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Abstract Emerging antibiotic resistance is a major global health threat. The analysis of nucleic acid

sequences linked to susceptibility phenotypes facilitates the study of genetic antibiotic resistance

determinants to inform molecular diagnostics and drug development. We collected genetic data

(11,087 newly-sequenced whole genomes) and culture-based resistance profiles (10,991 out of the

11,087 isolates comprehensively tested against 22 antibiotics in total) of clinical isolates including

18 main species spanning a time period of 30 years. Species and drug specific resistance patterns

were observed including increased resistance rates for Acinetobacter baumannii to carbapenems

and for Escherichia coli to fluoroquinolones. Species-level pan-genomes were constructed to reflect

the genetic repertoire of the respective species, including conserved essential genes and known resis-

tance factors. Integrating phenotypes and genotypes through species-level pan-genomes allowed to

infer gene–drug resistance associations using statistical testing. The isolate collection and the

analysis results have been integrated into GEAR-base, a resource available for academic research

use free of charge at https://gear-base.com.
Introduction

The development of new antimicrobial drugs has largely stag-

nated over the last few decades [1], while the drug resistance
rates of many pathogens have at the same time been increasing
[2–4]. Various large-scale efforts have been launched to inves-

tigate the emerging drug resistance, such as the Meropenem
Yearly Susceptibility Test Information Collection (MYSTIC)
program [2], the Canadian National Intensive Care Unit
(CAN-ICU) study [5], the Canadian National Surveillance

(CANWARD) study [6,7], the Center for Disease Dynamics,
Economics and Policy (CDDEP) study [3], and the European
Antimicrobial Resistance Surveillance Network (EARS-Net)

survey [8]. The results of these studies have shed light on the
most common bacterial pathogens and resistance rates for reg-
ularly administered antibiotics, with the primary focus on the

trend analysis of specific bacterial groups, periods of time, or
locations [2,3,9–12]. The global challenge of emerging drug
resistance is further exacerbated by the rising prevalence of
microorganisms with multidrug resistance (MDR) phenotypes

[13]. Accordingly, identifying and administering the most
effective drug in each individual case is of even greater impor-
tance for successful treatment of bacterial infections. However,

these studies did not investigate the genetic repertoire of the
pathogens, which represents an important source of informa-
tion—e.g., the resistance genotype may be readily revealed

while the respective phenotype is misleading or not expressed
under artificial laboratory conditions [14,15].

Simultaneously, the recovery of genomic information from

microorganisms via high-throughput sequencing approaches
has become a routine task. This not only allows the high-
resolution study of individual organisms’ genomes, but also
the aggregated study in the form of ‘‘pan-genomes”—the uni-

ted genetic repertoire of a clade [16]. Pan-genomes can be used
to identify common genetic potential—i.e., the ‘‘core” genes of
a clade—as well as genes that are less broadly conserved

(‘‘accessory” or ‘‘singleton” genes) [16]. This facilitates the
identification of essential genes or genes that provide adapta-
tion advantages. Multiple computational approaches are avail-
able for the systematic creation of pan-genomes, e.g., Roary

[17], EDGAR [18], and panX [19]. As a result, a variety of bac-
terial pan-genomes, typically at the species-level, have thus far
been constructed [20–23]. However, most pan-genome studies

focus on distinct species and do not always cover clinically rel-
evant species. For example, MetaRef represents a resource that
provides information about pan-genomes from multiple spe-
cies and integrates approximately 2800 public genomes [24].

Although the diversity of the therein included organisms is
particularly broad, the depth is limited in relation to clinically
relevant bacteria—e.g., seven Klebsiella pneumoniae genomes.

Moreover, individual isolates included in the studies often
span narrow time frames and/or have limited geographic
spread.

While pan-genomic studies typically focus on the genetic
information alone, efforts combining genomic and phenotypic
information, in particular from antibiotic resistance testing,

for the study of conserved or emerging resistance mechanisms
are becoming increasingly prevalent [25–28]. There are many
antibiotic resistance resources available [29], however only
few link genomic and phenotypic information of bacterial iso-

lates. One of such resources is the Pathosystems Resource Inte-
gration Center (PATRIC) [30], which represents a rich service
for the study of >80,000 genomes [31]. Yet, antimicrobial

resistance information is available only for about 10% of the
genomes. Furthermore, as the genomes and the associated
metadata of PATRIC are imported from public resources,

which are populated by individual research efforts, data stan-
dardization or normalization is challenging. Finally, individual
taxa may be underrepresented and thus warrant expansion—
e.g., the number of Escherichia spp. genomes with antimicro-

bial resistance metadata is almost two orders of magnitude
smaller than that of Mycobacterium spp. genomes [31].

Motivated by the importance of linking resistance pheno-

types with genomic features, we collected whole-genome

https://gear-base.com


Galata V et al / GEAR-base: Genetic Antibiotic Resistance Resource 171
sequencing data of 11,087 clinical isolates representing, inter
alia, 18 main bacterial species. The samples were collected in
North America, Europe, Japan, and Australia over a period

of 30 years, and processed in a concerted effort, thereby reduc-
ing experimental bias. Culture-based resistance testing was
performed for 10,991 out of the 11,087 isolates against 22

antibiotic drugs. Furthermore, species-level pan-genomes were
constructed on the basis of per-isolate de novo assemblies and
were used to infer gene–drug resistance associations. This

wealth of information is integrated into an online resource,
Genetic Antibiotic Resistance resource, or in short,
GEAR-base (Figure 1). Providing broad organismal, antibiotic
treatment and temporal coverage, GEAR-base is expected to

support the pan-genome-based study of bacteria and to
advance research on known or emerging antibiotic resistance
mechanisms. GEAR-base is available for academic research

use free of charge at https://gear-base.com.

Results

Resistance testing of cultured bacterial isolates

The present dataset of 11,087 bacterial isolates covered a total
of 6 families, 14 genera, and 20 species (considering species
with at least 50 isolates, Table S1) and comprised two datasets:

1001 isolates from the Staphylococcus aureus strain collection
and 10,086 isolates from the Gram-negative collection. From
the S. aureus strain collection, 993 isolates were tested for

methicillin resistance and susceptibility (see Methods section).
For 9998 isolates from the Gram-negative collection, culture-
based antimicrobial susceptibility testing (AST) for 21

commonly-prescribed Food and Drug Administration
(FDA)-approved antibiotics from 8 drug classes was
performed to determine the respective minimum inhibitory
concentrations (MICs) (Figure 2A). The resistance profiles

were determined for each isolate in accordance with the
European Committee on Antimicrobial Susceptibility Testing
Figure 1 GEAR-base workflow and structure

Schematic overview of data collection, processing and integration into
(EUCAST) guidelines (v. 4.0) for a total of 182 drug concen-
trations (7–11 concentrations per drug; Tables S2 and S3,
Figure 2B). Whole-genome sequencing (WGS)-based

taxonomic identification was performed for all isolates [32].
In the following content, we focused on the analysis results
of the MICs and resistance profiles of the 9998 isolates from

the Gram-negative collection.
All patient-derived isolates were collected in clinics located

in North America, Europe, Japan, or Australia from 1983 to

2013 (Figure S1). Varying degrees of resistance were observed
among the isolates (Figure 2B). The majority of species
demonstrated relatively low resistance rates (<20%) to
aminoglycosides (gentamicin and tobramycin) and carbapen-

ems (ertapenem, imipenem, and meropenem), except for
Acinetobacter baumannii (� 29% for aminoglycosides and
meropenem), Pseudomonas aeruginosa (26% for gentamicin),

and Klebsiella pneumoniae (26% for tobramycin). These rates
were compared against two independent large-scale studies—
CDDEP (USA-based results; CDDEP ResistanceMap,

https://resistancemap.cddep.org/AntibioticResistance.php,
accessed on September 26, 2017) [3] program and the MYSTIC
program [2], for matching species and drug data. Both studies

report low (<20%) resistance rates for the aminoglycosides
and carbapenems during the observation period (1999–
2012/2014 for CDDEP and 1999–2007/2008 for MYSTIC)
except for A. baumannii (CDDEP: >20% since 2005 for car-

bapenems and >35% during 1999–2012 for aminoglycosides;
MYSTIC: >37% in 2007/2008 for carbapenems and >20%
during most years for aminoglycosides). For K. pneumoniae

and tobramycin (aminoglycosides for CDDEP), MYSTIC
and CDDEP reported >10% resistance rates since 2005 with
only one value of above 20% observed by MYSTIC in 2007.

Finally, for P. aeruginosa and gentamicin, MYSTIC reported
a resistance rate of only around 10%. The rate of isolates resis-
tant to multiple antibiotic drugs, i.e., resistant to at least three

drugs from different drug classes (CDDEP ResistanceMap),
was highest for A. baumannii (44%) and for Enterobacter
spp. (41%–45%). For the remaining species and drug classes,
GEAR-base.

https://gear-base.com
https://resistancemap.cddep.org/AntibioticResistance.php


Figure 2 Overview of resistance profiles

Heatmaps of log-transformed (base 2) median MIC values (A) and resistance rates (B) for all species with at least 50 isolates. Drugs labels

were grouped relative to their class. The cells are coded in color gradient from blue to red with blue for lower values and red for higher

values. White color in panel B corresponds to the cases where no breakpoints are available from the used guidelines. MIC, minimum

inhibitory concentration.
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the MDR rates were at least 20%, except for Acinetobacter cal-
coaceticus (0%), Salmonella enterica (11%), and Shigella spp.

(0%–3%). In addition to the investigation of individual spe-
cies–drug combinations, we analyzed whether drug pairs
showed correlating MIC profiles among all isolates (Figure S2).

In general, the highest correlations were expectedly found
within separate drug classes — e.g., for fluoroquinolones,
aminoglycosides, and carbapenems. While for some species,

e.g., Burkholderia cenocepacia, a clear clustering according to
drug classes and their mechanism of action was observed,
other species, such as S. enterica, showed less pronounced clus-
ter structures.

Subsequently, we compared resistant and non-resistant iso-
lates with respect to their collection year in order to identify
potential trends of de-/increasing antibiotic resistance rates

(Figures S3 and S4, and Table S4). The following species–drug
pairs were found to exhibit particularly low P values [WMW-
test, false discovery rate (FDR) adjusted P < 1E�17], as well

as increases in resistance over time: K. pneumoniae to cefepime,
K. pneumoniae and A. baumannii to carbapenems, and E. coli to
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fluoroquinolones. Similar trends were reported by the CDDEP
[3] program (CDDEP ResistanceMap) and the MYSTIC pro-
gram [2], including increasing resistance rates for A. baumannii

to carbapenems (43% from 1999 to 2014 in the USA, CDEEP),
and for E. coli to fluoroquinolones (30% from 1999 to 2014 in
the USA, CDEEP; >20% from 1999 to 2008, MYSTIC).

While the culture-based analyses provide species-resolved
information about resistance rates over time and corroborate
previous findings on the global increase in antibiotic resistance,

genetic features represent important factors and were thus con-
comitantly considered.

Whole-genome de novo assembly of isolates and species pan-

genomes

A total of 11,087 bacterial isolates were whole-genome
sequenced using Illumina Hiseq2000/2500 sequencers, result-
Figure 3 Assembly quality overview

Assembly summary statistics for the 11,062 isolates with a de novo assem

not belonging to any of the main 18 species used for pan-genome con

content (A), mean assembly coverage (B), number of contigs (C), L50

assembly quality cut off values are illustrated by dotted lines (1000 for t

area satisfying the respective filtering criterion is colored in green. Pe

criteria are shown to the right.
ing in a median number of 1,517,147 paired reads per isolate
(1,609,533 ± 620,481). De novo assemblies were successfully
created for 11,062 (99.8%) isolates (Figure 3) and of these,

the assembled genomes of 10,764 (97.3%) isolates passed the
stringent assembly quality criteria. Moreover, the assembled
genomes of 9206 (83% of 11,087) isolates fulfilled the quality

criteria for taxonomic assignment. A total of 8729 isolates,
representing 18 main species having �50 isolates, were used
after stringent quality filtering (see Methods for sample filter-

ing details) in the subsequent analyses and in the construction
of species-level pan-genomes (Table S3).

First, the presence/frequency of genes from a set of 111
single-copy marker genes, which were defined as essential

genes by Dupont et al. [33], was used as a proxy to estimate
the genome completeness of individual de novo assemblies.
Overall, the assemblies were found to be largely complete. 92

essential genes (82.9%) were identified in at least 99% of the
bly. The isolates were grouped by their species taxon, and isolates

struction were grouped into ”Other”. The box plots show the GC

value (D), and N50 value (E) for contigs of at least 200 bp. The

he number of contigs; 200 for L50; and 5000 bp for N50). The plot

rcentages of isolates passing the respective criterion as well as all
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8729 isolates (Figure S5) that were used to construct a phylo-
genetic tree of these isolates (Figure S6). Furthermore, species-
specific presence/absence patterns were frequently observed

(Figure S7A). For example, TIGR00389 (glycine–tRNA
ligase) was only found in S. aureus, whereas TIGR00388 (gly-
cine–tRNA ligase, alpha subunit) was not present in this spe-

cies. Four genes, TIGR00408 (encoding the proline–tRNA
ligase), TIGR02387 (encoding the DNA-directed RNA poly-
merase, gamma subunit), TIGR00471 (encoding the pheny-

lalanine–tRNA ligase, beta subunit), and TIGR00775
(encoding the Na+/H+ antiporter, NhaD family), were not
found in any of the isolates, except for sporadic hits in Pseu-
domonas aeruginosa for TIGR00408.

In the next step, Resfams core-based resistance factors [34]
were annotated in the isolate assemblies in order to study the
species-level distribution of these genetic features. The number

of covered Resfams (mean count of hits �1) varied between
species from 4.1% (5 of 123 Resfams, Morganella morganii)
to 11.4% (14 of 123 Resfams, A. baumannii and Shigella son-

nei) (Figure S8). Three Resfams were found in at least 90%
of all considered isolates. These are all antibiotic efflux pumps,
which include RF0007 [ATP-binding cassette (ABC) type],

RF0107 (ABC type), and RF0115 [resistance-nodulation-cell
division (RND) type], with the latter having a mean count of
hits of �5 for 14 out of 18 species.

The multi-locus sequence typing (MLST) analysis revealed,

that in all species with a typing scheme included in the used
version of PubMLST, isolates were assigned to at least 6 differ-
ent sequence types (STs), except for S. sonnei, and new STs

could be identified, except for Shigella flexneri and S. sonnei
(Figure S9). Among these species, the proportion of isolates
without a confident assignment was high (�10%) for B. ceno-
Figure 4 Centroid frequency

Number of centroids in each pan-genome of the 18 main species in rela

present in <10% of the isolates, and the last one contains centroids

gradient to indicate the log10-transformed number of centroids. The b

the respective pan-genomes.
cepacia, Enterobacter cloacae, Klebsiella oxytoca, and Steno-
trophomonas maltophilia.

The size of the species pan-genomes (i.e., the number of cen-

troids) ranged from 5838 (S. aureus, total pan-genome length
<5 Mb) to 42,046 (E. cloacae, total pan-genome length
>30 Mb) (Figure S10). A centroid refers here to the representa-

tive gene of a homologous gene cluster with �90% pair-wise
amino acid sequence identity (Methods). Most centroids were
found in<10%or in�90%of the isolates (Figure 4).Moreover,

all pan-genomes were found to be open based on the analysis of
the number of centroids in relation to the number of included
genomes (Figure S11, Table S5). The two-dimensional embed-
ding of the core centroids from the pan-genomes revealed many

taxon-specific patterns (Figure S12) with distinct clusters for B.
cenocepacia, M. morganii, A. baumannii, Proteus mirabilis, S.
aureus, S. maltophilia, P. aeruginosa, and Serratia marcescens.

We compared the number of (core) centroids in our pan-
genomes to the numbers reported by panX [19] (http://pangen-
ome.tuebingen.mpg.de, accessed on January 29, 2018). The

number of centroids present in at least 90% of the analyzed gen-
omes was consistent for all matching species (Table S6). How-
ever, the pan-genome size, i.e., the total number of centroids

described in GEAR-Base, was similar for E. coli and S. aureus,
but exceeded substantially the number of centroids described in
panX for A. baumannii, K. pneumoniae, P. aeruginosa, and S.
enterica (Table S6). With respect to the presence of essential

genes in the species-level pan-genomes, themean number of cen-
troids containing at least one matching gene was one, that is,
these essential genes were mostly found in only one centroid

cluster (Figure S7B). However, the mean number of centroids
was �1.25 for eight essential genes, i.e., in some species these
genes were found in multiple centroid clusters.
tion to their frequency. The first column contains centroids that are

that are present in �90% of the isolates. Cells are coded in color

ar plot on the right shows the number of isolates used to construct

http://pangenome.tuebingen.mpg.de
http://pangenome.tuebingen.mpg.de
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In the following section, the resistance phenotypes and
genomic features were linked and significantly associated
centroids were further studied, with respect to their overlap

to known resistance genes from the Resfams core database.

Resistance associations by linking phenotype and genotype

We used binary information in the form of centroid presence/
absence to test for significant centroid–drug associations per
species. The number of found associations ranged from below

10 to above 500; most associations (�500) were found for
P. aeruginosa and tobramycin, and K. pneumoniae and gentam-
icin (Figure 5). Furthermore, the drug resistance-associated

centroids encoding for a resistance gene were investigated.
From the Resfams core database, 45 of the 123 factors were
found in at least one centroid (Figure S13). Among these,
the top ten Resfams genes from both analyses covered various

resistance mechanism classes – nucleotidyltransferases,
phosphotransferases, acetyltransferases, beta-lactamases, and
major facilitator superfamily (MFS) transporters

(Figure S13B).
GEAR-base online resource

The GEAR-base resource is freely accessible at https://gear-
base.com for academic research use and currently provides
two modules for browsing of the database—a culture-based
module and a pan-genome module—as well as a module for

the analysis of user-provided data. The culture-based module
is focused on the Gram-negative isolate collection and pro-
vides an interactive view of the taxonomic composition,

MIC, and resistance profiles, as well as additional meta-data,
e.g., collection year or isolate distributions. The pan-genome
module provides general statistics, such as assembly quality

of the included isolates, pan-genome size, and resistance
Figure 5 Number of significant results of the resistance association an

Significant results (adjusted P < 1E�5) of the resistance association a

shows the number of significant results (in color gradient with lighter

taxon and drug. Drugs are sorted according to their class.
association analysis overview, for both the Gram-negative
and the S. aureus isolates. Gene nucleotide sequences can be
downloaded for each individual pan-genome centroid and a

batch-download of all centroid nucleotide sequences is avail-
able. Moreover, pan-genome centroids can be browsed online
for specific gene products and filtered by their presence in the

isolates. In addition, centroid clusters can be viewed including
associated gene annotations, the hits to the Resfams core data-
base, and information about potential resistance associations

against the set of herein included drugs. GEAR-base’s analysis
module allows the user to query individual gene sequences
against the pan-genome centroid sequences using Sourmash
[35], against hidden Markov models (HMMs) of pan-genome

centroid clusters and Resfams core database using HMMER
(http://hmmer.org/), and against the NCBI nt/nr database
using BLASTp [36]. Furthermore, a genome-scale search

against the present clinical isolate collection, the finished gen-
omes from the NCBI RefSeq database [37], as well as the
National Collection of Type Cultures (NCTC) 3000 genomes

project from the Public Health England and the Wellcome
Trust Sanger Institute (http://www.sanger.ac.uk/
resources/downloads/bacteria/nctc/, accessed on October 18,

2017) can be performed online using Mash/MinHash [38].
We used a recently-published K. pneumoniae genome [39]

(strain 1756, NCBI assembly accession ID GCF_
001952835.1_ASM195283v1) to demonstrate the analysis func-

tionalities of GEAR-base. In a first step, the chromosome and
plasmid sequences were uploaded and a perfect match was
found to the genome’s NCBI entry, as expected. The next-

best matches were to a K. pneumoniae isolate from the current
collection of clinical isolates (828/1000 shared hashes, distance
of 4.71E�3), and to a Klebsiella sp. genome (ERS706555) from

the NCTC 3000 database (709/1000 shared hashes, distance of
8.89 E-3). In a second step, all coding DNA sequences (CDS)
were searched against the pan-genome centroids in GEAR-

base using Sourmash and against the Resfams core database.
alysis

nalysis based on the presence/absence of centroids. The heatmap

blue for smaller numbers and darker blue for larger numbers) per

https://gear-base.com
https://gear-base.com
http://hmmer.org/
http://www.sanger.ac.uk/resources/downloads/bacteria/nctc/
http://www.sanger.ac.uk/resources/downloads/bacteria/nctc/
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The majority of the pan-genome hits were related to K. pneu-
moniae (6206 hits of 11,267) followed by E. aerogenes (1537
hits) and K. oxytoca (1014 hits). S. aureus, a Gram-positive

species, served as an outgroup and no hits to its pan-genome
were found. In total, 37 hits to 21 unique Resfams (core data-
base) were found in the query genome CDS with 23 hits on the

chromosome and 14 on the plasmid. The top three most occur-
ring Resfams were RF0115 (8 hits, RND antibiotic efflux
pump), RF0098 (3 hits, multidrug efflux RND membrane

fusion protein MexE, RND antibiotic efflux), and RF0053
(3 hits, class A beta-lactamase). Furthermore, the CDSs of
eight antibiotic resistance genes reported in the original gen-
ome announcement were investigated. The HMM-based

search of pan-genome centroids resulted in the identification
of two chromosomal CDSs, WP_076027158.1 (multidrug
efflux RND transporter periplasmic adaptor subunit OqxA)

and WP_004146118.1 (FosA family fosfomycin resistance glu-
tathione transferase), being classified as K. pneumoniae-derived
centroids according to their top hits (with respect to the full

sequence score). The top hits of the remaining genes
(5 plasmid-derived and 1 chromosome-derived) included
centroids from other Gram-negative species. However, the

centroid cluster annotations matched the expected protein
functions for all eight CDSs independent of the species. The
top three hits for WP_004146118.1 were centroids from
K. pneumoniae, E. aerogenes, and K. oxytoca, matching the

expected annotation and present in almost all isolates
(>98%) of the respective pan-genomes. This high prevalence
matches the observations made by Ryota et al. reporting sim-

ilarly high frequency (>96%) of fosA in these species [40]. For
the beta-lactamases WP_004176269.1 (class A broad-spectrum
beta-lactamase SHV-11) and WP_000027057.1 (class A broad-

spectrum beta-lactamase TEM-1), the top hits in Klebsiella
were associated with resistance to penicillins and
cephalosporins. And for the aminoglycoside transferases

WP_000018329.1 (aminoglycoside O-phosphotransferase
APH(30)-Ia), WP_032491824.1 (ANT(300)-Ia family aminogly-
coside nucleotidyltransferase AadA22), and WP_000557454.1
(aminoglycoside N-acetyltransferase AAC(3)-IId), the top hits

in K. pneumoniae were associated with resistance to aminogly-
cosides. Moreover, all three chromosome-derived CDSs
(WP_004176269.1, WP_076027158.1, and WP_004146118.1)

matched to centroids found in >92% of the K. pneumoniae
isolates, two of the five plasmid-derived CDSs
(WP_032491824.1 and WP_000027057.1) matched to centroids

with a frequency of >25%, while the remaining CDSs
matched to centroids with a frequency of <12%.

Discussion

To facilitate the studies on antibiotic resistance, we have built
GEAR-base, a resource incorporating paired data on resis-

tance phenotypes and genomic features for an extensive, longi-
tudinal collection of clinical isolates from various bacterial
species. This concerted effort is expected to reduce experimen-

tal bias and the present resource provides a portal for informa-
tion retrieval as well as data analysis.

Species-level antibiotic resistance phenotypes can be
inspected using the culture-based module in GEAR-base.

Specifically, resistance rates and trends across multiple species
and antibiotic drugs can be assessed on a large scale, which
we believe is important for current and future antibiotic resis-
tance research. Although some effect of potential sampling
bias cannot be excluded, our findings on the increased resis-

tance rates corroborate previously reported trends. In addi-
tion to this phenotypic information, genomic information is
included in the pan-genome module. Such information can

be used independent of the phenotypic information, i.e.,
purely from a pan-genomic perspective, e.g., for the study
of inter- or intra-species gene conservation. The observed

number of core centroids was consistent with the statistics
reported by panX. However, GEAR-base pan-genomes are
based on significantly higher sample number and are substan-
tially larger in size, thus giving access to a comprehensive col-

lection of the genome heterogeneity for human bacterial
pathogens. In addition, GEAR-base links these two informa-
tion layers through centroid–drug associations. These associ-

ations can subsequently be explored to study resistance
mechanisms. Furthermore, individual researchers can com-
pare genes or genomes of interest to the present resource,

thereby providing an independent layer of support. This func-
tionality was demonstrated using a recently published
carbapenem-resistant K. pneumoniae isolate. While the taxo-

nomic classifications of the genome and of a set of
chromosome-derived antibiotic resistance genes are consistent
with the expected taxonomy of the isolate, the plasmid-
derived antibiotic resistance genes exhibit ambiguous taxo-

nomic assignments, which is not unexpected for plasmid-
borne genes. Moreover, the extensive collection of isolates
included herein enables the study of the overall conservation

degrees and the time-resolved frequencies of this exemplary
antibiotic resistance gene set.

The analysis functionality in GEAR-base covers external

genome databases (NCBI RefSeq as well as the NCTC 3000
genomes project from Public Health England and the Well-
come Trust Sanger Institute) in addition to the present collec-

tion of clinical isolate genomes. However, because the majority
of external genomes are not linked to antibiotic resistance
information and centroid–drug associations are considered a
key component of the present resource, the pan-genome mod-

ule is restricted to the present isolates. Additionally, the
species-level pan-genome centroids in GEAR-base are avail-
able for download and provide a great opportunity for subse-

quent integration with external genomes for further study.
Emerging antibiotic resistance represents a multi-

disciplinary and global challenge. We believe that GEAR-

base will serve as a valuable resource enabling the detailed
analysis of resistance-associated genomic features. GEAR-
base includes a comprehensive selection of clinically highly rel-
evant human microbial pathogens and will thus be of great use

for the research and clinical communities.

Materials and methods

Bacterial isolates

The dataset of 11,087 isolates consisted of 1001 isolates from
the S. aureus strain collection of Saarland University Medical
Center and a collection of 10,086 Gram-negative bacterial clin-

ical isolates that form part of the microbiology strain collec-
tion of Siemens Healthcare Diagnostics (West Sacramento,
CA) [32]. DNA extraction using the Siemens VERSANT�
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sample preparation system [41] and whole-genome next-
generation sequencing were performed for all isolates as
described in Galata et al. [32] (2 � 100 bp paired-end on Illu-

mina Hiseq2000/2500 sequencers).

Methicillin susceptibility of S. aureus isolates

For 993 isolates from the S. aureus strain collection, detec-
tion of methicillin-resistant or methicillin-susceptible Staphy-
lococcus aureus (MRSA/MSSA) isolates was performed. The

specimen were plated on CHROMagar MRSA detection
biplates (Mast, Reinfeld, Germany). All MRSA-positive cul-
ture isolates were further confirmed using a penicillin-

binding protein 2a latex agglutination test (Alere, Köln,
Germany).

Susceptibility testing and resistance profiles of Gram-negative

isolates

For 9998 isolates from the Gram-negative isolate collection,
AST was performed. Frozen reference AST panels were pre-

pared following Clinical Laboratory Standards Institute
(CLSI) recommendations [42]. The antimicrobial agents
included in the panels are provided in Table S2. Prior to use

with clinical isolates, AST panels were tested and considered
acceptable for testing with clinical isolates when the QC results
met QC ranges described by CLSI [42].

Isolates were cultured on trypticase soy agar with 5% sheep

blood (Bethesda Biological Laboratories, Cockeysville, MD)
and incubated in ambient air at 35 ± 1 �C for 18–24 h. Iso-
lated colony panels were inoculated according to the CLSI rec-

ommendations (CLSI additional reference) and incubated in
ambient air at 35 ± 1 �C for 16–20 h. Panel results were read
visually, and MICs were determined.

MIC value processing

The bacterial culture may not grow for the lowest drug concen-
tration tested (expressed as �x) or show no significant growth

decrease for the highest concentration tested (expressed as
>x), where x represents the drug concentration tested. To
allow consistent processing, these MIC values were trans-

formed as follows: in the former case, the MIC value was set
to be x/2 (e.g., ‘‘�0.25” was set to ‘‘0.125”), and in the latter
case, the MIC value was set to be x * 2 (e.g., ‘‘>64” was set

to ‘‘128”). Additionally, we considered only the MIC value
of the first agent in case of drug combinations (e.g., ‘‘32/16”
was set to ‘‘32”).

Drug information

The 21 drugs used in this study were grouped into 8 drug
classes based on their category in the EUCAST guidelines
[43]. Among them, 7 drugs belong to cephalosporins (cefazolin

and cephalotin – 1st generation; cefuroxime – 2nd generation;
cefotaxime, ceftazidime, and ceftriaxone – 3rd generation; and
cefepime – 4th generation), 4 to penicillins, 3 to carbapenems,

2 to fluoroquinolones, 2 to aminoglycosides, and 1 to tetracy-
cline. In addition, 1 drug is a monobactam and the remaining 1
drug falls into the category ‘‘miscellaneous” (Table S2).
Resistance classification

EUCAST guidelines [43] (v. 4.0) were used for MIC value clas-

sification. Isolates were classified as resistant, intermediate, or
susceptible. An isolate was considered to be resistant if the cor-
responding MIC value was greater than the resistance break-

point. If the MIC value was below or equal to the
susceptibility breakpoint, the isolate was considered to be sus-
ceptible. If the MIC value was between the two breakpoints,

the isolate was considered as ‘‘intermediate”. If no breakpoint
was available for a specific drug and bacterial group, no clas-
sification was performed.

Genome-based taxonomic classification

Kraken [44] (v. 0.10.4-beta) was used with the default database
containing finished genomes from the NCBI RefSeq database

(accessed on January 13, 2015) and a k-mer length of 31.
Report files were created from the raw output using
‘‘kraken-report” and processed to retrieve the information,

including (1) the first best species hit relative to the percentage
of mapped sequences; (2) the number of sequences mapped to
best hit; (3) the number of sequences classified at species level;

(4) the number of unclassified sequences; and (5) the total
number of reported sequences. In addition, sensitivity values,
precision values, and percentages of unassigned sequences
were calculated. Sensitivity was defined as the ratio of reads

assigned to the best hit over the total number of reported
reads. Precision was defined as the ratio of reads assigned to
the best hit over reads classified at species level. For each sam-

ple, the taxonomic lineage from the species to the class level
was retrieved using the R package ‘‘taxize” [45] and the NCBI
[46] taxonomy database (accessed on February 8, 2016). An

overview of the taxonomic composition of the dataset was
created using Krona [47].

Read processing and assembly pipeline

The raw sequencing reads were trimmed using Trimmomatic
[48] (v. 0.35, command line parameters: PE
ILLUMINACLIP:NexteraPE-PE.fa:1:50:30 LEADING:3

TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36).
Trimmed paired-end reads were assembled de novo into
scaffolds (from now on called contigs for simplicity) using

SPAdes [49] (v. 3.6.2, parameters: -k 21,33,55 --careful) and
annotated by Prokka [50] (v. 1.11, parameters: --gram neg
--mincontiglength 200). Assembly quality was assessed using

QUAST [51] (v. 3.2, parameters: --contig-thresholds
0,100,200,500,1000 --min-contig 200).

Mean assembly coverage

Trimmed reads were mapped to the contigs (minimal length of
200 bp) using BWA [52] (v. 0.7.12) and SAMtools [53] (v. 1.2;
command line: bwa mem –M –t <cores> <contigs> <for-

ward reads> <reverse reads> | samtools view @ <cores>
-bt <contigs> - | samtools sort -@ <cores> - <bam>).
Then coverage histogram was computed using BEDtools [54]
(v. 2.25; parameters: bedtools genomecov –ibam <bam>

-g <contigs> > <hist>). Finally mean coverage was
computed over all contigs.



178 Genomics Proteomics Bioinformatics 17 (2019) 169–182
Essential genes

Essential genes as defined by Dupont et al. [33] were down-

loaded (https://github.com/MadsAlbertsen/multi-metagen-
ome/raw/master/R.data.generation/essential.hmm, accessed
on March 7, 2017) and searched in the present assemblies (pro-

tein FASTA files of translated CDS; *.faa) using hmmsearch
from the HMMER software package (http://hmmer.org/,
v. 3.1b2, parameters: --cut-tc). Only hits with at least one

domain satisfying the reporting thresholds (column ‘‘rep” in
table output files) were considered. Best hits for each isolate
and essential gene were determined with respect to the
E-value of reported full sequences. Finally, each considered

hit was assigned to a centroid, i.e., the centroid covering the
gene from the corresponding hit.
Resistance factors

The Resfams core database [34] of HMMs (v1.2) was used to
identify known resistance factors in the present assemblies
(*.faa, FASTA file of protein annotations) using hmmsearch

from the HMMER software package (http://hmmer.org/,
v. 3.1b2, parameters: hmmsearch --cut_ga --tblout output.
tblout Resfams.hmm input.faa > output.hmmout).

MLST profiles were determined using the BLASTn search-
based tool mlst (https://github.com/tseemann/mlst, accessed
on August 8, 2016, v. 2.9, parameters: --minid 99 --mincov

75 --minscore 99) on assembled contigs (minimal length of
200 bp).
Sample filtering

First, the bacterial isolate samples were filtered on the basis
of their taxonomic assignment and assembly quality. For the
taxonomic assignments, the minimal sensitivity was set to

50% (0% for Shigella), the minimal precision to 75%
(60% for Shigella), and the minimal percentage of unclassi-
fied reads to 30%. The cutoff values were ‘‘relaxed” for Shi-

gella because of the well-known problem of high genetic
similarity between the Shigella species and E. coli [55], mak-
ing it difficult to differentiate between these organisms at the

nucleotide level, which affects the taxonomic sensitivity. For
the de novo assemblies, we used the criteria defined by
RefSeq [37]: number of contigs �1000, N50 �5000, and
L50 �200. Isolates that passed both filtering steps were

grouped by their species taxon, and only species containing
at least 50 isolates were further considered. As a result, the
following 18 species (referred to as ‘‘main species” in the

manuscript) passed the filtering step. These include
A. baumannii, B. cenocepacia, Citrobacter koseri,
E. aerogenes, E. cloacae, E. coli, K. oxytoca, K. pneumoniae,

M. morganii, P. mirabilis, P. aeruginosa, S. enterica,
S. marcescens, Shigella boydii, S. flexneri, S. sonnei,
S. aureus, and S. maltophilia. Additionally, samples contain-

ing more than 10 essential genes in multiple copies were
examined further by running Kraken (k = 31) on the
nucleotide sequences of the annotated genomic features
(*.ffn). Report files were created from filtered assignments

(kraken-filter, threshold 0.05) and inspected manually in
order to determine whether a large percentage of sequences
was assigned to unexpected species. In total, 8729 isolates
remained assigned to the 18 main species mentioned above.

Pan-genome construction

Roary [17] (v. 3.5.7, parameters: -e -n -i 90 -cd 90 -a -g 70,000
-r -s -t 11) was used to construct the species-level pan-genomes.

Centroid HMMs

The protein sequences were extracted from the FASTA files of
translated CDS (*.faa) created by Prokka [50]. For non-CDS

sequences, protein sequences were created by translating the
corresponding nucleotide sequences from the nucleotide
FASTA files (*.ffn) using BioPython (parameters: table = 11,

stop_symbol=‘‘*”, to_stop = False, cds = False). Multiple
sequence alignments were created using MUSCLE [56]
(v. 3.8.31, parameters: -maxiters 1 -diags -sv -distance1

kbit20_3). HMM profiles were calculated using hmmbuild from
the HMMER software package (http://hmmer.org/, v. 3.1b2).

Database

The GEAR-base was implemented using the Python web
framework Django (v. 1.9.5) and MySQL (v. 15.11) as the
database management system. HMM search in Resfams core

database and centroid HMM profiles is implemented using
package/library HMMER (http://hmmer.org/, v. 3.1b1).
Moreover, sketches of centroid nucleotide sequences were

computed using Sourmash [35] (v. 2.0.0.a1, sketching parame-
ters: sourmash compute --dna --singleton --scaled 10 --seed 42
--ksizes 21, indexing parameters: sourmash index --dna --ksize

21). Mash/MinHash [38] (v. 1.1.1, default parameters) was
used to create sketches of GEAR-base isolates, finished bacte-
rial genomes from the NCBI RefSeq database, and assembled
bacterial genomes from the NCTC 3000 database of Public

Health England and the Wellcome Trust Sanger Institute.
The genomes from the NCBI RefSeq database included 7118
genomes and were downloaded on June 17, 2017 using the

NCBI genome downloading scripts of Kai Blin (https://
github.com/kblin/ncbi-genome-download, accessed on
October 18, 2017, v. 0.2.2) with the setting ‘‘ncbi-genome-

download --section refseq --assembly-level complete
--human-readable --parallel 10 --retries 3 --verbose bacteria”
with ‘‘--format fasta” and ‘‘--format cds-fasta”). The bacterial

genomes from the NCTC 3000 database were downloaded on
July 10, 2017 and included 1052 genomes.

Resistance profile analysis of cultured isolates from the Gram-

negative collection

Drug correlations

Considering only species with �50 isolates, pairwise drug cor-
relations were computed using the MIC value profiles (Spear-
man’s correlation coefficient, all isolates and for each species

taxon separately). Drugs with a single MIC value across all
considered isolates were removed prior to correlation compu-
tation. To visualize possible drug–drug associations, hierarchi-
cal clustering using Euclidean distance and average linkage

was applied.

https://github.com/MadsAlbertsen/multi-metagenome/raw/master/R.data.generation/essential.hmm
https://github.com/MadsAlbertsen/multi-metagenome/raw/master/R.data.generation/essential.hmm
http://hmmer.org/
http://hmmer.org/
https://github.com/tseemann/mlst
http://hmmer.org/
http://hmmer.org/
https://github.com/kblin/ncbi-genome-download
https://github.com/kblin/ncbi-genome-download
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Association between isolate collection year and resistance profiles

Two-sided WMW-test (R package exactRankTests, v. 0.8-29)

was applied to the isolates with assigned collection year avail-
able and belonging to a species taxon with �50 isolates (in
total 8768 isolates from 18 taxa). The isolates were divided into

resistant and non-resistant (susceptible and intermediate)
groups. No test was performed if either group included <10
isolates or all isolates in a group were collected in the same

year. All P values were adjusted using FDR.

Phylogenetic analysis

Essential genes, found in �99% of the isolates that were
used to construct the pan-genomes, were identified. Protein
sequences for the corresponding best hits were extracted
for each essential gene and isolate. Multiple sequence align-

ments were computed using MUSCLE [56] (v. 3.8.31,
parameters: -maxiters 1 -diags -sv -distance1 kbit20_3) for
each essential gene separately and concatenated into one

alignment. If an isolate did not have any matches, an empty
alignment sequence (i.e., containing only gap characters) was
added. RAxML [57] (v. 8.2.9, raxmlHPC-PTHREADS) was

used to construct a phylogenetic tree from the aggregated
alignment. After removing sequence duplicates (2297 in
total) and alignment columns containing only undetermined
values, i.e. ambiguous characters, (147 in total), the tree was

built using the CAT model (parameters: -p 12,345 -m
PROTCATAUTO -F -T 30).

Pan-genome analysis

Centroid rate estimation

The centroid presence–absence tables created by Roary were
used to estimate the median number of total, new, unique,
and core centroids in species-level pan-genomes relative to

the number of isolates used (rarefaction). For each pan-
genome, the columns (isolates) of the table were permuted
100 times. Starting from the first isolate, centroid counts were
calculated in a cumulative manner for each permutation. The

centroid categories were defined as follows: total centroids
comprise centroids found in at least one of the included gen-
omes; new centroids refer to the centroids found only in the

last included genome; unique centroids are centroids found
only in one of the included genomes; and core centroids are
centroids found in �90%, �95%, and �99% of all included

genomes to cover different levels of conservation. The median
centroid counts were computed over all permutations. The
curve of the total number of centroids was fitted using nonlin-

ear least-squares estimates (R method ‘‘nls”) of the power law
function n ¼ a �Nc (where n is the total number of centroids, N
is the number of included genomes, and a and c are constants)
to the median counts.

Two-dimensional embedding of pan-genome centroids

BusyBee Web [58] was used to represent the pan-genome cen-
troids in two dimensions (2D). In brief, pentanucleotide fre-

quencies were computed and transformed into 2D using
Barnes–Hut stochastic neighbor embedding [59]. Due to the
use of centroids rather than contigs or long reads, the border
point threshold and cluster point threshold were set to 500.
Individual pan-genomes were mixed in silico, centroids with
a frequency �90% were used as input to BusyBee Web, and

the 2D coordinates were downloaded. Here, in addition to
the sample frequency overlay, centroids were colored accord-
ing to the respective species of the source pan-genome of the

centroid.

Resistance association analysis

Association between resistance profiles and centroid presence

All isolates that were used to construct the pan-genomes and

had resistance profiles available were considered. Binary cen-
troid presence/absence matrices were used as features. A spe-
cies–drug combination was not analyzed if >90% of the
isolates were resistant or non-resistant. The predictors were

first filtered to remove (nearly) constant and correlated fea-
tures and features with many missing values. All predictors
with >95% missing values or with >95% of the entries hav-

ing the same value (missing values ignored) were removed.
Correlated features were removed by computing pairwise fea-
ture correlations (fastCor from R-package HiClimR, v. 1.2.3),

clustering them using hierarchical clustering (distance =
1 – cor^2, average linkage), cutting the resulting tree at height
0.0975 (1–0.952), and keeping only medoids (minimal average
distance to other cluster members) within each obtained clus-

ter. All features were scored using EIGENSTRAT [60]
(v. 6.0.1) to correct for possible population structures. First,
principal component analysis (PCA) was run to compute the

top 50 principal components using only retained features.
Then, the number of components (k) used for the subsequent
computation was chosen such that the estimated genomic infla-

tion factor (lambda) was <1.1 for the smallest possible k. If
none of the computed lambda values was <1.1, then k with
the smallest lambda value was chosen. The value of k was

successively increased from k = 1 to k = 50 by an increment
of 2. With the chosen value of k, test statistics were generated
for all features and P values were computed using the
Chi-squared distribution with one degree of freedom. Finally,

FDR adjustment was applied.

Number of Resfams covered by the significant resistance association

results

For each centroid with a significant resistance association
result (adjusted P < 1E�5), all hits from the centroid cluster
members to the Resfams core database were retrieved. Subse-

quently, for each Resfam, the number of unique centroids
including �1 cluster member with a hit to the corresponding
Resfam was counted.

Application example

The assembly of the complete K. pneumoniae genome published

by Kao et al. [39] (NCBI assembly No. ASM195283v1, RefSeq
assembly accession No. GCF_001952835.1) was included in the
collection of the finished bacterial genomes downloaded from
the NCBI RefSeq database as described above. The genomic

FASTA file containing the chromosome and plasmid sequences
was uploaded to the GEAR-base web-server for genome
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analysis using default parameters (https://gear-base.com/
gear/pangenome/genomesearch/job=b568c458-f68a-4aa1-b78b-
dad72dddfd5a/). The FASTA file containing the nucleotide

sequences of all CDSs was uploaded for gene-based analysis
with only Resfams search and Sourmash search in centroids
enabled and using default parameters (https://gear-base.com/

gear/pangenome/genesearch/job=0e42e149-a70d-4796-b40a-
7f7168dc5077/). The nucleotide sequences of eight resistance
genes reported previously [39], including WP_004176269.1,

WP_076027158.1, WP_004146118.1, WP_000018329.1,
WP_032491824.1, WP_000557454.1, WP_000976514.1, and
WP_000027057.1, were saved in a separate FASTA file, which
was uploaded for gene-based analysis with all options

enabled and default parameters (https://gear-base.com/
gear/pangenome/genesearch/job=d8792c0e-bbe7-4936-a7b7-
c2846b727afe/).

Availability

GEAR-base is freely available for academic research use after
the user has registered and accepted the terms of use available
at https://gear-base.com. Because of the sheer size and further
legal and ethical constrains, we cannot make all data fully

accessible for batch download. If users are interested in getting
access to the raw sequencing data, a special request in this
respect is required. For this, we provide a respective request

details on the GEAR-base homepage. The sequences of pan-
genome centroids can be downloaded directly from the
GEAR-base homepage. Custom scripts used for processing,

analyzing and plotting the data can be found at https://
github.com/VGalata/gear_base_scripts/.
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