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Finding out how often an embarrassing characteristic exists in
a population is accompanied by numerous problems that are
due in particular to false answers as a consequence of social
undesirability. The oldest of the techniques developed to com-
pensate for these distortions is the Randomized Response Tech-
nique which is currently still the most widely used, evaluated
and researched technique in the field of sensitive subjects. 
Although this technique guarantees complete security for the
person being questioned and therefore opens up options for
answering even threatening questions honestly, even here
"cheating" occurs in terms of not complying with the instruc-
tions. This volume describes the mathematical derivation of
techniques to detect the extent to which this "cheating" occurs.
It also provides analyses on the process characteristics and ex-
tends these analyses to include practical advice on how to use
this process flexibly. A general solution is developed for various
forms of "cheating" for the first time.
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IntroducƟon

Quantitative methods for analysing response behaviour in the event of sensi-
tive questions in surveys are extremely important for social science research.
They provide insight into research fields that may simply be difficult to access
by other means. The Randomized Response-Technique (RRT) provides a tried
and tested instrument in various variants for such analyses. The instrument is
used in survey studies, e.g. on addictive behaviours, attempts to cheat at uni-
versities, the extent of the black economy, the use of doping in sports or the
voting behaviour by the general population. All of these research fields have in
common that a true answer can be embarrassing, unpleasant or even burdened
by criminal consequences for the respondents. The answers must be graded as
sensitive and therefore the data that can be assigned to an individual must either
be robustly encrypted.

From a social science perspective, we are not interested in tracking the ac-
tions of an individual but rather quantifying the proportion of addicts, cheats
and fraudsters, illegal workers and dopers in a population. This is precisely
what RRT provides. This volume demonstrates the development of various
RRT methods, provides an overview of their statistical characteristics, is dedi-
cated in particular to variants of so-called Cheater Detection (i.e. the group of
respondents who in spite of the assured encryption do not comply with the RRT
instructions) and illustrates practical applications of RRT using numerical sim-
ulations. To the interested reader, this offers a more concise and yet in-depth
overview of the aspects and problems to be taken into account when applying
RRT. This should result in better design for survey studies and therefore to the
derivation of more reliable empirical results. RRT has been used repeatedly
in the past as part of the research projects by the European Institute for Socio-
economics (EIS). This volume summarises the experience of EIS researchers
when dealing with RRT and makes it accessible to a wide range of readers.

The EIS Series is available as an Open Access Publication so that interested
readers are not tempted to create a pirated copy or to obtain a copy of the vol-
ume by other illegal channels. Therefore, readers of our series of publications
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may face future RRT-surveys on the frequency of copying books illegally in a
relaxed way.

Christian Pierdzioch
Eike Emrich



Authors' foreword

This book moves along the border between social science methodology and
mathematical-statistical method development. Studying behaviour in sport that
varies from the norm created a need to expand the available statistical model
for analysing delinquent behaviour. This double characteristic can also be seen
clearly in the book. Starting with the practical questions on the sociology of de-
viance, it applies mathematical principles of newly developed methods to then
return to more practical questions by analysing and numerically simulating the
limits of using the method and their practical application. We hope to there-
fore both satisfy the interested reader from the individual discipline and to also
present an example of successful cooperation across the limits of the disciplines.

Sascha Feth
Monika Frenger
Werner Pitsch
Patrick Schmelzeisen





1 IntroducƟon

Finding out how often an embarrassing characteristic exists in a population
is accompanied by numerous problems that can be counteracted with particu-
lar survey models or compensated for in the calculations. The idea on which
the development of indirect survey methods is based is the well-known fact
in research that a significant distortion exists for socially undesirable answers
if questions are asked about embarrassing issues (cf. Lee, 1993; Holbrook &
Krosnik, 2010, 2012). In order to counteract this distortion resulting from a
high number of deniers (Rasinski, Willis, Baldwin, Yeh & Lee, 1999) and to
get closer to the true score, various techniques are applied, such as unobtrusive
research that is free of consequences for those being surveyed (cf. Lee, 2000),
social desirability scales (e.g. Stoeber, 2001; Thompson & Phua, 2005) or tech-
niques designed to increase the trust of those answering such that they them-
selves admit to the socially undesirable behaviour (e.g. the unmatched count
or item count technique, refer to Ahart & Sackett, 2004; Coutts & Jann, 2011;
Tourangeau & Yan, 2007; randomized count technique, cf. Frenger, Pitsch &
Emrich, 2013 or single sample count technique, cf. James, Nepusz, Naughton
& Petróczi, 2013). The Randomized Response-Technique (RRT) was the first
of these techniques stated above. It currently remains the most widely used,
evaluated and researched technique when undertaking research on sensitive is-
sues.

It has been demonstrated repeatedly that these methods significantly in-
crease the willingness to admit to an embarrassing characteristic when com-
pared with direct surveys. To prove this, the results of direct questions are com-
pared with the responses to randomized response questions under the assump-
tion that the embarrassing characteristic is frequently denied in direct questions
due to a social desirability bias. Thus a higher estimated prevalence of an em-
barrassing characteristic in randomized response questions compared to direct
questions indicates that it has been possible to at least partially compensate for
this distortion. Such studies were conducted for example
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• on illegal abortions (Abernathy, Greenberg & Horvitz, 1970; Greenberg,
Kuebler, Abernathy&Horvitz, 1971; Krotki & Fox, 1974; Rider, Harper,
Chow & I-Cheng, 1976; I-Cheng, Chow & Rider, 1972),

• on the consumption of legal and illegal drugs (Barth & Sandler, 1976;
Brewer, 1981; Akers, Massey, Clarke & Lauer, 1983; Goodstadt, Cook
& Gruson, 1987; Danermark & Swensson, 1987),

• on fraud relating to claiming social security benefits (Böckenholt & van
der Heijden, 2007),

• on complying with the rules on environmental and species protection
(Chaloupka, 1985),

• on plagiarism (Coutts, Jann, Krumpal & Näher, 2011; Jerke & Krumpal,
2013; Krumpal, Jerke & Voss, 2016) or other forms of student cheat-
ing (Kerkvliet, 1994; Shotland & Yankowski, 1982; Scheers & Dayton,
1987),

• on improper behaviour at work (Reckers, Wheeler & Wong-On-Wing,
1997; Soeken & Macready, 1986) and

• on sexual behaviour (Fidler & Kleinknecht, 1977; Williams & Suen Hoi,
1994).

On various occasions several embarrassing characteristics were also surveyed
within one instrument (Coutts & Jann, 2011; Edgell, Himmelfarb & Duchan,
1982; Fisher, Kupferman & Lesser, 1992). With a few exceptions (Duffy &
Waterton, 1988; Krotki & Fox, 1974) the RRT resulted in higher estimates
of the prevalence of the embarrassing characteristic(s) than the use of direct
questions. This demonstrated for a variety of sensitive questions that the RRT
can reduce the response bias for socially undesirable behaviours. As Wolter
(2012, 96) found, however, there is significant incongruity between a number
of methodological projects undertaken with RRT (see above) and the very few
applications dealing with academic issues (on doping in sports cf. Pitsch &
Emrich, 2012; Simon, Striegel, Aust, Dietz & Ulrich, 2006, on match fixing
in football cf. Pitsch, Emrich & Pierdzioch, 2013, on competition fraud in elite
sports cf. Pitsch, Frenger, Emrich & Pierdzioch, 2015).

The concept and development of RRT will be described below in order to
clarify how this method can generate reliable answers yet maintain discretion.
We will only provide a summary on the development of the method without
detailing each variation in the mathematical background. We recommend that
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the reader refers here to the relevant developments and the associated math-
ematical basis in the original literature (e.g. Lensvelt-Mulders, Hox, van der
Heijden & Maas, 2005; Lee, 1993; Coutts & Yann, 2011; Antonak & Livneh,
1995; Wolter, 2012).

1.1 TheoreƟcal Background and Development of the
Randomized Response-Technique

In the first RRT model by Warner (1965) two different questions are asked
(regarding agreement with the statement) in order to find out whether the person
being questioned is part of the group X or not (cf. Figure 1.1 using doping as
an example).

Based on the results of a random process the respondents were asked with
a known probability to answer question 1 or with the counter probability to an-
swer the inverse question 2. Since the result of the random process is unknown
to the researcher, answering yes cannot be equivalent to the person questioned
actually having the embarrassing characteristic X . Only the difference in the
rate of yes responses can be used to estimate the prevalence πX of the char-
acteristic X in the studied population. Warner (1965) was able to demonstrate
that the calculated estimate π̂X is an unbiased and normally distributed estimate
for a true proportion of X in the population.

Doper (πx)

Clean
athlete
(1 − πx)

Have you
ever used
substance

X?

Have you
never used
substance

X?

yes

no

p

1 − p

p

1 − p

p · πx

p · (1 − πx)

(1 − p) · (1 − πx)

(1 − p) · πx

Figure 1.1: Warner's model using illicit doping substances as an example (cf.
Warner, 1965).

Since Warner (1965) introduced the method there have been numerous im-
provements and new developments. Three methods that later proved to be
effective in many areas of socially deviant behaviour were
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• the Unrelated Question Model,

• the Forced Answer Model and

• the Cheater Detection Model.

These three RRT models will be briefly described below.

1.2 The Unrelated QuesƟon Model

The fact that in Warner's model all participants answer the embarrassing ques-
tion (worded positively or negatively) leads to the well-founded assumption
that respondents will answer more honestly if there are two different questions.
One question should refer to the embarrassing characteristic and the second to a
completely independent characteristic that is not embarrassing (Horvitz, Shah
& Simmons, 1967). Due to the randomisation effect neither a yes nor a no an-
swer can clearly indicate that the person providing the answer has or does not
have the embarrassing characteristic. The theoretical and mathematical back-
ground for this model goes back to Greenberg, Abul-Ela, Simmons and Horvitz
(1969). If this model is used the participants are asked two different questions
(cf. Figure 1.2). They are requested to use a random generator (e.g. coin or
dice) without informing the study leader of the result of the random process.
Depending on the result, the participant is requested with a probability of p to
answer the first question or with a probability of 1 − p to answer the second
question.

HereX represents the embarrassing characteristic and Y the unrelated char-
acteristic that is not embarrassing (this question could alternatively also be:
"Have you visited NewYork?" or "Were you born in North Carolina?"). Green-
berg et al. (1969) have shown that the Unrelated QuestionModel leads to better
results than Warner's original model. This applies if the (unknown) prevalence
πX of X is significantly different from 0.5, some restrictions are observed for
p and the unrelated characteristic Y is selected such that πX and πY are both
either higher or lower than 0.5. The researchers could simulate the relative
efficiency of the Unrelated Question Model even if the occurrence of the em-
barrassing characteristic was not fully reported truthfully. In later applications,
Unrelated QuestionModels were also used for frequent occurrences of the char-
acteristic that was not embarrassing Y (e.g. "Were you born in the month of
April?" Scheers, 1992) as well as for characteristics with an unknown preva-
lence ("Have you ever visited New York?"; Tracy & Fox, 1981). Figure 1.3
shows a schematic depiction of this model.
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Please roll one dice.
If you rolled an even number, please reply to the first question.
If you rolled an odd number, please reply to the second question.

Question 1:
Do you receive a daily newspaper?

Question 2:
Have you knowingly provided false
information on your last tax return?

Answer:
yes no

Figure 1.2: Sample case for the Unrelated Question Model.

Doper (πx)

Clean
athlete
(1 − πx)

Have you
ever used
substance

X?

Was your
mother born
in May?

yes

no

p

1 − p

p

1 − p

p · πx

p · (1 − πx)

(1 − p) · pyes

(1 − p) · pno

Figure 1.3: Unrelated Question Model (without Cheater Detection) according
to Greenberg et al. (1969).
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1.3 The Forced Answer Model

The Forced Answer Model (also called the Forced Response Model) was ex-
plicitly stated for the first time by Greenberg et al. in 1969 but was not formally
developed. Fidler and Kleinknecht (1977) reported on its first use whereby both
the yes and the no responses were set as forced answers. In contrast to this and
without referring to these sources, Dawes and Moore (1980) later proposed an
asymmetric variant in which only the embarrassing answer, so usually the yes,
was set as a forced answer with the aim of reducing the variance of the esti-
mator πX . A sample for how this model could be applied is shown in Figure
1.4.

Question:
Have you acquired a secondary school qualification?

Please roll one dice.
If you rolled a one or two please answer "no".

If you rolled a different number, please answer honestly to the question.

Answer:
yes no

Figure 1.4: Forced Answer Model without Cheater Detection for an embar-
rassing no answer.

With this model a yes response cannot be clearly assigned to the existence of
the embarrassing characteristicX and the anonymity of the participant is com-
pletely assured. Alternatively using the instruction ". . ., please say no", the no
answer can be protected if it was the embarrassing question that was answered
(e.g. for the question "Do you have qualifications?" or for surveys in delinquent
sub-cultures according to Cohen & Short, 1958). Although the embarrassing
characteristic X is perfectly protected by this method, the perceived security
is however not as high as that of the symmetrical Forced Answer Models (cf.
Bourke, 1984). In similar depiction forms to the Warner's model (Figure 1.1)
and the Unrelated QuestionModel (Figure 1.3), Figure 1.5 shows the schematic
depiction of the Dawes and More (1980) Forced Answer Model.
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Doper (πx)

Have you
ever used
substance

X?
Clean
athlete
(1 − πx)

Please
answer
"yes"

Please
answer
honestly

yes

no

p

1 − p

p

(1 − p) · πx

(1 − p) · (1 − πx)

Figure 1.5: Forced Answer Model without Cheater Detection

1.4 The Cheater DetecƟon Model

The fact that for RRT surveys there are still a certain number of participants
who feel threatened was already discussed by Greenberg, Kuebler, Abernathy
and Horvitz (1977) and demonstrated empirically by Tracy and Fox (1981), by
Edgell, Himmelfarb andDuchan (1982) and by van derHeijden, vanGils, Bouts
and Hox (2000). It may occur that individual people do not trust the anonymity
of the method and therefore do not answer truthfully in spite of the special tech-
nique used. In addition, participants may consciously attempt to manipulate the
outcome of the survey (for the effects of this behaviour cf. Becker, 2010 and
Böckenholt, Barlas & van der Heijden, 2009; Edgell, Himmelfarb & Duchan,
1982 as well as the summary in Wolter, 2012). In addition to many other ideas
on developing RRT that should result in higher trust by participants, Clark and
Desharnais (1998) developed the Cheater Detection Model (cf. schematic de-
piction in Figure 1.6). Here cheating means that the RRT instruction is not
applied correctly no matter whether the embarrassing characteristic exists or
not. It is important to note that by addressing the problem of cheating in RRT,
the logic of themethod shifts from estimating the prevalence of an embarrassing
property πX to estimating proportions of honest yes and honest no answers.

To estimate the proportion of cheaters, the sample is randomly divided
into two equally sized subsamples. Each subsample receives a Forced Answer
question with different probabilities for this question. The increased degrees
of freedom not only enables the researcher to estimate the proportions of two
groups (πX and 1− πX ) in the population but also to estimate the proportions
of the following three groups:
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• πX – the proportion of honest yes answers, which states the lowest pos-
sible prevalence of the embarrassing characteristicX ,

• β – the proportion of no answers which shows the lowest possible rate of
the population members who do not have the characteristicX and

• γ – the proportion of cheaters, i.e. those who do not answer as per the
instructions in the RRT question.

Subsample 1

(πx)

(β)

(γ)

yes

no

Subsample 2

(πx)

(β)

(γ)

yes

no

p1

1 − p1

p1 · (πx + β)

(1 − p1) · πx

(1 − p1) · β

p2

1 − p2

p2 · (πx + β)

(1 − p2) · πx

(1 − p2) · β

Figure 1.6: Schematic depiction of the Forced Answer Model with Cheater
Detection: a doubled Forced Answer Model with p1 ̸= p2 and
πX + β + γ = 1.

In this regard, it is important that cheating occurs when those who have the
characteristic X answer no in cases where they should honestly answer yes or
should do so on the basis of a forced answer. But cheating can also occur if
persons without the characteristicX answer no although the randomisation led
to the result that they should answer yes. Not following the RRT instructions
may also be due to misunderstanding the instructions, the randomisation result
or distrusting the anonymity of the response. The method therefore provides no
information on the cheaters no matter the reason for cheating or the presence
or absence of the embarrassing characteristic.

In the first publication of the method, Clark and Desharnais (1998) offer
a χ2-test of the working hypothesis γ > 0 and propose excluding the results
if the test reveals a significant proportion of cheaters. In later applications,
the estimated proportion of honest yes responses π̂X was reported as the lower
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limit of a prevalence interval. For this the cheater proportion was added to
obtain the upper limit π̂X + γ̂ of the interval in which the true score for the
prevalence πX in the population is assumed (e.g. Musch, Bröder & Klauer,
2001; Pitsch & Emrich, 2012). In contrast to other models to detect cheating
in RRT surveys, this technique works with only one RRT question while the
other models published so far detect cheating based on an impossible pattern of
honest answers to (at least) two different RRT questions (e.g. Cruyff, van den
Hout, van der Heijden, & Böckenholt, 2007) or to the same RRT question if it
was asked (at least) twice (Krishnamoorthy & Raghavarao, 1993).

In the logic of classical RRT, it is always clear which characteristic is em-
barrassing and will result in distortions as a result of social undesirability. In
certain sub-cultures the non-existence of the characteristicX may however be
embarrassing. One example of this would be the consumption of illegal drugs
by young people. In general when studying deviant sub-cultures there is always
the possibility of over-estimating the prevalence of the characteristic which is
embarrassing in the main culture due to sub-cultural norms that deviate from
the main culture (Cohen & Short, 1958; Cohen, 1957; Mays, 1957). In this
case, respondents incorrectly ascribe the characteristic X to themselves and
contrary to the instructions always answer with yes. In addition, these distor-
tions can also occur for strategic response behaviour if respondents sabotage a
survey hoping for advantages arising from biased results or for any other rea-
son. These considerations resulted in the generalisation of the idea of Clark and
Desharnais (1998) to estimate the proportion of "yes" cheaters, i.e. those who
falsely assigned the embarrassing characteristic to themselves. As a result of
these considerations, this problem is currently being handled mathematically.
The aim is to develop and validate a Total Cheater Detection so that both forms
of cheating can be depicted.

The notation for the coming chapters and basic modelling will now be ex-
plained in order to derive the new, extended method building on this. The
estimation is then analysed, a comparison is made of the different methods and
finally explanations are provided for practical applications. In the final outlook
section, there is a brief discussion on potential developments of the procedure
beyond the status described here.





2 Modeling and NotaƟon

2.1 General NotaƟon

For v ∈ Rn let vi denote the ith component of v.

For n ∈ N we define 0n :=

0
...
0

 ∈ Rn and 1n :=

1
...
1

 ∈ Rn.

Let M ∈ Rn×m be a matrix with full column rank. Then the columns of M
are linearly independent and the pseudo inverseM+ =

(
MTM

)−1
MT does

exist. In the case of squareM the inverseM−1 exists and due to(
MTM

)−1
MT =M−1

(
MT

)−1
MT =M−1,

the inverse matrixM−1 is identical to the pseudo inverseM+. Pseudo inverse
matrices are used for solving overdetermined systems of linear equations. For
a given coefficient matrixM ∈ Rn×m with n ≥ m and the variables x ∈ Rm
and y ∈ Rn, the solution of Mx = y is approximated by x̂ = M+y. The
approximation minimizes the sum of squared errors

∑n
i=1 (Mx̂− yi)

2.

2.2 PopulaƟon

We divide the population into four groups, according to their answer to the
embarrassing question:

• α - the proportion of persons with propertyX who will honestly answer
yes (honest yes).

• β - the proportion of persons who will answer no, no matter if they have
property X or if they do not ("no" cheaters).

• γ - the proportion of persons without property X who will honestly an-
swer no (honest no).
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• δ - the proportion of persons who will always answer yes, no matter if
they have property X or if they do not ("yes" cheaters).

Let the group name also denote the proportions within the population. This
yields the canonical conditions:

α+ β + γ + δ = 1 and 0 ≤ α, β, γ, δ ≤ 1.

2.3 Randomized Response-Technique

RRT with Forced Answer (see Chapter 1.3) will serve as our basic question-
ing technique. It is now desirable to protect the yes answers as well as the no
answers. Similar to the technique of Clark and Desharnais (1998), all respon-
dents are separated into several subsamples, differing in their Forced Answer
probabilities. In general, to obtain s population parameters, at least s− 1 sub-
samples are needed. Each RRT subsample yields one claim for the population
parameters. Together with α+ β + γ + δ = 1 we have s = 4 equations, to be
solved simultaneously.
For an RRT with R subsamples we denote

• PY ∈ RR the forced yes-probabilities,

• PN ∈ RR the forced no-probabilities and

• P E ∈ RR the probability of the embarrassing question.

The canonical boundary conditions are

0 ≤ PY
i , P

N
i , P

E
i ≤ 1, 1 ≤ i ≤ R and PY + PN + P E = 1R.

Another RRT model is based on the Unrelated Question method (see Chap-
ter 1.2). A random number generator takes over the selection of either the
embarrassing or an innocuous question like "Were you born in a month with
an odd number?". The answering probabilities of the innocuous question are
known. The mathematical transformation of Unrelated Question to Forced
Answer is very easy. Let P denote the probability of posing the innocuous
question and ϕ the probability of answering it with yes, then: PY = Pϕ,
PN = P (1− ϕ) and P E = 1− P .
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2.4 Overview of Methods

In the following, three methods will be derived:

1. Total Cheater Detection (TCD), allowing the estimation of all population
parameters above.

2. "No" Cheater Detection (NCD), assuming δ = 0 and estimating the re-
maining parameters.

3. "Yes" Cheater Detection (YCD), assuming β = 0 and estimating the
remaining parameters.

The latter two items will be summarized as Directed Cheater Detection (DCD).
Both methods do not estimate the individual parameter assumed to be zero and
are inaccurate if this assumption is violated in practice. However, they can
deliver good results compared to TCD for smaller samples if this assumption
holds.





3 DerivaƟon of the Method

3.1 DerivaƟon of the EsƟmators

The estimators are derived for all methods using the same scheme. We firstly
assume in very general terms an RRT survey with R different subsamples and
a method that estimates the s population parameters and then use the general
solution to derive each method. As already noted in Section 2.3, R must be
greater or equal to s − 1 in order to carry out the estimation. Typically, one
will chose R = s − 1 for reasons of economy. When deriving the method to
estimate four proportions we must also consider various sub-estimators.

Eachmethod has precisely one estimator that calculates s−1 population pa-
rameters. The remaining parameter is determined viaα+β+γ . . . = 1. We call
this estimation the native estimation or the native solution due to the param-
eters estimated by it. We summarise these parameters as Θ = (α, β, γ, . . .)

T .
In addition, we have to consider marginal cases where a sub-quantity of

the population parameters takes on the value zero. The number of parameters
assumed to be zero is denoted by t.

Stated differently, for each t-element sub-set of the population parameter
with 0 ≤ t < s we must consider a special estimator. The required number of
special estimators is

s−1∑
t=0

(
s
t

)
=

s∑
t=0

(
s
t

)
− 1 = 2s − 1

for each method.
For each estimator, the probability of a yes answer in each RRT subsample

can be calculated from the population parameters and the Forced Answer prob-
abilities. This creates an equation system in the form of λ = MΘ, whereby a
M ∈ RR×(s−t−1) (typically: M ∈ RR×(R−1)) coefficient matrix is dependent
on the Forced Answer probability, Θ ∈ R(s−t−1) is the vector of the popu-
lation parameter to be estimated and λ ∈ RR is the vector of calculated yes
probabilities.
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Example

We consider the marginal case α = 0 of an RRT with TCD with R = 3
RRT subsamples. The TCD estimates s = 4 parameters (α, β, γ, δ). Accord-
ingly for this marginal case t = 1. As there are no persons with property
X in the population (α = 0), the contributions to the yes answers are pro-
vided by honest persons without property X who follow the instruction to
answer yes and by "yes" cheaters who always answer yes. Therefore we obtain
λ = γPY +δ ∈ RR = R3. The parameters to be estimated areΘ = γ, δ ∈ R2,
since β = 1− α− γ − δ and α = 0 as per the marginal case. From λ = MΘ
we can now derive

M =

 PY1
PY2
PY3

 ∈ RR×(s−t−1) = R3×2.

3.1.1 ML EquaƟon for the ProbabiliƟes of a Yes Answer

If the number of yes answers in the subsamples k ∈ NR and the subsample
sizes N ∈ NR are given, we can calculate the probability of a yes answer
in each RRT subsample using the maximum likelihood method. Within each
subsample there is a binomial distribution for the number of yes answers. The
subsamples are also surveyed independently of each other. If Xi denotes the
number of yes answers in the subsample i the likelihood can be shown to be

Lλ (λ) = Pλ (X1 = k1, . . . , XR = kR)

=

R∏
i=1

Pλ (Xi = ki) (independence)

=

R∏
i=1

(
Ni
ki

)
λkii (1− λi)

Ni−ki (binomial distribution).

The use of the logarithmic likelihood

lλ (λ) := ln (Lλ (λ)) =
R∑
i=1

ln
(
Ni
ki

)
+ kiln (λi) + (Ni − ki) ln (1− λi)

is appropriate for further calculation.

3.1.2 SoluƟon of the ML EquaƟon

Lemma 1. The logarithmic likelihood lλ has its global maximum at λ̂i = ki
Ni
.
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Proof. We firstly determine the partial derivatives
∂

∂λi
lλ(λ) =

ki
λi

− Ni − ki
1− λi

.

λi =
ki
Ni

arises as the zeros for the partial derivatives. In order to demonstrate
that this really is the maximum, it is enough to show that the Hesse matrix D2lλ
is negative definite at this point. The second partial derivatives are

∂2

∂λi∂λj
lλ(λ) =

{
− ki
λ2
i
− Ni−ki

(1−λi)
2 i = j

0 i ̸= j
.

The following also applies

sgn

(
− ki
λ2i

− Ni − ki

(1− λi)
2

)
= −1

because ki, Ni − ki ≥ 0 and Ni > 0. So it follows that ki ̸= 0 ∨Ni − ki ̸= 0.
The Hesse matrix therefore has the form

D2lλ (λ) =



− k1
λ2
1
− N1−k1

(1−λ1)
2 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0

0 · · · 0 − kR
λ2
R
− NR−kR

(1−λR)2


with exclusively negative elements on the main diagonals and otherwise zeros
everywhere. Therefore the leading main minors have alternating preliminary
signs and the Hesse matrix is negative definite. The logarithmic likelihood lλ
therefore takes on its maximum at λ̂i = ki

Ni
.

In order to now determine an ML estimator for Θ, we also have to demand
that the matrixM has the full column rank s− t− 1. For further derivation we
assume that this claim has been met. In Chapter 4.3 we will investigate how
the Forced Answer likelihoods are to be selected so that this assumption in fact
holds. We now have to distinguish two cases:

Case 1: SquareM

For square M ̸= 0 the mapping Θ 7→ MΘ is bijective (because M has full
column rank) andwe obtain l (Θ) := lλ (MΘ) as the likelihood function. Since
the mapping is bijective, we then obtain the ML estimator for the population
parameter from Θ̂ =M−1λ̂.
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Case 2: RectangularM

IfM is not square, Θ̂ =Mλ̂ does not create a pure ML estimator. Although λ̂
was calculated using the ML method, the use of the pseudo-inverses matches
here the least squares solution of the equation system MΘ̂ = λ̂. The least
squares method only provides an ML estimation here if the right side of the
equation system is normally distributed. In our case however the λ̂i has a bi-
nomial distribution.

So we only get a real ML estimator for a regular coefficient matrix. This is
only possible for the R = s− t− 1 case. Since R ≥ s− 1 it then follows that
this is only possible for native solutions. So that at least the native solution is
a real ML estimator, the method must be selected according to the number of
RRT subsamples R = s− 1.

3.1.3 CalculaƟon of the PopulaƟon Parameters

We will define the coefficient matrix of the estimator as the process matrix.
The approach to calculating the population parameters depends on whether the
process matrixM is square (native solution) or not (marginal solution).

Case 1: SquareM

Although the solution stated above Θ̂ =M−1λ̂maximises the likelihood func-
tion it only considers the condition α + β + γ + δ = 1. As these parameters
only deal with parts of the population, only α, β, γ, δ ∈]0, 1[ are permissible. If
this requirement is not met, all marginal solutions and their likelihoods must be
calculated. The best estimation for the population parameters is then provided
by the marginal solution with the highest likelihood that meets the requirements
for α, β, γ and δ.

Case 2: RectangularM

In this case the likelihood of the native solution Θ̂ = Mλ̂ must also be com-
pared with all of the marginal solutions nomatter whether Θ̂meets the marginal
conditions as the native solution in this case is not based on an ML estimator.

3.1.4 ML EquaƟon for the ProbabiliƟes of a No Answer

When deriving the method, we will occasionally in place of the equation system
λ = MΘ for the likelihoods of a yes response refer to an equation system
1R − λ =M

′
Θ depicting the likelihoods of a no response.
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Lemma 2. By µ̂ := 1R − λ̂ = 1R − ki
Ni

an ML estimator is given for the
probability of a no response.

Proof. The likelihood is calculated with k and N as above

Lµ (µ) = Pλ (X1 = N1 − k1, . . . , XR = NR − kR)

=

R∏
i=1

Pλ (Xi = Ni − ki)

=

R∏
i=1

(
Ni

Ni − ki

)
µNi−ki
i (1− µi)

ki

=

R∏
i=1

(
Ni
ki

)
(1− λi)

Ni−ki λkii

=Lλ (λ)

and we find the global maximum as per Lemma 1 for λi = ki
Ni
.

Belowwewill write 1−λ̂ instead of µ̂ because the results of the calculations
suggest this syntax and in order to keep the notation as short as possible.

3.2 DerivaƟon of the TCD

To derive the TCD method, we will first have to calculate the likelihood of a
yes answer in order to find estimators for the population parameters. For TCD,
there will be one native solution as well as marginal solutions in three different
orders.

3.2.1 CalculaƟon of the Yes Likelihoods

We use three RRT subsamples for this method. More subsamples are also pos-
sible but as we have seen above, we can at least ensure that for three RRT
subsamples the native solution is based on an ML estimator.

We have the following proportions for the possibility of a yes answer:

• A person from group α always answers the sensitive question with yes.

• A person from groupα follows the Forced Answer instruction (see Chap-
ter 1.3) and answers yes. This answer yes is less embarrassing than
answering yes to the incriminating question. Therefore, this assumption
is highly plausible.
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• A person from group γ follows the instruction and answers yes. If per-
sons from group γ were to answer no although instructed to answer yes,
they were "no" cheaters (β) as they would always answer no.

• A person from group δ always answers yes.

Corollary 1. For TCD the probabilities of the yes answers are given by

λ = α
(
P E + P Y)+ β · 03 + γP Y + δ · 13

= α
(
13 − PN)+ γP Y + δ · 13.

3.2.2 CalculaƟon of the PopulaƟon Parameter EsƟmators

We now want to interpret the permissible value range of the estimators. We see
that β can only be estimated implicitly via β = 1−α− γ− δ as a result of the
yes probabilities. The permissible value range of the estimators can therefore
be shown via the remaining three parameters in the R3. For α, γ and δ the
conditions α, γ, δ ≥ 0 and α + γ + δ ≤ 1 always apply. Each of these four
terms defines a closed half-space in the R3. The valid range for α, γ, δ arises
where these half-spaces intersect. This creates an asymmetric tetrahedron (cf.
Figure 3.1).

Native Solution

Permissible values of the native solution are precisely inside the tetrahedron.
WithM =

(
13 − PN, PY, 13

)
we end up with the parameters

Θ̂ =

α̂γ̂
δ̂

 =M−1λ̂ and β̂ = 1− α̂− γ̂ − δ̂.

First Order Marginal SoluƟons

For these marginal solutions exactly one of the population parameters is equal
to zero. The other three add up to one and this is why the permissible solutions
are located precisely on the faces of the tetrahedron.

1st Marginal Case α = 0

The approach simplifies to

λ = γPY + δ · 13.
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0

1
1

0

1

δ = 1

α = 1

γ = 1

α = γ = δ = 0

α

γ

δ

Figure 3.1: Depiction of the definition range from α, γ and δ. All permissible
points (α, γ and δ) are inside and on the facets of the tetrahedron.

WithM =
(
PY, 13

)
, we obtain the parameters

Θ̂ =

(
γ̂

δ̂

)
=M+λ̂, α̂ = 0 and β̂ = 1− γ̂ − δ̂.

2nd Marginal Case β = 0

Due to δ = 1− α− γ the approach may be rewritten as

λ = α(13−PN)+γPY+13−α ·13−γ ·13 ⇔ 13−λ = αPN+γ
(
13 − PY) .

WithM =
(
PN, 13 − PY), we obtain the parameters

Θ̂ =

(
α̂
γ̂

)
=M+

(
1− λ̂

)
, β̂ = 0 and δ̂ = 1− α̂− γ̂.
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3rd Marginal Case γ = 0

Due to δ = 1− α− β the approach may be rewritten as

λ = α(13 − PN) + 13 − α · 13 − β · 13 ⇔ 13 − λ = αPN + β · 13.

WithM =
(
PN, 13

)
, we obtain the parameters

Θ̂ =

(
α̂

β̂

)
=M+

(
1− λ̂

)
, γ̂ = 0 and δ̂ = 1− α̂− β̂.

4th Marginal Case δ = 0

The approach simplifies to

λ = α(13 − PN) + γPY.

WithM =
(
13 − PN, PY), we obtain the parameters
Θ̂ =

(
α̂
γ̂

)
=M+λ̂, δ̂ = 0 and β̂ = 1− α̂− γ̂.

Second Order Marginal SoluƟons

For these solutions two population parameters equal zero. This leads to a point
on the intersection of two facets of the tetrahedron, respectively on one of its
edges.

5th Marginal Case α = β = 0

Due to δ = 1− γ the approach may be rewritten as

λ = γPY + 13 − γ · 13 ⇔ 13 − λ = γ
(
13 − PY) .

WithM =
(
13 − PY), we obtain the parameters
γ̂ =M+

(
1− λ̂

)
, α̂ = β̂ = 0 and δ̂ = 1− γ̂.

6th Marginal Case α = γ = 0

The approach simplifies to
λ = δ.

WithM = 13, we obtain the parameters

δ̂ =M+λ̂, α̂ = γ̂ = 0 and β̂ = 1− δ̂.
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7th Marginal Case α = δ = 0

The approach simplifies to
λ = γPY.

WithM = PY, we obtain the parameters

γ̂ =M+λ̂, α̂ = δ̂ = 0 and β̂ = 1− γ̂.

8th Marginal Case β = γ = 0

Due to δ = 1− α the approach may be rewritten as

λ = α(13 − PN) + 13 − α · 13 ⇔ 13 − λ = αPN.

WithM = PN, we obtain the parameters

α̂ =M+
(
1− λ̂

)
, β̂ = γ̂ = 0 and δ̂ = 1− α̂.

9th Marginal Case β = δ = 0

Due to γ = 1− α the approach may be rewritten as

λ = α(13 − PN) + (1− α)PY ⇔ λ = α
(
13 − PY − PN)+ PY.

WithM = 13 − PY − PN, we obtain as an intermediate step

λ̂ =Mα+ PY ⇔ λ̂− PY =Mα.

Thus, we obtain the parameters

α̂ =M+
(
λ̂− PY

)
, β̂ = δ̂ = 0 and γ̂ = 1− α̂.

10th Marginal Case γ = δ = 0

The approach simplifies to

λ = α(13 − PN).

WithM = 13 − PN, we obtain the parameters

α̂ =M+λ̂, γ̂ = δ̂ = 0 and β̂ = 1− α̂.
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Third Order Marginal SoluƟons

These solutions are located in the corners of the tetrahedron.

11th Marginal Case α = β = γ = 0

The parameters are

α̂ = 0, β̂ = 0, γ̂ = 0 and δ̂ = 1.

12th Marginal Case α = β = δ = 0

The parameters are

α̂ = 0, β̂ = 0, γ̂ = 1 and δ̂ = 0.

13th Marginal Case α = γ = δ = 0

The parameters are

α̂ = 0, β̂ = 1, γ̂ = 0 and δ̂ = 0.

14th Marginal Case β = γ = δ = 0

The parameters are

α̂ = 1, β̂ = 0, γ̂ = 0 and δ̂ = 0.

3.3 DerivaƟon of the NCD

As for TCD, the derivation of the NCD method builds on the calculation of the
yes likelihoods to derive the estimators for the population parameters. Due to
the lower number of parameters, there are only first and second order marginal
solutions to calculate.

3.3.1 CalculaƟon of the Yes Likelihoods

With this method only the "no" cheaters are detected. We assume that δ = 0 in
the population parameters. If this assumption is not met, we will obtain a biased
estimator (see Chapter 4.5.3). For this method we require two RRT subsamples.
There are the following options for a yes answer:
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• A person from group α always answers the sensitive question with yes.

• A person from groupα follows the Forced Answer instruction (see Chap-
ter 1.3) and answers yes. This yes answer is less embarrassing than a
yes answer to the incriminating question. Therefore, this assumption is
highly plausible.

• A person from group γ follows the Forced Answer instruction and an-
swers yes. If persons from group γ were to answer no although instructed
to answer yes, they were "no" cheaters (β) as they would always answer
no.

Corollary 2. For NCD the probabilities of the yes answers are given by

λ = α
(
P E + P Y)+ β · 02 + γP Y

= α
(
12 − PN)+ γP Y.

3.3.2 CalculaƟon of the PopulaƟon Parameter EsƟmators

In the same way as for TCD, the area of the permissible solutions can be inter-
preted geometrically. It is shown here as a triangle in R3. The native solution
is inside the triangle and the permissible marginal solutions are on the sides or
vertices.

Native Solution

WithM =
(
12 − PN, PY) this yields the parameters(

α̂
γ̂

)
=M−1λ̂ and β̂ = 1− α̂− γ̂.

First Order Marginal SoluƟons

1st Marginal Case α = 0

The approach simplifies to
λ = γPY.

WithM = PY, we obtain the parameters

γ̂ =M+λ̂, α̂ = 0 and β̂ = 1− γ̂.
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2nd Marginal Case β = 0

Due to γ = 1− α the approach may be rewritten as

λ = α(12 − PN) + PY − αPY ⇔ λ− PY = α(12 − PN − PY).

WithM = 12 − PY − PN, we obtain the parameters

α̂ =M+
(
λ̂− PY

)
, β̂ = 0 and γ̂ = 1− α̂.

3rd Marginal Case γ = 0

The approach simplifies to

λ = α
(
12 − PN) .

WithM = 12 − PN, we obtain the parameters

α̂ =M+λ̂, γ̂ = 0 and β̂ = 1− α̂.

Second Order Marginal SoluƟons

4th Marginal Case α = β = 0

The parameters are

α̂ = 0, β̂ = 0 and γ̂ = 1.

5th Marginal Case α = γ = 0

The parameters are

α̂ = 0, β̂ = 1 and γ̂ = 0.

6th Marginal Case β = γ = 0

The parameters are

α̂ = 1, β̂ = 0 and γ̂ = 0.
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3.4 DerivaƟon of the YCD

In contrast to TCD and NCD, we will use the no likelihoods to derive the esti-
mators for the YCD. As the number of parameters equals the NCD estimators,
there will also be one native solution as well as six marginal cases.

3.4.1 CalculaƟon of the No Likelihoods

Now the "yes" cheaters will be detected. As for the NCD, we assume that
β = 0 in the population parameters. We also will obtain a biased estimator if
this assumption is not met (see Chapter 4.6.3). As for the NCD, for the YCDwe
require two RRT subsamples. There are the following options for a yes answer:

• A person from group α always answers the sensitive question with yes.

• A person from groupα follows the Forced Answer instruction (see Chap-
ter 1.3) and answers yes. This yes answer is less embarrassing than a
yes answer to the incriminating question. Therefore, this assumption is
highly plausible.

• A person from group γ follows the Forced Answer instruction and an-
swers yes. If persons from group γ were to answer no although instructed
to answer yes, they were "no" cheaters (β) as they would always answer
no.

• A person from group δ always answers yes.

Corollary 3. For YCD the probabilities of the yes answers are given by

λ = α
(
P E + P Y)+ γP Y + δ · 12.

With δ = 1− α− γ, we obtain

12 − λ = αPN + γ
(
12 − P Y)

as the probabilities for no answers.

3.4.2 CalculaƟon of the PopulaƟon Parameter EsƟmators

As the YCD and NCD estimate the same number of parameters, we obtain here
precisely the same geometric interpretation as for NCD.
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Native Solution

WithM =
(
PN, 12 − PY) this yields the parameters(

α̂
γ̂

)
=M−1

(
12 − λ̂

)
and δ̂ = 1− α̂− γ̂.

First Order Marginal SoluƟons

1st Marginal Case α = 0

The approach simplifies to

12 − λ = γ
(
12 − PY) .

WithM = 12 − PY, we obtain the parameters

γ̂ =M+
(
12 − λ̂

)
, α̂ = 0 and δ̂ = 1− γ̂.

2nd Marginal Case γ = 0

The approach simplifies to

12 − λ = αPN.

WithM = PN, we obtain the parameters

α̂ =M+
(
12 − λ̂

)
, γ̂ = 0 and δ̂ = 1− α̂.

3rd Marginal Case δ = 0

Due to γ = 1− α the approach may be rewritten as

λ = α(12 − PN) + PY − αPY ⇔ λ− PY = α(12 − PN − PY).

WithM = 12 − PY − PN, we obtain the parameters

α̂ =M+
(
λ̂− PY

)
, δ̂ = 0 and γ̂ = 1− α̂.

Second Order Marginal SoluƟons

4th Marginal Case α = γ = 0

The parameters are

α̂ = 0, γ̂ = 0 and δ̂ = 1.
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5th Marginal Case α = δ = 0

The parameters are

α̂ = 0, γ̂ = 1 and δ̂ = 0.

6th Marginal Case γ = δ = 0

The parameters are

α̂ = 1, γ̂ = 0 and δ̂ = 0.

3.5 ApplicaƟon

The use of this method is now described using TCD as an example (refer to
Chapter 3.1.3). This approach applies accordingly for the NCD and YCD.

• First, one calculates the native solution. If all of the parameters are in the
permissible range this solution provides the estimation of the population
parameters.

• If the native solution is not permissible, one has to calculate all of the
marginal solutions and their likelihoods (or log likelihoods). From all of
the permissible marginal solutions, the one with the highest likelihood
provides the estimation of the population parameter. Such a solution ex-
ists as the 3rd level marginal solutions are always permissible.

To determine the likelihood of a solution, one first calculates λ =MΘ, where-
by M is the process matrix (coefficient matrix of the native estimator) and
Θ = (α, γ, δ)

T are the population parameters estimated by the solution. This
λ is then used with N and k in the formula derived above for the likelihood
or log likelihood. The calculation of the binomial coefficient is not required
because N and k are the same for all special estimators and therefore stretch
the likelihoods by a fixed factor or add a fixed summand to the log likelihood.

The next chapter, in particular Chapter 4.3, investigates how to select the
Forced Answer probabilities and thus the process matrix.





4 Analysis of the EsƟmators

In this chapter we investigate the estimators first mathematically by deriving
the variances and expected values of the solutions analytically. We restrict the
calculation of the variances to the native solutions. For each method it is shown
that the individual sub-estimators of the native and marginal solutions are un-
biased. The assembled estimators, i.e. the methods themselves, are however
biased close to the marginal cases. Close to the marginal case, α = 0, the
native estimator α̂ can over-estimate the parameter, but for under-estimation
with α̂ < 0 the calculated estimate applies to the marginal case which delivers
α̂ = 0. On average this results in an over-estimation. Due to its complex-
ity we will investigate this bias close to the marginal cases using Monte Carlo
simulation.

4.1 CalculaƟng the Variances of the EsƟmators

In order to show the variance of the estimators we use the relationship

M−1 =
1

detM
adj (M)

as this clearly shows the interaction with the determinant of the process matrix.
The general form of the adjugates for (3× 3) matrices is shown by

adj

a b c
d e f
g h i

 =

ei− fh ch− bi bf − ce
fg − di ai− cg cd− af
dh− eg bg − ah ae− bd

 .

We also need the variances Var(λ̂i) and covariances Cov(λ̂i, λ̂j) of the esti-
mators. For i ̸= j is Cov(λ̂i, λ̂j) = 0, because the samplings in the RRT
subsamples are independent of each other. When deriving the estimators, we
received λ̂i = ki

Ni
, whereby ki are the absolute frequencies of the yes responses

in the RRT subsamples andNi are the subsample sizes. Here ki are binomially
distributed random variables withNi repetitions and λi probabilities of success.
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Lemma 3. We therefore receive

Var(λ̂i) = Var
(
ki
Ni

)
=

Var (ki)
N2
i

=
Niλi (1− λi)

N2
i

=
λi (1− λi)

Ni

whereby the probabilities of success λi depend on the selected method, the
forced answer probabilities and the population parameters (refer to Corollary
1, 2 and 3).

4.1.1 Variances of the TCD

The process matrix of the TCD is

M =

1− PN
1 PY

1 1
1− PN

2 PY
2 1

1− PN
3 PY

3 1

 .

Therefore we obtain

M−1 =
1

detM
adj (M) =

1

detM
(mij)1≤i,j≤3

=
1

detM

PY
2 − PY

3 PY
3 − PY

1 PY
1 − PY

2

PN
2 − PN

3 PN
3 − PN

1 PN
1 − PN

2

m31 m32 m33


with

m31 =
(
1− PN

2

)
PY
3 − PY

2

(
1− PN

3

)
m32 = PY

1

(
1− PN

3

)
−
(
1− PN

1

)
PY
3

m33 =
(
1− PN

1

)
PY
2 − PY

1

(
1− PN

2

)
.

The probabilities for yes answers are calculated by

λi = α
(
1− PN

i

)
+ γPY

i + δ.

Variance of α̂

Using the representation of the inverse processmatrix from above, the estimator
α̂ may be written as

α̂ =
1

detM

((
PY
2 − PY

3

)
λ̂1 +

(
PY
3 − PY

1

)
λ̂2 +

(
PY
1 − PY

2

)
λ̂3

)
.
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For the variance of the estimator we obtain

Var(α̂) = Var
(

1

detM

((
PY
2 − PY

3

)
λ̂1 +

(
PY
3 − PY

1

)
λ̂2

+
(
PY
1 − PY

2

)
λ̂3

))
=

1

(detM)
2Var

((
PY
2 − PY

3

)
λ̂1 +

(
PY
3 − PY

1

)
λ̂2 +

(
PY
1 − PY

2

)
λ̂3

)
.

As Cov(λ̂i, λ̂j) = 0 for i ̸= j

Var(α̂) =
1

(detM)
2

(
Var

((
PY
2 − PY

3

)
λ̂1

)
+ Var

((
PY
3 − PY

1

)
λ̂2

)
+ Var

((
PY
1 − PY

2

)
λ̂3

))
=

1

(detM)
2

((
PY
2 − PY

3

)2 Var(λ̂1)+ (PY
3 − PY

1

)2 Var(λ̂2)
+
(
PY
1 − PY

2

)2 Var(λ̂3))
=

1

(detM)
2

((
PY
2 − PY

3

)2 λ1 (1− λ1)

N1
+
(
PY
3 − PY

1

)2 λ2 (1− λ2)

N2

+
(
PY
1 − PY

2

)2 λ3 (1− λ3)

N3

)
(∗)
≈ 3

N · (detM)
2

((
PY
2 − PY

3

)2
λ1 (1− λ1) +

(
PY
3 − PY

1

)2
λ2 (1− λ2)

+
(
PY
1 − PY

2

)2
λ3 (1− λ3)

)
,

whereby the last approximation (∗) is only valid if all three RRT subsamples
are nearly equally sized, i.e. N1, N2, N3 ≈ 1

3N . This allows us to set up a
rule of thumb to develop the variance relating to sample size in the following
chapters.

Variance of γ̂

We get

γ̂ =
1

detM

((
PN
2 − PN

3

)
λ̂1 +

(
PN
3 − PN

1

)
λ̂2 +

(
PN
1 − PN

2

)
λ̂3

)
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as a new depiction of the estimator. Analogously to Var (α̂), we can calculate

Var(γ̂) =
1

(detM)
2

((
PN
2 − PN

3

)2 λ1 (1− λ1)

N1

+
(
PN
3 − PN

1

)2 λ2 (1− λ2)

N2

+
(
PN
1 − PN

2

)2 λ3 (1− λ3)

N3

)
≈ 3

N · (detM)
2

((
PN
2 − PN

3

)2
λ1 (1− λ1)

+
(
PN
3 − PN

1

)2
λ2 (1− λ2)

+
(
PN
1 − PN

2

)2
λ3 (1− λ3)

)
.

Variance of δ̂

Analogously to α̂ and γ̂, we get

δ̂ =
1

detM

(((
1− PN

2

)
PY
3 − PY

2

(
1− PN

3

))
λ̂1

+
(
PY
1

(
1− PN

3

)
−
(
1− PN

1

)
PY
3

)
λ̂2

+
((
1− PN

1

)
PY
2 − PY

1

(
1− PN

2

))
λ̂3

)
.

Here, we can calculate as above.

Var(δ̂) =
1

(detM)
2

(((
1− PN

2

)
PY
3 − PY

2

(
1− PN

3

))2 λ1 (1− λ1)

N1

+
(
PY
1

(
1− PN

3

)
−
(
1− PN

1

)
PY
3

)2 λ2 (1− λ2)

N2

+
((
1− PN

1

)
PY
2 − PY

1

(
1− PN

2

))2 λ3 (1− λ3)

N3

)
≈ 3

N · (detM)
2

(((
1− PN

2

)
PY
3 − PY

2

(
1− PN

3

))2
λ1 (1− λ1)

+
(
PY
1

(
1− PN

3

)
−
(
1− PN

1

)
PY
3

)2
λ2 (1− λ2)

+
((
1− PN

1

)
PY
2 − PY

1

(
1− PN

2

))2
λ3 (1− λ3)

)
.
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Variance of β̂

The variance is calculated by

Var(β̂) = Var(1− α̂− γ̂ − δ̂)

= Var(α̂) + Var(γ̂) + Var(δ̂)

+ 2
(
Cov(α̂, γ̂) + Cov(α̂, δ̂) + Cov(γ̂, δ̂)

)
.

But calculating the covariances is however complicated and the resulting ex-
pression cannot be summarised in a compact manner. We therefore want to
describe only the rough method here. In Chapter 4.4 we will introduce an em-
pirical aid that we can use to abstract from the complicated form of the variances
for TCD.

Let χ, ψ ∈ {α, γ, δ}. E (χ̂) = χ applies (refer to Chapter 4.2). We define

i (χ) :=


1 for χ = α

2 for χ = γ

3 for χ = δ.

The covariances can be calculated using

Cov(χ̂, ψ̂) = E(χ̂ · ψ̂)− E(χ̂)E(ψ̂) = E(χ̂ · ψ̂)− χψ.

E(χ̂ · ψ̂) = 1

(detM)
2E
((
mi(χ),1λ̂1 +mi(χ),2λ̂2 +mi(χ),3λ̂3

)
·
(
mi(ψ),1λ̂1 +mi(ψ),2λ̂2 +mi(ψ),3λ̂3

))
=

1

(detM)
2

3∑
k=1

3∑
l=1

mi(χ),kmi(ψ),lE(λ̂k · λ̂l)

withmi,j being the elements of adj (M). Here

E(λ̂kλ̂l) =


E(λ̂k) · E(λ̂l) = λkλl for k ̸= l (see Chapter 4.2)

Var(λ̂k) +
(
E(λ̂k)

)2
for k = l, because

Var (X) = E
(
X2
)
− (E (X))

2
.

Under the assumption N1, N2, N3 ≈ 1
3N arises the expression of the form

Var(β̂) =
3

N · (detM)
2A
(
α, γ, δ, PN, PY, N

)
,
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for the variance of β̂ whereby A only depends on the population parameters,
Forced Answer probabilities and sample size.

4.1.2 Variances of the NCD

The process matrix is

M =

(
1− PN

1 PY
1

1− PN
2 PY

2

)
.

The general form of adjugates for (2× 2) matrices is given by

adj
(
a b
c d

)
=

(
d −b
−c a

)
and we obtain

M−1 =
1

detM
adj (M) =

1

detM

(
PY
2 −PY

1

−
(
1− PN

2

)
1− PN

1

)
as the inverse of the process matrix. The probabilities for yes answers result
from

λi = α
(
1− PN

i

)
+ γPY

i .

Variance of α̂

Now we can rewrite α̂ as:

α̂ =
1

detM

(
PY
2 λ̂1 − PY

1 λ̂2

)
.

Similar computations as in the TCD case are performed as

Var(α̂) =
1

(detM)
2

((
PY
2

)2 λ1 (1− λ1)

N1
+
(
PY
1

)2 λ2 (1− λ2)

N2

)
≈ 2

N · (detM)
2

((
PY
2

)2
λ1 (1− λ1) +

(
PY
1

)2
λ2 (1− λ2)

)
.

Here as for the following calculation of Var(γ̂), we also assume for the last
approximation that the RRT subsamples are nearly equally sized.
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Variance of γ̂

With

γ̂ =
1

detM

(
−
(
1− PN

2

)
λ̂1 +

(
1− PN

1

)
λ̂2

)
,

it holds that

Var(γ̂) =
1

(detM)
2

((
1− PN

2

)2 λ1 (1− λ1)

N1
+
(
1− PN

1

)2 λ2 (1− λ2)

N2

)
≈ 2

N · (detM)
2

((
1− PN

2

)2
λ1 (1− λ1) +

(
1− PN

1

)2
λ2 (1− λ2)

)
.

Variance of β̂

Similar to the TCD, we obtain an expression of the form

Var(β̂) =
1

N · (detM)
2A
(
α, γ, PN, PY, N

)
.

4.1.3 Variances of the YCD

The process matrix is given by

M =

(
PN
1 1− PY

1

PN
2 1− PY

2

)
.

Using the above representation of (2× 2)-adjugate matrices, we get

M−1 =
1

detM
adj (M) =

1

detM

(
1− PY

2 −
(
1− PY

1

)
−PN

2 PN
1

)
as the inverse of the process matrix. Further

1− λi = αPN
i + γ

(
1− PY

i

)
as the probabilities of a no answer. The variance is computed analogously to
the NCD.
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Variance of α̂

Similarly to the NCD we get

α̂ =
1

detM

((
1− PY

2

) (
1− λ̂1

)
−
(
1− PY

1

) (
1− λ̂2

))
and we compute

Var(α̂) =
1

(detM)
2

((
1− PY

2

)2 λ1 (1− λ1)

N1
+
(
1− PY

1

)2 λ2 (1− λ2)

N2

)
≈ 2

N · (detM)
2

((
1− PY

2

)2
λ1 (1− λ1)

+
(
1− PY

1

)2
λ2 (1− λ2)

)
,

assuming that N1, N2 ≈ 1
2N .

Variance of γ̂

Analogous computations yield

γ̂ =
1

detM

(
−PN

2

(
1− λ̂1

)
+ PN

1

(
1− λ̂2

))
and

Var(γ̂) =
1

(detM)
2

((
PN
2

)2 λ1 (1− λ1)

N1
+
(
PN
1

)2 λ2 (1− λ2)

N2

)
≈ 2

N · (detM)
2

((
PN
2

)2
λ1 (1− λ1) +

(
PN
1

)2
λ2 (1− λ2)

)
,

also under the assumption that N1, N2 ≈ 1
2N .

Variance of δ̂

Here, we also get the form

Var(δ̂) =
1

N · (detM)
2A
(
α, γ, PN, PY, N

)
.
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4.1.4 ConsideraƟon to OpƟmise the Method

For a population parameter χ ∈ {α, β, γ, δ}, we set the mean squared error of
χ̂ as MSE(χ̂) := Var(χ̂)+(Bias(χ̂))2. In order to minimise this, it is sufficient
to minimise Var(χ̂) because the estimators are unbiased (as we shall see in the
next chapter). When using the formulae derived above for this, two problems
arise. On the one hand, the expression in the numerator is very complex. On
the other hand, unknown population parameters on which the experimenter has
no influence are used. The rules of thumb

Std
(
Bias (χ̂)TCD

)
≈ 1√

|detM |N

and
Std
(
Bias (χ̂)DCD

)
≈ 1

|detM |
√
N

for the standard deviations of the estimation error Bias (χ̂) , χ ∈ {α, β, γ, δ}
provide assistance here. These are very rough estimates of the proportionality
whichmay have variations of 30% in the proportionality constants, depending
on the forced answer probabilities and population parameters. Nevertheless, for
practical use they provide a detachment of the population parameters from the
forced answer probabilities that is appropriate to optimise the estimators.

Tables 4.1, 4.2 and B.2 show the connection between the standard deviation
of the estimation errors and the determinant of the processmatrix. For this 1,000
random populations were generated and 1,000 Monte Carlo simulations were
conducted with sample size N = 1,500. Then the standard deviations of the
estimation errors and the 10%, 50% and 90% quantiles were calculated for each
of these populations. The interaction is shown with 1√

N
in Figures 4.4, 4.7 and

4.12.

4.2 Expected Values of the EsƟmators

With the considerations stated above on Lemma 3, we can calculate E(λ̂i).

Corollary 4.

E(λ̂i) = E
(
ki
Ni

)
=

E (ki)

Ni
=
Niλi
Ni

= λi.

In order to show that all estimators are unbiased, we can use the method as
for calculating the variances. Instead, we will prove the first three special cases
(1 ≤ n0 ≤ 3) of the following assumption 1 because this will also provide the
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Table 4.1: Interaction of the standard deviations of the estimation errors for
TCD with the determinant of the process matrix. The determinant
is exact. The quantiles are scaled by a factor of 1,000 and rounded.

χ |detM | Std (Bias (χ̂)) Std (Bias (χ̂)) ·
√
|detM |

10% 50% 90% 10% 50% 90%

α

0.36 38.97 49.91 62.22 23.38 29.95 37.33
0.20 51.53 69.37 88.71 23.04 31.02 39.67
0.11 65.94 92.67 120.70 21.87 30.74 40.03
0.06 87.39 123.48 164.03 21.41 30.25 40.18

β

0.36 25.86 32.19 34.94 15.52 19.31 20.96
0.20 35.48 42.86 46.52 15.87 19.17 20.81
0.11 45.88 64.10 71.97 15.22 21.26 23.87
0.06 49.27 66.91 75.77 12.07 16.39 18.56

γ

0.36 39.79 49.13 52.69 23.88 29.48 31.61
0.20 46.68 59.30 63.47 20.88 26.52 28.38
0.11 78.97 112.99 127.25 26.19 37.47 42.20
0.06 89.25 125.85 147.26 21.86 30.83 36.07

δ

0.36 25.20 32.53 42.69 15.12 19.52 25.62
0.20 34.67 45.14 60.29 15.51 20.19 26.96
0.11 34.15 47.08 65.02 11.33 15.62 21.56
0.06 47.72 66.76 94.58 11.69 16.35 23.17

proof that all estimators (including the estimators from the marginal solutions)
are unbiased for all three methods.

Assumption 1. Let n, n0 ∈ N with n ≥ n0 > 0 and let χ1, . . . , χn0+1 ∈ R.
Let v1, . . . , vn0 ∈ Rn so thatM := (v1, . . . , vn0) has full column rank n0 and

let

 λ̂1
...
λ̂n0

 := λ̂ be estimators with E(λ̂) =
n0∑
i=1

viχi.

The estimators  χ̂1

...
χ̂n0

 :=M+λ̂

are then unbiased, i.e. E (χ̂i) = χi applies to 1 ≤ i ≤ n0.

If
n0+1∑
i=1

χi = 1 also applies, it is clear that χ̂n0+1 := 1−
n0∑
i=1

χ̂i is also unbiased.
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Table 4.2: Interaction of the standard deviations of the estimation errors for
NCD with the determinant of the process matrix. The determinant
is exact. The quantiles are scaled by a factor of 1,000 and rounded.

χ |detM | Std (Bias (χ̂)) Std (Bias (χ̂)) · |detM |
10% 50% 90% 10% 50% 90%

α

0.54 16.33 21.96 23.97 8.82 11.86 12.94
0.40 18.35 24.90 27.56 7.34 9.96 11.02
0.22 30.87 40.29 43.77 6.79 8.86 9.63
0.16 43.89 60.35 65.78 7.02 9.66 10.52

β

0.54 22.80 26.70 28.22 12.31 14.42 15.24
0.40 27.00 31.92 33.75 10.80 12.77 13.50
0.22 41.68 55.61 59.65 9.17 12.23 13.12
0.16 44.67 61.29 66.25 7.15 9.81 10.60

γ

0.54 32.78 40.04 42.74 17.70 21.62 23.08
0.40 38.23 47.88 51.44 15.29 19.15 20.58
0.22 67.05 91.42 98.52 14.75 20.11 21.67
0.16 84.01 117.47 128.14 13.44 18.79 20.50

We will now demonstrate the assumption for the cases n0 = 1, n0 = 2 and
n0 = 3. As usual let the real standard scalar product be referred to as ⟨·, ·⟩.

Lemma 4. The assumption applies for n0 = 1.

Proof. Let M+ =
(
MTM

)−1
MT =

(
vT1 v1

)−1
vT1 = 1

⟨v1,v1⟩v
T
1 . We get

E(χ̂1) =M+E(λ̂) = 1
⟨v1,v1⟩ · χ1 · vT1 v1 = χ1

⟨v1,v1⟩
⟨v1,v1⟩ = χ1.

Lemma 5. The assumption applies for n0 = 2.

Proof. Let

M+ =
(
MTM

)−1
MT =

((
vT1
vT2

)(
v1 v2

))−1(
vT1
vT2

)
=

(
⟨v1, v1⟩ ⟨v1, v2⟩
⟨v1, v2⟩ ⟨v2, v2⟩

)−1(
vT1
vT2

)
=

1

D

(
⟨v2, v2⟩ −⟨v1, v2⟩
−⟨v1, v2⟩ ⟨v1, v1⟩

)(
vT1
vT2

)
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=
1

D

(
⟨v2, v2⟩vT1 − ⟨v1, v2⟩vT2
−⟨v1, v2⟩vT1 + ⟨v1, v1⟩vT2

)
with

D = ⟨v1, v1⟩⟨v2, v2⟩ − ⟨v1, v2⟩2.

We get

E
(
χ̂1

χ̂2

)
=M+E(λ̂) =M+ (χ1v1 + χ2v2)

=
1

D


χ1 (⟨v2, v2⟩⟨v1, v1⟩ − ⟨v1, v2⟩⟨v2, v1⟩)

+ χ2 (⟨v2, v2⟩⟨v1, v2⟩ − ⟨v1, v2⟩⟨v2, v2⟩)

χ1 (−⟨v1, v2⟩⟨v1, v1⟩+ ⟨v1, v1⟩⟨v2, v1⟩)
+ χ2 (−⟨v1, v2⟩⟨v1, v2⟩+ ⟨v1, v1⟩⟨v2, v2⟩)


=

1

D

(
χ1 ·D + χ2 · 0
χ1 · 0 + χ2 ·D

)
=

(
χ1

χ2

)
.

Lemma 6. The assumption applies for n0 = 3.

Proof. Let

(
MTM

)−1
=

vT1vT2
vT3

(v1 v2 v3
)−1

=

⟨v1, v1⟩ ⟨v1, v2⟩ ⟨v1, v3⟩
⟨v1, v2⟩ ⟨v2, v2⟩ ⟨v2, v3⟩
⟨v1, v3⟩ ⟨v2, v3⟩ ⟨v3, v3⟩

−1

=
1

D



⟨v2, v2⟩⟨v3, v3⟩ ⟨v1, v3⟩⟨v2, v3⟩ ⟨v1, v2⟩⟨v2, v3⟩
−⟨v2, v3⟩2 −⟨v1, v2⟩⟨v3, v3⟩ −⟨v1, v3⟩⟨v2, v2⟩

⟨v2, v3⟩⟨v1, v3⟩ ⟨v1, v1⟩⟨v3, v3⟩ ⟨v1, v2⟩⟨v1, v3⟩
−⟨v1, v2⟩⟨v3, v3⟩ −⟨v1, v3⟩2 −⟨v1, v1⟩⟨v2, v3⟩

⟨v1, v2⟩⟨v2, v3⟩ ⟨v1, v2⟩⟨v1, v3⟩ ⟨v1, v1⟩⟨v2, v2⟩
−⟨v1, v3⟩⟨v2, v2⟩ −⟨v1, v1⟩⟨v2, v3⟩ −⟨v1, v2⟩2
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with

D = ⟨v1, v1⟩⟨v2, v2⟩⟨v3, v3⟩+ 2⟨v1, v2⟩⟨v1, v3⟩⟨v2, v3⟩
− ⟨v1, v3⟩2⟨v2, v2⟩ − ⟨v2, v3⟩2⟨v1, v1⟩ − ⟨v1, v2⟩2⟨v3, v3⟩.

Therefore we get

M+ =
(
MTM

)−1

vT1vT2
vT3



=
1

D



(
⟨v2, v2⟩⟨v3, v3⟩ − ⟨v2, v3⟩2

)
vT1

+ (⟨v1, v3⟩⟨v2, v3⟩ − ⟨v1, v2⟩⟨v3, v3⟩) vT2
+ (⟨v1, v2⟩⟨v2, v3⟩ − ⟨v1, v3⟩⟨v2, v2⟩) vT3

(⟨v2, v3⟩⟨v1, v3⟩ − ⟨v1, v2⟩⟨v3, v3⟩) vT1
+
(
⟨v1, v1⟩⟨v3, v3⟩ − ⟨v1, v3⟩2

)
vT2

+ (⟨v1, v2⟩⟨v1, v3⟩ − ⟨v1, v1⟩⟨v2, v3⟩) vT3
(⟨v1, v2⟩⟨v2, v3⟩ − ⟨v1, v3⟩⟨v2, v2⟩) vT1

+ (⟨v1, v2⟩⟨v1, v3⟩ − ⟨v1, v1⟩⟨v2, v3⟩) vT2
+
(
⟨v1, v1⟩⟨v2, v2⟩ − ⟨v1, v2⟩2

)
vT3


and because

E

χ̂1

χ̂2

χ̂3

 =M+E(λ̂) =M+ (χ1v1 + χ2v2 + χ3v3)

this results in

E (χ̂1) =
1

D

(
χ1

(
⟨v2, v2⟩⟨v3, v3⟩⟨v1, v1⟩ − ⟨v2, v3⟩2⟨v1, v1⟩

+ ⟨v1, v3⟩⟨v2, v3⟩⟨v2, v1⟩ − ⟨v1, v2⟩⟨v3, v3⟩⟨v2, v1⟩
+ ⟨v1, v2⟩⟨v2, v3⟩⟨v3, v1⟩ − ⟨v1, v3⟩⟨v2, v2⟩⟨v3, v1⟩)

+ χ2

(
⟨v2, v2⟩⟨v3, v3⟩⟨v1, v2⟩ − ⟨v2, v3⟩2⟨v1, v2⟩

+ ⟨v1, v3⟩⟨v2, v3⟩⟨v2, v2⟩ − ⟨v1, v2⟩⟨v3, v3⟩⟨v2, v2⟩
+ ⟨v1, v2⟩⟨v2, v3⟩⟨v3, v2⟩ − ⟨v1, v3⟩⟨v2, v2⟩⟨v3, v2⟩)

+ χ3

(
⟨v2, v2⟩⟨v3, v3⟩⟨v1, v3⟩ − ⟨v2, v3⟩2⟨v1, v3⟩

+ ⟨v1, v3⟩⟨v2, v3⟩⟨v2, v3⟩ − ⟨v1, v2⟩⟨v3, v3⟩⟨v2, v3⟩
+ ⟨v1, v2⟩⟨v2, v3⟩⟨v3, v3⟩ − ⟨v1, v3⟩⟨v2, v2⟩⟨v3, v3⟩))
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=
1

D
(χ1 ·D + χ2 · 0 + χ3 · 0) = χ1.

One can calculate E (χ̂2) = χ2 and E (χ̂3) = χ3 analogously.

The unbiased nature of all estimators for each of the methods follows from
the corollary (or the lemmas):

• TCD
Lemma 6 provides the unbiased nature of the native estimators, Lemma 5
the unbiased nature of the estimators in the first order marginal solutions
and Lemma 4 the unbiased nature of the second order marginal solutions.
In the third order trivial cases where a population parameter equals one
the unbiased nature is obvious.

• NCD/YCD
The unbiased nature of the native estimators follows from Lemma 5, that
of the estimators for the first order marginal solutions from Lemma 4.

4.3 OpƟmal Forced Answer ProbabiliƟes

When solving the ML equation, it is required that the process matrix has full
row rank or in the case of a square matrix can be inverted. If its row rank is
not at the maximum, redundant information enters the estimation due to the
choice of the Forced Answer probability which of course fails. In addition,
as noted above, the determinant of the process matrix should have the highest
possible absolute value in order to minimise the average estimation errors. This
purely mathematical optimisation of the estimators is however in conflict with
the fundamental concept of the RRT.

As this cannot be immediately detected on the process matrices of the meth-
ods presented, wewant to explain this situation using classical RRTwithout any
subsampling as an example.
Let β = δ = 0. With γ = 1− α, the probability of a yes answer is given as

λ = α
(
P E + PY)+ γPY ⇔ λ− PY = α

(
1− PY − PN) .

The process matrix is thereforeM =
(
1− PY − PN). This result can be seen

above in general form for the marginal cases β = δ = 0 of the TCD, NCD
and YCD. Maximising the determinant obviously would mean leaving out the
Forced Answer instructions which precisely matches a direct question.

This principle can be generalised to the methods presented here: the mathe-
matical optimisation generates a solution which is equivalent to leaving out the
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Forced Answer instruction in one subsample and enforcing the forced answer
in the remaining subsample(s). This merely mathematical optimum therefore
matches an abnormal practical solution. Maximising the determinants in the
process matrices is achieved by the following Forced Answer probabilities:

• For TCD

PY
TCD =

1
0
0

 and PN
TCD =

0
1
0

 .

• For NCD
PY
NCD =

(
1
0

)
and PN

NCD =

(
0
0

)
.

• For YCD
PY
YCD =

(
0
0

)
and PN

YCD =

(
1
0

)
.

This mathematical optimum reduces the RRT to absurdity. Appropriate PY

and PN for applications should therefore approach this mathematical optimum
as far as respondents still believe in being protected from disclosure and from
social sanctioning.

4.4 Analysis of the TCD

In order to analyse the estimation errors across possible population parameters,
a series of Monte Carlo simulations were conducted. As the methods esti-
mate three or four parameters, we cannot directly show the estimation errors
or their standard deviations in a three-dimensional coordinate system. Never-
theless, coordinate transformation allows us to place the complete domain of
three population parameters on a triangle inR2 such that we can plot the estima-
tion errors and their standard deviations in a diagram along the third axis. This
triangle represents the universe of all populations. Each point uniquely repre-
sents one population. Three parameters are varied to analyse the DCD. The
transformation of the domain stated above shows a factor to be studied (such
as the estimation error Bias (α̂)) completely in a single diagram. A detailed
derivation of this transformation is found in Appendix A.

The interpretation will be illustrated using the NCD as an example: the
population parameters in which we are interested are α, β and γ. For represen-
tation we use an equilateral triangle with vertices A,B and C. Each point P
in this triangle can be uniquely written as P = αA + βB + γC. This repre-
sentation is only unique because α, β, γ ∈ [0, 1] applies. This is also referred
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to by a convex combination of A,B and C with coefficients α, β and γ. So
the closer P is to a vertex, the higher the coefficient relating to the vertex.
For example, P = A means the marginal case that P represents the popula-
tion with α = 1. So if P is on the side AB, P represents a population with
α + β ≡ 1 ⇔ γ ≡ 0. Points on a straight line parallel to AB stand for popu-
lations where α + β ≡ 1− γ ≡ const ⇔ γ ≡ const applies. The population
with α = β = γ = 1

3 can be found at the triangle's centroid.
The TCD cannot be shown fully in a diagram by these means as there are

four parameters to be estimated. For illustration using the procedure stated
above graphs for some selected values of the parameter δ are viewed, i.e. the
population parameter δ is fixed. The interpretation described above on the
position of a point in the triangle can be transferred to it with the additional
restriction α + β + γ = 1 − δ. In such a triangle the vertex A precisely rep-
resents the population where α = 1 − δ and β = γ = 0 applies, whereby δ is
fixed.

As already mentioned at the start of this chapter, we nowwant to investigate
the complete method, i.e. the composition of all estimators, with the aid of
Monte Carlo simulations. For the TCD, the analysis is based on 1,000 Monte
Carlo simulations for potential populations. We selected the following Forced
Answer probabilities

PY =

0.7
0.1
0.1

 and PN =

0.1
0.7
0.1

 .

First an example is used to explain the basic characteristics of the TCD before
we systematically vary the parameters.

Figure 4.1 shows the average estimation error Bias (γ̂) for δ = 0.20. It can
clearly be seen that the TCD is biased close to the marginal cases. The reason
for this is the positive constraints on the parameters: close to the marginal cases
where there is a population with γ = 0, i.e. on the sideAB, the estimator γ̂ has
a high positive bias. The comparatively high value of the estimation error close
to point A on the side AB can be explained as follows: a no answer can be
assigned both to the population proportion γ (to which this graphic refers) and
to the population proportion β. A point close toA represents a population with
very small proportions β and γ, whereby the estimator γ̂ frequently incorrectly
delivers an estimation from the marginal cases β = 0 or β = γ = 0 for the
relevant simulation series. The marginal case β = 0 then always means over-
estimating γ̂. If the native ML solution delivers a value γ < 0, (in nearly all
cases) the marginal case γ = 0 has the highest likelihood of all marginal cases.
Therefore on average no compensation can be made for a native ML solution
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Figure 4.1: Estimation errors for γ in the TCD (N = 1,500, δ = 0.20, 1,000
repetitions).

with γ > 0 as opposed to, for example, in the middle of the triangle where all
parameters are relatively far away from a marginal solution.

This is also reflected in the standard deviation of the estimation error, as can
be clearly seen in Figure 4.2. Close to themarginal cases, the standard deviation
generally decreases. Towards the centre of the triangle the standard deviation is
higher because the estimation is not artificially biased bymarginal cases and the
TCD has space for large under- and over-estimations. In the sameway as for the
estimation error (Fig. 4.1) the standard deviation close to Point A is also very
high. At this point the already discussed incorrect marginal solutions β = 0
and the correct marginal solution γ = 0 lead to this high standard deviation.

For the δ = 0 case, one can easily detect the bias of the estimator close to
the marginal cases in Figure B.1 and B.2. The apparent symmetry of the errors
emphasises that yes answers can be false due both to the population proportions
α and δ.

Outside the marginal cases the TCD can certainly be recognized as unbi-
ased. This is particularly clear in Figure 4.3. It shows the same estimation errors
as shown in Figure 4.1 but here only values for populations with α, β, γ > 0.05
are shown. Here too, the effects of the marginal cases γ = 0 can still be seen
clearly whereby the biggest error for γ ≈ 0.05 with Bias (γ̂) ≈ 0.01 for the
estimation of a population proportion is still at a very acceptable level.
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Figure 4.2: Standard deviation of the estimation error for γ in the TCD
(N = 1,500, δ = 0.20, 1,000 repetitions)
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Figure 4.3: Estimation errors for γ in the TCD (N = 1,500, δ = 0.20, 1,000
repetitions) for populations with α, β, γ, δ ≤ 0.05.



Cheater-Detection for RRT 59

4.4.1 Mean Errors

The mean estimation errors and therefore the unbiased nature of the method
will now be presented for the simulated data. We have already demonstrated
analytically that the estimators are each unbiased but we have also seen that
the composition of the TCD estimators close to the marginal cases is biased.
For this the average value for all estimation errors in the simulation series was
formed for each parameter, once including all populations and again omitting
the populations close to the marginal cases (α, β, γ, δ < 0.05). For example,
the total average values of the errors shown in Figure 4.1 and 4.3 are also found
in Table 4.3, Column 3 or 4. The corresponding values for Bias(β̂) and Bias(δ̂)
are shown in Table B.1.

Table 4.3: Average TCD estimation errors for the simulated data scaled by a
factor of 106.

δ χ Bias (χ̂)
with marginal cases without marginal cases

0.00 α -112,393 -
γ 20,690 -

0.05 α 14,190 1,839
γ 3,182 2,733

0.10 α 23,228 7,248
γ 12,044 7,056

0.15 α 18,439 4,265
γ 25,918 3,959

0.20 α 301 -770
γ 42,919 10,060

0.35 α -57,091 -14,791
γ 61,993 14,216

0.50 α -40,546 -33,231
γ 41,423 24,200

0.65 α -55,749 -19,506
γ 69,690 15,936

0.80 α -27,722 -16,765
γ 35,223 8,020

0.95 α 14,861 -
γ -3,707 -
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It can be seen that the estimation errors are significantly smaller if the ma-
jority of marginal cases are excluded. As demonstrated analytically above, we
once again see that the native solution of the TCD is unbiased. The regularities
in the signs of the estimation errors show that there is still some systematic er-
ror. This is because, in spite of the restriction α, β, γ, δ > 0.05, by far not all
of the marginal cases were excluded. Figure 4.3 and Table 4.3 show however
that the remaining errors are so small that the TCD can be considered unbiased
for its purpose within these restrictions.

4.4.2 Standard DeviaƟon of the EsƟmaƟon Errors

To show how the standard deviation of the estimation errors develops as the
sample size increases, we generated 1,000 populations. The standard deviation
of the estimation error was calculated in 1,000 Monte Carlo simulations for
each of the selected sample sizes and depicted as a box plot against the grid
points of the sample sizeN . The medians produced a regression curve with the
form

√
a
N + b that illustrates the proportionality of the standard deviation for

1√
N
. The results for the population parameters α and γ are found in Figure 4.4

and 4.5 with regard to β and δ in Figure B.3 and B.4 in the appendix.
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Figure 4.4: Development of the standard deviation of the estimation error of
α in the TCD as per Chapter 4.4.2. The red line within the box
marks the median of the data points. The box marks the limits for
the upper and lower quartile. The end points of the whiskers set
the location of the largest or smallest data point, which is located
maximum 1.5 times of the inter-quartile distance above or below
the limit for the upper or lower quartile.
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Figure 4.5: Development of the standard deviation of the estimation error of γ
in the TCD as per Chapter 4.4.2. For notes on the depiction refer
to Figure 4.4.
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4.5 Analysis of the NCD

In principle, all of the results gained from the TCD can be transferred. The only
exception here is the case that the parameter δ is incorrectly assumed to be zero
(see Chapter 4.5.3). The following were used as Forced Answer probabilities

PY =

(
0.7
0.1

)
and PN =

(
0.1
0.1

)
.

4.5.1 Mean Errors

It can be seen here that the NCD can be classified as unbiased except for the
marginal cases. The estimation errors Bias(γ̂),Bias(α̂) and Bias(β̂) are each
shown in Figure 4.6, B.5 and B.6. The average estimation errors for the simu-
lated data are shown in Table 4.4.

Table 4.4: Average NCD estimation errors for the simulated data scaled by a
factor of 106. As for the TCD the bias by the marginal cases can be
clearly seen.

with marginal cases without marginal cases
Bias(α̂) -6,336 -392
Bias(β̂) -3,412 -307
Bias(γ̂) 9,748 700

4.5.2 Standard DeviaƟon of the EsƟmaƟon Errors

The same approach as for TCD was selected. The results are found in Figure
4.7 for α, in Figure 4.8 for γ and for the cheater proportion in Figure B.8. The
proportionality to 1√

N
can also be seen clearly. Compared with the TCD, the

NCD needs a smaller sample size to provide results of similar quality as the
standard variations are lower throughout.

4.5.3 Effects of δ ̸= 0

If the population parameter δ ̸= 0, the NCD is biased. The calculation of the
expected values is the same as was conducted above with the only difference
that the probability of yes answers is calculated by

λi = α
(
1− PN

i

)
+ γPY

i + δ.
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Figure 4.6: Estimation errors for γ in the NCD (N = 1,000, δ = 0.00, 1,000
repetitions). Depiction in triangle coordinates as per Chapter 4.4.

For the native solution we get the estimator for the population parameter α as

α̂ =
1

detM

(
PY
2 λ̂1 − PY

1 λ̂2
)
.

The expected value of α̂ can be calculated as

E(α̂) =
1

detM
(
PY
2

(
α
(
1− PN

1

)
+ γPY

1 + δ
)

− PY
1

(
α
(
1− PN

2

)
+ γPY

2 + δ
))

=
1

detM
(
α detM + γ · 0 + δ

(
PY
2 − PY

1

))
= α+ δ

PY
2 − PY

1

detM
.

The population parameter γ is estimated by

γ̂ =
1

detM

(
−
(
1− PN

2

)
λ̂1 +

(
1− PN

1

)
λ̂2
)
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Figure 4.7: Development of the standard deviation of the estimation error of α
in the NCD as per 4.5.2. For notes on the depiction refer to Figure
4.4. The scaling of the ordinate differs from Figures 4.4 and 4.5.
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Figure 4.8: Development of the standard deviation of the estimation error of γ
in the NCD as per 4.5.2. For notes on the depiction refer to Figure
4.4. The scaling of the ordinate differs from Figures 4.4 and 4.5.
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and has the expected value

E(γ̂) =
1

detM
(
α · 0 + γ detM + δ

(
−1 + PN

2 + 1− PN
1

))
= γ + δ

PN
2 − PN

1

detM
.
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Figure 4.9: Estimation errors for γ in the NCD (N = 1,000, δ = 0.10, 1,000
repetitions). Depiction in triangle coordinates as per Chapter 4.4.
The missing data points on the side AB are conditional on round-
ing errors in the coordinate transformation.

The value for β̂ is calculated as

β̂ = 1− α̂− γ̂.

Thus it has the expected value

E(β̂) = E(1− α̂− γ̂)

= 1− α− δ
PY
2 − PY

1

detM
− γ − δ

PN
2 − PN

1

detM

= β + δ

(
1− PY

2 − PY
1 + PN

2 − PN
1

detM

)
.
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In the case of optimal forced answer probabilities PN
1 and PN

2 are both rel-
atively small or approximately equal. If one chooses PN

1 = PN
2 for a survey,

this results in an unbiased estimator γ̂, independently of δ. This can easily be
seen when comparing the simulation results for δ ̸= 0 (Figures 4.9 and B.7)
to the results for δ = 0 (Figure 4.6). After removing the marginal cases (as
for TCD) in Figure 4.9,the average estimation error Bias(γ̂) = 0.000070. As
calculated, the native solution of γ̂ is therefore unbiased.
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Figure 4.10: Estimation errors forα in the NCD (N = 1,000, δ = 0.10, 1,000
repetitions). Depiction in triangle coordinates as per Chapter 4.4.
The missing data points on the sideAB are conditional on round-
ing errors in the coordinate transformation.

For the population parameters α and β, the case δ ̸= 0 leads to biased
estimators. With the forced answer probabilities used here, detM = − 54

100

and therefore Bias(α̂) = 10
9 δ and Bias(β̂) = −1

9δ. Simulations on this are
shown in Figure 4.10 and B.7.
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4.6 Analysis of the YCD

The results gained here correspond (within the limits of simulation precision)
exactly to the NCD results ifα is exchanged with γ and β with δ. The following
were used

PY =

(
0.1
0.1

)
and PN =

(
0.7
0.1

)
as Forced Answer probabilities.

4.6.1 Average Errors

The estimation errors Bias (α̂) ,Bias (γ̂) and Bias(δ̂) are shown in Figure 4.11
and Table 4.5, as well as in Figure B.9 and B.10. The TCD can also be viewed
as unbiased with a sufficient distance to the marginal cases.
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Figure 4.11: Estimation errors forα in the YCD (N = 1,000, β = 0.00, 1,000
repetitions). Depiction in triangle coordinates as per Chapter 4.4.

4.6.2 Standard DeviaƟon of the EsƟmaƟon Errors

The development with an increasing sample size is shown in Figure 4.12, B.11
and B.12. The approach here is similar to the TCD and NCD. A comparison
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Table 4.5: Average YCD estimation errors for the simulated data scaled by a
factor of 106.

with marginal cases without marginal cases
Bias (α̂) -7,865 1,705
Bias (γ̂) 2,619 -708
Bias(δ̂) 5,245 -997

with the figures relating to Chapter 4.5.2 also emphasises the symmetry of the
two DCD methods and the results stated here for NCD also apply in this case.

4.6.3 Effects of β ̸= 0

If β ̸= 0, we will also obtain a biased estimation here. To calculate the expected
values we use the modified estimators of the no probability

1− λ̂i = α
(
1− PN

i

)
− β + γPY

i .

For the native solution, we calculate the estimator for α as

α̂ =
1

detM

((
1− PY

2

) (
1− λ̂1

)
−
(
1− PY

1

) (
1− λ̂2

))
,

with the expected value

E(α̂) =
1

detM
(
α detM + β

(
1− PY

2 −+PY
1

)
+ γ · 0

)
= α+ δ

PY
1 − PY

2

detM
.

Then γ is estimated by calculating

γ̂ =
1

detM

(
−PN

2

(
1− λ̂1

)
+ PN

1

(
1− λ̂2

))
.

The expected value for γ̂ is

E(γ̂) =
1

detM
(
α · 0 + β

(
PN
1 − PN

2

)
+ γ detM

)
= γ +

PN
2 − PN

1

detM
δ.
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Figure 4.12: Development of the standard deviation of the estimation error ofα
in the YCD as per Chapter 4.6.2. For notes on the depiction refer
to Figure 4.4. The scaling of the ordinate differs from Figures 4.4
and 4.5.
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As the population parameter β is estimated via

δ̂ = 1− α̂− γ̂,

we get as its expected value

E(δ̂) = E(1− α̂− γ̂)

= 1− α− β
PY
1 − PY

2

detM
− γ − β

PN
1 − PN

2

detM

= δ + β

(
1− PY

1 − PY
2 + PN

1 − PN
2

detM

)
.

At first glance, the signs of the results look reversed to those of the NCD.
Since for symmetrical Forced Answer probabilities the YCD process matrix
provides the NCD process matrix by exchanging the columns, the sign of the
determinant is reversed. The biases match those of the NCD. Here too, it is
possible with PY

1 = PY
2 to obtain an unbiased estimator α̂ even if β ̸= 0.



5 Comparison of the Methods

5.1 NotaƟon

When analysing the estimators, we used as Forced Answer probabilities

PY
TCD =

0.7
0.1
0.1

 and PN
TCD =

0.1
0.7
0.1


for TCD

PY
NCD =

(
0.7
0.1

)
and PN

NCD =

(
0.1
0.1

)
for NCD as well as

PY
YCD =

(
0.1
0.1

)
and PN

YCD =

(
0.7
0.1

)
for YCD. For the following analyses in this and the next chapter, we will retain
these and give the associated RRT subsamples names:

• GT refers to the RRT subsample with PY = 0.1 and PN = 0.1. This
subsample has the highest share of honest answers.

• GN refers to the RRT subsample with PY = 0.7 and PN = 0.1. This
subsample with a high forced yes probability is useful for TCD andNCD.

• GY refers to the RRT subsample with PY = 0.1 and PN = 0.7. This
subsample with a high forced no probability is useful for TCD and YCD.

5.2 ConnecƟon between TCD and DCD

Under certain criteria, the estimations of TCD match those of DCD. A glance
at the Forced Answer probabilities proposed above suggests an investigation
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of how e.g. the NCD behaves if it is applied to the two subsamples GT and GN

of a TCD survey conducted. It became clear that the TCD estimation with the
size of 1.5 · N participants (whereby all three subsamples have the same size
0.5 ·N ) matches the DCD estimation with a sample size ofN participants with
reference to α and γ under particular criteria, even if the population parameter
which is not estimated in the relevant DCD method is not equal to zero.

A necessary criterion for the matching seems to be that the TCD Forced
Answer probabilities have the form

PY =

1− ε1
ε2
ε2

 and PN =

 ε3
1− ε4
ε3

 ,

but we could only observe this empirically. If this is met, one can observe the
following regularities, except for the marginal cases β = 1 and δ = 1:

• If the TCD results in the marginal case with β = 0 the NCD also results
in this marginal case and both estimators differ only minimally in terms
of γ. i.e. only absolute discrepancies < 1% were observed.

• For the marginal case δ = 0 the same statement holds for the estimation
of α in the YCD.

• If the TCD results in the marginal case α = 0, the YCD also results in
this and the estimations apparently match whereas the γ estimator of the
NCD differs from that of the TCD.

• In the marginal case γ = 0 for the TCD, the statement applies accord-
ingly for the estimation of γ in the NCD and of α in the YCD.

If the Forced Answer probabilities are not in the form stated above, there is a
functional connection between the variances in the methods and (at least) the
Forced Answer probabilities. Apparently this cannot be shown in a simple way
but is not of key importance here.

5.3 Comparison with the Clark and Desharnais Method

The derivation gives rise to the expectation that the cheater detection method
developed by Clark and Desharnais (1998) is a special case of the NCD pre-

sented here with PN =

(
0
0

)
. Simulations confirm this assumption. From the

standpoint of trial planning the methods are however different as we assume
that the non-existence of the sensitive characteristic could also be embarrass-
ing. We will therefore not make any further comparisons with this method.



6 ApplicaƟons of the Method

We now want to discuss a few possibilities and problems that arise when apply-
ing the method. We will restrict ourselves to the special characteristics of the
method developed here and do not want to handle other general questions about
applying RRT as these have already been investigated in detail (see especially
the review papers by Lensvelt-Mulders et al., 2005 and Wolter, 2012).

6.1 Effects of Differently Sized RRT Subsamples

For trial planning one should consider how best to handle nonresponses to RRT
questions, in particular if this occurs frequently in one of the RRT subsamples.
Should one continue to assign the subsamples randomly or should one assign
participants to the subsample with the fewest answers if this is possible like in
online surveys which can be controlled dynamically?

From a mathematical perspective, the question of how different subsample
shares affect the whole survey is appropriate as well. In an NCD, the mathemat-
ically optimal Forced Answer probabilities for GN are PY = 1 and PN = 0.
With these probabilities the GN subsample can be used without information
from the subsample GT to directly estimate the parameter β using λGN = α+γ
= 1 − β. In this case, which refers to a merely mathematical optimal while
practically abnormal selection of PY and PN, the estimation of β can be com-
pletely detached from the estimation of the other parameters. Nevertheless if
the Forced Answer probabilities are chosen appropriately for practical condi-
tions like, e.g. PY = 0.7 and PN = 0.1, it is clear that the subsample GN

contributes more to the estimator of β than the subsample GT. Therefore a
higher share of GN should positively influence the quality of the estimator of
β.

When presenting the results one is again faced with the problem of a clear
depiction. As the development of the standard deviation of the estimation error
with the survey sizeN is known,N was set for these simulations to 1,500. We
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used the Monte Carlo method already described above, varying only the sizes
of the RRT subsamples.
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Figure 6.1: Effect of different subsample sizes for the NCD (N = 1,500).

For the NCD, it is |GN| + |GT| = 1 whereby | · | refers to the shares of
the relevant subsamples in the whole survey sample. As expected, increasing
|GN| (by lowering |GT|) improves the estimator of β. The key parameter for
the NCD γ is is best estimated when both RRT subsamples are approximately
equally sized (see Figure 6.1 in this regard). It can also be seen that to estimate
the occurrence of an extremely embarrassing characteristic (so embarrassing
that there are no "yes" cheaters, i.e. δ = 0, whereby the NCD is guaranteed to
be unbiased), the NCD with a large |GT| is very well suited if one is primarily
interested in the parameter α. Figure B.13 shows the simulation results for
YCD which are again symmetrical to the NCD results.

For the TCD (Figure 6.2) |GN| = |GY| was assumed for further simpli-
fication. Therefore |GN| = |GY| = 1−|GT|

2 applies. The ideal estimation of
α and γ are around the range where all of the subsamples are approximately
equally sized (|GT| ≈ 1

3). Reducing |G
T| results in a better estimation of β and

δ, which in most cases are however the uninteresting parameters because they
offer no information on the existence of the characteristic being studied.
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Figure 6.2: Effect of different subsample sizes for the TCD (N = 1,500).

For the application of NCD and YCD these results show that the assignment
of participants can be controlled in order to improve the quality of the estimator
which is most interesting to the researcher. However for the TCD, in contrast to
the two DCDmethods it is not possible to selectively increase the quality of the
estimators for α or γ by increasing |GT|. But even in this case, the assignment
of participants to the three subsamples should be controlled to ensure that |GT|
lies between approximately 0.3 and 0.5 because this is the range where the
average error for either α and γ has its least variability.

The knowledge about how the sizes of the subsamples affect the estimation
can also be used when planning a study and trying to preserve the possibility to
change from an ongoing NCD to a TCD survey (refer to Chapter 6.2).

6.2 Dynamic Survey Control

In online surveys, the option to analyse an ongoing survey before receiving the
majority of the returns is convenient. This gives the opportunity to optimise the
survey in terms of its objective or to use the remaining returns more efficiently.



78 Applications of the Method

If, for example, after starting an NCD survey it becomes clear that the popula-
tion parameter δ = 0 was assumed incorrectly, the survey should be converted
to a TCD as the estimators are biased with regard to α and β. Therefore this
chapter primarily deals with the question of how a DCD can be converted as
efficiently as possible into a TCD.

In Chapter 6.1 we stayed with |GN| = |GY| when studying the TCD. We
will do so here too, as the results available to date suggest that changing the RRT
subsample sizes would apparently improve the estimation of one parameter but
worsen the estimation of another parameter. Under this condition expanding a
DCD into a TCD is possible with a few additional respondents if |GT| is rela-
tively large. It was seen above that the TCD however more poorly estimates
α and γ with a large |GT| and therefore with different |GN| and |GY|. Addi-
tionally, there is one more key issue when expanding the survey: the survey
size N is larger when transferring to the TCD. So the efficiency relating to N
must be included above all if the returns are lower than originally expected.
We want to explain this using an example: answers have been received for an
NCD with 1,500 participants. In the event of |GN| = |GT| = 1

2 another 750
respondents are required so that the RRT subsamples are optimally sized for
TCD. After arriving at optimal subsample shares for a TCD with 2,250 par-
ticipants, one can distribute all other survey participants evenly over the three
RRT subsamples. On the other hand, if there are 1,500 answers with |GT| = 4

5 ,
only 1

5 · 1,500 = 300 answers are still required before reaching a TCD with
|GN| = |GY|. After that all other survey participants can be assigned to GN and
GY until all three subsamples are sized equally.

Hence, with a restricted number of respondents there is the general problem
of balancing the quality of the DCD and the costs of converting to a TCD. As
the sample size of the TCD is affected by the size of |GT| in the DCD, the
standard deviation of the estimation errors alone is not a suitable indicator for
the conversion efficiency. Since the standard deviation is proportional to 1√

N
,

we can estimate the quality of the resulting TCD in relation to the sample size
via

Std (Bias (χe) , NTCD) ·
√
NTCD

with NTCD = NDCD
(
1 +

∣∣GN
DCD
∣∣) and χ ∈ {α, β, γ, δ} whereby a lower

value is better (see figure 6.3). The continuous lines show the standard devia-
tions (scaled by a factor of 100) of the NCD as can also be seen in Figure 6.1.
At the bottom along the horizontal axis the shares |GT

NCD| are drawn, whereas
the sample size of the resulting TCD is found at the top. The dotted lines are
the calculated estimates for the efficiency as defined above.
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In the 0.4 ≤ |GT
NCD| ≤ 0.8 area the conversion efficiency is nearly constant

whereas the estimation of the NCD does not lose a lot of quality with regard to
γ. The estimator for α in the NCD is even better with a growing |GT

NCD|. The
results apply analogously to the YCD.

There are sure to be a number of organisational problems when conducting
a survey of this type. Depending on the nature of the survey there may however
be other serious problems. If, for example, the time it takes for a person to de-
cide whether to participate in a survey correlates with their response behaviour
(cheater or honest survey participant) or the existence of the characteristic, there
is the possibility that the population groups are not evenly distributed across the
RRT subsamples. As will be shown in 6.3, this results in biased estimators.

Figure 6.4 shows the course of a simulated survey that was controlled dy-
namically. The population parameters unknown to us are α = 0.3, β = 0.1,
γ = 0.55 and δ = 0.05. In the planning phase, the decision was taken to
conduct an NCD as there were good reasons for assuming δ = 0. We expect
that around 2,000 participants are theoretically sufficient to be able to conduct
a TCDwithout problems. We want to keep the option open to switch as quickly
as possible to a TCD and therefore use |GT

NCD| = 0.8.

0 500 1,000 1,500 2,000 2,500 3,000
0

0.2

0.4

0.6

0.8

1

N

α
β
γ
δ

Figure 6.4: Example for estimations in a dynamically controlled survey.
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After the first 1,000 answers we can assume that the returns are much higher
than expected so that we can handle a total of around 3,000 answers instead of
the planned 2,000. This causes us to decide to utilise the next 200 answers
to expand to a TCD. There are now three reasonable options for what could
happen.

1. The assumption δ = 0 is confirmed but we stay with the TCD as the
unexpectedly high number of responses roughly delivers the originally
expected quality.

2. The assumption δ = 0 is confirmed. We go back to the NCD and
work towards |GT

NCD| = |GN
NCD|. We would lose the 200 responses

that we cannot appropriately include in the NCD calculation because the
Forced Answer probabilities are absolutely inappropriate. Nevertheless
the NCDwith 2,800 answers delivers a more reliable result than the TCD
with 3,000 answers.
Choosing an alternative in order to preserve the 200 records would typi-
cally lead to worse estimations:

• If we calculate the NCD over three RRT subsamples there is no real
ML estimator and the relatively small size of this third subsample
offers a high potential for statistical outliers.

• If we work the 200 answers into the two subsamples GT or GN

we have to use the weighted averages of the Forced Answer prob-
abilities in the process matrix. Considered asymptomatically the
determinant of the process matrix worsens linearly with the addi-
tional answers whereas the rising sample size only contributes with
exponent 1

2 to the improvement of the estimation.

3. Our assumption δ = 0 is not confirmed. So we remain with the TCD and
work towards improving the quality of the estimation by trying to reach
equal RRT subsample sizes.

Although parameter δ (unknown to us up to this point) is only very low, we
can see quickly that our assumption δ = 0was incorrect. We take the approach
in option 3.

6.3 Different Response Behaviour in the RRT Subsamples

One assumption that was made when deriving the method is that a person's
response behaviour does not depend on the assignment to a particular RRT sub-
sample. This is important with regard to cheating which may occur for different
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reasons. It may be the case that a person deliberately attempts to sabotage the
survey or simply does not understand the instruction. However these reasons
for cheating do not affect the assumption made, provided that these people are
on average assigned equally to the subsamples. Furthermore, the impression
of not being secure may result in cheating. This may of course be different in
each RRT subsample as the forced answer probabilities are different. In gen-
eral, the experienced protection of anonymity depends on the probability of the
alternative instruction for the embarrassing property. If the answer yes is em-
barrassing the protection is estimated even higher when more participants are
forced to answer yes as a result of the instruction. If one considers a TCD with

PY =

0.1
0.1
0.7

 and PN =

0.1
0.7
0.1

 ,

the yes response is better protected in the third subsample than in the first two,
where this protection is equally weak. Nevertheless, if we understand cheat-
ing as a result of a decision which respondents take at the moment they are
surveyed, the first two RRT subsamples also differ in the share of those who
decide how to answer: although the yes response is equally weakly protected in
these subsamples, this affects a very different share of participants. In the first
subsample, the share of 0.9 · α people with the embarrassing property will be
tempted to ignore the instructions to answer yes to or provide an honest answer.
This share significantly exceeds the share in the second RRT subsample which
is only 0.3 · α.

Different response behaviours in the RRT subsamples mean that the esti-
mators are (in general) biased. We will show this numerically with an example
using the NCD with the forced answer probabilities of the first two subsamples
shown above: for an NCD with a total size N = 1,000, N1 = N2 = 500
survey participants are simulated from two survey populations which are as-
signed to GT and GN. In the RRT subsample GT the share of potential cheaters
is significantly higher than in GN. Therefore the population parameters

α1 = 0.2, β1 = 0.2 and γ1 = 0.6

for the first population and

α2 = 0.3, β2 = 0.1 and γ2 = 0.6
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for the second one, reflecting the different willingness towards "no" cheating
due to a different number of tempted participants with the embarrassing prop-
erty. With an unbiased estimator one would expect in this situation precisely
the average of the parameter in both sub-populations, i.e.

α̂ = 0.25, β̂ = 0.15 and γ̂ = 0.6.

Under these conditions the simulation was conducted 10,000 times and the av-
erage estimations were

α̂ = 0.1832, β̂ = 0.0670 and γ̂ = 0.7498.

The estimators therefore vary significantly from the true scores.
If it is possible to set up a functional link between the forced answer prob-

abilities and the feeling of protection or the willingness to cheat empirically,
this can be taken into account when deriving the method and maybe also be
compensated for accordingly in the calculation. Until then, the only way to
counteract this is to find instructions which hide the fact that the probability
of the sensitive question is relatively high or that affirming the embarrassing
characteristic is poorly protected.





7 Outlook

The derivation of the method applies to any number of RRT subsamples. It
is therefore possible to develop other generalisations for the methods derived
here that can estimate more parameters. For example, one could add two more
population groups to the four introduced here:

• ε - People who have the embarrassing characteristic who behave cor-
rectly with the Forced Answer instruction and answer no to the sensitive
question.

• φ - People who do not have the embarrassing characteristic who behave
correctly with the Forced Answer instruction and answer yes to the sen-
sitive question.

As with the DCD, one could also derive a method which only estimates some
of the population parameters if there is a well-founded assumption that the re-
maining parameters equal zero.

In Chapter 5.2, we saw that estimating more parameters requires a higher
survey size if the estimation is not to lose quality. If one transfers these ob-
servations to a method with five RRT subsamples that estimates six population
parameters, this requires 2.5 times as many survey participants to reach the
quality of a method that was designed for just three parameters.

There are other practical difficulties for generalisation of the method. Most
notably, the forced yes and forced no probabilities in the RRT subsamples must
be selected such that on the one hand the respondents feel protected and on the
other hand that the determinant of the process matrix is neither singular nor
that the absolute value of the determinant becomes very small. The more RRT
subsamples are included in the method the more complex this variation of the
Forced Answer probabilities is because for each additional parameter the pro-
cess matrix is extended by one additional row which must differ from the other
rows only in the Forced Answer probabilities. If one row equals another the
matrix is already singular. If two rows differ only slightly the absolute value
of the determinant becomes very small. Nevertheless, for practical reasons, if
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the instructions are to be kept simple, rows that are almost identical are nearly
unavoidable. Additionally, the derivation and implementation of the method
becomes exponentially more complex: If one uses R RRT subsamples to cal-
culateR+1 population parameters 2R−1marginal cases must be considered.

By and large, besides the possibility of deriving more complex methods
based on the ideas presented in this book, there are strong practical limitations to
this idea. However, social-scientific theories dealing with embarrassing char-
acteristics do not necessarily afford more complex methods than those methods
developed until now. Therefore, RRT with cheater detection may support so-
cial scientific theory development in spite of these practical limitations as they
have already done in recent years.



A DerivaƟon of the Triangular RepresentaƟon

Let δ ∈ [0, 1) (the transformation cannot be applied for δ = 1 but in this case
we obviously don't need the transformation). Let further

T :=

Θ =

αβ
γ

 ∈ R3

∣∣∣∣∣ α+ β + γ = 1− δ ∧ α, β, γ ∈ [0, 1]


be the set of admissible population parameters for the given δ and let Θ ∈ T .
We now choose

B :=

Ba =

1− δ
0
0

 , Bb =

 0
1− δ
0

 , Bc =

 0
0

1− δ


as basis of R3 and rewrite Θ = λaBa + λbBb + λcBc. This yields

λa (1− δ) + λb (1− δ) + λc (1− δ) = 1− δ ⇔ λa + λb + λc = 1

due to α + β + γ = 1 − δ. But we also know that α, β, γ ∈ [0, 1], hence
it is λa, λb, λc ∈ [0, 1]. Therefore every Θ ∈ T can uniquely be repre-
sented as a convex combination of the basis vectors in B, i.e. Θ lies on the
convex hull of B. By choice of B, its convex hull is an equilateral triangle
with edge length (1− δ)

√
2 (cf. Figure A.1). The coefficients λa, λb, λc of

above convex combination can be interpreted as barycentric coordinates in this
triangle T . Let T ′ ⊂ R3 be another equilateral triangle with the same edge
length. If Θ′ ∈ T ′ is a point with barycentric coordinates λ′a, λ′b, λ

′
c and if

λa = λ′a, λb = λ′b, λc = λ′c holds, then Θ and Θ′ have the same relative
positions in their respective triangles.

Choose

B′ :=

B′
a =

0
0
1

 , B′
b =

(1− δ)
√
2

0
1

 , B′
c =

 (1− δ)
√
2
2

(1− δ)
√

3
2

1


 .
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Figure A.1: The convex hull of Ba, Bb and Bc (grey area) is an equilateral
triangle with edge length (1− δ)

√
2.
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One can easily see that B′ is a basis of R3 and that its basis vectors also span
an equilateral triangle with side length (1− δ)

√
2. This triangle T ′ spanned

by B′ naturally embeds into R2 by simply dropping the third coordinate from
all of its points. However, we need to keep the information λ′a + λ′b + λ′c = 1
from the dropped coordinate. The embedded triangle has the vertices

TA = (TA,x, TA,y) = (0, 0)

TB = (TB,x, TB,y) =
(
(1− δ)

√
2, 0
)

TC = (TC,x, TC,y) =

(
(1− δ)

√
2

2
, (1− δ)

√
3

2

)
.

For any point Θ2 = (x, y) in this embedded triangle, we can compute its
barycentric coordinates with respect to the original triangle T ′ via1

x
y

 =M

λ′aλ′b
λ′c

 mitM =

 1 1 1
TA,x TB,x TC,x
TA,y TB,y TC,y

 .

Now that we have λ′a, λ′b, λ
′
c, we can go back to our original set T of admissible

population parameters by identifying

Θ2 =̂ λ′aBa + λ′bBb + λ′cBc,

i.e. we know exactly which population parameters are represented by a point
(x, y) ∈ R2.





B Figures and Tables

B.1 Figures and Tables for TCD
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Figure B.1: Estimation errors for α in the TCD (N = 1,500, δ = 0.00, 1,000
repetitions). Depiction in triangle coordinates as per Chapter 4.4.
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Table B.1: Average TCD estimation errors for the simulated data scaled by a
factor of 106.

δ χ Bias (χ̂)
with marginal cases without marginal cases

0.00 β 8,445 -
δ 83,258 -

0.05 β -3,824 -2,061
δ -13,548 -2,511

0.10 β -11,509 -5,602
δ -23,762 -8,702

0.15 β -19,614 -3,147
δ -24,743 -5,078

0.20 β -27,075 -6,299
δ -16,145 -2,990

0.35 β -28,682 -5,926
δ 23,781 6,502

0.50 β -19,141 -8,912
δ 18,264 17,942

0.65 β -35,129 -5,673
δ 21,189 9,243

0.80 β -17,175 -2,810
δ 9,673 11,556

0.95 β -388 -
δ -10,765 -
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Figure B.2: Estimation errors for δ in the TCD (N = 1,500, δ = 0.00, 1,000
repetitions). Depiction in triangle coordinates as per Chapter 4.4.
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Figure B.3: Development of the standard deviation of the estimation error of β
in the TCD as per Chapter 4.4.2. For notes on the depiction refer
to Figure 4.4.
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Figure B.4: Development of the standard deviation of the estimation error of δ
in the TCD as per Chapter 4.4.2. For notes on the depiction refer
to Figure 4.4.
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B.2 Figures for NCD
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Figure B.5: Estimation errors for α in the NCD (N = 1,000, δ = 0.00, 1,000
repetitions). Depiction in triangle coordinates as per Chapter 4.4.
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Figure B.6: Estimation errors for β in the NCD (N = 1,000, δ = 0.00, 1,000
repetitions). Depiction in triangle coordinates as per Chapter 4.4.
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Figure B.7: Estimation errors for β in the NCD (N = 1,000, δ = 0.10, 1,000
repetitions). Depiction in triangle coordinates as per Chapter 4.4.
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Figure B.8: Development of the standard deviation of the estimation error of β
in the NCD as per Chapter 4.5.2. For notes on the depiction refer
to Figure 4.4. The scaling of the ordinate differs from Figures 4.4
and 4.5.
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B.3 Figures and Tables for YCD
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Figure B.9: Estimation errors for γ in the YCD (N = 1,000, β = 0.00, 1,000
repetitions). Depiction in triangle coordinates as per Chapter 4.4.
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Figure B.10: Estimation errors for δ in the YCD (N = 1,000, β = 0.00, 1,000
repetitions). Depiction in triangle coordinates as per Chapter
4.4.

Table B.2: Interaction of the standard variations of the estimation errors for
YCD with the determinant of the process matrix. The determinant
is exact; the quantiles are scaled by a factor of 1,000 and rounded.

χ |detM | Std (Bias (χ̂)) Std (Bias (χ̂)) · |detM |
10% 50% 90% 10% 50% 90%

α

0.54 32.72 40.07 42.96 17.67 21.64 23.20
0.40 43.59 54.69 58.30 16.56 20.78 22.15
0.22 52.47 67.90 72.83 15.74 20.37 21.85
0.16 68.07 91.90 100.30 12.93 17.46 19.06

γ

0.54 15.23 22.13 24.06 8.22 11.95 12.99
0.40 21.72 28.42 30.55 8.25 10.80 11.61
0.22 26.38 35.20 38.22 7.91 10.56 11.47
0.16 33.77 45.63 50.46 6.42 8.67 9.59

δ

0.54 22.96 26.64 28.32 12.40 14.38 15.30
0.40 28.04 33.60 35.51 10.66 12.77 13.50
0.22 31.32 38.48 40.97 9.40 11.54 12.29
0.16 39.87 51.66 55.76 7.58 9.82 10.59
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Figure B.11: Development of the standard deviation of the estimation error of γ
in the YCD as per Chapter 4.6.2. For notes on the depiction refer
to Figure 4.4. The scaling of the ordinate differs from Figures 4.4
and 4.5.
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to Figure 4.4. The scaling of the ordinate differs from Figures 4.4
and 4.5.
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Finding out how often an embarrassing characteristic exists in
a population is accompanied by numerous problems that are
due in particular to false answers as a consequence of social
undesirability. The oldest of the techniques developed to com-
pensate for these distortions is the Randomized Response Tech-
nique which is currently still the most widely used, evaluated
and researched technique in the field of sensitive subjects. 
Although this technique guarantees complete security for the
person being questioned and therefore opens up options for
answering even threatening questions honestly, even here
"cheating" occurs in terms of not complying with the instruc-
tions. This volume describes the mathematical derivation of
techniques to detect the extent to which this "cheating" occurs.
It also provides analyses on the process characteristics and ex-
tends these analyses to include practical advice on how to use
this process flexibly. A general solution is developed for various
forms of "cheating" for the first time.
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