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ARTICLE

Physiologically-Based Pharmacokinetic Models for 
CYP1A2 Drug–Drug Interaction Prediction: A Modeling 
Network of Fluvoxamine, Theophylline, Caffeine, 
Rifampicin, and Midazolam

Hannah Britz1, Nina Hanke1, Anke-Katrin Volz1, Olav Spigset2,3, Matthias Schwab4,5,6, Thomas Eissing7, Thomas Wendl7,  
Sebastian Frechen7 and Thorsten Lehr1,*

This study provides whole- body physiologically-based pharmacokinetic models of the strong index cytochrome P450 (CYP)1A2 
inhibitor and moderate CYP3A4 inhibitor fluvoxamine and of the sensitive CYP1A2 substrate theophylline. Both models were 
built and thoroughly evaluated for their application in drug– drug interaction (DDI) prediction in a network of perpetrator and 
victim drugs, combining them with previously developed models of caffeine (sensitive index CYP1A2 substrate), rifampicin 
(moderate CYP1A2 inducer), and midazolam (sensitive index CYP3A4 substrate). Simulation of all reported clinical DDI studies 
for combinations of these five drugs shows that the presented models reliably predict the observed drug concentrations, re-
sulting in seven of eight of the predicted DDI area under the plasma curve (AUC) ratios (AUC during DDI/AUC control) and seven 
of seven of the predicted DDI peak plasma concentration (Cmax) ratios (Cmax during DDI/Cmax control) within twofold of the 
observed values. Therefore, the models are considered qualified for DDI prediction. All models are  comprehensively docu-
mented and publicly available, as tools to support the drug development and clinical research community.

Cytochrome P450 (CYP)1A2 is an important enzyme for the 
metabolism of several endogenous substances (e.g., mel-
atonin), and it is involved in the elimination of 15% of all 
therapeutic drugs.1 CYP1A2 is exclusively expressed in the 
liver, where it accounts for about 13% of total CYP content 
in liver microsomes.2 The expression of CYP1A2 can be 
markedly induced by smoking, whereas rifampicin, a strong 

CYP3A4 inducer, shows only a moderate potential to in-
duce CYP1A2.1,3 Well- known substrates of CYP1A2 include 
caffeine and theophylline, which are mainly metabolized via 
CYP1A2 (fractions metabolized of 0.954 and 0.7,5,6 respec-
tively) and can, therefore, be used as sensitive CYP1A2 
substrates to evaluate the activity of CYP1A2 in vivo .7 The 
most important inhibitor of CYP1A2 is fluvoxamine.
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
✔  Physiologically-based pharmacokinetic (PBPK) mod-
els are a valuable tool to investigate and predict the drug–
drug interaction (DDI) potential of investigational drugs. A 
publicly available library of thoroughly and transparently 
evaluated models of relevant perpetrator and victim drugs 
used in clinical studies is needed to accelerate the drug 
development process.
WHAT QUESTION DID THIS STUDY ADDRESS?
✔  The aim of this study was to provide whole- body PBPK 
models of the most important cytochrome (CYP)1A2 per-
petrator and victim drugs and to evaluate them for their 
application in PBPK DDI modeling.

WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
✔  This study provides publicly available and transpar-
ently built and evaluated PBPK models of fluvoxamine and 
theophylline. Both models integrate the current knowl-
edge on relevant pharmacokinetic (PK) mechanisms, in-
cluding the impact of different genotypes and smoking on 
the PK of fluvoxamine.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, 
DEVELOPMENT, AND/OR THERAPEUTICS?
✔  The developed PBPK models are ready to use for their 
application in DDI modeling and might help to support the 
drug development process.
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The US Food and Drug Administration (FDA) specifies 
caffeine as a sensitive clinical index substrate and flu-
voxamine as a strong clinical index inhibitor for CYP1A2. 
Furthermore, they recommend considering a clinical study 
in smokers for investigational drugs that are CYP1A2 sub-
strates.8 Theophylline is classified as a sensitive clinical 
substrate and rifampicin as moderate clinical inducer of 
CYP1A2.9

Physiologically-based pharmacokinetic (PBPK) model-
ing is a valuable method, recognized by the FDA and the 
European Medicines Agency, to explore and quantitatively 
predict the pharmacokinetics (PK) of drugs, to evaluate 

drug–drug interactions (DDIs), and to support clinical study 
design, dose selection, and labeling.8,10–12 The FDA further-
more supports the prediction of DDI studies with weak and 
moderate index inhibitors and inducers as an alternative 
to prospective clinical studies, if the sponsors can demon-
strate adequate model performance using clinical data from 
DDI studies with strong index perpetrators.8

The aim of this study was to develop a PBPK DDI net-
work for CYP1A2 and thereby to extend the library of pub-
licly available PBPK models for DDI prediction.13,14 For this 
purpose, whole- body PBPK models of fluvoxamine and 
theophylline have been developed and existing models of 

Figure 1 Cytochrome P450 (CYP) 1A2 drug–drug interaction (DDI) network. Schematic illustration of the developed CYP1A2 DDI 
network with fluvoxamine and rifampicin as CYP1A2 perpetrator drugs and theophylline and caffeine as CYP1A2 victim drugs. 
Midazolam was used as CYP3A4 victim drug for fluvoxamine. Dark green lines indicate induction by rifampicin or smoking, and the 
red and orange lines indicate inhibition by fluvoxamine.

Figure 2 Fluvoxamine plasma concentrations. (a) Population predictions of selected fluvoxamine plasma concentration- time profiles 
compared with observed data in linear (left panel) and semilogarithmic plots (right panel). The upper panel shows i.v. application, 
the lower panel p.o. administration of fluvoxamine. Observed data are shown as dots ± SD.34,35 Population simulation arithmetic 
means are shown as lines; the shaded areas illustrate the 68% population prediction intervals. (b) Predicted compared with observed 
fluvoxamine plasma concentration values of all clinical studies. Line of identity and 0.5- fold to 2.0- fold acceptance limits are shown 
as black lines. The 0.8- fold to 1.25- fold limits are shown as grey lines. Details on dosing regimens and study populations are listed in 
Table S1a of Supplement S1. Predicted and observed pharmacokinetic parameters are summarized in Table S1d of Supplement S1.
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caffeine,15 rifampicin,13 and midazolam13 have been ex-
panded and coupled for mutual validation of the DDI per-
formance of these five models. The evaluation of the single 
models and of the network was accomplished by predic-
tion of multiple clinical DDI studies, demonstrating their 
performance with different victim or perpetrator drugs. 
Figure 1 shows the successfully developed CYP1A2 PBPK 
DDI network, with caffeine and theophylline as sensitive 
substrates, fluvoxamine as a strong inhibitor, and rifampi-
cin and smoking as moderate inducers (owing to the lack 
of strong CYP1A2 inducers). The evaluation of the final flu-
voxamine PBPK model, including the fluvoxamine fraction 
metabolized via CYP2D6, was supported by a post hoc  
population pharmacokinetic (PopPK) analysis to confirm 
the PBPK results concerning the impact of CYP2D6 poor 
metabolism and smoking on the metabolism of fluvoxam-
ine. The supplementary document (Supplement S1) to 
this paper was devised as comprehensive documentation 
and reference guide and provides detailed information on 
the single models and modeled DDI studies, including all 
model parameters, plots, and quantitative assessments of 
model performance.

METHODS
Software
PBPK modeling was performed with PK- Sim and MoBi 
modeling software version 7.3.0 (part of the Open Systems 
Pharmacology Suite,16 www.open-systems-pharmacology.
org). Parameter optimization was accomplished using the 
Monte Carlo algorithm implemented in PK- Sim. Sensitivity 
analysis was performed within PK- Sim. PopPK analysis was 
performed with NONMEM version 7.3 (ICON Development 
Solutions, Ellicott City, MD). Digitization of published plasma 
concentration- time profiles was accomplished using 
GetData Graph Digitizer version 2.26.0.20 (S. Fedorov). PK 
parameter analysis was performed with MATLAB version 
R2013b (The MathWorks, Natick, MA). Graphics were com-
piled with R version 3.5.1 (The R Foundation for Statistical 
Computing, Vienna, Austria) and RStudio version 1.1.453 
(RStudio, Boston, MA). SAS version 9.4 (SAS Institute, Cary, 
NC) was used for statistical analysis and graphics of the 
PopPK analysis.

PBPK model building
Fluvoxamine and theophylline PBPK model building was 
started with an extensive literature search to collect phys-
icochemical parameters, information on absorption, distri-
bution, metabolism, and excretion processes and clinical 
studies of i.v. and p.o. administration of fluvoxamine and 
theophylline in single- dose and multiple- dose regimens.

The PBPK models were built based on healthy individu-
als, using the reported mean values for age, weight, height, 

and genetic background for each study protocol. If no infor-
mation on these parameters could be found, a healthy male 
European individual, 30 years of age, with a body weight of 
73 kg and a height of 176 cm was used.

To model the specific metabolic clearance, relevant CYP 
enzymes were implemented in accordance with literature, 
using the PK- Sim expression database reverse transcription- 
polymerase chain reaction profiles17 to define their relative 
expression in the different organs of the body. For more de-
tails see Table S6 in Supplement S1. Glomerular filtration 
and enterohepatic cycling were enabled, as they are active 
under physiological conditions.

To build the data sets for PBPK modeling, the reported 
observed plasma concentration- time profiles were digi-
tized and divided into “training data set” and “test data 
set.” Model parameters that could not be informed from 
experimental reports were optimized by simultaneously fit-
ting the model to all measured plasma concentration- time 
profiles assigned to the training data set. To limit the pa-
rameters to be optimized during model building, the mini-
mal number of processes necessary was implemented into 
the model. Model evaluation was carried out based on the 
clinical data of the test data set. Descriptive (training data 
set) and predictive (test data set) performance of the model 
for all published clinical studies is transparently presented in 
Supplement S1.

PBPK model evaluation
Model performance was evaluated with different meth-
ods. The predicted population plasma concentration- time 
profiles were compared with the plasma concentration- 
time profiles observed in the clinical studies. Furthermore, 
predicted plasma concentration values of all studies were 
compared with the observed plasma concentrations in 
goodness- of- fit plots. In addition, the performance was 
evaluated by comparison of predicted to observed area 
under the plasma curve (AUC) and peak plasma concentra-
tion (Cmax) values. As quantitative measures of the descrip-
tive and predictive performance of the models, the mean 
relative deviation (MRD) according to Edginton et al. 18 and 
the geometric mean fold error (GMFE) were calculated. 
MRD was calculated for all observed plasma concentra-
tions according to Eq. 1.

with log10 cobs = logarithm of the observed plasma concen-
tration, log10 cpred = logarithm of the predicted plasma con-
centration, and N  = number of observed values. An MRD 
value ≤ 2 characterizes an adequate prediction.

(1)MRD=10x ;x=

�

∑N

i=1
( log10 cobs− log10cpred)

2

N

Figure 3 Theophylline plasma concentrations. (a) Population predictions of selected theophylline plasma concentration- time profiles 
compared with observed data in linear (left panel) and semilogarithmic plots (right panel). The upper panel shows i.v. application, the 
lower panel p.o. administration of theophylline. Observed data are shown as dots ± SD.36,37 Population simulation arithmetic means 
are shown as lines, and the shaded areas illustrate the 68% population prediction intervals. (b) Predicted compared with observed 
theophylline plasma concentration values of all clinical studies. Line of identity and 0.5- fold to 2.0- fold acceptance limits are shown 
as black lines. The 0.8- fold to 1.25- fold limits are shown as grey lines. Details on dosing regimens and study populations are listed in 
Table S2a of Supplement S1. Predicted and observed pharmacokinetic parameters are summarized in Table S2d of Supplement S1.

http://www.open-systems-pharmacology.org
http://www.open-systems-pharmacology.org
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The GMFE was calculated for all observed AUC and Cmax 
values according to Eq. 2.

with pred PK parameter = predicted AUC or Cmax value, obs 
PK parameter = observed AUC or Cmax value, and n  = num-
ber of studies. A GMFE value below two characterizes an 
adequate prediction.

PopPK model building and evaluation
Fluvoxamine PBPK model evaluation was supported by a 
post hoc  PopPK analysis to quantify the effect of CYP2D6 
poor metabolism and the impact of smoking on fluvoxam-
ine clearance and to compare the results to the effect sizes 
predicted by the PBPK model.

PopPK analysis, model evaluation, and simulation were 
performed using nonlinear mixed- effects modeling tech-
niques implemented in NONMEM. A full description of the 
PopPK methodology is available in Supplement S1.

DDI network building
In addition to the evaluation methods described above, a 
CYP1A2 DDI network was built to evaluate the DDI perfor-
mance of the developed models (Figure 1). Fluvoxamine 
was used as a CYP1A2 and CYP3A4 inhibitor theoph-
ylline and caffeine as CYP1A2 victim drugs, rifampicin 
as CYP1A2 and CYP2E1 inducer, and midazolam as a 
CYP3A4 victim drug. Mathematical implementation of 
the drug interaction processes in general is specified in 
Supplement S1. All induction and inhibition processes 
were modeled using interaction parameter values from in 
vitro  experimental reports without further adjustment or 
fitting.

DDI network evaluation
All predicted DDI simulations were evaluated by com-
parison of predicted vs. observed victim drug plasma 
concentration- time profiles alone and during co- 
administration, DDI AUC ratios (Eq. 3), and DDI Cmax ra-
tios (Eq. 4).

As a quantitative measure of the prediction accuracy 
for each DDI interaction, GMFEs of the predicted DDI 
AUC ratios and DDI Cmax ratios were calculated according 
to Eq. 2.

Sensitivity analysis
Sensitivity of the final PBPK models to single parame-
ters (local sensitivity analysis) was calculated, measured 
as relative changes of the AUC of one dosing interval in 
steady- state conditions for simulations of the highest rec-
ommended doses for fluvoxamine (300 mg once daily) and 
theophylline (500 mg once daily), respectively.

Parameters were included into the analysis if they have 
been optimized (Table S1b or S2b in Supplement S1), if 
they might have a strong influence due to calculation meth-
ods used in the model (fraction unbound) or if they had sig-
nificant impact in former models (solubility, blood/plasma 
ratio, and glomerular filtration rate fraction).

Sensitivity to a parameter is calculated as the ratio of the 
relative change of the simulated AUC to the relative variation 
of the parameter around the value used in the final model 
according to Eq. 5.

with S  = sensitivity of the AUC to the examined model pa-
rameter, ΔAUC = change of the AUC, AUC = simulated AUC 
with the original parameter value, Δp  = change of the exam-
ined model parameter value, and p  = original model param-
eter value. A sensitivity value of + 1.0 signifies that a 10% 
increase of the examined parameter causes a 10% increase 
of the simulated AUC.

Virtual population characteristics
To predict the variability of the simulated plasma 
concentration- time profiles, virtual populations of 100 in-
dividuals were generated, containing European, Asian, or 
Japanese individuals. The percentage of male and female 
individuals and the age and weight ranges were set cor-
responding with the reported demographics. If not speci-
fied, virtual populations containing 50 male and 50 female 
individuals 20–50 years of age were used, without spe-
cific body weight or height restriction as implemented in 
the software. For details on study populations see Tables 
S1a, S2a, S7a, S8a, S9a, and S10a in Supplement S1. 
In the generated virtual populations, corresponding organ 
volumes, tissue compositions, blood flow rates, etc. were 
varied by an implemented algorithm within the limits of the 
International Commission on Radiological Protection,19,20 
Tanaka and Kawamura,21 or Japanese22 databases. In ad-
dition, the reference concentrations of the implemented 
CYP enzymes were set to be distributed with the default 
variabilities for their expression available in PK- Sim. Table 
S6 in Supplement S1 summarized the implemented en-
zymes with their reference concentrations and variabilities.

With these populations, simulations were generated and 
compared with observed data. As the observed data were 
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Figure 4 Plasma concentration- time profiles of the drug– drug interaction (DDI) network. Population predictions of selected plasma 
concentration- time profiles compared with observed data for the fluvoxamine- theophylline, rifampicin- theophylline, fluvoxamine- 
caffeine, and fluvoxamine- midazolam DDIs in linear (left panel) and semilogarithmic plots (right panel). Observed data are shown 
as dots ± SD.38-41 Population simulation arithmetic means are shown as lines, and the shaded areas illustrate the 68% population 
prediction intervals. Details on dosing regimens and study populations are listed in Tables S7a, S8a, S9a, and S10a of Supplement 
S1. Predicted and observed pharmacokinetic parameters are summarized in Tables S7b, S8b, S9b, and S10b of Supplement S1.
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reported in terms of arithmetic means and SDs, simulated 
68% population prediction intervals were plotted that corre-
spond to the range span of ± 1 SD around the mean assum-
ing normal distribution.

RESULTS
PBPK model building and evaluation
The final PBPK models of fluvoxamine and theophylline 
precisely describe and predict the plasma concentration- 
time profiles following i.v. and p.o. administration for a large 
range of administered doses.

Plots of population predicted compared with observed 
plasma concentration- time profiles of all studies obtained 
from literature are shown in linear as well as in semiloga-
rithmic plots in Figure 2a (selected fluvoxamine studies), 
Figure 3a (selected theophylline studies), and Figures 
S1a, S1b, S2a, and S2b of Supplement S1 (all studies). 
Goodness- of- fit plots are presented in Figure 2b (fluvox-
amine), Figure 3b (theophylline), and Figures S1c and S2c 
of Supplement S1. MRD values of all studies are listed in 
Tables S1c and S2c of Supplement S1.

Predicted compared with observed AUC and Cmax values 
of all studies with calculated GMFEs are listed in Tables S1d 
and S2d of Supplement S1. Plots showing the correlation 
of predicted to observed AUC and Cmax values of all studies 
are presented in Figures S1f and S2d of Supplement S1.

For fluvoxamine PBPK model development, 26 different 
clinical studies with PK blood sampling were used, with 
9 studies assigned to the training data set (Table S1a in 

Supplement S1). The fluvoxamine PBPK model applies me-
tabolism by CYP1A2, CYP2D6, and glomerular filtration.

To distinguish between fluvoxamine metabolism in 
CYP2D6 extensive metabolizers (EMs) and poor metab-
olizers (PMs), the CYP2D6 catalytic rate constant (k cat) of 
PMs was set to zero. This assumption was made because 
CYP2D6 PMs were characterized by absent CYP2D6 enzy-
matic activity,23 which results in a predicted 1.5- fold increase 
of the fluvoxamine AUC in CYP2D6 PMs compared with 
CYP2D6 EMs (observed: 1.3- fold increase24). Population 
predictions of fluvoxamine plasma concentration- time pro-
files compared with observed data for CYP2D6 EMs and 
PMs are shown in Figure S1d of Supplement S1.

Furthermore, the final model is able to describe the influ-
ence of smoking on the PK of fluvoxamine. Smoking is the 
strongest known inducer of CYP1A2 and results in higher 
metabolism of CYP1A2 substrates.1 As no detailed infor-
mation on the frequency, duration, and amount of smoking 
was available from literature, the induction of CYP1A2 was 
implemented as a static 1.38- fold increase in enzyme activ-
ity. This factor was optimized based on the study of Spigset 
et al. ,25 resulting in a 39% reduction of the fluvoxamine AUC 
in smokers (observed: 31% reduction). Population predic-
tions of fluvoxamine plasma concentration- time profiles 
compared with observed data for nonsmokers and smok-
ers are shown in Figure S1e of Supplement S1. Drug- 
dependent parameters of the final fluvoxamine model are 
listed in Table S1b of Supplement S1. System- dependent 
parameters are given in Table S6 of Supplement S1.

Figure 5 Correlation of predicted to observed drug–drug interaction (DDI) area under the curve (AUC) ratios, and DDI peak plasma 
concentration (Cmax) ratios. The left panel illustrates the predicted compared with observed DDI AUC ratios, the right panel illustrates 
the predicted compared with observed DDI Cmax ratios of the fluvoxamine- theophylline, rifampicin- theophylline, fluvoxamine- caffeine, 
and fluvoxamine- midazolam DDIs. Fluvoxamine interaction studies are shown as dots and rifampicin interaction studies are shown as 
triangles. The colors represent the different victim drugs. The line of identity and the 0.5- fold to 2.0- fold acceptance limits are shown 
as straight black lines. The curved grey lines are the prediction acceptance limits proposed by Guest et al. 42 Study references, dosing 
regimens, and values of predicted and observed DDI AUC ratios and DDI Cmax ratios are listed in Table 1.
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Sensitivity analysis of a simulation of 300 mg fluvoxamine 
p.o. once daily with a sensitivity threshold of 0.5 reveals that 
the fluvoxamine model is sensitive to the values of lipophilic-
ity (optimized), CYP2D6 catalytic rate constant (optimized), 
CYP2D6 Michaelis- Menten constant (literature value), 
and fraction unbound (literature value; see Figure S1g of 
Supplement S1).

For theophylline PBPK model development, 40 differ-
ent clinical studies with PK blood sampling and additional 
fraction excreted unchanged to urine measurements and 
CYP1A2 fraction metabolized information were used, with 
13 clinical studies assigned to the training data set (Table 
S2a in Supplement S1). The theophylline PBPK model 
applies metabolism by CYP1A2, CYP2E1, and glomerular 
filtration with reabsorption in the renal tubulus.

In the model, CYP1A2 metabolizes theophylline with high 
affinity but low capacity, whereas CYP2E1 metabolizes the-
ophylline with low affinity and high capacity, as described 
in the literature,26 resulting in a good prediction of the ob-
served concentration dependency of theophylline metabo-
lism. About 95% of an administered theophylline dose are 

excreted with the urine but only 14–17% as unchanged 
drug.27,28 Due to the lack of valid in vitro  data on renal tubu-
lar re absorption transporters for theophylline, the glomerular 
filtration rate fraction was optimized to a value of 0.22 to 
describe the fraction of theophylline excreted unchanged to 
urine. Drug- dependent parameters of the final theophylline 
model are listed in Table S2b of Supplement S1. System- 
dependent parameters are given in Table S6 of Supplement 
S1.

Sensitivity analysis of a simulation of 500 mg theoph-
ylline p.o. once daily with a sensitivity threshold of 0.5 re-
veals that the theophylline model is sensitive to the values 
of fraction unbound (literature value), CYP1A2 catalytic 
rate constant (optimized), and CYP1A2 Michaelis- Menten 
constant (literature value; see Figure S2e of Supplement 
S1).

DDI network modeling
For the CYP1A2 DDI network modeling, eight different 
clinical DDI studies were available, consisting of two 
studies of fluvoxamine with theophylline, three studies 

Table 1 DDI AUC ratios, DDI Cmax ratios, and GMFE values of DDI studies

Perpetrator 
drug 

Victim drug 
 

Observed 
DDI AUC 

ratio

Predicted 
DDI AUC 

ratio

Pred/Obs 
DDI AUC 

ratio

Observed 
DDI Cmax 

ratio

Predicted 
DDI Cmax 

ratio

Pred/Obs 
DD Cmax 

ratio

Reference 
 

Fluvoxamine Theophylline 

50 mg p.o., 
q.d./b.i.d.

3.21 mg/kg p.o.,  
s.d.

2.40 2.16 0.90 1.09 1.08 0.99 Orlando  
200643

50/100 mg 
p.o., q.d.

257 mg p.o.,  
s.d.

2.70 3.10 1.15 1.16 1.13 0.97 Rasmussen 
199738

GMFE (range) 1.13 (1.11–1.15) 1.02 (1.01–1.03)

Pred/Obs within twofold 2/2 2/2

Rifampicin Theophylline 

600 mg p.o.,  
q.d.

3.95 mg/kg i.v. 
(30 minutes)

0.83 0.87 1.05 0.98 Powell- Jackson  
198544

600 mg p.o.,  
q.d.

5.19 mg/kg i.v. 
(20 minutes)

0.81 0.71 0.89 1.19 0.98 0.82 Boyce  
198439

600 mg p.o.,  
q.d.

355.5 mg p.o., 
s.d.

0.87 0.75 0.87 0.90 0.89 0.99 Powell- Jackson 
198544

GMFE (range) 1.12 (1.05–1.16) 1.11 (1.01–1.21)

Pred/Obs within twofold 3/3 2/2

Fluvoxamine Caffeine 

50/100 mg 
p.o.,  
q.d.

200 mg p.o.,  
s.d.

5.40 4.99 0.92 1.06 1.07 1.01 Jeppesen 
199640

100 mg p.o.,  
b.i.d

250 mg p.o.,  
s.d.

14.90 7.03 0.47 1.44 1.06 0.74 Culm- Merdek 
200545

GMFE (range) 1.51 (1.08–2.12) 1.17 (1.01–1.36)

Pred/Obs within twofold 1/2 2/2

Fluvoxamine Midazolam 

50 mg p.o.,  
b.i.d.

10 mg p.o.,  
s.d.

1.38 1.51 1.09 1.40 1.34 0.95 Lam  
200341

GMFE 1.09 1.04

Pred/Obs within twofold 1/1 1/1

AUC, area under the plasma concentration- time curve; Cmax, peak plasma concentration; DDI, drug- drug interaction; GMFE, geometric mean fold error; 
Pred/Obs, predicted/observed; -, no data available.
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of rifampicin with theophylline, two studies of fluvox-
amine with caffeine, and one study of fluvoxamine with 
midazolam. The victim drug plasma concentration- time 
profiles of these studies, before and during perpetrator 
treatment, were predicted and compared with observed 
data. Tables S7a, S8a, S9a, and S10a of Supplement 
S1 list the administration protocols and study popula-
tion details of the clinical DDI studies. The parameters 
to model the CYP1A2, CYP2E1, and CYP3A4 induction 
and inhibition processes are described in Supplement 
S1. Population predictions of plasma concentration- time 
profiles of the different victim drugs before and during 
co administration are presented in linear as well as semi-
logarithmic plots in Figure 4 (selected studies) and 
Figures S7a, S8a, S9a, and S10a of Supplement S1 
(all studies). All victim drug plasma concentration- time 
profiles before and during co administration with fluvox-
amine or rifampicin are well- predicted over the full range 
of reported administration protocols.

Figure 5 shows the correlation of predicted to observed 
DDI AUC ratios and DDI Cmax ratios of the modeled DDI 
studies as a visualization of the performance of the entire 
network. Table 1 lists the corresponding DDI AUC ratio and 
DDI Cmax ratio values shown in Figure 5, with calculated 
GMFE values for each perpetrator– victim drug combina-
tion, demonstrating the good performance of the developed 
models when applied for DDI prediction.

PopPK modeling of fluvoxamine
The PK of fluvoxamine were best described by a one- 
compartment model with zero- order absorption with a lag 
time and linear elimination from the central compartment. 
As shown in Table S11 of Supplement S1, parameter es-
timates were precise. Goodness- of- fit plots (Figure S11a 
in Supplement S1) and visual predictive checks (Figure 
S11b in Supplement S1) demonstrate the good descriptive 
performance of the model.

The impact of CYP2D6 phenotype on total clearance of 
fluvoxamine was best described as a categorical covariate. 
Volunteers who are CYP2D6 PMs show a 22% lower total 
clearance of fluvoxamine compared with EMs. Furthermore, 
fluvoxamine clearance was found to be 28% higher in smok-
ers compared with nonsmokers.

DISCUSSION

The developed PBPK models of fluvoxamine and theophyl-
line reliably describe and predict plasma concentration- time 
profiles over the full range of published doses and admin-
istration protocols. Their good descriptive and predictive 
performance has been demonstrated by comparison of 
predicted to observed plasma concentration- time profiles, 
AUC and Cmax values, calculation of MRDs and GMFEs, 
as well as with the prediction of different DDIs. Although 
the populations used for model predictions were carefully 
generated according to the reported study demographics, 
CYP1A2 and CYP2D6 show high interindividual variability, 
and information on smoking status and CYP2D6 phenotype 
were lacking in most of the study reports. This could explain 
why a small percentage of the fluvoxamine and theophylline 

studies cannot be accurately predicted using the same kcat 
values for all studies.

There are two previously published PBPK models of flu-
voxamine: a minimal PBPK model (three compartments)29 
and a model built on the basis of few clinical studies (four 
studies).30 For theophylline, one PBPK model has been 
previously reported, developed to predict the disposition 
of theophylline during pregnancy.31 All three models have 
not been challenged by prediction of DDIs. The whole- 
body PBPK models presented in this study have been 
built using a multitude of clinical studies, are transpar-
ently documented, and they have been evaluated in a DDI  
network.

To describe the metabolism of fluvoxamine, CYP1A2 
and CYP2D6 were implemented into the PBPK model. 
Model building was started with the working hypothesis 
that CYP2D6 accounts for up to 60% of fluvoxamine me-
tabolism.32 However, our PBPK analysis suggested a higher 
fraction of fluvoxamine metabolized by CYP1A2 than by 
CYP2D6. This result was supported by the finding that flu-
voxamine total apparent clearance (CL/F) in CYP2D6 PMs 
(no CYP2D6 activity) was only 25% lower than in CYP2D6 
EMs.32 (Taking into account that CYP2D6 is also expressed 
in the intestine, CYP2D6 PMs might show a higher bioavail-
ability of fluvoxamine, reducing CL/F, and thereby further 
reducing the impact of CYP2D6 poor metabolism on fluvox-
amine clearance.)

To confirm this relatively small impact of CYP2D6 poor 
metabolism on fluvoxamine PK, a PopPK analysis of fluvox-
amine was conducted. The reduction of fluvoxamine CL/F in 
CYP2D6 PMs compared with EMs was quantified at 22%. 
This is the first reported compartmental analysis of fluvoxam-
ine, which is in very good agreement with the noncompart-
mental result for reduction of CL/F in CYP2D6 PMs of 25%.32

Simulation of fluvoxamine fraction metabolized using 
the final PBPK model and a single dose of 50 mg predicts 
fractions metabolized of 20% by CYP2D6 and of 71% by 
CYP1A2, which is very close to the PopPK analysis result. 
Neither fraction metabolized information nor the CYP2D6 
PM fluvoxamine plasma profiles were used during the final 
PBPK model parameter optimization. Fitting the catalytic 
rate constants of CYP2D6 and CYP1A2 and, therefore, 
the contribution of both enzymes to fluvoxamine metab-
olism to get a good description of the nonlinear PK of 
fluvoxamine for the different doses administered already 
resulted in a model that accurately describes the fractions 
metabolized.

The inducing effect of smoking on the metabolism of flu-
voxamine is also well- described by the PBPK model, with 
AUC ratios smoking/nonsmoking of 0.61 predicted and 0.69 
observed. The fluvoxamine PopPK analysis gives a 28% 
higher CL/F of fluvoxamine in smokers compared with non-
smokers. The small overprediction of the fluvoxamine Cmax 
in smokers could be attributed to gastrointestinal effects of 
smoking that reduce the absorption of fluvoxamine but were 
not accounted for in the model. However, due to a lack of 
more detailed information on the frequency, duration, and 
amount of smoking, the induction of CYP1A2 could only 
be implemented as a static increase of the enzyme activity. 
To model this CYP induction in a mechanistic and dynamic 
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way, for example, to predict the return of CYP1A2 activity 
to baseline when smoking is stopped before a surgical in-
tervention, as well as to validate the estimated factor on 
CYP1A2 enzyme activity for the smoking population, more 
data are needed.

The developed theophylline model can be used for pre-
diction of plasma concentration- time profiles following i.v. 
administration or p.o. administration of syrup, solution, or 
immediate-release formulations. As the reported plasma 
concentration profiles of the different sustained release 
dosage forms strongly vary with the mechanism used for 
prolongation of drug release, sustained release or enteric 
coated theophylline formulations were not considered in the 
current investigation. If needed, the model can be easily ex-
tended by implementation of sustained release drug disso-
lution profiles.33

The DDIs presented in this study have been modeled 
using reported experimental values to inform all neces-
sary interaction parameters. This approach is followed as 
an additional means of model evaluation, predicting all 
available reported clinical DDI studies, and comparing the 
observed data to model predictions. The caffeine,15 rifam-
picin,13 and midazolam13 PBPK models applied have been 
evaluated and described elsewhere. The existing rifampi-
cin model has been extended to predict the induction of 
CYP1A2 and CYP2E1 by rifampicin. The DDI performance 
of the enhanced rifampicin model has been successfully 
evaluated with the data of three different clinical rifampicin- 
theophylline DDI studies.

The presented CYP1A2 DDI network demonstrates the 
good performance of all models for DDI prediction over the full 
range of reported DDI study protocols. This has been shown 
by victim drug concentration- time profiles, DDI AUC ratios, 
DDI Cmax ratios, and corresponding GMFE values. All DDIs of 
fluvoxamine with the sensitive CYP1A2 victim drugs theoph-
ylline and caffeine are well predicted. The moderate inhibition 
of CYP3A4 by fluvoxamine was successfully implemented 
and evaluated by prediction of the fluvoxamine- midazolam 
DDI. Due to the present lack of models for CYP2C19 victim 
drugs, the strong inhibition of CYP2C19 by fluvoxamine could 
not be tested. However, fluvoxamine CYP2C19 interaction 
parameters are reported and can be easily implemented into 
the presented fluvoxamine PBPK model.

In summary, a PBPK CYP1A2 DDI network has been suc-
cessfully developed. Whole- body PBPK models of fluvoxam-
ine and theophylline have been carefully built and evaluated 
by DDI prediction using different kinds of perpetrator (induc-
tion, competitive inhibition, and mixed inhibition) and victim 
drugs (CYP1A2 and CYP3A4). Furthermore, a previously 
developed model of rifampicin has been expanded with pa-
rameters for CYP1A2 and CYP2E1 interaction and tested. 
The resulting PBPK network of fluvoxamine, theophylline, 
caffeine, rifampicin, and midazolam adequately predicts the 
observed data of all clinical DDI studies reported for combi-
nations of these drugs and, therefore, all models are consid-
ered ready to use for DDI prediction. The newly developed 
models of fluvoxamine and theophylline are transparently 
documented and the model files, also including DDI model 
files, are provided as Supplementary Material to this paper 
(Data  S1-S6) as well as in the Open Systems Pharmacology 

repository (www.open-systems-pharmacology.org), to ex-
tend the library of publicly available PBPK models for DDI 
prediction. They can be applied to help understand and 
characterize the DDI potential of investigational drugs, to in-
form the design of clinical trials, or to generate dose recom-
mendations for comedication.

Supporting Information. Supplementary information accompa-
nies this paper on the CPT: Pharmacometrics & Systems Pharmacology 
website (www.psp-journal.com).

Supplement S1. Model information and evaluation.
Data S1. Fluvoxamine model file.
Data S2. Theophylline model file.
Data S3. Fluvoxamine- theophylline DDI model file.
Data S4. Rifampicin- theophylline DDI model file.
Data S5. Fluvoxamine- caffeine DDI model file.
Data S6. Fluvoxamine- midazolam DDI model file.
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