combinatory rules, called combinators,
which govern the deviation of syntactic structures (Szabolcsi, 1992; Steedman,
2000). The basic set of combinators includes forward and backward directional
variants of the rules of functional application, composition, and type-raising;
the forward and backward directions are applicable to an argument to the right
and left of a functor, respectively. Their schemata are presented in Table 5.3.11
Multi-Modal Combinatory Categorial Grammar (MMCCG) refines the CCG
framework by introducing a means of controlling application of combinatory
rules (Baldridge, 2002). Control of rule application is achieved by specifying
‘‘modes’’ on category forming operators, the slashes, and making application
of rules dependent on the slash mode. There are four hierarchically organised
basic modes which govern different levels of associativity and permutativity
between signs. The mode ∗ is the most restrictive, allowing only functional
application between adjacent signs. The modes � and × allow associative,
non-permutative (harmonic) and permutative, non-associative (crossed) com-
position, respectively. The mode • is the least restrictive and allows application
of all combinatory rules.12 Figure 5.5 shows an example derivation of the
sentence ‘‘Every man loves a woman’’ in CCG. Figure 5.6 illustrates blocking
the derivation of an ungrammatical fragment ‘‘a good from Bordeaux wine’’
(from (Baldridge and Kruijff, 2003)) in MMCCG. The mode ∗, more restrictive
than �, prevents modifiers in invalid order from being combined.13

We argue that CCG, or CG in general, is an appropriate framework
for modelling syntactic language phenomena in mathematical discourse.
The motivation for this approach is two-fold: First, categorial grammar
11There is a strong analogy between the inference rules of the type logical categorial grammar
system and the combinators of combinatory categorial grammars; see (Steedman, 2000) for
details.

12In the following examples of syntactic categories we consider the ∗ mode as default, that is,
unless a slash is marked with a specific mode, the functional application mode is assumed.

13The grammars have been implemented in OpenCCG. (http://www.opennlp.org)

http://www.opennlp.org
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Table 5.2: Basic deduction rule schemes of Type Logical Categorial Grammar

Rule Schemes

e
A

LxLexical instantiation
...

A/B B

A
/E

...
B A\B

A
\ESlash elimination

... [A]n

B
B/A

/In

[A]n
...

B
B\A

\InSlash introduction

Table 5.3: Basic combinatory rules of Combinatory Categorial Grammar

Rule Schemes
Application (>) X/Y Y ⇒ X (<) Y Y \X ⇒ Y

Composition (>B) X/Y Y/Z ⇒ X/Z (<B) X\Y Z\X ⇒ Z\Y

Type-raising (>T) X ⇒ Y/(Y \X) (<T) X ⇒ Y \(Y/X)

Every
NP/NP Lx

man
NP Lx

NP >

loves
(S\NP)/NP Lx

a
NP/NP Lx

woman
NP Lx

NP >

S\NP
>

S <

Figure 5.5: Combinatory Categorial Grammar derivation of the sentence
‘‘Every man loves a woman’’

a
NP/NP Lx

good
N/�N

Lx
from Bordeaux

N\∗N
Lx⊗ < Bx

wine
N Lx
∗

Figure 5.6: Blocking ungrammatical derivation using modes on slashes in
MMCCG
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is a recognised formalism which enables modelling complex linguistic phe-
nomena. It is known for its account of coordination phenomena (Steedman,
2000), widely present in mathematical discourse, and word order phenomena;
see, for instance, (Hepple, 1990; Steedman, 2000; Baldridge, 2002). Moreover,
CCG accounts of various word order phenomena in Germanic languages have
been proposed; see, for instance, (Carpenter, 1998; Steedman, 2000; Hocken-
maier, 2006; McConville, 2007). Second, and most importantly in the case of
mathematical discourse, mathematical expressions, represented as their types,
lend themselves to a perspicuous categorial treatment described below.

An approach to interleaved symbolic and natural language As
mentioned earlier, in the course of parsing, we treat symbolic tokens, which
represent types of mathematical expressions (see Section 5.2.2.3), on a par
with natural language lexical units. Within utterances, mathematical terms
typically occur in the syntactic functions of nouns or noun phrase categories,
while mathematical formulas are syntactically sentences or clauses. In the
parser’s lexicon we encode ‘‘generic’’ lexical entries (pseudo-lexemes) for
each mathematical expression type together with information on the plausible
syntactic categories which expressions of the given type may take. The
basic mathematical lexemes in our grammar are TERM and FORMULA. For
mathematical expressions denoting terms, represented as TERM lexemes, we
encode the noun and noun phrase categories, N and NP, while for truth-valued
expressions, FORMULA lexemes, we encode the category of a sentence, S, as
the following two examples illustrate:

TERM equals TERM
NP (S\NP)/NP NP

If FORMULA then FORMULA
(S/S)/S S (S\(S/S))/S S

Anumber of further atomic and partial categories are defined in the grammar
for mathematical expression types in order to account for more complex
interactions between mathematical notation and the linguistic material within
which it can be embedded. We will return to these in Section 6.1 (p. 206). The
choice of syntactic categories associated with mathematical expression tokens
was guided by analysing syntactic contexts in which mathematical expressions
are used in our corpora and in mathematical textbooks and publications.

The semantic language Aside from syntactic analysis, the parsing frame-
work we use to analyse proof language builds semantic representations of the
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input utterances. The semantic forms reflect the tectogrammatical structure of
the utterances and are encoded using a formal language capable of capturing
the relational nature of the tectogrammatical dependency representations.
The linguistic meaning, built in parallel with the syntactic derivation, is

represented using Hybrid Logic Dependency Semantics (Baldridge and Kruijff,
2002, 2003). HLDS is a fragment of the language of hybrid logic (Blackburn,
2000) developed specifically to represent natural language semantics in terms
of dependency relations. In this work we do not use HLDS as logics; we use it
merely as a representation language for the relational structures of dependency-
based semantics. Dependency relations of tectogrammatical structures are
encoded as modal relations, denoted with the modal logic operator 〈〉. Each
dependent is associated with a nominal, d, which also represents its discourse
referent. Predicates, tectogrammatical PREDs, correspond to propositions
and form the head, h, of HLDS terms. The notation is illustrated below
(after (Baldridge and Kruijff, 2002)):

@h(proposition ∧ 〈δi〉(di ∧ depi))

δ ranges over the set of tectogrammatical relations, a referent di is created
for each autosemantic lexeme, depi, at the tectogrammatical level. Given
this notation, the linguistics meaning of the sentence ‘‘Ed read a red book in
London’’ is represented as:

@h(read ∧ 〈Actor〉(d0 ∧ ed)
∧ 〈Patient〉(d4 ∧ book ∧ 〈GeneralRelation〉(d3 ∧ red))
∧ 〈Location〉(d6 ∧ london))

As explained earlier, the linguistic meaning of an utterance is context-
and domain-neutral: it represents the literal interpretation of the utterance
semantics. That is, the semantic representations built at the parsing stage do
not contain any information as to how the utterance is to be interpreted in the
context of the given domain. In order to place the meaning representations in
the context of the proving task and the domain of mathematics, the elements of
the semantic representations, the terms and relations of the logical forms, are
further interpreted using lexical and domain-specific resources.

5.2.3.2 Domain interpretation
The interpretation process in our approach gradually enriches (‘‘annotates’’) the
linguistic meaning representations with information stemming from domain
resources. Interpretation is a stepwise procedure in which predicates and
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Table 5.4: Example entries from the semantic lexicon

TR structure Lexical meaning
(equalPRED, Actorx, Patienty) := (Equality, Objectx, Objecty)
(holdPRED, Actorp) := (Claim, p)
(FORMULAPRED,p) := (Claim, p)
(Criterionx) := (Evidence, x)
(p1PRED, Reasonp2) := (Reason, p1, p2)
(p1PRED, Conditionp2) := (Condition, p1, p2)

relations of the tectogrammatical dependency representations are assigned
domain- and task-specific semantics. Task-specific interpretation concerns the
meaning in the context of the task of theorem proving, while by domain-specific
semantics we mean semantics in the context of the mathematical domain(s)
with which the given proof is concerned; set theory or binary relations in the
case of our two corpora.
First, semantemes and relations of the tectogrammatical frames are mapped

to concepts through a language-specific semantic lexicon. The mapping serves
either to assign the elements of tectogrammatical frames predicates and roles
which denote domain concepts, or provides procedural ‘‘meaning recipes’’ for
computing lexical meanings. This is done by associating dependency frames
output by the parser with linguistically-motivated domain-relevant conceptual
frames represented in a semantic lexicon. The input structures of the semantic
lexicon are described in terms of tectogrammatical valency frames of lexical
items which evoke given concept(s) or in terms of information on which
elements of dependency structures need to be retrieved in order to recover
the lexical meaning. The output structures are either the evoked concepts
with roles indexed by tectogrammatical frame elements or results of executing
‘‘interpretation scripts’’, operations on dependency structures which enable to
recover the lexical meaning. Where relevant, sortal information for role fillers
is also given. Example basic entries from lexicon are shown in Table 5.4.
Consider the fourth and fifth entries: the Criterion tectogrammatical relation
introduces the concept of Evidence, with the dependent in theCriterion relation
expressing the actual evidence according to which the head proposition holds,
the Reason tectogrammatical relation is interpreted as expressing a Reason for
an eventuality, with the daughter dependent actually specifying the reason.
An example of a procedural recipe is the representation of the adjective
‘‘gemeinsam’’ (common) or of the semantically complex adverb ‘‘umgekehrt’’
(the other way (a)round) which will be shown in Chapter 6.
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Next, the concepts are interpreted within the mathematical domain us-
ing a manually constructed intermediate domain model. The model is a
linguistically-motivated domain ontology, a hierarchically organised repre-
sentation of domain objects and relations along with their properties, which
enables limited reasoning about relations between objects; for instance, type
checking. It provides a link between the conceptual frames evoked by lexical
items encoded in the semantic lexicon and domain-specific (here: mathe-
matical) concepts. For instance, the concept of Evidence is linked via the
relations ontology to the relation Justification in the mathematical domain
of proofs. The purpose of the ontology as an intermediate representation is also
to mediate between the discrepant views of linguistic analysis and deduction
systems’ representation (see also the discussion in (Horacek et al., 2004)).
The domain-specific objects from the ontology could be, in principle, further
linked to their logical definitions in a mathematical knowledge base, such as
MBase (Kohlhase and Franke, 2001).14 The motivation for using an intermedi-
ate representation instead of directly accessing a mathematical knowledge base
will become clear when we discuss imprecision and ambiguity in Section 6.2.
More details on the domain model and examples of the modelled objects and
relations will be also presented in Chapter 6.

To summarise, as a result of the interpretation process, semantic dependency
structures of input contributions are ‘‘annotated’’ with gradually more specific
semantic information first at the level of domain-independent concepts, and
then (possibly ambiguous) domain-specific interpretations. Two points need to
be kept inmind: First, if multiple readings are found, the language interpretation
module alone is not in a position to identify the one that is plausible in the given
proof context. In particular, linguistic meaning ambiguity may lead to both
logically correct and incorrect proof steps. (Consider, for instance, the utterance
‘‘FORMULA if and only if FORMULA and FORMULA’’.) All parses are
assigned an interpretation by the language understanding component and are
passed on to a reasoner. It is also plausible to assume that disambiguation could
be performed at the dialogue level, before evaluation, by asking an explicit
clarification question. In the case of a structurally ambiguous pattern such as
‘‘FORMULA if and only if FORMULA and FORMULA’’, the system could
ask, for instance, ‘‘Do you mean ‘... if and only if ... and moreover ... holds’ or
‘... if and only if both ... and ... hold’?’’ In the dialogue in which the utterance
‘‘... genau dann wenn ... und ...’’ appeared, the tutor did not clarify the intended
reading and accepted the proof step, that is, cooperatively assumed that the
14This link has not been realised as part of this thesis.
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correct interpretation was intended. (Or, possibly, did not even realise that
ambiguity was present.) For a tutoring system, one option would be to take the
same strategy: if at least one reading yields a correct step, this reading could
be assumed to be intended. Another option would be to leave the decision
whether to accept an ambiguous step to the pedagogical module which could,
in turn, refer to its student model to decide on appropriate action. Modelling
this decision is outside of the scope of this thesis.
Second, within the annotated HLDS terms only the linguistically realised

content is represented and the language processing system is not in a position
to reason about its validity nor to fill in omitted proof step components.
However, the annotated dependency structures can be transformed (rewritten)
into representations for further processing, for instance, by an automated
theorem prover. In the tutoring system’s architecture presented in Section 1.2
this is the task of the Proof representation processing module (see p. 39).

5.3 A walk-through example

As an illustration of the interpretation process, we give a step by step analysis
of utterance (6), reproduced below, which is a typical utterance from C-I:

(69) K(A ∪B) ist laut DeMorgan-1K(A) ∩K(B)
K(A ∪B) is according to DeMorgan-1K(A) ∩K(B)

As a result of preprocessing, the utterance is transformed into a form that
abstracts away from the mathematical expressions and concrete domain terms:

TERM ist laut DOMAINTERM TERM

The categories, encoded in the grammar, which correspond to the words in the
utterance are:

TERM := NP
ist := ((S\NP)/NP)/(S/S)
laut := (S/S)/NP
DOMAINTERM := NP

The abstracted form is parsed using the CCG parser as follows:

TERM
NP Lx

ist
((S\NP)/NP)/(S/S) Lx

laut
(S/S)/NP Lx

DOMAINTERM
NP Lx

S/S
>

(S\NP)/NP
> TERM

NP Lx

S\NP
>

S <
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The linguistic meaning representation constructed by the parser consists of
the German copula, ‘‘ist’’, with the symbolic meaning equal as the head
of the dependency structure, and three dependents in the tectogrammatical
relations Actor, Criterion, and Patient. The HLDS term corresponding to this
dependency structure is shown below:

@i(equal ∧ 〈Actor〉(d1 ∧ TERM)
∧ 〈Patient〉(d5 ∧ TERM)
∧ 〈Criterion〉(d4 ∧ DOMAINTERM))

Stepwise domain meaning assignment proceeds as follows: First, based on the
semantic lexicon, a concept Equality is assigned to equal, with the Actor and
Patient dependents as relata, and the Criterion dependent is interpreted as an
Evidence. Next, Equality, in the context of set theory TERMs, is interpreted
as Set equality, and Evidence, in the context of theorem proving, as a
Justification in a proof step. A simplified presentation of the entire
interpretation process is shown schematically in Figure 5.7 (p. 202).

5.4 Summary

This chapter outlined an architecture for processing informal mathematical
proof discourse such as that found in tutorial dialogues. The design of the
architecture was motivated by the goal of processing not only students’ input in
tutorial dialogues, but also narrative discourse such as that found in textbooks
or mathematical publications. This goal has been achieved by modularisation
of the system’s components while taking into account the peculiarities of
mathematical language: its two ‘‘modes’’ (natural language interleaving with
mathematical notation) and the presence of technical vocabulary (single and
multi-word domain terms). While mathematical notation itself is analysed by a
dedicated module and not by the natural language parser, the information iden-
tified by the mathematical expression parser is used to encapsulate the specific
instances of notation in terms of pseudo-lexemes, denoting the expressions’
types, which are encoded in the natural language parser’s lexicon. Likewise,
specialised terminology is recognised by a dedicated module and domain term
instances are encapsulated in pseudo-lexemes. Modularisation of this kind
facilitates efficient management of system resources: depending on the math-
ematical subarea of discourse, an appropriate mathematical expression parser
or domain lexicon can be integrated without changes to the overall system. By
abstracting over the symbolic notation and domain terminology we moreover
ensure that the adaptation of the natural language parser when switching to
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K(A ∪ B) ist laut DeMorgan-1 K(A) ∩K(B)

↓ preprocessing

TERM ist laut DOMAINTERM TERM

↓ syntactic and semantic parsing

TERM ist laut DOMAINTERM TERM
NP ((S\NP)/NP)/(S/S) (S/S)/NP NP NP

equalPRED

Actor Criterion Patient

TERM DOMAINTERM TERM

↓ semantic lexicon

equalPRED
[

(Equality(Actor, Patient))
]

Actor
Criterion
[

Evidence
]

Patient

TERM DOMAINTERM TERM

↓ domain interpretation

equalPRED
[

(Equality(Actor, Patient))
(Set equality(Actor, Patient))

]

Actor
Criterion
[

Evidence
Justification

]

Patient

TERM DOMAINTERM TERM

Figure 5.7: Interpretation process for the utterance ‘‘K(A ∪ B) ist laut
DeMorgan-1K(A)∩K(B)’’ (notation, semantic lexicon, and ontology entries
simplified)
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a new mathematical domain is limited as much as possible to extending the
parser’s coverage of syntactic constructions, rather than its vocabulary, thus
minimising out-of-vocabulary parser errors. As we will show in Chapter 7
this approach and the choice of categorial grammar over a simpler formalism
results in good scalability of the parsing process.
The basic processing strategy presented in this chapter covers the most

prominent language phenomena found in mathematical utterances: (i) the most
common syntactic categories of mathematical expressions embedded within
natural language utterances: terms as nouns or noun phrases and formulas as
sentences/clauses, (ii) the basic syntax of mathematical language found in our
corpora as well as in typical textbook proofs (for instance, constructions such
as ‘‘Wenn FORMULA dann FORMULA’’ (If FORMULA, then FORMULA)
or ‘‘Deshalb FORMULA’’ (Therefore, FORMULA)), (iii) the basic syntactic
categories of the most frequent verbal constructions (such as ‘‘gelten’’ (hold)
or ‘‘(gleich) sein’’ (be equal (to)), etc.), and (iv) the semantics of constructions
which can be directly interpreted in the context of proofs and within the
domains of naïve set theory and binary relations (for instance, the Criterion or
Reason relations, which need to be interpreted as a justification of a proof step,
or the meaning of basic verbal constructions, such as those mentioned above).
However, themixed, natural and formal-symbolic, language and the informality
of the mathematical discourse in our setting require extensions to the basic
analysis strategy in order to account for a wider range of linguistic phenomena
and, in particular, to enable cooperative interpretation. By ‘‘cooperative’’ we
mean that, for instance, certain non-canonical syntactic structures or domain-
specific readings of common words should be interpreted without resorting
to signalling non-understanding, requesting repair, or entering a clarification
subdialogue. The next chapter presents details on processing a subset of
language phenomena found in our corpora and the resources constructed for
cooperative interpretation of imprecise language.





Chapter 6

Modelling selected language phenomena
in informal proofs

In this chapter we show how selected phenomena identified in the students’
contributions can be modelled. As we have shown in Chapters 3 and 4 students’
language is complex, rich in linguistic phenomena, and diverse. Modelling
all the linguistic phenomena found in our data is out of a scope of one thesis.
The selection included in this chapter was motivated by two factors: First,
we address those phenomena which systematically recur and are critical for
automated proof tutoring, the core scenario and motivation for this thesis,
to be feasible. This includes modelling basic syntactic phenomena (German
word order in recurring constructions in mathematics, the mixed language, and
the syntactic irregularities characteristic of our domain) and basic semantic
imprecision phenomena. Second, we also selected a number of interesting
phenomena, which are not as highly represented in our corpora, but which
did occur, suggesting that they might also reappear in new or other corpora
(semantic reconstruction of a certain contextual operator, reference to symbolic
notation and propositions, and mathematical expression correction). Because
our data is sparse, we designed preliminary algorithms and evaluated them
in proof-of-concept evaluations or conducted corpus studies as preliminary
step towards algorithm development. The chapter shows that the processing
methodology we adopted, in particular, deep parsing using categorial grammars
which build domain-independent linguistic meaning representations of the
analysed input, lends itself well to modelling a number of phenomena found in
students’ informal mathematical language. Material presented in this chapter
has been published in the following articles: (Wolska et al., 2004a; Wolska
and Kruijff-Korbayová, 2004a; Gerstenberger and Wolska, 2005; Horacek
and Wolska, 2005a,c; Wolska and Kruijff-Korbayová, 2006b; Horacek and
Wolska, 2006a,b,c).
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6.1 Syntactic phenomena

The scope of the implemented parser resources, the vocabulary and syntactic
categories, are limited to the language in our corpora. Methods of modelling
syntactic phenomena – basic German word order, incomplete mathematical
expressions used as a form of shorthand for natural language, scope phenomena
involving parts of mathematical expressions, and the use of spoken-language
syntax to verbalise mathematical expressions – are outlined below.

6.1.1 Basic German word order in Combinatory Categorial
Grammar

German is typically described as a ‘‘verb-second’’ language. The placement
of the finite verb depends on the clause type (main vs. dependent) and the
sentence mood (declarative vs. interrogative vs. imperative). Three types of
clauses can be distinguished with respect to the finite verb position: verb-initial,
verb-second, and verb-last clauses.
In declarative main clauses, such as (70) below, and wh-questions, (71), the

finite verb is in the ‘‘second’’ position. It need not be literally the second word
in the sentence, as (70) illustrates, but the second macrostructural element
(more on this in the section on the Topological Field Model):

(70) Der Mann fuhr den Wagen vor.
The man brought the car round.

(71) Wer fuhr den Wagen vor?
Who brought the car round?

The matrix clause of yes/no questions, (72), and alternative questions as well as
imperatives, (73), are verb-first, that is, their finite verb is in the sentence-initial
position:1

(72) Hat der Mann den Wagen gefahren?
Did the man drive the car?

(73) Fahre den Wagen!
Drive the car!

Other clause types in which finite verbs occur in the first position include verb-
initial conditionals, hypotheticals, and formal concessive clauses not introduced
by a conjunction (corresponding to the English forms ‘‘Should..., ...’’).
1An exception are intonation questions, as in ‘‘Du hast den Wagen gefahren?...’’ (You drove the
car?...), which may be meant ironically.
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Finally, subordinate adverbial clauses, (74), relative clauses, (75), and
complementation clauses, (76), exhibit the verb-last pattern:

(74) Wenn Du willst, kannst Du den Wagen fahren.
If you want, you can drive the car.

(75) Maria fährt den Wagen, den der Mann gefahren hat.
Maria is driving the car that the man drove.

(76) Ich glaube, daß Maria den Wagen fahren kann.
I think Mary can drive the car.

Topological Field Model
German clauses are traditionally analysed in terms of topological fields,
syntactic macrostructures delimited by verbal elements (a finite verb or a
verb complex) or clause markers (for instance, a complementiser, a wh- or
relative pronoun). The Topological Field Model proposed by Höhle (1983)
is a linguistically-motivated theory-neutral description of the macrostructure
of the clause, which characterises the clause not from the point of view of
phrase structure, but from the point of view of the distributional properties
of constituents in the clause with respect to the finite verb. The basic model
divides clauses into five macrostructural elements: the Vorfeld (pre-field),
the Linke Klammer (left bracket), the Mittelfeld (middle field), the Rechte
Klammer (right bracket), and the Nachfeld (post-field).
Table 6.1 (p. 208) shows the elements of the model and the placement

of the different constituent types within the macrostructure.2 In verb-initial
and verb-second clauses, the finite verb occupies the Linke Klammer field.
In the verb-final clauses, the finite verb occupies the Rechte Klammer. Not
all the fields have to be occupied in a sentence and certain elements are
optional. For certain fields there are restrictions on the number and type of
constituents which can occur. For instance, German grammar rules restrict
the number of constituents in the Vorfeld to at most one. In main declarative
clauses this can be an argument of the finite verb, an adjunct, or, in case
of complex sentences, a fronted dependent clause. The latter are frequent in
mathematical discourse (consider, for instance, ‘‘weil’’-clauses or conditional
clauses without the subordinating conjunction). In case of adjuncts of the
same semantic type, a cluster of adjuncts is also allowed in the Vorfeld.3

2From (Wöllstein-Leisten et al., 1997, p. 53).
3In certain cases complements of different semantic types may also be fronted together, as in the
following sentence from (Müller, 2003): ‘‘Zum zweiten Mal die Weltmeisterschaft errang Clark
1965...’’ (For the second time Clark became the world champion in 1965...). The temporal
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In complex sentences, the model is applied to each clause individually:
iteratively in paratactically conjoined clauses and recursively in hypotactically
conjoined clauses. Table 6.2 (p. 208) shows the topological field analysis of
the sentences (72) through (76). For the sentences (74) through (76) both
the analysis of the main clauses (marked with ‘‘m’’) and of the subordinate
clauses (‘‘s’’) are shown to demonstrate the recursivity of the model in
embedded clauses. Examples (77) and (78) below illustrate the word order
phenomena based on utterances from the corpora:

(77) [K(A ∪B) ist laut DeMorgan-1K(A) ∩K(B) ]V2
(78) [ [ Wenn alle A in K(B) enthalten sind ]VL und [ dies auch umgekehrt

gilt ]VL, ]VL [ muß es sich um zwei identische Mengen handeln ]V2

Modelling German word order in CCG
Work on Combinatory Categorial Grammars for Germanic languages often
focuses on addressing linguistic phenomena peculiar to this language family,
such as cross-serial dependencies in Dutch; see, for instance, (Steedman, 2000).
Verb argument fronting has been also discussed, however, for languages like
German and Dutch, the phenomenon of fronting concerns not only verb
arguments, but also free modifiers (adverbs, adverbial prepositional phrases,
etc.) which exhibit the same syntactic behaviour. This phenomenon has
been rarely addressed in CCG accounts. Partial free word order in Germanic
languages has been modelled by employing language specific combinatory
rules. Steedman (2000) and Baldridge (2002) show accounts of verb argument
fronting and free modifiers in the sentence-medial position, however, a way of
controllingmultiple constituents in the sentence-initial position is not shown for
free modifiers. The Bielefeld German CCG for human–robot dialogue employs
a counting mechanism to check the number of fronted verb arguments as a way
for testing which clause type has been derived: if no argument has been fronted
then a verb-initial clause has been derived, if there is only one argument fronted
then the derived clause is verb-second, etc. (Hildebrandt et al., 1999; Vierhuff
et al., 2003). Again, optional adjunct and free modification fronting is not
addressed. Carpenter (1998) does account for adverbial fronting by compiling
context-specific syntactic categories into the lexicon with appropriate features
to control derivation. The approach we present is similar, however, while

adverbial ‘‘zum zweiten Mal’’ (for the second time) and a Goal dependent of the verb (reach),
‘‘die Weltmeisterschaft’’ (the world championship), both occur in the Vorfeld here. There are a
number of further exceptions to the single Vorfeld constituent rule which account for syntactically
marked topic–focus realisation. See, for instance (Müller, 1999; Müller, 2003) for a detailed
discussion.
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Carpenter populates verb categories by instantiating them for every licensed
fronting configuration, our approach attempts to minimise the number of
context-specific lexical entries via generalisation exploiting topological field
information and a rich set of features marking verb, conjunction, and adjunct
categories. In recent work, Vancoppenolle et al. (2011) employ language speci-
fic topicalisation rules (type changing rules) which derive verb-second order
from verb-first order by fronting a verb argument or an infinitival clause, which
allows them to reduce the number of lexical entries even further. Our approach
is simpler in that introducing topological field information into the CCG ana-
lysis constrains derivations directly in the lexicon. Taking into account clause
bracketing formed by the verbal elements (shown in Table 6.2), we model the
CCG lexicon in such way that, where relevant, syntactic categories incorporate
information about the topological fields of adjacent categories. The following
sections outline the basic principles of our lexical category description.

Verb categories In main declarative clauses, the Vorfeld must be non-
empty and the number of constituents occupying it is restricted to one. (Recall
Footnote 3 on exceptions though). In order to account for these constraints, we
mark verb categories, among others, with attributes which indicate the clause
type (cl-type): main vs. subordinate, and the status of the Vorfeld (VF). The
attribute VF takes values from the set {+,−}, where ‘‘−’’ indicates that there is
no material in the VF and ‘‘+’’ indicates that a verb taking the given category
expects material in its left context. Different word order configurations are
compiled into the lexicon of the grammar. For example, the syntactic signs of
a transitive verb, such as ‘‘fahren’’ (drive) are the following:4

fuhr := S
[
VF : +, cl-type : main

]
\NPActor/NPPatient (for SVO word order)

S
[
VF : +, cl-type : main

]
\NPPatient/NPActor (OVS)

S
[
VF : −, cl-type : main

]
/NPActor/NPPatient (VSO)

S
[
VF : −, cl-type : main

]
/NPPatient/NPActor (VOS)

S
[
cl-type : subord

]
\NPPatient\NPActor (SOV)

S
[
cl-type : subord

]
\NPActor\NPPatient (OSV)

The first two entries account for fronting verb arguments, the next two allow
constituents other than arguments (such as adjuncts, subjunctions, etc.) to
occupy the Vorfeld. The last two entries model subordinate clauses. Since
subordinate clauses are always verb-last there is no need to control the status
of the Vorfeld which in this case is always either empty – see (74s) and (76s)
4A number of attributes, such as, person, number, tense, case of the arguments, etc. have been
omitted to simplify the presentation.
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s{cl-type=main, tense=past, num=sg, pers=3rd, vform=fin, VF=+} :
@w2(fahren ^ <Actor>(w1 ^ Mann) ^ <Patient>(w4 ^ Wagen))
------------------------------
(lex) np/^np : @X_0(<det>def)
(lex) np : (@X_6(Mann) ^ @X_6(<num>sg))
(>) np : (@X_0(Mann) ^ @X_0(<det>def) ^ @X_0(<num>sg))
(lex) s{cl-type=main, tense=past, num=sg, pers=3rd, vform=fin, VF=+}

\np{case=nom, num=sg, pers=3rd}/^np{case=acc}
: (@E_12(fahren) ^ @E_12(<Actor>X_12) ^ @E_12(<Patient>Y_12))

(lex) np/^np : @X_18(<det>def)
(lex) np : (@X_24(Wagen) ^ @X_24(<num>sg))
(>) np : (@X_18(Wagen) ^ @X_18(<det>def) ^ @X_18(<num>sg))
(>) s{cl-type=main, tense=past, num=sg, pers=3rd, vform=fin, VF=+}

\np{case=nom, num=sg, pers=3rd}
: (@E_12(fahren) ^ @E_12(<Actor>X_12) ^ @E_12(<Patient>X_18)

^ @X_18(Wagen))
(<) s{cl-type=main, tense=past, num=sg, pers=3rd, vform=fin, VF=+}

: (@E_12(fahren) ^ @E_12(<Actor>X_0) ^ @E_12(<Patient>X_18)
^ @X_0(Mann) ^ @X_18(Wagen))

Figure 6.1: Logical form and derivation of the sentence ‘‘Der Mann fuhr den
Wagen’’ (OpenCCG output; some parts of derivation omitted for the sake of
readability; see p. 197 for the explanation of the semantic notation)

in Table 6.2 – or occupied solely by the relative pronoun – see (75s) in the same
table. The derivation of a simple SVO sentence ‘‘Der Mann fuhr den Wagen’’
(The man drove the car), shown in Figure 6.1, reflects the attribute marking
introduced by the verb entry: the status of the Vorfeld is occupied (VF : +) and
the clause type is main (cl-type : main). The grammar is also be able to parse the
string ‘‘der Mann den Wagen fuhr’’, however the cl-type value of the resulting
structure will be subord, indicating a subordinate clause structure.

Conjunction categories The same mechanism is used to model complex
sentences with recursive embedding. Given the marking on verb categories,
we model subjunctions such as ‘‘wenn’’ (if ), ‘‘weil’’ (because), see (74s) in
Figure 6.2, by setting their syntactic categories as follows:

wenn := S
[
VF : +

]
\S
[
VF : +, cl-type : main

]
/S
[
cl-type : subord

]
S
[
VF : +, cl-type : main

]
/S
[
VF : −, cl-type : main

]
/S
[
cl-type : subord

]
S
[
cl-type : subord

]
/S
[
cl-type : subord

]
/S
[
cl-type : subord

]
S
[
cl-type : subord

]
\S
[
cl-type : subord

]
\S
[
cl-type : subord

]
A subordinating conjunction may occur in a sentence medial position (subordi-
nate clause follows the main clause as in ‘‘Du kannst den Wagen fahren, wenn
du willst’’) or in a sentence initial position (the subordinate clause precedes
the main clause as in ‘‘Wenn du willst, kannst du den Wagen fahren’’). These
configurations are modelled by the first two entries. The last two entries



212 Students’ Language in Computer-Assisted Tutoring of Proofs

account for recursive embedding of subordinate clauses, as in ‘‘Wenn... ,...,
weil...’’; see Section 3.2.2.3 (p. 119) for further examples.

Adverb categories In main declarative clauses the Vorfeld must be non-
empty. Consider the sentence ‘‘Der Mann schenkt seiner Frau jetzt einen
Wagen’’ (The man is giving his wife a car for a present now). A subset of all
word order variants of the sentence, including the unmarked syntax with the
subject in the Vorfeld, are shown below:5

Der Mann schenkt seiner Frau jetzt einen Wagen
Seiner Frau schenkt der Mann jetzt einen Wagen
Einen Wagen schenkt der Mann jetzt seiner Frau

Jetzt schenkt der Mann seiner Frau einen Wagen
*Jetzt seiner Frau/einen Wagen schenkt der Mann einen Wagen/seiner Frau
*Seiner Frau/Einen Wagen jetzt schenkt der Mann einen Wagen/seiner Frau

*Jetzt der Mann schenkt seiner Frau einen Wagen
*Der Mann jetzt schenkt seiner Frau einen Wagen

...

The first four variants of the sentence are grammatically valid. Each of the
three arguments of the ditransitive verb ‘‘schenken’’ (give as a present) as well
as any optional adjunct can occupy the Vorfeld. More than one constituent in
the Vorfeld (one or more verb arguments and a temporal adverb), as in the
remaining variants, are not grammatically valid. The Rechte Klammer and the
Nachfeld of the sentence remain empty.
In order to account for fronting elements other than verb arguments, the

marking on the verb categories is complemented by a corresponding feature on
the categories of word classes which can be fronted. The syntactic categories
of adverbials, for instance, are set as follows:

ADV := S
[
VF : +

]
\S
[
VF : +

]
S
[
VF : +

]
/S
[
VF : −

]
The first entry accounts for sentence medial and final adverb placement. The
second entry accounts for adverbial fronting while ensuring that the finite verb
immediately follows the fronted adverb. The unification mechanism guarantees
that only those verb categories which are marked as [ VF : - ] can combine with
an adverb with the same marking, disallowing further fronted elements; see
the third and fourth entries of the example category for the transitive ‘‘fuhr’’
(drive) on page 210.
5Ungrammatical sentences are marked as usual with an asterisk.



MODELLING SELECTED LANGUAGE PHENOMENA IN PROOFS 213

6.1.2 Mathematical expressions in the context of
scope-bearing words

In order to account for interactions between symbolic mathematical expressions
and natural language scope-bearing words, such as determiners, quantifiers,
negation, etc., in their cotext, as illustrated with example (20) (p. 121),
we identify salient structural parts of mathematical expressions that may be
modified by natural language words which precede them. Each mathematical
expression is reinterpreted in terms of these substructures by assigning them
types of partial expressions. These categories are then combined with the
surrounding linguistic context in the course of parsing.
Consider the example (20) reproduced below:

(79) B enthaelt kein x ∈ A

The expression x ∈ A, while in isolation has a surface form of a formula
(truth-valued type), in the context of the sentence has the reading of a
post-modified noun phrase ‘‘x which is in A’’ (object-denoting type). This
is a systematic phenomenon involving scope-bearing modifiers in the left
context of expressions of type FORMULA. Based on this observation, we
obtain the intended reading by considering two systematically relevant salient
substructures of mathematical expressions: the subexpressions directly below
the top node in the expression’s tree. (Recall the discussion in Chapter 3
Section 3.2.1.2 (p. 95) and Section 3.2.2.3 (p. 121).) For each expression of
type FORMULA we produce two additional readings:

TERM _FORMULA where TERM denotes the expression left of the top-
node operator and _FORMULA denotes the expres-
sion consisting of the top-node operator and the ex-
pressions to its right

FORMULA_ TERM where FORMULA_ denotes the expression consisting
of the top-node operator and the expressions to its left
and TERM denotes the expression right of the top-
node operator

The underscore notation indicates an incomplete expression which requires
material in the left (_FORMULA) or right context (FORMULA_). In the case
of the expressionx ∈ A, the two readings are TERM:=‘‘x’’, _FORMULA:=‘‘∈
A’’ and FORMULA_:=‘‘x ∈’’, TERM:=‘‘A’’.
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The corresponding syntactic categories for lexicon entries of mathematical
expression types are:

TERM := NP
N

FORMULA := S
_FORMULA := NP\NP

The category NP\NP is analogous to the resulting category of a restrictive (defin-
ing) relative clause and its semantics is ‘‘which is _FORMULA’’ (which could
be also read as a ‘‘such that’’-clause: ‘‘such that TERM is _FORMULA’’). The
corresponding category for FORMULA_ would be NP/NP, however, we did not
find contexts in which partial expressions of this type would be relevant.
Each of the above readings is embedded within the original cotext in

the course of preprocessing. (Recall the general architecture of the system
presented in Section 5.2, p. 180):

TERM enthaelt kein FORMULA
TERM enthaelt kein TERM _FORMULA

Following this preprocessing, multiple readings of the sentence are interpreted
(parsed). The first reading will fail because the category of ‘‘kein’’ (NP/NP) is
not compatible with the category FORMULA (S), given prior type declarations,
leaving the intended reading of (79) obtained through syntactic reinterpretation
of the original formula.

6.1.3 Mathematical expression fragments
In order to account for mathematical expressions used as shorthand for natural
language, as in (22), reproduced below,

(80) A ∩B ist ∈ von C ∪ (A ∩B)
A ∩B is ∈ of C ∪ (A ∩B)

both the mathematical expression and the natural language parser are adapted
to support incomplete mathematical expressions and their interactions with the
surrounding natural language text. To this end, the mathematical expression
analysis process identifies incomplete expressions using knowledge of syntax
and semantics of formal expressions in the given mathematical domain and
assigns them symbolic tokens representing incomplete expression types.
In the case of (80), the mathematical expression parser identifies the sym-

bol, ∈, and, based on its knowledge of symbols in set theory, it finds that it is a
formula-forming operator requiring two arguments: one of type Inhabitant



MODELLING SELECTED LANGUAGE PHENOMENA IN PROOFS 215

and the other of type Set. The symbol is assigned a symbolic token _FOR-
MULA_ and the utterance is preprocessed as:

TERM ist _FORMULA_ von TERM

In line with the lexicalised grammar approach, incomplete mathematical ex-
pressions as categories are modelled in the lexicon by compiling non-canonical
constructions into the grammar; that is, symbolic tokens for incomplete ex-
pressions are included in the CG lexicon as pseudo-lexemes with appropriate
syntatic categories. The entry for _FORMULA_ in the parser’s lexicon for the
occurrence above corresponds to the relational noun reading, ‘‘element (of)’’:

_FORMULA_∈ := NP/PP
[
lex : von

]
Other kinds of incomplete mathematical expressions and their types are treated
in a similar way: by identifying their incomplete type (which is used as token
during parsing) and introducing a corresponding entry in the parser’s lexicon.

6.1.4 Irregular syntax
With utterance (23), reproduced below, we illustrated the use of domain-
specific syntax while verbalising a formal expression in natural language:

(81) wenn A vereinigt C ein Durchschnitt von B vereinigt C ist, dann
müssen alle A und B in C sein
If A union C is equal to intersection of B union C, then all A and B must be in C

The past participle ‘‘vereinigt’’ (unified) is normally used in a verbal prepo-
sitional construction: ‘‘vereinigen mit’’ + Dat. (unify with). The construction
‘‘A vereinigt B’’ is, however, commonly used in spoken verbalisation of the
term A ∪ B. (Recall the discussion on verbalisation of symbolic notation in
Section 3.2.1.2, p. 100) In order to account for this kind of domain-specific
constructions, appropriate syntactic categories for domain-specific lexemes
are introduced into the parser’s lexicon. In this case, the lexical entry for
‘‘vereinigt’’ includes a reading analogous to that of a mathematical operator,
_TERM_, an incomplete term requiring terms to its left and right. The parser’s
lexicon includes the following syntactic category for the lexeme ‘‘vereinigt’’:

vereinigt := NP\NP/NP

Note that this category also enables parsing constructions such as ‘‘die Menge
A vereining B’’ (the set A union B) with two readings: [[the set A] [union]
[B]] and [[the set [A unionB]]]. Of course, the lexicon also includes canonical
categories for ‘‘vereinigt’’ as past participle.
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6.2 Semantic phenomena
Out of the semantic phenomena illustrated in Section 3.2.2.4 (p. 124) we
focus on ambiguity introduced by imprecise language and on computational
reconstruction of the semantics of ‘‘the other way round’’. Imprecision of the
kind we address here is frequently found not only in students’ language, but also
in mathematical textbooks, thus prioritising its modelling is well justified; see
discussion in Section 3.2.2.4. The contextual operator is interesting because of
its complexity and because a non-standard and non-trivial semantic procedure
is needed to reconstruct its meaning. Moreover, to date, the literature on
semantic and pragmatic factors in the use of ‘‘the other way round’’-like
operators is scarce and there is little work on its computational modelling.

6.2.1 Imprecision and ambiguity
In Section 3.2.2.4 (p. 125 ff) we illustrated imprecise language which students
use to refer to domain concepts precisely defined in mathematics; for instance,
the subset relation is phrased using the verb ‘‘enthalten’’ (contain) (see
example (20), p. 121) and the property of sets being disjoint is phrased using
the word ‘‘verschieden’’ (different) (example (31), p. 126). Interpretation of
imprecise and ambiguous language requires associating the linguistic meaning
representations with plausible interpretations within mathematical domain. We
model imprecise language in two stages: First, we extend the semantic lexicon
with predicates which represent the semantics of imprecise, ambiguous, and
informal expressions. Second, we represent the concepts in a domain ontology
as generalisations of specific mathematical concepts. The linguistically-
motivated domain ontology mediates between the lexical representations and
domain interpretations. The two knowledge sources, outlined below, allow us
to obtain the intended (possibly non-unique) domain-specific interpretation.

Semantic lexicon To mediate between the ambiguous linguistic realisa-
tions of domain concepts we use a semantic lexiconwhichmaps the dependency
frames generated by the parser to conceptual frames in a domain ontology (in-
troduced further) or to interpretation scripts. The mapping is represented by
means of rules. The input part of the rules are tuples defining tectogrammat-
ical valency frames, that is, predicates and relations evoked by lexical items.
The output structures are either the evoked concepts with roles indexed by
tectogrammatical frame elements or interpretation scripts, that is, ‘‘recipes’’
for constructing symbolic meaning in the form of quantifier-free first order
representations. Where relevant restrictions on role fillers – surface-lexical
(marked with lex), lexico-semantic (sem), sortal (type), etc. – are specified.
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Basic, most frequently used entries from the semantic lexicon were shown
in Table 5.4 (Section 5.2.3.1, p. 198). Table 6.3 (p. 218) schematically shows
further, more complex entries encoded in the lexicon for the most frequently
recurring concepts relevant when talking about sets: Containment (set inclusion
or membership), Difference (disjoint sets), and Common property (empty/non-
empty intersection); see examples in Section 3.2.2.4 (p. 124). The symbols in
bold are predicates with specific semantics, typewriter script denotes domain
concepts from the domain ontology. (Notation is simplified. Technical
information needed solely for implementation is omitted for readability.) The
illustrated example entries are explained below.
Containment The Containment relation – (a) through (d) – is evoked by the

predicate ‘‘enthalten’’ (contain) or by the Location relation. The
tectogrammatical frame of ‘‘enthalten’’, (a) and (b), involves
Actor and Patient dependents. Two entities are involved in
Containment: Container and Contents. The former role is filled
by the Actor dependent of the tectogrammatical frame and the
latter by the Patient dependent. Containment is also evoked by
the Location relation realised linguistically by a prepositional
phrase with ‘‘in’’, (c), and involving the predicate ‘‘sein’’ (be)
and the tectogrammatical relations Actor (as Contents) and Lo-
cation (Container). Another realisation, (d), dual to the above,
occurs with the adverbial phrase ‘‘außerhalb von (liegen/sein)’’
(lie/be outside of ) and is defined as negation of Containment.
In the domain ontology Containment specialises into the rela-
tions of (strict) Subset and Membership. A different kind of
containment, (b), may be meant if the entities involved are inter-
preted merely in syntactic terms as mathematical expressions,
as in ‘‘The term A ∪ B contains A’’ (a constructed example).
In this case Structural composition is meant and the roles of
the entities involved are those of a Structured object (a com-
plex mathematical expression as the Actor), and a Substructure
(a mathematical expression, complex or atomic, as Patient).

Difference The Difference relation – (e) and (f) – realised linguistically
by the HasProperty TR with the predicative adjective ‘‘ver-
schieden (sein)’’ (be different), involves a plural Actor (here:
coordinated dependents (Coord)). A generalisation of this rule
would involve an arbitrary number of coordinated entities and
a matching number of Object arguments of Difference. This
would also enable interpretation of ‘‘pairwise different’’ (a
constructed example), for instance, by marking an attribute
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pairwise on the relation. The other kind of domain-specific
difference, evoked by the domain term ‘‘disjunkt (sein)’’ ((be)
disjoint) is analysed by means of an interpretation script which
directly constructs the domain-specific interpretation.

Common
property

Having a ‘‘common property’’ – (g) through (i) – can be
interpreted using three interpretation scripts. Pred here are
meta-objects to be instantiated with the meaning of the TR node
on which they are marked; PRED is a predicate head of a TR
structure. The attributes non-rel and rel restrict instantiation to
non-relational and relational predicates, respectively. The first
entry, (g), models the case in which the Patient dependent is
a relational noun and the TR predicate is have, as in one of
the utterances in the corpus: ‘‘[ A und B ]Actor:coord haben
[ gemeinsame Elemente ]Patient:rel,Pred’’ (A andB have common
elements). The second entry, (h), is the case of a non-relational
noun, as in ‘‘[ Peter and Paul ]Actor:coord [ have ]PRED,Pred
[ a common car ]Patient:non-rel’’. The third, (i), covers the
case of a relational noun and a relational predicate, as in
‘‘[ Peter and Paul ]Actor:coord [ see ]PRED:rel,Pred1 [ a common
friend ]Patient:rel,Pred2’’.

Linguistically-motivated domain ontology Domain-specific interpre-
tations of concepts in the semantic lexicon are retrieved from a domain-
ontology. Unlike the model in (Gruber and Olsen, 1994) our ontology is
linguistically-motivated. It is a hierarchically-organised representation of
objects, their properties, and types of property fillers, which serves as an
intermediate representation mediating between imprecisely expressed concepts
and a formal representation of knowledge for reasoning purposes. Horacek
(2001b) and Horacek et al. (2004) motivate why this kind of representation
is needed as an interface when mathematical knowledge is to be presented in
natural language. Our representation is motivated by analogous phenomena on
the language understanding side and, like the model in (Horacek et al., 2004),
closely reflects knowledge representation in the domain reasoner, Ωmega.
In the objects ontology we model, among others, typographical properties

of mathematical objects, including substructure delimiters (such as brackets),
linear orderings (for instance, argument positions with respect to the head
operator), and groupings or delimited substructures (for instance, bracketed
subformulas). In the relations ontologywe model imprecise relational concepts
which have a meaning independent of the mathematical domain, but need to be
interpreted in terms of their domain-specific meaning. Imprecisely expressed
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relations are modelled as general relations which subsume mathematical rela-
tions. The former provides access to substructures of mathematical expressions
as potential antecedents of referring expressions (see Section 6.3.2). The
purpose of the latter is to enable interpretation of ambiguous relations. For in-
stance, in order to interpret an imprecise verb ‘‘enthalten’’ (contain), we model
a relation Containment as a semantic relation in the ontology of relations.
Containment holds between entities if one includes the other as a whole or if
it includes components (elements) individually. This is a generalisation of the
(Strict) Subset and Membership relations in set theory. An ambiguous
lexical item ‘‘enthalten’’ is linked to the ambiguous concept which it evokes
through the semantic lexicon and the concept is in turn given alternative
domain-specific interpretations through the domain ontology; a basic example
of how the meaning assignment is performed was shown in Section 5.3 (p. 200).
Excerpts from the ontologies of objects and relations are shown in Fi-

gures 6.2 (p. 221) and 6.3 (p. 222). Names of objects and relations are
capitalised. Names of properties are in lower-case italics. (To simplify the
presentation, certain constraints on fillers and links between properties are not
shown.) Properties are inherited monotonically. Object specialisation in some
cases introduces further properties (marked with ‘‘+’’) and in other cases,
object properties become specialised (‘‘spec’’). For instance, the property
container of the Containment relation is a more specific instance of the
argument property of Relation propagated through Semantic relation.
Value restrictions on properties are marked with ‘‘restr’’. Restrictions on
number are marked with a number on a property. For instance, the filler of
right argument (specialisation of argument) of Set property is restricted to
be an object of type Set (in the objects ontology) and left argument of Binary
relation must be unique (‘‘1’’).
The objects ontology includes moreover information on mereological

relations between objects (not depicted in the figure for the sake of readability;
we list examples below). Mereological relations concern both physical, surface
properties of objects and ontological properties of objects. Part-of relations
specific to our domain concernmathematical expression substructures (notation
below is: part-of(part, whole); not all objects mentioned here are shown in
Figure 6.2):

part-of(Subterm, Term)
part-of(Bracketed term, Term)
part-of(Term component, Term)
part-of(Subformula, Formula)
part-of(Bracketed formula, Formula)
part-of(Formula component, Formula)
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Figure 6.2: Excerpt of the representation of objects



222 Students’ Language in Computer-Assisted Tutoring of Proofs

Figure 6.3: Excerpt of the representation of relations
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These relations are especially relevant in resolving references to parts of
notation (discussed in Section 3.2.2.5, p. 132; see also further in this chapter).
Consider the commonly recurring fragment ‘‘Dann gilt für die linke Seite,...’’
(Then for the left side it holds that...). From the objects ontology we know that
terms and formulas have sides:

property(Structured object Term, componentside)
property(Structured object Formula, componentside)

The predicate ‘‘gilt’’ (hold) in the context of a prepositional phrase with ‘‘für’’
(for) normally takes two arguments: one of type Structured object Formula
(the formula that holds) and a PP argument of type Structured object Term
or Structured object Formula, rather than an argument which is a property
(side). Using the objects ontology and the reinterpretation rule ‘‘object with
property for property’’ (Section 6.3.2) we can obtain the intended interpretation.

6.2.2 ‘‘The other way round’’ semantics
‘‘The other way round’’ or the German ‘‘umgekehrt’’ is a complex operator
of higher-order, that is, it takes a predicate or predicates as arguments.
In the resulting proposition certain elements of the original proposition are
‘‘swapped’’, that is, the implicit proposition is a transformation of the verbalised
proposition. Recall example (33) from C-I reproduced below:

(82) Wenn alle A in K(B) enthalten sind und dies auch umgekehrt gilt,
muß es sich um zwei identische Mengen handeln
If all A are contained inK(B) and this also holds the other way round, these must be
identical sets

In the above utterance, the other way round is ambiguous in that it may operate
on immediate dependents of the verb ‘‘contain’’, resulting in the reading ‘‘all
K(B) are contained in A’’, or on its embedded dependents, yielding the
reading ‘‘allB are contained inK(A)’’. The fact that the Containment relation
is asymmetric and the overall task context – proving that ‘‘If A ⊆ K(B), then
B ⊆ K(A)’’ holds – suggest that the second interpretation is meant. (Similar
other operators were discussed in Section 3.2.2.4, p. 128)
Human–human interaction frequently exploits the efficiency of implicit-

ness in communication. By contrast, computational understanding of implicit
semantics is non-trivial. Formal reconstruction of implicit meaning requires
inference and resolving ambiguities, which, in turn, requires context under-
standing and domain knowledge in interpretation. Linguistic devices requiring
insertion of omitted content, such as gapping and ellipsis, have been often
addressed with computational approaches, however, there is virtually no work
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addressing structures whose reconstruction requires transformation, such as
‘‘the other way round’’. Chaves (2010) proposed an HPSG-based approach
to modelling vice versa, however, evaluation was not performed. We studied
contexts in which ‘‘the other way round’’-like lexemes occur in a collected
corpus and devised an algorithm for resolving the implicit semantics. The
reconstruction algorithm uses the deep semantic representations produced by
the parser, transforms the semantic representations using patterns, and applies
pragmatically- and empirically-motivated preferences to restrict the number of
candidates. The reconstruction method is outlined in the following sections.

‘‘The other way round’’ data
In order to learn about cross-linguistic regularities in ‘‘the other way round’’
constructions, we collected a corpus of German and English sentences in
which they occurred. Aside from our tutorial dialogue data, the sentences
stemmed from the Negra Frankfurter Rundschau corpora6 and from the Eu-
roparl corpus (Koehn, 2005). The latter we used in a pilot evaluation. A
subset of sentences stemmed also from internet searches. In all the data we
searched for the German phrases ‘‘andersrum’’ and ‘‘umgekehrt’’, and their
English equivalents ‘‘the other way (a)round’’ and ‘‘vice versa’’. Uses of
‘‘umgekehrt’’ as a discourse marker were excluded, as were the cases in which
the transformation needed was of a lexical nature (such as finding an antonym)
and instances of ‘‘andersrum’’ expressing a physical change (such as changing
the orientation of an object; see, for instance, the use of ‘‘umgekehrt’’ in the
Bielefeld corpus7). Example sentences are shown below:

(83) Technological developments influence the regulatory framework
and vice versa.

(84) It discusses all modes of transport from the European Union to these
third countries and vice versa.

(85) Ok – so the affix on the verb is the trigger and the NP is the target.
. . . No; the other way round

(86) Da traf Völler mit seinem Unterarm auf die Hüfte des für Glasgow
Rangers spielenden Ukrainers, oder umgekehrt
Then Völler hit the hip of the Ukrainian playing for Glasgow Rangers with his lower
arm, or the other way round

(87) Nowadays, a surgeon in Rome can operate on an ill patient – usually
an elderly patient – in Finland or Belgium and vice versa.

6http://www.coli.uni-saarland.de/projects/sfb378/negra-corpus[Accessed:2005]
7http://www.sfb360.uni-bielefeld.de[Accessed:2005]

http://www.coli.uni-saarland.de/projects/sfb378/negra-corpus [Accessed: 2005]
http://www.sfb360.uni-bielefeld.de [Accessed: 2005]
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(88) Der Ton der Klarinette ist wirklich ganz komplementär zu den Seitenin-
strumenten und umgekehrt
The clarinet’s tone is really very complimentary to strings and vice versa

(89) Wenn alleA inK(B) enthalten sind und dies auch umgekehrt gilt, muß
es sich um zwei identische Mengen handeln
If all A are contained in K(B) and this also holds vice-versa, these must be identical
sets

(90) Dann ist das Komplement von Menge A in Bezug auf B die Differenz
A/B = K(A) und umgekehrt
Then the complement of set A in relation to B is the difference A/B = K(A) and vice
versa

(91) Ein Dreieck mit zwei gleichlangen Seiten hat zwei gleichgroße Winkel
und umgekehrt
A triangle with two sites of equal length has two angles of equal size, and vice versa

(92) . . . Klarinette für Saxophonist und umgekehrt
. . . a clarinet for a saxophonist and the other way round . . .

(93) Man muß hier das Gesetz der Distributivität von Durchschnitt über
Vereinigung umgekehrt anwenden
One has to apply the law of distributivity of intersection over union in reverse direction

(94) Es gilt: P (C ∪ (A ∩B)) ⊆ P (C) ∪ P (A ∩B). . . . . Nein, andersrum.
It holds: P (C ∪ (A ∩B)) ⊆ P (C) ∪ P (A ∩B). . . . . No, the other way round.

(95) Wir wissen, daß sich Sprachen in Folge von geographischer Separierung
auseinanderentwickeln, und nicht umgekehrt
We know that languages branch out as a result of geographical separation, not the other
way round

Analysis of the examples reveals that ‘‘the other way round’’ appears in
contexts which can be classified in terms of the type of elements which must
be interchanged (‘‘swapped’’) in order to recover the implicit proposition. The
four types of transformations needed to reconstruct the implicit semantics are
summarised in Table 6.4 (p. 226).
Examples (83) through (86) illustrate the Argument swap. The transforma-

tion may be applied to different dependent roles, for instance, Actor and Patient
dependents, as in (83), or Direction-From/To roles, as in (84). Transformation
also works across clauses, as in (85). Example (86) shows that role fillers
themselves may be complex structures and that their parts may participate in
the transformation; in (86) world knowledge is needed in the reconstruction
(obviously what is meant here are persons with their body parts and these
together need to be swapped, not just the body parts or just the persons).
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Table 6.4: Types of ‘‘the other way round’’ transformations

Transformation
type

Description

Argument Case role fillers (arguments) of a head need to be swapped
(immediate daughters of a head)

Modifier Argument modifiers swapped (lower dependents of a head)
Mixed Combination of the two cases above (a modifier is swapped for

an argument which, in turn, takes the role of the modifier in the
reconstructed form)

Proposition The proposition’s ‘‘dual’’ needs to be applied (in some cases
Argument swap can be applied there as well)

Modifier swap is shown in (87)–(88). Utterance (87) is ambiguous: from a
structural point of view, it could be categorised as Argument swap, however,
givenworld knowledge, this interpretation is rather infelicitous. A contextually-
motivated metonymic reconstruction, prior to transformation, is required in
(88); ‘‘the strings’’ needs to be interpreted as ‘‘the tone of the strings’’.
Mixed transformations are illustrated with utterances (89)–(92). The first

example, (89), has been already discussed earlier in this section. In (90)
multiple occurrences of the items need to be swapped and the transformation
must be propagated to the formula. In (91) the properties of a triangle need to
be swapped. This can be done based on the surface structure of the sentence.
The resulting implication states that a triangle with two sides of equal length is
a triangle with two equal angles. In this case, the reconstruction could also fall
into the last type, Proposition transformation: reversing the implication. In (92),
a lexical reinterpretation is needed prior to the reconstruction: ‘‘a saxophonist’’
needs to be expanded into ‘‘a saxophone player’’, so that the intended reading
‘‘saxophone for a clarinet player (clarinetist)’’ can be obtained.
Finally, examples (93)–(95), involve swapping entire Propositions; in the

domain of mathematics, these may be formulas. In (93), the distributivity law
needs to be applied ‘‘right to left’’ (rather than ‘‘left to right’’) and in (94),
the superset relation needs to be swapped for subset. The last example, (95),
requires structural recasting. Once the utterance’s semantics is represented as
headed by the Result TR, swapping the two propositions – ‘‘branching out’’
and ‘‘becoming geographically separated’’ – yields the desired result.

Processing ‘‘the other way round’’
The examples show that ‘‘the other way round’’ transformation typically
operates at the level of semantic roles of the elements in a sentence. Our last
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Table 6.5: Examples of interchangeable relata in ‘‘the other way round’’
transformations; unless marked otherwise, Relation-dependents are involved

Interchangeable(Arg1, Arg2)
Interchangeable(Actor, Patient)
Interchangeable(Direction-Where-From, Direction-Where-To)
Interchangeable(Time-From-When, Time-Till-When)
Interchangeable(Cause-dependent, Cause-head)
Interchangeable(Condition-dependent, Condition-head)

category, Proposition transformation, can be in some cases also realised as an
Argument transformation; for instance, instead of swapping⊇ for⊆ in (94), the
two sides of the formula could be swapped. Clearly, however, the information
relevant in meaning reconstruction is the sentence’s semantic dependency
structure. In our approach we employ the tectogrammatical structure and show
that it is an appropriate level of semantic description.
The linguistic analysis consists of semantic parsing, identification of can-

didate pairs whose elements are to be interchanged, followed by contextually-
motivated reconstruction and optional recasting. In a fully automated setting,
sentences would be analysed with a parser which constructs deep dependency-
based representations of utterances’ linguistic meaning (as described in Sec-
tion 5.2.3.1, p. 189) and which is integrated into a discourse processing
architecture. Here we perform manual analysis.

Reconstruction heuristics Based on analysis of the corpora, we identi-
fied combinations of relations whose dependent arguments frequently partici-
pate in ‘‘the other way round’’ transformation. Examples of such relations are
shown schematically in Table 6.5. Similarly to Cause and Condition, other dis-
course relation types of TRs can undergo head-dependent transformation (for
instance, Result/Effect) or dependent-dependent transformations (enumerative
relations, such as Sequence or List of the Rhetorical Structure Theory). During
processing, we use the table of interchangeable relata as a preference criterion
for selecting candidate relations for transformation. If one of the elements of
a candidate pair is an optional argument which is not realised in the given
sentence, we look at the preceding context to find the first instance of the
missing element.
Reconstruction is performed based on formally defined rules for each of

the identified transformation types shown in Table 6.4. The rules consist of
a pattern part and an action part. Patterns are matched against the output
of the semantic parser by identifying the relevant tectogrammatical roles and
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Table 6.6: ‘‘The other way round’’ reconstruction rules

Transformation Reconstruction patterntype
Argument Pred(p) & TR1(p, x) & TR2(p, y) & Type-compatible(x, y)

& Interchangeable(TR1,TR2)
→ Swap(p, x, y, pt)
Conj(p) & TR1(p, x) & TR(x, u) & TR2(p, y) & TR(y, v)
→ Swap(p, u, v, pt)

Modifier Pred(p) & TR1(p, x) & TR+
11(x, u) & TR2(p, y) & TR+

21(y, v)
& TR1 6= TR2 & Type-compatible(u, v)
→ Swap(p, u, v, pt)

Mixed Pred(p) & TR1(p, x) & TR11(x, u) & TR2(p, y) & TR1 6= TR2
& Type-compatible(u, y)
→ Swap(p, u, y, pt)

Proposition Subord(p) & TR1(p, x) & TR2(p, y) & TR1 6= TR2
→ Swap(p, x, y, pt)

accessing their fillers. Actions apply transformations (below) on the items
identified by the pattern parts to build the implicit proposition.
The reconstruction rules are shown in Table 6.6.8 There are two patterns

for an Argument type transformation: If the scope of the swap is a single
clause, two arguments (semantic roles) of compatible types are identified as
interchangeable. For the case of a two-clause scope, the relation must be a
conjunction and swapped are arguments in the same relations. In a Modifier
swap, type compatible modifiers of distinct arguments are selected. For a
Mixed swap, a dependent is selected, as in the first case of Argument swap,
and a type-compatible modifier of another argument, as in a Modifier swap.
Proposition swap has the effect of inverting two clauses.
Rules are applied to the parser output (see Section 5.2.3.1, p. 189). For

each node p, all patterns are matched with the node’s dependency substructure
and, if successful, the result is bound to pt (transformed). Pred(p) is a function
which checks if p has a PRED feature, that is, it is a proposition. Similarly,
Conj(p) and Subord(p) test if a node is a complex proposition, coordination or
subordination, respectively, based on a list of TRs denoting complex syntactic
structures. Within a structure, dependents (participants and modifiers) in
specific tectogrammatical roles are accessed by the function TR(p, x), where
x specifies the TR-dependent of p; subscripts on x define constraints on the
relations. TR+ is a generalisation of TR which covers iterative embeddings
(multiple occurrences of a TR; roles in the chain are not required to be identical).
Aside from access functions, two functions test constraints on the identified
8Rules and the algorithm in this section are presented in an informal-schematic way.
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Table 6.7: Recasting rules for ‘‘the other way round’’ reconstruction

Rule Formalisation
Lexical recasting
(lexical expansion)

Pred(p) & TR1(p, x) & Lex-Expand(x, u, TR, v) & TR2(p, y)
& TR1 6= TR2 & Type-compatible(v, y)
→ Swap(p, x, TR(u, v),pt) & Swap(pt, y, v, pt)

Role recasting
(optional role as head
of an obligatory role)

Pred(p) & TR1(p, u) & TR2(p, v) & Type(u, tu) & Type(v, tv)
& Recastable(TR2, tv , TR3, tu) & TR3(p, w)
& Type-compatible(v, w) & TR1 6= TR2 & TR1 6= TR3
& TR2 6= TR3
→ Swap(p, u, v, pt) & Add(pt, TR3(v, u)) & Remove(pt, TR2)

Proposition recasting
(optional role as a
discourse relation)

Pred(p) & TR(p, x) & Member(TR, Subords)
→ Build((pTR, TR1(p, y), TR2(p,Remove(p,TR))))

items: Interchangeable(TR1, TR2) tests whether a pair of relations is a good
candidate for a transformation, based on the table of interchangeable relations
(examples in Table 6.5). Type-compatible(x, y) tests whether the types of x
and y are compatible according to an underlying domain ontology. In the case
of proofs, this is an ontology of mathematical objects.9 The action part of the
patterns is realised by Swap(p, x, y, pt) which replaces all occurrences of x in
p by y and vice versa, and binds the result to pt. Different applications of this
operation result in different instantiations of x and y with respect to p.
In addition to pattern matching tests, candidates for Argument and Propo-

sition transformations undergo a feasibility test to check if the predicate (PRED)
whose roles would be swapped is known to be symmetric or asymmetric. If it
is asymmetric, the result is implausible for semantic reasons. If it is symmetric,
for pragmatic reasons (the converse proposition conveys no new information).
In both cases a swapping operation is not performed.
Finally, a set of recasting rules is invoked to reorganise semantic rep-

resentations prior to testing applicability of reconstruction rules. Recasting
operations use additional test functions: Lex-Expand(x, y, TR, u) expresses the
semantics of x by y with u in a TR relation. Type(x, t) associates the type twith
x. Type is used to access a table of recastables roles. Recastable(TR1,t1,TR2,t2)
verifies whether TR1 with filler of type t1 can be expressed as TR2 with filler t2,
Add(p, a) expands p by an argument a, Remove(p, x) removes substructure x
of p, and Build(s) creates a new structure s.
Three recasting rules, shown in Table 6.7, are defined: Lexical recasting

performs lexical expansions of lexemes in order to accommodate the fact
9We did not construct a large-scale ontology of mathematical objects. In an automated system
such a knowledge source would be of course necessary. For the purpose of the evaluation here
we assume that such knowledge base exists.
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Scopes← ε, Structures← ε, TR Structure← Parse s

// Identify scopes for swapping
if Pred(p) then

Scopes← {p}
end if
foreach (Subord(x) ∨ Conj(x)) ∧ TR(x, z) do

Scopes← Scopes ∪ {x, z}
end foreach

// Match patterns to build swapped structures
foreach Scope in Scopes do

Structures← Structures ∪ X-Swap(Scope) ∪ X-Swap(Y-Recast(Scope))
end foreach
return Sort(Rank(Structures))

Figure 6.4: Pseudo-code of ‘‘the other way round’’ reconstruction algorithm

that semantics of some lexemes conflates the meaning of two related items.
Lexical representations are expanded if there is a sister role with a filler
whose type is compatible with the type of the expanded item. Role recasting
is performed if a dependent appears as a sister node in an overarching TR,
that is, if functional dependency is not reflected by linguistic dependency;
the dependent filler is removed and inserted as a modifier of the item on
which it is dependent. Proposition recasting is performed if a proposition in
a subordinating (discourse) relation is expressed as a TR: the argument (TR
dependent) is lifted and the discourse relation is expressed as multiple-relation
structure (consider the structure transformation needed to cover example (95)).

Reconstruction algorithm The structure building algorithm consists of
two steps. First, the scope for applying the heuristics defined in Table 6.6
(p. 228) is determined and, second, results of rule matching are collected. For
practical reasons, presently we make a simplifying assumption concerning the
scope of the operator: While the effect of ‘‘the other way round’’ may range
over entire paragraphs, we only consider single sentences with at most two
coordinated clauses or one subordinated clause. This restriction is plausible for
application-oriented systems; only a few examples from the corpora we have
examined cannot be handled due to this simplification.
The algorithm is summarised in Figure 6.4. It takes an input sentence s,

parses it, analyses its dependency structure to find predicate nodes, and binds
potential dependency substructure scopes to the variable Scopes. For complex
sentences, the structure(s) in each clause are also potential scopes. Next,
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each transformation rule (Table 6.6) is tested against the candidate scopes and
the results are collected in Structures. The function X-Swap(Scope) builds
all instantiations of a given rule applied to Scope: X stands for Argument,
Modifier, Mixed, and Proposition. Alternative parameters stemming from
recasting (Table 6.7) are invoked with X-Swap(Y-Recast(Scope)), where Y is
Lexical, Role, orProposition recast provided that they fit the pattern. If multiple
readings are generated, they are ranked according to the following ordered
criteria: (1) the nearest scope is preferred, (2) operations which swap ‘‘duals’’,
such as left–right, are ranked higher, (3) constructed candidate phrases are
matched against a corpus; pairs with higher bigram frequencies are preferred.
The linguistic analysis, the structure reconstruction patterns, the recasting

rules, and the algorithms operating on top of these structures are formulated
in a domain-independent way, also ensuring that the tasks involved are
clearly separated. It is thus up to the concrete application to elaborate
the required lexical semantic definitions (for instance, the lexical expansion
for ‘‘saxophonist’’ in (92) to capture the example), to define the tables
Interchangeable and Recastable, and to adjust the preference criteria.

Preliminary evaluation
A preliminary evaluation of the reconstruction algorithm has been performed
on a sample of English and German sentences from Europarl (Koehn, 2005).
Since we do not have access to a wide-coverage semantic dependency parser
for English and German, manual evaluation has been conducted.

Evaluation data The evaluation set was created by extracting sentences
from Europarl using the following regular expression patterns: (i) for English:
phrases ‘‘the other way a?round’’ or ‘‘vice[- ]?versa’’10 (ii) for German: (ii-a)
the word ‘‘umgekehrt’’ preceded by a sequence of ‘‘und’’ (and), ‘‘oder’’ (or),
‘‘sondern’’ (but; in the sense of instead), ‘‘aber’’ (but) or comma, optional
one or two tokens and optional ‘‘nicht’’ (not), (ii-b) the word ‘‘umgekehrt’’
preceded by a sequence ‘‘gilt’’ (holds) and one or two optional tokens, (ii-
c): the word ‘‘anders(he)*rum’’. 137 sentences have been retrieved using
these criteria. Given the present limitation of the algorithm, we manually
excluded those sentences whose interpretation involved the preceding sentence
or paragraph,11 as well as those in which the interpretation was explicitly
spelled out. There were 27 such instances. The final evaluation set consisted
10The question mark denotes an optional element.
11For example: ‘‘Mr President, concerning Amendment No 25, I think the text needs to be looked
at because in the original it is the other way round to how it appears in the English text.’’
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Table 6.8: Distribution of transformation patterns in ‘‘the other way round’’
test data

Transformation type No. of instances
Argument 64
Modifier 5
Argument/Modifier 3
Mixed 6
Argument/Mixed 2
Proposition 1
Argument/Proposition 1
Lexical 18
Other 10

of 110 sentences: 82 sentences in English–German pairs and 28 German-only.
The reason for this difference is that the English equivalents of the German
sentences containing the word ‘‘umgekehrt’’ may contain phrases other than
‘‘the other way round’’ or ‘‘vice versa’’. Depending on context, phrases
such as ‘‘conversely’’, ‘‘in reverse’’ or ‘‘the reverse’’, ‘‘the opposite’’, ‘‘on
the contrary’’ may be used. Here, we targeted only ‘‘the other way round’’
and ‘‘vice versa’’ phrases. If the German translation contained the word
‘‘umgekehrt’’, and the English source one of the alternatives to our target, only
the German sentence was included in the evaluation. Because the distribution
of sentences between the two languages is to a large degree unbalanced,
cumulative results for both languages are reported.

Distribution of categories The structures in the evaluation set have been
manually categorised into one of the transformation types from Table 6.4 and
the elements of the dependency structures participating in the transformation
have been marked.12 Table 6.8 shows the distribution of transformation types
in the data set. Counts for alternative interpretations are included. For instance,
Argument/Modifier means that either Argument or Modifier transformation
can be applied with the same effect; as in ‘‘External policy has become
internal policy, and vice versa’’: either ‘‘external’’ and ‘‘internal’’ may be
swapped (Modifier) or the whole NPs ‘‘external policy’’ and ‘‘internal policy’’
(Argument). Lexical transformationmeans that none of the ruleswas applicable;
a lexical paraphrase (such as use of an antonym) needed to be performed in order
to reconstruct the underlying semantics (that is, no structural transformation
12The author of this thesis annotated half of the data set. The other half was annotated by the
collaborator in this work (see (Horacek and Wolska, 2007)), Dr Helmut Horacek.
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Table 6.9: Evaluation results of ‘‘the other way round’’ transformations

Transformation type Evaluation category
Correct Ambiguous Wrong Failed

Argument 46 17 0 1
Modifier 3 2 0 0
Argument/Modifier 3 – 0 0
Mixed 4 2 0 0
Argument/Mixed 2 – 0 0
Proposition 1 0 0 0
Argument/Proposition 0 – 0 1
Lexical 16 0 2 0
Other 8 0 2 0

was involved). Other means that a transformation-based reconstruction was
involved, however, none of our rules covered the structure.

Results Transformation results have been manually classified into four cat-
egories: ‘‘Correct’’ means that the algorithm returned the intended reading as a
unique interpretation (this includes correct identification of lexical paraphrases
(the category Lexical in Table 6.8), ‘‘Ambiguous’’ means that multiple results
were returned with the intended reading among them, ‘‘Wrong’’ means that
the algorithm returned a wrong result or, if multiple results were found, the
intended reading was not included; ‘‘Failed’’ means that the algorithm failed
to find a structure to transform because none of the rules matched.
Evaluation results are shown in Table 6.9. Complete corpora from which

our data stemmed were used to build bigram frequencies. In case of possible
alternative assignments (as in Argument/Modifier) Correct was assigned when-
ever the algorithm selected one of the possible assignments, independently
of which one it was. The Correct results for Other are trivial: the algorithm
correctly identified the 8 cases to which no rule applied. The two Wrong
results for Other mean that a pattern was identified, but not the intended one.
In two cases, the algorithm failed to identify a pattern even though a structure
exhibited a pattern in one of the known categories (Argument and Proposition)
(false negatives).

Discussion The most frequently occurring pattern in our sample is Argu-
ment. This is often a plausible reading. However, in 3 of the 4 false positives
(Wrong results), the resolved incorrect structure was Argument. A baseline
consisting of always assigning the most frequent category, Argument, would
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miss the other categories (altogether 12 instances) and yield the final result
of 63 Correct (as opposed to 96; after collapsing the Correct and Ambiguous
categories) and 15 (as opposed to 4) Wrong assignments.
The two missed known categories (Failed) involved multiple arguments

of the main head: a modal modifier of the predicate (modal verb) and an
additive particle (‘‘also’’) in one case, and rephrasing after transformation in
the other case. To improve performance on cases such as the former, a list of
dependents which the transformation should exclude as candidates could be
incorporated into the algorithm. Among the patterns we did not anticipate, we
found four types (one instance of each in the sample) which can potentially
frequently recur: aim and recipient constructions involving a predicate and its
Aim and Beneficiary dependent respectively, a temporal-sequence in which the
order of the sequence elements is reversed, and a comparative structure with
swapped relata. The remaining 6 structures require a more involved procedure:
either the target dependent is deeply embedded or paraphrasing as well as
morphological transformation of the lexemes is required. Overall however, the
presented algorithm is a good first step towards automated reconstruction of
the operator’s semantics.

6.3 Reference phenomena

Computational approaches to anaphor resolution (or (co-)reference resolution
more generally) typically address narrative text genres and use manually hand-
crafted rules, machine learning, or a combination of both to find antecedents.
Syntactic, semantic, and lexical features of the anaphor carrier sentences and
of the sentences containing candidate antecedents as well as probabilistic
distributional properties of the anaphor in context are used as indicators of
coreference; see, for instance, (Botley et al., 1996; Mitkov, 2000; Poesio et al.,
2010) for an overview on reference resolutions algorithms. Anaphor resolution
in dialogue have been gaining attention, however, reference resolution in
dialogue proves more difficult and the performance of algorithms on dialogue
corpora tends to be lower than on narrative discourse corpora (Poesio et al.,
2010). Recently also studies specific to tutorial dialogue have been conducted;
see, for instance, (Pappuswamy et al., 2005; Poesio et al., 2006).
A peculiarity of mathematical discourse is that referring expressions in this

domain may be used to refer to the elements of formal notation. Examples
of such references were shown in Section 3.2.2.5 (p. 132). References may
address entire formal expressions or their parts. Most frequent are references to
propositions, specifically, proof steps, verbalised in natural or in the symbolic
language. Table 6.10 shows the distribution of references to object-denoting
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Table 6.10: References to object-denoting terms and proof steps

Antecedent type Data set
C-I C-II C-I&C-II

Object-denoting term 26 13 39
Proof step 35 81 116
Column totals 61 94 155

terms expressed symbolically (parts of mathematical notation) and to proof
steps (expressed usingmathematical notation or natural language) in the student
turns in our corpora. (The types of referential forms included in this summary
will be elaborated in the next section.) Overall, the number of occurrences
of referring expressions is small (155 instances). Assuming one referring
expression per turn, only around 12% of all student turns contain referring
expressions to terms or proof steps (there are 1259 turns in total; see Table 4.1
on p. 161). There are more referring expressions in C-II (94) than in C-I (61),
however, considering that C-II contains almost three times as many student
turns as C-I, there are proportionally more referring expressions in C-I (on
average, around 18% student turns with a referring expression in C-I and 10%
in C-II). In the case of the tutorial dialogue scenario, antecedents of referring
expressions may be found in either student’s or tutor’s turns. In spite of a
seemingly high potential for ambiguity (many candidate symbolic terms as
antecedents), in our experiments only in one case did the tutor initiate an
explicit subdialogue to clarify a student’s ambiguous use of reference.
In the following sectionswe lookmore closely into two aspects ofmodelling

reference phenomena in proof tutoring dialogues. First, we conduct a corpus
study on the types of referring expressions. Anaphor resolution algorithms
are typically tailored to resolving expressions of a specific form, for instance,
pronominal anaphora or references to expressions of specific type, for instance,
discourse deictic anaphors (as in (Pappuswamy et al., 2005)). It is therefore
useful to know what types of anaphora occur most frequently in our genre and
to what entity types they refer. Second, we analyse the referring expressions
in terms of their discourse scope. Considering the low overall number of
instances of referring expressions in our corpora and especially the low number
of object-denoting references, we do not propose a complete computational
reference resolution algorithm. More data would need to be collected in order
for a plausible computational algorithm to be developed. Instead, we again
analyse the corpus data with respect to the location of the different antecedent
types. The analysis of referential scope is relevant in determining the discourse
scope for antecedent search, thus the two corpus-based analyses form a good
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basis for a computational algorithm to be developed and evaluated once more
data is available. Finally, we show how the interpretation resources need to be
extended in order to address indirect references specific to proof discourse.

6.3.1 Forms of referring expressions and scope of reference
Linguistic referring devices in the students’ utterances include pronouns,
pronominal and locative adverbs, noun phrases, demonstratives (discourse
deixis), and definite articles. As will be shown further, all of them have
been used to refer to parts of symbolic notation as well as to propositions or
partial proofs (sequences of propositions) constructed in the course of dialogue.
Examples of the different referring expression types are shown below.

Pronouns The following examples illustrate the use of pronominal anaphora:

(96) Da, wennA ⊆ K(B) sein soll,AElement vonK(B) seinmuss. Und
wenn Bi ⊆ K(A) sein soll, muss esi auch Element vonK(A) sein.
Because ifA ⊆ K(B) should hold,Amust be an element ofK(B). And ifB ⊆ K(A)
should hold, B must be also an element ofK(A).

(97) T19: Erinnern Sie sich daran, [ dass es ein z gibt mit (x, z) ∈ S−1

und (z, y) ∈ R−1. ]i
Do you remember that there is a z such that (x, z) ∈ S−1

and (z, y) ∈ R−1

S14: Ja, ich habe esi vorausgesetzt
Yes, it was an assumption I made

In (96) a personal pronoun, ‘‘es’’ (it), is used to refer to a term. The term
is part of a formula and its syntactic/semantic function in the formula can
be viewed as that of a subject/agent, parallel to the semantic function of the
anaphor. The reference is local; the antecedent is in the same turn. Notice
that it is hard to produce an comparable structure in English. The reference
in German works because the formula is again used as shorthand for natural
language; the subordinate clause reads ‘‘wenn B Teilmenge von K(A) sein
soll’’ and the pronoun refers to its subject. (In the given task context, this is the
more plausible interpretation. An alternative antecedent candidate could be A
and considering the student’s confusion about the set membership and subset
relations, it is not impossible that he actually meant to refer toA.) The pronoun
in (97) is referring to the proposition in the preceding tutor’s turn T19, that is,
the antecedent is found in the other speaker’s turn.

Pronominal and locative adverbs Pronominal adverbs (adverbial pro-
nouns; ‘‘präpositional pronomen’’) are lexical constructions in Germanic
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languages formed by joining a preposition with a pronoun. Their anaphoric
character is due to the pronoun obtaining thereby a locative adverb function.
English examples include ‘‘thereby’’ (by this) or ‘‘therefor(e)’’ (for that) and
German ‘‘damit’’ (with that) or ‘‘dafür’’ (for that). Locative adverbs in math-
ematical discourse also have an anaphoric character; consider, for instance, the
frequent scope bearing locative ‘‘hence’’ in English. The dialogue fragments
below illustrate the use of anaphoric adverbs in our corpora:

(98) S2: [ R ◦ S ]i := {(x, y) | ∃ z(z ∈M ∧ (x, z) ∈ R ∧ (z, y) ∈ S)}
. . .
S3: Nun will ich das Inverse davoni

Now I want the inverse of it

(99) S7: Also [ [ ist (z, x) ∈ S und (y, z) ∈ R ]i und damiti auch
[ (y, x) ∈ R ◦ S]j ]k
Therefore it holds that (z, x) ∈ S and (y, z) ∈ R and by that also (y, x) ∈ R ◦ S

. . .
S8: Somitj?k? ist (x, y) ∈ (R ◦ S)−1

With this it holds that (x, y) ∈ (R ◦ S)−1

In (98), a pronominal adverb ‘‘davon’’ (of it) is used to refer to a complex
term,R ◦S, on the left-hand side of the definition. In principle, the reference is
ambiguous: a competing antecedent for ‘‘davon’’ is the definiens part. In (99)
the adverbial pronoun ‘‘damit’’ (with this) in S7, refers to the proposition in
the first clause of the utterance. The pronominal adverb ‘‘somit’’ (with that)
in S8 in the same excerpt may refer to the conjunction or implication of the
assertions in S7 (marked with k) or only to the last assertion (marked with j).

Noun phrases Within this category we consider referential uses of noun
phrases including deictic NPs, such as ‘‘(in) dieser Menge’’ ((in) this set)
referring to a set expression in the dialogue fragment (56), reproduced below:

(100) S33:Nach Aufgabe W ist (S ◦ (S ∪R)−1)−1 =
[ ((S ∪R)−1)−1 ◦ S−1 ]i
By Exercise W: ... holds

. . .
S34:Diesi ist nach Theorem 1 gleich [ (S ∪R) ◦ S−1 ]j

This is by Theorem 1 equal to (S ∪R) ◦ S−1

. . .
S35: Ein Element (a, b) ist genau dann in [ dieser Menge ]j , wenn ...

An element (a, b) is in this set if and only if ...

Definite noun phrases used to refer to elements of mathematical notation often
involve metonymic reinterpretation. In Section 3.2.2.5 we already showed
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examples such as ‘‘die innere Klammer’’ (the inner parenthesis), ‘‘die linke
Seite’’ (the left side) or ‘‘beideKomplemente’’ (both complements) (see p. 132).
These are indirect references to structural parts of mathematical expressions,
terms in formulas; ‘‘the left side’’ refers to the term to the left of the top-
node operator in a formula, ‘‘the inner parenthesis’’ to a bracketed subterm
of a bracketed term in a formula (rather than to a bracket itself), and the
quantified noun phrase, ‘‘both complements’’ in ‘‘de morgan regel 2 auf beide
komplemente angewendet’’ (de morgan rule 2 applied to both complements)
to two terms headed by the complement operator.
Both definite and bare noun phrases can be also used generically to refer

to concepts in the domain, for instance, to the concept of the set union as in:
‘‘The union of sets R and S contains all elements from R and all elements
from S’’ (example (43), p 133) or ‘‘Potenzmenge enthaelt alle Teilmengen,
also auch (A ∩ B)’’ (Powerset contains all subsets therefore also (A ∩ B)).
In the latter case, ‘‘powerset’’ is a generic reference, whereas ‘‘(A ∩B)’’ is a
specific reference to a subset of a specific instance of a power set introduced
earlier. Moreover, named theorems and lemmata may be referred to by their
proper names, for example, ‘‘de Morgan’s rule 2’’. These non-anaphoric uses
are not included in further analyses.

Demonstratives The last type of referring expressions we analysed were
deictic references by means of demonstrative pronouns, as in:

(101) Wenn [ alle A in K(B) enthalten sind ]i und diesi auch umgekehrt
gilt, muß es sich um zwei identische Mengen handeln
If all A are contained inK(B) and this also holds the other way round, these must be
identical sets

where the demonstrative pronoun ‘‘dies’’ (this) refers to a preceding proposi-
tion, or as in the previous example, (100), where ‘‘dies’’ in S34 refers to the
term on the right-hand side of the formula in S33.

As a preliminary stage towards developing an anaphor resolution algorithm
we conducted two studies on reference phenomena: First, we looked at
the frequency of use of the illustrated forms to refer to entities specific to
mathematics: domain objects evoked using symbolic notation and proof steps
expressed in natural language or using symbolic expressions. Next, we looked
at the discourse-referential scope of the expressions, that is, the scope of
discourse, with respect to the referents, within which an antecedent is found.
Instances of anaphoric references and their antecedents have been annotated

in the two corpora by the author. Discourse was interpreted cooperatively,
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Table 6.11: Distribution of referring expression types by antecedent type

Antecedent type
Form of referring expression

Pronominal or Noun phrase Demonstrative PronounLocative adverb
Object-denoting term 2 30 2 5
Atomic 0 2 0 2
Complex 2 28 2 3

Proof step 59 15 40 2
ME 28 10 27 0
ME & NL or NL 31 5 13 2

Column totals 61 45 42 7

in the sense that the most plausible candidate was considered as the antecedent,
even if students’ statements were invalid or incomplete. Multiple annotations
have not been performed for the same reason as in Section 4.1: antecedent
annotation does not require linguistic knowledge, but rather knowledge of the
mathematical domains and understanding of the solution constructed in the
course of dialogue. Considering the fact that the set theory and binary relations
proofs are of low complexity, the most plausible antecedent types could be
identified by cooperatively interpreting the students’ intentions and taking into
account the information about the student obtained in the course of dialogue.
Referential scope may be ambiguous in the case of references in invalid steps
or incomplete proofs (omitted steps). In case of uncertainty, we annotated the
turn in which the first plausible candidate was found.
Table 6.11 shows the distribution of referring expression types to two types

of entities: object-denoting terms and proof steps. Further distinction is made
between atomic and complex terms (as in A and A ∪ B, respectively) and
proof steps expressed in the symbolic notation (ME category; see Section 4.3.1,
p. 160) or using some natural language (ME & NL and NL categories). The
largest class of referential forms are pronominal and locative adverbs, the
majority of which refer to proof steps (or larger parts of proofs). There are
approximately the same number of nominal references as deictic references
using demonstratives, however, there are clear differences in their use: the
former are mainly used to refer to parts of notation (object-denoting terms),
while the latter are mainly used to refer to proof steps. Further analysis of
the dialogues revealed that the majority of the latter types occur in chaining
equation contexts in which a formula is contributed and the next rewriting
step is introduced by phrasing ‘‘This is then (equal to)...’’ or analogous. The
majority of nominal references to terms are indirect references of the kind
discussed in Section 3.2.2.5 (p. 134). The number of pronominal anaphora is
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Table 6.12: Distribution of reference types by the location of the antecedent

Antec.
type Form of referring expression

Location of the antecedent
Same S−1 T−1 S≥−2 T≥−2

Task
turn descr.

Pronominal or locative adverb 1 1 0 0 0 0
Noun phrase 4 5 4 9 8 10
Demonstrative 0 2 0 0 0 0
Pronoun 3 0 0 2 0 0

O
bj
ec
t-d
en
o-

tin
g
te
rm

Subtotals 8 8 4 11 8 10
Pronominal or locative adverb 21 38 0 0 0 0
Noun phrase 4 6 0 2 3 3
Demonstrative 22 16 2 0 0 0
Pronoun 0 1 1 0 0 0Pr

oo
fs
te
p

Subtotals 47 61 3 2 3 3
Column totals 55 69 7 13 11 13

(% all references) (35) (45) (5) (8) (7) (8)

surprisingly small; only 7 occurrences overall. In all cases of ‘‘es’’-references
(neuter personal pronouns) to object-denoting terms, the anaphor was the entity
on the left side of a mathematical expression of type formula. The low number
of pronominal references to terms can be perhaps explained by the fact that
nominal reference is more specific and thus reduces the chance of unintended
interpretation; compare referring to a left-hand side of an equation with ‘‘die
linke Seite’’ vs. ‘‘es’’, as in (96): while there may be multiple ‘‘left sides’’
competing as candidates, the structure of the expressions which embed them is
a good cue in resolution; recall the discussion in Section 3.2.1.2 (p. 95).
Table 6.12 shows the distribution of reference types by the location of

the antecedent. The interpretation of columns is the following: ‘‘Same turn’’
means that the antecedent is found in the same turn as the referring expression
(as in the example (96)), ‘‘S−1’’ and ‘‘T−1’’ mean that the antecedent is in
the preceding student or tutor turn, respectively (as in (97) and (98)), ‘‘S≥−2’’
and ‘‘T≥−2’’ mean that the antecedent is in a student or tutor turn, two or
more turns prior to the anaphor, ‘‘Task descr.’’ (task description) means that
the antecedent is in the first tutor turn which specifies the proof task. (Note
that the task may have been specified in the immediately preceding turn if
the analysed turn is the student’s first contribution.) What can be seen from
the annotation results is that the majority of the references to proof steps are
local, whereas references to terms may have a large scope. Out of the 39
references to object-denoting terms, 20 refer to entities in a close distance to
the anaphor: the same or preceding tutor or student turn. The majority of
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long distance references are by means of nominal anaphora whose antecedents
can be found two or more turns back in the dialogue. Around 25% of the
references to terms have antecedents in the task description. The majority of
references to proof steps (around 93%) were within the scope of the same or
previous student turn. Only nominal references were used to refer to proof
steps further in the preceding dialogue. Interesting to note is that the tutors did
not request explicit clarifications of the scope of reference to proof steps, even
if the scope encompassed a number of steps; much as the English ‘‘hence’’
or ‘‘thus’’, the German ‘‘somit’’ or ‘‘damit’’ can refer to a larger part of a
constructed proof. This suggests that tutors cooperatively interpreted students’
contributions and tended to focus on the task progress, rather than on rigour or
on closely monitoring the students’ mental representation of the solution.
As mentioned previously, the low overall number of referring expressions

available for analysis does not allow us to draw definitive conclusions nor
to develop a scalable reference resolution algorithm. However, preliminary
observations based on the available data can be summarised as follows:
Anaphoric references have for the most part a local scope. In most cases, the
referent occurred in the same or preceding student or tutor turn with respect to
the anaphor. The structure of mathematical expressions is a strong indicator
in identifying antecedent search space; see also Section 3.2.1.2 (p. 95). This
holds both in the case of noun phrase references to topographical substructures
of mathematical expressions (‘‘inner parenthesis’’ or ‘‘left side’’) as well as in
the case of quantified phrases (as in the ‘‘both complements’’ example).
Also relevant in antecedent search is the correctness status of the last

student’s proof step. As a student develops a proof, the salience of propositions
which form the proof (proof steps) changes. At the beginning of a dialogue,
the most salient proposition is the goal formula in the task description. As the
proof progresses, the most salient proposition globally is the last correct step
and students tend to refer to this step. If the student makes several incorrect
steps, no correct steps, and the tutor has not given away any steps, the goal
formula in the task definition remains the most salient proposition even after
several turns. The semantic content of the last tutor move also plays a role in
reference resolution. If the last tutor’s turn contains a hint which gives away a
step, the student is likely to continue from this step and so also to refer to it.

6.3.2 Modelling concepts relevant in reference resolution
The corpus analysis summarised in the previous section shows that two
issues must be taken into account in designing a computational reference
resolution algorithm for the proof tutoring domain: First, a comprehensive
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analysis of mathematical expressions is needed. Second, processing indirect
referring expressions whose antecedents are elements of the symbolic language
(terms or formulas or parts thereof) and which use typographical properties of
mathematical expressions (‘‘left side’’), objects and relations that build up the
expressions (‘‘both complements’’), and the expressions’ structure signalled
by grouping symbols (‘‘inner bracket’’), requires extensions to the domain
interpretation process. Namely, the entities identified through mathematical
expression analysis need to be included in the domain model. The extensions
to the processing architecture are briefly outlined below.

Extensions to mathematical expression parsing In order to support
resolution of references to (parts of) mathematical expressions, our mathe-
matical expression parser is implemented in such way that it is capable of
identifying all the relevant substructures of mathematical expressions. It parses
the linear notation of mathematical expressions in the input into an expression
tree of the form shown in Figure 3.2b (p. 98). The parser has access to
knowledge on the type of arguments and results of operations in the relevant
areas of mathematics. In our case, this is, for instance, the information that
the subset relation (denoted by a specific symbol) takes two sets as arguments
and the type of the result is a proposition or that the union operation takes
sets as arguments and its result is an object-denoting type. Each node of the
expression tree is marked (‘‘annotated’’) as to whether it denotes an operator
or a variable; operator nodes are marked with the type of their result. The
root node of the tree is marked with the information on the type of the entire
expression (TERM, FORMULA, etc.). The expression tree enriched in this
way is an input structure to subroutines relevant for reference resolution.
At the time of parsingwe create a discourse referent for the entire expression,

but not for every substructure entity relevant for anaphor resolution. Instead, the
mathematical expression parser includes subroutines which on demand recover
substructures of mathematical expressions in specific part-of relations with
respect to the original expression as well as their types. Recall that these
are also represented in our domain model; see p. 220 and the following
section. The choice of substructures was motivated by systematic reference
in natural language to mathematical expression parts (see Sections 3.2.1.2,
p. 95, and 3.2.2.5, p. 132) and includes: (i) topographical features (such as
‘‘sides’’ of terms and formula), (ii) linear orders (‘‘first’’, ‘‘second’’ argument),
(iii) structural groupings (bracketed subexpressions) with information on the
level of their embedding. Execution of these subroutines is triggered by rules
in the course of lexical semantic interpretation of the utterances; for instance,
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Table 6.13: Examples of reinterpretation rules for indirect reference
Concept Reinterpretation
Side Term at side
Bracket Bracketed term
Operator Term headed by Operator
Object Term headed by Operator of type Object
Property Object with property

the meaning of ‘‘side’’ together with its modifier ‘‘left’’ in the semantic
representation of the noun phrase ‘‘the left side’’.

Domain modelling As illustrated in Section 3.2.2.5 (p. 135) and earlier in
this section, informal mathematical language admits of referring to elements
of mathematical notation using expressions of a metonymic flavour. By saying
‘‘the left side’’ of a formula, we do not mean literally the side, but rather the
term on the given side of the main operator in the expression. The use of
such metonymic expressions is so systematic in mathematics when referring to
mathematical notation and they are such an integral part of the mathematical
terminology that it is justified to think of them as quasi-synonyms of the
concepts evoked by the entities to which they refer. Thus, in line with this
observation, we encode metonymy rules as part of the domain model. The
rules enable interpretation of utterances with certain sortal restriction violations
by encoding reinterpretions of concepts evoked by metonymic words. This
approach is analogous to the rule-based approach to metonymy proposed
by Fass (1988), except that here rules are strongly specific to the domain of
mathematics.
Table 6.13 shows examples of the reinterpretation rules encoded based

on the phenomena found in our two corpora. The first rule means that the
concept Side (left or right) may be alternatively interpreted as referring to a
left or right term, respectively, of an expression in the previous discourse (as
in ‘‘the left side is equal to...’’). The topographical properties of mathematical
expressions are encoded as features of nodes of the parsed mathematical
expressions (discussed earlier); thus an expression with the given property can
be found by analysing mathematical expression parse trees. The second rule
means that Bracket can be interpreted to refer to a term enclosed in brackets
(as in ‘‘the inner parenthesis is equal to...’’); again presence or absence of
bracketing is marked as a feature of mathematical expression tree nodes. The
next two rules mean that an Operator can be interpreted as a term headed by
the given operator (as in ‘‘for the complement we have...’’) and that an Object
type can be interpreted as a term headed by an operator which builds an object
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of the given type. The last rule means that a property can be interpreted as the
object which has a given property (as in ‘‘for the left side it holds that...’’).
Multiple rules can be applied in the course of reinterpretation until a concept
of a matching type is found. For example, the nominal reference ‘‘diese(r)
Menge’’ (this set) referring to the expression (S ∪ R) ◦ S−1 in the example
(100) earlier in this section (p. 237), can be resolved by applying the rule
‘‘Term headed by Operator of type Object for Object’’.

6.4 Cooperative correction
of mathematical expressions

In Section 3.2.1.5 (p. 106) we showed examples of flawed mathematical
expressions constructed by the students (Table 3.3). We categorised the errors
(Table 3.2) and identified their possible sources (Table 3.3). In principle,
in a dialogue environment, clarification subdialogues could be initiated to
point out imprecise wording or errors, and to elicit clarification or correction.
Clarification subdialogues may, however, turn unwieldy making the dialogue
tedious. This would be particularly undesirable when the problem solving skills
of the student are otherwise satisfactory. A better solution would be to attempt
to cooperatively correct what appears to be an error, or to resolve ambiguity,
while allowing the student to concentrate on the problem solving task.
Using domain knowledge and reasoning, proof contributions may be

evaluated for correctness. However, finding the intended reading of erroneous
or ambiguous statements and the decision as to whether the flawed statement
should be corrected by the student is pragmatically influenced by factors such
as the student’s knowledge of the domain concepts and their prior correct
use, correct use of the domain terminology or contextual preference for one
reading over the others. On the one hand, in a tutoring context, it is important
to recognise the student’s intention and knowledge correctly. On the other
hand, however, it is also important not to distract the student by focusing on
all low-level errors. In the most ‘‘accommodating’’ approach, erroneous and
ambiguous expressions evaluated as correct in one of the readings could be
accepted without requiring clarification on the part of the student, thus making
the dialogue progression smooth and maintaining focus on problem solving.
As we already pointed out earlier, the tutors did not tend to focus on low-level
errors and accepted proof contributions even with flawed notation.
In order to facilitate this kind of cooperativity, we developed a strategy for

flexible mathematical expression analysis and correction. When a malformed
expression is encountered, we attempt to identify and correct type errors and
logical correctness errors. The goal in this approach is to delay clarification,
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while making sure that the student’s intentions remain tractable. The ultimate
decision whether to accept an erroneous or ambiguous utterance (a strategy
suitable for competent students) or whether to issue a clarification request
for the student to disambiguate the utterance explicitly, is left to the tutoring
component (recall the overall architecture presented in Section 1.2, p. 35).
The correction strategy we tested is based on introducing informed modifi-

cations to erroneous expressions with the goal of finding the plausibly intended
correct form. The highest-ranked well-formed hypothesis generated by the
algorithm is assumed to be the intended expression and is interpreted in the
problem-solving context, so that its correctness and relevance can be addressed,
while the fact that the expression was malformed can be merely signalled to
the student by pointing at the error. Finding meaningful modifications of a
malformed expression is guided by the expression’s error category. With each
error category shown in Table 3.2 (p. 108) we associate a set of replacement
rules and apply them to a malformed expression with the goal of improving its
category. That is, from a syntactically ill-formed expression we try to obtain
a syntactically well-formed one and from an expression with a type mismatch
we try to obtain a well-typed expression. The selection of replacement rules is
motivated by an analysis of possible sources of errors in the erroneous expres-
sions in our two corpora; see Table 3.3 (p. 110). The correction algorithm and
a pilot evaluation are outlined in the following sections.

Correction algorithm
The correction algorithm assumes that mathematical expressions are parsed by
a tree-building algorithm; for experiments we used the same parser as the one
we use throughout this work (see Section 5.2.2.3 (p. 185) and the extensions
outlined in Section 6.3.2 earlier in this chapter). For unbracketed operators of
the same precedence, all possible bracketings are considered (for instance, the
expression A∪C ∩B is ambiguous between (A∪C)∩B and A∪ (C ∩B)).
For every tree node, the parser stores information on whether the subtree it
heads is bracketed in the original string and whether the types of arguments are
consistent with the expected types. The output of the parser is a formula tree
with nodes marked as to type compatibility and bracketing where applicable.
Erroneous expressions are systematically modified by applying operators

considered suitable for removing the reported error. The resulting new
expressions are then categorised by consulting the formula analyser and, if
needed, a reasoner to check the new expression’s correctness. Since the
latter may be an expensive step, the generated hypotheses (candidate corrected
expressions) are ranked and tested in the rank order. The process can be
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terminated at an intermediate stage if calls to the reasoner are becoming too
costly. The process can also continue iteratively if needed, resources permitting.
The hypotheses are ranked using three ordered criteria: (1) the error

category of the modified expression, (2) the number of operators applied so
far, and (3) the structural similarity of the hypothesis to the expressions in
the previous context. Similarity is approximated by counting the instances of
common operators and variables. The context consists of the goal expression,
the previous proof step, and possible follow-up steps generated by the reasoner.
The pseudo-code of the algorithm is shown in Figure 6.5. The algorithm

takes two arguments: the original Expression (parsed by a mathematical
expression parser) and a set of expressions representingContext. An expression
can be of one of four categories: Category 1 is a logical error (an expression
is well-formed and well-typed, however, a weaker or stronger statement is
expected), Category 2 is a semantic error (an ill-typed expression), Category 3
is an ill-formed expression, and Category 0 is a valid correct expression. The
procedure consists of three parts. In the first step, for ill-typed expressions,
operators associated with the error category are selected. In the second step,
replacement operators – see Table 3.3 (p. 110) – are applied to the original
formula, possibly at multiple places. The application of operators addressing
ill-typed expressions is limited to those places where the parser reported a
type error. New expressions resulting from each replacement are collected
in Hypotheses, excluding results considered Trivial (for instance, an equation
with identical left and right sides or applications of idempotent operators to
identical arguments), and their error category is returned by the parser (Parse).
In the third step, the hypotheses are assessed in a two-pass evaluation. First,
similarity to the expressions in Context is computed. For expressions which
were originally false statements, a call to the reasoner is made. Since the
latter can be expensive, the expressions obtained by applying operators are
ordered according to contextual similarity, prior to invoking the reasoner.
The evaluation of the ordered list of expressions can be stopped any time if
resources are exhausted; this criterion is denoted by the condition Limit. The
procedure terminates when the problem is solved, that is, the category of some
modified expression is improved, when no more operators can be applied, or
when resources are exceeded. If one of these cases holds, the ordered list
of Hypotheses is returned; otherwise, application of operators to the newly
created expressions is repeated. Several limits on resources involved can be
considered, including: (i) maximum number of modified formulas created, (ii)
a time limit (checking correctness of an expression can be time consuming),
(iii) number of calls to the reasoner, (iv) a limit on the number of errors
addressed (or operators to be applied).



MODELLING SELECTED LANGUAGE PHENOMENA IN PROOFS 247

Data: ME (original expression), Context (expressions in prior discourse)
// Collect operators
switch ME Category do

case 3
Hypotheses← List(Results of ME analysis);
Evaluate(Hypotheses, Context);

end case
case 2

Operators← Operators2;
Hypotheses← Result of ME analysis

end case
case 1

Operators← Operators1;
Hypotheses← Result of ME analysis

end case

endsw
Iterate: // Apply operators to the original ME
foreach (Hypotheses,Operators) do

New-formulas← Apply Operator to Hypothesis;
foreach New-formula in New-formulas do

if not Trivial(New-formula) then
New-formula-parse← Parse(New-formula);
Hypotheses← Hypotheses ∪ New-formula-parse;

end if
end foreach

end foreach
Evaluate: // Decide if continue required/affordable
Evaluate Hypotheses within Context;
Sort Hypotheses by evaluation score;
foreach Hypotheses do

while not Limit do
if Hypothesis Category==1 then

if Hypothesis correct then
Hypothesis Category← 0

end if
end if

end while
end foreach
Sort Hypotheses by evaluation score;
if not ME Category == 3 and not Best hypothesis category superior to original
and not Limit and New expressions built then

goto Iterate
end if
return Hypotheses

Figure 6.5: Pseudo-code of the mathematical expression correction algorithm



248 Students’ Language in Computer-Assisted Tutoring of Proofs

Preliminary evaluation
Below we present a preliminary evaluation of the proposed correction algo-
rithm. The algorithm was tested on a sample of ill-typed and false expressions
from the corpora and on a larger set of expressions into which errors of the
above-mentioned categories were introduced in a controlled way.

Evaluation data The evaluation data we used stemmed from two sources:
a set of recurring erroneous expressions from the corpora (Corpus) and a set of
expressions obtained by systematically introducing errors to valid expressions,
according to our categories (Constructed errors). TheCorpus data set contained
8 most representative cases of the kinds of errors that occurred in the data.
Multiple occurrences of similar expressions were not included; by ‘‘similar’’
we mean expressions of the same structure which differ only by identifiers.
Constructed errors were created in the following way: First, from the corpus
we extracted valid formulas which occurred in proof contributions evaluated by
the tutor as correct; there were 71 unique expressions. Then, for each of these
we generated a set of erroneous expressions by systematically changing the
operators and identifiers according to error categories. For practical reasons, we
introduced atmost two errors into one expression in order tomake the correction
task manageable. For example, for the valid expression A ∩ B ⊆ P (A ∩ B)
we generate, among others, the following erroneous expressions:
Dual operator errors A∪B ⊆ P (A∩B)

A∩B ⊆ P (A∪B)
Confused operators A∩B ∈ P (A∩B)

A∩B ⊆ K(A∩B)
A∩B ⊆ P (A∩P ) (two errors)

Confused identifiers A∩P ⊆ B(A∩B)
A∪P ⊆ P (A∩B) (two errors)
X∩B ⊆ P (A∩B) (X: arbitrary identifier not in

context; simulates typos)
From the generated set of erroneous expressions, we built the Constructed
errors data set for evaluation by randomly selecting 100 expressions in which
the number of operators was between 3 and 10.
The choice of the two data sets was motivated by complementary factors:

The Corpus sample is intended to give an insight into the algorithm’s effec-
tiveness when applied to authentic errors. This sample is however very small,
8 instances. The Constructed errors sample is intended to assess the prospect
for the algorithm based on a larger set of errors of the same type.
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Table 6.14: Results of formula correction

Evaluation data set Unique result Ambiguous Target in top 10
Corpus 2 6 6
Constructed errors 0 100 64

Table 6.15: Results of hypothesis generation for Constructed errors data

Evaluation measure Min Max Mode
Number of hypotheses generated 5 38 18
Position of target expression in hypotheses list 1 18 14

Limits applied In order to carry out formula modifications within feasible
resources, we applied two limits: (i) to keep the set of generated hypotheses
manageable, the number of considered errors was restricted to at most two in
one formula (this level of complexity accounts for most of the errors that occur
in the corpus), (ii) the calls to the reasoner were limited to five since this is the
most expensive part of the algorithm; we prefer this qualitative criterion over a
time limit criterion because the results are not influenced by the implementation
of the reasoner. A component of Scunak (Brown, 2006b) was used in this pilot
experiment. Outputs were verified manually.13

Results The results are summarised in two tables. Table 6.14 shows the
overall performance in terms of the number of corrected expressions for which
a single correct hypothesis was found (Unique), those for which multiple
hypotheses were found (Ambiguous), and the number of cases where the target
expression was among the top 10 ranked candidates. Table 6.15 shows two
results for the larger evaluation set: a measure of effort required to generate
corrections in terms of the number of generated hypotheses and the position of
the intended formula in hypotheses list. Note that the top position in the list
does not imply that a unique solution is found since multiple candidates may
obtain the same final rank.

Discussion The results show that automating formula correction is a non-
trivial task. For an objective sample of complex expressions with errors (three
to ten operators, up to two errors per expression) the algorithmwas able to place
13The author of this thesis verified half of the data set. The other half was verified by the
collaborator in this work Dr Helmut Horacek.
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the intended expression in the top ten hypotheses in 64% of the cases. However,
there is no guarantee that further evaluation of the top candidates by a reasoner
yields a unique candidate. The two unambiguously corrected expressions from
the Corpus sample (see Table 6.14) were very simple and only one change of
an incorrect operator was applicable. The results on the Constructed errors
data set show that both the hypothesis generation (large range of generated
hypotheses) and the ranking (most targets below top-10 ranked hypotheses)
needs an improvement. Error analysis suggests that three factors could lead to
improvements: exploiting the reasoner further (for instance, by querying for
further formulas entailed by the formulas in context; thiswould of course require
a reasoner with proof automation), adding more contextual information (for
instance, analysing the kinds of errors which a learner previously made), and
improving the similarity calculation (incorporating information on structural
similarity, rather than just identifier overlap).

6.5 Summary

As we have shown in Chapters 3 and 4 and contrary to expectation, students’
mathematical language is rich in interesting phenomena and diverse in terms of
patterns of verbalisation. Only a subset of all the linguistic phenomena can be
addressed within a scope of one thesis. In order to show the general feasibility
of provisioning language processing capabilities for a tutorial dialogue system
for proofs, in this chapter we opted for the breadth of coverage, addressing a
wide range of phenomena, rather than focusing on a narrowly defined linguistic
problem and modelling it in depth. For the same reason, we chose to address
subsets of phenomena at different levels of computational analysis: syntactic,
semantic, and discourse, guided by two criteria: frequency of occurrence in the
corpora and complexity of computational modelling.
Among the basic phenomena which need to be modelled and which

frequently recur in our corpora are those related to the syntactic properties of
the input language and its peculiarities due to the mathematical domain. We
have shown how we model basic German syntax in combinatory categorial
grammar and gave a categorial account of informal mathematical language with
embedded formal notation, including its idiosyncratic domain-specific language
constructions. At the semantic level we focused on linguistic imprecision and
ambiguities in interpretation which it entails. We have shown how a lexical
resource, a semantic lexicon, can be exploited to link imprecise concepts with
domain concepts via a linguistically-motivated domain ontology. The stepwise
interpretation process is well-motivated in that it reflects the observations
on how mathematical objects are conceptualised in the course of learning
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(see Section 3.2.2.4, p. 126). Among complex discourse phenomena, we model
a contextual operator, ‘‘the other way round’’, which frequently occurs in
spontaneous speech and which has been also found in our corpus data. Both the
semantic lexicon and the transformations employed in ‘‘the other way round’’
reconstruction exploit the dependency structures which we use to represent
natural language semantics. This supports our choice of tectogrammatical
representation of meaning, proposed in Chapter 5, as an appropriate level of
abstraction for modelling a wide range of semantic phenomena. Also at the
discourse level, we analyse reference phenomena and show how to extend
our domain model to account for indirect reference specific to mathematical
discourse. Finally, we test our observations on common errors in mathematical
expressions (outlined in Section 3.2.1.5, p. 106) in a preliminary error correction
method whose purpose is to support cooperative interpretation.
Our approach in this chapter has been mainly qualitatively oriented and

served the objective of showing feasibility of computational interpretation
by the range of phenomena addressed. We showed implemented proof of
concept models or performed corpus-based studies as preliminary step towards
computational implementation. Evaluations have been of small-scale, pilot
character. As is clear from this chapter, the semantic interpretation methods
we propose depend mainly on hand-crafted resources (grammars, lexica,
ontologies, rules) and the methods employed are deterministic in nature.
Crucial is, however, that input can be parsed. In order to gain insight into the
prospects for larger-scale computational interpretation, in the next chapter we
perform a quantitative evaluation of the parser component, the element of the
architecture on whose output semantic interpretation relies.





Chapter 7

Prospects for automated proof tutoring
in natural language

This chapter reports on evaluation experiments designed with the goal of
assessing the potential of deep processing resources for computational under-
standing of students’ mathematical language and drawing conclusions about
the prospects for natural language interaction in German dialogue-based proof
tutoring systems. We focus on the coverage of the parsing component which
is the key part of the proposed input interpretation architecture (Chapter 5).
Existing corpora of learner proofs (Chapter 2) are used as data for an intrinsic
evaluation of the parser’s performance. Before presenting the results, we
motivate the choice of the evaluation methodology, the scope of the evaluation,
and the design of the experiments.

7.1 Methodology and the scope of evaluation

Holistic approaches to evaluating tutoring systems use empirical methods –
laboratory or field experiments – to show a relationship between an intervention
involving computer-based instruction and the students’ outcomes (Mark and
Greer, 1993; Self, 1993; Baker and O’Neil, 1994). The Stanford tutoring
systems, including the proof tutoring environments, have been evaluated in this
way since the 60s; see, for instance, (Suppes and Morningstar, 1972; Suppes,
1981). Such ‘‘end-to-end’’ evaluations presuppose, of course, that a complete
implemented system exists and, crucially, that it is robust enough to handle new
data in a live study. If a complete system is not available, partial Wizard-of-Oz
experiments (see Section 2.2, p. 64) may serve as a setting for evaluating parts
of a larger system while emulating unimplemented components.
The project of which this thesis was part focused on basic research ques-

tions in modern technology for dialogue-based tutoring of mathematical proofs
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rather than aiming at a deployable system. Several proof-of-concept studies
have been conducted within the project in order to assess the validity of the
proposedmethods on component-by-component basis: tutoring strategies (Tso-
valtzi, 2010), fragments of the dialogue model (Buckley, 2010), granularity
judgement models (Schiller et al., 2008), and recently also proof representation
and reasoning (Autexier et al., 2012). Integrating the proof-of-concept modules
into a working experimental system would be an interesting task in itself,
but it is outside of the scope of this thesis. At the present state, even in a
partial Wizard-of-Oz simulation most of the anticipated system’s functionality
would have to be taken over by a human facilitator, making the experiment
logistically complex and costly. Therefore, instead, in this work we follow
the same method of component-based evaluation and use intrinsic criteria to
evaluate deep-parsing German CCG fragments based on corpora.

Intrinsic evaluation (Galliers and Spärck Jones, 1993) focuses a component’s
objective, rather than its role in a larger setup (extrinsic).1 Precision and
recall are often used as measures in intrinsic parser evaluation; see, for
instance, (Grishman et al., 1992; Mollá and Hutchinson, 2003; Carroll et al.,
2003). An evaluation which is closest to ours in terms of the application
domain has been performed by Dzikovska et al. (2005). The authors report 62%
coverage and 68% precision results for syntactic and semantic parsing of the
LeActiveMath corpus of English tutorial dialogues on differentiation (Callaway
et al., 2006).2 The results were obtained by manually extending the lexical
base of the TRIPS grammar (Allen, 1995), a wide-coverage parsing resource
for dialogue, to support the LeActiveMath data. Similarly to this work, we
use Wizard-of-Oz corpora (Chapter 2) to investigate the growth of parsing
coverage with an increasing size of grammar resources as well as the amount
of parse ambiguity generated by the grammars.
Note that in a stepwise deep processing approach based on manually

constructed lexicalised resources and without robustness features, parsing is
the critical part of the input interpretation component: If the parser fails, domain-
specific interpretation, the next step of the processing pipeline (Chapter 5),
cannot proceed. Once a parse is found, assigning a domain-specific reading is
a deterministic (rule-based) process. Grammar coverage is thus critical to the
usability of a system based on deep semantic processing. Therefore, in order
to assess the outlook for deep processing-based interpretation, we focus on the
performance of the manually constructed parsing grammars.

1For an overview of parser evaluation methodologies see also, for instance, (Carroll et al., 1998).
2Based on the reported results it is not clear whether utterances or turns (possibly multi-utterance)
were parsed and what proportion of the parsed units were unique verbalisations.
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Table 7.1: Summary of the utterance types distribution

Utterance type C-I&C-II
Unique / Total

Solution-contributing 465 / 735
Proof contribution 450 / 719
Proof step 407 / 640
Logic and proof step components 175 / 366
Domain & context 126 / 256
Meta-level description 16 / 186

Proof strategy 29 / 34
Proof status 7 / 29
Proof structure 7 / 16

Meta-level 15 / 16
Self-evaluation 7 / 7
Restart 4 / 5
Give up 4 / 4

Other 231 / 331
Help request 149 / 170
Yes/No 1 / 42
Cognitive state 30 / 31
Politeness/Emotion/Attitude 14 / 24
Discourse marker 1 / 22
Answer 19 / 20
OK 1 / 7
Address 6 / 6
Session 4 / 4
Agree 3 / 3
Self talk 2 / 2

The experimentswe conduct are restricted to two types ofProof contribution
categories. The reason for this is two-fold: First, it is the proof-contributing
utterances that need a domain interpretation readable by a reasoning component;
the interpretation strategy and the language processing methods proposed in
Chapters 5 and 6 concentrate on this type of utterances. Second, the data in the
remaining classes is sparse. Recall that in Chapter 4 we classified the learner
utterances into two broad types: Solution-contributing andOther (non-solution-
contributing). The utterance types frequency distribution is summarised in
Table 7.1.3 If we exclude subcategories of Other which can be identified
by a lexical lookup (Yes/No, OK, and Discourse marker) we are left with 8
subtypes of which only four have a frequency above 5% within their superclass
(Answer, Politeness/Emotion/Attitude, Cognitive state, and Help request). The
set of help requests could be considered for experiments, although, admittedly,
3For the full classification see Table 4.6, p. 165.
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170 instances might not be a representative sample. While help requests
could be also parsed using deep grammars, it is evident that this category
is linguistically diverse, with mainly idiosyncratic verbalisations (type–token
ratio of 0.88). Thus, grammar-based parsing might not scale. Moreover,
since help requests are not passed to a reasoning engine for evaluation, but
can be processed by the dialogue model directly, an alternative strategy worth
exploring would be machine-learning-based classification.4 The Solution-
contributing class is likewise skewed. Only the Proof step category constitutes
more than 5% of the class. Verbalisations of the remaining categories can be
hardly considered representative (the Meta-level classes have between 4 and 7
instances and the remaining Proof contributions between 16 and 34 instances).
Therefore, the evaluation we conduct encompasses only proof-contributing
utterances, more specifically, Proof contributions of type Logic & proof step
components and Domain & context as defined in Section 4.3.4.5

7.2 Design

We attempt to answer the following questions: First, beyond principled
compositional semantic construction, is there advantage to deep processing
students’ input over parsing using resources which are easier to author?6
Second, do the resources scale, that is, what can we tell about the prospects
for natural language as input to proof tutoring systems based on processing the
available data? To this end, we set up an experiment to analyse two aspects of
parser performance: parsing coverage (proportion of parsed utterances from a
test set) and parse ambiguity (number of parses found for a parsed utterance).
The experiment consists of two parts: First, we analyse the growth of coverage
in a pseudo cross-validation experiment on ‘‘seen’’ data (data used for grammar
development). Second, we evaluate the performance of the same grammar
resources on ‘‘unseen’’ data (not used for grammar development, a blind set).
It is clear that verbalisations of proof steps are linguistically diverse

(type–token ratio of 0.49; see Table 7.1) and many verbalisations occur only
once (48% in the Logic & proof step components class, 84% in the Domain
& context class; see Figure 4.4, p. 171). Of course, considering that we build
grammars by hand, we could model all the proof step utterances one by one or
4If the taxonomy we proposed in (Wolska and Buckley, 2008) were used, this would be a 7-way
classification task.
5Meta-level descriptions are not included for the same reason: at 18 instances the sample is too
small. When we refer to ‘‘proof steps’’ further in this chapter we mean the Logic & proof step
components and Domain & context types.
6Arguably, writing regular or context-free grammars is less involved than writing resources in
richer, more expressive grammar formalisms, such as HPSG, LFG, or CCG.
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focus on specific linguistic phenomena of the German language.7 Instead, for
this evaluation, we select utterances to model based on a shallow quantitative
measure: we do not model proof step verbalisations which are entirely idio-
syncratic, but use only those verbalisations which, upon preprocessing, occur
at least twice in the data up to the given point in the experiment. We will refer
to these subsets of the data as ‘‘modelled utterances’’ or a ‘‘development set’’.
At each cross-validation step, grammars are built based on modelled utterances
stemming from an increasing number of dialogues (1 dialogue, 2, 3, and so on).
The motivation behind this setup is to simulate a partial Wizard-of-Oz

experiment in which the parsing component is replaced by a human if it fails.
In the envisaged scenario, we would systematically augment the grammar
resources after each experiment session based on the data from the subject
who just completed the experiment, a plausible approach. Since grammar
development is a time-consuming task, for efficiency reasons a plausible
pragmatic decision in such a setting would be to prioritise modelling those
verbalisations which are observed to reappear – suggesting thereby to be
relatively more representative of the language – with the view to gradually
reducing the degree of wizard’s intervention. For instance, one could decide to
model utterances which appeared at least, say, five times in the data collected
so far. Given the heavily skewed distribution of the proof step types (see
Figure 4.4, p. 171), in the simulated experiment we set the frequency threshold
at two occurrences for otherwise the development sets would be too small.
In the pseudo cross-validation setup, we parse all the utterances from the

modelled set (seen data) using grammars constructed based on the modelled
utterances.8 Notice that unlike in proper cross-validation, in which data is
partitioned into disjoint development and validation sets, here the evaluation
sets constructed from the modelled utterances contain both utterances unseen
at the given iteration (modelled, but not used to built the grammar at the given
step) as well as seen items (items based on which the evaluated grammars
have been built). The purpose of the evaluation on the modelled sets is to
observe the rate of convergence to ceiling results (total number of modelled
utterances) based on data that has been exhaustively encoded in a principled
way (all the utterances from the seen evaluation sets parse into the expected
representations). Next, we use the remaining proof step utterances, the single-
occurrence verbalisations (unseen data), to observe the generalisation potential
of the grammar. Analogous incremental evaluation is performed. The second
part of the experiment is thus a proper blind evaluation. In the next section, the
development data, the grammars, and the test sets are presented in more detail.
7We have shown how we model selected relevant phenomena of German in CCG in Section 6.1.
8Descriptive information on the development and evaluation sets follows in Section 7.3.
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Table 7.2: Descriptive information on the grammar development set

C-I C-II C-I&C-II
Number of dialogues in the development set 15 27 42
Number of unique utterances 21 56 61
Number of words 80 266 284
Number of unique types 24 54 57

7.3 Data

Out of the 57 dialogues 42 contain proof steps which overall occurred more
than once. They comprise 622 proof step instances, among which, after
preprocessing, there are 391 unique verbalisation patterns. 319 of these occurred
once, leaving 72 utterance patterns for developing the evaluation grammar.
10 clearly ungrammatical utterances were excluded.9 The pattern consisting
of a single noun phrase denoting a domain term was also excluded.10 The
remaining 61 utterances from 42 dialogues were used as the development set.

7.3.1 Preprocessing
Utterances in the development set were preprocessed as described in Chapter 5.
Domain terms and mathematical expressions have been identified and substi-
tuted with symbolic tokens. In the case of mathematical expressions, the tokens
represent the expression’s type (TERM, FORMULA, _FORMULA, etc.), in
the case of domain terms, they include grammatical information about case,
number, gender, and the type of article (definite/indefinite/none), for instance,
domainterm:def-sg-f-dat for a definite, singular, feminine, Dative noun phrase.
Two multi-word units, ‘‘genau dann wenn’’ (if and only if ) and ‘‘so dass’’
(such that) have been represented as single tokens. Table 7.2 summarises
descriptive information about the development set.11
Figure 7.1 shows the distribution of utterance lengths (pattern lengths) in

the modelled set. The majority of utterances from both development sets are
between three and five tokens. The binary relations corpus contains a larger
9Examples of ungrammatical forms include: ‘‘dann gilt fuer die linke seite wenn formula’’ (main
clause of the embedded sentence missing) or ‘‘term gilt demnach wenn formula und formula’’
(semantic type conflict between the subject ‘‘term’’ and the predicate‘‘hold’’). The grammar
can parse the latter utterance once ‘‘demnach’’ is added as a lexeme to the prepositional adverbs
category and if ‘‘term’’ is replaced with ‘‘formula’’.
10After preprocessing to a single token, DOMAINTERM (NP category) this is a trivial case.
11Note that here and further type counts rather than instance counts will be reported. Note also
that whenever we use the word ‘‘utterance’’ further in this chapter, we really mean utterance
pattern, an utterance preprocessed as described here. Both terms will be used interchangeably.
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Figure 7.1: Histogram of the modelled utterance lengths (in tokens).

number of longer utterances than the naïve set theory corpus. Considering
that this suggests a wider variety of linguistic phenomena in C-II, we expect
that resources stemming from C-II data will provide better generalisation, thus
better coverage, on unseen data than the resources stemming from C-I.

7.3.2 Evaluated grammars
Dialogue utterances from the modelled set have been exhaustively encoded in
OpenCCG as follows: The set of atomic categories comprises the standard four
types: S for sentence/clause types, NP for noun phrases, N for common nouns,
and PP for prepositional phrases. A set of basic categories for mathematical
expressions, noun phrases, common nouns, and articles has been encoded as a
core shared lexicon. Dialogue-specific lexica of syntactic categories covering
the phenomena found in the modelled utterances have been created for each
dialogue in the development set. The shared lexicon, dialogue-specific lexica,
and performance optimisation, are outlined in the sections that follow.

7.3.2.1 Shared lexicon
Four lexical families – mathematical expressions, noun phrases, common
nouns, and articles – constitute the core set of categories available at each step
of the iterative evaluation.
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Mathematical expressions The grammar encodes three categories for
truth-valued mathematical expressions: a sentence/clause type, S, and two
NP\NP types for expressions of type _FORMULA: one with the ‘‘such that’’
reading, adding the formula’s predication to the logical form via GeneralRe-
lation, and the other adding a predicate, rather than a dependency relation,
serving as the head of a dependency structure.
Mathematical object-denoting expressions, terms, obtain two categories:

noun phrases and common nouns. The former models constructions such as
‘‘... weil S eine leere Menge ist’’ (... because S is an empty set), while the
latter, constructions such as ‘‘Es gibt ein x ...’’ (There is an x ...) or ‘‘Es
gibt ein x ∈ B’’ (There is an x ∈ B) in which a symbolic expression of
type FORMULA is a part of a phrasal constituent with the preceding natural
language material (here, part of a noun phrase).
Mathematical function and relation symbols embedded within natural

language text obtain both clausal and nominal reading, the latter to account for
constructions such as ‘‘wegen Distributivitaet von ◦’’ (because of distributivity
of ◦). Partial expressions (such as ‘‘∈ A’’) obtain appropriate functional
categories (‘‘∈ A’’, preprocessed to _FORMULA, is of type NP\NP).

Noun phrases The noun phrase group comprises three categories: two
atomic, NP, denoting object types (contribute HLDS predicates) and expletive
uses of singular third person neuter pronoun ‘‘es’’ (not represented in the
logical form). The third noun phrase category, NP/NP, encodes appositive
constructions and adds an Apps (appositive) relation to the logical form.

Common nouns A single atomic common noun category, N, models bare
nouns and mathematical terms.

Articles Articles are modelled with the standard category NP/N.

7.3.2.2 Dialogue-specific lexica
Aside from the shared categories included in all grammars, dialogue-specific
grammars encode only the categories required to cover the modelled utterances
found in the given dialogue. An overview of our approach to modelling basic
linguistic phenomena has been presented in Section 6.1 (p. 206). The same
syntactic categories have been consistently reused across dialogue-specific
lexica when the syntactic contexts allowed that, in order to ensure that the same
phenomena are modelled the same way across dialogues, thus minimising
spurious ambiguity due to alternative encoding in the grammar.
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Figure 7.2: Distribution of modelled and non-modelled utterance patterns,
sorted by corpus; horizontal lines denote the range of the number of parses in
the modelled utterances per dialogue

7.3.2.3 Baseline
Performance of the CCGs is compared with performance of context-free
grammars developed in an analogous setup. The CFGs were created using
the NLTK toolkit (Loper and Bird, 2002) and parsed with the NLTK’s Earley
chart parser. The expectation is that the CCGs’ lexicalised model provides
better generalisations than the CFGs and, as a consequence, better coverage.
However, the generalisation power is likely to come at a cost of ambiguity: we
expect more ambiguous parses with CCG than with CFG.

7.3.2.4 Performance optimisation
Figure 7.2 shows the distribution of the modelled and non-modelled utterance
patterns and the range of the number of parses per dialogue in the development
set. Note that the x-axis shows the number of distinct utterances (pattern types)
and not utterance instances (of which there were more than one instance in the
case of all the patterns in the development set; see Section 7.2).
The performance of both CCG and CFG grammars was optimised on per

dialogue basis: All the utterances were encoded in such way that, per dialogue,
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Table 7.3: Verbalisations with multiple CCG parses in the development set

Utterance pattern No. of parses
also gilt FORMULA und FORMULA 2
dies aber heisst FORMULA und FORMULA 2
FORMULA genaudannwenn FORMULA und FORMULA 2
also gilt FORMULA und FORMULA 2
laut DOMAINTERM gilt dann auch FORMULA 2
da FORMULA gilt nach DOMAINTERM formula 3
also ist TERM in TERM oder TERM in TERM 3

the expected (semantic) representations are correctly produced by the parser
and that the number of parses for the reading intended in the given dialogue
is maintained at minimum. While most of the utterance patterns have been
encoded in such way that they produce a single parse (see Figure 7.2) the
grammars do produce valid alternative derivations of a few utterances in the
development set. Multiple CCG (and MMCCG) derivations are produced if a
lexeme can be instantiated with multiple syntactic categories or if alternative
applications of combinatory rules are possible.12 There is a larger number of
ambiguous parses in the binary relations corpus (this data set contains longer
and more complex utterances; see Figure 7.1).
Utterances which yield more than one parse are listed in Table 7.3. Multi-

ple parses are generated by ambiguous coordination which can be interpreted
as taking wide or narrow scope, by a combination of coordination scope
and preposition attachment or adverbial modification (‘‘auch’’ (also), ‘‘nun’’
(now), etc.), or by structurally ambiguous clausal scope. The three readings
of the utterance ‘‘da FORMULA gilt nach DOMAINTERM FORMULA’’
are: ((da FORMULA) (gilt nach DOMAINTERM FORMULA)), ((da FOR-
MULA gilt) ((nach DOMAINTERM) (FORMULA))), and (((da FORMULA
gilt) (nach DOMAINTERM)) (FORMULA)). The latter two are artefacts
of constructions of type ‘‘FORMULA gilt nach DOMAINTERM’’ (FOR-
MULA holds by DOMAINTERM) and ‘‘nach DOMAINTERM FORMULA’’
(by DOMAINTERM FORMULA) for which different preposition categories
are needed. Plausible alternative parses, illustrated above, were preserved.
Otherwise, derivations were controlled in a standard way through features and
MMCCG’s modes on slashes. The full grammar covering the modelled utter-
ances from both corpora consists of 65 distinct complex categories grouped
into 19 lexical families (sets of categories of syntactically related lexemes).

12Alternative compositionally ambiguous parses may produce equivalent logical forms.
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7.3.2.5 Grammar development sets used in evaluation
Dialogue-specific CCGs built for the modelled utterances from each of the 42
dialogues have been grouped into four evaluation resources:

1. C-I resources: model C-I dialogues,
2. C-II resources: model C-II dialogues,
3. C-I&C-II in the data collection order (C-I&C-II-dco): C-I resources
added first, followed by C-II resources,

4. C-I&C-II in a random order (C-I&C-II-ro): C-I and C-II resources
combined in randomised order.

Cases (1) and (2) simulate the situations in which, respectively, only C-I and
C-II data were available. Cases (3) and (4) represent the settings in which both
corpora are available, with case (3) corresponding to the chronological order
of our data collection and, more importantly, the distinction between the two
mathematical domains of the data collection experiments.
At each cross-validating iteration, grammars are augmented by adding

resources needed for parsing all the modelled utterances from the dialogue
included at the given iteration step. The added resources comprise entire lexical
families, that is, all the syntactic categories for the lexemes occurring in a given
modelled utterance. A more conservative approach would be to include only
the one category which models the specific syntactic context appearing in the
given utterance. This, however, would result in grammars over-tuned for the
specific utterances added to the evaluation at a given step and would not give
an insight into the generalisation potential of the CCG grammars.
Considering the conclusions of the quantitative analysis in Chapter 4, which

showed, at a shallow level, that the language in C-I and C-II differs strongly,
we expect the grammar based on C-I and C-II combined in random order, that
is mixing resources from the two corpora, to yield the best performance.

7.3.3 Test sets
Performance of the four grammars is tested on modelled and non-modelled
within-vocabulary utterances grouped into ‘‘seen’’ and ‘‘unseen’’ sets:
1. C-I-seen, C-II-seen, and C-I&C-II-seen: comprise modelled utterances
from C-I, C-II, and C-I and C-II combined, respectively,

2. C-I-unseen, C-II-unseen, and C-I&C-II-unseen: comprise non-modelled
utterances from C-I, C-II, and C-I and C-II combined.

While the seen test sets do contain utterances based on which the grammar
has been built, in the incremental setup, at each iteration only the lexical
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Figure 7.3: Histogram of the unseen utterance lengths (in tokens)

categories needed for the given number of dialogues are used. Thus, at each
iteration of the ‘‘seen’’ evaluation, the grammar is tested on data from which
the lexical categories stemmed and on the remaining data from the seen set
which at the given iteration step is effectively unseen. Only at the final iteration
step is the evaluation performed on the complete seen data set alone.
The unseen test sets consist of proof steps which occurred only once in

all the 50 dialogues which do contain proof steps. 7 clearly ungrammatical
utterances have been excluded. Only within-vocabulary utterances, relative to
the complete development sets, have been included in the unseen test sets since
parsing utterances with out-of-vocabulary (oov) words fails trivially.13 The
resulting unseen data set contains 114 utterances in total.
Figure 7.3 shows the utterance lengths in the blind sets. Not surprisingly, by

comparisonwith themodelled set (see Figure 7.1), single-occurrence utterances
are longer (more complex). We thus expect a significant drop in coverage by
comparison with seen data. Table 7.4 summarises descriptive information on
both test sets. 10 cross-validation rounds on different random permutations of
the development dialogues are performed at each iteration step.
13In a basic deep-grammar parsing setup with no robustness measures, as performed here, oov
words are not supported, that is, the parser fails. Note that in the incremental setup, evaluation
on the incomplete seen sets will also cause parser failures due to oov words; parser failure rates
due to oov words will be reported.
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Table 7.4: Descriptive information on the test sets

Seen data Unseen data
C-I C-II C-I&C-II C-I C-II C-I&C-II

Number of utterance patterns 21 56 61 22 92 114
Number of words 80 266 284 98 605 703
Number of types 24 54 57 26 48 49

7.4 Results

The results are summarised in four parts: First, we look at the coverage.
Growth of coverage with an increasing number of dialogues is plotted per
grammar resource. Variance of measurements obtained in the 10 cross-
validation rounds is presented as box plots.14 Subsets of numerical results – at
25%, 50%, 75%, and 100% of the data set – are statistically compared. The
asymptotic Mann-Whitney-Wilcoxon U test, adjusted for ties, (α=0.05) was
used due to a relatively small number of observations and because parametric
assumptions were violated for most of the compared distributions. Parse
failures due to vocabulary outside the lexicon (out-of-vocabulary error rates)
are summarised. The analysis is performed for the seen data (Section 7.4.1)
and the unseen data (Section 7.4.2). Next, parse ambiguity based on full
grammars is plotted (Section 7.4.3). Finally, the overall performance of the
CCG parser is summarised as percentage of test sets parsed and percentage of
proof-contributing utterances parsed per dialogue (Section 7.4.4).

7.4.1 Coverage on seen data
Growth of coverage on seen data is shown in Figure 7.4 (p. 267). The rows
show the evaluated resources and the columns the results for the three test sets.
Ceiling values are marked with dashed horizontal lines: 21 for C-I-seen, 56 for
C-II-seen, and 61 for C-I&C-II-seen data.
Two general trends can be observed based on these visualisations: First,

on average, in all the cases the CCG grammars converge to ceiling values
faster, that is, as expected, generalise better. Second, at around 50% of all
the data sets, the performance of both grammars is characterised by substantial
variance, that is, performance is strongly dependent on which dialogues are
included in the data set. (Recall that the dialogues, not utterances, in the
development sets have been sequenced randomly into 10 permutations.) This
14The same type of box plots are used throughout: hinges at Q1 and Q3, Tuckey whiskers (outliers
outside 1.5*IQR), sample means marked with circles.
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confirms the previous observation, formulated based on shallow analysis in
Chapter 4, that the proof language is indeed diverse and differs from subject
to subject; consequently, the individual subjects’ data require different lexica
or phrase-structure rules. As a result, the rate of convergence is also strongly
dependent on the content of the development set. Moreover, the variance of
the CCG results appears greater than that of the CFGs’, which means that the
convergence rate of the CCG parser is more unstable and more sensitive to
changes in the data based on which the grammar is built.
Grammars based on C-I alone yield the poorest performance. C-I CCGs

tested on seen C-II data do not reach the coverage of even 50% (the final C-I
grammar parses 27 utterances on average out of 56). This is not surprising: the
C-I resources are built based on only 21 utterance patterns (see Table 7.2)
which are moreover shorter than the utterances found in C-II (see Figure 7.1).
Grammars based on C-II yield better performance. The complete C-II CCG

misses only two utterances from C-I. Around 50% into the development set,
C-II CCGs cover at least around 80% of all test sets. The combined resources
reach at least around 70% coverage at 50% of the development sets. As expec-
ted, results based on resources combined in random order converge faster than
those based on resources built incrementally in the data collection order. While
the dco results exhibit a slow linear convergence trend for both CCG and CFG,
convergence of the CCG results based on ro resources is clearly superlinear.
Numerical comparisons of parsing performance on seen data are shown in

Table 7.5. Mean numbers of parsed utterances per test set are shown for subsets
of the resources and for the complete development sets (standard deviations
in parentheses). The nd values indicate the actual number of dialogues in the
development set. N are the ceiling values: the number of utterances in the
given test set. Statistically significant differences are marked in bold.
In almost all cases the CCG parser statistically outperforms the CFG

baseline. In fact, all the marked differences were significant at a more conser-
vative significance level, 0.01, than the one used for comparisons. No statistical
difference in the case of C-I&C-II-dco resources tested on C-I-seen test set
is clear: 25% of the C-I&C-II-dco data set contains already 10 out of the 15
dialogues in C-I and the ceiling value is reached already 50% into the data set.
Table 7.6 shows the proportion of parse failures due to out-of-vocabulary

words. Again, we see that the full C-I lexicon covers only around half of C-II
and the combined test sets, that is, around 50% of C-II utterances contain vo-
cabulary which is not in C-I. By contrast, with C-II and the resources combined
in random order, ro, oov rates drop to at most 19% already when 50% of the
data is available and to around 10% at 75% of the development data. The
higher oov error rates, 25-28%, on C-I&C-II-dco resources are consistent with
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Figure 7.4: Growth of coverage on seen data.
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Table 7.5: Mean coverage on the seen data in percentage of test set parsed

Grammar develop-
ment set

C-I-seen C-II-seen C-I&C-II-seen
(N=21) (N=56) (N=61)

CCG CFG CCG CFG CCG CFG

C-I
(nd=15)

25% 46.19(13.31) 35.71 (9.82) 16.43 (6.07) 10.18(4.30) 19.34 (6.42) 13.11(4.15)
50% 70.48(10.61) 55.24 (8.83) 29.64 (5.88) 16.96(4.32) 33.28 (6.09) 20.66(3.89)
75% 90.48 (7.68) 80.00 (7.00) 41.61 (5.36) 26.25(2.77) 45.57 (5.72) 30.98(2.88)
100%100.00 (0.00) 100.00 (0.00) 48.21 (0.00) 33.93(0.00) 52.46 (0.00) 39.34(0.00)

C-II
(nd=27)

25% 71.90(10.74) 37.62(11.75) 61.43(12.17) 39.46(9.66) 59.51(12.25) 36.23(8.87)
50% 87.14 (3.05) 57.62 (8.64) 83.39 (3.39) 63.57(7.91) 80.98 (3.30) 58.36(7.27)
75% 90.00 (1.43) 72.38 (3.56) 94.46 (3.87) 86.25(5.93) 91.48 (3.58) 79.18(5.44)
100% 90.48 (0.00) 76.19 (0.00) 100.00 (0.00) 100.00(0.00) 96.72 (0.00) 91.80(0.00)

C-I&C-II
dco

(nd=42)

25% 80.95 (9.78) 73.81 (9.10) 35.32 (5.04) 25.54(3.10) 38.62 (5.94) 29.02(3.81)
50%100.00 (0.00) 100.00 (0.00) 69.25 (5.76) 52.32(3.49) 71.77 (5.29) 56.23(3.20)
75%100.00 (0.00) 100.00 (0.00) 87.30 (5.29) 78.21(7.04) 88.34 (4.85) 80.00(6.47)
100%100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00(0.00) 100.00 (0.00) 100.00(0.00)

C-I&C-II
ro

(nd=42)

25% 82.86 (9.33) 64.76 (9.33) 63.93 (7.35) 43.39(6.87) 63.61 (7.32) 43.44(5.92)
50% 93.33 (3.81) 83.81 (6.80) 81.96 (5.78) 65.00(8.83) 81.31 (5.35) 64.75(8.43)
75% 96.19 (2.86) 94.76 (2.56) 88.57 (3.68) 81.79(7.18) 88.20 (3.72) 81.80(6.58)
100%100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00(0.00) 100.00 (0.00) 100.00(0.00)

Table 7.6: Mean proportion of parse failures due to oov words on seen data

Grammar develop-
ment set

C-I-seen C-II-seen C-I&C-II
-seen

(N=21) (N=56) (N=61)

C-I
(nd=15)

25% 0.53 (0.12) 0.82 (0.07) 0.79 (0.07)
50% 0.35 (0.10) 0.68 (0.06) 0.65 (0.06)
75% 0.14 (0.05) 0.58 (0.04) 0.54 (0.04)
100% 0.00 (0.00) 0.50 (0.00) 0.46 (0.00)

C-II
(nd=27)

25% 0.34 (0.11) 0.39 (0.11) 0.40 (0.11)
50% 0.18 (0.04) 0.16 (0.04) 0.19 (0.04)
75% 0.12 (0.03) 0.05 (0.03) 0.09 (0.03)
100% 0.10 (0.00) 0.00 (0.00) 0.03 (0.00)

C-I&C-II
dco

(nd=42)

25% 0.19 (0.07) 0.61 (0.04) 0.58 (0.04)
50% 0.00 (0.00) 0.28 (0.05) 0.25 (0.05)
75% 0.00 (0.00) 0.10 (0.05) 0.09 (0.04)
100% 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

C-I&C-II
ro

(nd=42)

25% 0.17 (0.09) 0.33 (0.09) 0.33 (0.08)
50% 0.07 (0.03) 0.15 (0.06) 0.16 (0.05)
75% 0.04 (0.03) 0.09 (0.03) 0.10 (0.03)
100% 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)



PROSPECTS FOR AUTOMATED PROOF TUTORING 269

the corresponding C-I results: at 50% of the data only 7 C-II dialogues are
included in the C-I&C-II-dco data set. The oov rates drop to around 10% at
75% of the dco set, the same level as with the ro set. The majority of parse
failures on seen data are thus not due to differences in vocabulary, but due to
different syntactic constructions in the development sets and test sets.

7.4.2 Coverage on unseen data
Growth of coverage on unseen data is shown in Figure 7.5. Ceiling values
for the test sets marked with dashed horizontal lines are at 22 for C-I-unseen,
92 for C-II-unseen, and 114 for C-I&C-II-unseen. Performance of both the
CCG and the CFG grammar is far from the ceiling values, however, the trends
observed for the seen data are even more pronounced on unseen data.
In all the cases the CCG grammars’ coverage grows faster. The CCG parser

markedly outperforms the CFG parser on the C-II-unseen and C-I&C-II-un-
seen test sets. There is more variance in the performance of the CCG parser
than of the CFG parser on the unseen C-II data and on the combined set, that is,
again, the performance, and thus the rate of convergence of the CCG results, is
strongly influenced by the content of the data set, again pointing at the diversity
of linguistic phenomena. As with the seen data, grammars based on C-I data
alone yield the poorest performance. There is little difference in performance
between C-II and C-I&C-II grammars, which means that the C-I resources do
not contribute much to the performance on unseen data. This again shows that
the language in C-I is substantially different from the language in C-II.
Numerical comparisons of parsing performance on unseen data is shown

in Table 7.7 (p. 272). The CCG parser consistently statistically outperforms
the CFG parser, this time also on the test set based on C-I data. Both the CCG
and the CFG parser performance is more stable on unseen data, however, the
tendency towards more variance (less stability) in the performance of the CCG
parser than of the CFG parser can be observed on unseen data as well.
Table 7.8 (p. 272) shows out-of-vocabulary parse failure rates on unseen

data. With the complete C-I lexicon almost half of the parse failures on the
unseen data from the same corpus and themajority of failures on the C-II unseen
data and the combined set are due to oov words. However, much like in the
case of the seen data, C-II grammars and the grammars combined in a random
order yield only 10 to 30% oov failures given at least 50% of the resources.
The majority of failures are thus due to syntactic constructions in the test sets
which are not accounted for by the development data. With the complete C-II
resources, all parse failures are due to this. The high oov error rates based
on C-I data are reflected in the performance of the C-I&C-II-dco resources;
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at 75% of all test sets around 20% of parse failures based on C-I&C-II-dco are
due to unknown words. The results based on C-I&C-II-ro data are comparable.

7.4.3 Parse ambiguity
As mentioned in Section 7.3.2.4, the performance of the developed grammars
was optimised for modelled utterances on per-dialogue basis. The number of
parses in the development set ranged from 1 to 3, with most utterances yielding
a single parse (see Figure 7.2). Now, higher generalisation power of the CCGs
may come at a price of parse ambiguity. While in this work we do not address
the problem of parse ranking or parse selection – identifying the most likely
parse – we analyse the distributions of the number of parses on seen and unseen
data in order to assess the complexity of the parse selection problem.
Parse ambiguity box plots are shown in Figure 7.6. On the seen data, the

mean number of CCG parses is around one with a few outliers. The mean
number of CFG parses is higher than the corresponding CCG results for C-II
and C-I&C-II grammars when tested on C-I data. The performance of all
grammars on C-II and C-I&C-II test sets is the same, one parse on average with
a few outliers. The highest number of CCG parses is 6 and is found for a C-II
utterance when parsed with C-II resources. The results show that even though
ambiguity was tuned on per-dialogue basis, there is no dramatic increase in
ambiguity when the complete lexicon is used.
The increase in parse ambiguity on unseen data is low; the number of CCG

parses ranges from 1 to 7 (one outlier), by comparison with the 1 to 2 range of
the CFG parser. The mean number of CCG parses remains between 1 and 2,
negligibly higher than the CFG result. The 1 to 6 (seen data) or 7 (unseen data)
range in the number of parses is manageable.

7.4.4 Overall performance of the deep parser
Finally, we look at the overall performance of theCCGparser based on complete
lexica. Two measures are reported: the percentage of test set parsed and the
oov error rates (summary of Tables 7.5, 7.6, 7.7, 7.8) and the percentage of
proof utterances parsed per dialogue based on the combined C-I&C-II lexicon.
Table 7.9 summarises overall coverage of the final CCGs by test set.

Combinations of development sets with obvious complete coverage results
are marked with a dot.15 On seen data, the C-II grammar parses almost
the entire C-I development set (10% failures due to oov words) and thus
also almost the entire combined set (3% oov). By contrast, the C-I grammar

15The dco and ro grammars are equivalent when the full lexicon is used.
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Figure 7.5: Growth of coverage on unseen data
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Table 7.7: Mean coverage on the unseen data in percentage of test set parsed

Grammar develop-
ment set

C-I-unseen C-II-unseen C-I&C-II-unseen
(N=22) (N=92) (N=114)

CCG CFG CCG CFG CCG CFG

C-I
(nd=15)

25% 7.73(6.12) 0.91(1.82) 5.65(3.85) 0.33(0.70) 6.05(4.10) 0.44(0.71)
50%12.73(3.96) 2.73(2.23) 10.11(3.44) 0.54(0.88) 10.61(3.15) 0.96(1.00)
75%17.27(1.82) 5.00(2.45) 14.89(1.46) 1.52(1.00) 15.35(1.48) 2.19(0.98)
100%18.18(0.00) 9.09(0.00) 16.30(0.00) 3.26(0.00) 16.67(0.00) 4.39(0.00)

C-II
(nd=27)

25%17.73(4.29) 3.64(3.96) 22.93(8.34) 2.39(2.05) 21.93(7.24) 2.63(2.00)
50%21.36(2.08) 7.27(3.02) 36.09(5.95) 6.41(2.81) 33.25(5.17) 6.58(2.67)
75%22.27(1.36) 12.27(2.08) 39.78(4.46) 10.22(2.24) 36.40(3.83) 10.61(2.13)
100%22.73(0.00) 13.64(0.00) 43.48(0.00) 11.96(0.00) 39.47(0.00) 12.28(0.00)

C-I&C-II
dco

(nd=42)

25%15.45(2.23) 6.36(3.02) 13.37(1.62) 2.17(0.84) 13.77(1.67) 2.98(1.19)
50%18.64(1.36) 9.09(0.00) 26.63(3.71) 4.57(1.52) 25.09(3.24) 5.44(1.23)
75%21.36(2.08) 11.36(2.27) 35.54(5.01) 8.59(2.68) 32.81(4.39) 9.12(2.49)
100%22.73(0.00) 13.64(0.00) 43.48(0.00) 11.96(0.00) 39.47(0.00) 12.28(0.00)

C-I&C-II
ro

(nd=42)

25%18.18(2.03) 5.91(3.55) 25.87(4.53) 2.93(1.38) 24.39(3.82) 3.51(1.71)
50%20.00(2.23) 9.09(2.87) 34.67(6.21) 5.76(2.62) 31.84(5.44) 6.40(2.48)
75%20.91(2.23) 10.91(2.23) 37.93(6.20) 9.02(2.01) 34.65(5.43) 9.39(2.00)
100%22.73(0.00) 13.64(0.00) 43.48(0.00) 11.96(0.00) 39.47(0.00) 12.28(0.00)

Table 7.8: Mean proportion of parse failures due to oov words on unseen data

Grammar develop-
ment set

C-I-unseen C-II-unseen C-I&C-II
-unseen

(N=22) (N=92) (N=114)

C-I
(nd=15)

25% 0.71 (0.10) 0.92 (0.04) 0.88 (0.05)
50% 0.59 (0.08) 0.84 (0.05) 0.79 (0.05)
75% 0.49 (0.04) 0.78 (0.02) 0.72 (0.02)
100% 0.41 (0.00) 0.73 (0.00) 0.67 (0.00)

C-II
(nd=27)

25% 0.43 (0.13) 0.61 (0.16) 0.58 (0.15)
50% 0.23 (0.11) 0.29 (0.13) 0.28 (0.12)
75% 0.11 (0.09) 0.14 (0.12) 0.13 (0.11)
100% 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

C-I&C-II
dco

(nd=42)

25% 0.49 (0.05) 0.80 (0.03) 0.74 (0.03)
50% 0.32 (0.07) 0.52 (0.08) 0.49 (0.08)
75% 0.12 (0.11) 0.22 (0.11) 0.20 (0.11)
100% 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

C-I&C-II
ro

(nd=42)

25% 0.37 (0.12) 0.53 (0.09) 0.50 (0.10)
50% 0.22 (0.10) 0.28 (0.15) 0.27 (0.13)
75% 0.16 (0.07) 0.17 (0.09) 0.17 (0.09)
100% 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
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Figure 7.6: Parse ambiguity on seen (top) and unseen (bottom) data

accounts for merely 50% of C-II and the combined set. Around half of the parse
failures are due to oov words. This shows that a lot of phenomena found in
the binary relations corpus are not present in the set theory proofs, specifically
also, C-II has a greater vocabulary size and the vocabulary is more diverse.
Performance drops dramatically on unseen data. The coverage of the C-I

grammars remains below 20% for all test sets. 73% of the parse failures on
unseen C-II data and 67% failures on unseen C-I&C-II data are due to oov
errors; even on data stemming from the same corpus, the oov rate is high (41%).
C-II grammars and the combined resources, C-I&C-II, account for barely over
20% of the unseen C-I and 40% of the unseen C-II utterances. Interestingly,
C-I resources do not contribute to the coverage on the combined test set at all;
results for C-II and C-I&C-II are the same. None of the unparsed utterances
based on the combined grammars fail due to oov words since the unseen data set
was built based on vocabulary found in the combined C-I&C-II development
set. Interestingly, the 41% oov rate for C-I resources on C-I unseen set and
the fact that C-II resources yield no failures due oov words suggest that the
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Table 7.9: Summary of percentage coverage and oov rates on seen and unseen
data with complete lexica (coverage/oov-failure-rate)

Grammar develop-
ment set

C-I-seen C-II-seen C-I&C-II C-I-unseen C-II-unseen C-I&C-II-seen -unseen
(N=21) (N=56) (N=61) (N=22) (N=92) (N=114)

C-I
(nd =15) . 48%/0.50 52%/0.46 18%/0.41 16%/0.73 17%/0.67

C-II
(nd =27) 90%/0.10 . 97%/0.03 23%/0.00 43%/0.00 39%/0.00

C-I&C-II dco / ro
(nd =42) . . . 23%/0.00 43%/0.00 39%/0.00

C-I corpus is lexically more heterogeneous than the C-II corpus; some of the
utterances in C-I-unseen must contain vocabulary not found in the modelled
C-I utterances. This is not the case with the C-II data.
Figure 7.7 shows the histogram of percentage of proof utterances parsed

per dialogue based on the full combined C-I&C-II grammar. All proof step
utterances, both seen and unseen, are included. The data is binned in 20%
intervals. Overall, per dialogue coverage is lower for C-I than for C-II. The
majority of C-I dialogues are parsed at 40-60% coverage. By contrast, most of
the C-II dialogues are parsed at at least 60% coverage (the majority at 60-80%).
More of the C-I dialogues than of the C-II dialogues are completely parsed.
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7.5 Conclusions

The presented results let us draw conclusions along two dimensions: the
potential of semantic grammars and the properties of the data. First, we have
shown that hand-crafted semantic resources based on combinatory categorial
grammars outperform baseline context-free grammars on the coverage measure
while remaining at a manageable ambiguity level. Second, we have shown that
the language used by students to talk about proofs is characterised by a large
degree of diversity not only at a shallow level of wording patterns, but also at
a deeper level of syntactic structures used.
The key conclusion we can draw is that the time overhead on the devel-

opment of semantic grammars for students’ proofs is beneficial and provided
that more time is invested in data collection and grammar development, CCG
as a grammar formalism has a potential of scaling well in this domain in spite
of the unexpected diversity of the language. As previously mentioned, the
coverage results point at the high linguistic diversity between the two corpora –
thus between proofs in the two mathematical domains – manifested both at the
lexical and syntactic level. (Recall that for the purpose of the experiments, vo-
cabulary has been normalised with respect to domain-specific concept names.
Thus, the lexical diversity within and between the corpora is not due to domain
terminology.) Part of the reason for that might be that the binary relations
problems were often solved using proof by cases whereas in set theory simple
forward reasoning was most common. However, the most frequent statement
type typical of proof by cases, assumption introduction, occurred in only 12
wording variants, of which only three appeared more than once ‘‘Sei...’’, ‘‘Sei
nun...’’, and ‘‘Sei also...’’ (Let..., Now, let..., Let then...).
Finally, we believe that the data we have is insufficient, in the sense that

it is not representative enough, for a serious – robust – proof tutoring system
to be implemented at the present stage. The set of recurring verbalisations
is small. This is against the intuition that the language of proofs should be
small and repetitive. The set theory resources do not yet scale sufficiently even
within-domain (C-I grammars tested on unseen data from the same corpus).
The binary relations data scale better within-domain, however, across-domains
(C-II resources tested on unseen C-I data) the difference in performance over
within-domain data is negligible (23% vs. 18%: two utterances). More
data would need to be collected. Interestingly, as a side-effect, our results
give a little insight into the data collection methodology in the domain
of proofs: Wizard-of-Oz experiments, logistically complex by themselves
and in this case also cognitively demanding on the wizards, should cover
multiple domains of mathematics rather than a single domain per experiment,
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as ours did, in order to provide more variety of proof verbalisations at one
trial. Nevertheless, considering that the promising coverage growth results
are based on 42 partially modelled dialogues, we also conclude that as far
as language processing is concerned, natural language as the input mode for
interactive proofs could be a matter of near future, provided that more data
and human resources for grammar development were available. The question
is though whether typewritten dialogue modality, in the times when spoken
interaction with machines is becoming more and more widespread, mobile
hand-held devices ubiquitous, and convenient graphical proof editors exist,
whether typewritten dialogue with a proof tutoring system is what students
would like to have.



Summary and outlook

This thesis contributes symbolic semantic processing methods for informal
mathematical language, such as the language produced by students in interac-
tions with a computer-based tutoring system for proofs. Unlike previous work
on computational processing of textbook discourse, our work is grounded in
systematic qualitative and quantitative corpus studies.

Students’ language in computer-assisted proof tutoring The se-
mantic processing approach we propose is motivated by a linguistic analysis
of two corpora collected in experiments with a simulated system. Based on
this data, we showed that students’ language is rich in complex linguistic phe-
nomena at the lexical, syntactic, semantic, and discourse-pragmatic level, and
diverse in its verbalisation forms. Language production is moreover influenced
by the presentation format of the study material. Material presented in natural
language prompts verbosity in language production, whereas formalised pre-
sentation prompts dialogue contributions consisting mainly of formulas. This
has practical implications for the implementation of tutorial dialogue systems
for proofs and possibly also tutorial systems for mathematics in general. More
natural language imposes more challenges on the input understanding compo-
nent. In the context of mathematics, this necessitates reliable and robust parsing
and discourse analysis strategies, including interpreting informal natural lan-
guage interspersed with mathematical expressions. More symbolic language
imposes stronger requirements on the mathematical expression parser since
longer mathematical expressions tend to be prone to errors. Interestingly, our
data suggests that students tend to have an informal attitude towards dialogue
style while interacting with a tutoring system. This is manifested in the use of
discourse markers typical of spoken language and suggests that students treat
tutorial dialogue like a chat and adapt spoken language, which they would
otherwise use when interacting with a human tutor, to the typewritten modality.
Naturally, this makes the interaction even more informal and poses further
challenges for input interpretation.
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Semantic processing of informal mathematical language We have
showed that mixed mathematical language consisting of natural language and
symbolic notation lends itself well to syntactic analysis based on categorial
grammars. Notation elements can be perspicuously modelled in terms of their
syntactic categories and their semantic import can be thereby incorporated
into the semantics of their natural language context. Previous computational
approaches to textbook language either did not address the interactions between
the two language ‘‘modes’’ at all or addressed it in a way which did not ensure
generalisation.
A general language processing architecture for mathematical discourse

which we proposed is parameterised for variables relevant to processing
mathematical discourse in three scenarios (tutorial dialogue, mathematics
assistance systems, and document processing) and modularised to facilitate
portability. We proposed methods of modelling prominent syntactic and
semantic language phenomena characteristic of informal mathematical proofs
and of the German language of interaction specific to our data. The symbolic
meaning representations generated by the parser have been shown to provide an
appropriate level of semantic generalisation: we model semantic imprecision
by providing a link between context-independent meaning and its context-
specific interpretation through intermediate linguistically-motivated lexica and
ontologies which enable interpretation of ambiguous wording and of a complex
contextual operator. The intermediate knowledge representations have been
shown to be relevant in modelling reference phenomena.

Prospects for natural language-based proof tutoring systems The
performance of grammar resources developed based on corpus data has been
evaluated in a simulation study. Manual development of linguistic resources
for deep semantic processing is knowledge-intensive, time-consuming, and,
consequently, costly; it requires familiarity with a linguistic formalism, both
grammatical and semantic, and its computational implementation. Hand-
crafted resources developed with a dedicated application in mind (often within
a time-constrained project) tend to exhibit a serious lack of coverage beyond
their specific domain. By contrast, wide-coverage hand-crafted resources, such
as TRIPS (Allen, 1995) or even more so the ERG (Baldwin et al., 2004), are
developed over many years and in collaboration with linguists. As shown
by the LeActiveMath experiment, they do scale in a satisfactory way just by
vocabulary adaptation (Callaway et al., 2006). We cannot expect a comparable
coverage since our resources have been developed from scratch and based on
minimally representative verbalisations in terms of frequency of occurrence.
Nevertheless, the results we obtained show that categorial grammar as a basis
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of a parsing component, the critical step in a deep processing architecture,
is a language model which provides better scalability in our domain than a
simpler grammar formalism. This is an encouraging result and it implies that
the language processing approach we propose is a viable contribution towards
computational processing of informal mathematical language.

Outlook A fundamental question concerning the tutoring scenario within
which this thesis has been set is the following: Is typewritten tutorial dialogue
the proof tutoring method of the future? Although typewritten modality
has been the state-of-the-art for most systems to date, it is somewhat hard to
imagine a student typing to a proof tutoring system on his smart-phone or tablet;
unless we consider a twitter-like dialogue, an idea possibly worth entertaining.
This thesis offers processing methods suitable for contemporary systems and
likely transferable to more advanced interfaces in which both typing and
other modalities would be available. However, the way I see it plausible
that interactive proof tutoring could evolve is towards multi-modal input.
In multi-modal systems, formal proofs could be constructed via structured
editors. Consider interfaces such as those of EPGY (McMath et al., 2001),
ProofWeb (Hendriks et al., 2010), or the OpenProof (Barker-Plummer et al.,
2008). Rigour and use of formal notation are the aspects ofmodernmathematics
that sooner or later students need to learn. The formality of proof presentation
in systems of this kind has another benefit: it makes the structure of proofs
and the relations between statements explicit. Experience of a few semesters
teaching mathematical logic let me think that this is what students actually
prefer: say, Fitch-style deduction over proofs in prose. Natural language could
be reserved for meta-level talk: students’ questions, clarifications, requests for
help and tutor’s answers, explanations, and hints. Spoken, rather than written,
input modality appears plausible, now that Nuance announced it’s time for the
CUI.16 AWOz experiment would reveal the range of spoken verbalisations and
help determine which language understanding methods would work. Now, the
formal setup is unaccommodating with respect to students for whom formulas
are an obstacle. Formalisation can be taught independently though and systems
that teach translation to formal logic already exist; see, for instance, (Barwise
and Etchemendy, 1999). These reflections lead me to concluding research on
typewritten proof tutorial dialogue here.
This does not mean this thesis has no ‘‘further work’’. However, re-

search building on this thesis shifts focus to mathematical prose. The trend
towards open publishing has produced online repositories – so-called ‘‘digital
16Beyond the GUI: It’s Time for a Conversational User Interface Ron Kaplan inWired, 21. March
2013.
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mathematical libraries’’ – many of which offer unlimited access to mathe-
matical articles, and which open up possibilities for research on scholarly
mathematical discourse. First, claims to the effect that mathematical language
in narrative discourse should be repetitive, formulaic, and ‘‘small’’ should be
verified by a systematic corpus analysis. My hypothesis is that these claims
will not hold. Second, language processing methods proposed in this thesis
will be evaluated on mathematical register language not only of proofs, but
also other discourse types: definitions and theorems. Here, the ultimate goal is
extraction of knowledge from mathematical documents. If proofs, definitions,
and theorems are to be processed by deep grammars, as proposed here, a
question arises of how to streamline the grammar development process. Our
initial experiment based on a subset of dialogue data suggests that, in restricted
domains, grammar engineering can be supported by an interactive process in
which shallow similarity measures are used to cluster data, so that subsets of
similar sentences are encoded in one step, thus making grammar engineering
less prone to over-specialisation of lexical categories. We are presently setting
up an experiment based on our entire dialogue corpus to evaluate the approach.
Further, a known task in mathematics, akin to word-sense disambiguation, is
the problem of determining the semantics of mathematical symbols in text. We
have already made preliminary contributions in this domain (Grigore et al.,
2009; Wolska and Grigore, 2010; Wolska et al., 2011) and we are planning
to pursue this task further. In general though, what is obviously lacking in
the state-of-the-art in processing mathematical discourse are basic language
processing resources – annotated corpora – and components: sentence- and
word-tokenisers, POS taggers, shallow parsers, named entity and domain term
recognisers, the usual tools which in natural language processing are taken for
granted. While this thesis ends my work on dialogue, there is a new niche to
be filled that might come to be known as MathNLP.
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Truth and proof are central to mathematics. Proving (or disproving)
seemingly simple statements often turns out to be one of the hardest
mathematical tasks. Yet, doing proofs is rarely taught in the class-
room. Studies on cognitive difficulties in learning to do proofs have
shown that pupils and students not only often do not understand or
cannot apply basic formal reasoning techniques and do not know how
to use formal mathematical language, but, at a far more fundamental
level, they also do not understand what it means to prove a statement
or even do not see the purpose of proof at all. Since insight into the
importance of proof and doing proofs as such cannot be learnt other
than by practice, learning support through individualised tutoring is
in demand. 
This volume presents a part of an interdisciplinary project, set at the
intersection of pedagogical science, artificial intelligence, and (com-
putational) linguistics, which investigated issues involved in provisio-
ning computer-based tutoring of mathematical proofs through
dialogue in natural language. The ultimate goal in this context, ad-
dressing the above-mentioned need for learning support, is to build
intelligent automated tutoring systems for mathematical proofs. The
research presented here has been focused on the language that stu-
dents use while interacting with such a system: its linguistic proper-
ties and computational modelling. Contribution is made at three
levels: first, an analysis of language phenomena found in students'
input to a (simulated) proof tutoring system is conducted and the va-
riety of students' verbalisations is quantitatively assessed, second, a
general computational processing strategy for informal mathematical
language and methods of modelling prominent language phenomena
are proposed, and third, the prospects for natural language as an input
modality for proof tutoring systems is evaluated based on collected
corpora.

universaar
Universitätsverlag des Saarlandes
Saarland University Press
Presses Universitaires de la Sarre

Deutsches Forschungszentrum
für künstliche Intelligenz
German Research Center for
Artificial Intelligence

ISBN 978-3-86223-111-9

Saarbrücken Dissertations band 40_Layout 1  28.08.2015  13:34  Seite 1


	cover_vorn
	Saarbrücken Dissertations band 40 Impressum_Layout 1-1
	mwolska_phd_screen-1
	cover_hinten

