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“While we live according to race, colour or creed
While we rule by blind madness and pure greed
Our lives dictated by tradition, superstition, false religion
Through the eons and on and on

Oh yes we’ll keep on tryin’
We’ll tread that fine line
Oh oh we’ll keep on tryin’
Till the end of time”

Queen: Innuendo



Abstract
DNA methylation, a reversible epigenetic modification, has been implicated with various bi-
ological processes including gene regulation. Due to the multitude of datasets available, it is
a premier candidate for computational tool development, especially for investigating hetero-
geneity within and across samples. We differentiate between three levels of heterogeneity in
DNA methylation data: between-group, between-sample, and within-sample heterogeneity.
Here, we separately address these three levels and present new computational approaches to
quantify and systematically investigate heterogeneity.

Epigenome-wide association studies relate a DNA methylation aberration to a phenotype
and therefore address between-group heterogeneity. To facilitate such studies, which necessar-
ily include data processing, exploratory data analysis, and differential analysis of DNAmethy-
lation, we extended the R-packageRnBeads. We implemented novelmethods for calculating the
epigenetic age of individuals, novel imputation methods, and differential variability analysis.
A use-case of the new features is presented using samples from Ewing sarcoma patients. As an
important driver of epigenetic differences between phenotypes, we systematically investigated
associations between donor genotypes andDNAmethylation states inmethylation quantitative
trait loci (methQTL). To that end, we developed a novel computational framework –MAGAR–
for determining statistically significant associations between genetic and epigenetic variations.
We applied the new pipeline to samples obtained from sorted blood cells and complex bowel
tissues of healthy individuals and found that tissue-specific and common methQTLs have dis-
tinct genomic locations and biological properties.
To investigate cell-type-specific DNA methylation profiles, which are the main drivers of

within-groupheterogeneity, computational deconvolutionmethods can be used to dissectDNA
methylation patterns into latentmethylation components. Deconvolutionmethods require pro-
files of high technical quality and the identified components need to be biologically interpreted.
We developed a computational pipeline to perform deconvolution of complex DNA methyla-
tion data, which implements crucial data processing steps and facilitates result interpretation.
We applied the protocol to lung adenocarcinoma samples and found indications of tumor in-
filtration by immune cells and associations of the detected components with patient survival.
Within-sample heterogeneity (WSH), i.e., heterogeneous DNA methylation patterns at a ge-

nomic locus within a biological sample, is often neglected in epigenomic studies. We present
the first systematic benchmark of scores quantifying WSH genome-wide using simulated and
experimental data. Additionally, we created two novel scores that quantify DNA methyla-
tion heterogeneity at single CpG resolution with improved robustness toward technical biases.
WSH scores describe different types of WSH in simulated data, quantify differential hetero-
geneity, and serve as a reliable estimator of tumor purity.
Due to the broad availability of DNA methylation data, the levels of heterogeneity in DNA

methylation data can be comprehensively investigated. We contribute novel computational
frameworks for analyzing DNA methylation data with respect to different levels of hetero-
geneity. We envision that this toolbox will be indispensible for understanding the functional
implications of DNA methylation patterns in health and disease.
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Kurzfassung
DNA Methylierung ist eine reversible, epigenetische Modifikation, die mit verschiedenen bio-
logischen Prozessen wie beispielsweise der Genregulation in Verbindung steht. Eine Vielzahl
von DNAMethylierungsdatensätzen bildet die perfekte Grundlage zur Entwicklung von Soft-
wareanwendungen, insbesondere um Heterogenität innerhalb und zwischen Proben zu be-
schreiben.Wir unterscheiden drei Ebenen vonHeterogenität inDNAMethylierungsdaten: zwi-
schen Gruppen, zwischen Proben und innerhalb einer Probe. Hier betrachten wir die drei Ebe-
nen vonHeterogenität inDNAMethylierungsdaten unabhängig voneinander und präsentieren
neue Ansätze um die Heterogenität zu beschreiben und zu quantifizieren.

Epigenomweite Assoziationsstudien verknüpfen eine DNA Methylierungsveränderung mit
einemPhänotypen und beschreibenHeterogenität zwischenGruppen. Um solche Studien,wel-
che Datenprozessierung, sowie exploratorische und differentielle Datenanalyse beinhalten, zu
vereinfachen haben wir die R-basierte Softwareanwendung RnBeads erweitert. Die Erweiterun-
gen beinhalten neue Methoden, um das epigenetische Alter vorherzusagen, neue Schätzungs-
methoden für fehlende Datenpunkte und eine differentielle Variabilitätsanalyse. Die Analyse
von Ewing-Sarkom Patientendaten wurde als Anwendungsbeispiel für die neu entwickelten
Methoden gewählt. Wir untersuchten Assoziationen zwischen Genotypen und DNA Methy-
lierung von einzelnen CpGs, um sogenannte methylation quantitative trait loci (methQTL) zu
definieren. Diese stellen einen wichtiger Faktor dar, der epigenetische Unterschiede zwischen
Gruppen induziert. Hierzu entwickelten wir ein neues Softwarepaket (MAGAR), um statis-
tisch signifikante Assoziationen zwischen genetischer und epigenetischer Variation zu identi-
fizieren. Wir wendeten diese Pipeline auf Blutzelltypen und komplexe Biopsien von gesunden
Individuen an und konnten gemeinsame und gewebespezifische methQTLs in verschiedenen
Bereichen des Genoms lokalisieren, die mit unterschiedlichen biologischen Eigenschaften ver-
knüpft sind.
Die Hauptursache für Heterogenität innerhalb einer Gruppe sind zelltypspezifische DNA

Methylierungsmuster. Um diese genauer zu untersuchen kann Dekonvolutionssoftware die
DNAMethylierungsmatrix in unabhängige Variationskomponenten zerlegen. Dekonvolutions-
methoden auf Basis von DNA Methylierung benötigen technisch hochwertige Profile und die
identifizierten Komponenten müssen biologisch interpretiert werden. In dieser Arbeit entwi-
ckelten wir eine computerbasierte Pipeline zur Durchführung von Dekonvolutionsexperimen-
ten, welche die Datenprozessierung und Interpretation der Resultate beinhaltet. Wir wendeten
das entwickelte Protokoll auf Lungenadenokarzinome an und fanden Anzeichen für eine Tu-
morinfiltration durch Immunzellen, sowie Verbindungen zum Überleben der Patienten.
Heterogenität innerhalb einer Probe (within-sample heterogeneity, WSH), d.h. heterogene

Methylierungsmuster innerhalb einer Probe an einer genomischen Position, wird in epigeno-
mischen Studien meist vernachlässigt. Wir präsentieren den ersten Vergleich verschiedener,
genomweiter WSHMaße auf simulierten und experimentellen Daten. Zusätzlich entwickelten
wir zwei neueMaße umWSH für einzelne CpGs zu berechnen, welche eine verbesserte Robust-
heit gegenüber technischen Faktoren aufweisen. WSH Maße beschreiben verschiedene Arten
von WSH, quantifizieren differentielle Heterogenität und sagen Tumorreinheit vorher.
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Aufgrund der breiten Verfügbarkeit von DNA Methylierungsdaten können die Ebenen der
Heterogenität ganzheitlich beschrieben werden. In dieser Arbeit präsentieren wir neue Soft-
warelösungen zur Analyse von DNAMethylierungsdaten in Bezug auf die verschiedenen Ebe-
nen der Heterogenität. Wir sind davon überzeugt, dass die vorgestellten Softwarewerkzeuge
unverzichtbar für das Verständnis von DNAMethylierung im kranken und gesunden Stadium
sein werden.
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CHAPTER

1
Introduction
This thesis comprises six chapters. In this first chapter, I will give an overview of epigenetic regulation
and briefly introduce DNA methylation as the main level of epigenetic regulation investigated in the
thesis. In the second part of the introductory chapter, I will outline the thesis structure and describe three
levels of heterogeneity in DNA methylation data that I will discuss. Additionally, I will formulate re-
search questions answered throughout the work. Since I worked both in a more computer-science-oriented
lab and together with wet-lab scientists, I will elaborate on the two aspects of Computational Biology, i.e.,
developing novel software tools and applying software tools for generating biological hypothesis and in-
sights. The second chapter will introduce the biological and technological background of the thesis and
formulate the state of the art. Chapters three to five focus on dissecting the three levels of DNA methy-
lation heterogeneity that we present: between-group, between-sample, and within-sample heterogeneity.
In the last chapter, I will summarize the key findings of the thesis, show its implications for the scientific
community, and give an outlook on future research directions.

1.1 Epigenetic Regulation

The term epigenetics, commonly referred to as inheritable changes of gene expression states that
are not encoded by the genome (i.e., the information encoded in the sequence of the deoxyri-
bonucleic acid (DNA)) itself [1], was first conceptualized byConradWaddington in 1942 [2]. He
introduced the epigenetic landscape as a high-dimensional surface defined by epigenetic mod-
ifications (Figure 1.1 [3]). The landscape, harbors all potential differentiation states of cells,
defines valleys, which represent different cell fates. Cells roll downhill into the valleys of the
landscape according to their fate. The lowest points of these valleys represent fully differenti-
ated cell types, while the top of the landscape comprises pluripotent cells, i.e., those cells capable
of differentiating into all the valleys (cell types) defined. The hills that separate the valleys from
one another are defined by epigenetic mechanisms that impede differentiated cells to escape
their differentiation valleys. Epigenetic mechanisms define the landscape and are thus crucial
drivers of cell-type identity.
Another manifestation of epigenetic regulation manifests in the observation that, although

virtually all cells of an organism possess the identical genetic information encoded by DNA,
different cell types in the organism differ largely in their functions. For instance, human brain
cells use the same genetic information as leukocytes, but possess distinct biological functions.
These differences in cellular identity are encoded by the epigenetic program of a particular cell
type. Additional manifestations of epigenetic regulation include the inactivation of one of the
X-chromosomes in females and genomic imprinting, i.e., the parent-of-origin-specific expression
of genes. Throughout the last decades and years, the scientific community aimed at illuminat-
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Figure 1.1: Waddington’s epigenetic landscape. This high dimensional surface represents different cellular
fates according to the orange arrows. Cells traverse various differentiation states, including
pluripotent and multipotent progenitors, up to fully differentiated cell types (cells in the bottom
of the figure). Modified from https://doi.org/10.6084/m9.figshare.5285500.v1, created
by Fabian Müller, and inspired from [3]. See Section A.6 for further copyright information.

ing the specific epigenetic patterns that determine cell-type identity, at determining the factors
shaping the epigenetic landscape, and at uncovering epigenetic aberrations associated with
diseases.

The central dogma of gene expression [4] describes that a protein-coding gene, i.e., a specific
segment of the DNA comprising the blueprint of a protein, is first transcribed into messenger
ribonucleic acid (mRNA). In a second step, mRNA is translated into a protein that functions as
themolecular workhorse of the cell. However, at any point in time, only a subset of the proteins
coded for by the genome is needed. To control the expression of genes into proteins, epigenetic
mechanisms (including chemical modifications of the DNA and its scaffolding units) regulate
the gene expression process. Gene expression is a complex process that involves proteins in-
cluding transcription factors (TFs), mRNA, and other RNA molecules. The regulation of gene
expression occurs both at the transcriptional and at the translational level.
In this work, different levels of epigenetic regulation are addressed. The main focus will be

on transcriptional regulation, i.e., on investigating the factors leading to a particular gene being
transcribed intomRNA.Notably, protein abundances are also influenced bypost-transcriptional
andpost-translational regulation. Such regulatorymechanisms include alternative splicing and
post-translationalmodifications, which affect tissue-specific protein abundances and functions.
Epigenetic regulation at the transcriptional level comprises three major components: DNA
methylation, histone modifications, and micro-RNAs (miRNAs), which will be discussed in
more detail in Chapter 2.

DNA methylation, the chemical modification of cytosine-guanine dinucleotides (CpGs), is
often considered to be the best-studied epigenetic modification. DNAmethylation aberrations

https://doi.org/10.6084/m9.figshare.5285500.v1
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have been associatedwith various diseases, most prominently cancer, where they have emerged
as important biomarkers (see Section 2.3). Additionally, DNA methylation is important for
establishing cell-type identity and can bemeasured genome-wide by different technologies (see
Section 2.4). In this work, we will particularly focus on DNA methylation, but also investigate
different epigenetic layers in healthy and diseased individuals.

1.2 Thesis Outline: Dissecting the Levels of DNA Methylation
Heterogeneity

The term heterogeneity used in this work refers to differences between the states of a biological
system and we will particularly focus on heterogeneity observed in DNA methylation states.
After introducing important biological and methodological concepts in Chapter 2, we investi-
gate heterogeneity at three levels (Figure 1.2):

1. Chapter 3 discusses DNA methylation differences between phenotypes

2. Chapter 4 investigates DNAmethylation differences between the samples sharing a phe-
notype (e.g., a group of cancer patients)

3. Chapter 5 dissects DNA methylation differences between different cellular states within
a (bulk) sample

Notably, there is no clear-cut distinction between the different levels of heterogeneity, since,
for example, high levels of within-sample heterogeneity likely cause elevated between-sample
heterogeneity. In contrast to heterogeneity, homogeneity of a biological system is rarely investi-
gated, since research is focused on the differences that drive a system to the observed pheno-
type. We define a phenotypic group as a group of individuals that share a phenotype of interest
such as a disease or another trait. A sample, however, is obtained from one of the individuals
within such a group. We focus on bulk tissue samples, which comprise different cell types and
cellular states, and discuss how the emergence of single-cell technology changes how the levels
can be dissected in Chapter 6.
Within this work, we refer to the term Computational Biology as the development of computa-

tional approaches and the application of such approaches to answer biological questions. It is
not trivial to translate the results generated by computational tools into biological knowledge.
We contributed to that end by using bioinformatic tools developed by ourselves and others on
a large variety of biological datasets. In our analyses, we put an emphasis on understanding
epigenetic dysregulation associated with diseases.

1.2.1 DNA Methylation Heterogeneity Between Phenotypes

In an epigenome-wide association study (EWAS), different sample groups (e.g., cancer patients
and healthy controls) are compared to each other to define CpGs or larger genomic regions
(e.g., gene promoters) that are differentially methylated between the groups. This is particu-
larly useful for defining biomarkers of diseases (see Section 2.3), but also for determining the
epigenetic changes that contribute to cell differentiation [5]. We need software tools for deter-
mining differentially methylated CpGs (DMCs) and differentially methylated regions (DMRs)
whose methylation profiles are significantly different between the sample groups defined by
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Figure 1.2: The three levels of heterogeneity addressed throughout this work. Between-group heterogeneity
shows different DNA methylation states for different phenotypes, between-sample heterogene-
ity describes DNA methylation differences between samples within a group, and within-sample
heterogeneity describes different DNA methylation patterns in an individual sample.

the phenotype. These software tools should fulfill a number of criteria including reliability of
the results, transparency of result generation, reproducibility, and reasonable running time.
Additionally, the software tools should be easy to use even for non-bioinformaticians to lower
the hurdle for in-house data processing. In Chapter 3, we present an extension of such a soft-
ware package (RnBeads) that supports different types of input data and returns a list of DMCs
or DMRs. However, RnBeads was lacking important features of a DNA methylation analy-
sis, which recently emerged in the scientific community. To that end, we implemented novel
methods for detecting differential variability between two groups of samples, for performing
genome-wide segmentation, and for imputing missing values. Along with these and other ex-
tensions, we conducted a runtime comparison of RnBeads to other software tools. The first part
of Chapter 3 mainly focuses on presenting novel computational approaches, and showcases the
new features of RnBeads on a childhood bone cancer cohort.

In contrast, the second part of the chapter is motivated from a more biological perspective.
Here, we systematically investigate the influence of organism aging on DNA methylation. We
elaborate on epigentic age prediction in human and mouse, which has been introduced as an
additional module in RnBeads.

In the third part of Chapter 3, we investigate the relationship between genetic and epigenetic
alterations. These genetic alterations (single nucleotide variant or polymorphism (SNV/SNP))
confound the interpretation of identified DMCs, since a genetic alteration can cause an incor-
rect readout of DNA methylation. We present an in-depth analysis of the relationship be-
tween genotype and CpG methylation states by defining methylation quantitative trait loci
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(methQTL). So far, there is no software package available implementing a comprehensivework-
flow for detecting methQTLs from raw genotyping and DNA methylation microarray data.
Therefore, we developed a novel computational framework, implemented in the R-package
MAGAR, to detect methQTLs from genotyping and DNAmethylation data. Notably, the pack-
age accounts for the properties of DNAmethylation data. An open question for the association
between genotype and DNA methylation is whether the associations are independent of the
cell type or cell-type specific. To answer this question, we analyzed purified blood cells and
bowel biopsies. MethQTLs can be used to interpret results of EWAS with respect to genetic
modulations, to further understand functional implications of disease-associated genetic alter-
ations, and to illuminate the complex interplay between genotype, DNAmethylation, and gene
expression.

1.2.2 DNA Methylation Heterogeneity Between Samples Sharing a Phenotype

The second level of heterogeneity investigated inChapter 4 addresses differences inDNAmethy-
lation patterns between samples sharing a phenotype (e.g., control individuals, cancer pa-
tients). In addition to heterogeneity introduced by differences in age, sex, or technical bi-
ases, cell-type composition substantially contributes to between-sample heterogeneity within
a group. DNA methylation patterns are inherently cell-type specific. While this introduces
new opportunities for unraveling cell-type identity, it also poses challenges for the analysis of
bulk tissue samples and for the interpretation of epigenomic studies. In the context of EWAS,
cell-type heterogeneity is typically considered the strongest confounding factor. On the other
hand, since cell types can be characterized by their DNA methylation profiles, DNA methyla-
tion is a premier candidate for deconvolving complex tissue samples into the constituting cell
types. The proportions of the cell types can be associated with disease onset and may be rele-
vant in a clinical setting, where DNA methylation could serve as a disease biomarker or assist
in pathological assessment of samples.
Deconvolution of complex DNA methylation datasets is an active research field, since (cur-

rently) themajority of epigenomic studies is performed on bulk samples. We define deconvolu-
tion as the dissection of a heterogeneous tissue into its main constituents, which can comprise
different cell types, but also different sources of variation in the data. However, deconvolu-
tion tools, such asMeDeCom, require thorough data processing and biological interpretation of
deconvolution results remains challenging. To alleviate this problem, we present a three-stage
protocol for conducting reference-free deconvolution of complex DNA methylation datasets
and an application of the protocol to solid tumors from The Cancer Genome Atlas (TCGA).
Similarly, an application of the pipeline onmelanoma samples of patients treatedwith immune
checkpoint inhibition (ICI) therapy substantiates the clinical use of deconvolution analysis.

1.2.3 DNA Methylation Heterogeneity Within Samples

While the first two levels of heterogeneity in epigenomic data are commonly addressed for, the
third one – heterogeneity within an individual sample – is often neglected. More specifically,
DNA methylation of a single DNA strand is truly binary, i.e., the cytosine is either methylated
or unmethylated. Thus, without any form of heterogeneity within a sample, all CpG dinu-
cleotides measured in an epigenomic study would be binary. However, some CpGs measured
either show some minor deviations from this binary state (e.g., 96% methylation), which can
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be mainly attributed to technical artifacts. In addition, biological variations (e.g., cell-type het-
erogeneity, allele-specific methylation) contribute to within-sample DNA methylation hetero-
geneity (WSH).

Information about DNA methylation states of individual molecules is preserved in the raw
sequencing reads (see also Figure 1.2). In Chapter 5, we systematically address different sources
of within-sample heterogeneity and discuss how this heterogeneity can be quantified using
genome-wide within-sample heterogeneity (WSH) scores. A comprehensive benchmark of dif-
ferent WSH scores is currently missing. Thus, we present a systematic benchmark of existing
metrics and introduce a novel score for quantifying within-sample heterogeneity from bisulfite
sequencing data, qFDRP. WSH scores, such as qFDRP, can be used for interpreting DMRs, for
segmenting the genome into regions with high and low DNA methylation heterogeneity, and
for predicting tumor purity.



CHAPTER

2
Background
In this chapter, I will introduce epigenetic regulation in more detail, explain important terms used
throughout the thesis, and report the state of the art. I will introduce the key players of epigenetic reg-
ulation, with a focus on DNA methylation as one of the most extensively-studied epigenetic marks. I
will also discuss associations between DNA methylation aberrations and diseases, and I will point out
potential implications for the clinical use of epigenetic markers. Furthermore, I will present technologies
for mapping DNA methylation genome-wide and outline the routine, low-level processing of the data.
This chapter requires a basic understanding of the terms used in molecular biology, and will not give a
comprehensive list of definitions for all the terms used. In the last part of the chapter, I will introduce key
concepts of statistical learning and computational methods that will be used throughout this work.

2.1 Mechanisms of Epigenetic Gene Regulation

As discussed in Chapter 1, epigenetic mechanisms are crucial drivers of cellular identity and
important for X-chromosomal inactivation and genomic imprinting. Determiningwhich genes,
i.e., stretches of DNA coding for a protein or RNA, are transcribed and translated at a particular
point in time is critical for organism development. Transcriptional regulation is a complex
process that influences which sequence of the DNA is transcribed into mRNA by the protein
RNA Polymerase II (RNAPII).

2.1.1 Chromatin Structure

The human DNA comprises more than 3 billion base pairs (bp), which sum up to a total length
of 2mof linear DNAper diploid cell. Thus, the DNAmolecule needs to be highly condensed to
fit into the cell nucleus, which is typically 5 µm in diameter for most animal cells [6] and about
10 µm for most human cells. To accomplish this high level of compression, DNA is wrapped
around nucleosomes – protein complexes comprising eight histone subunits [7]. 146-147 bp of ge-
nomic DNA are wrapped around the histone octamer, and nucleosomes are further compacted
into higher-order structures to form chromosomes (Figure 2.1). The entirety of the chromo-
somes, the chromatin, exists in two functional states that are characterized by different levels
of DNA condensation. In the most dense state, nucleosomes are tightly packed and a large
fraction of the DNA is wrapped around histone octamers. This heterochromatic state reaches the
highest level of compression during the metaphase of the cell cycle, in which chromosomes are
microscopically detectable (Figure 2.2). Heterochromatic structures compromise protein bind-
ing to DNA in general and specifically impair the binding of RNAPII and transcription factors
(TFs). The second state of chromatin, euchromatin, is characterized by a loosened structure, in
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Figure 2.1: Different levels of chromatin condensation. DNA is wrapped around histone octamers to form nu-
cleosomes. These are further condensed into fibers to form chromosomes during the metaphase of
the cell cycle. Modified from https://doi.org/10.6084/m9.figshare.5285488.v1, created
by Fabian Müller.

which larger fractions of DNA are not wrapped around nucleosomes. Thus, DNA in euchro-
matin is more accessible to proteins than DNA in heterochromatin and highly expressed genes
are located within euchromatic regions of the genome.

2.1.2 Regulatory Elements of Gene Expression

The genome comprises different regulatory elements, which determine the set of genes ex-
pressed. To initiate transcription of a particular gene into mRNA, the transcription machinery
– a protein complex – is recruited around the transcription start site (TSS) in the gene promoter
region (Figure 2.3). The binding of RNAPII to the promoter region of a gene is facilitated by the
recruitment of proteins (TFs). Binding of the transcriptional initiation complex (i.e., RNAPII
and TFs) to the promoter region requires accessible DNA, i.e., euchromatin (Figure 2.2). In ad-
dition to proximal elements regulating gene expression, such as promoters, more distal regu-
latory elements, including enhancers, impact transcriptional initiation (Figure 2.3). Additional
TFs can be recruited to enhancer elements, which form complexes with the proteins binding to
the promoter region, thus allowing for the initiation of transcription. Enhancer elements are
classified according to their genomic distance to the TSS as proximal or distal enhancers, re-
spectively. Proximal enhancers are regions directly flanking the promoter region according to
the Ensembl Regulatory Build [8], while distal enhancers are regions further away from the TSS.
Active enhancers are marked by histone modifications of the N-terminal tails of the histones
such H3K27ac and H3K4me1 (further explained in Section 2.1.3) and characterized by a low
DNA methylation level of the neighboring CpGs. Enhancers harbor transcription factor bind-

https://doi.org/10.6084/m9.figshare.5285488.v1
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Figure 2.2: Open and closed chromatin structures and associated epigenetic marks. H3K9me3 and
H3K27me3 are histone marks that are associated with closed chromatin (heterochromatin) to-
gether with high levels of CpG methylation. H3K4me1, H3K27ac, H3K36me3, and low levels
of CpG methylation are associated with open chromatin regions (euchromatin). Obtained from
https://doi.org/10.6084/m9.figshare.5057566.v1, created by Fabian Müller.

ing sites (TFBS) for TFs that form a complex with RNAPII. Notably, transcriptional initiation is
a complex process, which can be modulated by further epigenetic and other factors. The target
genes of an enhancer often remain elusive and determining them is subject to active research
[9]. Given the local epigenetic pattern, gene expression levels can be reliably predicted [10] and
changes in the epigenome can alter gene expression levels in a disease setting. In addition to en-
hancer elements, genomic regions called insulators influence chromatin contacts of distant (in
sequence space) genomic regions. Insulators typically carry binding sites for the transcription
factor CCCTC-binding factor (CTCF) and form the boundary between euchromatin and hete-
rochromatin [11]. The binding of CTCF influences the contact between an enhancer element
and its target gene.

Gene expression levels, i.e., the number of mRNAmolecules transcribed from a gene, are of-
ten referred to as the functional readout of epigenetic patterns in a particular environment and
are an indication of the functional effect of transcriptional regulation. Throughout this work,
gene expression levels, typically measured by the abundances of mRNAs at a particular point
in time via RNA sequencing (RNA-seq), will be used. Epigenetic patterns regulate gene ex-
pression at the transcriptional level and thus modulate mRNA abundances. These mRNAs are
translated into proteins to perform cellular functions, and the abundances of mRNAmolecules
are important indicators for the activity levels of the proteins in a cell. Post-transcriptional
regulation and modifications will not be discussed in this thesis, but rather the transcriptional
regulation through epigeneticmarks, such as histonemodifications andDNAmethylation, will
be. Additionally, gene expression regulation by small RNA molecules, including miRNAs and
small interfering RNAs (siRNAs) is considered the third basic epigenetic mechanism, but will
not be addressed in this work.

2.1.3 Histone Modifications

Epigeneticmodifications co-occurwith open (euchromatin) and closed (heterochromatin) chro-
matin and determine chromatin structure. DNA is accessible for TFs and RNAPII in euchro-

https://doi.org/10.6084/m9.figshare.5057566.v1
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Figure 2.3: The transcriptional initiation process. RNA Polymerase II (RNAPII) binds an unmethylated pro-
moter region along with TFs recruited to form the transcriptional initiation complex. These TFs
can bind at distal or proximal genomic elements (enhancers) and form a chromatin loop toward
the promoter complex. Both the enhancer and the promoter region generally require an open
chromatin structure, which is regulated by epigenetic mechanisms, such as DNA methylation and
histone modifications. Modified from https://doi.org/10.6084/m9.figshare.5285473.v1,
created by Fabian Müller.

matin and inaccessible in heterochromatin. Thus, it is crucial to determine which epigenetic
marks are associated with open and closed chromatin. The N-terminal tail of the histone pro-
tein H3 (a subunit of the histone octamer) is subject to chemical modifications, whichmodulate
chromatin openness and closeness [12]. These modifications are referred to as histone modifica-
tions, histone marks, or chromatin marks. For instance, H3K27me3 refers to an addition of three
methyl groups to the 27th lysine (counted from the N-terminus) of histone H3 (Brno nomencla-
ture [13]). H3K27me3 andH3K9me3 are associatedwith closed chromatin, whileH3K4me1 and
H3K9ac (lysine acetylation) are associated with euchromatin (Figure 2.2, [14]). The chemical
modification impacts the binding affinity of DNA to the histones and influences the compres-
sion level of chromatin. Many histonemodifications have been identified and their associations
with the chromatin structure and gene expression state have been investigated [15]. Within this
work, histone modifications will be used to segment the genome into different functional units.
Epigenetic regulation is often more complex than the simplistic correlation between a single

chromatin mark and the chromatin state. Rather, it is an interplay between different chromatin
marks, DNAmethylation, the local sequence context, and TF binding thatmodulates local chro-
matin accessibility. One example is presented by bivalent domains, which harbor both repress-
ing (e.g, H3K27me3) and activating (H3K4me3) histone marks. Computational methods such
as ChromHMM [16] use histone modification data generated using Chromatin Immunoprecip-
itation sequencing (ChIP-seq [17]) to segment the genome into different chromatin states. Such
segmentation methods exploit the combined information of multiple histone marks. The seg-
mentation can be substantially improved using further epigenetic information such as DNA

https://doi.org/10.6084/m9.figshare.5285473.v1
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methylation data [18].
Determining which regions of the chromatin are accessible to proteins is crucial for identify-

ing potential regulatory regions and actively expressed gene. Thus, epigenomic techniques for
measuring DNA accessibility have been developed for detecting euchromatic and heterochro-
matic structures. Those methods are based on enzymes that particularly target regions of open
chromatin. Most notably, DNAseI-sequencing (DNAseI-seq,) [19], ATAC-sequencing (ATAC-
seq) [20], and NOMe-sequencing (NOMe-seq) [21] can be used to map regions of accessible
chromatin. In addition, with the Hi-C technique [22] one can measure interactions between
different chromosomal regions to define topologically associated domains (TADs)1 and euchro-
matic as well as heterochromatic regions at relatively low resolution. In order to illuminate
chromatin contacts for specific genomic regions such as gene promoters, promoter-capture Hi-
C can be used to map the contacts at a higher resolution, which can also be used to connect
putative regulatory elements (e.g., enhancers) to their target genes [9].

2.1.4 DNA Methylation

DNAmethylation is a widely-studied epigenetic mark. Inmammalian genomes, cytosine bases
in the context of a CpGdinucleotide, i.e., a cytosine followed by a guanine in theDNA sequence,
can be chemically modified by the addition of a methyl group to the fifth carbon of the cytosine
([24], Figure 2.4). The resulting base is referred to as 5-methylcytosine (5mC) and has distinct
chemical and biological properties compared to an unmodified cytosine. Notably, CpG din-
ucletotides are symmetric (they occur on both the forward and reverse DNA strand) and the
methyl group is predominantly present on both DNA strands. Evolutionary this led to the bi-
ased distribution of DNAmethylation in CpGdinucleotides, sincemethylated cytosinesmutate
to thymines at a high rate [25, 26]. In addition to CpGmethylation, other bases such as adenine
can bemethylated, which is frequently found in bacteria [27] and plants [28]. In this work, CpG
methylation will be discussed in human and mouse.
CpG dinucleotides are heavily depleted in the human genome [29] due to their high muta-

tion rate. A notable exception is presented by short regions of around 1,000 bp that exhibit a
significantly elevated CpG density. These regions are called CpG islands (CGIs), which occur
in around 70% of all human gene promoters [30]. While CpGs outside of CGIs are generally
methylated, CpGs within CGIs are unmethylated. The methylation states of neighboring CpGs
(distance below 1 kilobase (kb)) are typically highly correlated [31], since DNA methylation is
likely regulated by regional rather than local mechanisms.

Establishment, Maintenance, and Removal

Methylation of CpGs in the human genome is mainly regulated by two classes of enzymes:
DNA methyltransferases (DNMTs) add a methyl group to an unmethylated cytosine, while
ten-eleven translocation (TET) enzymes facilitate the removal of the methyl group. DNMTs use
S-adenosylmethionine (SAM, [32]) as the donor of methyl groups and are subdivided accord-
ing to their function into the maintenance (DNMT1) and de-novo class (DNMT3A, DNMT3B,
DNMT3L). DNMT1 preferentially modifies asymmetrically (only on one strand) methylated
CpG dinucleotides and copies the DNA methylation state of the methylated cytosine to the
1A TAD is a genomic region, in which the frequency of physical contacts between any pair of stretches of DNA is
higher than the frequency of interactions to stretches of DNA outside of the TAD [23].
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Figure 2.4: Methylation of CpG dinucleotides. A: Cytosine bases can be methylated by the addition a
methyl group to the fifth carbon position. Filled circles represent methylated, while unfilled
circles represent unmethylated cytosines. B: DNA methylation almost exclusively occurs in CpG
dinucleotides.

cytosine on the complementary DNA strand. Thus, DNMT1 is essential for copying the methy-
lation signature to the newly synthesized DNA strand after replication and is crucial for the
survival of human embryonic stem cells (ESCs, [33]). DNMT3A and DNMT3B preferentially
target unmethylated CpG dinucleotides and introduce methylation de-novo. The process is cat-
alyzed by DNMT3L, which does not have a methyltransferase activity on its own [34].

DNA methylation is either passively lost during replication, when DNMT1 fails to copy
the methyl group to the newly synthesized DNA strand (DNA methylation erosion) or ac-
tively removed. The active removal is catalyzed by TET enzymes, which oxidize 5mC to 5-
hydroxymethylcytosine (5hmC). Subsequent oxidation products include 5-formylcytosine (5fC)
and 5-carboxylcytosine (5caC). The latter two cytosine variants are actively removed from the
DNA strand using either the base excision repair (BER)machinery or by thymine DNAglycosy-
lase (TDG) and are replaced by an unmodified cytosine. The oxidation products of 5mC (5hmC,
5fC, 5caC) are substantially less abundant than 5mC in most mammalian genomes, whereas
5hmC levels can reach up to 40% of the 5mC levels in mouse brains [35]. The functional roles
of the modifications of 5mC are only beginning to be understood [36]. For instance, high levels
of 5fC have been reported at enhancer elements in mouse [37], and 5hmC has distinct functions
in comparison to 5mC at human gene promoters [38].

Function

DNAmethylation has been implicated in functions within several biological processes. Gener-
ally, high levels of DNAmethylation at CpG dinucleotides are considered a repressive mark for
gene expression. Methylated CpGs are associatedwith heterochromatin formation through the
recruitment of methyl-CpG-binding domain (MBD) proteins, which themselves recruit chro-
matin remodelers. This function is especially relevant for transposable elements, which gener-
ally show a high level of DNA methylation. Thus, DNA methylation represses the expression
of transposable elements and contributes substantially to genome stability [39]. Furthermore,
DNAmethylation is essential for genomic imprinting [40] andX-chromosomal inactivation [29].
In contrast to CpGs located in genomic regions of low CpG density, CGIs are preferentially



Chapter 2 Background 13

unmethylated CpG methylated CpG TSS

active transcription inactive transcription

exon

CpG island CpG island

intron

Figure 2.5: DNA methylation at gene promoter CGIs. Low levels of DNA methylation at CGI gene promoters
are an indication of active transcription, while higher levels of DNA methylation of the CGI repress
transcription.

unmethylated. The methylation states of CGIs located at promoter regions are indicators of the
transcriptional state of the gene. High levels of DNA methylation are associated with inactive
transcription and low levels of DNA methylation are an indication of an active transcriptional
state (Figure 2.5). In addition to this negative association between DNA methylation and gene
expression, high levels of CpGmethylation throughout the gene body of a transcribed gene are
an indication of active transcript elongation [41]. An important characteristic of DNA methy-
lation is its cell-type specificity. DNA methylation patterns can be used to discern between
different cell types and cellular subtypes [5]. Due to its quantitative readout as the overall
methylation level of a particular CpG in a bulk tissue sample, DNA methylation is a premier
candidate for epigenomic deconvolution of complex tissues (discussed in Chapter 4).

Development and Aging

DNAmethylation is particularly dynamic in the early stages of life. More specifically, genomes
undergo two phases of global demethylation, followed by establishment of the DNA methy-
lation states [42]. First, DNA methylation is fully erased during gamete formation, followed
by the establishment of DNA methylation in a parent-specific manner (genomic imprinting,
[40]). Second, DNAmethylation in the zygote is removed first from the paternal and then from
the maternal copy of the genome [43]. This second round of demethylation is followed by set-
ting the DNA methylation pattern of the developing organism. After birth, the global DNA
methylation pattern undergoes larger changes up to adolescence. In the later years of life, the
methylome, i.e., the genome-wide profile of DNAmethylation, is less affected by changes, such
that DNA methylation patterns of 80-year-old people are nearly indistinguishable from those
of centenarians [44, 45].

Since virtually all organisms are affected by aging, this process is a prominent research target
for epigenetic research. Particularly, understanding the human aging process is relevant for de-
veloping anti-aging interventions and for prolonging the period of a healthy human life. DNA
methylation has recently emerged as a powerful biomarker for the human aging process. Gen-
erally, the genome-wide DNA methylation level decreases with age, while the characteristic,
strong correlation between adjacent CpGs is reduced in centenarians [45]. Furthermore, DNA
methylation levels at particular CpGs can be used as reliable predictors of the chronological
age of healthy individuals (see Section 3.2, [46, 44, 47]).
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2.2 Influence of Genetic Variation on Epigenetic Regulation

After the publication of the sequence of the human genome in the year 2001 [48, 49], research
focused on unraveling genetic variations between individuals associated with diseases or other
complex traits. Single nucleotide polymorphisms (SNPs) are sequence variations from the ref-
erence genome at individual genomic positions that occur in more than 1% of the human pop-
ulation [49]. To determine disease-related genetic variations, genome-wide association studies
(GWAS) associate SNPs to a phenotype of interest (e.g., a disease) by comparing a discovery
cohort, i.e., a group of individuals sharing the trait of interest, to a group of control individuals.
Using this methodology, SNPs linked to, e.g, schizophrenia, type 2 diabetes, and rheumatoid
arthritis [50, 51, 52] have been identified.
Genetic alterations have also been associated with quantitative traits in order to define quan-

titative trait loci (QTL). Such QTLs have been identified, among others, for gene expression
levels (expression QTL, eQTL [53, 54]), chromatin accessibility (caQTL [55]), metabolomic al-
terations (metabolomic QTL, mQTL [56]), and DNAmethylation (methylation QTL, methQTL,
[57, 58]). A QTL is defined as a SNP whose occurrence significantly correlates with the quan-
titative trait investigated in the population of study participants. For instance, a methQTL is
a genetic variant that correlates with the DNA methylation state of an individual CpG or of
multiple, jointly-regulated CpGs. The combination of multiple QTLs for different traits allows
for the characterization of the interplay between complex traits, epigenetics, and genetics. For
instance, a CpG methylation state can influence the expression level of a gene or vice versa and
the genetic associations serve as amediator for inferring causality from the interactions [59]. Fi-
nally, QTLs can be compared with SNPs associated with a disease (often referred to as a GWAS
hit) to determine the functional role of the quantitative trait in the disease [60, 61]. MethQTLs
will be discussed in more detail in Section 3.3.

2.3 DNA Methylation Aberrations and Their Association With
Human Diseases

DNAmethylation has emerged as an important biomarker for various diseases, since it is com-
paratively easy to measure and more stable with regard to environmental influences than, for
instance, gene expression. Due to the reliability and sensitivity of the Illumina BeadArrays
and more local approaches such as pyrosequencing (see Section 2.4), DNA methylation is be-
coming increasingly relevant for clinical diagnostics and will contribute to precision medicine.
DNA methylation aberrations can cause transcriptional dysregulation, which can have severe
systemic effects for the affected organism. Epigenetic therapies can include modulation of the
DNAmethylation patterns by targetingDNMT and TET genes using geneticmodification tools,
such as CRISPR/Cas9 or targeted demethylation using 5-azacytidine [62].

2.3.1 DNA Methylation Aberrations in Human Diseases

In addition to its connection to healthy human aging [44, 45], cigarette smoking [63, 64, 65], and
obesity [66], DNA methylation has been implicated in multiple diseases through epigenome-
wide association studies (EWAS). While DNA methylation states of a subset of CpGs change
gradually with healthy human aging, a connection between aberrant DNA methylation pat-
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terns and diseases causing premature aging, such as Hutchinson-Gilford Progeria and Werner
syndrome, has been detected [67]. Further EWAS revealed associations of DNA methylation
with rheumatoid arthritis [68], schizophrenia [69], and inflammatory bowel disease [70]. Sim-
ilarly, DNA methylation is a mediator of genetic risk for rheumatoid arthritis [68] and is as-
sociated with Crohn’s disease and ulcerative colitis [57]. Moreover, characteristic differences
in DNAmethylation patterns have been detected for brain samples from multiple sclerosis pa-
tients and healthy controls [71], as well as in twins clinically discordant for multiple sclero-
sis [72]. Additional associations between DNA methylation and diseases have been reported
for major depression [73], and type 1 diabetes [74]. However, the detected associations are
correlative, and a causal connection between DNA methylation aberrations and disease onset
remains to be investigated for most diseases [75]. Thus, DNA methylation is currently almost
exclusively employed as a biomarker instead of as a potential therapy target.

2.3.2 DNA Methylation Aberrations and Cancer Progression

DNA methylation aberrations have been intensively investigated in cancer progression, since
cancers exhibit largely disordered DNA methylation patterns throughout the genome. Most
notably, CGIs become hypermethylated, while otherwise highly methylated regions in the
genome become hypomethylated. This phenomenon is referred to as the CGI Methylator Pheno-
type (CIMP) [76]. Hypermethylation of CGIs within tumor suppressor genes, such as p53, can
promote cancer progression. On the other hand, transposable elements become hypomethy-
lated, which hampers the repressive function of DNA methylation on transposable element
expression. This process contributes to increased genome instability and chromosomal rear-
rangements. The p53 gene acts as an important regulator of the DNA methylome, and its al-
tered expression is linked to both loss and gain of DNA methylation [77]. While loss of DNA
methylation is distributed across different regions of the genome, hypermethylation occurs
more focally [78]. In depth functional characterizations of DNA methylation alterations have
been performed for prostate cancer, hepatocellular carcinoma, acute myeloid leukemia (AML),
chronic lymphocytic leukemia (CLL), and glioblastoma [79, 80, 81, 82, 83]. DNA methylation
can be used as an effective biomarker for diagnosis and prognosis [84], but also substantially
facilitates pathological classification of brain tumors [85]. The latter classification has entered
routine clinical practice. Due to specific DNAmethylation aberrations in cancers, DNAmethy-
lation remodelers, including DNMTs, are a premier target for drug development and have been
successfully applied for the treatment of solid tumors [86].

2.4 Genome-Wide Mapping of DNA Methylation

DNAmethylation is a well-studied epigentic mark, since it can be quantified genome-wide us-
ing various experimental assays. Notably, it is important to determine the fraction of molecules
representing methylated CpGs over all molecules assayed, i.e., computing the DNA methyla-
tion level or beta value. Two types of technologies for assayingDNAmethylation are commonly
used in the scientific community. BeadChipArrays aremicroarrays thatmeasure a subset of the
CpGs in the human genome using primer extension and have color intensities as the readout.
Second, sequencing-based approaches use high-throughput sequencing to quantify the num-
ber of methylated molecules at a genomic location. Both methods inherently rely on bisulfite
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conversion of unmethylated cytosines to uracils. Sodium bisulfite converts unmethylated cy-
tosines into uracils through sulfonation and subsequent deamination and desulfonation, while
methylated cytosines are protected from this reaction and remain as cytosines after the conver-
sion [87, 88]. Using this technique, the chemical modification present on the DNA is converted
into a sequence alteration that can be detected using standard genomic sequencing or microar-
ray technology. The resulting data can be analyzed using computational pipelines (see Sec-
tion 2.5). While ATAC-seq and ChIP-seq data can be used to determine regions in the genome
being in a particular chromatin state using peak-calling algorithms [89], the DNA methylation
assays discussed here provide a quantitative methylation level for each CpG.

2.4.1 Illumina Infinium BeadChip Arrays

Since the human genome comprises around 28 million CpG dinucleotides, high sample num-
bers are required for detecting reliable differences between phenotypes. To facilitate large-scale
analysis of DNAmethylation, Illumina proposed the Infinium® Methylation BeadArray series.
BeadArrays are microarrays that comprise several thousands of probes harboring CpG dinu-
cleotides to be routinely assayed. The first version of the Infinium microarrays – the Illumina
Infinium HumanMethylation27 (27k) bead array – assays more than 27,000 CpGs. The newer
generations of the series – the Illumina Infinium HumanMethylation450 (450k) and the Illu-
mina Infinium EPIC (EPIC) arrays – comprise more than 450,000 and more than 850,000 CpGs,
respectively. While the 27k and the 450k arraysmostly comprise CpG sites in gene promoters of
cancer-related genes, the newer generation also focuses on CpGs in putative enhancer regions.
For each of the CpG sites of interest, the bead array comprises multiple beads with multiple

probes harboring a sequence flanking the CpG site. The bead arrays rely on primer extension
of the probe sequence using the bisulfite converted DNA as a template. The deoxyribose nu-
cleoside triphosphates (dNTPs) used as substrate to the primer extension carry either a green
or red fluorescence label. There are two types of beads and corresponding probes available on
the newer generations (450k and EPIC) of the chip: type I probes employ two probes per locus
– an unmethylated and a methylated one [90]. Since the binding of an unmethylated target
sequence (i.e., a thymine after bisulfite conversion) to a methylated probe leads to the termina-
tion of the elongation of the probe sequence (and vice versa for methylated target sequence and
unmethylated probe), type I probes can be measured using a single color channel. In contrast,
type II probes comprise a generic bead type that binds to both methylated and unmethylated
sequences. Thus, type II probes require two color channels for the different binding events cor-
responding to amethylated/unmethylated target sequence. Finally, both probe types emit light
signals for the methylated and the unmethylated channels, respectively [90, 91], which can be
scanned using a Illumina HiScan or iScan machine. According to Illumina’s recommendation,
250 ng of genomic DNA is required as input to the EPIC array2. From these light intensities,
methylation values are called as beta values through:

β =
max(M,0)

max(M,0) +max(U, 0) + α
(2.1)

where M is the signal intensity of the methylated channel and U the signal intensity of the
unmethylated channel. The range of values for M and U is in the 1,000s to 10,000s and the pa-
rameter α is a constant offset that is typically set to 100 [90] for addressing the issue of both M

2https://emea.illumina.com/products/by-type/microarray-kits/infinium-methylation-epic.html

https://emea.illumina.com/products/by-type/microarray-kits/infinium-methylation-epic.html
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and U being very small. In addition to CpGs, quality control probes are available for checking
for the technical quality, including hybridization, specificity, and bisulfite conversion. Addi-
tionally, a few dozen genomic loci harboring SNPs with high minor allele frequency (MAF)
have been established on the microarray, which allow for the identification of potential sample
mix-ups in a genetically matched design.
Due to the difference in design, type I probes tend to yield a larger dynamic range of beta-

values [92]. Thus, normalization methods are required to match the distributions of the two
types of probes and to avoid spurious associations with a phenotype. Multiple methods are
available such as quantile normalization [93] or functional normalization [94] (more details in
Section 2.5). The Illumina BeadArrays can reliably detect smallmethylation differences and is in
clinical use [85]. Since the bead arrays reliably and reproducibly return methylation values for
the CpGs available, they allow for combined analysis of datasets generated at different places.

Using the same technology and replacing the methylation-aware probes by different genetic
variants, Illumina providesmicroarrays, such as the Illumina InfiniumOmniExpress or the Illu-
mina InfiniumOmniExpressExome BeadArray, for genotyping around 750,000 and onemillion
SNPs, respectively. These microarrays have been used for GWAS and for associating genetic
variants with complex traits (see Section 3.3).

2.4.2 Sequencing-Based Approaches

Due to the decreasing cost of high-throughput sequencing, bisulfite sequencing has become an-
other frequently applied method for profiling DNA methylation. Next-generation sequencing
(NGS) uses the sequencing-by-synthesis strategy established by Illumina to yield sequencing reads.
The process is conducted in a sequencing machine, such as the Illumina HiSeq2500 or the Illu-
mina NovaSeq. The fragmented input sample (sequencing library) is hybridized to molecules
on a sequencing flow cell using a sequencing adapter, and clusters of fragments are generated
through amplification. Multiple samples can be analyzed on the same flow cell by using a
unique barcode (index) per sample. During the sequencing process the integration of color-
labeled dNTPs into the template sequence is captured using an ultra-high resolution camera.
The resulting sequencing read is a sequence of letters that represents the nucleotides called (A,
C, T, or G). Newer sequencing technologies (third-generation sequencing), including Oxford
Nanopore sequencing [95] and Pacific Biosciences’ (PacBio) single molecule real-time (SMRT,
[96]) sequencing, allow for generating longer sequencing reads of 10s to 100s of kilobases in
comparison to the typical 50-250 bp read length generated by Illumina sequencing. Impor-
tantly, third-generation technologies tend to have higher error rates than Illumina sequencing
and are more expensive. Fragments can either be sequenced from one side only (single-read
sequencing) or from both directions together (paired-end sequencing).

In bisulfite sequencing, unmethylated cytosines are converted to uracils, which themselves
are replaced by thymines in the polymerase chain reaction (PCR). In the resulting sequencing
read, a methylated cytosine is represented as a cytosine, while the unmethylated cytosines ap-
pear as thymines. Analogously to the beta-value defined for bead arrays, the methylation level
of a CpG is computed as:

methylation levelCpG =
#C

#C+ #T (2.2)

where #C is the number of sequencing reads supporting a (methylated) cytosine and #T the
number of reads supporting a thymine (i.e., an unmethylated cytosine). A parameter similar to
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α in Equation 2.1 is not required, since positions with both #T and #C being zero are not consid-
ered. There are two frequently usedmethods for bisulfite sequencing: Whole-Genome Bisulfite
Sequencing (WGBS) and Reduced-Representation Bisulfite Sequencing (RRBS). Enrichment-
based approaches are less frequently employed for quantifying DNA methylation genome-
wide. Notably, in contrast to the Illumina BeadArrays, bisulfite sequencing can be performed
for any species provided that a reference-genome is available. Thus, this technology is the
current standard for investigating DNAmethylation in mice, although Illumina recently intro-
duced a microarray for murine samples3.
In contrast to these genome-wide approaches, several methods for mapping DNA methyla-

tion at specific genomic regions have been introduced. For instance, mass spectrometry can
differentiate between methylated and unmethylated molecules and does not rely on bisulfite
conversion, but cannot be used to measure DNA methylation genome-wide. Similarly, local
deep sequencing using, e.g., the Illumina MiSeq technology can be used to comprehensively
characterize short genomic regions of size less than 500 bp with sequencing depths up to sev-
eral thousand reads [97]. Alternatively, pyrosequencing or methylation-specific PCR can be
used to assay DNAmethylation of short genomic regions. However, genome-wide approaches
applied to human samples will be in the focus for this thesis.

Whole-Genome Bisulfite Sequencing

Whole-Genome Bisulfite Sequencing (WGBS, [98]) is typically considered the gold-standard
method for genome-wide analysis of DNAmethylation. WGBS assays virtually all CpGs in the
human genome (typically more than 90%) at a lower read depth than local deep sequencing,
yet providing reliable estimates of CpG methylation states.
The input toWGBS is cell material that can be obtained from any tissue, purified cell types, or

from cell cultures. Typically, many cells are required to yield a sufficient amount of DNA and
cell populations (bulk tissue samples) are frequently assayed. As a first step of the WGBS pro-
tocol, genomic DNA is extracted from the cells (Figure 2.6). In the most sensitive protocol pro-
posed to date, tWGBS [99], only 1 ng of genomic DNA is required to yield a sequencing library.
After fragmentation of the genomic DNA, the fragments are ligated to sequencing adapters
and subsequently treated with sodium bisulfite. The obtained fragments are sequenced using
a NGS machine. The final steps of the protocol involve bioinformatic processing of the data,
which will be discussed in more details in Section 2.5.2. While single-cell bisulfite sequencing
methods become increasingly available [100, 101, 102], they still suffer from high sequencing
costs and low genomic coverage [103], and they generate sparse data matrices.

Reduced-Representation Bisulfite Sequencing

A major disadvantage of WGBS is that many fragments are sequenced, which comprise only
few or no CpG dinucleotides and thus do not yield methylation information. This is due to the
uneven distribution and due to the overall depletion of CpGs in the human genome. Addition-
ally, many CpGs in the human genome are constantly methylated across virtually all cellular
states and cell types. Thus, Reduced-Representation Bisulfite Sequencing (RRBS) has been de-
veloped as a cost-effective alternative for obtaining DNA methylation information for 10-20%
of all CpG dinucleotides in the human genome [104]. The RRBS protocol employs enrichment
3https://emea.illumina.com/products/by-type/microarray-kits/infinium-mouse-methylation.html

https://emea.illumina.com/products/by-type/microarray-kits/infinium-mouse-methylation.html
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Figure 2.6: The workflow for genome-wide analysis of DNA methylation using WGBS comprises 7 steps: DNA
extraction, DNA fragmentation, bisulfite conversion, PCR amplification, sequencing, alignment,
and methylation calling. Modified from https://doi.org/10.6084/m9.figshare.5285470.
v1, created by Fabian Müller.

of fragments that contain CpGs through enzymatic digestion with an methylation-insensitive
restriction enzyme. In the original publication [104], the restriction enzyme MspI was used to
cut the DNA at CCGG positions irrespective of the methylation state. Afterwards, a size selec-
tion is performed to enrich for fragments that are more likely to contain CpG dinucleotides. A
library created using MspI assays mainly CpGs within CGIs. Since CGIs co-localize with gene
promoters, the methylation states of CpGs assayed in a MspI library tend to be rather stable
over different cellular states. Libraries created using an alternative restriction enzyme, HaeIII
(restriction sequence GGCC), preferentially capture putative enhancer regions whose methyla-
tion states are more variable across different cellular states [105]. Multiple restriction enzymes
can be combined in double-digestion libraries to combine the advantages of different enzymes
[106]. Through enrichment of the fragments comprising CpG-dense regions, RRBS substan-
tially reduces sequencing costs, since fewer sequencing reads have to be generated to cover 10-
20% of the CpGs in the human genome. Furthermore, in contrast to the Illumina BeadArrays,
RRBS can be applied to samples from any organism and is particularly useful for the analysis
of murine samples, for which a microarray platform has only recently been proposed.

https://doi.org/10.6084/m9.figshare.5285470.v1
https://doi.org/10.6084/m9.figshare.5285470.v1
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Enrichment-Based Approaches

In contrast to the size selection employed by RRBS, another approach for enriching sequencing
fragments toward methylated fragments is methylated DNA immunoprecipitation sequencing
(MeDIP-seq). This approach works analogously to ChIP-seq for genome-wide investigation of
histonemodifications. An antibody specific to 5mC is used to enrich for methylated fragments.
The fragments can then either be hybridized to a microarray (MeDIP-chip [107]) or sequenced
(MeDIP-seq [108]). Similarly, methyl-CpG-binding domain (MBD) proteins can be used to cap-
ture methylated sequences from the human genome, which can be subsequently sequenced.
MBD-seq [109] and MeDIP-seq return relative enrichments of methylated fragments by com-
paring the sequencing reads generated from the selected fragments with the background, i.e.,
sequencing reads generated without prior immunoprecipitation or MBD-selection. Caveats of
MBD-seq and MeDIP-seq include that co-methylation of adjacent CpGs is important for reli-
able precipitation and that fragments without CpGs may be precipitated by mistake. MBD-seq
and MeDIP-seq return relative rather than absolute methylation levels, thus RRBS and WGBS
are more frequently employed by the scientific community [110].

2.5 Basic Processing of DNA Methylation Data

Throughout this work, processed DNA methylation data will be utilized, i.e., data that can be
represented in tabular formwith CpGs as the rows and samples as the columns. However, data
is not obtained in such a format from the sequencing machine or the microarray scanner. In
this section, the steps necessary for obtaining processed DNAmethylation data in tabular form
based on the raw sequencing or microarray data will be presented. The focus is on data gen-
erated using the Illumina BeadArrays and on WGBS/RRBS data, and the section also presents
crucial quality control and normalization steps.

2.5.1 BeadChip Arrays: From Intensity Data to a Data Matrix

DNA Methylation Microarrays

Intensity data is obtained by scanning the Illumina Methylation BeadArrays using an Illumina
iScan or HiScan machine, which generate intensity data files (IDAT). These files are direct input
to software packages such asminfi [111] ormethylumi4, which use IDAT files to obtain beta values
from the red and green channels available as two separate files according to Equation 2.1. In
addition to the raw intensity data, the Illumina manifest file maps internal identifiers of the
microarray to genomic positions. Currently, this manifest file is only available for the human
reference genomeversion ‘hg19’. RnBeads, whichwill be described inmore details in Section 3.1,
internally uses methylumi for reading IDAT files. Data quality can be checked using the built-in
control probes and further processed using CpG filtering and normalization methods.

Sample-Specific Quality Control In order to check for data quality of the Illumina BeadAr-
rays, quality control probes for different processing steps have been established. These control

4https://www.bioconductor.org/packages/release/bioc/html/methylumi.html

https://www.bioconductor.org/packages/release/bioc/html/methylumi.html
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probes were constructed to exhibit high, medium, or low intensity values for successful experi-
ments. Additionally, background control probes report if the overall signal intensity is substan-
tially higher than expected. If several of the quality controls exhibit an unexpected distribution
of intensity values for a particular sample, this sample should be excluded from downstream
analysis. Similar to these control probes, the bead arrays comprise a few dozen highly variable
SNP probes, which should show methylation values of 0, 0.5. and 1.0 for different genotypes.
In a genetically matched setup, these probes can be used to check if the samples group together
as expected. An unexpected clustering is an indication of a sample mix-up. The detection of
sample mix-ups can be further supported by inferring additional sample properties such as
donor sex or age from the methylation data (see Section 3.1).

CpG Filtering In addition to the removal of potentially unreliable samples, filtering of fea-
tures (i.e., CpG sites) prior to the analysis of DNA methylation data is critical. Using the back-
ground control probes discussed earlier, a detection p-value can be computed for each CpG
site individually. The detection p-value indicates if the detected signal is significantly different
from the background signal [111], and sites with a high detection p-value (e.g., larger than 0.01)
should be removed from the analysis. Such a removal step has been implemented in RnBeads’
Greedycut algorithm, which iteratively removes CpGs from the analysis [112]. The Illumina
BeadArrays comprise multiple CpG sites that are annotated to common SNPs with a minor
allele frequency (MAF) in a general population higher than 1%. Using databases such as db-
SNP [113], CpG sites located at these SNPs should be removed from downstream analysis since
methylation differences detected at these positions can be due to genetic rather than epigenetic
alterations. Similarly, CpGs located on the sex chromosomes are strongly different between the
two sexes and are removed formost downstream analyses. Additionally, some CpG sites on the
bead arrays have been shown to be cross-reactive, i.e., they are located in repetitive sequences
or are highly homologous to other sequences. To avoid determining spurious associations,
cross-reactive probes should be discarded [114, 91]. Most software packages for the analysis of
Illumina BeadArrays contain preprocessing steps that comprise the stepsmentioned above (see
also Section 3.1).

Normalization Since the dynamic ranges of the two probe designs on the 450k and EPIC ar-
rays are different, data normalization of the beta values is important. The respective normal-
ization methods include quantile normalization, which match the distribution of type I probes
to those of type II probes and vice versa. For instance, a beta-mixture quantile (BMIQ) normal-
ization method has been introduced by Teschendorff et al. [115] for the 450k array and has also
proven useful for the EPIC array. Additionally, the “dasen” normalization method from the
wateRmelon R-package [116] accounts for known biases of EPIC array data. Since it has better
runtime performance than BMIQ, it is the default normalization method used by RnBeads. A
comprehensive, independent evaluation assessing both runtime performance and the effect of
bias correction across different normalization methods is currently missing, and further nor-
malization methods have been proposed, including SWAN [117], functional normalization [94],
or noob [118].
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Genotyping Microarrays

Calling Genotypes from Intensity Data To obtain genotype calls for the SNPs available on
the Illumina genotypingmicroarrays (e.g., InfiniumOmniExpress or InfiniumOmniExpressEx-
ome BeadArrays), a genotyping algorithm is required. One such algorithm is KRLMM, which
exhibits performance comparable with other genotyping algorithms [119]. In a first step, raw
signal intensities obtained from the microarray are quantile normalized to adjust the distribu-
tions of the samples to one another. As the second normalization step, loess normalization
is employed on the data. The genotyping process relies on k-means clustering of the normal-
ized signal intensities, which assigns the samples for each of the SNPs into either one, two,
or three categories (according to genotype AA, AB, and BB). To select the number of clusters
for each SNP individually, the KRLMM algorithm uses a logistic regression classifier based on
the residual sum of squares, the Mahalanobis distance, and the agreement with the Hardy-
Weinberg equilibrium. The coefficients of the logistic regression classifier were trained on data
from the HapMap project [120]. After selecting the number of clusters for each of the SNPs
individually, k-means clustering is used for genotyping the samples.

Imputation Reference genotypes acrossmanyhumanpopulations have been created in projects
such as theHapMap or the 1000 genomes project [121] . Thus, it suffices to assay a lower number
of SNPs using microarrays in a study population and infer the genotypes of SNPs only present
in the reference panel for the study at hand. This process, typically referred to as genotype
imputation, first infers haplotypes from the data using, e.g., Hidden-Markov Models (HMMs).
In the next step, missing SNP genotypes are inferred from the conditional probabilities of the
model learned in the first step. Going into more details about the imputation procedure is be-
yond the scope of this thesis and further information can be found in the publications of the
imputation methods IMPUTE2 [122],MaCH [123], or the Michigan Imputation Server [124].

2.5.2 Sequencing-Based Approaches: Quality Control, Alignment, Quantification

In contrast to the Illumina BeadArrays, bisulfite sequencing data requires substantially more
processing steps to produce reliable methylation calls of single CpGs across all the samples.
Raw sequencing data is directly obtained from a sequencing machine. In a first step, raw bi-
nary base call (bcl) files are converted into read files (FASTQ format), which are human-readable
files that comprise a single line of base calls for each sequencing read alongwith further quality
information. Typically, multiple samples will be analyzed on the same lane of the sequencing
flow cell, and FASTQ files need to be assigned to samples using an indexing strategy. This pro-
cess, referred to as demultiplexing, generates a single FASTQ file for a single-read library and two
FASTQ files (one for each read) for a paired-end library.
The steps necessary to generate single-CpG methylation calls from raw sequencing data are

assembled into pipelines. International epigenomic consortia, such as the International Human
EpigenomeConsortium (IHEC [125]), BLUEPRINT [126], and the German Epigenome Program
(DEEP), established such pipelines for routinely processing bisulfite sequencing data. Notably,
the pipelines differ in the software tools they use and generate slightly different output formats.
In the following, we present the steps and different software tools of such a pipeline, but do
not present a concrete example of a pipeline. Such examples can be found, e.g., on the DEEP
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GitHub page5.

Quality Control

Raw sequencing data is checked for data quality using metrics such as number of non-called
bases (Ns), percentage of the different nucleotides, or number of PCR duplicates. An unusually
high number of duplicates indicates an overamplification of the fragment during PCR. Unusual
values of the quality statistics should be carefully investigated and the corresponding samples
can potentially be excluded from downstream analysis. Tools such as FastQC6 give a compre-
hensive overview of various quality statistics and provide recommendations for assessing data
quality. However, bisulfite treated reads require special investigation, since unmethylated cy-
tosines are converted to thymines. Thus, only methylated cytosines will appear as cytosines
in the sequencing reads, while methylated cytosines are heavily underrepresented throughout
the genome. Consequently, the final sequencing reads show a low cytosine content in the qual-
ity control reports. Additionally, RRBS libraries show a substantially higher PCR duplication
rate. InWGBS libraries, the start positions of reads aremore or less randomly distributed across
the genome and detecting the same start position of a read multiple times is unlikely. These
sequences are marked as duplicates by FastQC, while RRBS reads are more likely to start at
identical position due to the restriction enzyme treatment.

Trimming, Mapping, and Methylation Calling

After thoroughly checking for data quality, the sequencing data needs to be converted into
single-CpG methylation levels. Sequencing adapters do not contain information about the se-
quence of interest and are removed from the sequencing files in the trimming step, using tools
such as TrimGalore!7 or cutadapt [127]. Since FASTQ files contain raw sequence information and
no information about the location of the signal, the sequence information of the fragments
needs to be associated to a genomic region. This is achieved in the mapping step, where all
sequencing reads are aligned to a reference genome at the position that best matches the read
sequence. In comparison to aligning genomic reads, aligning bisulfite-converted sequences to
a reference genome is substantially harder, since the DNA alphabet is virtually reduced to only
three letters (A, G, and T, only very few Cs) with long T-stretches due to bisulfite conversion.
While a thymine in the read can reflect both a thymine or an unmethylated cytosine in the orig-
inal sequence, a thymine in the reference genome can never match a cytosine in the read. This
problem is referred to as an asymmetric mapping problem. Current bisulfite read alignment
tools such as bsmap [128], bismark [129], or gemBS [130] perform in-silico bisulfite conversion of
the reference genome. The modified genome is then used as a reference for a genomic align-
ment tool such as bowtie [131]. Bowtie uses the Borrows-Wheeler transform to generate an index
structure for matching the sequencing reads into the reference genome. The reads are aligned
against the most recent version of the reference genome (currently ‘GRCh38’/‘hg38’ for hu-
man). Further quality checks such as bisulfite conversion controls can be performed through
spiked-in sequences with known DNA methylation states. After assigning the reads to a ge-
nomic position, the methylation level for each of the CpGs is computed using Equation 2.2 in

5https://github.molgen.mpg.de/DEEP/comp-metadata
6https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
7https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/

https://github.molgen.mpg.de/DEEP/comp-metadata
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
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the methylation calling step.

2.6 Methodological Background

I will now move from the biological motivation and background toward an introduction of basic math-
ematical definitions and computational methods that will be used throughout this work. Most of the
definitions and concepts introduced below were obtained and modified from James, Witten, Hastie, and
Tibshirani [132] and Hastie, Tibshirani, and Friedman [133]. The section requires a basic understanding
of linear algebra.

2.6.1 Notations and Definitions

Throughout this work, data matrices representing methylation states of multiple samples in a
population across multiple CpGs assayed will be used. We consider p as the number of rows in
the matrix, which represent the features. Each row either comprises the methylation states of
a single CpG dinucleotide or an aggregate value across a predefined genomic region, such as a
promoter. n is the number of columns of the matrix and represents the observations/samples
in the dataset. The data matrixD has dimension p×n and is the result of the DNAmethylation
mapping techniques and the basic processing steps mentioned above. Notably, each entry ofD
is in the interval [0, 1].

To explore the datamatrix and to generate hypotheses, various statistical learning techniques
are applied to the data matrix. These techniques can be divided into unsupervised and super-
vised learning methods. While supervised learning aims to predict an outcome y given a set of
observations (training data), unsupervised learning determines patterns and structures in the
data without considering an output variable. If the output is a categorical variable, i.e., it has
a finite number of possible values (mostly two), the supervised learning task is called classifi-
cation, while regression predicts a continuous output variable, which can take on uncountably
many values. If a model makes assumptions about the structure or distribution of the data, it
is considered a parametricmodel and otherwise a non-parametricmodel.

In supervised learning, the objective is to minimize the test error, i.e., the error that the model
makes when applied to a previously unseen dataset. The test error cannot easily be estimated
during the training process, since an independent test dataset is often unavailable. In contrast,
the training error is the difference between the model predictions and the true output in the
training samples. It turns out that there are three components contributing to the test error
according to the bias-variance trade-off. The variance describes the variability of the model using
different training datasets. In contrast, the bias describes the systematic deviation of the model
from the underlying relationship between input and output. The last component contributing
to the test error is the irreducible error, i.e., the error or noise inherent to the data that cannot
systematically be described.

2.6.2 Linear Regression

In the simplest regression model, known as linear regression, a linear model is constructed to
describe the relationship between the input data matrixDp×n and the output yn×1. In a simple
linear regression p = 1 and the goal is to minimize a loss function. This loss function describes
the difference between the predictions ŷ and the true outputs y, where ŷ can be written as:
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ŷ = β0 +DTβ1

where β0 (intercept) and β1 (slope) are coefficients to be estimated. However, p will typically
be much larger than one and, within this thesis, even exceed the value of n.
If p > 1, the problem can be formulated as multiple linear regression. In the following, the

scalar values β0, . . . , βp will be replaced by a vector β of dimension (p + 1) × 1 and there will
be an additional row in D for the intercept β0:

ŷ = DTβ

The goal of linear regression is to minimize the loss function. An example for a loss function,
which is frequently used is the Residual Sum of Squares (RSS). The RSS describes the sum of
squared differences between the predictions and the output vector for all samples:

min
β

RSS(β) = min
β

(y−DTβ)T (y−DTβ)

It turns out that the solution to this optimization problem can be solved analytically and
returns the least squares estimate. According to the Gauss-Markov theorem, the least squares esti-
mate is, among all unbiased linear estimators, the one with the lowest variance, assuming that
the true relationship between input and output is linear.
An important problem of least squares regression occurs when p > n, which is commonly

the case in epigenomic research. In such a case, there is no unique solution of the minimization
problem. To deal with this issue, the coefficient values in the optimization problem are regu-
larized or a subset of the p features is selected. There is no unbiased linear estimator with a
variance lower than the least squares estimate, but there might be biased estimators with sub-
stantially lower variance. The regularization term leads to a reduction of the variance of the
estimated coefficients, i.e., the level of variability of the coefficient estimates obtained on dif-
ferent datasets is reduced. Two commonly used methods of regularized linear regression are
ridge regression and the Lasso [134]. Both of the methods impose a penalty on the parameters to
be estimated, which results in the modified optimization problems:

Ridge regression:min
β

(RSS(β) + λ||β||22)

Lasso:min
β

(RSS(β) + λ||β||1)

In contrast to ridge regression, the Lasso performs variable selection by setting some of the
coefficients to exactly zero. The advantage of the regularization comes from the bias-variance
trade-off. The regularization employed through ridge regression and the Lasso substantially
decreases the variance, while introducing a bit of bias. In order to combine ridge regression
and the Lasso, elastic net regression [135] was introduced, which combines the Lasso and ridge
penalties using the hyperparameter α.
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min
β

(RSS(β) + λ(α||β||22 + (1− α)||β||1))

In contrast to linear least squares, this optimization problem does not have an analytical so-
lution and is solved using coordinate descent methods [136]. To find optimal values for the
hyperparameters α and λ, a cross-validation (CV) or nested-cross-validation scheme on a range of
different user-defined values is recommended. Cross-validation is the process of (repeatedly)
resampling training and disjoint test data from the dataset, training the model on the training
dataset, and assessing performance using the test dataset.
In addition to the prediction task, linear models can be used to determine statistically signif-

icant associations between a pair of variables, such as gene expression values and DNAmethy-
lation. Due to their universal applicability, they will be used at various points throughout this
thesis, especially in Chapter 3 and Chapter 5.

2.6.3 Logistic Regression

For predicting a categorical (here binary) rather than a quantitative output variable, classifi-
cation methods can be used. Logistic regression is a classification method that uses the logistic
function to map the output into the interval [0, 1]:

p =
ed

T
i
β

1+ ed
T
i
β

(2.3)

where di is a column (observation) of D. Here, the output p can be interpreted as a probabil-
ity for the observation di belonging to the first class, while the probability of belonging to the
second class is 1−p. The goal of logistic regression is to obtain values for β such that the proba-
bilities for the observations in the first class are maximal and minimal for the second class (i.e.,
1−p is maximal). In contrast to linear regression, logistic regression does not have an analytical
solution, but can efficiently be solved using maximum likelihood. Briefly, maximum likelihood
aims at finding the coefficients β that lead to a maximum value for equation Equation 2.3 for
all data points belonging to the first class and maximizing 1−p for all data points belonging to
the second class. Using this notion, the likelihood is defined as the product of all probabilities
(p values) for the observations in the first and 1 − p values for the observations in the second
class. The maximum of this likelihood function (or equivalently the minimum of the negative,
logarithmic likelihood) is obtained using the Newton-Raphsonmethod.
Given the probability for each observation belonging to a class and the true class labels for

each observation, a confusion matrix (Table 2.1) can be constructed:

Table 2.1: Possible outcomes of a binary classification task (confusion matrix).
Predicted class

Positive Negative

True class Positive True positive (TP) False negative (FN)
Negative False positive (FP) True negative (TN)

From this matrix, sensitivity and specificity can be computed:



Chapter 2 Background 27

Sensitivity =
TP

TP+ FN

Specificity =
TN

TN+ FP

Both sensitivity and specificity depend on the threshold employed for differentiating be-
tween the two classes (e.g., the probability estimate returned by logistic regression). To vi-
sualize the values for sensitivity (y-axis) and 1-specificity (x-axis) for different thresholds, the
Receiver Operator Characteristic (ROC) curve can be used. The Area Under the Curve (AUC) of the
ROC curve is a measure for the quality of the binary classification task.

2.6.4 Matrix Decomposition

A typical datamatrixD usedwithin this thesis is high-dimensional (e.g., several hundred thou-
sand rows and several hundred columns) and cannot be easily visualized. To overcome this
problem, a special type of unsupervised learning tools called dimension reductionmethods have
been introduced. One such dimension reduction method, principal component analysis (PCA),
operates on eigenvalues and a matrix of eigenvectors. To obtain eigenvalues and eigenvectors,
singular value decomposition (SVD) of the centered data matrix D (row sums equal to zero) can
be used:

DT = USVT

DDT = (VSTUT )USVT = V(STS)VT

where U is an orthogonal matrix (assuming that D is real-valued), S comprises singular val-
ues in the diagonal (zeros elsewhere), and V is the matrix of eigenvectors of DDT , which are
also known as principal component directions of DT . The principal components can be used for
visualization of the data in low dimensional space. Principal component directions form an
orthogonal basis by construction. Similarly, Independent Component Analysis (ICA) returns sta-
tistically independent components (to be discussed in Chapter 4). To allow for drawing the
data in the paper or screen plane, the first two principal components are often used. Further,
non-linear dimension reduction methods include t-distributed stochastic neighbor embedding
(tSNE) [137] and Uniform Manifold Approximation and Projection (UMAP) [138], which are
routinely used in single-cell data analysis.
We will use another matrix decomposition technique – non-negative matrix factorization

(NMF) – for decomposing the data matrix into sources of variation, while imposing additional
constraints specific to DNA methylation data. The process of decomposing the matrix into
components of variation is called deconvolution and mimics restoring the original signal after
it has been blurred by a filter in the convolution process. In the context of DNA methylation
data, the convolution is imposed by a mixture of multiple cell types in a bulk tissue sample,
as well as additional sources of variation (e.g., age, sex) that contribute to the measured DNA
methylation signal in the data matrix. NMF will be introduced in detail in Chapter 4.
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2.6.5 Clustering

Another instance of unsupervised statistical learning aims to group together samples that be-
have similarly with respect to the features. More specifically, the goal of clustering is to create
groups (clusters) of observations that are more similar to the observations inside the group
than to those outside of the group. Two frequently used clustering methods are hierarchical
clustering and k-means clustering. Both clustering approaches employ a distance metric to define
a dissimilarity between two data points, and the Euclidean distance is commonly used:

||x− y||2

where x, y are two observations (p-dimensional vectors). Additional distance metrics include
the correlation-based distance (1 - (Pearson) correlation of the vectors), Manhattan distance,
and Mahalanobis distance.

Hierarchical Clustering Hierarchical clustering of the samples can be performed by a simple
algorithm. The algorithm initializes each sample as a cluster on its own (a singleton) and iter-
atively merges the two most similar (least dissimilar) clusters, until only a single cluster is left
(bottom-up clustering). To define the dissimilarity between two clusters, different linkage crite-
ria have been introduced: average, complete, and single linkage. Complete and single linkage
use the maximum andminimum distance, respectively, between any two data points in the two
clusters to be compared, while average linkage uses the average dissimilarity between all the
pairs of data points in the two clusters:

t(G,H) =
1

NGNH

∑
i∈G

∑
j∈H

tij

where G,H are the clusters, NG,NH the number of observations per cluster, and tij the dis-
similarity between data points i and j. Using this approach, a dendrogram is generated as a tree
structure that represents themerging process and a clustering is obtained by a horizontal cut of
the dendrogram. Dendrogramswill be used along with heatmaps throughout this thesis, where
both rows and columns of a matrix are hierarchically clustered. In contrast to hierarchical clus-
tering, k-means clustering requires the number of clusters to be defined a priori. Details about
the k-means clustering algorithm can be found in the literature [132].

Louvain Clustering Louvain clustering is a computational method that uses graph concepts
to define clusters [139]. From the set of observations and an associated distance metric (e.g.,
Euclidean distance, correlation-based distance), a weighted graph can be constructed. In this
graph, each node is an observation and the weight of an edge (w) corresponds to the similarity
(1-distance) between the two data points. Given this graph and a partition into clusters, the
modularity Q can be defined as:

Q =
1

2m

∑
i,j

(wij −
kikj

2m
)δ(ci, cj)
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where i, j are data points (nodes),wij is theweight of the edge between i and j, ki =
∑

jwij is the
sum of edge weights to all other nodes from node i, ci is the cluster to which node i belongs to,
δ(ci, cj) is one if i and j belong to the same cluster and zero otherwise, andm = 1

2

∑
i,jwij [139].

Intuitively, Q will be large if for all clusters the sum of edge weights between nodes within
the same cluster (wij) is large in comparison to the product of all edge weights (ki, kj). Thus,
partitions of the graphs with high values for Q have many connections within the nodes of a
cluster, but only few connections to the nodes outside of the cluster.
The Louvain clustering algorithm obtains a clustering of the network that maximizes the

modularity Q using an iterative, two-stage procedure. First, each cluster comprises a single
observation similar to hierarchical clustering. The two stages of the algorithm are as follows:

1. For each node i in the graph, investigatewhether an increase ofmodularity can be achieved
by placing i into the cluster of any of its neighbors j. The node is placed in the cluster re-
sulting in the largest increase in modularity. The first stage is execute sequentially and
repeatedly until no further increase of modularity can be achieved.

2. Construct a newnetwork,where each node is a cluster from stage 1, and the edges between
two clusters are the sum of weights of the edges between nodes in the two clusters. Self-
loops represent the edges between nodes in the same cluster. Apply stage 1 to this new
graph.

This whole procedure is iterated, until no further improvement of the modularity can be
achieved [139]. The final stage of the algorithm returns clusters of data points, and Louvain
clustering does not require the number of clusters to be defined a priori.
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3
DNA Methylation Heterogeneity
Between Phenotypes
In this chapter, I will present two projects: First, I will show how we can use epigenomic differences
between groups defined by a phenotype to gain insight into epigenetic regulation and its association with
diseases. To facilitate the analysis of between-group heterogeneity, DNA methylation data can be com-
prehensively analyzed with the software suite RnBeads. Together with the original developers of RnBeads
(Yassen Assenov, Fabian Müller, and Pavlo Lutsik), and with Christoph Bock as the main supervisor, I
developed an updated version of RnBeads. I contributed new state-of-the-art modules (age and sex pre-
diction, missing value imputation, differential variability, segmentation), applied the updated package to
cancer samples, and performed a benchmark of RnBeads in comparison to other published tools. The first
part of the chapter is a modified version of Müller et al. [140] published in Genome Biology (2019), in
which we propose RnBeads 2.0. Additionally, I discuss the relationship between DNA methylation and
the human aging process, which is follow-up work based on my Master’s thesis (Scherer [141], 2016).
In a joint project with Lisa Eisenberg (née Handl) and Nico Pfeifer, we investigated the applicability of
unsupervised domain adaptation for epigenetic age prediction. I contributed processed DNAmethylation
data as input to the model and provided the baseline comparison model.
In the second part of this chapter, I investigate the relationship between donor genotype and DNA

methylation patterns. Methylation quantitative trait loci (methQTLs) are genetic alterations (SNPs)
that correlate with the DNA methylation state of individual CpGs. An important biological question is
whether those interactions are shared across different cell types or whether they are cell-type specific. To
answer this question, I developed a novel software tool (MAGAR) and used established computational
frameworks to jointly analyze DNA methylation and genotyping data from four tissues assayed in the
context of the SYSCID1 project. The research was performed in close collaboration with Gilles Gasparoni
(Genetics Department), Souad Rahmouni and Michel Georges from the university of Liège, Paul Lyons
from Cambridge university (UK), Yurii Aulchenko and Tatiana Shashkova, and Jörn Walter as the main
supervisor. A manuscript describing the software tool and the analysis of methQTLs is currently in
preparation.

1http://syscid.eu/

http://syscid.eu/
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3.1 RnBeads 2.0: Comprehensive Analysis of DNA Methylation
Data

3.1.1 Overview of DNA Methylation Analysis Tools

In order to guide diagnosis and therapy selection in a clinical setting, biomarkers for a disease
are required. Such a biomarker can provide information about the presence of the disease, the
subtype of the disease, or is informative about patient prognosis. DNAmethylation has recently
emerged as a premier candidate for the discovery of epigenetic biomarkers [142, 70] due to
the increasing availability of DNA methylation data. To detect novel DNA methylation-based
biomarkers, a group of samples obtained from affected individuals is compared to a control
group comprising healthy individuals. Additionally, different subgroups within the group of
affected individuals can be defined and used for discovering biomarkers of disease subtypes
or patient prognosis. No control group is required for such an analysis (see Section 3.1.3). In
brief, the DNAmethylation patterns of the groups are compared, and CpGs or genomic regions
identified that are significantly different between the groups. This type of analysis, referred to
as an EWAS, requires extensive data processing to focus on a set of reliably detected CpGs and
necessitates additional exploratory analysis to generate and confirm hypotheses.
Using the EWASmethodology, DNAmethylation aberrations have been associated with var-

ious diseases (cf. Section 2.3 [75, 143]). Notably, the functional implications of DNAmethylation
aberrations remain largely unknown and need to be addressed, e.g., through functional assays
such as CRISPR/Cas9. The typical input to EWAS is DNAmethylation data generated through
bisulfite sequencing or microarray technology. Further information about the samples such as
tissue or cell type, phenotypic data (donor age, sex, etc.), and sample grouping (e.g., disease
versus control) is required. A bioinformatic workflow for EWAS comprises the following steps:
(i) data import, (ii) quality control, (iii) identification of a set of reliable CpGs across the sam-
ples and removal of technical biases (iv) exploratory data analysis, and (v) association of DNA
methylation heterogeneity with sample annotations (differential analysis). Most bioinformatic
tools support individual steps of thisworkflow (reviewed in [144, 145, 146, 147] and summarized
as a feature table in Supplementary Table A.1), while integrative tools are still scarce.
The RnBeads software package [112] is an R/Bioconductor package providing a pipeline for

start-to-finish analysis of DNA methylation data. Notably, RnBeads supports both bisulfite se-
quencing and microarray data and allows for data integration across different technologies. It
follows the standards and practices established by epigenomic consortia, such as the Interna-
tional Human Epigenome Consortium (IHEC). Since its original release in 2012 and the initial
publication in 2014, RnBeads has become a well-established software tool. However, it is nec-
essary to routinely update software packages by implementing novel analysis strategies and to
continually improve the software. During this work, we extended the original software pack-
age with state-of-the-art analysis methods motivated by user feedback and feature requests
and improved computational efficiency. Novel features include epigenetic age prediction, im-
proved support of missing values, and analysis of differential variability. The updates have
been collected in a new release of the software package (RnBeads 2.0) and position RnBeads as
an integral tool in many standardized DNA methylation analysis workflows. RnBeads is ac-
tively used in the context of the German Network for Bioinformatics Infrastructure (de.NBI2)

2https://www.denbi.de

https://www.denbi.de
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and the EU-funded SYSCID project3. We present an use case of the updated software package
by analyzing a childhood bone cancer cohort (Ewing sarcoma) and find strong indications of
tumor and DNA methylation heterogeneity in stem cells. Additionally, we present a bench-
mark of RnBeads2.0 in comparison to other software tools for the analysis of DNA methylation
data.

3.1.2 Analyzing DNA Methylation Data with RnBeads

RnBeads Overview

RnBeads is a modular pipeline for the analysis of DNA methylation data that comprises seven
core modules: data import, quality control, preprocessing (i.e., filtering and normalization),
tracks and tables (i.e., export of processed data for visualization in a genome browser), covariate
inference (e.g., predicting epigenetic age and cell-type composition), exploratory analysis (e.g.,
dimension reduction, global distribution of DNA methylation levels, hierarchical clustering),
and differential analysis between two user-defined sample groups (Figure 3.1). For each of the
analysis modules, RnBeads creates an interactive HTML report describing the analysis that has
been conducted and provides associated plots. These reports can be used to share an analysis
within the scientific community and facilitate the reproducibility of the results.
The core structure has already been developed for the original publication in 2014, but the

modules have been extensively revised and extended in the updated version. Specifically, Rn-
Beads 2.0 provides new/extended functionality for:

1. Support for additional data types: RnBeads now also supports data generated by the
newest version of the Illumina BeadArray series, the EPIC array, and allows for the inte-
gration of different data types (Illumina BeadArrays and RRBS/WGBS) into a combined
analysis. This extended functionality facilitates integrative analysis of datasets gener-
ated by different epigenomic consortia or by different technological platforms. CpG-wise
methylation calls obtained from different technologies are mapped to overlapping ge-
nomic locations and aggregated into a combined data matrix.

2. Additional analysis and inference algorithms: RnBeads now handles missing values in
the DNA methylation data matrix (missing value imputation). To obtain estimates of
a sample’s epigenetic age, we incorporated DNA methylation-based age prediction in
a platform-aware manner for both array-based and sequencing-based datasets (see Sec-
tion 3.2). These estimates can be useful for correlating accelerated epigenetic aging to
physiological states [148] or to detect potential sample mix-ups. We also incorporated es-
timation of the overall immune cell content of a sample using the LUMP algorithm [149],
which is motivated by immune infiltration into tumors and provides a generic estimate of
tumor purity. New methods for quantifying DNA methylation variability [150, 151], i.e.,
detecting differentially variable CpGs (DVCs), contribute to the detection of epigenetic
risk loci for cancer predisposition, and region set enrichment analysis using the LOLA
tool [152] facilitates the interpretation of DMCs/DVCs. Additionally, RnBeads 2.0 sup-
ports DNA methylation-based segmentation through theMethylSeekR approach [153].

3https://syscid.eu

https://syscid.eu
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TAB
IDAT GEO

BED TAB

Figure 3.1: The RnBeads analysis workflow comprises seven modules for DNA methylation data analysis.
RnBeads supports various kinds of DNA methylation data as input and requires phenotypic
information as a sample annotation sheet. An RnBeads analysis can be configured using R
scripting or the R/Shiny-based GUI RnBeadsDJ. Each of the analysis modules creates an HTML
report describing the analysis steps performed (described on the right side) and associated results.
TAB, tabular file; BED, Browser extensible data (RRBS/WGBS data); GEO, download from the
Gene Expression Omnibus (GEO) repository

3. Graphical user interface (GUI): In order tomakeRnBeadsmore readily accessible also for
non-bioinformaticians and for users with limited R/Bioconductor knowledge, we created
a new R/Shiny-based GUI to configure and execute an RnBeads analysis. Along with
the HTML reports facilitating the exploration and distribution of the results, this new
interface improves usability.

4. Computational efficiency: RnBeads supports parallelization and allows for automatic
distribution of jobs across the nodes of a high performance computing (HPC) cluster, now
supporting two of the most widely-used job scheduling systems, the Sun Grid Engine
(SGE4) and the Simple Linux Utility for Resource Management (SLURM5).

Using RnBeads 2.0, we analyzed hundreds of RRBS samples obtained from Ewing sarcoma
patients [154] on an HPC cluster. We discuss some of the feature updates in more detail below
and focus on the Ewing sarcoma dataset as a use case dissecting tumor heterogeneity. Lastly,
we present a benchmark of RnBeads in comparison to other software tools.
4https://docs.oracle.com/cd/E19279-01/820-3257-12/n1ge.html
5https://slurm.schedmd.com/documentation.html

https://docs.oracle.com/cd/E19279-01/820-3257-12/n1ge.html
https://slurm.schedmd.com/documentation.html
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Dataset Description

Tumor heterogeneity is a key property of many cancers that is present at multiple molecular
layers including the epigenetic layer [155]. Comprehensively assessing epigenetic heterogeneity
is especially critical for bulk tumor samples, since different cell types (e.g., cancer cells, immune
cells) in the sample contribute to the overall signal. We analyzed a recently published cohort
of the childhood cancer Ewing sarcoma, with 188 samples comprising Ewing tissue samples,
Ewing cell lines, and mesenchymal stem cells (MSC) obtained from healthy donors and from
Ewing sarcoma patients (eMSCs, GEO accession: GSE88826 [154]). The pediatric bone cancer
Ewing sarcoma exhibits low genetic, but substantially elevated epigenetic heterogeneity [154,
156]. WeusedRnBeads’novel differential variabilitymodule (details below) to investigate tumor
and stem cell heterogeneity.
Notably, there aremultiplemethods formappingDNAmethylationdata genome-wide (Chap-

ter 2), and each of the methods delivers information on DNA methylation for a set of partially
overlapping CpGs. Since different epigenomic consortia, such as DEEP or IHEC, generated
epigenomic data using different technologies, there is a need for a software tool that integrates
DNA methylation data across different technologies. Most of the available software tools fo-
cus either on microarray or bisulfite sequencing data (Supplementary Table A.1), and a com-
putational suite for joint analysis is required. RnBeads handles any dataset providing single-
CpG resolution and is capable of integrating different genome-wide assays, including WGBS,
RRBS, and DNA methylation microarrays (27k, 450k, EPIC). Additionally, RnBeads supports
enrichment-based assays (e.g., MeDIP-seq, MBD-seq) given that their relative output (read en-
richment) has been converted into absolute, single-CpGmethylation calls using available bioin-
formatic tools [157, 108]. RnBeads relies on pre-compiled annotation packages, which have been
generated for different versions of the human (‘hg19’, ‘hg38’) and the mouse genome (‘mm9’,
‘mm10’), as well as the rat reference genome (‘rn5’). Custom annotations for other species can
be generated using the RnBeadsAnnotationCreator package6.

Computational Scalability

Since DNAmethylation data matrices are usually high-dimensional, they potentially do not fit
into the random access memory (RAM) of a standard working station. Thus, RnBeads stores
large matrices on disk rather than in main memory using the ff R-package7. The foreach8 and
doParallelpackages9 allow for different jobs to be automatically distributed across different cores
of a machine. We have also implemented an interface that automatically distributes parts of the
RnBeads analysis across the nodes of an HPC cluster. In addition to SGE, RnBeads supports the
SLURM job scheduling system. This allows for RnBeads to be executed in the de.NBI cloud10.
With the flexible option settings available in RnBeads, time-consuming or memory-consuming
steps of the analysis pipeline can be deactivated and we provide pre-defined option settings
for different computational configurations. All these features enable analysis of hundreds of
bisulfite sequencing samples or thousands of Infiniummicroarray samples in a single execution
of the pipeline.
6https://rnbeads.org/tutorial.html
7https://CRAN.R-project.org/package=ff
8https://CRAN.R-project.org/package=foreach
9https://CRAN.R-project.org/package=doParallel
10https://cloud.denbi.de/

https://rnbeads.org/tutorial.html
https://CRAN.R-project.org/package=ff
https://CRAN.R-project.org/package=foreach
https://CRAN.R-project.org/package=doParallel
https://cloud.denbi.de/


Chapter 3 DNA Methylation Heterogeneity Between Phenotypes 35

Tool Comparison

In a review paper [158], the following tools for the analysis of DNA methylation data gener-
ated with microarrays have been evaluated: minfi [111], methylumi [159], wateRmelon [116], and
ChAMP [160]. We compared runtime performance and peak memory consumption of RnBeads
to these software packages. With methylKit [161], we also included a package supporting the
analysis of bisulfite sequencing datasets into the benchmark. For evaluation of the tools fo-
cusing on microarray data, we used a dataset comprising peripheral blood samples from 732
healthy individuals [162] and benchmarked the performance on bisulfite sequencing data us-
ing amouse RRBS dataset (GEO accession number GSE45361, 6 adrenal gland and 11 liver sam-
ples [163]) and a human WGBS dataset (12 hepatocyte samples) from the DEEP project. Thus,
we covered the typical use cases of DNA methylation data analysis. All benchmarking runs
were executed on a DebianWheezy machine (32 cores@1.2 GHz, 126 GB RAM, R-version 3.5.0).

Since most of the tools provide different parameter settings for conducting different depths
of analysis, we benchmarked three parameter settings separately (Table 3.1): (i) data import,
(ii) core modules, and (iii) most features enabled (comprehensive analysis). Each of the set-
tings was tested in three independent executions. Furthermore, we comprehensively evalu-
ated and listed features available in different tools for the analysis of DNAmethylation data in
a table (Supplementary Table A.1). We included those Bioconductor packages for DNAmethy-
lation analysis that are widely used in the scientific community according to the Bioconductor
download statistics. Tools were selected that provide more than an individual task of the data
analysis such as data handling or normalization. Additional tools outside of the Bioconductor
ecosystem were selected based on literature review.

Details on RnBeads Extensions

Missing Value Imputation Missing values in DNA methylation datasets are a recurring is-
sue and constitute an important analytical challenge. For microarray data, missing values can
arise from masking values with high detection p-values due to insufficient signal intensities.
They arise from insufficient read coverage in WGBS data. Especially for RRBS, where the sites
selected for sequencing are influenced by the restriction enzyme digestion, the number of miss-
ing values when combining many samples into a single data matrix can be substantial. Thus,
RnBeads provides different solutions including means and medians across samples or CpGs,
random sampling from other samples in the dataset, and k-nearest neighbors (KNN) imputa-
tion. Although KNN imputation has originally been developed for gene expression microar-
rays [164], it also has successfully been applied to DNAmethylation data [44, 83]. If a sufficient
number of nearby points are available, KNN estimations are well suited for replacing missing
values and should be favored for microarray-based datasets. The mean and median imputa-
tion approaches have been implemented especially for the analysis of datasets comprising high
numbers of missing values such as some low-coverage bisulfite sequencing datasets. RnBeads
leaves it to the user which, if any, of the missing value imputation methods is employed and
also supports removal of all sites that contain anymissing value across the samples. The choice
of imputation method can be critical and should be carefully considered in the analysis setup.
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Table 3.1: Parameter settings used for benchmarking tools for DNA methylation analysis. n.a.= not available
Data import only Core modules Comprehensive setting

Software
version

450k RRBS WGBS 450k RRBS WGBS 450k RRBS WGBS

RnBeads
version 2.0

Import Import Import Import,
Normalization,
Clustering,
DMC+DMR
calling

Import,
Normalization,
Clustering,
DMC+DMR
calling

Import,
Normalization,
Clustering,
DMC+DMR
calling

rnb.run.analysis rnb.run.analysis rnb.run.analysis

minfi
version 1.12.2

Import <n.a.> <n.a.> Import,
QC,
Preprocessing

<n.a.> <n.a.> Import, QC,
Preprocessing,
DMC calling

<n.a.> <n.a.>

methylumi
version 2.26.0

Import <n.a.> <n.a.> Import,
Normalization,
SVD,
DMC calling

<n.a.> <n.a.> <no additional
analyses modules
provided>

<n.a.> <n.a.>

ChAMP
version 2.10.1

Import <n.a.> <n.a.> Import,
Normalization,
SVD,
DMC+DMR
calling

<n.a.> <n.a.> champ.process
(ComBat dis-
abled; QCplots
reduced to
‘mdsPlot’ and
‘densityPlot’)

<n.a.> <n.a.>

wateRmelon
version 1.24.0

Import <n.a.> <n.a.> Import, QC,
Preprocessing,
Testing for sex
specific sites

<n.a.> <n.a.> Import, QC,
Preprocessing,
Testing for sex
specific CpGs,
Estimation of
cell-type compo-
sition

<n.a.> <n.a.>

methylKit
version 1.6.1

<n.a.> Import Import <n.a.> Import,
Filtering,
Clustering,
Batch correc-
tion,
DMC calling

Import,
Filtering,
Clustering,
Batch correc-
tion,
DMC calling

<n.a.> <no additional
analyses mod-
ules provided>

<no additional
analyses mod-
ules provided>
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Table 3.2: Bisulfite sequencing datasets used for the development of a sex classifier.
Dataset Source Organism Assay #Samples ♀ ♂
BLUEPRINT August 2016 release human WGBS 188 99 89
DEEP data version 11/2016 human WGBS 31 14 17
Kiel Cohort Szymczak et al. [165] human RRBS 239 106 133
Ewing tissue samples Sheffield et al. [154] human RRBS 96 53 42
Reizel GEO Reizel et al. [166] mouse RRBS 152 94 58

706 366 339

Sex Prediction Sample sex is valuable information that should be included as a confounding
factor in most epigenomic studies including differential analysis of DNA methylation. Patient
sex can be reliably predicted using the relative signal intensities obtained for the sex chromo-
somes compared to the signals of the autosomes. RnBeads uses the average signal intensities
of the microarray probes on the X- and Y-chromosome in comparison to the autosomes as in-
put to a logistic regression model. The output of the model is a probability for the biological
sex of the sample. Similarly, for bisulfite sequencing data, RnBeads quantifies the sequencing
coverage for the sex chromosomes in comparison to the coverage for autosomes and provides
a pre-trained logistic regression model. The newly developed bisulfite sequencing classifier
has been trained and validated on a large dataset, comprising both human and mouse samples
(Table 3.2, cross-validation accuracy: 94.3%). Since data obtained on rat samples is scarce, no
robust classifier could be trained for rat. Predicted sex can be used to fill in missing annotations
in the sample sheet or be used as a quality control tool to reveal potential sample mix-ups (cf.
Section 4.1.3). We would like to point out that a deviation of the predicted sex from the anno-
tated sex is merely an indication for a potential problemwith the sample that should be further
investigated.

Differential Variability Analysis When comparing different groups of samples, e.g., control
samples versus a group of cases, the groups cannot only differ in terms of their average DNA
methylation level, but also in the DNAmethylation variability within the groups. Most promi-
nently, DNA methylation profiles (i.e., different samples) obtained from different cancer pa-
tients can be substantially more variable than the samples of a control cohort. Differential
variability methods have been introduced for determining which of the CpGs are affected by
differences in DNA methylation variance. RnBeads supports two algorithms for quantifying
differential variability between two groups of samples: diffVar [150] and iEVORA [151]. To
test for differences of the variances within the two groups, diffVar employs an empirical Bayes
framework and iEVORA uses the Bartlett test. The Bartlett test is a statistical test that assesses
whether the variances of two samples are significantly different. Notably, diffVar allows for ad-
ditional covariates to be considered and thus enables accounting for confounding factors such
as age and sex, similar to RnBeads’ differential methylation analysis. RnBeads’ differential vari-
abilitymodule follows closely the structure implemented in its differential methylationmodule
for identification of DMCs and DMRs (see [112] for details). To that end, a ranking scheme is
employed based on three statistics:

1. the (false discovery rate (FDR)-)adjusted p-value of either diffVar or iEVORA
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2. the difference of the group-wise variances

3. the log-ratio of variances in the two groups

Each of these scores is ranked individually, and the final rank of a CpG site is the worst (i.e.,
highest) rank of the three scores. Thus, RnBeads uses the p-value from a statistical test and
estimates of the effect size (variance difference and log-ratio of variances). Similar to the differ-
ential methylation module, RnBeads provides an automatically-generated rank cutoff to select
those sites with the strongest effect (see documentation of function auto.select.rank.cut in
the RnBeads manual for details11). Alternatively, the user can select a defined number of best-
ranking sites. The user can also follow a more classical p-value cutoff scheme. The computed
statistics are aggregated over pre-defined genomic regions, including gene bodies, promot-
ers, CpG islands, or custom region annotations. Notably, RnBeads reports all CpGs/regions as
DVCs/DVRs and leaves it to the user to either select a rank cutoff or to define a p-value cutoff.

DNA Methylation-Based Segmentation Genome-wide patterns of DNAmethylation are or-
ganized into broader domains in accordance with the organization of chromatin into euchro-
matin and heterochromatin. Partially methylated domains (PMDs) are regions in the human
genome that exhibit variable DNAmethylation patternswith an overall lowermethylation level
than the genomic average. They comprise up to 75% of the genome and are largely cell-type
specific [18]. Genomic regions that are not classified as PMDs can be further subdivided into
highly methylated domains (HMDs), lowly methylated regions (LMRs), and unmethylated re-
gions (UMRs) according to their average methylation level and CpG density. MethylSeekR is
a two-stage software tool for genome-wide segmentation of WGBS data into PMDs, HMDs,
LMRs, and UMRs [153]. In the first step, a hidden-markov model (HMM) is employed for
segmenting the genome into PMDs and non-PMDs using parameters of the DNA methyla-
tion distribution estimated from the observed read counts in fixed-sized windows of 101 CpGs.
This number of CpGs has been selected as a reasonable default value in the original publica-
tion [153], but is available as a tool parameter. Non-PMDs are further subdivided into HMDs,
LMRs, and UMRs using a rule-based workflow. We integrated genome-wide segmentation us-
ing MethylSeekR into RnBeads and support all sequencing-based assays, including WGBS and
RRBS. The integration is based on a script that has been kindly provided by Abdulrahman Sal-
hab from the Genetics/Epigenetics department.
Furthermore, we developed an extension of theMethylSeekR approach that supports datasets

produced using the EPIC array. Instead of using the fixed-sized window as in the original ap-
proach, we used a KNN technique according to the genomic distance between CpGs to estimate
the parameters as input to the HMM. In contrast to the PCA-based segmentation approach im-
plemented in the minfi [111] R-package, which also allows for classification into PMDs/non-
PMDs, we support segmentation using individual samples rather than biological or technical
replicates. Using the new approach, we found reasonable concordance of segmentations based
on EPIC data in comparison to WGBS data from matched samples [167] (unpublished work
together with Malte Groß).

11http://bioconductor.org/packages/release/bioc/manuals/RnBeads/man/RnBeads.pdf

http://bioconductor.org/packages/release/bioc/manuals/RnBeads/man/RnBeads.pdf
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3.1.3 Application of RnBeads in Cancer and Comparison to Additional Software
Packages

We validated and showcased the new features in four datasets available on the RnBeads web-
site12 and will specifically highlight the new differential variability module by investigating
DNA methylation dynamics in a childhood bone cancer cohort in this work.

Quantifying DNA Methylation Heterogeneity in Ewing Sarcoma

We used RnBeads to process and analyze 188 samples obtained from Ewing sarcoma patients
that have been assayed using RRBS. To focus on a set of highly reliable CpG sites, we retained
those sites with sequencing read coverage of five or more in at least 50% of the samples. This
resulted in a final set of 2,217,786 CpGs, which were further aggregated across putative regula-
tory elements defined by the Ensembl Regulatory Build [8]. Using PCA, we found the expected
separation of samples into Ewing tissue samples, Ewing cell lines, and MSCs, with substan-
tially higher between-sample heterogeneity in the Ewing tissue and Ewing cell line groups
(Figure 3.2A). In a differential analysis, we used RnBeads’ differential methylation and differ-
ential variability modules to compare primary tumors with the cell lines. Strikingly, most of
the DMRs had higher average DNA methylation levels in the cell lines (Figure 3.2B) and were
hypomethylated in the tissue samples. Furthermore, elevated variance was observed in the cell
lines (Figure 3.2C).
To biologically interpret the detected differences between the primary tumors and the cell

lines, we conducted LOLA enrichment analysis [152] on the DMRs and DVRs. We found differ-
ent enrichments for DMRs/DVRs indicating that differential methylation and differential vari-
ability analysis provide complementary information on the DNA methylation landscape (Fig-
ure 3.2D-F). Hypermethylated DMRs in Ewing sarcoma cell lines were preferentially located in
DNaseI-hypersensitive sites identified in various tissue samples obtained fromhealthy individ-
uals (Figure 3.2D). This observation is an indication of widespread silencing of non-essential
regulatory regions in cell lines. On the other hand, hypervariable regions were enriched for
TFBS and histone modifications specific to cancer cell lines and ESCs (Figure 3.2F). This indi-
cated that the Ewing sarcoma cell lines showed elevated regulatory plasticity compared to the
primary tumors.
Differential methylation and differential variability analysis can be used to characterize the

DNAmethylation landscape in association to a disease and thus to quantify DNAmethylation
heterogeneity. RnBeads provides a comprehensive list of functions to analyze DNAmethylation
data and can be used to analyze RRBS data after region-based aggregation of single CpG values
across pre-defined regulatory regions.

Comparison to other Software Tools for DNA Methylation Analysis

Computational runtime and requirements for computational infrastructure can be a main bot-
tleneck for epigenomic data analysis. Thus, we compared the computational efficiency of Rn-
Beads with other software tools for the analysis of DNA methylation data including minfi, wa-
teRmelon, methylumi, and ChAMP [111, 116, 160] for microarray data. Similarly, we compared
RnBeads tomethylKit [161] both on RRBS andWGBS data (see Table 3.1). The three scenarios we

12https://rnbeads.org/methylomes.html

https://rnbeads.org/methylomes.html
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Figure 3.2: DNA methylation heterogeneity in the childhood cancer Ewing sarcoma. A: PCA of the RRBS
samples comprising Ewing sarcoma tumors, cell lines, and MSCs. DNA methylation values
were aggregated across putative regulatory regions. B: Scatterplot comparing the average DNA
methylation levels per putative regulatory region between Ewing sarcoma tumors (N=140) and
Ewing sarcoma cell lines (N=16). Marked in purple are those regions that had a differential
DNA methylation rank lower than the automatically selected rank cutoff. C: Scatterplot com-
paring DNA methylation variability between Ewing sarcoma tumors and cell lines. Significant
DVRs are marked in brown. D: LOLA enrichment analysis for the DMRs in panel D and in
panel E. Visualized are the negative common logarithms of the enrichment p-values for differ-
ent region databases. E: Scatterplot comparing the log-ratios between mean DNA methylation
level and variance in Ewing sarcoma tumors and cell lines. Points are colored according to the
definitions in B and C. F: LOLA enrichment analysis for DMRs shown in panel C and in panel
E. ENCODE, transcription factor binding sites ChIP-seq profiles from the Encode [168] project;
CODEX, ChIP-seq profiles from the Codex database [169]; Cistrome, ChIP-seq profiles from the
Cistrome project [170]; DNase, DNaseI-hypersensitive sites; UCSC, annotations obtained from
the UCSC genome browser [171].

investigatedwere: (i) data import, (ii) coremodules, (iii) comprehensive analysis (Figure 3.3), to
be able to compare different depths of analysis. Notably, RnBeads is the only tool that supports
both microarray-based and bisulfite sequencing-based analyses.
The tools minfi, methylumi, and wateRmelon only provide a basic set of analysis options, but

were faster than ChAMP and RnBeads, since the latter two need to prepare a more complex data
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Figure 3.3: Comparing (A) runtime performance and (B) peak memory consumption of RnBeads with other
tools for analyzing DNA methylation data including methylumi, minfi, wateRmelon, ChAMP,
and methylKit. Performance was evaluated on three datasets (450k, RRBS, WGBS), with three
depths of analysis (import only, core modules, comprehensive analysis, see Table 3.1 for a more
detailed description). The standard deviations were computed across three independent execu-
tions.

structure for downstream analysis. ChAMP and RnBeads provide a rich feature set that is com-
parable (Supplementary Table A.1), while RnBeads had reduced runtime and lower memory
consumption in a setting with most features activated. RnBeads outperformed methylKit on the
WGBS dataset in the core modules setting, while methylKit required less runtime and memory
for the RRBS dataset. Since RnBeads stores larger matrices on disk rather than in main memory,
re-formating the matrices for storage on disk consumes some runtime.
This brief benchmark showed that RnBeads has a runtime performance and memory con-

sumption comparable to other available tools that provide a more limited feature set. In sum-
mary, the choice of software tool highly depends on the research questions asked, on the num-
ber of CpGs and samples analyzed, and should be carefully considered.

3.1.4 Discussion

Wepresented an extended version of theRnBeads software packagewith substantially extended
modules and employed the new differential variability module to investigate tumor hetero-
geneity. Due to the new functionalities that we present here, RnBeads is one of the most com-
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prehensive software suites available for performing DNA methylation analysis. RnBeads sup-
ports the analysis ofmicroarray and bisulfite sequencing datasets and allows for the integration
of datasets across technologies. However, in the current state of the package, the methylation
signals are merely mapped to the same genomic position, without accounting for the specific
properties of data generated using different technologies. These properties include different
dynamic ranges of beta values/methylation values and the difference between bead and read
coverage. More work is required to benchmark the integration across technologies. An open
problem for the analysis of DNAmethylation data is accounting for missing values in the data
matrix. The updated version of RnBeads provides different imputation methods, but a compre-
hensive benchmark of these methods is missing.
Further extensions can be integrated into RnBeads as additional modules, such as de-novo

identification of DMRs using methods including BSmooth [172], smoothing of DNA methy-
lation values to better account for regional profiles [173], and support of single-cell bisulfite
sequencing data. RnBeads can be used as an integral part of different epigenomic workflows
due to its modular design and ease of use. In the context of this work, it will be used as a data
processing tool, which stores DNA methylation data along with phenotypic information and
genomic annotations. We envision that RnBeads will remain a widely-used software package
due to continuous extensions, bug fixes, and updates.
In the use case that we present analyzing Ewing sarcoma samples, we found that analyzing

either differential methylation or differential variability provides complementary information.
For instance, we found increased epigenetic plasticity in cell lines in comparison to primary
tumor samples using differential variability analysis. Notably, we used an aggregated level
of DNA methylation computed across the sequencing reads for each of the CpGs and thus
neglected read heterogeneity. We discuss how read heterogeneity can be used to further our
understanding of within-sample heterogeneity on the Ewing sarcoma samples in Chapter 5.

3.2 DNA Methylation Dynamics During Aging

Aging is a process that affects virtually all organisms and investigating the human aging pro-
cess is especially relevant. DNA methylation has recently emerged as a reliable biomarker for
tracking the human aging process, since a subset of CpGs consistently loses or gains DNA
methylation with increasing chronological age. This property of the methylome can be used to
create reliable predictors for the chronological age of an individual [44, 46, 174]. Such predic-
tors, often referred to as epigenetic clocks, use regularized linear regression such as elastic net
regression optimized on a large training dataset to create age predictors based on a few hun-
dred CpGs. For instance, the most popular and widely-used predictor of epigenetic age, the
so-called Horvath clock is based on 353 CpGs. Recently, more advanced computational frame-
works such as Map-Reduce were used to select CpGs predictive of the chronological age [175].

Predictors of the epigenetic age return estimates of the chronological agewith a correlation to
the true chronological age higher than 90% for healthy individuals [44, 46, 174]. Themedian ab-
solute difference betweenpredicted and annotated age is around three years. Since themethods
have been trained on large datasets comprising healthy individuals, the estimate can be inter-
preted as the average chronological age of a person with the same DNAmethylation pattern as
the sample for which the age is to be estimated. The output is referred to as the epigenetic age.
Epigenetic aging is accelerated (i.e., the epigenetic age is higher than the chronological age) in
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different physiological and pathological states, such as HIV-1 infection [148, 176, 142] and pre-
dicts all-causemortality [177]. Thus, these clocks are used as a surrogate for the effect of different
environmental influences on the epigenetic age and for assessing the overall health state of the
individual. Similar epigenetic age predictors have been developed for mouse [178, 179] based
on bisulfite sequencing data. Epigenetic aging of cultured cells can be reverted by inducing
pluripotency as to generate induced pluripotent stem cells (iPSCs), which have an epigenetic
age of 0 [180]. Thus, algorithms predicting the epigenetic age can be used to test rejuvenation
therapies or the effect of environmental influences on organism aging. Additionally, prediction
of the epigenetic age has applications in forensic science [174], but can also be (ab)used for age
determination of individuals with unknown chronological age.

3.2.1 Estimating DNA Methylation Age in RnBeads

Themost widely-usedmethod predicting the epigenetic age has been created by Steve Horvath
and is often referred to as the Horvath clock [44]. To create this epigenetic age predictor, the
author collected publicly available datasets obtained from healthy individuals that have been
generated using the 27k and the 450k BeadChip with available age annotations. Using elastic
net regression (cf. Section 2.6 [136]), 353 CpGs predictive of chronological age have been se-
lected from the intersection of the CpGs available on the 27k and 450k array (around 21,000).
The Horvath clock has gained popularity, since differences between the chronological age and
the estimations were associated with various physiological and pathological states, including
HIV1-infection [148], Werner syndrome [181], and physical and cognitive fitness [182]. How-
ever, the current state-of-the-art microarray is the EPIC BeadChip, and an evaluation of the
epigenetic clock on the EPIC array showed consistent underestimation of the chronological
age. This difference is likely caused by platform-dependent biases [183]. Notably, the current
number of EPIC datasets that are publicly available is not sufficient to retrain the epigenetic
clock.
Furthermore, no reliable epigenetic clock has been reported for bisulfite sequencing data.

Thus, RnBeads employs platform-aware prediction of the epigenetic age. Datasets have been
collected independently for the 27k and 450k bead array, and for RRBS. Data obtained from
healthy individuals generated by the EPIC array are still scarce in open-access data hubs, and
currently no age predictor is available for the EPIC array within RnBeads. Different pre-defined
age predictors have been created in dependence to the platform to account for platform-specific
biases and are readily available in the RnBeads package. The predictors are thoroughly de-
scribed on the website13. More information can be found elsewhere [141]. RnBeads offers the
functionality for training a new epigenetic age predictor on the EPIC array, as soon as a suffi-
cient number of samples (more than 1,000) are available. In accordance with the observations
in Dhingra et al. [183], we found consistent underestimation of the chronological age using
RnBeads’ 450k predictor on EPIC samples (Figure 3.4A,B).

In general, epigenetic age prediction in RnBeads is tissue- and cell-type-independent, given
that the target tissue was also present in the training dataset. However, some tissues show al-
tered epigenetic aging signals, which cannot be captured by standard age prediction models
(Figure 3.4B). Samples obtained from the human cerebellum are particularly affected. These
samples showed a substantially lower epigenetic than chronological age [184]. Since no cere-

13https://rnbeads.org/ageprediction.html

https://rnbeads.org/ageprediction.html
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Figure 3.4: Scatterplot describing the predicted, epigenetic age (y-axis) and the annotated, chronological
age (x-axis) for 21 whole blood samples from individuals in the SYSCID UCAM cohort (A,
unpublished data) and for 409 samples from four different tissues and cell types in the CEDAR
cohort (B, see Section 3.3.2). Epigenetic age prediction was conducted using the predefined
predictor trained on 450k data.

bellum samples were present in the training dataset for the epigenetic age prediction module
created in RnBeads, the module was unable to capture the distinct epigenetic aging patterns of
cerebellum samples. Thus, this dataset constitutes a premier candidate for unsupervised do-
main adaptation; a statistical learning approach in which the target (test set) and source (train-
ing set) data do not follow the same distribution. Using a novel statistical framework employ-
ing unsupervised domain adaptation (called wenda for weighted elastic net for unsupervised
domain adaptation), wewere able to accurately predict epigenetic age of samples obtained from
human cerebellum [185].

3.2.2 DNA Methylation and Aging in Mouse

Similar to human samples, a plethora of murine datasets are publicly available. Additionally,
lab mice are not affected by environmental influences similar to humans and the genetic back-
ground is more homogeneous, which removes two potential confounding factors from epige-
nomic studies. However, a microarray-based platform has only recently become available and
currently no public datasets are available. Additionally, bisulfite sequencing of mice is only
conducted in a limited number of laboratories worldwide. Most murine samples available in
public databases have been assayed using RRBS, which generates an additional layer of uncer-
tainty, since not all CpGs are well-covered in all samples due to the digestion with restriction
enzymes. Thus, by increasing the number of samples the number of joint CpG sites decreases.

Using different mouse datasets, Stubbs et al. [178] generated an epigenetic age predictor for
mice based on 329 CpGs. An important caveat of the study is the limited age range of the mice
(0-41 weeks). Thus, we generated datasets for old mice (90 weeks) and applied the epigenetic
age predictor proposed by Stubbs et al. [178]. The epigenetic age was estimated similar to those
of ten-week-oldmice (Supplementary Figure A.1) indicating that the predictor is not applicable
toDNAmethylation data generated on oldmice (unpublished results togetherwith the Institute
of Pharmaceutical Biology at Saarland University).
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3.2.3 Discussion

To investigate the aging process in both human and mouse, age prediction tools using DNA
methylation data are of high relevance. Due to the association between accelerated epigenetic
aging measured by an epigenetic clock and donor health states, these methods will remain an ac-
tive research target. We provide a technology-aware age prediction method within RnBeads,
which is yet to be extended for age prediction on EPIC array data after a large amount of
healthy samples will have become available. Additionally, the predicted, epigenetic age should
be treatedwith caution, since DNAmethylation data can be affected by technical and biological
variations. An important factor influencing epigenetic age estimates are cell-type-specific DNA
methylation patterns. To alleviate cell-type-specific predictions, wenda can be used for predict-
ing epigenetic age of tissues not present in the original training dataset. A reliable murine epi-
genetic age prediction tool is required and may be developed after a sufficient number (more
than 1,000) of samples generated using the murine microarray will become available.

3.3 Identification of Tissue-Specific and Common Methylation
Quantitative Trait Loci in Healthy Individuals Using MAGAR

3.3.1 Relationship Between Genotypes and DNA Methylation in MethQTL

As discussed in the previous section, DNAmethylation can be affected by aging. Additionally,
it can be influenced by sex, a range of environmental exposures [186, 187], and diseases includ-
ing type I diabetes [74] and schizophrenia [69]. As another important factor, donor genotype
has a strong influence on the global DNA methylation state, especially when a genetic alter-
ation, such as a SNP, occurs at a CpG site. Using bisulfite treatment, unmethylated cytosines
are converted into uracils (and further to thymines in subsequent PCR). Thus, one cannot differ-
entiate between a genetic substitution of a cytosine base by a thymine and the bisulfite-induced
sequence alteration. Without accounting for this, genetic alterations can be misinterpreted as
DNA methylation differences. As a consequence, genomic regions containing annotated and
predicted SNPs are typically removed from DNAmethylation data (cf. Chapter 4).
In addition to genetic alterations affecting the CpG site itself, distant genetic variants can

correlate with the DNA methylation state of a CpG. Such variants are referred to as methyla-
tion quantitative trait loci (methQTLs). These associations can range in distance from a few
bases to several megabases, and also long-range interactions between different chromosomes
have been reported [57, 188]. The definition of proximal methQTLs varies from 500 kb to 2
megabases (mb) distance between the CpG and the SNP [57, 188, 189]. MethQTLs co-localize
with genetic variants associated with diseases and donor phenotypes (GWAS hits) including
obstructive pulmonary disease [189], prostate cancer risk [190], osteoarthritis [191], immune-
mediated disease [192], asthma [193], and smoking [187]. Furthermore, combining methQTLs
with expression QTLs (eQTLs) enables the investigation of associations between DNA methy-
lation and gene expression changes [59, 60, 54].
However, it remains elusive whether these methQTLs correlate with the DNA methylation

level in a tissue- or cell-type-specific manner or whether they are largely tissue-independent.
An earlier study used cultured cells including fibroblasts, T-cells, and lymphoblastoid cell lines
to determine largely tissue-independent methQTLs. In contrast, the authors reported that
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the association with gene expression changes was rather cell-type-specific [194], which is in
line with recently identified cell-type-specific eQTLs [195]. In contrast, other studies reported
largely cell-type-independent eQTLs [196]. Notably, methQTLs are typically determined using
statisticalmodels and tools that have been developed for eQTL analysis (e.g.,Matrix-eQTL [197],
fastQTL [198], orGEM [199]) without further accounting for the high correlation of DNAmethy-
lation states of neighboring CpGs.
To address this problem, we developed “Methylation-Aware Genotype Association in R”

(MAGAR) a novel computational pipeline that performs methQTL analysis, while accounting
for the properties of DNAmethylation data. MAGAR defines clusters of neighboring CpGs ac-
cording to their shared behavior (i.e., correlation) across samples to represent DNAmethylation
haplotypes and performs methQTL analysis for each of the correlation blocks independently.
MAGAR has been implemented as an R-package and integrates with existing tools such as
fastQTL [198], RnBeads (cf. Section 3.1), and PLINK [200]. UsingMAGAR, we investigated sorted
blood cell types (T-cells, B-cells) and composite bowel tissues (ileum, rectum) of healthy indi-
viduals. The identifiedmethQTLs were also identified using additional samples and data from
two published methQTL studies. We revealed both tissue-specific and commonmethQTLs us-
ing colocalization analysis. We identified more common than tissue-specific methQTLs and
found that tissue-specific methQTLs were preferentially located in enhancer elements.

3.3.2 MAGAR - Methylation-Aware Genotype Association in R

MAGAR Package Overview

We developedMAGAR as a new computational framework to determine methQTLs fromDNA
methylation and genotyping data. MAGAR supports both sequencing-based assays including
whole-genome (bisulfite) sequencing and microarray-based data. It is the first computational
framework for performing methQTL analysis starting from raw DNA methylation and geno-
typing microarray data. The pipeline implemented within MAGAR comprises the following
phases (Figure 3.5):

1. Data import and processing using established software packages such as PLINK [200],
RnBeads, and CRLMM [201, 202]. Additional modules for quality control and standard
processing using these packages are available to the user. MAGAR supports automated
genotype imputation using the Michigan Imputation Server [124].

2. MethQTL calling for computing associations between genotype and a DNA methylation
state is realized by a two-stage approach:
i. We define CpG correlation blocks as groups of CpGs that have similar (i.e., highly cor-

related) DNA methylation patterns across the samples to mimic DNA methylation
haplotypes

ii. From each of these correlation blocks, a tag-CpG is selected as a representative of the
block. Then, associations across the samples are computed between the DNAmethy-
lation states of the tag-CpG and the genotypes of all SNPs at a given distance using
either a linear modeling strategy or with external software tools (e.g., fastQTL [198]).
The output comprises SNP-CpG pairs that result in a p-value of the linear model (or
the p-value returned by the external software tool) below a user-defined threshold.
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Figure 3.5: Overview of MAGAR. MAGAR is an R-package utilizing a two-stage protocol. After data import
via external software packages, CpGs are clustered into CpG correlation blocks in a four-step
procedure. In the second stage, methQTLs are called for each correlation block separately.

Data Import and Processing

DNA Methylation Data For DNA methylation data, we use RnBeads for data handling and
processing. Microarray data is checked for data quality using RnBeads’ reporting functionality.
Further processing steps, such as CpG and sample filtering (e.g., removal of SNPs and cross-
reactive sites) and data normalization, can be performed within RnBeads. Although we recom-
mend RnBeads for data handling,MAGAR supports the output of alternative DNAmethylation
data processing tools if they provide single-CpG methylation calls.

Genotyping Data MAGAR supports microarray and sequencing data as input. Sequenc-
ing data has to be processed using genotyping pipelines [121] and converted into a format
that is readable using PLINK (e.g., variant call format (VCF) files). For microarray data, MA-
GAR supports raw IDAT files as input and computes genotype calls through the CRLMM R-
package [201, 202] (see also Section 2.5.1). As an optional step, genotyping data can be imputed
using the Michigan Imputation Server [124]. Additional data processing such as filtering SNPs
withmanymissing values or filtering according to theHardy-Weinberg principle are conducted
through PLINK.
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MethQTL Calling

We define a methQTL interaction as a significant correlation between the SNP genotypes and
the DNA methylation states of a CpG. MethQTL calling within MAGAR follows a two-stage
workflow (Figure 3.5):

1. CpGs that have similar DNA methylation patterns across the samples are grouped to-
gether to form CpG correlation blocks.

2. A tag-CpG per correlation block is associated with all SNPs in a given genomic distance
to compute methQTL interactions.

CpG Correlation Block Calling To compute CpG correlation blocks, i.e., CpGs that exhibit
highly correlated DNA methylation patterns across the samples, we developed a four-step
framework:

1. Compute the (Pearson) correlation coefficients between any pair of CpGs across the sam-
ples using the bigstatsR R-package [203] for each chromosome separately and use the re-
sulting correlationmatrix as the similarity matrix. Similarities for CpGswith correlations
lower than 0.2 (package parameter: cluster.cor.threshold) are set to zero. Sincematri-
ces can grow too large to fit into main memory of standard machines, the CpGs are split
per chromosome into equally-sized smaller groups until a maximum number of CpGs
(i.e., rows of the data matrix) per computation is achieved (here 40,000 CpGs, parameter:
max.cpgs).

2. Since also distant CpGs can exhibit high correlation (e.g., those present in CpG islands),
we penalize the similarity of two CpGs according to their genomic distance. Thus, we
weight the genomic distance between any CpG and its genomic neighbors according to
a Gaussian centered at the CpG of interest with standard deviation 3,000 bp (parame-
ter: standard.deviation.gauss). Additionally, the similarity between any pair of CpGs
further apart than 500 kb is set to zero (parameter: absolute.distance.cutoff). Op-
tionally, functional annotations such as those from the Ensembl Regulatory Build [8] or
DNA methylation-based segmentation [153] can be used to weight the similarities.

3. Construct the associated weighted graph from the similarity matrix, where the weights
of the edges correspond to the similarities between the two CpGs.

4. Employ Louvain clustering (see Section 2.6.5 [139]) using the igraph R-package [204] to
the weighted graph to obtain clusters of CpGs that are highly correlated. The obtained
clusters are defined as the CpG correlation blocks.

The parameters presented here are available as package options to the user. The default pa-
rameters have been evaluated using simulations for EPIC and 450k data (see Section 3.3.3).

Associating SNPs with CpG Correlation Blocks To determinewhether theDNAmethylation
state of a CpG correlation block is correlatedwith a SNPgenotype, we first determine a tag-CpG
per correlation block as the medoid of all CpGs in the correlation block. Alternative tag-CpG
selection methods (e.g., the average DNA methylation profile across the CpGs) are available
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through the package parameter representative.cpg.computation, but we used the medoid
here due to the better interpretability in comparison to the other methods. In the next step, all
SNPs closer than 500 kb to the tag-CpG are considered and a univariate least-squares regres-
sion (lm R function) model is calculated for each pair of SNPs/CpGs individually using the
genotypes (encoded as 0=homozygote reference/major allele, 1=heterozygote, 2=homozygote
alternative/minor allele) as the features and the CpG methylation state as the output. Further
covariates can be included in the linear model. We decided to use a univariate linear regression
model for improved interpretability in comparison to amultivariate (regularized) linear regres-
sion using all eligible SNPs as the input. Alternatively, fastQTL [198] can be used to compute
associations between tag-CpGs and SNPs. The obtained p-values, slopes (effect sizes, betas),
and standard errors of the linear model are used for further analysis.

Package Options and Modularity

MAGAR is a modular software package that allows for easy integration with additional tools.
Different flavors of the analysis can be specified using the package’s rich option set (Table 3.3).
For instance, CpG correlation blocks depend on various parameters including the correlation
threshold between two CpGs or the standard deviation of the Gaussian distribution. The op-
tion setting can be tailored to the dataset at hand. For instance, CpG correlation block calling
can be deactivated, resulting in the analysis scheme implemented bymost published methQTL
studies, i.e., associating each CpG with a SNP individually. Additionally, MAGAR allows for
setting the parameters of the different software tools that are used for data processing (e.g., Rn-
Beads, PLINK). To facilitate analysis of large-scale datasets, MAGAR supports multi-core pro-
cessing and automatic distribution of jobs across the nodes of anHPC cluster (SGE and SLURM
architecture supported). MAGAR is available from GitHub14.

Data Simulation for Determining MAGAR’s Default Parameters

MAGAR is amodular software package that allowsmultiple parameters to be set for the dataset
at hand. We simulated data to determine reasonable default parameters for the two stages of
the package independently.

Correlation Blocks As the first part of the MAGAR package, CpGs are grouped together ac-
cording to their correlation of DNA methylation values across the samples. The process of
defining correlation blocks depends on three parameters: the correlation threshold, the stan-
dard deviation of the Gaussian distribution, and the absolute distance cutoff (Table 3.3). To
determine reasonable default values for the parameters of the correlation block calling of the
package and to validate that the CpG clustering step is reasonable, we simulatedDNAmethyla-
tion data. More specifically, we simulated methylation data and artificially introduced clusters
of highly correlated CpGs into the data. Then, we assessed whether the CpG correlation blocks
returned byMAGAR reflect the simulated clusters of correlatedCpGs. By using different values
for the parameters, wewere able to assess the parameter setting that best reflects the correlation
of CpGs in the simulated data (see Section 3.3.3).

14https://github.com/MPIIComputationalEpigenetics/MAGAR

https://github.com/MPIIComputationalEpigenetics/MAGAR
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Table 3.3: Overview of MAGAR’s option setting
Option Function Default Selection

of Default
cluster.cor.threshold Threshold below which the

similarity in the similarity
matrix to compute the CpG
correlation blocks is set to
zero

0.2 Simulations

standard.deviation.gauss Standard deviation (in bp)
of the Gaussian distribution
used to penalize similarities
of CpGs according to their
genomic distance

3,000 Simulations

absolute.distance.cutoff Maximal distance (in bp) be-
tween two CpGs, similari-
ties of pairs of CpGs with
higher distance are set to
zero

500,000 Simulations

representative.cpg.computation Method for selecting a tag-
CpG from all CpGs present
in a correlation block

median Interpretability

max.cpgs Maximum number of CpGs
used to construct the simi-
larity matrix

40,000 Computational
Feasibility

correlation.type Method for computing the
correlation between two
CpGs

pearson Computational
Feasibility

To simulate methylation data, 1,000 neighboring CpGs were randomly selected from a uni-
form distribution out of all the CpGs present on the Illumina EPIC array. 1,000 CpGs were se-
lected as a compromise between selecting all CpGs and computational feasibility of executing
multiple simulations. We explored different settings for the parameters available in MAGAR.
First, we explored the influence of the correlation threshold parameter (values tested: 0 to 1,
0.05 steps), which specifies the level of correlation between two CpGs that results in a similar-
ity of zero in the similarity matrix. Second, the standard deviation of the Gaussian distribution
(values explored: 2,000 bp to 4,000 bp, 100 bp steps) specifies the width of the Gaussian distri-
bution that penalizes similarities of distant CpGs. The selection of the values for the distance
was based on the distances of CpGs on the microarray and should reflect high-to-low penal-
ization of the genomic distance. Last, the absolute distance cutoff (100 kb to 1 mb, 100 kb steps)
sets similarities for long distances between the CpGs to zero. This value was selected, since it
also reflects the distance between the SNP and the CpG that we selected (500 kb).
The parameters were tested using 100 simulated datasets per parameter setting. For each of

the simulated datasets, we explored the three parameters sequentially and fixed the remaining
parameters to the values estimated in the other simulations (starting with 3,000 bp standard
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deviation and absolute distance cutoff 500 kb for selecting the correlation threshold). Methyla-
tion data was simulated by repeatedly drawing from a beta-binomial distribution with success
probability 0.4 and over-dispersion parameter 0.1 in order to reflect the typical bimodal dis-
tribution of DNA methylation data. For each simulated dataset, we selected the number of
clusters randomly between 200 and 500, while choosing the cluster size individually for each
cluster between one and ten CpGs. These values should reflect clusters of many CpGs (such
as those expected at CpG islands), but also clusters with only few CpGs and were motivated
from the distribution of CpGs on the EPIC array. The clusters had identical methylation pat-
terns across the CpGs in the cluster and across the samples. We introduced a Gaussian error
for each CpG individually (standard deviation 0.05) to introduce noise into the clusters, which
is motivated from our experience on DNA methylation data and the technical noise found in
data generated using the EPIC array.

To asses MAGAR’s performance, we executed its first stage and compared the number of
expected clusters (i.e., the randomly selected number of clusters) with the number of clusters
returned byMAGAR (see Section 3.3.3). For estimating the parameters for 450k data, we exclu-
sively used CpGs present on the 450k array and for bisulfite sequencing data we used all CpGs
available in the human genome reference version ‘hg19’.

Validating MethQTL Calling To validate the methQTL calling stage ofMAGAR, we first gen-
erated methylation data as described above. Next, we randomly selected 2,000 SNPs that are
located more closely than 500 kb from the CpGs selected. We selected more SNPs than CpGs,
since microarray-based technologies for genotyping cover more SNPs than DNA methylation
microarrays cover CpGs. For those SNPs, we drew the minor allele frequency from a negative
binomial distribution (parameter success probability: 0.4) and set the alleles accordingly. We
selected the negative binomial distribution, since it most-closely reflected the distribution of
genotypes in our experimental data. SNP genotypes (α) were encoded as 0=homozygote refer-
ence allele, 1=heterozygote, and 2=homozygote alternative allele similar to the standard encod-
ing of MAGAR. For each of the 100 simulated experiments that we conducted, we introduced
100 interactions between the genotype of a SNP and the DNA methylation state of a CpG into
the data using a randomly selected effect size τ (drawn from a normal distribution with mean
0.2 and standard deviation 0.05). We decided to include only a small number of methQTLs in
order to have only few interactions between SNPs and CpGs as we would expect in real data.
The sign of the effect size τwas randomly selected as positive or negative, respectively. Similar
to the simulation above, we introduced a Gaussian error ϵ into the DNAmethylation data. The
DNA methylation state βwas modified according to:

βnew
CpG = βold

CpG + αSNP × τ+ ϵ

We then computed sensitivity and specificity for the CpGs and SNPs independently to assess
whether the package successfully identified methQTLs (see Section 3.3.3).
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Datasets

The datasets used throughout this project have been generated in the context of the SYSCID
project15. TheCEDAR (CorrelatedExpressionDiseaseAssociationResearch [53]) cohort dataset
comprises 164 individuals, and we had microarray-based genotyping data available for 163 in-
dividuals as described earlier [53]. More specifically, healthy individuals were recruited at the
University Hospital in Liège and bowel biopsies as well as blood draws were obtained. The
biopsies were obtained from rectum (RE) and ileum (IL), and blood cells were sorted into CD4-
positive T-cells and CD19-positive B-cells. DNA methylation data was generated using the
Illumina EPIC microarray by Gilles Gasparoni from the Genetic/Epigenetics department, and
we used this dataset as the discovery cohort. In addition, we used additional samples from the
CEDAR cohort as second dataset comprising additional 197 donors (16 overlapping with the
earlier ones) with transverse colon biopsies (n=191) and CD14-positive monocytes (n=192) as
a validation cohort. DNA methylation data for the validation cohort was generated using the
Illumina 450k array.

MAGAR Analysis of the CEDAR Cohort

DNA Methylation Data WeusedMAGAR, which internally usesRnBeads, for processing raw
IDAT files obtained on the CEDAR cohort samples. A subset of samples (13 B-cell samples, 1 T-
cell sample) was removed from the discovery cohort, since the samples exhibited substantially
lower technical quality. CpGs were filtered for SNPs annotated in dbSNP [113], for sites on the
sex chromosomes, and for potentially cross-reactive sites [91]. Further quality-based filtering of
CpGswas conductedusingRnBeads’Greedycut algorithm [112]. Datawas normalizedusing the
“dasen” method from the wateRmelon R-package [116]. As outcome of the filtering procedure,
659,464 CpGs were retained for the analysis. The immune cell infiltration was estimated using
the LUMP algorithm [149] based on 44 CpGs that are particularly hypomethylated in immune
cells, 34 of which are available in the CEDAR dataset. For the validation dataset, we used
analogous processing options, removed one sample from the 383 samples due to lower technical
quality, and retained 353,388 from the 485,777 CpGs available on the microarray.

Genotyping Data Genotyping microarray data was imported into MAGAR and genotypes
were called using the KRLMM algorithm implemented in the CRLMM R-package [201, 202]
with default parameters (cf. Section 2.5.1). Genotypes were imputed using the Michigan Impu-
tation Server [124] and the following parameters: Reference panel: “hrc-r1.1”, phasing method:
“shapeit”, population: “eur”. Imputation was performed for all 163 unique donors simultane-
ously and the outcome of the procedure yielded 39,127,678 SNPs. Imputed data was exported
to PLINK [200] for further processing. We filtered for SNPs with a Hardy-Weinberg equilib-
rium exact test p-value below 0.001, a maximum number of missing values across the samples
of 10%, and with minor allele frequency below 5%. Additionally, we removed samples with
more than 5% missing genotypes. As an outcome of the filtering procedure, no sample was
removed and 5,436,098 SNPs were retained.

MethQTL Analysis We employedMAGAR on an HPC cluster to compute methQTLs for each
of the tissues/cell types of the CEDAR cohort dataset independently (Figure 3.6). Notably, we
15http://syscid.eu/

http://syscid.eu/
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Figure 3.6: Identifying common and tissue-specific methQTLs through colocalization analysis. To define
tissue-specificity, we employed MAGAR on the four tissues/cell types independently. The
methQTL statistics were combined across the four tissues in pairwise colocalization analysis
to define common and tissue-specific methQTLs, as well as methQTLs shared across several
tissues.

used sex, age, bodymass index (BMI), smoking habit, alcohol intake, ethnicity, and the first two
principal components computed on the genotype data as covariates in the analysis. MAGAR
returns a table of methQTL summary statistics (p-values, slopes), which can be further filtered
according to a user-defined p-value cutoff. Throughout this analysis, we termed methQTLs
significant, if they passed a genome-wide Bonferroni-adjusted p-value cutoff of 8.65 × 10−11

in the summary statistics returned by MAGAR. We computed the p-value cutoff as follows:
We identified 82,271, 69,219, 75,779, and 76,109 correlation blocks for T-cells, B-cells, ileum and
rectum samples, respectively (Supplementary Figure A.3). On average, each CpG was tested
for association with 1,905 SNPs, which results in a Bonferroni-adjusted p-value cutoff of:

0.05

(82, 271+ 69, 219+ 75, 779+ 76, 109)× 1905
= 8.65× 10−11 (3.1)

For each CpG that was affected by more than one methQTL, we selected the SNP with the
lowest p-value as the lead-SNP and discarded the interactions with other SNPs.
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Defining Tissue-Specific MethQTLs

To determinewhether the effects observed in the four tissues independentlywere shared across
the samples, we employed colocalization analysis. More specifically, we used Summary-data-
basedMendelian Randomization (SMR) andHeterogeneity in Dependent Instruments (HEIDI)
analysis [205] implemented in the GWAS-MAP16 software tool. Briefly, SMR is a statistical test
that indicates whether two traits (here CpG methylation states in two tissues) are significantly
associated with the same genetic locus. The test is an extension of Mendelian Randomization
(MR), which is used to test for a causal relationship between two traits using an instrumental
variable. While classical MR requires that the two traits are measured on the same samples,
these can be investigated in distinct samples or studies using SMR. The input to the SMR test
are methQTL statistics (i.e., p-values, slopes of the regression) obtained in two scenarios, and
it returns a test statistic that indicates whether the effect observed in the two scenarios is asso-
ciated with the same genetic locus. SMR analysis determines whether the same genetic effect
leads to the methQTL results that we obtained in the two tissues, but cannot discern pleiotropy
from linkage (cf. Supplementary Figure A.2). Thus, for the SNPs that pass the SMR test, we
employed the HEIDI test in a second step to test whether the observed effects are likely driven
by pleiotropy. Briefly, the HEIDI test utilizes linkage (correlation) information of SNPs from
a reference panel (e.g., the 1,000 genomes project [121]) to determine whether the observed
heterogeneity in the methQTL statistics are more likely caused by linkage than by pleiotropy.
By using colocalization analysis through SMR and HEIDI, we were able to determine whether
the methQTLs identified in the four tissues/cell types independently were shared or tissue-
specific. We employed colocalization analysis for all pairs of tissues/cell types to determine
shared methQTLs (Figure 3.6).
We selected those CpGs for colocalization analysis, which were selected as tag-CpGs in at

least two tissues and that had a significant association with a lead-SNP (p-value smaller than
8.65 × 10−11) at least in one tissue. Then, anchoring the analysis in the tissue showing the
significant association, we performed the SMR test to detect if the same lead-SNP may be asso-
ciated with the same CpG in any of the other tissues. In case the same lead-SNP was identified
in more than one tissue, the tissue/cell type with the lowest p-value was used as the starting
point of the SMR analysis. In total, we performed 4,253 tests. The SMR p-values were adjusted
for multiple testing using the Benjamini-Hochberg [206] method and we used a p-value cutoff
of 0.05. In case the methQTLs measured in two tissues are significant according to the SMR
test, this is an indication that the CpG methylation states are correlated with the same SNP in
the two tissues. Thus, we used the p-value of the SMR test as an indication for the shared effect
of methQTLs in the two tissues.
For CpGs that passed the SMR test, we applied the HEIDI test to discern pleiotropy, i.e.,

that the SNP correlates with two traits independently, from linkage, i.e., that there are two
independent, but correlated SNPs each of which is associated with one of the traits (cf. Sup-
plementary Figure A.2). We defined all those pairs of methQTLs with a p-value of the HEIDI
test higher than 0.05 as pleiotropic interactions. The methQTLs that passed the SMR p-value
cutoff and failed the HEIDI test were defined as shared across the two tissues. The methQTLs
shared across all pairwise comparisons according to the colocalization analysis were termed
shared methQTLs. Additionally, those shared methQTLs with a p-value below 8.65 × 10−11 in

16https://polyknomics.com/solutions/gwas-map-biomarker-and-intervention-target-discovery-platform

https://polyknomics.com/solutions/gwas-map-biomarker-and-intervention-target-discovery-platform
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the methQTL analysis for all tissues were termed common methQTLs.
The methQTLs that either fail the SMR test or that pass the SMR test, but also pass the HEIDI

test were defined as tissue-specific methQTLs. Tissue-specificity was defined for each tissue
individually. Finally, three classes ofmethQTLswere defined: tissue-specific, shared, and com-
monmethQTLs. Colocalization analysiswas performed usingGWAS-MAPbyYurii Aulchenko
and Tatiana Shahkova.

Characterizing Tissue-Specific and Tissue-Independent MethQTLs We used all methQTLs
present in any of the four tissues and compared the effect sizes (slope of the regression), p-
values, and the distance between the CpG and SNP of the tissue-specific with the methQTLs
shared across the tissues. The effect size reflects the change in the DNAmethylation state of the
CpG that occurs from the homozygote (reference allele) to the heterozygote (alternative allele)
genotype for the SNP. Additionally, we selected different functional annotations of the genome,
such as Ensembl genes (version 75), associated promoter regions (defined as 1.5 kb upstream
and 0.5 kbdownstreamof the TSS), anddifferent functional categories according to the Ensembl
regulatory build [8]. Then, we overlapped the shared/tissue-specific methQTLs with those an-
notations using the GenomicRanges [207] R-package and computed odds ratios and (one-sided)
Fisher-exact test P values to investigate enrichmentwith respect to the functional annotations in
comparison to all identified methQTLs as the background. Last, we used the LOLA tool [152]
to compute enrichments regarding various additional functional annotations from databases
such as Cistrome [170], CODEX [169], or ENCODE [168]. Here, we used all CpGs/SNPs that
were were eligible for methQTL analysis as the background for the enrichment.

Validation of MethQTLs

For further validation of the methQTLs identified above, we used 191 transverse colon samples
and 192monocyte samples from theCEDARcohort assayedusing the Infinium450kmicroarray.
Genotyping andDNAmethylation datawas processed analogously to the discovery cohort and
methQTLs were called at the p-value cutoff 9.84 × 10−6. We aimed to validate the 2,508, 696,
1,010, and 868 methQTLs that we identified in the four tissues/cell types and thus computed
the p-value cutoff as:

0.05

2508+ 696+ 1010+ 868
= 9.84× 10−6

We used sex, age, BMI, smoking habit, alcohol intake, ethnicity, and the first two principal
components computed on the genotype data as covariates. The resulting methQTLs were com-
pared with the shared and tissue-specific methQTLs detected in the discovery cohort, respec-
tively. Additionally, we obtained methQTL data in tabular form from two studies identifying
methQTLs in peripheral blood [57] and fetal brain samples [208], respectively. The two studies
identified 52,918 (blood) and 16,811 (fetal brain) methQTLs. We only used unique SNPs with a
p-value lower than 8.65× 10−11 to match our criteria. To determine whether the detected over-
lap was larger than expected by chance, we used Fisher’s exact test using all SNPs that have
been used as input to the methQTL calling as the background set.
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Figure 3.7: Cell-type specific DNA methylation patterns in the discovery data set. A: Heatmap (blue low, red
high DNA methylation levels) of the 1,000 most variably methylated genome-wide tiling regions
of size five kb. Hierarchical clustering of samples and tiles was performed using Euclidean distance
and complete linkage. B: PCA plot of genome-wide DNA methylation data at the single CpG
level. Shown are the first two principal components. C: Boxplots showing the LUMP estimates
for the overall immune cell content of the different cell types/tissues. The p-value was computed
using a two-sided t-test.

3.3.3 Distinct Biological Properties of Tissue-Specific and Common MethQTLs

Strong Cell-Type-Specific DNA Methylation Signatures in Bowel Biopsies and Purified
Blood Cell Types

The data set that we used for the discovery of methQTLs comprised 409 samples from either
ileum (IL, n=98) and rectum (RE, n=95) tissue biopsies, as well as the FACS-sorted blood cell
types CD4-positive T-cells (n=119) and CD19-positive B-cells (n=97). DNA methylation data
was available across all four tissues/cell types for 29 individuals. Average DNA methylation
levels across all CpGs in genome-wide windows of size five kilobases revealed a strong cell-
type-specific signal that discriminates the blood cell types from the biopsies. Overall, the tissue
biopsies showed an enhancedvariation in comparison to the purified blood cell types indicating
that increased cell-type heterogeneity goes along with a higher variation of DNA methylation
patterns (Figure 3.7). We estimated the overall immune cell content of a sample using the LUMP
algorithm (Figure 3.7C) to better understand the origins of cellular heterogeneity within the
biopsy samples. While LUMP estimates were uniformly close to one for the two blood cell
types as expected, they substantially varied across the biopsy samples. In line with previous
reports [209], significantly higher immune cell content was observed in ileal compared to rectal
samples.

MAGAR: Genome-Wide Analysis of MethQTLs

Defining methQTLs is important to interpret genetic variants associated with diseases and can
help to illuminate the association between genetic alterations and gene expression changes.
Thus, we are interested in defining statistically significant associations as methQTL based on
DNA methylation and genotyping data. To alleviate the methQTL identification process, we
outline a new R-based framework, MAGAR (Methylation-Aware Genotype Association in R)
that provides a comprehensive suite of tools that enable methQTL analysis in a manner that
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is aware of the structure of DNA methylation data (Figure 3.5). Notably, MAGAR is the first
package that performs data processing of raw (i.e, IDAT files) DNAmethylation and genotyping
data before returning data formatted for methQTL analysis.
MAGAR is a flexible software package that allows users to adapt the analysis to their dataset

through different option settings. We determined MAGAR’s default parameters using a simu-
lation strategy. More specifically, we estimated the default parameters for the correlation block
calling (Figure 3.8A-C) andmethQTL calling stage independently (Figure 3.8D).We selected the
parameters such that the number of clusters (i.e., CpG correlation blocks) returned byMAGAR
matches the number of clusters that have been simulated. The simulation experiments returned
0.2 as a reasonable parameter for the correlation threshold, which determines at which level of
correlation between the two CpGs an edge is removed from the similarity graph. Additionally,
3,000 bpwas selected as the standard deviation of the Gaussian distribution, which weights the
similarity between two CpGs according to the genomic distance. Notably, higher values for the
parameter would more closely reflect the number of simulated clusters in the data. However,
we decided to fix the parameter at 3,000 bp, since we expect that generating fewer cluster (i.e.,
more singletons) will not have a negative influence on the identified methQTLs. Lastly, we
found that the distance cutoff only mildly influenced the number of clusters generated, and
we determined 500 kb as the distance at which a connection between two CpGs in the graph
is removed. This value also matches the maximum distance between the SNP and the CpG
that we selected. To validate whether methQTLs are reliably detected using our package, we
artificially introduced interactions between SNPs and CpGs into our simulations. We found
high sensitivity and specificity for methQTLs to be detected by MAGAR across the 100 simu-
lated datasets that we generated (Figure 3.8D). Notably,MAGARwas designed to detect reliable
methQTLs with few false positive results. Thus, the focus of MAGAR is on specificity rather
than on sensitivity, but the user can tradeoff between sensitivity and specificity through the
p-value cutoff.
Next, we employedMAGAR on the discovery cohort and investigated tissue-specificity of the

identified CpG correlation blocks. To that end, we employed MAGAR on the four tissues/cell
types individually and compared the resulting correlation blocks. Although we found that
most correlation blocks and their respective tag-CpGs were tissue-dependent, some of the cor-
relation blocks, which we computed for each of the tissues independently, were shared across
multiple cell types (Supplementary Figure A.3). Notably, the overlap between tag-CpGs across
the different tissues/cell types was larger than between the correlation blocks indicating that
only parts of the correlation blocks were distinct for the different data sets.
Using MAGAR we combined the ileal, rectal, T-cell, and B-cell methylation data with geno-

type data and calculated methQTL statistics for each cell type/tissue independently. To deter-
mine significant methQTLs, we selected a Bonferroni-corrected p-value cutoff of 8.65 × 10−11.
As a result, we found 696, 2,508, 1,010, and 868 methQTLs for CD19+ B-cells, CD4+ T-cells,
ileal, and rectal biopsies, respectively (Figure 3.9). To validate the methQTLs, we used addi-
tional samples from monocytes and transverse colon from the CEDAR cohort. Additionally,
we obtained publishedmethQTL results from two studies (blood [57] and fetal brain [208]) and
compared them with the identified methQTLs. Note that the validation cohort and the pub-
lished studies used DNAmethylation data generated on the 450k microarray, which comprises
fewer CpG sites. Thus, we excluded thosemethQTLs from the comparison that associatedwith
a CpG site that is exclusively present on the EPIC array. We partially identified the methQTLs
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Figure 3.8: Validating MAGAR and its parameters using simulated data. A: Difference between the number
of expected clusters and the number of clusters generated by the package in comparison to the
correlation threshold parameter. Higher values on the y-axis indicate that the clusters/correlation
blocks generated by the package are too large. The solid line indicates the selected default value
of the parameter for EPIC data. The error bars indicate two times the standard error computed
across the 100 simulated datasets per parameter setting. Effect of the standard deviation of the
Gaussian distribution (B) and the absolute distance cutoff (C) on the number of clusters. D:
Sensitivity and specificity of MAGAR’s methQTL calling in simulated data for CpGs and SNPs
independently. Shown is the mean and the standard error across the 100 simulated datasets.

also in the validation cohort (Figure 3.9B) and in the published data (Figure 3.9C). As expected,
the overlap of the methQTLs identified in B- and T-cells with the methQTLs identified using
whole blood was higher than with those identified in fetal brain samples (Figure 3.9C).

Identification of Common MethQTLs Through Colocalization Analysis

MAGAR’s output was further analyzed to discern tissue-specific from common methQTLs.
More specifically, we applied colocalization analysis that uses summary statistics from two
association studies (here methQTLs in two tissues) to determine if an association of two traits
(here CpGmethylation states) to the same genetic region is significant and is likely to be caused
by the same pleiotropic genetic variant. Colocalization was examined using SMR analysis fol-
lowed by the HEIDI test [205].

We only included methQTLs in the analysis that were significant at 8.65 × 10−11 in at least
one tissue. The analysis is anchored at the tissue, where the methQTL showed a significant
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Figure 3.9: MethQTL results returned by MAGAR. A: Number of methQTLs identified by MAGAR for T-
cells, B-cells, ileal, and rectal samples. Overlap between the methQTLs identified per tissue/cell
type with methQTLs identified in the validation cohort (B) and in published methQTLs from
blood [57] and fetal brain samples [208] (C). The methQTLs were reduced to those methQTLs
affecting CpGs present on the 450k microarray.

association and the methQTL statistics were compared with those in the other tissues. We de-
fined those methQTLs as shared between two tissues/cell types that pass the SMR-test at FDR-
adjusted p-value cutoff 0.05 and have a HEIDI test nominal p-value larger than 0.05. These
methQTLs are likely correlated with the same genetic variant and the shared association is
likely caused by a single pleiotropic variant rather than two linked signals. Colocalization anal-
ysis was conducted for all pairs of cell types/tissues (Figure 3.6) and we define three classes of
methQTLs:

1. Common methQTLs are shared across all the tissues/cell types according to the colocal-
ization and have a methQTL p-value below 8.65× 10−11 in all tissues

2. Shared methQTLs are shared across all the tissues/cell types according to the colocaliza-
tion analysis

3. Tissue-specific methQTLs are only present in one of the tissues/cell types and not shared
in any pairwise comparison

We found that 16 methQTLs were shared across all of the pairwise comparisons and have
a methQTL p-value below the threshold and are thus common methQTLs (Figure 3.10A). The
common methQTLs included well established methQTLs and eQTLs, such as the ones present
in the PON1 [210], LGR6 [211], and RIBC2 [212] loci (Figure 3.10B). We found substantially more
methQTLs shared across different tissues than tissue-specific methQTLs. Most tissue-specific
methQTLs were exclusively found in CD4 T-cells (Figure 3.10A), and similar numbers of tissue-
specific methQTLs (78, 75) were identified for ileal and rectal biopsies, respectively. Due to the
definition above, common methQTLs are a subset of the shared methQTLs.
We further investigated the identified common and shared methQTLs using the validation

cohort. Notably, the validation cohort samples have been assayed using the 450k array and only
10 and 689, respectively, of the common and shared methQTLs associated with a CpG present
on the 450k array. We found that most of the common (9/10, Fisher test p-value: 1.6×10−4) and
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Figure 3.10: Common methQTLs identified through colocalization analysis. A: Number of tissue-specific
methQTLs per tissue and methQTLs shared across different tissues according to the colocaliza-
tion analysis. Common methQTLs were shared according to the colocalization analysis and pass
the methQTL p-value cutoff in all tissues. B: Examples of four common methQTLs located in
vicinity to PON1, LGR6, LCE3D, and RIBC2.

some of the shared QTLs (178/689, Fisher test p-value: 1) were also present in at least one of
the two tissues (Figure 3.11A,B). Additionally, four of the ten overlapping common methQTLs
(rs2272804, rs705379, rs55901738, rs10021193) were also identified in an independent study on
blood samples [57] (Figure 3.11C).

Enrichment of Tissue-Specific MethQTLs in Proximal Enhancer Elements

To determine characteristic properties of tissue-specific methQTLs, we compared all 452 tissue-
specific methQTLs with 1,470 methQTLs shared across multiple tissues. While the distance be-
tween the CpG and the SNP that significantly correlateswith its DNAmethylation statewas not
different in the two classes of methQTLs, we found both stronger effects with respect to effect
size and lower p-values for the shared methQTLs than for the tissue-specific methQTLs (Fig-
ure 3.12A). To determine whether the CpGs or the SNPs of the shared and cell-type-specific
methQTLs are preferentially located in particular functional regions of the genome, we per-
formed enrichment analyses for various functional annotations such as gene promoters and
proximal enhancers. We found that both the SNPs and the CpGs were depleted in regions
of active transcription such as transcriptional start sites (TSS) and gene bodies for the shared
methQTLs (Figure 3.12B). No significant enrichment towards a functional category was de-
tected for the shared methQTLs. In contrast, the tissue-specific methQTLs were preferentially
located in proximal enhancer elements further pointing toward the important regulatory role of
enhancers in establishing cellular identity. Further indications for this hypothesis was obtained
by the LOLA enrichment of tissue-specific methQTLs toward enhancer elements and transcrip-
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Figure 3.11: Validation of tissue-specific and common methQTLs in the validation cohort and in two indepen-
dent studies. A: Replication of tissue-specific, common, and shared methQTLs in CD14-positive
monocytes and transverse colon samples assayed with the Infinium 450k microarray. B: Effect
size comparison of the T-cell-specific, B-cell-specific, shared, and common methQTLs in CD14-
positive monocytes and transverse colon samples. C: Replication of tissue-specific, shared, and
common methQTLs in published methQTLs studies in blood and fetal brain samples.

tion factor binding sites indicating an enhancer element in B-cells and in the B-lymphocyte cell
line GM12878 (H4K3me3, Figure 3.12C). Analogously, we associated the tissue-specific and
shared methQTL SNPs and CpGs with overlapping gene bodies. For those overlapping genes,
we performed Gene Ontology (GO) enrichment analysis and detected an enrichment of the
shared methQTLs towards the biological process “cell development” (p-value=0.0069).
We aimed to validate the tissue-specific methQTLs in the validation cohort and in indepen-

dent studies. While some of the ileum- and rectum-specific methQTLs identified earlier were
also present in the transverse colon samples, only two of them were present (at p-value cutoff
9.84×10−6) in the monocytes. Similarly, two of the T-cell-specific methQTLs were also found in
transverse colon. However, more (seven for T-cells, one for B-cells) were detected in the CD14-
positive monocytes (Figure 3.11A). To validate whether T-cell- and B-cell-specific methQTLs
actually capture effects specific to blood cell types, we compared the methQTL effect sizes in
the monocytes and in transverse colon. We detected significantly higher effect sizes for the T-
cell-specific methQTLs in the monocytes in comparison to transverse colon (Figure 3.11B). No-
tably, not all methQTLs detected in the discovery cohort could be identified in the validation
cohort, since the latter has been assayed using the Infinium 450k technology. Similarly, more
of the T- and B-cell-specific methQTLs were present in the methQTL study on blood samples
in comparison to fetal brain samples (Figure 3.11C).
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Figure 3.12: Properties of methQTLs shared across different tissues and tissue-specific methQTLs. A: Dis-
tance between the CpG and the SNP, the effect size of the methQTL, and the negative common
logarithm of the methQTL p-value. MethQTLs were classified as either shared or tissue-specific.
B: Enrichment analysis of shared (upper) or tissue-specific methQTLs (lower) in different func-
tional annotations of the genome. Visualized is the common logarithm of the odds ratio and the
associated Fisher exact-test p-value was computed. P-values below 0.01 are indicated by a bold
border. C: LOLA enrichment analysis of the methQTL SNPs for the shared and tissue-specific
methQTLs, respectively.

3.3.4 Discussion

Patient-stratification according to mutational signatures, i.e., genotype-based markers, are al-
ready well-accepted in the clinic [213]. At the same time DNA methylation-based biomarkers
are also becoming relevant in a clinical setting [85] andmay contribute to clinical decision mak-
ing. The relationship between genotype and DNAmethylation variation is only just beginning
to be understood. As a first step towards the joint characterization of DNAmethylation patterns
and genotypes, methylation quantitative trait loci (methQTLs) have been identified in healthy
individuals. To facilitate standardized analyses of DNA methylation and genotyping data, we
developed the R-package MAGAR that supports processing of raw data and integrates with
established bioinformatic tools. MAGAR is the first package providing a start-to-finish work-
flow for microarray-based methQTL studies and supports bisulfite sequencing data, without
specifically using the additional information present in the sequencing reads. For bisulfite se-
quencing data, specialized methods are available such as IMAGE [214]. Notably, MAGAR per-
forms methQTL analysis while accounting for the correlation structure of neighboring CpGs
and is a first step toward associating genetic haplotypes with DNA methylation haplotypes.
Grouping together CpGs into clusters is an approach that has also been used earlier [215, 216]
in contexts different frommethQTL analysis. The earlier approaches to group CpGs into corre-
lation blocks however either do not take into account the genomic distance between two CpGs
or are restricted to either microarray or bisulfite sequencing data.
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It remains elusivewhethermethQTLs are inherently cell-type-specific or tissue-independent.
In this study, we systematically investigated cell-type specificity of methQTLs in sorted blood
cell types (CD19+ B-cells, CD4+ T-cells) and bowel biopsies (ileum, rectum). We found fewer
tissue-specific methQTLs than methQTLs that were shared across tissues. We validated tissue-
specificity in additional CD14+ monocyte and transverse colon samples. Since DNA methyla-
tion is a cell-type-specific epigenetic mark, it is likely that methQTLs are also cell-type specific.
It remains to be shownwhether these cell-type-specific methQTLs preferentially co-occur with
other cell-type-specific epigenetic marks such as open chromatin or histonemodifications. Pre-
vious methQTL studies [57, 208] identified a partially overlapping list of methQTLs, some of
which were also detected in this study. Notably, the previous studies used a different strategy
for identifying methQTLs (Merlin [217] in the blood study and Matrix-eQTL [197] in the fetal
brain samples). While these strategies do not account for the properties of DNA methylation
data, we found a substantial overlap with the methQTLs that we identified.
We found that cell-type-specific methQTLswere preferentially located in enhancer elements,

which further emphasizes the importance of enhancers for establishing cellular identity. How-
ever, methQTL effects were weaker in cell-type-specific methQTLs compared to those shared
across different cell types. It remains to be shown howmethQTLs affect gene expression states.
In subsequent analyses, the overlap between methQTLs and eQTLs can be explored to further
understand the relationship between genome, epigenome, and transcriptome. Since the cell-
type-specific methQTLs had weaker effects on the CpG methylation states, cell-type-specific
methQTLs could modulate transcript abundance in a more fine-grained manner. We would
also like to point out that this observation may be due to technical rather than biological issues.
There are some aspects of methQTLs, which remain to be investigated. It would be rele-

vant to study cell-type-specificity of methQTLs in cell types outside of the hematopoietic sys-
tem, such as in neurons, epithelial cells, and hepatocytes. To that end, the identified common
methQTLs could be further validated to determine whether they are truly tissue- and cell-type-
independent. Furthermore,MAGAR groups together CpGs into CpG correlation blocks, which
reduces the number of SNPs associated with CpGs in the same regulatory unit. However,
methQTLs affecting single CpGs may be missed using this method. It is well-established that
genetic associationswith a disease (GWAShits) are preferentially located in non-coding regions
of the genome [218]. The functional impact of such genetic variants, which can be modulated
by QTLs (methQTLs, eQTLs), remains to be investigated. Additionally, DNAmethylation data
can be used to reliably estimate the cellular proportions of different cell types in the samples
using deconvolution analysis (see Chapter 4). Given the cell-type specificity of a subset of
methQTLs identified within this study, a combination of DNA methylation-based deconvo-
lution and identification of methQTLs could be implemented similarly to transcriptome-based
approaches [195, 219]. By using such amethod, itwill be possible to investigatemethQTL effects
in bulk tissues without considering cell-type-specific signals. Preferably, novel analysis meth-
ods, such as colocalization analysis and the integration of methQTLs and DNA methylation-
based deconvolution, are implemented in an easy-to-use software package such as MAGAR.
To deal with the issue of cell-type specificity, DNA methylation can be assayed at the single-
cell level and associated with genotype information from the same cell. Alternatively, more
readily accessible single-cell RNA-seq datasets can be integrated with bulk methQTL studies
to understand gene regulation at the single cell level. Finally, long read sequencing allows
for simultaneously profiling of the genotype and DNAmethylation state of the same molecule
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over distances up to 10 kb, which enables associating genetic haplotypeswithDNAmethylation
haplotypes.

In summary, the relationship between genetic and epigenetic variations are currently under-
explored. To facilitate the joint analysis of genotype and DNA methylation data, we present
MAGAR as a novel software tool that accounts for the properties of DNA methylation data.
In combination with colocalization analysis, we found tissue-specific and common methQTLs
with unique biological properties and genomic location. The identified tissue-specific and com-
mon methQTLs were also present in independent samples.



CHAPTER

4
DNA Methylation Heterogeneity
Between Samples Sharing a Phenotype
DNA methylation varies between phenotypes (e.g., diseased versus healthy individuals) as discussed
in the previous chapter, but it also exhibits substantial variation within a phenotypic group. To com-
prehensively address heterogeneity within a group, which is mainly driven by cell-type heterogeneity,
computational deconvolution tools such as MeDeCom (Lutsik et al. [220]) have been developed. These
deconvolution methods require data preprocessing and biological interpretation of the results. In a col-
laborative project with Pavlo Lutsik and Reka Toth from DKFZ Heidelberg, and Petr V. Nazarov from
the LIH in Luxembourg among others, I developed a three-stage protocol for performing deconvolution of
complex DNA methylomes. The collaboration was established at the Health Data Challenge in Aussois,
France, in 2018, and the major findings of the challenge have resulted in the publication Decamps et al.
[221]. I mainly contributed to the development of the first (preprocessing) and last (biological interpreta-
tion) stages of the protocol. Additionally, I applied the presented protocol to cancer data from TCGA. The
first part of this chapter is a modified version of the manuscript Scherer et al. [222] published in Nature
Protocols (2020). Here, I merely give an overview and do not discuss the full step-by-step protocol as
presented in the original publication.
In the second part of the chapter, I report on an application of the deconvolution pipeline to DNA

methylation data from melanoma patients. In a project led by Katharina Filipski, Kim Zeiner, Pia Zeiner,
and Patrick Harter, I conducted deconvolution analysis of melanoma metastases of patients treated with
immune checkpoint inhibition (ICI) therapy. The identified components showed an association with
immune cell infiltration and with patient survival after ICI treatment. A manuscript describing the
analysis has been submitted.

4.1 Reference-Free Deconvolution, Visualization, and Interpretation
of Complex DNA Methylation Data Using DecompPipeline,
MeDeCom, and FactorViz

4.1.1 Deconvolution of Complex DNA Methylation Data

In Chapter 3 of this thesis, we reported on methods and analysis tools for comparing DNA
methylation states between phenotypes in EWAS. Such studies have been performed to asso-
ciate CpG methylation states with various diseases and traits, including cancer [76, 84, 78],
inflammatory diseases [70], and aging [176]. As a special case of a trait that associates with
the DNA methylation state of individual CpGs, we investigated genotypes and their effects on
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DNA methylation in methQTL. Notably, EWAS and methQTL studies are mainly performed
on bulk tissue samples, such as whole blood or complex biopsies, while DNAmethylomes ob-
tained from bulk samples are intrinsically heterogeneous due to different cell types contribut-
ing different DNAmethylation patterns. DNAmethylomes can additionally be affected by age,
sex, and technical confounding. To systematically investigate such complex, bulk samples, ma-
jor sources of variation can be detected from the data and associated with biological proper-
ties such as cell-type identity or organism age. To that end, computational methods for the
dissection of the between-sample heterogeneity of large-scale DNA methylation datasets into
biologically distinct components of variability have been developed, which are of paramount
importance for the analysis of bulk samples [144].

Computational deconvolution methods have been developed that separate bulk methylomes
into their basic constituents, which we refer to as latent methylation components (LMCs) [223].
These methods can be divided into four classes: reference-based, confounding factor analysis, semi-
reference-free, and (fully) reference-free methods (Table 4.1). Reference-based methods require
DNAmethylomes of purified cell types and infer the proportions of these cell types across the
samples. Large international consortia, including IHEC, DEEP, and BLUEPRINT, are generat-
ing such genome-wide DNA methylation profiles of primary tissue samples and isolated cell
populations and facilitate reference-based deconvolution. Multiple reference-based methods
have been proposed [224, 225, 226, 227, 228] and are reviewed elsewhere [229]. Most reference-
based methods use modifications of linear least squares regression (e.g., robust partial cor-
relations, constrained projection) to infer the proportions. Notably, reference-based methods
require selecting cell-type-specific CpGs using pairwise differential analysis, and dedicated
methods (cell-type-marker selection methods) have been developed to optimize the selection
of cell-type-specific CpGs [229]. The second class of deconvolution methods aims at remov-
ing the effect of cell-type heterogeneity from EWAS without explicitly computing the cell-type
proportions [230, 231]. For instance, such methods employ PCA on the DNAmethylation data
restricted to cell-type-specific CpGs. Then, they use the first principal component as a con-
founding factor (covariate) in the differential analysis and compute DMRs/DMCs that are in-
dependent of the cell type. When referencemethylomes and other prior information is partially
or completely absent, semi-reference-free [232] or fully reference-free [233, 234, 220, 235, 236]
deconvolution methods can be applied (Table 4.1). While semi-reference-free methods require
some information about the potential cell types present in a sample such as cell-type-specific
markers, completely reference-free methods do not require prior information. Reference-free
methods use matrix factorization methods, such as non-negative matrix factorization (NMF)
to dissect the input DNA methylation data matrix into two matrices: a matrix of CpG methy-
lation states across LMCs and a matrix of LMC proportions across the samples. Various mod-
ifications of the approach have been implemented and resulted in software packages such as
RefFreeCellMix, EDec, or MeDeCom. In this work, we particularly focus on MeDeCom as the
deconvolution tool, which employs a regularized version of NMF.
Reference-free deconvolution is particularly useful for dissecting DNA methylomes of bio-

logical systems with limited prior knowledge about their cellular composition, or in case refer-
ence profiles of purified cell types in a bulk sample are missing. Examples for such biological
systems include difficult-to-access or insufficiently characterized organs and tissues, including
human brain, as well as solid tumors. Reference-free deconvolution has been employed to un-
derstand cellular heterogeneity in placenta [239], multiple sclerosis [240], breast cancer [234],
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Table 4.1: Overview of published deconvolution tools using DNA methylation data. The methods are strat-
ified into four classes of deconvolution methods and ordered chronologically according to their
date of publication. (Ref. = Reference number)

Tool Class Short description Ref.
Houseman reference-

based
The method employs constrained projection to infer proportions
of reference profiles and was particularly developed for deconvo-
lution of whole blood samples.

224

EpiDISH reference-
based

EpiDISH is a reference-based method using robust partial corre-
lations to compute proportions of reference profiles. The authors
propose a method based on DNaseI-hypersensitive sites to deter-
mine appropriate reference profiles.

225

hEpiDISH reference-
based

hEpiDISH is an extension of EpiDISH that hierarchically performs
deconvolution, and together with a new reference database, im-
proves deconvolution results in comparison to EpiDISH.

226

Methyl-
CIBERSORT

reference-
based

An extension of CIBERSORT [237] created for RNA-seq data that
employs support vector regression to estimate the proportions of
given DNA methylation reference profiles across the samples.

227

methylCC reference-
based

methylCC uses latent components and a region-based rather than
an individual CpG-based model to compute the proportions of
given reference profiles independent of the technology used.

227

FaST-
LMM-
EWASher

confounding
factor in
EWAS

The EWASher approach is based on linearmixedmodels to account
for differences in cellular compositions in EWAS.

230

ReFACTor confounding
factor in
EWAS

ReFACTor uses PCA on sites that are differentially methylated be-
tween cell types. The first few principal components are then used
to adjust for cell-type composition differences in EWAS.

231

BayesCCE semi-
reference-
free

BayesCCE is a semi-supervised method to estimate proportions of
different cell types that requires some prior knowledge on the cell-
type composition of the studied tissue.

232

RefFree-
CellMix

reference-
free

RefFreeCellMix from RefFreeEWAS [238] uses NMF of the input
DNA methylation matrix to compute a matrix of proportions and
estimated reference profiles (LMCs).

233

EDec reference-
free

EDec is a two-step approach that combines reference-based and
reference-free estimations using constrained matrix factorization.

234

MeDeCom reference-
free

MeDeCom uses regularized NMF on the input DNA methylation
data to create a matrix of proportions and a matrix of LMCs.

220

TCA reference-
free

TCA uses tensor composition analysis to obtain sample-specific
cell-type-profile estimates. In contrast to standard NMF, the
method returns multiple, sample-specific LMCmatrices using the
same proportions matrix.

235

CONFINED reference-
free

CONFINED requires two DNA methylation matrices as input and
uses canonical correlation analysis to obtain purely biological
sources of variation.

236

and cholangiocarcinoma samples [241]. Since tumors are highly heterogeneous, reference-free
deconvolution methods are especially useful for dissecting cancer samples. For example, de-
convolution analysis can be used to study the effect of tumor-infiltrating immune cells on the
tumor microenvironment [242]. Furthermore, the proportions of identified LMCs across the
samples can correlate with tumor size, location, metastasis state, and mutational burden, and
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thus be informative for patient survival. In cancer studies, methylome deconvolution can de-
tect similarities among different types of cancers and contribute to the discovery of cancer-
type-specific DNA methylation patterns and those shared across different cancer types. Since
reference-based approaches assume that the constituting cell types of a sample are known, rare
cell types are likely to be missed by reference-based, but not by reference-free methods. Sim-
ilarly, cancers that induce changes in the DNA methylation pattern of the tumor stroma and
thus alter the adjacent cell types cannot be investigated by reference-based methods.

Deconvolutionmethods require input data of high technical quality to obtain the desiredma-
jor components of variation in the DNA methylome [221]. Furthermore, interpretation of the
detected components is challenging in absence of information about the investigated biological
system. Thus, we developed a comprehensive pipeline that facilitates reference-free deconvo-
lution, starting from raw DNA methylation data down to result interpretation. Although we
focus on MeDeCom [220] as a representative method, the protocol is not limited to a single
deconvolution strategy and can be used in combination with other available tools including
RefFreeCellMix [233] and EDec [234]. To show the applicability of the protocol, we applied it to
lungadenocarcinoma data from The Cancer Genome Atlas (TCGA) and detected components
associated with tumor-infiltrating immune cells and prognostic outcome.

4.1.2 A Pipeline for Reference-Free Deconvolution of DNA Methylation Data

Overview

Reference-free deconvolution ofDNAmethylation data represents a challenging computational
problem, for which different approaches have been developed (Table 4.1). In a benchmark of
three such deconvolution tools (MeDeCom, RefFreeCellMix, and EDec), we found that results
obtained both on fully synthetic and in-silico mixed experimental datasets were largely simi-
lar [221]. Additionally, we found that the quality and information content of the input DNA
methylation matrix was more important for the success of deconvolution than the tool itself,
which is an observation made across many problems in Computational Biology. We concluded
that deconvolution algorithms require high-quality data, which is obtained through extensive
data preprocessing and feature selection. This becomes especially important if the differences
between underlying components are small.

Deconvolution tools return a matrix of LMCs and a matrix of LMC proportions across the
samples. It is especially critical to assign biological properties to those matrices, which is par-
ticularly challenging for beginners with limited experience with the analysis of biological data.
In order to facilitate biological interpretation of reference-free deconvolution results, we devel-
oped an R/shiny application. The summary of these steps resulted in a three-stage protocol for
analyzing complex DNA methylation datasets.

The three stages of the protocol, schematically outlined in Figure 4.1, are: (i) data preprocess-
ing , (ii) deconvolution, and (iii) interpretation.

1. Data preprocessing is crucial for the overall success of deconvolution, since deconvo-
lution tools require input data of high technical quality. To facilitate the generation of
such a high-quality dataset, the first stage of our protocol (DecompPipeline) uses RnBeads
(see also Chapter 3) for handling DNAmethylation data. Potentially unreliable CpGs are
removed from the analysis. Since age, sex, or the genetic background can substantially



Chapter 4 DNA Methylation Heterogeneity Between Samples Sharing a Phenotype 69

DecompPipeline

IDAT

BED

CSV

Sample
annotation

DNA
methylation

data

BeadsR I∩n

Data import

MeDeCom,
RefFreeCellMix, or

EDec

FactorViz

Data preprocessing Deconvolution Interpretation

Phenotypes

LM
C

s

Phenotypic
trait

association

Relative enrichmentR
eg

ul
at

or
y 

el
em

en
ts

LMC-specific
enrichment

analysis

Difference

neg pos

unusual intensity

located on sex
chromosome

annotated SNP

Part I: Filtering &
Preprocessing

Part III: Selecting
CpG subsets 

Part II: ICA
adjustment

DNA
methylation

matrix

T

k LMCs

m
 C

pG
s

n Samplesk 
LM

C
s

A

D

Proportion
0 1

Samples

C
pG

s

Methylation
10

LMC1

FactorViz interface

Number of
components k

Regularization
parameter λ

2
3
4

15

00.0010.1

Figure 4.1: Overview of the proposed deconvolution protocol. DNA methylation data can be used from
any technology yielding single-CpG methylation calls. Methylation data is first processed using
DecompPipeline, which includes data import, preprocessing, accounting for confounders and
feature selection. MeDeCom, RefFreeCellMix, or EDec can be used to perform deconvolution
of the input methylation matrix (dimension m CpGs × n samples) into the latent methylation
components (LMCs) and the proportions matrix (dimension k LMCs × n samples). A grid of
values for the regularization parameter λ and the number of components k has to be specified.
The resulting matrices are then validated and interpreted using the R/Shiny visualization tool
FactorViz.

affect the methylome [45, 44], these factors are typically considered as confounding fac-
tors. Within the protocol, we propose independent component analysis (ICA) [243] to
account for confounding factors. In the presented example analysis, we argue that this
adjustment is crucial for obtaining biologically relevant results. Since only few CpGs will
contribute to the discovery of LMCs, we select a subset of CpGs that are associated with
features such as cell-type identity or any other phenotypic trait of interest as the final step
of the preprocessing.

2. The processed DNAmethylation data matrix is used as input to one of the reference-free
deconvolution tools MeDeCom, RefFreeCellMix, or EDec. These methods decompose the
input DNA methylation matrix into the LMC matrix T and a matrix of proportions of
LMCs across the samples (A). Detected LMCs correspond to major sources of variation
in the methylome including, but not limited to, DNA methylation profiles of underlying
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cell types. The proportions matrix A quantifies the relative contribution of each LMC to
each (bulk) sample. In the use case that we discuss here, we useMeDeCom [220], amethod
based on regularized NMF for deconvolution, but the proposed protocol seamlessly in-
tegrates with other deconvolution tools.

3. Reference-free deconvolution can be applied to any biological system, which introduces
challenges for the interpretation of deconvolution results. Most notably, the LMCmatrix
T has to be scanned for unique biological properties. The detected LMCs reflect multiple
drivers of biological and technical variability, including cell-type composition. Further-
more, technical and biological validation of the proportions and LMCs is not trivial, since
the underlying ground truth (e.g., the cellular composition) is typically unknown. For the
interpretation of the detected components, we propose tests of association to available
sample metadata and enrichment analysis of LMC-specific CpGs. To make the various
validation and interpretation functions available also to users with with limited bioinfor-
matic knowledge, we developed the specialized R/Shiny-based graphical user interface
FactorViz for the interpretation of deconvolution results.

The protocol that we present below is available as a step-by-step procedure on the Supple-
mentary Website1. Additionally, the software packages DecompPipeline2, MeDeCom3, and Fac-
torViz4 are freely available from GitHub.

Data Preprocessing

We compiled the data preprocessing steps required for successfully performing reference-free
deconvolution of DNA methylation data as a new R-package (DecompPipeline). DecompPipeline
integrates quality filtering, adjustment for confounding factors, and feature selection into a
comprehensive workflow. For loading, formatting, and storing DNA methylation data we rec-
ommend RnBeads (see also Chapter 3).

Data Import Genome-wide DNA methylation profiles can be obtained using different tech-
nologies such as WGBS, RRBS, or the Illumina microarrays [90]. Within this project, we used
450k microarray data, which is still the technology used for most publicly available datasets as-
saying DNAmethylation. Notably, deconvolution results tend to improve with higher number
of samples. However, the protocol can be applied to Illumina EPIC data after adjusting some
of the steps such as selecting an appropriate normalization technique (see Section 4.2 for an
application to EPIC data). Additionally and similar to RnBeads, our pipeline is applicable to
any other data type that provides DNA methylation calls at single CpG resolution, including
RRBS and WGBS. Some of the steps have to be modified for bisulfite sequencing data, and De-
compPipeline provides specific functions for processing WGBS/RRBS data. These steps include
merging the CpGs assayed in different samples, and read coverage filtering of CpGs and sam-
ples. In addition to rawDNAmethylation data, phenotypic information, such as donor age and
sex, is required and converted into the internal RnBeads data structures. We use RnBeads’ QC

1http://epigenomics.dkfz.de/DecompProtocol/
2https://github.com/CompEpigen/DecompPipeline
3https://github.com/lutsik/MeDeCom
4https://github.com/CompEpigen/FactorViz

http://epigenomics.dkfz.de/DecompProtocol/
https://github.com/CompEpigen/DecompPipeline
https://github.com/lutsik/MeDeCom
https://github.com/CompEpigen/FactorViz
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Table 4.2: Configurable quality filtering options available in DecompPipeline.
450k/EPIC array and bisulfite sequencing
Missing value filtering Removes sites comprisingmissingmeasurements in any of the samples
SNP filtering Removes sites or probes overlapping with SNPs (minor allele fre-

quency>1%, dbSNP147 [113])
Sex chromosome filtering Filters sites located on the sex chromosomes

450k/EPIC array only
Bead filtering Filters sites covered by less than min.n.beads (default=3) beads in any

of the samples
Intensity filtering Filters sites according to their overall intensity values with respect to

the intensity quantiles of all sites specified using min.int.quant (de-
fault=0.001) and max.int.quant (default=0.999)

Cross-reactive filtering Removing sites reported to be cross-reactive [114, 91]

Bisulfite sequencing only
Absolute coverage filtering Filters sites with read coverage less than min.coverage (default=5)
Quantile coverage filtering Removes sites according to the read coverage quantiles (defined by

min.covg.quant and max.covg.quant)

module to check the raw data for quality. Preprocessed data can also directly be used an in-
put for the pipeline as a DNAmethylation data matrix, which enables integration with further
DNA methylation processing tools, such as minfi [111], wateRmelon [116], or ChAMP [160].

Quality Filtering and Covariate Inference By applying MeDeCom to multiple datasets, we
found that deconvolution analysis is especially sensitive toward technical batch effects. Thus,
we use very stringent quality criteria and a step-wise approach for focusing on a smaller subset
of CpGs inDecompPipeline (Table 4.2). First, we filter CpGs according to a bead or read coverage
threshold across the samples, i.e., a CpGmust fulfill the threshold in all of the samples. Second,
CpGs that show unusually high or low signal intensity (microarrays) or read coverage (bisulfite
sequencing) are removed. Sincemissing values are not accepted in further steps of the protocol,
they can either be completely discarded from the dataset or imputed (see Section 3.1.2). To avoid
confounding by genetic background of the samples, sex, and cross hybridization, we further
remove sites overlapping annotated or estimated SNPs [113], sites on the sex chromosomes, and
cross-reactive sites ([114, 91], cf. Section 2.5.1). Infinium data can be normalized prior to down-
stream analysis [93, 117, 94] to account for the bias resulting from the design of the microarrays.
Lastly, additional sample properties can be inferred including the overall immune cell content
using the LUMP algorithm [149] or the epigenetic age [44]. Reasonable default values were
selected based on our experience with the analysis of DNA methylation data (Table 4.2).

Covariate Adjustment with ICA DNA methylomes are affected by various sources of vari-
ability including biological and technical influences that might mask the signals of interest.
It is a critical choice to decide which of the detected components are of relevance for the in-
vestigated system and which components are associated with unwanted sources of variation
(confounding factors). For instance, components associatedwith agemay be relevant for study-
ing age-related phenotypes, while age is a notable confounding factor for tumor heterogeneity.
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Figure 4.2: Overview of covariate adjustment using ICA. The input DNA methylation matrix is decomposed
into two matrices (S) and (M). Components (rows of M) associated with confounding factors
(here sex, age, or ethnicity) are removed from the contribution matrix (M) and an adjusted DNA
methylation matrix (D∗) is constructed.

To allow for flexibility, we leave it to the user to decide which factors are to be considered as
confounding, but recommend to use age, sex, and ethnicity as default values. Additionally, in
case different batches of samples were used, this information should also be included. Within
our protocol, we propose to use ICA [243] as a data-driven dimensionality reduction method
that performs a matrix decomposition for adjusting the data according to a given set of con-
founders. Analogously to NMF, ICA divides the experimentally observed data matrix Dp×n

into k independent signals Sp×k mixed with the coefficients of Mk×n:

Dp×n ∼ Sp×k ×Mk×n (4.1)

where p and n are the number of CpGs and samples, respectively. ICA does not impose re-
strictions on the entries of the matrices in contrast to MeDeCom, which only allows entries in
the [0, 1] interval. Notably, the entries of the LMC matrix can be considered as DNA methy-
lation values for MeDeCom, while this is not a requirement for ICA. To determine associations
between Independent Components (ICs) and a set of confounders, the weight matrix M can
be associated with a set of potential confounding factors, such as age or sex. Similarly, the sta-
tistically independent signals can be attributed to individual CpGs. We offer two choices to
account for the effect of a confounding factor: Either the CpGs associated with the confounder
can be removed from the analysis, or the weights (entries of M) can be set to zero [244]. The
latter method preserves all CpGs for the analysis, but modifies the DNA methylation matrix.
If the influences of the investigated confounding factors are small, we recommend setting the
corresponding components to zero and reconstructing an adjusted datamatrix (Figure 4.2). We
apply the consensus ICA approach to obtain the matrix decomposition [245]. The integration
of ICA into DecompPipeline has been realized by Tony Kaoma and Petr Nazarov from the LIH
in Luxembourg.

Selection of Informative CpGs Feature selection is another important step of the pipeline,
since, for instance, lowly variable CpGs do not contribute to the identification of LMCs, but add
to the computational runtime. Additionally, consideringCpGs not associatedwith the outcome
of interest can mask more subtle signals. From our experience, integrating prior knowledge
about the underlying cell types, for instance known cell-type-specific CpGs, is the best option.
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Table 4.3: CpG selection options available in DecompPipeline. recom.=recommended
CpG selection
method

CpG subset selected Details 450k EPIC sequencing

VAR Most variable across the samples n.markers to
determine the
number of sites

RANDOM Random subset
HYBRID Half most variable, half randomly
PCA Highest loadings on the first

n.prin.comp principal components
Default=10

PCADAPT PCA implemented in the bigstatsrR-
package

Privé et
al. [203]

ALL All that fulfill the quality criteria Not recom.
RANGE Largest dynamic range across the

samples
CUSTOM User-specified list (recom.)
ROWFSTAT Linked to given reference profiles

using the F-statistics
Requires
reference
profiles

PHENO Differentially methylated according
to specified phenotypic groups us-
ing the limmamethod

Ritchie et al.
[246]

HOUSEMAN2012 50,000 sites determined to be cell-
type-specific using the Houseman
et al. method and the Reinius et al.
reference dataset, applicable only to
blood datasets

Houseman
et al. [224],
Reinius et al.
[247]

HOUSEMAN2014 According to the RefFreeEWAS
method

Houseman et
al. [238]

JAFFE2014 600 sites listed as cell-type-specific
in Jaffe et al., applicable only to
blood datasets

Jaffe et
al. [248]

EDEC_STAGE0 According to Stage 0 of the EDec ap-
proach; requires reference profiles

Onuchic et al.
[234]

Such knowledge is typically available for well-characterized systems, such as whole blood [224,
234]. In the absence of prior knowledge about the biological system of interest, the protocol
provides multiple feature selection methods, including selecting the most highly variable sites,
the ones with the highest loadings on the first few principal components, or a random selection
of sites. In total, DecompPipeline provides 14 such options (Table 4.3), and multiple of these
options can be included in a single execution of the pipeline.

Performing Deconvolution using MeDeCom

Reference-free deconvolution tools, such as RefFreeCellMix [233], EDec [234], orMeDeCom [220],
dissect the DNAmethylation matrix (Dp×n) of sites selected in the previous step into the LMC
matrix (Tp×k) and their proportions across the samples (Ak×n).

Dp×n ∼ Tp×k ×Ak×n (4.2)
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For the tools stated above, non-negative matrix factorization (NMF) is at the core of decon-
volution, and the different tools solve modified version of the NMF problem. MeDeCom is
used for the presented analysis, but the pipeline similarly supports RefFreeCellMix and EDec.
Notably, the deconvolution itself is independent of the input data type used, since a DNA
methylation data matrix can either be generated through RRBS/WGBS or using the Illumina
microarrays. MeDeCom’s objective is the minimization of the squared Frobenius norm of the
difference between the true (observed) methylation matrix D and the matrix product of T and
A (Equation 4.3). The Frobenius norm of a matrix is the square root of the sum of its squared
entries. Additional constraints ensure that the estimatedmatrices are restricted to entries in the
[0, 1] interval (T and A), and that the column sums have to be equal to one for A. The original
motivation behind these constraints is that the entries of T can be interpreted as DNA methy-
lation values for CpGs across the LMCs. Additionally, the columns of A should sum up to one
in order to interpret the entries as LMC proportions across the samples. A special modification
employed by MeDeCom is the penalization of the entries of T not equal to zero or one using
quadratic regularization (maximal at entries equal to 0.5). To control for the strength of reg-
ularization, the hyperparameter λ was introduced. In summary, the computational problem
solved byMeDeCom can be formulated as follows:

Objective: min
T,A

(||D− TA||F)
2 + λ

m∑
i=1

k∑
s=1

Tis(1− Tis) (4.3)

subject to 0 ≤ Tis ≤ 1, ∀i, s
Asj ≥ 0, ∀s, j
k∑

s=1

Asj = 1, ∀j

To find an optimal solution for the problem, MeDeCom employs an alternating optimization
scheme. This means that at each step of the algorithm, the quadratic optimization problem
is solved for either A or T while the other matrix is kept fixed. Hyperparameter selection for
the regularization parameter (λ) and the number of latent components (k) is realized through a
cross-validation scheme that leaves out columns ofD and computes the reconstruction error (re-
ferred to as the cross-validation error). The cross-validation error has been implemented, since
the objective value will always decrease with higher numbers of k. Typically, a grid of different
values of k and λ is specified, and the user needs to determine themost suitable number of com-
ponents and regularization, respectively, using the diagnostic plots returned by MeDeCom. In
order to reduce runtime substantially, we recommend activating the parallel processing options
on standalone workstations, or to use an HPC cluster. To facilitate downstream analysis, the
deconvolution results are stored as internal data structures, which serve as input to FactorViz
and can be investigated using custom R scripts5.

Interpretation of Deconvolution Results

For reference-based deconvolution methods, the output is a matrix of proportions of given cell
types across the samples. These proportions can be associated with a phenotype of interest,

5See e.g., http://epigenomics.dkfz.de/DecompProtocol/resources.html

http://epigenomics.dkfz.de/DecompProtocol/resources.html
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checked for biological plausibility, or be used as covariates in differential analysis (cf. Chap-
ter 3). In contrast, MeDeCom returns two matrices: a LMC matrix and a matched proportions
matrix. Both matrices need to be biologically validated and interpreted, and we created the
semi-automated visualization tool FactorViz to facilitate the visualization and interpretation of
deconvolution results. Notably, FactorViz also accepts RefFreeCellMix’s and EDec’s output. Fac-
torViz has been implemented as an R/Shiny-based user interface, and provides guidelines and
functions for comprehensive biological inference.
As a first step of the analysis, the user selects one of the MeDeCom solutions by determining

reasonable values for the parameters k and λ based on the cross-validation error. We recom-
mend selecting the values of k and λ that lead to a small cross-validation error, while other
statistics such as the objective value of the optimization problem are also small. Notably, the
cross-validation error tends to decrease whenmore components are considered, andwe recom-
mend selecting the value of k at which the cross-validation error starts to level off. After fixing a
value for k, a reasonable value for λ can be determined by plotting the cross-validation error and
the objective value for the different values of λ. An optimal value of λ is located at theminimum
of both error metrics, but often one has to trade off between the cross-validation error and the
objective value (see also Figure 4.5). To determine potential influences of covariates upon the
estimated proportions and corresponding LMCs, the proportion matrix returned byMeDeCom
is linked to technical or phenotypic traits using association tests such as two-sided correlation
and t-tests. Furthermore, in case matched gene expression profiles are available, proportions
can be associated with expression of known cell-type marker genes. In application to cancer
datasets, the LMCs can be related to cancer-specific properties such as survival time [249] or
cancer subtype. To determine clinically distinct sample subgroups, the proportions matrix can
be used to obtain sample groups using hierarchical or k-means clustering.
For functional annotation of LMCs, we determine the CpGs that are specifically hypomethy-

lated in an LMC in comparison to the median of the remaining LMCs and call the obtained
sites LMC-specific. These LMC-specific CpGs are used for GO [250] and LOLA [152] enrich-
ment analysis in order to associate respective LMCs with functional categories, pathways, and
genomic features. Finally, in case reference profiles are available for a subset of the cell types
present in the samples, the LMCmatrix can be compared to those profiles. Notably, interpreta-
tion of deconvolution results is independent of the technology used, and RRBS/WGBS data can
be similarly analyzed using FactorViz. FactorViz has originally been developed by Pavlo Lutsik
and has been improved by Shashwat Sahay.

4.1.3 Reference-Free Deconvolution of Lung Adenocarcinoma Data

To show a use case of the presented pipeline, we collected publicly available data from TCGA6

investigating lung adenocarcinoma (dataset TCGA-LUAD [251]7) in 461 samples assayed with
the Illumina 450k microarray. We used this dataset, since lung cancer is characterized by high
cellular and molecular heterogeneity [252]. The dataset comprises cancer samples, as well as
samples from cancer-adjacent, healthy tissue. We employed the presented protocol and used
default parameters for most of the analysis steps, unless stated otherwise. Notably, we ac-
counted for age, sex, and ethnicity as potential confounding factors and selected the 5,000 most

6https://www.cancer.gov/tcga
7https://portal.gdc.cancer.gov/projects/TCGA-LUAD

https://www.cancer.gov/tcga
https://portal.gdc.cancer.gov/projects/TCGA-LUAD
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Figure 4.3: Quality control of lung adenocarcinoma data from TCGA. A: Boxplot for signal intensities of
hybridization control probes for the green and the red channel, respectively. B: Sex prediction
based on the intensities of the probes on the sex chromosomes. The values on the axes indicate
the relative signal intensities on the sex chromosomes in comparison to the autosomes. The
decision boundary of RnBeads’ logistic regression classifier to differentiate between female and
male samples is indicated, and an incorrectly classified sample is indicated by an arrow. C: Outline
of the CpG filtering procedure. All CpGs on the 450k array are filtered according to quality scores
(coverage, overall intensity) and genomic sequence context (SNPs, sex chromosomes), and cross-
reactive sites are discarded.

variably methylated CpGs as input for the deconvolution.

Quality Control and Feature Selection

Since reference-free deconvolution analysis requires input DNAmethylation data of high tech-
nical quality, we verified data quality using RnBeads’ QC module (see also Chapter 3). All
quality control probes on the Infinium microarray showed the expected distribution of signal
intensities, i.e., the high, medium, and low intensity control probes showed substantially higher
signal intensities than the background control probes. In addition to validating hybridization
(Figure 4.3), further control probes are available, for instance for bisulfite conversion, speci-
ficity, or extension, which also showed the expected distribution across the samples (see Sup-
plementary Figure A.5 for an example of bad data quality). Additionally, annotated phenotypic
informationmatched the inferred sample properties, such as predicted sex for all but one of the
subjects (Figure 4.3). This is likely an incorrect prediction of the RnBeads’ sex classifier, since
the sample did not exhibit any other unusual behavior. Thus, no sample was removed from
downstream analysis.
In order to select a set of high-confidence CpGs as input toMeDeCom, we employed various,

stringent inclusion criteria. First, a large fraction of CpGs (39.5%) was removed, because they
were covered by fewer than three beads (cf. Section 2.4) in any of the samples, or showed unusu-
ally high or low signal intensities. These sites are potentially problematic, since low coverage
might induce spurious associations due to technical rather than biological reasons. Further-
more, only a small subset of CpGs is required for component detection byMeDeCom. Intensity
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Figure 4.4: Evaluation of ICA on lung adenocarcinoma data. A: Associations between the confounding
factors sex and ethnicity with the entries of the proportion matrix M returned by ICA. B: Beta-
value distributions of the DNA methylation data matrix after ICA-based transformation (D∗) and
of the untransformed matrix (D). C: Associations between LMC proportions generated in two
independent MeDeCom runs (using either D∗ or D as input) and qualitative phenotypic traits.
The colors represent the absolute difference of the mean LMC proportions in the different groups
defined by sex/ethnicity and significant p-values according to a two-sided t-test are indicated by
a bold outline.

outliers, on the other hand, can be main drivers of the LMCs, which is an undesirable out-
come. Additional CpG filtering steps included sequence context filtering (SNPs, sites on the
sex chromosomes, 10.5%) and removal of potentially cross-reactive probes (2.5%) [114, 91]. Fi-
nally, 230,223 sites were retained (47.4% of 485,577) after stringent quality filtering and used
for downstream analysis. Notably, these extremely stringent quality criteria might need to be
adapted to each dataset individually, but the input toMeDeCom should be selected from a small
set of highly reliable CpGs.

Confounding Factor Analysis

We evaluated the proposed covariate adjustment using ICA by applying the presented work-
flow to the TCGA dataset twice: once without adjusting for age, sex, and ethnicity, and once
with the adjustment using ICA. ICA revealed 22 independent components, of which two were
significantly associated with sex and ethnicity, respectively (Figure 4.4A). Notably, we set the
components of ICs 11 and 21 in M to zero in this application, since we expect that the con-
founding factors only mildly influence the DNA methylation data. A comparison between the
overall data distribution of the adjusted and non-adjusted DNA methylation matrix revealed
that the transformed DNA methylation data matrix still showed the expected bimodal distri-
bution after ICA adjustment (Figure 4.4B). The pipeline automatically returns the plots shown
in Figure 4.4, and the effect of ICA-based adjustment should be carefully investigated. In case
the effect of the ICA-based reconstruction of the data matrix (see Figure 4.2) is stronger than
described here, users can decide to remove the CpGs affected by confounding factors from the
original data matrix rather than adjusting the data matrix.
To show that the proposed ICA-based adjustment successfully removes the confounding fac-

tor from the data, we executed MeDeCom independently on the unadjusted and the adjusted
DNA methylation matrix. As a result, three of the detected components were significantly as-
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Figure 4.5: Selecting the number of LMCs and the regularization parameter for MeDeCom. A: Cross-
validation error plotted against the number of LMCs k for different values of the regularization
parameter λ. Differences across the range of values for k mask the differences between the five
λ values used. B: Objective value and cross-validation error for different values of λ after fixing
the number of components to seven. C: Combined violin- and box-plots of the LMC methylation
matrix for the selected parameters.

sociated with sex in the unadjusted run (t-test p-values: LMC1: 6 × 10−4, LMC4: 1.4 × 10−5,
LMC5: 3×10−3), but only one componentwasmildly linked to sex in the execution ofMeDeCom
using the adjusted data matrix (LMC7, t-test p-value: 7.8 × 10−4, Figure 4.4C). Although com-
ponent 21 was associated with ethnicity in the ICA analysis, an equivalent association between
any of the LMCs and donor ethnicity was not detectable. Surprisingly, neither age nor ethnic-
ity were significantly linked to any component produced by either ICA or MeDeCom, in spite
of the broad age range of 33 to 88 years. This indicated that age and ethnicity only marginally
influence the DNA methylation patterns in this dataset.

Deconvolution Results

We employed the proposed protocol to the lung adenocarcinoma dataset from TCGA. Since no
prior knowledge on the expected number of underlying cell types was available, the cross-
validation procedure implemented in MeDeCom was employed for selecting the number of
LMCs k. To that end, seven LMCs were selected, since the cross-validation error started to
level off at this value of k (i.e., the elbow point of the cross-validation error curve in Figure 4.5),
while the other metrics such as the objective value did not change. After fixing k to seven, we
selected λ=0.001 (regularization parameter) as the point where the cross-validation error is still
low, while the objective value substantially changes (Figure 4.5B). The DNAmethylation values
of the detected LMCs (entries of T ) revealed LMC5 as particularly hypomethylated and LMC6
as highly methylated. In contrast, the remaining LMCs were rather intermediately methylated
(Figure 4.5C).
As a next step, we associated the detected LMCs with biological properties to determine

the biological implications of the components. As a first observation, LMC5 had substantially
higher proportions in the healthy tissue samples in comparison to the tumor samples (Fig-
ure 4.6A). Thus, reference-free deconvolution was able to capture the inherent methylation sig-
natures specific to cancerous and healthy tissues, which would typically be addressed using
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Figure 4.6: Interpreting MeDeCom results with FactorViz (Continued on next page).

a differential analysis as described in Chapter 3. To associate LMCs with a subset of CpGs,
we selected those sites that were specifically hypomethylated in an LMCs in comparison to the
other LMCs. For LMC5, transcription factor binding sites of the core members of the Polycomb
repressive complex 2 (PRC2), SUZ12 and EZH2, were overrepresented in the LMC5-specific
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Figure 4.6: (Previous page) Interpreting MeDeCom results with FactorViz. A: Proportion heatmap of LMCs
in the different samples (k=7 LMCs, λ=0.001). The samples were hierarchically clustered ac-
cording to the Euclidean distance between the proportions using complete linkage. Samples are
annotated using disease status and with the sample-specific LUMP estimate. B: Associations
between selected phenotypic traits and LMC proportions. For quantitative traits, the Pearson
correlations are shown as ellipses that are directed to the upper right for positive and to the lower
right for negative correlations, respectively. For qualitative traits, the absolute difference of the
proportions in the two groups (e.g., female vs. male) is shown. P-values below 0.01 are indicated
by bold outlines. LOLA (C) and GO (D) enrichment analysis of the LMC-specific hypomethylated
sites for LMCs 1, 3, and 5. No significant GO enrichment was found for LMCs 1 or 5. P-values
have been adjusted for multiple testing with the Benjamini-Hochberg method [206]. Encode
TFBS, transcription factor binding site ChIP-seq profiles from the Encode [168] project; Encode
segmentation, chromatin state segmentation of Encode ChIP-seq profiles; Codex, ChIP-seq pro-
files from the Codex database [169]; Cistrome, ChIP-seq profiles from the Cistrome project [170].
E: Scatterplots between LMC proportions per sample and known marker gene expression of dif-
ferent lung cell types. Gene expression was quantified as counts per million (CPM), and the blue
line represents the least squares regression line.

CpGs. PRC2 represses oncogenes and is often dysregulated in cancers, which is often in asso-
ciation with hypermethylation [253, 254, 255]. Additionally, LMC5 proportions in the tumor
samples provided a tumor purity estimate, i.e., the proportions represented the degree of con-
tamination by adjacent normal tissue. In summary, tumor-specific methylation signatures were
captured with both MeDeCom (Figure 4.6) and RefFreeCellMix (Figure 4.7) without conducting
differential analysis between two phenotypic groups. Notably, the ordering of the components
is arbitrary and, for instance, MeDeCom LMC5 corresponds to RefFreeCellMix component 1.
LMC3 had highly variable proportions across the samples and was the main driver of the

overall sample clustering without considering LMC5. LMC3 proportions were strongly corre-
lated with the LUMP estimate (Figure 4.6B), which provides an estimate of the overall immune
cell content of a sample based on CpGs that are particularly unmethylated in immune cells.
Furthermore, LMC3-specific hypomethylated sites were enriched for leukocyte (B-lymphocyte)
specific TFBS and immune response related GO terms (Figure 4.6C, D). In conclusion, LMC3
most likely represented tumor infiltrating immune cells. The extent of tumor infiltration might
be relevant to associate cancer state to patient prognosis ([256], see also Section 4.2).
Lastly, we aimed at detecting cell-type specific profiles in the deconvolution results beyond

cancerous and immune cell signals. Thus, we associated the detected LMC proportions with
gene expression levels of known marker genes of lung tissue cell types. We selected EPCAM
as an epithelial, CLDN5 as an endothelial, COL1A2 as a stromal, and PTPRC as an immune cell
marker [257]. Gene expression data was retrieved from TCGA using the edgeR [258] and TC-
GAbiolinks [259] R-packages. LMC3 was correlated with PTPRC expression, while LMC1 was
strongly associated with the expression of the epithelial marker EPCAM and LMC5 with the
endothelial marker CLDN5 (Figure 4.6E). This further indicated that reference-free deconvolu-
tion analysis is capable of detecting cell-type-specific DNA methylation signatures in cancer
tissue samples.
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Figure 4.7: Interpreting RefFreeCellMix results with FactorViz. A: Heatmap of proportions of the different
components detected by RefFreeCellMix (k=7). The samples were hierarchically clustered ac-
cording to the Euclidean distance between the proportions using complete linkage. We annotated
samples using disease status and with the sample-specific LUMP estimate. B: Associations be-
tween the phenotypic traits and proportions of the detected components. For quantitative traits,
the Pearson correlations are shown as ellipses that are directed to the upper right for positive
and to the lower right for negative correlations, respectively. For qualitative traits, the absolute
difference of the proportions in the two groups (e.g., female vs. male) is shown. P-values less
than 0.01 are indicated by bold outlines.

4.1.4 Discussion

We developed a three-stage, computational protocol that facilitates reference-free deconvolu-
tion of complex DNAmethylation data by providing systematic guidelines for dissecting DNA
methylation data into its basic constituents. High-quality data is required as input to the de-
convolution tool and the first stage of the pipeline presents the R-package DecompPipeline for
data processing. Notably, the pipeline supports the published reference-free deconvolution
tools RefFreeCellMix,MeDeCom, and EDec, but is readily extensible to new computational tools
such as TCA [235] or CONFINED [236]. We found high concordance of results when applying
MeDeCom or RefFreeCellMix as the deconvolution tool, respectively (cf. Figure 4.6, Figure 4.7).
This further indicated that the choice of deconvolution tools is not as important as thorough
data processing. Additionally, the pipeline might be useful for processing data for reference-
based deconvolution, for example through the Houseman approach [224], EpiDISH [226], or
MethylCIBERSORT [227]. The last stage of the protocol provides an interactive software appli-
cation (FactorViz) for visualization, validation, and biological interpretation of deconvolution
results. The execution of the protocol on lung adenocarcinoma data revealed that it is able to
extract important biological features of solid tumors, including immune cell infiltration and
tumor purity levels.

However, some limitations of the protocol should be mentioned. First, MeDeCom explores
all user-specified combinations of the regularization parameter λ, the number of LMCs k, and
several feature selection methods in a single execution. Thus, the number of basic deconvolu-
tion jobs can reach 1,000-10,000, which makes reference-free deconvolution a computationally
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demanding task. A deconvolution analysis of a large dataset, including several hundreds to
thousands of samples and hundreds of thousands to millions of selected CpGs, can take sev-
eral days to finish even on larger machines. Notably, a standalone workstation was used for
the analysis presented here, but the protocol provides functionality to execute the process on
an HPC cluster environment. Additionally, biological interpretation and validation of the ob-
tained LMC matrix requires user interaction and the results need to be checked for biological
plausibility. To further automatize generating biological insights from deconvolution results,
the graphical user interface FactorVizwill be further improved to include new interpretation fea-
tures and optimized user interaction. Lastly, accounting for confounding factors, especially for
those that might have a strong influence on the methylome, can lead to a substantially altered
overall DNA methylation data matrix. Currently, the proposed pipeline provides diagnostic
plots, which require user interaction in order to determine whether and how the effect of a
particular covariate is to be removed.
In the original publication ofMeDeCom, the tool was validated on simulated data and in-silico

cell-type mixtures. MeDeCom successfully identified neuronal and glial fractions in a brain
frontal cortex dataset and detected additional LMCs associated with features of Alzheimer’s
disease [220]. We anticipate successful application of reference-free deconvolution in similar
scenarios. Referencemethylomes exist for blood-based studies [247], and reference-basedmeth-
ods tend to generate more reliable cell proportion estimates than reference-free deconvolution
tools. However, in case of severely altered blood composition, e.g., due to an overproduction
of rare cell types, the assumptions of reference-based deconvolution methods are violated and
reference-free methods should be favored. For the analysis of blood samples and other simi-
larly well-characterized tissues,MeDeCom can be applied in a semi-supervised fashion, i.e., the
obtained LMCs can be compared to available reference profiles. This enables easy recovery
of known signatures and allows for detection of additional unknown LMCs such as rare cell
types.
For the future, we envision that single-cell resolution DNAmethylation profiles will become

increasingly available due to recent technological advances [260, 261]. Nevertheless, reference-
free deconvolution of large-scale bulk tissue datasets will remain a necessary complement to
single-cell DNAmethylation profiling. This becomes especially relevant considering high costs,
low sample throughput, and data sparsity of current single-cell applications [262]. More signif-
icantly, reference-free deconvolution can be used in combination with single-cell methylomes,
e.g., single-cell profiling for several reference samples in controlled study settings followed by
deconvolution of bulk methylomes from large patient cohorts. In such a setting, the single-
cell resolution profiles can empower the interpretation of the LMCs, while deconvolution re-
sults can be used for interpretation and validation of single-cell profiles. Finally, since single-
cell methylation maps are still especially hard to generate, deconvolution of more accessible
bulk methylomes can be integrated with single-cell profiles of other data modalities. Most no-
tably, single-cell transcriptomes (scRNA-seq) and chromatin accessibility maps (scATAC-seq,
scNOMe) can be integrated with deconvolution results from bulk experiments; an idea that is
implemented in the recently published EPISCORE tool [263].
The presented protocol is not limited to Illumina microarray datasets, including Illumina

EPIC and 450k data, but is readily extensible to bisulfite sequencing data (Supplementary Fig-
ure A.6). We expect the protocol to be of great benefit to all investigators performing DNA
methylation analysis in complex andunderexplored experimental systems, including bulk sam-
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ples of highly heterogeneous tissues and tumors. We envision that, after further adaptations,
the proposed protocol will also be applicable to datasets beyond DNA methylation, including
transcriptomic data.

4.2 Reference-Free Deconvolution of DNA Methylation Data as a
Prognostic Tool in Metastatic Melanoma

4.2.1 Lack of Predictors for Immune Checkpoint Inhibition Therapy Response in
Melanoma

Throughout the last few years, the incidence of malignant melanoma in the United States sub-
stantially increased [264]. The stage of melanoma at the point of diagnosis critically influences
patient prognosis, and stage IV (metastatic) melanoma patients generally have poor survival
rates. Genetic mutations in the BRAF and NRAS genes are associated with enhancer tumor
growth and therefore accelerate disease progression [265]. A substantial step forward in im-
proving patient survival was the application of immune checkpoint inhibition (ICI) therapy,
which improves overall patient survival [266]. ICI therapy modulates the immune system re-
sponse to the tumor through blockage of specific immune checkpoints [267]. Immune check-
points are regulatory pathways that prevent the immune system fromattacking all cellswithout
further considering the cell type. For the treatment of patients with metastatic melanoma, the
combined blockage of CTLA-4 and PD-1 are in clinical use. However, a recurring issue with
ICI therapy is resistance toward the treatment, and reliable predictors of ICI therapy resistance
are missing. To exploit the potential of DNA methylation data as a potential predictor of ICI
therapy success, we analyzed a cohort of stage IVmelanoma patients under ICI treatment using
the deconvolution protocol presented above.

4.2.2 Application of the Deconvolution Pipeline on Melanoma Data

Dataset Description

We analyzed 39 samples from skin metastases of patients with stage IV melanoma, which were
treated with ICI therapy between 10/2010 and 01/2020. The following information was avail-
able for the samples: sex, age, BRAF/NRASmutation status, and presence of brain metastases.
Additionally, the patients were classified into ICI responders and non-responders according to
criteria defining therapy success. The overall survival time, as well as the survival time from
the first ICI treatment were recorded. DNAmethylation data was generated using the Illumina
EPIC microarray.

DNA Methylation Data Processing

DNAmethylation data was obtained as IDAT files, which were used as input to RnBeads. Qual-
ity control was performed using the built-in control probes on the EPIC array, and the data
showed high overall quality. Furthermore, CpGs were filtered according to detection p-values
and annotated SNPs, sites on the sex chromosomes, and potentially cross-reactive sites were
discarded from the analysis. Methylation data was normalized using the “dasen”method from
the wateRmelon R-package. We used RnBeads’ exploratory and differential methylation module
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Figure 4.8: DNA methylation analysis of the melanoma cohort with respect to different sample annotations.
A: PCA of genome-wide DNA methylation data at single-CpG resolution. Shown are the first
two principal components along with the sample annotations ICI response, brain metastasis state,
and BRAF and NRAS mutation states. B: Pairwise scatterplots of CpG-wise DNA methylation
values averaged over all samples of the groups defined. The points in the low-point-density
areas are drawn, while the points in high-point-density areas are visualized through kernel density
estimation. Shown in red (only very few points) are the CpGs with a differential methylation
p-value below 1× 10−5. The correlation is the Pearson correlation coefficient across all CpGs.

to determine associations of DNA methylation patterns with available sample annotations us-
ing PCA and differential methylation analysis. The data was further processed according to the
deconvolution protocol presented above (see Section 4.1.2). We used ICA to adjust for age as a
potential confounding factor and selected the 5,000 most variable CpGs as input to MeDeCom.
Hierarchical clustering analysis (Euclidean distance,Ward’sminimumvariancemethod) on the
LMC proportions across the samples yielded sample clusters that were investigated regarding
their potential prognostic significance. To that end, we computedKaplan-Meier survival curves
using the survival R-package [249] and computed associated log-rank test p-values.

4.2.3 Prognostic Signature Identified Through Reference-Free Deconvolution

Associations between DNA Methylation and Sample Information

We found no associations of global DNA methylation patterns with available samples anno-
tations in the PCA plots generated through RnBeads on the processed methylation data of the
melanoma samples (Figure 4.8A). The sample annotations included classification into ICI re-
sponders and non-responders, the presence of brain metastases in the patients (yes vs. no), as
well as the BRAF andNRASmutation states (mutation vs. wildtype). This indicated that global
DNAmethylation variability was not driven by any of the available sample phenotypes, which
was further confirmed by differential analysis (Figure 4.8B). Only a handful of CpGs reached
the significance level of 1 × 10−5 in the differential analysis. After adjusting the p-values for
multiple testing, none of the CpGs was identified as differentially methylated. Thus, we con-
cluded that differential analysis is unable to detect reliable differences between ICI responders
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Figure 4.9: MeDeCom analysis of the melanoma cohort. A: Cross-validation error returned by MeDeCom
plotted against the number of components k for different values of the regularization parameter
λ. B: Heatmap of LMC proportions across the samples of the melanoma cohort. Samples
were hierarchically clustered using Euclidean distance and Ward’s minimum variance method.
C: Pearson correlation between the LMC proportions and the sample-specific LUMP estimate.
P-values according to a two-sided correlation test lower than 0.05 are indicated by a bold outline.
D: Survival analysis using the hierarchical clustering information obtained on the proportions.
The p-value was computed using the log-rank test.

and non-responders and we aimed to reveal those differences through deconvolution analysis.

LMC Clustering Informative about Patient Survival

To determine whether reference-free deconvolution analysis enables the detection of prog-
nostic subgroups of samples, we applied the deconvolution protocol presented above to the
melanoma cohort samples. We selected 6 LMCs, since the cross-validation error started to level
off and selected 0.001 as the regularization parameter analogously (Figure 4.9A). The identified
LMCs showed high proportions in different subgroups of the samples. For instance, LMC2 had
high proportions in ten samples, which formed a distinct cluster (Figure 4.9B). By correlating
the LMC proportions to available sample information such as the immune cell content esti-
mated with the LUMP algorithm [149] we found a strong positive correlation) of LMC4 with
the immune cell content. In contrast, LMC2 exhibited a negative correlation with the LUMP
estimate (Figure 4.9C). We used hierarchical clustering on the proportions to obtain subgroups
of samples. Two clusters were identified and we compared the ten samples with substantially
higher LMC2 proportions (Cluster 1) with the remaining samples (Cluster 2) in a survival anal-
ysis. More specifically, we used the survival time from the first ICI treatment as output variable
in the log-rank test and found a significantly better survival for the ten samples in Cluster 1 (Fig-
ure 4.9D). Notably, Cluster 1 included the samples with higher LMC2 proportions, which had
negative correlation with the estimated immune cell content. This means that higher immune
cell infiltration into the tumor correlated with shorter survival time from the first ICI treatment
in this cohort.
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4.2.4 Discussion

There is need of a prognostic biomarker for predicting the success of ICI therapy applied to
patients with metastatic melanoma. In this project, we exploited the potential of DNA methy-
lation data as a predictor of ICI treatment success. First, we found no indications of a DNA
methylation difference associated with ICI therapy resistance using RnBeads. Thus, we used
the reference-free deconvolution protocol on the 39 melanoma patients and found a subgroup
of patients with high proportions of LMC2, which showed a significantly better survival than
the remaining samples. LMC2 proportions negatively correlated with the predicted immune
cell content of the samples indicating that low immune cell infiltration into the tumor is bene-
ficial for patient survival. We would like to point out that the findings require validation using
independent datasets, since we investigated a rather small cohort of patients. We were unable
to validate the findings on TCGA data, since only few stage IV tumors are present in the TCGA
cohort and information about ICI therapy is absent. Additionally, we could not find an enrich-
ment toward a common regulatory role or a biological pathway for the CpGs that are specific
to LMC2. After validation of the findings, the characteristic properties of LMC2 could be more
thoroughly investigated to construct a DNA methylation-based predictor of ICI therapy suc-
cess.



CHAPTER

5
DNA Methylation Heterogeneity
Within Samples
In this chapter, I discuss the third level of DNA methylation heterogeneity – heterogeneity within bio-
logical samples or within-sample heterogeneity (WSH) – as an important layer of information in DNA
methylation data that is commonly neglected. I will focus on bisulfite sequencing data in this chapter,
since WSH can be reliably estimated from bisulfite sequencing reads. Together with Markus List and
Fabian Müller, who mainly supervised this work, I set out to systematically investigate genome-wide
scores for quantifying WSH. Within this project, which is a modified version of the work published as
Scherer et al. [268] in Nucleic Acids Research (2020), I developed a novel mathematical score for quan-
tifying WSH at single-CpG resolution. Using simulated and experimental data, I observed that the new
score – qFDRP – was less affected by technical biases and reliably quantified WSH originating from
different sources of WSH in our simulation experiments. While this chapter mainly focuses on the math-
ematical aspects of WSH scores and aims to use computational approaches for quantifying WSH, I also
present a potential biological application of the score as a reliable estimator of tumor purity.

5.1 Quantitative Comparison of Within-Sample Heterogeneity
Scores for DNA Methylation Data

5.1.1 Within-Sample Heterogeneity in DNA Methylation Data

In the previous chapters, the main focus was on data generated using the Illumina BeadArrays.
While these microarrays allow for the generation of large-scale datasets, bisulfite sequencing
approaches, including RRBS and WGBS, provide information beyond the methylation state of
a single CpG. Each of the sequencing reads assayed using RRBS/WGBS comprises informa-
tion about the relationship between the methylation states of multiple CpGs [269, 270] and
is accordingly informative about co-methylation patterns. Since the methylation information
per sequencing read per CpG is obtained from a singlemolecule, only two potential states exist:
methylated or unmethylated. However, when comprehensively investigating the average DNA
methylation state across the sequencing reads for all CpGs in various tissues, such as breast,
blood, brain, and embryonic stem cells, Elliott et al. [271] found that about 2% of 26.9 million
CpGs showed intermediate DNA methylation values (higher than zero, but lower than one).
These intermediate values mainly arise from within-sample heterogeneity (WSH), which can
originate from, among others, cell-type heterogeneity, cellular contamination, allele-specific
DNA methylation (ASM), and DNA methylation erosion (Figure 5.1).
To put this in otherwords, the observedDNAmethylation level (computedwith Equation 2.2)
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intra-molecule
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inter-molecule
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D: DNA methylation erosion
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A: Cell-type heterogeneity

Epiallele Discordant
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Concordant
read pair
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methylated CpG
unmethylated CpG
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Figure 5.1: Sources of WSH and their manifestation in bisulfite sequencing reads. A: Cell-type heterogeneity:
a sample comprises different cell types with unique DNA methylation patterns. B: Cellular
contamination: cell sorting during sample preparation does not yield a pure population of cells
of interest. C: ASM: two alleles differ in their DNA methylation states and each of the states is
reflected in the sequencing reads. D: DNA methylation erosion: cells lose DNA methylation in
multiple rounds of cell division in a stochastic process.

represents the average profile of a variety of distinct DNA methylation states in a population
of different cellular states/cell types [272, 248]. WSH is manifested in heterogeneous DNA
methylation patterns observed in the sequencing reads at a given genomic location. To partially
account for these heterogeneous patterns, bulk tissues can be physically separated into cell
types or tissue regions [80, 273] using, e.g., FACS. Additionally, in-silico approaches including
reference-free deconvolution tools (see Chapter 4) can be used or bisulfite sequencing reads
can be clustered according to their putative cell-of-origin [103]. Here, we aim at quantifying
these heterogeneous patterns and use them as a feature rather than as a confounding factor and
determine regions of elevated WSH in the genome or regions with differential heterogeneity
between two phenotypic groups.
While single-cell bisulfite sequencing has the potential of overcoming the issues introduced

byWSH, large case-and-control studies are currently not feasible due to high costs and technical
challenges [262]. Furthermore, a number of technological challenges have to be solved before
single-cell datasets reach the quality of published, large-scale bulk datasets, such as the ones
generated by international epigenomic consortia. On the other hand, local deep amplicon se-
quencing enables estimating the true probability distribution of DNAmethylation patterns in a
biological sample [274, 275]. Local deep amplicon sequencing generates high-resolution DNA
methylation profiles at single genomic loci, but does not afford genome-wide coverage [97].
WSH scores quantify genome-wide WSH and are in the focus for this chapter.
Landau et al. [276] introduced the Proportion of Discordant Reads (PDR) for quantifying locally

disordered DNA methylation patterns as one of the first genome-wide WSH scores. PDR ex-
ploits the correlation structure between DNA methylation states of neighboring CpGs on the
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same sequencing read. Guo et al. [277] proposed Methylation Haplotype Load (MHL), which
quantifies fully methylated substrings in the reads to construct methylation haplotype blocks.
Epipolymorphism [278] and (Methylation) Entropy [279] define an epiallele as a configuration of
DNA methylation states within a window of 4 CpGs. Using epiallele frequencies in the reads,
the variance at a genomic locus is quantified using Shannon and Tsallis Entropy, respectively.
We developed two new scores – the Fraction of Discordant Read Pairs (FDRP) and quantitative
FDRP (qFDRP) – that quantifyWSH at single-CpG resolution using pairwise distances between
reads.
WSH scores describe the variance in sequencing patterns and thus describe another aspect

of DNA methylation in comparison to the DNA methylation level. Previous studies showed
that PDR and Entropy are associated with gene expression [276] and transcriptional hetero-
geneity [82]. Additionally, PDR correlated with important clinical parameters including tu-
mor size, progress-free survival, and tumor location [83, 154]. PDR was surprisingly lower in
chronic lymphocytic leukemia (CLL) patients than in healthy controls and showed a variety of
correlations with gene expression states [82].
To facilitate choosing the most appropriate score for an analysis, a systematic review ofWSH

scores is needed. Therefore, we evaluated PDR, MHL, Epipolymorphism, Entropy, FDRP, and
qFDRP in the context of simulated and publicly available bisulfite sequencing data. More
specifically, three criteria were used to evaluate performance: First, we tested if WSH scores
capture different sources of heterogeneity in simulated data (Figure 5.1). Second, we assessed
robustness of WSH scores with respect to CpG density and technical biases, such as sequenc-
ing coverage and read length. Third, we investigated the biological implications of elevated
WSH. To that end, we checked whether WSH scores reveal novel regulatory regions in particu-
lar those that are not apparent on the average DNA methylation level and we associated WSH
scores with tumor purity estimates.

5.1.2 Description of WSH Scores and Data Simulation

Definitions of WSH Scores

General Definitions As a first step, we introduce a unifiedmathematical representation of the
WSH scores (see also Table 5.1) investigated, which requires some general definitions:

r = set of CpG positions (representing a read)
Rc = set of all reads r covering c

xi,r ∈ {0, 1} = methylation state of CpG position i in read r

Here, c is the CpG of interest. Furthermore, 0 represents an unmethylated CpG and 1 a methy-
lated CpG.

PDR The Proportion of Discordant Reads (PDR [276]) quantifies locally disordered DNA
methylation states of CpGs on the same sequencing read. Reads are classified as concordant, if
all CpGs on the read have the same methylation state and as discordant otherwise. Following
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Table 5.1: Characteristics of different WSH scores targeted at quantifying inter-molecule and intra-molecule
heterogeneity.

Type inter-molecule intra-molecule
Biological
assump-
tion

each epiallele origi-
nates from single allele
in single cell

each read originates
from single allele in
single cell

local concordance of CpG
methylation states

Concept computing epiallele
frequencies

pairwise concordance
of reads

agreement between
neighboring CpGs

Similarity
calcula-
tion

Tsallis en-
tropy of
epiallele
frequency

Shannon
entropy of
epiallele
frequency

pairwise
discordance
of reads

pairwise
distance of
reads

all CpGs on
read either
methylated
or unmethy-
lated

number of
consecutively
methylated
substrings

Epipoly Entropy FDRP qFDRP PDR MHL

this classification, PDR is defined for a CpG c as:

PDR(c) =

∑
r∈Rc

I(∃i, j ∈ r s.t. xi,r ̸= xj,r)

|Rc|

Note that the indicator function I is 1, if CpGs at any twopositions in the read (i, j) have different
DNAmethylation states (read is discordant). As a requirement stated in the original publication
and as a threshold used throughout this work, reads are only included in the read set Rc if they
contain at least four CpG sites.

MHL TheMethylation Haplotype Load (MHL, [277]) determines fully methylated substrings
of differing lengths in each of the reads and computes the proportion of methylated substrings
over all possible substrings. It is defined for a given CpG c as:

MHL(c) =

L∑
l=0

(l+ 1)

∑
r∈Rc

i≤|r|−l∑
i=1

I(xi,r = 1∧ · · ·∧ xi+l,r = 1)∑
r∈Rc

|r|− l

L∑
l=0

(l+ 1)

|r| = number of CpGs in read r

l+ 1 = number of consecutive CpGs with identical methylation states
L = max

r∈Rc

(|r|) − 1

Epipolymorphism and Methylation Entropy Epipolymorphism [278] and Methylation En-
tropy [279] quantify the variance of epialleles, which are configurations of methylation states
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in windows comprising four CpGs (24 potential configurations). The frequency of each of the
epialleles is calculated from the sequencing reads and Epipolymorphism for windoww is com-
puted as:

Epipolymorphism(w) = 1−

16∑
k=1

p2
k

pk =

∑
r∈Rw

I(∀i ∈ ck : xi,ck = xi,r)

|Rw|

ck ∈ {(0, 0, 0, 0), (0, 0, 0, 1), . . . , (1, 1, 1, 1)}(epiallele)
Rw = set of all reads r containing all four CpGs in w

xi,ck ∈ {0, 1} = methylation state of CpG i in epiallele ck
w = window of four consecutive CpGs

Similarly, methylation entropy is calculated as:

Entropy(w) = −
1

4

16∑
k=1

pk × log2 pk

Epipolymorphism and Entropy compute the entropy of DNAmethylation patterns observed
in windows of four consecutive CpGs (w) across the sequencing reads.

FDRP and qFDRP As a novel score, we introduce the Fraction of Discordant Read Pairs
(FDRP), which captures within-sample DNA methylation heterogeneity at single CpG resolu-
tion. FDRP is defined as:

FDRP(c) =

∑
rs∈Rc

∑
rt∈Rc,t>s

I(∃i ∈ {rs ∩ rt} s.t. xi,rs ̸= xi,rt)(
|Rc|
2

)
rs, rt = sets of CpG positions (representing reads)

s, t ∈ [1, |Rc|] = indices of reads

FDRP takes all read pairs into account that cover the sequence position of interest (c). A read
pair is classified as discordant, if there is a CpG with different DNA methylation states in the
two reads. FDRP is the fraction of discordant read pairs among all read pairs.
The quantitative FDRP (qFDRP) is derived from FDRP as follows:

qFDRP(c) =

∑
rs∈Rc

∑
rt∈Rc,t>s

∑
i∈{rs∩rt}

I(xi,rs ̸= xi,rt)

|{rs ∩ rt}|(
|Rc|
2

)
rs, rt = sets of CpG positions (representing reads)

s, t ∈ [1, |Rc|] = indices of reads
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qFDRP computes the Hamming distance between the methylation states of all the read pairs,
which replaces the definition of discordance used by FDRP. For FDRP and qFDRP, the number
of pairwise comparisons increases quadratically with read coverage, which is addressed for
using a subsampling strategy (see Implementation).

Implementation

FDRP and qFDRP have been implemented in the R-package WSHPackage, which is available
from GitHub1. The following parameter settings are the default values implemented in the
package and also the ones employed in the presented analysis. To avoid the issues of the
quadratic growth, we randomly subsampled 40 reads at genomic regions with coverage higher
than 40 reads. Furthermore, we discarded read pairs overlapping by fewer than 35 bp to focus
only on read pairs with shared information. By using a fixed-sized window (50 bp) around
the CpG site of interest, the scores are also applicable to datasets with different read lengths.
RnBeads data structures were used for storing DNAmethylation, coverage and sample informa-
tion. To focus on a set of reliably covered regions, we only used CpG sites with read coverage
at least 10 in the experimental data to compute FDRP and qFDRP.

Epiallele frequencies were computed using the methclone software (version 0.1 [280]), and
the output was used to calculate Epipolymorphism and Entropy using custom R scripts. We
used the following parameters formethclone: methylation difference: 0, distance cutoff:
50 bp, and coverage threshold: 10. PDR was calculated from the aligned sequencing reads
using custom R scrips, andMHLwas quantified using the Perl scripts provided by the original
authors [277].
For scheduling compute jobs across the nodes of a HPC cluster, we used the python packages

peppy2 and pypiper3. All the plotting scripts and pipelines are available from GitHub4, which
are recommended for analyzing large datasets comprising tens to several hundreds of samples.
The R-package (WSHPackage) available from GitHub implements FDRP, qFDRP, PDR, MHL,
Epipolymorphism, and Entropy and comprises an extensive vignette andmanual. As input, the
package requires aligned reads in BAM format and genomic annotation for the CpGs of interest
through an RnBiseqSet or GRanges object [207].

Simulation of Bisulfite Sequencing Reads and Evaluation of WSH Scores

Simulation Setup We simulated bisulfite sequencing reads from the human reference genome
version ‘hg38’ (chromosomes 22, X, and Y excluded) using the Sherman tool5. Sherman defines
the methylation probability of each CpG through the --CG_conversion parameter, which im-
plicitly controls sample heterogeneity since a methylation probability of 50% results in com-
pletely random, i.e., very heterogeneous patterns. We used different parameter settings for the
different scenarios. Simulated reads were aligned to the reference genome ‘hg38’ with bismark
(version 0.13.0 [129]) to create BAM files. DNAmethylation scores were extracted and processed

1https://github.com/MPIIComputationalEpigenetics/WSHPackage
2https://github.com/pepkit/peppy
3https://github.com/databio/pypiper
4https://github.com/MPIIComputationalEpigenetics/WSHScripts
5https://www.bioinformatics.babraham.ac.uk/projects/sherman/

https://github.com/MPIIComputationalEpigenetics/WSHPackage
https://github.com/pepkit/peppy
https://github.com/databio/pypiper
https://github.com/MPIIComputationalEpigenetics/WSHScripts
https://www.bioinformatics.babraham.ac.uk/projects/sherman/
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Figure 5.2: Simulation setup for modeling WSH originating from different sources of heterogeneity (Contin-
ued on next page).

with RnBeads using default parameters. BAM files were sorted and indexed with samtools (ver-
sion 1.3 [281]).

Simulated Heterogeneity For each source of WSH investigated here (Figure 5.1), bisulfite se-
quencing reads were simulated in 1,000 randomly selected genomic regions of length 50 kb
(a simulated dataset) using Sherman (read length: 50 bp, error level: 1%). For each simulated
dataset, we created different subpopulations of reads representing different cellular states (such
as cell types, see Figure 5.2). These subpopulations were subsequently merged to generate
simulated samples for each dataset and scenario separately. For each subpopulation of reads
in each of the simulated datasets, we selected the same background methylation state (fully
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Figure 5.2: (Previous page) Simulation setup for modeling WSH originating from different sources of het-
erogeneity. A: We merged between 2 and 10 simulated cell types in-silico per dataset, each
with a randomly selected DNA methylation state within a randomly selected sub-region. B:
A pure cell population is ‘contaminated’ with 10-50% of another cell type. C: Two cell types
were generated, with one changing its DNA methylation state in a random sub-region. D: In a
randomly selected sub-region, the fully methylated background state of all CpGs on a given read
is de-methylated with the same probability probability (α). Those ‘eroding cells’ are replicated
γ times to represent the stochasticity of selecting cells for sequencing from a population. E: No
heterogeneity was introduced. In a single cell type, the DNA methylation state changes from
fully methylated to unmethylated or vice versa. THR, truly heterogeneous region

methylated/unmethylated, with error level 1%) as baseline. Within each of the subpopula-
tions individually, we introduced the opposite methylation state in a subset of CpGs within a
randomly selected subregion. We define the truly heterogeneous region (THR) per simulated
dataset as the union of all the subregions with the opposite methylation state across all the read
subpopulations.

To assess the potential of each score to quantify heterogeneity, we performed a t-test compar-
ing the different scores at each CpG in the background to the CpG-wise scores within the THR.
Additionally, we simulated negative cases in which no change in DNAmethylation state for the
subregion was introduced. In total, we created 1,000 simulated regions, which comprise a THR
in about half of the regions for each simulation scenario separately. We used these definitions
to determine the numbers of true positives, true negatives, false positives, and false negatives,
as well as resulting ROC curves for each score and scenario.

To model cell-type heterogeneity, we merged a random number (between 2 and 10) of sim-
ulated cell types (read subpopulations). Within each of these cell types, a random subregion
was introduced showing the inverse DNAmethylation state in comparison to the baseline. We
defined the THR for each of the 1,000 simulated regions as the maximum segment at which
any of the cell types changes from baseline DNA methylation level. Then, we computed the
average WSH score for each of the regions individually and correlated this quantity with the
number of cell types in this particular region to determine if the scores quantify the degree of
heterogeneity in a sample. In the cellular contamination scenario, only two distinct cell types
were mixed at a random proportion between 1.0 and 0.5 (Figure 5.2). Analogously, ASM was
simulated using 0.5 as fixed proportions for the two cell types.
For simulating DNAmethylation erosion, we first generated fully methylated regions for one

cell type. For each simulated dataset, we randomly selected a subregion in which we demethy-
late CpGs with probability α. Since the eroded segments are passed on to all daughter cells in
cell replication, we sampled from these demethylated reads between 2 and 10 times (parameter
γ), which also reflects the random selection of fragments for sequencing.
Borders of active regulatory elements are often marked by a sharp increase/decrease in the

DNAmethylation state, andwe refer to this scenario as amethylation switching domain (MSD).
In this scenario, we modeled a single cell type with a either fully methylated or unmethylated
baseline DNA methylation level. Within a randomly selected subregion, the cell type changes
its DNA methylation state to the inverse state.
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Technical Biases We simulated additional datasets to address three potential technical bi-
ases arising from bisulfite sequencing that might affect the WSH scores: read coverage, read
length, and sequencing errors. Similar to the scenarios described above, we randomly selected
1,000 regions of size 50 kb and simulated reads using Sherman. In order to investigate the ef-
fect of technical biases without considering the different sources of WSH described above, we
computed 62.5% as the average DNA methylation level in the blood cohort (see subsequent
section). In this dataset, 42.4% and 26.4% of all sites had methylation levels of at least 95% and
of at most 5%, respectively. Thus, we used an overall methylation probability of 62.5% and
set the --CG_conversion parameter to 95 and 5 for the methylated and unmethylated states,
respectively. For modeling datasets with different read coverages, we created another 1,000
simulated regions. For each of the regions individually, we selected between 5,000 and 50,000
reads (step size 5,000) representing coverage between roughly 5- and 50-fold. Similarly, we em-
ployed different read lengths (--length parameter) increasing from 40 to 150 bp (step size 10).
We changed the number of reads generated according to the length parameter in order to keep
CpG-wise read coverage constant across the different regions. Lastly, we introduced different
sequencing error levels (1 to 10 percent, step size 1%) using the --error_rate parameter in
Sherman. Sherman employs an exponential decay model for each nucleotide with lower error
probability for the 5’ than for the 3’ end of the reads (see also Sherman manual6).

Experimental Data

We analyzed RRBS data comprising 239whole blood samples to validate findings on simulated
data. The dataset comprises whole blood samples of healthy individuals, and focused on hu-
man longevity. Therefore, the dataset spans a range of 20-103 years of age for the individuals
within the cohort. The dataset is accessible through the PopGen Biobank7 [165]. 5,606,227 CpGs
were covered at average read depth 7.5. We also used this blood cohort to estimate parameters
for the simulation experiments.
To illuminate the WSH scores’ abilities to quantify WSH irrespective of the sequencing tech-

nology used, we collected hepatic WGBS samples from DEEP (European Genome-phenome
Archive, EGA accession: EGAD00001002527). More specifically, we artificially mixed WGBS
data from a hepatic cancer cell line (HepaRG) and a primary hepatocyte sample to generate a
heterogeneous WGBS sample. In order to contrast WSH scores in heterogeneous and homoge-
neous samples, we also generated a homogeneous WGBS sample. To achieve that, we mixed
two primary hepatocyte samples, which are expected to be more similar to one another than to
the HepaRG sample. Library preparation and sequencing was conducted by Gilles Gasparoni
and primary data processing was performed according to the DEEP WGBS process documen-
tation8 by Karl Nordström from the Department of Genetics/Epigenetics. The final dataset
covered 23,290,153 sites at average read depth 24.1.

Lastly, a RRBS dataset comprising samples obtained from Ewing sarcoma patients (GEO ac-
cession: GSE88826 [154], see also Chapter 3) was used to illustrate the applicability of WSH
scores in a disease context. This dataset comprised 188 samples with 140 Ewing tissue sam-
ples, 16 Ewing cell lines (Ewing CL), 21 mesenchymal stem cells extracted from healthy donors
(MSCs), and 11 MSCs extracted from Ewing sarcoma patients (eMSCs) and covers 2,217,786
6https://www.bioinformatics.babraham.ac.uk/projects/sherman
7https://www.uksh.de/p2n/
8https://github.molgen.mpg.de/DEEP/comp-metadata

https://www.bioinformatics.babraham.ac.uk/projects/sherman
https://www.uksh.de/p2n/
https://github.molgen.mpg.de/DEEP/comp-metadata
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sites at average read depth 14.7. We used TrimGalore!9 for trimming and aligned the sequenc-
ing reads to reference genome version version ‘hg38’ using bsmap [128].

Quantification of WSH Scores, Tumor Purity, and Differential Heterogeneity

In a first processing step, we converted sample-specificWSH scores into a datamatrix of dimen-
sion CpG sites×samples. To focus on potentially regulatory regions of the genome, single-CpG
WSH scores were further aggregated across samples or across putative functional elements
according to the Ensembl Regulatory Build [8]. We excluded 11 formalin-fixed and paraffin-
embedded (FFPE) samples from the Ewing tissue group, since they showed lower quality in
the original publication [154].

Tumor purity levels, or the level of immune infiltration into the tumormicroenvironment, are
important information for therapy selection (cf. Section 4.2). These scores are typically obtained
from histopathological investigation of the sample or from genetic data [149, 282, 283]. How-
ever, in the absence of such information, WSH scores could serve as estimates of tumor purity
since they quantify heterogeneity. In the Ewing cohort dataset, tumor purity levels were esti-
mated for 81 samples using genetic data based on loss of heterozygosity, copy number change,
and the mutated allele fraction [154] with the method described in Chen et al. [284]. To esti-
mate tumor purity levels fromWSH scores for the remaining samples, we trained an elastic net
regression model using the glmnet R-package [136]. Elastic net regression accounts for the high
dimensionality of the problem using regularized linear regression (see Section 2.6 for details).
We used ten different initializations of 10-fold nested cross-validation to select the elastic net
hyperparameters α and λ simultaneously. While α determines the weight of either the ridge
regression penalty (α=0) or the Lasso penalty (α=1), λ determines the weight of the regulariza-
tion in comparison to the objective value (Section 2.6). Model performancewas onlymarginally
affected by selecting α and we thus selected α=1, since the Lasso returns simpler models (i.e.,
comprising less features) than ridge regression. Then, we selected those sites that consistently
had non-zero coefficients in five or more folds when we executed ten different initialization
of ten-fold cross-validation of the Lasso. To validate that we did not find an association by
chance, we randomized sample labels and re-ran the regression model. Subsequently, we used
the selected sites for each of theWSH scores individually and conducted another ten-fold cross-
validation using an unregularized linear least squares model to estimate overall performance
of the proposed method. We visualized the WSH scores of the selected sites using heatmaps.
We used the logit-transformation of the scores (M-values) to determine differentially methy-

lated and differentially heterogeneous regions between two groups using linear models imple-
mented in the limma R-package [246]. The analysis was performed both on the single-CpG level
and after aggregation across putative regulatory elements. We adjusted the resulting p-values
for multiple testing using the Benjamini-Hochberg method [206] and employed a FDR thresh-
old of 0.01 to determine differentially heterogeneous sites. These sites were used as input to
enrichment analysis with GOstats [250] and LOLA [152].

9http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/

http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
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5.1.3 Application of WSH Scores on Simulated and Experimental Data

Conceptual Comparison of WSH Scores

Before computing the WSH scores on simulated data, we compared the scores based on their
construction and biological motivation. WSH scores can be conceptually divided into two
classes: intra-molecule scores exploit the (dis)agreement of CpG-wise DNA methylation states
on the same sequencing read, while inter-molecule scores quantify the variability of DNAmethy-
lation patterns observed in the reads at a genomic locus. Intra-molecule scores are mainly
motivated from DNA methylation erosion and inter-molecule scores were created to capture
cell-type heterogeneity (Table 5.1).

Intra-Molecule Scores: DNA Methylation Erosion DNA methylation patterns in cancer are
intrinsically heterogeneous and PDR has originally been developed to describe locally disor-
dered DNA methylation states. For any given CpG, PDR is computed as the fraction of reads
that are discordant. Thus, PDR is maximal (1), if all reads that contain a specific CpG comprise
both methylated and unmethylated CpGs (Table 5.2). Accordingly, PDR is minimal (0) if all
reads are consistently methylated/unmethylated. MHL defines DNA methylation haplotypes
based on the CpGmethylation states on a read. It is maximal (1) if all reads are fullymethylated
and minimal (0) if they are completely unmethylated. MHL does not increase linearly with the
number of methylated CpGs but rather quantifies stretches of adjacently methylated CpGs.

Inter-Molecule Scores: Cell-Type Heterogeneity We differentiate between two sub-classes
of inter-molecule WSH scores; Epipolymorphism and Entropy utilize epialleles as combinations
of CpGmethylation patterns within four-CpGwindows, while FDRP and qFDRP conduct pair-
wise comparisons of sequencing reads. Detecting epiallele frequencies in the reads is an im-
portant prerequisite for computing Epipolymorphism and Entropy. For a DNA methylation
pattern of four CpGs (24=16 combinations in total), the frequency of each of these epialleles in
the reads is determined. Epipolymorphism quantifies Tsallis entropy on the frequencies and is
maximal (1− 1

16
=0.9375), if all 16 epialleles occur at the same frequency. In accordance, Entropy

utilizes Shannon entropy and is minimal if a single pattern (e.g., one cell type) is present in the
reads. Both scores rely on spatial proximity of CpGs, since multiple (four) CpGs have to be
present in the reads.
FDRP and qFDRP compare pairs of reads/patterns. While FDRP classifies each pair of reads

into either concordant (if all DNA methylation states match) or discordant (if one or more DNA
methylation states differ), qFDRP computes the Hamming distance of DNAmethylation states
on the two reads. FDRP is maximal (1) if no two reads reflect the same DNA methylation
configuration and qFDRP/FDRP are lowest (0) if all reads agree. qFDRP is maximal (1), if
none of the methylation states in any of the read pairs agree, which can only occur with two
distinct reads. Notably, FDRP is an upper bound for qFDRP and qFDRP can be considered a
soft version of FDRP.

Comparison Between Intra- and Inter-Molecule WSH Scores An important property of
WSH scores is that they identify differences in DNA methylation patterns beyond those cap-
tured by the average DNA methylation level. For instance, the DNA methylation level is the
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Table 5.2: Comparison of average DNA methylation level and WSH scores for different sequencing read
configurations. n.d.=not defined

Reads
DNAm level 0 0.5 0.5 0.5 0/1 1 0.667

FDRP 0 0.6 0.6 1 0 0 0.733
qFDRP 0 0.6 0.6 0.6 0 0 0.555
PDR 0 0 1 1 1 0 1
MHL 0 0.5 0.117 0.083 0.358 1 0.134

Epipoly 0 0.5 0.5 0.83 0 0 <n.d.>
Entropy 0 0.25 0.25 0.65 0 0 <n.d.>

same for read configurations 2-4 in Table 5.2, while the read patterns are largely distinct; a prop-
erty of theDNAmethylome forwhichWSH scores account. MHL is conceptually different from
the other scores, since it quantifies stretches of adjacently methylated CpGs rather than hetero-
geneity in methylation patterns. However, due to its construction, it shares properties of the
DNA methylation level in fully methylated and unmethylated regions (Table 5.2). Since large
fractions of the human genomes are either fully methylated or unmethylated, MHL and the
DNA methylation level are expected to be identical for the majority of the genome. Although
PDR is motivated from DNAmethylation erosion and FDRP/qFDRP rather from cell-type het-
erogeneity, they share certain characteristics. The three scores (qFDRP, FDRP, PDR) concep-
tualize the concordance either between neighboring CpGs on the same read (PDR) or for the
same CpG on different reads (FDRP/qFDRP). Nevertheless, PDR and FDRP/qFDRP are simi-
larly elevated in disordered situations (cf. Configuration four in Table 5.2). On the other hand,
there are read configurations in which either inter-molecule scores or PDR are high, while the
other scores are low (Table 5.2, Table 5.3). If a pair of reads contains many overlapping CpGs,
the probability of detecting a single difference increases and results in a discordant read pair
according to the definition used by FDRP. This was the original motivation for the development
of qFDRP, which is less susceptible to distinct DNAmethylation states occurring at single CpGs
at very low frequencies. Epipolymorphism and Entropy share the definition of epialleles and
use entropy to measure the variance and thus behave similarly across different read configura-
tions.

Cell-Type Heterogeneity, Cellular Contamination, and ASM Captured by Inter-molecule
WSH Scores in Simulation Experiments

Cell-Type Heterogeneity, Cellular Contamination, and ASM Cell-type heterogeneity criti-
cally influences the analysis of bulk tissue samples using bisulfite sequencing and is typically
considered the major confounding factor in any epigenomic study. In our first simulation sce-
nario, we in-silico merged 2-10 simulated cell types (Figure 5.2). The performances of WSH
scores were evaluated based on truly heterogeneous regions (THRs), which we introduced as
regions with a substantially elevated number of cell-type-specific patterns and thus with ele-
vatedWSH. We found that the DNAmethylation level, Epipolymorphism, Entropy, FDRP, and
qFDRP correctly identified the THRs in which the cell types exhibited distinct DNA methy-
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Table 5.3: Examples of read configurations and resulting WSH scores.

Reads
FDRP qFDRP PDR MHL Epipoly Entropy
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lation patterns (Figure 5.3A,B). The intra-molecule heterogeneity scores PDR and MHL were
less accurate in defining THRs. Since Epipolymorphism and Entropy only consider sequenc-
ing reads with at least four CpGs, they were limited in their ability to quantify WSH in CpG-
sparse regions. Thus, they could be quantified in only 70 out of the 1,000 regions compared
to FDRP/qFDRP which were quantifiable in 912 regions (Figure 5.4). Potential reasons for a
non-quantifiable region include poor read coverage in repetitive elements, where sequencing
reads cannot be reliable mapped to the reference genome and particularly CpG-sparse regions.
Additionally, the WSH scores and the DNA methylation value have been computed using dif-
ferent scripts and software packages, which causes small differences in the number of regions
assayed. We found positive Spearman correlation coefficients of the average WSH scores per
region and the number of simulated cell types for FDRP, qFDRP and Epipolymorphism (Fig-
ure 5.5) indicating that WSH scores reliably quantify the degree of heterogeneity. We did not
find a similar correlation of the average DNA methylation level with the simulation parame-
ters, suggesting that the WSH scores are better suited to capture the degree of heterogeneity
compared to the DNA methylation level alone.

Currently, epigenomic studies particularly focus on cell-type-specific DNAmethylation pat-
terns, which requiremethods for separating different cell types (e.g, FACS sorting). While these
methodologies are well-established, they are also moderately error-prone, which leads to the
contamination of samples by non-target cell types. To study the effect of cellular contamination
onWSH scores, we simulated data representing contamination by non-target cell types. FDRP,
qFDRP, Epipolymorphism, and Entropy were elevated within the THR when we introduced
between 0 and 50% cell-type contamination in silico. In contrast, MHL was consistently high
throughout the regions for some of the simulated datasets, resulting in low AUC values. FDRP
and PDR showed a bias for higher values in CpG-dense regions (Figure 5.3). Similarly, the
average DNA methylation level reliably detected cellular contamination. In accordance to the
cell-type heterogeneity simulation, Epipolymorphism and Entropy were limited in their ability
to quantify heterogeneity across all regions (Figure 5.4). In general, MHL and PDR showed
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Figure 5.3: WSH scores in five simulation scenarios (Continued on next page).

low accuracy in differentiating between THR and background. As expected, meanWSH scores
negatively correlated with the simulated sample purity level using FDRP, qFDRP, Epipoly-
morphism, and Entropy (Figure 5.5), but not for DNAmethylation, PDR, andMHL. Due to the
negative correlationwith the sample purity level, we speculated thatWSH scores could be used
as estimates of sample or tumor purity, which we elaborate further below. All reported corre-
lations between the WSH scores and the simulation parameters were significant with respect
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Figure 5.3: (Previous page) WSH scores in five simulation scenarios: cell-type heterogeneity, cellular con-
tamination, ASM, DNA methylation erosion, and methylation switching domains. A positive (A)
and negative (B) example selected from the 1,000 simulated regions (size 50 kb) are shown as
snapshots for the scores and DNA methylation levels of single cell types (gray points) and cellular
mixture (bold outlines) for each scenario. C: ROC curves represent the results of t-tests that
compare the score/DNA methylation inside THRs with the background across all of the 1,000
simulated regions per scenario.
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Figure 5.4: Confusion matrices for the five simulation scenarios (A: cell-type heterogeneity, B: cellular con-
tamination, C: allele-specific methylation, D: DNA methylation erosion, E: methylation switching
domains) for all WSH scores and the average DNA methylation level (DNAm). For the confusion
matrices, 0.01 was employed as the p-value cutoff to determine if the score detects the THR.

to a two-sided correlation test.
Mammalian genomes are typically diploid, which introduces additional complexity in DNA

methylation patterns beyond cell-type heterogeneity. Additionally, ASM has been associated
with allele-specific gene expression [285]. In order to evaluate the scores’ capabilities to detect
regions in the genome showing ASM, we simulated two artificial cell types (here representing
alleles) at a fixed 1:1 ratio. Notably, this scenario is a special case of the ‘cell-type heterogeneity’
and ‘cellular contamination’ setting, in which only two cell types are mixed at equal propor-
tions. This scenario also models strand-specific methylation, since in most sequencing libraries
allele- and strand-specific methylation cannot be differentiated. Except for MHL and PDR, the
WSH scores as well as the DNAmethylation level accurately identified the THR in the majority
of the 1,000 simulated regions (Figure 5.4).

DNA Methylation Erosion During the replication ofDNA, a completely unmethylateddaugh-
ter strand is synthesized based on the template strand. The DNAmethylation maintenance en-
zyme DNMT1 is responsible for copying the DNA methylation state from the template to the
newly synthesized strand. During multiple rounds of cell division, cells stochastically loose
DNA methylation, since DNMT1 occasionally fails to copy the DNA methylation information
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Figure 5.5: Spearman correlation coefficients and associated p-values (two-sided correlation test) between
the WSH scores and the simulation parameters: number of cell types, sample purity score, as
well as α (stochasticity) and γ (replication) from the DNA methylation erosion scenario. Ellipses
are directed towards the upper right for positive and to the lower right for negative correlations,
respectively. The color represents the magnitude of correlation. WSH scores were averaged over
all CpG positions in each of the regions and this score was correlated to the simulation parameter
used for this particular region. Bold outlines of the ellipses indicate significant correlations
according to a two-sided correlation test.

to the daughter strand. We refer to this process as DNA methylation erosion and simulated
this process by introducing stochasticity in DNAmethylation patterns in particular subregions.
The inter-molecule heterogeneity scores, although being designed to capture cell-type hetero-
geneity, also capture DNA methylation erosion in around two thirds of the simulated regions
(Figure 5.4). PDR, which is designed for detecting DNA methylation erosion, performed more
accurately than in the cell-mixture scenarios and should be highest when the simulation pa-
rameter α is close to 50 and for low γ values. Consequently, the stochasticity parameter α

quantifying the degree of DNA methylation erosion correlated positively with PDR, but also
with FDRP, qFDRP, and Epipolymorphism (Figure 5.5). However, we detected negative corre-
lations between γ, the replication parameter specifying how often a particular pattern is found
in the reads, and FDRP, qFDRP, and Epipolymorphism (Figure 5.5), but not for PDR.

Methylation Switching Domains In the last simulation scenario, we aimed at showing that
WSH scores are particularly useful for quantifying complex DNAmethylation patterns instead
of identifying regions or domains with distinct DNA methylation levels in comparison to the
background DNA methylation state. Given that the average DNA methylation level could be
used to accurately detect THRs in the above scenarios, we tested whether WSH scores specif-
ically capture heterogeneity rather than switches in the DNA methylation level. This means
that WSH scores should describe the read configurations in scenarios 2-4 (Table 5.3), which the
DNAmethylation level fails to capture. Therefore, we assessed each score’s performance in de-
tecting methylation switching domains (MSDs), i.e., regions that change the methylation state
from fullymethylated to unmethylated or vice versa. SuchMSDs are typically located at bound-
aries of active regulatory elements, where a fully methylated background methylation state is
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Figure 5.6: Pairwise comparison of WSH scores on simulated data (Continued on next page).

locally reversed to make the regulatory element accessible for TFs. We simulated a single cell
type and expected lowWSH scores as MSDs do not represent DNAmethylation heterogeneity.
Consistent with this expectation, we observed a substantially inflated false-negative rate (Fig-
ure 5.3, Figure 5.4) for all WSH scores and not for the DNA methylation level. This illustrates
that WSH scores indeed contribute additional information to the DNA methylation level.

Shared Information Between Inter- and Intra-Molecule WSH Scores

In order to quantify similarities between the different WSH scores, we merged all regions from
the scenarios above and conducted all pairwise comparisons of the WSH scores (Figure 5.6A).
FDRP, qFDRP, Epipolymorphism, andEntropy correlated to some extentwith the intra-molecule
WSH score PDR. This indicates that regions exhibiting locally disordered DNA methylation
also show large heterogeneity in sequencing reads. We observed correlation coefficients of
0.65 and 0.67 between FDRP/qFDRP and Epipolymorphism/Entropy, which indicates that the
two groups of inter-molecule heterogeneity scores largely describe similar aspects of the DNA
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Figure 5.6: (Previous page) Pairwise comparison of WSH scores on simulated data. A: Comparison between
the WSH scores using all datasets from the four heterogeneity simulation scenarios. Blue triangle:
Scatterplots comparing WSH scores. Each point is a CpG site or four CpG window for which
both scores quantified WSH. High-point-density areas are visualized using yellow and grey was
used for low-density regions (density estimated through kernel density estimation). Points with
values zero for both of the scores were removed from the scatterplots for better visualization
(retained in the original publication [268] and for computing the correlation coefficients). Red
triangle: Spearman correlations between the scores. B: Dependency on DNA methylation. DNA
methylation levels were binned in steps of 5% methylation, and the CpG-wise WSH score (y-axis)
was compared to the DNA methylation level (x-axis).

methylation landscape. However, there are also distinct regions showing differences across
the scores. Additionally, Epipolymorphism/Entropy captured substantially fewer regions than
qFDRP/FDRP (Figure 5.4), which capture new regions not yet considered by existing metrics.
MHL was unrelated to the other scores. Except for MHL and PDR, the WSH scores were gen-
erally higher in intermediately methylated regions than in completely methylated or unmethy-
lated regions (Figure 5.6B).

Robustness Regarding Technical Biases

Systematic biases in data due to the measurement technology constitute an important chal-
lenge for data analysis [286] and the WSH scores discussed here should be independent of
several technical parameters. Thus, we systematically simulated differences in technical setup
and genomic constitution including read coverage, read length, sequencing errors, and CpG
density.
To investigate the effect of sequencing depth onWSH scores, we generated bisulfite sequenc-

ing data at different read depths (between 5,000 and 50,000) for each of 1,000 randomly se-
lected regions of size 50 kb individually. Epipolymorphism and Entropy required rather high
coverage (Figure 5.7A), while the other scores quantified heterogeneity even in low coverage
datasets. FDRP, PDR, Epipolymorphism, and Entropy increased with higher read coverage
and MHL/qFDRP were independent of sequencing depth. Additionally, we investigated the
relationship between CpG-wise read coverage and the WSH scores in an individual dataset
(i.e., a single region from our simulation scenarios) by computing Spearman’s rank correlation
between the CpG-wise number of reads and the WSH score at this CpG. All WSH scores were
independent of CpG-wise read coverage. Thus, all scores can be used to compare heterogene-
ity in different regions with potentially different coverages, but not to compare datasets with
different genome-wide coverage.

Sequencing read lengths can differ between datasets generated in different contexts or with
different protocols. Thus, we systematically investigated the dependency betweenWSH scores
and read length. We chose read lengths between 40 and 150 bp, which cover the most fre-
quently applied (Illumina) sequencing methods10. PDR and FDRP increased with longer reads
(Figure 5.7B), while qFDRP, MHL, Epipolymorphism, and Entropy were independent of read
length. Notably, Epipolymorphism and Entropy struggle with read lengths below 80 bp. Since
reads shorter than 50 bp are rarely used, qFDRP andMHL can be applied to datasets of any read
10http://www.biotech.cornell.edu/brc/genomics-facility/services/next-generation-sequencing

http://www.biotech.cornell.edu/brc/genomics-facility/services/next-generation-sequencing
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Figure 5.7: Influence of technical biases on WSH scores. A: Average WSH scores vs. average coverage. The
error bars indicate standard errors in different simulated regions of the same average coverage. B:
Average WSH scores and standard errors vs. length of the simulated reads. Average WSH scores
and standard error vs. C simulated sequencing error level in percent and D the number of CpGs
in 50 bp windows (CpG Density). CpG density is a quantitative variable in contrast to coverage,
read length, and sequencing error level, which is why linear regression lines are shown instead of
lineplots. E: Spearman’s rank correlation between the WSH scores and the simulation parameters
depicted in A-D. Significant (at level 0.01) p-values according to two-sided correlation tests are
depicted with a bold outline of the ellipse.

length and potentially also for comparing datasets with different read lengths. Using any of the
other scores, the influence of read length should be thoroughly investigated when integrating
multiple datasets.

Similarly, we investigated the susceptibility of the scores to sequencing errors. FDRP and
qFDRP quantified heterogeneity up to an error level of 9% and are not applicable to datasets
that are more error-prone (Figure 5.7C). Epipolymorphism and Entropy support an error rate
of at most 7%, while PDR only quantifies WSH up to 5% error level. With increasing error
level, effective sequencing coverage decreases, since fewer reads can be reliably aligned to the
reference genome. Thus, more regions/CpGswill be discarded from the analysis using a cover-
age cutoff, which especially affects the scores requiring four CpGs per sequencing read. MHL,
qFDRP, Epipolymorphism, and Entropy were rather stable up to 5% error level and beyond
that sequencing errors were incorrectly considered as heterogeneity. In summary, all scores
are sensitive to sequencing errors, but can cope with error rates up to 5%, which is above error
percentages detected in Illumina sequencing (0.5-2%, [287]).
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Table 5.4: WSH statistics computed on the healthy blood dataset (blood cohort), the in-silico mixed
WGBS samples (DEEP hybrid samples), and the cancer example (Ewing) with number of rows
(sites/regions) and percentage of missing values (NAs) for all considered WSH scores.

WSH Score blood cohort (RRBS) DEEP (WGBS) Ewing sarcoma (RRBS)
# sites % NAs # sites % NAs # sites % NAs

FDRP 1,176,471 2.11% 24,198,968 38.81% 1,227,943 5.75%
qFDRP 1,176,471 1.7% 24,198,968 38.81% 1,227,943 5.75%
PDR 1,176,471 62.31% 24,198,968 76.66% 1,227,943 65.82%
MHL 388,848 19.88% 4,590,846 0% 333,542 27.28%

Epipolymorphism 549,129 73.1% 740,216 0% 697,022 83.1%
Entropy 549,129 73.41% 740,216 0% 697,022 83.1%

To model the connection betweenWSH scores and genomic base composition, we calculated
local CpG density for each of the simulated regions as the number of CpG dinucleotides in a 50
bp window. Then, we computed Spearman’s rank correlation between the average WSH score
in the 50 bp window and the number of CpGs. FDRP and PDR, but also MHL, correlated with
CpG density (Figure 5.7D). This is likely caused by the rigid classification of each read/read
pair as discordant even if only a single methylation state differs from all the others. Thus, the
probability of detecting a mismatch of DNA methylation states increases when investigating
more CpG sites per read both for PDR and FDRP, which is the case for CpG-dense regions.
This was the original motivation for developing qFDRP, which accounts for this dependency
and is independent of local CpG density as are Epipolymorphism and Entropy.

Confirmation of Simulation Results on Bisulfite Sequencing Data

We validated the findings obtained in the simulation experiments on a human longevity co-
hort of healthy individuals, comprising 239 whole blood samples assayed using RRBS. No-
tably, computing MHL using the script accompanying the original publication [277] required
the longest runtime among the scores (average wallclock runtime 35 hours per sample vs.
1:30 hours for qFDRP/FDRP, Supplementary Figure A.7). Spearman correlations between the
scores, especially between intra- and inter-molecule scores, were higher than those on simu-
lated data. This further emphasized that locally disordered methylation and local variation
in DNA methylation patterns coincide. Epipolymorphism and Entropy described largely the
same heterogeneity as qFDRP and FDRP, which leads to high correlations in the regions that
are captured by the two types of scores. However, qFDRP and FDRP captured more than twice
the number of regions in comparison to Epipolymorphism/Entropy (Table 5.4). Unexpectedly,
Epipolymorphism was negatively correlated with average coverage per sample and MHL was
strictly bimodally distributed similar to the overall DNA methylation level. We found that
heterogeneity was unevenly distributed across the genome and was preferentially located in
distal, rather than proximal regulatory elements defined by the Ensembl Regulatory Build [8]
(Figure 5.8).
To show that WSH scores capture WSH independent of the sequencing technology used, we

constructed a homogeneous and a heterogeneous sample in-silico using WGBS data from liver
samples assayed within the DEEP project. All scores, except for MHL, exhibited elevated het-
erogeneity in the heterogeneous sample. The analysis also validated that WSH is preferentially
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Figure 5.8: WSH scores in the blood cohort dataset (Continued on next page).

located in distal rather than proximal regulatory elements (Supplementary Figure A.8).
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Figure 5.8: (Previous page) WSH scores in the blood cohort dataset. A: Genome wide-distribution of WSH
scores. B: Per-sample average WSH score vs. per-sample average coverage. C: WSH scores vs.
DNA methylation stratified into 20 classes of size 5% each. D: Distribution of WSH scores across
putative regulatory elements defined by the Ensembl Regulatory Build are shown for qFDRP, PDR,
MHL, and Epipolymorphism.

Differentially Heterogeneous Regions in Cancer

WSH scores could be especially relevant for quantifying intra-tumor heterogeneity in solid tu-
mors. Thus, we quantified DNA methylation heterogeneity in a Ewing sarcoma dataset (Fig-
ure 5.9), comprising different types of samples including Ewing tissue, Ewing cell lines (CL),
and mesenchymal stem cells (MSC) as the potential cell-of-origin population for Ewing tu-
mors [288]. MSCs were further stratified according to the health state of the donor into eMSCs,
which originate from Ewing sarcoma patients [154], or normal MSCs, respectively. We elabo-
rate on an example analysis using qFDRP, but analogous analyses using the other WSH scores
can be found in the original publication [268]. In summary, results obtained using Epipoly-
morphism and Entropy were similar to qFDRP, while qFDRP quantified substantially more
regions (Table 5.4). When we compared Ewing sarcoma samples to the samples from the blood
cohort, qFDRP indicated higher overall heterogeneity in the set of cancer samples (Figure 5.9A).
In particular, we detected highest heterogeneity in MSCs and slightly higher values in eMSCs
(mean: 0.229) compared to normal MSCs (mean: 0.214). qFDRP was lower in the Ewing CLs
(mean: 0.185) and Ewing tissue samples (mean: 0.184). In accordance to the findings on the
blood cohort, lowest WSH was detected in TSS, which is also in line with the lowest average
DNA methylation level.
Differences in tumor purity levels constitute another important challenge for computational

analyses of cancer samples. Thus, estimates of tumor purity are critical for downstream analy-
sis in cancer research. Tumor purity levels are typically obtained fromhistopathological investi-
gations, but can also be estimated fromgenetic or epigenetic data [149]. We testedwhetherWSH
scores can be used to reliably predict tumor purity levels. To do so, we trained a Lasso model
to select 26 sites significantly associated with annotated tumor purity levels for a subset of the
samples. Using qFDRP, we could demonstrate good prediction performance with an overall
cross-validated mean absolute error of 0.027 at a correlation of 0.966. Then, we employed this
model for the prediction of tumor purity levels for the 48 samples without prior annotation.
We found that the samples clustered together with those samples showing a similar level of
annotated tumor purity (Figure 5.9). In general, we observed that the sample clustering on the
CpG sites associated with the tumor purity level was mainly associated with the tumor purity
levels as expected. Additionally, qFDRP values of the selected sites were significantly higher
in the low purity cluster than in the high purity cluster (mean 0.133 vs. 0.291, two-sided t-test
p-value lower than 2.2×10−16). Lastly, we repeated the analysis using random sample permu-
tations and found that results were poor (cross-validation-correlation: 0.02, cross-validation
mean absolute difference: 0.13), demonstrating that our model captured tumor purity.
To determine CpGs associated with the development of Ewing sarcoma, we performed a

differential WSH analysis between MSCs and Ewing tissue samples using limma [246]. In ac-
cordancewith the genome-widemean, MSCs (both normalMSCs and eMSCs) exhibited higher
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Figure 5.9: WSH in Ewing sarcoma samples. A: Combined box-violin plot of qFDRP values for different
sample groups. B: Heatmap (blue low, red high value) of CpG-wise qFDRP scores (Ewing tissue
samples without FFPE samples) for the 26 sites associated with tumor purity. Both samples
(rows) and CpGs (columns) were hierarchically clustered (Euclidean distance, complete linkage).
The annotated color for the samples indicates predicted and annotated tumor purity levels, as
well as the average qFDRP value across the selected sites. C: Volcano plot of qFDRP values
aggregated along gene bodies in Ewing tissue samples versus MSCs. Positive values on the x-axis
indicate higher WSH in MSCs. Each point is a gene, which is color-coded if it has FDR-adjusted
p-value not more than 0.01. D: LOLA enrichment analysis of MSC-hyper-heterogeneous genes.
Histograms represent the negative common logarithm of the enrichment p-value. MCF-7, breast
cancer cell line; CNV, copy number variation

heterogeneity than tissue samples also after aggregation along annotated gene bodies. We
found that genes that had higher average qFDRP in MSCs compared to Ewing tissue (hyper-
heterogeneous in MSCs; Figure 5.9C) were preferentially located in DNaseI-hypersensitive re-
gions in various cell types. Notably, those genes were also enriched for DNaseI-hypersensitive
sites associated with Ewing sarcoma in the original publication of the Ewing dataset [154] for
qFDRP and the DNAmethylation level (Figure 5.9D). Finally, differentially heterogeneous and
differentially methylated genes were preferentially located in different TFBS: qFDRP enriched
for MafK, and differential DNA methylation levels were detected in binding sites of c-MYC,
c-FOS, and GATA3. The differential analysis further emphasized that WSH scores capture a
distinct aspect of the DNA methylome.

5.1.4 Discussion

We benchmarked six scores created for quantification of within-sample heterogeneity in both
simulation experiments and bisulfite sequencing datasets. Using simulated data, we showed
that the power of WSH scores to detect heterogeneity varied depending on their design moti-
vation. For instance, PDR did not capture inter-molecule heterogeneity, since it was created to
capture locally discorded methylation, i.e., intra-molecule heterogeneity. However, PDR did
not outperform the inter-molecule heterogeneity scores, when we simulated DNAmethylation
erosion as an instance of intra-molecule heterogeneity. Thus, it remains elusive, which distinct
source of DNA methylation heterogeneity is addressed by PDR. MHL mimics DNA methyla-
tion haplotype blocks in bisulfite sequencing reads andmight thus not be suitable for capturing
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WSH as defined in this work, but rather describes a distinct aspect of the methlyome. PDR,
Epipolymorphism, and Entropy require four CpGs per sequencing read by definition, which
potentially masks regions of low CpG content. Further studies are required to show the appli-
cability of Epipolymorphism and Entropy using different numbers of CpGs per epiallele. The
score that we propose, qFDRP, is not limited by definition. The inter-molecule heterogeneity
scores were relatively highly correlated with the intra-molecule heterogeneity scores, and we
speculate that, in order to exhibit large variations in the sequencing reads, the reads themselves
need to be locally disordered. Thus, inherently heterogeneous regions show both high variance
in sequencing patterns, but also locally disordered methylation.

Since sequencing reads shorter than 50 bp are rarely used, qFDRP, MHL, Epipolymorphism,
and Entropy can be applied to most published datasets irrespective of the read length and
also for comparing datasets employing different read lengths. Notably, all scores were sen-
sitive to sequencing errors in our simulations, but tolerated error levels up to 5%. This level
is above the error percentages reported for Illumina sequencing (0.5-2% [287]). This analysis
could potentially be extended to datasets beyond Illumina sequencing, such as short read se-
quencing by BGI11, or long-read (third-generation) sequencing by Oxford Nanopore or PacBio.
For long-read sequencing, important parameters of the WSH scores have to be adapted, such
as considering four consecutive CpGs in Epipolymorphism, Entropy, and PDR. Additionally,
it is necessary to investigate whether the current coverage of long-read sequencing is sufficient
for computing WSH scores or whether the substantially higher error levels make the quantifi-
cation of WSH infeasible. We note that we did not systematically investigate the influence of
experimental batch effects, such as different laboratories, restriction enzymes, or differences
in the genomic coverage of WGBS and RRBS. Additionally, PCR duplication artifacts were not
part of our simulations and remain to be investigated. These duplicates are generally removed
during low-level data processing for WGBS data (see Section 2.5.2), but remain hard to detect
for RRBS data.
As a validation of the simulation results and to show potential applications in a clinical set-

ting, we analyzed three experimental bisulfite sequencing datasets. Using tools employed for
identifying differential DNA methylation levels, such as limma, we were able to quantify dif-
ferential heterogeneity between groups of samples. We detected higher WSH in the MSCs
used here in comparison to tumor samples. Stem cells represent heterogeneous populations
of cells [289], which leads to high WSHwhen analyzing multiple cells from a pool of heteroge-
neous stem cells. In contrast, tumor cells follow a more clonal behavior. Another explanation
for the elevated WSH could be technical issues in sample preparation. Lastly, DNA methyla-
tion oscillations were reported in primed ESCs, which originate from increased expression of
DNMT3A/B together with high expression of TET enzymes [290]. DNAmethylation erosion in
clonal populations of tumor cell lines has recently emerged as an important biological observa-
tion [291] and PDR, but also qFDRP, could be used to systematically investigate DNAmethyla-
tion erosion in larger cohorts. We reported that qFDRP can reliably predict tumor purity levels
estimated from genetic data, which can be valuable if such data is missing. As expected, higher
heterogeneity was detected in those samples that had lower tumor purity estimates. It remains
to be further investigatedwhether qFDRP is able to predict tumor purity levels in datasets other
than Ewing sarcoma.

WSHwas preferentially located in regions not yet annotated to a functional category accord-

11https://bgi.com/global/

https://bgi.com/global/
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Table 5.5: General guidelines for the application of WSH scores in epigenomic studies.
Score Concept Strengths Drawbacks Application scenario

PDR Locally
disordered
methyla-
tion

Detects DNAm
erosion
CpG-wise score
Fast computation

Simulated heterogene-
ity not detected
Dependency on read
length and CpG density

Addressing locally disor-
dered DNA methylation
in large cancer datasets

MHL Methylation
haplotypes

CpG-wise score
Robust to technical
setup

Simulated heterogene-
ity not detected
Slow computation

Linking genetically de-
tected haplotypes to DNA
methylation haplotypes

Epipoly Variance
among the
reads

Simulated hetero-
geneity detected
Robust to technical
setup

no CpG-wise score
Few regions captured

Segmentation into highly
and lowly variably
methylated regions for
large bisulfite sequencing
datasets

Entropy Variance
among the
reads

Simulated hetero-
geneity detected
Robust to technical
setup

no CpG-wise score
Few regions captured

Segmentation into highly
and lowly variably
methylated regions for
large bisulfite sequencing
datasets

FDRP Variance
among the
reads

Simulated hetero-
geneity detected
CpG-wise score

Dependency on cover-
age, read length, and
CpG density
Rather slow computa-
tion

Linking CpG-wisemethy-
lation values to epigenetic
heterogeneity in large
bisulfite sequencing
datasets

qFDRP Variance
among the
reads

Simulated hetero-
geneity detected
Robust to technical
setup
CpG-wise score

Rather slow computa-
tion

Linking CpG-wisemethy-
lation values to epigenetic
heterogeneity in large
bisulfite sequencing
datasets

ing to the Ensembl regulatory build in all three bisulfite sequencing datasets in line with the
results presented by Feinberg et al. [292]. These regions might be missed using established
techniques such as the average DNAmethylation level. Their functional role and connection to
diseases warrant further investigation. We envision that WSH scores can be used to segment
the genome into regions with particularly high or low heterogeneity, similar to the definition
of PMDs [18, 153]. Since reduced correlation of neighboring CpGs has been reported in can-
cer [293], PDR is a premier candidate formore detailed investigations. Sincewe expect cell-type
heterogeneity to be the major driver of WSH, the scores proposed here could be used in com-
bination with cell-type deconvolution tools, such as MeDeCom (see Chapter 4).

Recommendations and Guidelines

Table 5.5 summarizes strengths and limitations of WSH scores in capturing different character-
istics of heterogeneity. PDR quantifies locally disordered regions in large cancer datasets, but
is dependent on data quality and genomic features, especially read length and CpG density.
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Additionally, since by definition four CpGs per sequencing read are required, application on
datasets with short reads (e.g., 50 bp) is not recommended. The restriction to four CpGs is es-
pecially critical, since CpG dinucleotides are heavily depleted throughout the genome. What is
more, CpG-dense regions (i.e., CGIs), which co-localize with promoters, generally show lower
degrees of WSH and thus less dynamic behavior across different samples is expected. In con-
trast, we found elevated qFDRP in distal regulatory elements, including putative enhancers,
which points toward the applicability of qFDRP to detect novel regulatory regions. Notably,
one could use PDR without restricting only on reads with at least four CpGs. PDR and FDRP
were sensitive to technical setup because of the strict classification of each read (pair) as discor-
dant/concordant. qFDRP is particularly suitable for identifying regions exhibiting high hetero-
geneity due to cell-type differences and complements CpG-level DNA methylation measure-
ments. It also proved to be robust with respect to technical noise in our simulation setup and
was independent of sequencing coverage in the experimental datasets. Epipolymorphism and
Entropy are suitable for region-based analysis while they fail to capture heterogeneity in CpG-
sparse regions, since they are restricted to regions with at least four CpGs per read. MHL was
less specific in quantifying WSH. While it was robust to technical variation in synthetic data, it
did not correlate to the DNA methylation level and to the other scores.

WSH scores provide insights into sample composition and cell subpopulations. Thus, they
complement the DNA methylation level by revealing differences among individual cells and
alleles with unknown functional impact. Nevertheless, to date WSH is rarely considered in
epigenomic studies. Here, we provide the first systematic and comprehensive evaluation of
WSH scores that capture DNA methylation pattern variations or locally disordered methyla-
tion directly from the sequenced reads. In contrast to the approach presented in Chapter 4,
WSH is used as a feature rather than considered a confounding factor. Based on simulations
and experimental data, we provide guidelines for selecting the WSH scores most appropriate
for complementing DNA methylation levels as surrogates of heterogeneity. Our results in-
dicate that WSH scores are suitable for the identification of genomic regions in which DNA
methylation heterogeneity drives phenotypic changes in development and disease.



CHAPTER

6
Conclusions and Outlook
This last chapter summarizes the results, discusses implications of the presented findings, assesses the
impact of the different aspects of the work, and presents potential future directions and extensions. I will
show how the tools and workflows presented throughout the thesis can be used to tackle heterogeneity in
DNAmethylation data at the three levels, and how this can be leveraged to obtain a better understanding
of biological regulation. Additionally, potential limitations of the approaches will be discussed. Based on
that, I will argue about future directions of the presented work and of epigenomic research in general.

6.1 Summary and Perspectives

Throughout thiswork, software tools, analysisworkflows, and their application onDNAmethy-
lation datasets have been presented. More specifically, this thesis addressed heterogeneity in
DNA methylation data at three levels: between phenotypes, between individuals sharing a
phenotype, and within a sample. In addition to presenting novel software solutions for analyz-
ing DNA methylation data, we applied the tools to available datasets to discuss the biological
implications associated with DNA methylation heterogeneity.

Between-group heterogeneity is the best-studied level of DNA methylation heterogeneity.
Differences in DNA methylation states associated with a phenotype such as a disease can be
leveraged for identifying novel disease biomarkers, which contribute to the improvement of
precision medicine. To further the understanding of disease-associated aberrations in DNA
methylation, software tools are needed that are easy to use even for non-bioinformaticians. The
recent update of the RnBeads software package presented in this work provides novel methods
for quantifying differential variability, novel covariate inference methods (sex and age), and
methods for genome-wide segmentation. We envision that RnBeads can be used by many sci-
entists ranging from clinicians to biologists and experienced bioinformaticians. We will con-
tinuingly maintain and extend RnBeads to keep the software up-to-date with the developments
in the epigenomic research community. New potential features for RnBeads include: (i) de-
novo DMR calling using methods such as BSmooth [172] or DSS [294], (ii) extension of DNA
methylation-based segmentation according to the MethylSeekR approach [153], (iii) extending
the software package to use read-level information for computing WSH scores, and (iv) an
adaptation of the pipeline for supporting single-cell bisulfite sequencing data. RnBeads is s
software tool that is widely-used in the scientific community, which is indicated by the num-
ber of support questions that we answer using the RnBeads mailing list1 and through forum
questions, as well as by between 200 and 400 downloads from Bioconductor2 each month and
1team@rnbeads.org
2http://bioconductor.org/packages/stats/bioc/RnBeads/

mailto:team@rnbeads.org
http://bioconductor.org/packages/stats/bioc/RnBeads/
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by 16 citations according to Web of Science3 in the year 2020 (status: December 2020). Rn-
Beads is available through collaborative software efforts such as bioconda4 and is used within
the de.NBI5 and SYSCID6 projects. We will continuingly present RnBeads to the scientific com-
munity through an extensive documentation and associated website7, courses, workshops, and
tutorials.
A main driver of DNA methylation differences between phenotypes is genotype variation

across the individuals investigated. With theMAGARR-package – the second software applica-
tion developed in this thesis –we proposed the first software tool that handles rawDNAmethy-
lation and genotyping microarray data for detecting associations between genotype and DNA
methylation state (methQTLs). MAGAR was used in combination with colocalization analysis
to investigate tissue-specificity of methQTLs and we found that both tissue-specific and com-
mon methQTLs can be detected. Importantly, tissue-specific methQTLs were preferentially
located in enhancer elements, which is in line with the important regulatory role of enhancer
elements for imprinting cellular identity. We expect that more integrative analysis between
genotyping and DNA methylation data will be conducted in the future and expect MAGAR to
be of significant use for these analysis. An important application of methQTLs is to further the
understanding of epigenetic and genetic dysregulation associated with diseases. Associations
between a genotype alteration (GWAS) or DNA methylation alteration (EWAS) and a disease
are preferentially located in non-coding regions of the genome [218] and the triangular rela-
tionship between genome, epigenome, and the disease can be illuminated through combined
methQTL, GWAS, and EWAS analysis. Throughout this work, we employed colocalization
analysis through SMR analysis to define tissue-specificity, but colocalization methods [295] are
readily applicable for unraveling more complex relationships. Similarly, methQTL and eQTL
results on healthy individuals can be combined through colocalization analysis to illuminate
the relationship between genotype, DNAmethylation, and gene expression states [59, 60] (Fig-
ure 6.1).

DNA methylation heterogeneity between phenotypes (e.g., EWAS) is closely intertwined
with between-sample heterogeneity, since the latter is an important confounding factor for the
former through cell-type heterogeneity. Accounting for potentially altered cell-type compo-
sitions of samples is critical for determining reliable associations between DNA methylation
and a phenotype, otherwise identified DMCs or DMRs may be associated with an altered cell
composition rather than with the phenotype of interest. Thus, we recommend to use cell-type-
adjustment methods for epigenomic studies. For blood-based studies, reference-based meth-
ods such as the Houseman approach [224], EpiDISH [225], or MethylCIBERSORT [227] return
reliable estimates of cellular proportions. However, for insufficiently characterized, complex
tissues, such as tumor samples, reference-free methods, including MeDeCom, are required. To
streamline deconvolution analysis and to provide an easy-to-use pipeline reaching from raw
DNAmethylation data to the guided biological interpretation of deconvolution results, we pre-
sented a three-stage protocol. The protocol comprises (i) data processing, (ii) deconvolution,
and (iii) guided biological interpretation of deconvolution results. We applied the protocol to
lung adenocarcinoma and melanoma data and identified in both cohorts associations of the
3https://webofknowledge.com
4https://bioconda.github.io/recipes/bioconductor-rnbeads/README.html
5https://www.denbi.de/
6http://syscid.eu/
7https://rnbeads.org

https://webofknowledge.com
https://bioconda.github.io/recipes/bioconductor-rnbeads/README.html
https://www.denbi.de/
http://syscid.eu/
https://rnbeads.org
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Figure 6.1: Integrating genomic, epigenomic, and transcriptomic data. Data integration of different types
of molecular data occurs both on the level of technological developments (left panel), where
multiple data layers are measured in the same sample/cell and on the level of computational
biology, where the different layers of information are combined (right panel). This applies both
to single-cell technologies, where multiple data layers are measured on the same cell and to bulk
experiments, where single-molecule information is encoded in the sequencing reads and can be
uncovered using computational approaches. The arrows represent the joint characterization of
the molecular layers, which can be achieved through the methods listed in the boxes. scBS-seq,
single-cell bisulfite sequencing [100]; scMT-seq, single-cell methylation and transcriptome profil-
ing [101]; scNMT, single-cell nucleosome, methylation, and transcription sequencing [296], TAP-
seq; targeted pertub-sequencing [297]; modeling gene regulation, predicting gene expression from
epigenomic data, TEPIC [10]; latent space matching; constructing a common low-dimensional
embedding of different data modalities [298, 299]

detected components with immune cell infiltration into the tumor. Furthermore, the identified
LMCs comprised information about patient survival. Similar applications of the protocol to
other cancer types can further the understanding of tumor heterogeneity and its implications
on patient prognosis and ultimately lead to improved therapy selection. The second stage of
the deconvolution protocol employed MeDeCom, but the pipeline is readily adaptable to other
reference-free and reference-based deconvolution tools. In the last stage of the protocol, the
graphical user interface FactorViz was used to interpret deconvolution results. Result inter-
pretation still requires user interaction, but we envision that a fully automated interpretation
of deconvolution results using statistical learning algorithms can be developed. Additionally,
new interpretation features can be easily added to the existing framework.
The majority of epigenomic studies investigates DNA methylation heterogeneity between

phenotypes for biomarker discovery, while an increasing number of studies also adjusts for
within-group heterogeneity using deconvolution tools. In contrast, the third level of hetero-
geneity addressed here – within-sample heterogeneity (WSH) – is rarely studied. A potential
reason for the lack of epigenomic studies investigating WSH is that the widely-used Illumina
microarray does not allow for a genome-wide assessment of WSH, since the generated beta-
value is a merged signal across different cellular states. Bisulfite sequencing data affords com-
prehensively studying WSH, since each sequencing read reflects a distinct cellular state. A
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genome-wide assessment ofWSH is crucial for gaining insights about the distribution and func-
tion of WSH in human methylomes. Within this work, we systematically compared different
genome-wide WSH scores and proposed a novel score – qFDRP – with single-CpG resolution.
In comparison to existing metrics, qFDRP was less affected by technical parameters and cap-
tured different sources of WSH in simulated and experimental datasets. We investigated cell-
type heterogeneity, cellular contamination, allele-specific methylation, and DNA methylation
erosion as potential sources of WSH, but additional scenarios could be added to the simula-
tions. Using published RRBS and WGBS profiles, we found that WSH is preferentially located
in distal regulatory elements, such as DNAseI-hypersensitive sites or TFBS. The functional role
of WSH at these regulatory elements remains to be investigated. We applied the WSH scores
to an Ewing sarcoma dataset and showed that qFDRP can be used to reliably estimate tumor
purity. It remains to be shownwhether qFDRP can also be used as a reliable predictor of tumor
purity for other cancer types. We created the R-package WSHPackage implementing all WSH
scores for routine integration into existing analysis workflows. In the future, qFDRP can be
used for DNA methylation-based segmentation of the genome into highly heterogeneous re-
gions (HHRs) and lowly heterogeneous regions (LHRs) using a hidden-markov model similar
to MethylSeekR [153]. We envision that WSH scores will contribute to the revelation of novel
regulatory regions in the genome, which cannot be identified by the average DNAmethylation
level.

Throughout this thesis, we presented different software tools for addressing heterogeneity
in DNA methylation data. Notably, the tools benefit from each other. For instance, the de-
convolution protocol uses RnBeads as an integral part for processing DNA methylation data.
Similarly, RnBeads is used as the DNA methylation processing tool forMAGAR and for storing
DNAmethylation data and metadata for theWSHPackage. We envision that further integration
between the tools can jointly illuminate different levels of heterogeneity. For instance,MAGAR
could be integrated with the deconvolution pipeline to determine tissue-specific methQTLs
from bulk DNA methylation data. Additionally, deconvolution can be used in combination
with WSH scores, since different proportions of cellular components across different samples
can be estimated using deconvolution analysis, which is valuable information for the WSH
scores. Lastly, qFDRP can be used to stratify the genome into highly and lowly variably methy-
lated regions, which could be useful for feature selection within DecompPipeline.
In addition to the software tools that we presented, we also took a substantial step forward

toward biologically interpreting the results generated by the different tools. For instance, we
found indications of differential immune infiltration in lung adenocarcinoma and melanoma
data and associations of LMCs with patient survival. Additionally, tissue-specific methQTLs
have not been investigated to date andwe identified both commonand tissue-specificmethQTLs
with distinct biological properties. This will be valuable information for investigating genetic
and epigenetic regulation in the context of diseases. Lastly, we provided a new estimate of
tumor purity through qFDRP, which is yet to be validated in independent datasets and differ-
ent cancer types. We revealed putative regulatory regions using qFDRP, which remain to be
further characterized.
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6.2 Outlook

The importance of DNA methylation as a clinical biomarker for various diseases will further
increase, since it has major advantages in comparison to other types of molecular data. These
include robustness regarding environmental influences, the quantitative readout restricted to
the [0, 1] interval, and the standardization of DNA methylation profiling through the Illumina
microarray series. In the future, integration of multiple types of molecular data will become
important due to the increasing number of publicly available datasets. On the one hand, tech-
nologies are steadily improving and applicable for mapping different epigenetic layers, such as
chromatin accessibility andDNAmethylation, at once. On the other hand, novel computational
methods perform data integration across different types of molecular data (Figure 6.1).

Single-cell bisulfite sequencing suffers from high dropout rate, low genomic coverage, and
high sequencing costs, which result in extremely sparse data matrices [300]. Thus, new tech-
nologies are required to make single-cell bisulfite sequencing broadly available to the scientific
community, for instance using enzymatic treatment instead of bisulfite conversion [301]. The
number of single-cell datasets steadily increases, but is still far from reaching samples sizes
required to perform EWAS. It will be necessary to use datasets generated on bulk samples in
combination with single-cell datasets. These could be used for instance as spiked-in reference
profiles in deconvolution analysis. By these means, only a small number of samples needs to
be analyzed using single-cell bisulfite sequencing, while the majority of samples is analyzed
using bulk DNAmethylation profiling. Since DNAmethylation is particularly stable over mul-
tiple rounds of cellular divisions (neglectingDNAmethylation erosion), DNAmethylationmay
function as an ‘epigenetic memory’ of the cell. Using this notion, DNA methylation is a pre-
mier candidate for tracking the cell-of-origin of an aberration, which is especially relevant in
cancer studies [302]. Single-cell bisulfite sequencing datasets will become a valuable resource
to investigate cellular development over time and may be especially useful to illuminate stem
cell heterogeneity. The software tools that we presented throughout this work facilitate the
integration of single-cell DNA methylation with existing bulk profiles.

Third-generation sequencing technologies, including Oxford Nanopore and PacBio sequenc-
ing, yield substantially longer reads than Illumina sequencing (up to 10-100 kb), which is es-
pecially useful to resolve methylation haplotypes and cell-type-specific methylation profiles.
In turn, these technologies facilitate the characterization of the relationship between genotype
and DNA methylation states on the haplotype level and improve the investigation of WSH in
biological samples. Finally, the combination of long-read and single-cell sequencing will allow
for the quantification of cell-type and haplotype-specific methylation profiles. New technolo-
gies need to be supplemented with novel software solutions for data analysis and integration
across the different data layers investigated (Figure 6.1). Understanding the biological impli-
cations of generated results is similarly important, since software needs to guide non-expert
users toward data interpretation. It is critical that bioinformaticians collaborate with biologists
to understand which computational solutions are currently missing in the community.
Epigenetic regulation is a complexmechanism that involves between-group, between-sample,

and within-sample heterogeneity. So far, most epigenomic studies addressed individual levels
of heterogeneity separately. Throughout this work, we showed that each level is complex in it-
self and presented novel software tools for addressing heterogeneity in DNAmethylation data.
We showed that the software solutions are critical for obtaining biological insights and found
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that the methods are especially suitable for investigating tumor heterogeneity. We envision
that the presented software packages, along with technological developments, will contribute
to further our understanding of epigenetic gene regulation.
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Supplementary Figure A.1: Scatterplot describing the predicted, epigenetic age (y-axis) and the annotated,
chronological age (x-axis) for eight murine liver samples. Epigenetic age pre-
diction was conducted using the murine epigenetic age predictor from Stubbs
et al. [178].
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Supplementary Figure A.2: Difference between pleiotropy and linkage. Pleiotropy (left) is the observation
that the same SNP affects two traits (here CpG methylation states). In contrast,
linkage (right) relates to two SNP that independently influence two CpGs, but
that are highly correlated.
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Supplementary Figure A.3: Overlapping CpG correlation blocks (A) and tag-CpGs (B) per cell type/tissue
using the default parameter setting. A: Overlapping CpG correlation blocks for
the four tissues/cell types assayed on the EPIC array. Correlation blocks were
considered identical if all CpGs in the two correlation blocks defined in the two
tissues independently were shared. B: Overlapping tag-CpGs for each of the
correlation blocks per tissue/cell type. Tag-CpGs were computed for each of
the correlation blocks and each of the tissues/cell types independently.
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Supplementary Figure A.4: Joint description of the validation and discovery dataset for methQTL analysis
(CEDAR cohort). A: Heatmap for methylation states of genome-wide tiling
regions (5 kb) for a combination of the discovery data set (EPIC) and the
validation data set (450k) from the CEDAR cohort. Analysis was restricted
to the intersection between the 450k and EPIC CpGs. B: PCA plot for CpG-
wise DNA methylation beta-values for the different samples in the combined
EPIC/450k dataset. C: LUMP estimates of the overall immune cell content
stratified according to the six different tissues/cell types.
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A.1.2 Chapter 4: DNA Methylation Heterogeneity Between Samples Sharing a
Phenotype
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Supplementary Figure A.5: Quality control for the new samples of the CEDAR cohort. Quality control
box- and barplots for bisulfite conversion and staining control probes for the
red and green channels, respectively. The batch of samples shown here was
expected to show low technical quality due to potential contamination of the
input material. Shown is substantially lower than expected signal intensity for
the high bisulfite conversion control probes and high signal intensities for the
background control probes. The samples have been re-analyzed and exhibited
better technical quality. This figure should serve as an example of bad-quality
microarray data.
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Supplementary Figure A.6: Interpreting MeDeCom results on the Ewing sarcoma RRBS dataset with Fac-
torViz. A: Heatmap of LMC proportions in the Ewing sarcoma samples (k=6
LMCs, λ=0.001). The samples were hierarchically clustered according to the
Euclidean distance between the proportions using complete linkage. We an-
notated samples using the tumor location and with the sample-specific LUMP
estimate. B: Associations between the phenotypic traits and proportions. For
quantitative traits, the Pearson correlations are shown as ellipses that are di-
rected to the upper right for positive and to the lower right for negative cor-
relations, respectively. For qualitative traits, the absolute difference of the
proportions in the two groups (e.g., mutation vs. wildtype) is shown. P-values
(two-sided correlation test for quantitative and two-sided t-test for categorical
variables) less than 0.01 are indicated by bold outlines. GO (C) and LOLA (D)
enrichment analysis of the LMC6-specific hypomethylated sites. No significant
LOLA and GO enrichments were found for the remaining LMCs. Sites were
defined as LMC-specific hypomethylated if the difference between the value of
the LMC and the median of all other components was less than 0.5. P-values
have been adjusted for multiple testing with the Benjamini-Hochberg method.
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A.1.3 Chapter 5: DNA Methylation Heterogeneity Within Samples
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Supplementary Figure A.7: Elapsed time for the computation of WSH scores. Histograms of wall clock
time used for the different computation steps for the two RRBS data sets Ewing
sarcoma (upper) and the blood cohort (lower). Shown is the common logarithm
of elapsed time for the computations in seconds for one sample and the standard
deviation across the samples. For the blood cohort, sequencing reads were
already aligned to a reference genome using bsmap during a preprocessing step.
Thus, the first four steps were omitted.
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Supplementary Figure A.8: WSH scores in homogeneous and heterogeneous hybrid samples comprising
similar or distinct samples from DEEP. A: Genome-wide distribution of WSH
scores. B: Stratification of genomic locations according to the Ensembl Reg-
ulatory Build and distributions of WSH scores within each of the locations
defined. C: Histogram of WSH score differences aggregated over promoters
between the heterogeneous and homogeneous sample. We set 0.25 as thresh-
old and performed LOLA enrichment analysis (D) of the promoters with higher
heterogeneity in the homogeneous (purple) or heterogeneous (brown) sample.
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A.2 Supplementary Tables

Supplementary Table A.1 presents different tools for the analysis of DNA methylation data.
We selected the most widely-used tools according to literature research and according to the
Bioconductor download statistics. The table visualizes the features that are available in the
tools and classifies the features according to the RnBeads modules Input, Preprocessing, Quality
control, Phenotype/covariate inference, Data exploration, Differential analysis, and Interface.
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Supplementary Table A.1: Feature comparison table of different software packages for the analysis of DNA methylation data.
Software Summary Platform Input Preprocessing

450k EPIC Bisulfite-
seq

IDAT
files

Beta
value
table

Read
count
table

Other / remarks Filtering Normali-
zation

Smoothing Other / remarks

ARRmNormalization R package for 450k data normalization Probe intensity matrices
BEAT R package for modeling of DNA methylation levels in low-input

and single-cell bisulfite sequencing datasets
Statistical methylation modeling

BEclear R package for batch effect correction Missing value imputation
BiSeq R package for differential analysis of bisulfite sequencing data Bismark output
bsseq/BSmooth R package for smoothing of bisulfite-sequencing data and identi-

fication of DMRs
ChAMP R package for processing microarray data, including filtering,

normalization, batch effect correction, DMR, and CNV calling
Normalization: BMIQ, SWAN, PBC,
Funnorm

COHCAP R package specializing in the analysis of CpG islands Bismark output
conumee R package for detecting CNVs from 450k data � via minfi
DMRcaller R package for differentialmethylation analysis for CpGs and non-

CpGs
Bismark output

DMRcate R package for the de novo identification of DMRs � R data objects
DSS R package for identifying differential methylation (and expres-

sion) from sequencing experiments
edgeR R package for differential analysis of gene expression and methy-

lation data
Dispersion and size factor normaliza-
tion

ENmix R package for quality control and preprocessing of methylation
array datasets

Signal background correction; dye-bias
and probe-type adjustment; batch-effect
correction

EpiDISH R package for the reference-based estimation of cell-type hetero-
geneity

FaST-LMM-
EWASher

Command-line tool for addressing for cell-type heterogeneity in
differential analysis

�

GenomeStudio Illumina’s software for analyzing methylation arrays
methyAnalysis R package for DNA methylation data analysis and visualization � R data objects (e.g, lumi)
MethylAid R package for interactive QC of methylation array data
methylKit R package for the analysis of bisulfite sequencing experiments,

including visualization, DMR detection, and batch effect correc-
tion

Bismark output, text files Filtering by coverage

methylPipe R package for CpG and non-CpG methylation from bisulfite-
sequencing data

Bismark output, BAM
alignment files

MethylSeekR R package for DNA methylation-based segmentation Filtering: SNPs
methylumi R package for low-level processing of methylation arrays Signal background correction
metilene Command-line tool for detection of DMCs and DMRs from

bisulfite-sequencing data
minfi Various algorithms for the analysis, correction, and visualization

of Infinium data
Normalization: Illumina, SWAN, Quan-
tile, Noob, Funnorm

missMethyl R package for analyzing methylation array data � via minfi Normalization: SWAN
RefFreeEWAS R package for the reference-free estimation of intra-sample het-

erogeneity
�

RnBeads Comprehensive analysis of DNA methylation data for microar-
rays and bisulfite sequencing

Parsers for Bismark,
BisSNP, and various other
standard formats

Various filters, Signal background cor-
rection, Normalization: BMIQ, SWAN,
Funnorm, Missing value imputation

shinyMethyl R shiny tool extending minfi for visualizing microarray data � via minfi � via minfi
wateRmelon R package implementing a broad range of Infinium quality met-

rics and normalization methods
GenomeStudio reports Filtering: detection p-value, SNPs, Sig-

nal background correction, Normaliza-
tion: SWAN, BMIQ



Appendix:Supplem
entary

Tables
127

Feature comparison table of different software packages for the analysis of DNA methylation data (continued).
Software Quality control Phenotype / covariate inference Data exploration

Control
probes

Read
cover-
age

Other / remarks Batch-
effects

CT
hetero-
geneity

Age
predic-
tion

Other / remarks Region-
based
analysis

Dim.
reduc-
tion

Cluster
analy-
sis

CNVs Genome-
browser
tracks

Other / remarks

ARRmNormalization
BEAT
BEclear Batch-effect correction (latent factor

models)
BiSeq
bsseq/BSmooth
ChAMP Array probe-type QC ComBat, Reference-based estimation of

within-sample heterogeneity (House-
man approach)

PCA/SVD, Methylation variable probes

COHCAP Region-based analysis for CpG islands,
Methylation value distribution, Correla-
tion to gene expression data

conumee
DMRcaller
DMRcate Genome-browser plots of DMRs
DSS
edgeR
ENmix
EpiDISH Reference-based estimation of within-

sample heterogeneity
FaST-LMM-
EWASher

Reference-free estimation of within-
sample heterogeneity (linear mixed
models)

GenomeStudio Methylation value distribution, Correla-
tion to gene expression data

methyAnalysis Correlation of proximal CpG methyla-
tion levels

MethylAid Probe detection p-value QC
methylKit Region-based analysis for tiling regions,

Sample correlations
methylPipe
MethylSeekR Methylation-based segmentation
methylumi Probe detection p-value QC
metilene
minfi Reference-based estimation of within-

sample heterogeneity (Houseman)
Methylation-based segmentation

missMethyl
RefFreeEWAS Reference-free estimation of within-

sample heterogeneity (SVD)
RnBeads Multiple SNP-based QC

plots
SVA; Sex prediction; Immune cell con-
tent; Reference-based and reference-
free estimation of within-sample
heterogeneity (Houseman, FaST-
LMM-EWASher, RefFreeEWAS)

Methylation-based segmentation

shinyMethyl Array probe-type QC Sex prediction Visualization of covariates
wateRmelon Various QC metrics: Im-

printing, X inactivation, Ar-
ray probe-type, SNP-based
metrics, Outlier detection

Reference-based estimation of within-
sample heterogeneity (Houseman)
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Feature comparison table of different software packages for the analysis of DNA methylation data (continued).
Software Differential methylation Interface / output Reference

DMCs DMRs Covariate
adjust-
ment

Enrichment
analysis

Other / remarks GUI Plots Track
files

Other / remarks

ARRmNormalization
BEAT Epimutations (i.e., DMCs)
BEclear [303]
BiSeq Beta regression, predefined ge-

nomic regions, CpG clustering
[304]

bsseq/BSmooth Smoothing, t-test [172]
ChAMP DVCs, DVRs, Interaction

hotspots
[160]

COHCAP Differentially methylated CpG
islands

[305]

conumee
DMRcaller Score test, Fisher’s exact test Methylation count table export [306]
DMRcate Kernel density smoothing [307]
DSS Beta-binomial model [294]
edgeR Negative binomial model [258]
ENmix [308]
EpiDISH [225]
FaST-LMM-
EWASher

Cell-type adjusted differential
methylation

[230]

GenomeStudio
methyAnalysis Sliding window DMRs
MethylAid Shiny app [309]
methylKit Overdispersion analysis, Anno-

tation of DMRs
[161]

methylPipe [310]
MethylSeekR [153]
methylumi [118]
metilene DMR detection: de novo seg-

mentation and 2D Kolmogorov-
Smirnoff test

[311]

minfi DMR detection: bumphunter,
blockfinder

[111]

missMethyl DVCs (diffVar), GO and gene set
enrichment analysis

[312]

RefFreeEWAS Cell-type adjusted differential
methylation

[238]

RnBeads DVCs, DVRs, GO and region set
enrichment analysis

Interactive HTML reports, Track
hubs, Shiny app

[112]

shinyMethyl Shiny app [313]
wateRmelon [116]
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Supplementary Table A.2: Common methQTLs identified using colocalization analysis. Beta=slope of
methQTL, SE=standard error of slope, Dist=distance, p-adj=FDR-adjusted p-
value

Tissue CpG SNP Beta SE p-value Chr Pos (CpG) Pos (SNP) Dist. p-adj
CD19 cg04811114 rs12122827 0.143 0.01 2.41E-22 chr1 202172778 202172769 9 8.24E-16
CD19 cg21718113 rs4085613 0.183 0.01 1.54E-28 chr1 152571909 152550018 21891 1.33E-21
CD19 cg01680303 rs2513559 0.187 0.01 5.05E-29 chr11 87776411 87744730 31681 3.06E-22
CD19 cg02147364 rs57144794 0.21 0.01 2.47E-26 chr12 9966812 9950728 16084 3.73E-19
CD19 cg09477447 rs8109401 -0.113 0 1.60E-38 chr19 27733670 27739429 -5759 1.74E-32
CD19 cg13593090 rs7250843 -0.133 0.01 3.19E-18 chr19 9546723 9427235 119488 1.47E-12
CD19 cg27634071 rs2272804 0.066 0.01 3.46E-12 chr22 45809740 45809624 116 1.28E-06
CD19 cg04553112 rs11927101 0.187 0.01 6.21E-28 chr3 125709451 125697489 11962 1.54E-20
CD19 cg01394167 rs12501535 0.145 0.01 2.75E-22 chr4 9479622 9456977 22645 1.60E-15
CD19 cg09255157 rs67822595 -0.232 0.01 2.94E-45 chr4 106553472 106556961 -3489 1.70E-37
CD19 cg15259449 rs10021193 -0.027 0 3.35E-15 chr4 130959885 130959880 5 5.98E-09
CD19 cg16201418 rs10024983 -0.078 0.01 3.81E-17 chr4 61367032 61367045 -13 8.31E-11
CD19 cg13944838 rs55901738 -0.201 0.01 6.60E-28 chr5 179740914 179741374 -460 2.83E-21
CD19 cg01874867 rs705379 0.112 0.01 1.47E-21 chr7 94954059 94953895 164 1.32E-14
CD19 cg08408040 rs10244924 0.173 0.01 5.90E-40 chr7 11381133 11379371 1762 3.67E-31
CD19 cg27294909 rs12379215 -0.048 0.01 1.30E-14 chr9 77555577 77555710 -133 1.96E-08
CD4 cg05044291 rs12122827 0.129 0.01 3.62E-43 chr1 202172867 202172769 98 1.27E-36
CD4 cg21718113 rs4085613 0.127 0.01 6.62E-30 chr1 152571909 152550018 21891 9.82E-24
CD4 cg01680303 rs2513559 0.151 0.01 2.04E-50 chr11 87776411 87744730 31681 3.12E-43
CD4 cg02147364 rs57144794 0.179 0 1.17E-69 chr12 9966812 9950728 16084 9.65E-62
CD4 cg09477447 rs8109401 -0.157 0.01 8.54E-48 chr19 27733670 27739429 -5759 9.69E-42
CD4 cg15727925 rs7250843 -0.144 0.01 7.15E-45 chr19 9546735 9427235 119500 7.56E-39
CD4 cg22884516 rs2272804 0.024 0 1.20E-17 chr22 45809543 45809624 -81 1.86E-12
CD4 cg04553112 rs11927101 0.185 0.01 1.02E-44 chr3 125709451 125697489 11962 4.76E-37
CD4 cg00598449 rs67822595 -0.026 0 2.05E-15 chr4 106553832 106556961 -3129 9.05E-10
CD4 cg01394167 rs12501535 0.171 0.01 8.64E-43 chr4 9479622 9456977 22645 7.00E-36
CD4 cg15259449 rs10021193 -0.033 0 2.09E-15 chr4 130959885 130959880 5 9.20E-10
CD4 cg16201418 rs10024983 -0.103 0 4.02E-40 chr4 61367032 61367045 -13 2.28E-33
CD4 cg23248424 rs55901738 -0.213 0.01 1.36E-52 chr5 179741104 179741374 -270 5.46E-45
CD4 cg08408040 rs10244924 0.157 0 3.08E-64 chr7 11381133 11379371 1762 1.53E-55
CD4 cg19678392 rs705379 0.122 0 8.47E-46 chr7 94953810 94953895 -85 1.92E-38
CD4 cg02555883 rs12379215 -0.063 0 1.51E-29 chr9 77555655 77555710 -55 6.73E-23
IL cg21718113 rs4085613 0.153 0.01 9.01E-29 chr1 152571909 152550018 21891 4.15E-22
IL cg26347746 rs12122827 0.162 0.01 7.29E-25 chr1 202172848 202172769 79 2.57E-18
IL cg01680303 rs2513559 0.07 0.01 2.40E-18 chr11 87776411 87744730 31681 8.34E-12
IL cg02147364 rs57144794 0.173 0.01 2.52E-41 chr12 9966812 9950728 16084 8.59E-34
IL cg09477447 rs8109401 -0.107 0 5.11E-50 chr19 27733670 27739429 -5759 5.22E-44
IL cg13593090 rs7250843 -0.129 0.01 3.23E-22 chr19 9546723 9427235 119488 2.12E-16
IL cg22884516 rs2272804 0.04 0 3.36E-13 chr22 45809543 45809624 -81 5.66E-08
IL cg04553112 rs11927101 0.246 0.01 5.05E-33 chr3 125709451 125697489 11962 5.14E-26
IL cg00598449 rs67822595 -0.148 0 5.47E-47 chr4 106553832 106556961 -3129 5.79E-39
IL cg12006118 rs12501535 0.078 0.01 1.25E-16 chr4 9479947 9456977 22970 2.19E-10
IL cg15259449 rs10021193 -0.033 0 5.26E-22 chr4 130959885 130959880 5 1.14E-15
IL cg16201418 rs10024983 -0.084 0.01 1.12E-25 chr4 61367032 61367045 -13 7.80E-19
IL cg23248424 rs55901738 -0.191 0.01 9.82E-37 chr5 179741104 179741374 -270 2.52E-29
IL cg08408040 rs10244924 0.126 0.01 1.98E-29 chr7 11381133 11379371 1762 4.24E-22
IL cg17330251 rs705379 0.164 0.01 5.50E-28 chr7 94953956 94953895 61 1.09E-20
IL cg02555883 rs12379215 -0.109 0.01 3.88E-20 chr9 77555655 77555710 -55 2.39E-13
RE cg12650227 rs4085613 0.232 0.02 1.88E-21 chr1 152572930 152550018 22912 1.47E-14
RE cg26347746 rs12122827 0.127 0.01 7.34E-22 chr1 202172848 202172769 79 1.29E-14
RE cg01680303 rs2513559 0.057 0.01 2.56E-12 chr11 87776411 87744730 31681 9.85E-07
RE cg02147364 rs57144794 0.188 0.01 1.09E-30 chr12 9966812 9950728 16084 2.40E-23
RE cg09477447 rs8109401 -0.102 0.01 5.29E-25 chr19 27733670 27739429 -5759 3.85E-19
RE cg15727925 rs7250843 -0.106 0.01 6.27E-20 chr19 9546735 9427235 119500 3.47E-14
RE cg27634071 rs2272804 0.049 0 2.44E-17 chr22 45809740 45809624 116 2.94E-12
RE cg04553112 rs11927101 0.264 0.02 1.06E-24 chr3 125709451 125697489 11962 7.77E-18
RE cg00598449 rs67822595 -0.151 0.01 1.27E-31 chr4 106553832 106556961 -3129 2.40E-24
RE cg01394167 rs12501535 0.171 0.01 1.45E-23 chr4 9479622 9456977 22645 1.09E-16
RE cg15259449 rs10021193 -0.038 0 2.13E-20 chr4 130959885 130959880 5 1.02E-13
RE cg16201418 rs10024983 -0.084 0.01 1.15E-22 chr4 61367032 61367045 -13 6.74E-16
RE cg23248424 rs55901738 -0.216 0.01 5.76E-32 chr5 179741104 179741374 -270 2.06E-24
RE cg08408040 rs10244924 0.119 0.01 8.54E-19 chr7 11381133 11379371 1762 3.59E-12
RE cg17330251 rs705379 0.157 0.01 1.54E-28 chr7 94953956 94953895 61 4.55E-21
RE cg02555883 rs12379215 -0.115 0.01 1.21E-21 chr9 77555655 77555710 -55 3.37E-14
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27k-array Illumina Infinium HumanMethylation27 BeadChip
450k-array Illumina Infinium HumanMethylation450 BeadChip
5caC 5-carboxylcytosine
5fC 5-formylcytosine
5hmC 5-hydroxymethylcytosine
5mc 5-methylcytosine
AML Acute Myeloid Leukemia
ATAC-seq Assay for Transposase-Accessible Chromatin using Sequencing
AUC Area Under the Curve
BAM Binary Alignment Format
BED Browser Extensible Data
BER Base Excision Repair
BMI Body Mass Index
BMIQ Beta-Mixture Quantile
bp base pair
caQTL Chromatin Accessibility QTL
CGI CpG Island
ChIP-seq Chromatin Immunoprecipitation Sequencing
CIMP CGI Methylator Phenotype
CLL Chronic Lymphocytic Leukemia
CNV Copy Number Variation
CpG Cytosine-Guanine dinucleotide
CPM Counts Per Million
CTCF CCCTC-Binding Factor
CV Cross-Validation
de.NBI German Network for Bioinformatics Infrastructure
DMC Differentially Methylated Cytosine
DMR Differentially Methylated Region
DNA Deoxyribonucleic Acid
DNAseI-seq DNAseI-hypersensitive Sites Sequencing
DNMT DNAMethyltransferase
dNTP deoxyribose Nucleoside Tri-Phosphate
EGA European Genome-phenome Archive
EPIC-array Illumina Infinium MethylationEPIC BeadChip
eQTL expression QTL
ESC Embryonic Stem Cell
EWAS Epigenome-Wide Association Study
FDR False Discovery Rate
FDRP Fraction of Discordant Read Pairs
FFPE Formalin-Fixed and Paraffin-Embedded
FN False Negative
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FP False Positive
GEO Gene Expresssion Omnibus
GO Gene Ontology
GUI Graphical User Interface
GWAS Genome-Wide Association Study
HEIDI Heterogeneity in Dependent Instruments
HMD Highly Methylated Domain
HMM Hidden-Markov Model
HPC High Performance Computing
HTML Hypertext Markup Language
ICA Independent Component Analysis
ICI Immune Checkpoint Inhibition
IDAT Intensity Data
IHEC International Human Epigenome Consortium
iPSC induced Pluripotent Stem Cell
kb kilobase
KNN K-Nearest Neighbors
LMC Latent Methylation Component
LMR Lowly Methylated Region
MAF Minor Allele Frequency
mb megabase
MBD Methyl-CpG-Binding Domain
MeDIP-seq Methylated DNA Immunoprecipitation Sequencing
methQTL methylation QTL
MHL Methylation Haplotype Load
miRNAs microRNAs
mQTL metabolomic QTL
mRNA messenger RNA
MSC Mesenchymal Stem Cell
MSD Methylation Switching Domain
NGS Next-Generation Sequencing
NMF Non-negative Matrix Factorization
NOMe-seq Nucleosome Occupancy and Methylome Sequencing
PCR Polymerase Chain Reaction
PDR Proportion of Discordant Reads
PMD Partially Methylated Domain
qFDRP quantitative FDRP
QTL Quantitative Trait Loci
RAM Random Access Memory
RNA Ribonucleic Acid
RNA-seq RNA Sequencing
RNAPII RNA Polymerase II
ROC Receiver Operator Characteristic
RRBS Reduced-Representation Bisulfite Sequencing
RSS Residual Sum of Squares
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SAM S-Adenosylmethionine
SGE Sun Grid Engine
siRNAs small interfering RNAs
SLURM Simple Linux Utility for Resource Management
SMR Summary-data-based Mendelian Randomization
SMRT Single Molecule Real-Time
SNP Single Nucleotide Polymorphism
SNV Single Nucleotide Variant
SVD Singular Value Decomposition
TAD Topologically Associated Domain
TCGA The Cancer Genome Atlas
TDG Thymine DNA Glycosylase
TET Ten-Eleven Translocation
TF Transcription Factor
THR Truly Heterogeneous Region
TN True Negative
TP True Positive
tSNE t-distributed Stochastic Neighbor Embedding
TSS Transcription Start Site
UMAP Uniform Manifold Approximation and Projection
UMR Un-Methylated Region
VCF Variant Call Format
WGBS Whole-Genome Bisulfite Sequencing
WSH Within-Sample Heterogeneity

A.4 List of Publications

First Author and Co-First Author Publications (in Chronological Order)

1. Müller, F.1, Scherer, M.1, Assenov, Y.1, Lutsik, P.1, Walter, J., Lengauer, T., and Bock,
C. RnBeads 2.0: comprehensive analysis of DNA methylation data. Genome Biol. 20, 55
(2019).

2. Scherer, M., Nebel, A., Franke, A., Walter, J., Lengauer, T., Bock, C., Müller, F., and List,
M. Quantitative comparison of within-sample heterogeneity scores for DNAmethylation
data. Nucleic Acids Res. 48, e46 (2020).

3. Scherer, M., Nazarov, P.V., Toth, R., Sahay, S., Kaoma, T., Maurer, V., Vedeneev, N., Plass,
C., Lengauer, T., Walter, J., and Lutsik, P. Reference-free deconvolution, visualization and
interpretation of complex DNAmethylation data using DecompPipeline, MeDeCom and
FactorViz, Nat. Protoc. 15, 3240-3263 (2020).

Contributing Author Publications

1. Handl, L., Jalali, A., Scherer, M., Eggeling, R., and Pfeifer, N. Weighted elastic net for un-
supervised domain adaptation with application to age prediction fromDNAmethylation
data. Bioinformatics. 35, i154–i163 (2019).
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2. Decamps, C., Privé, F., Bacher, R., Jost, D., Waguet, A., Houseman, E.A., Lurie, E., Lut-
sik, P., Milosavljevic, A., Scherer, M., Blum, M.G., and Richard, M. Guidelines for cell-
type heterogeneity quantification based on a comparative analysis of reference-free DNA
methylation deconvolution software. BMC Bioinf. 21, 16 (2020).

A.5 Author Contribution Statements

A.5.1 Chapter 3: RnBeads 2.0: Comprehensive Analysis of DNA Methylation
Data

Author contributions (taken from https://doi.org/10.1186/s13059-019-1664-9):

“FM, MS, PL, and YA developed the software, carried out the analyses, and pre-
pared the use cases. FM, MS, and CB wrote the manuscript with input from PL and
YA. JW, TL, and CB supervised the research. All authors read and approved the
final manuscript.”

A.5.2 Chapter 4: Reference-free Deconvolution, Visualization and Interpretation
of complex DNA Methylation Data Using DecompPipeline, MeDeCom and
FactorViz

Author contributions (taken from https://doi.org/10.1038/s41596-020-0369-6):

“M.S. and P.L. implemented most of the computational procedures. P.L. and N.V.
previously developed, published and recently updated MeDeCom for installation
on Windows. S.S, M.S. and P.L. implemented FactorViz. P.V.N. and T.K. imple-
mented consensus ICA. M.S. performed the analysis of the example datasets, and
created all figures and tables. P.V.N., R.T. and V.M. provided crucial input to the
analysis and interpretation, and thoroughly tested the protocol. P.L., J.W., T.L. and
C.P. jointly supervised the project. M.S. and P.L. wrote the manuscript, with contri-
butions from all co-authors. All authors read and approved the final text.”

A.6 Copyright Information

A.6.1 Figure Reprints

Figure 1.1 (https://doi.org/10.6084/m9.figshare.5285500.v1), Figure 2.1 (https://doi.
org/10.6084/m9.figshare.5285488.v1), Figure 2.2 (https://doi.org/10.6084/m9.figshare.
5057566.v1), Figure 2.3 (https://doi.org/10.6084/m9.figshare.5285473.v1), aswell as Fig-
ure 2.6 (https://doi.org/10.6084/m9.figshare.5285470.v1) were created by FabianMüller
and used in his doctoral thesis [314] and are available under the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which grants
copying and redistribution in any medium. All remaining figures were either created for this

1joint first authors
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https://doi.org/10.1038/s41596-020-0369-6
https://doi.org/10.6084/m9.figshare.5285500.v1
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https://doi.org/10.6084/m9.figshare.5057566.v1
https://doi.org/10.6084/m9.figshare.5285473.v1
https://doi.org/10.6084/m9.figshare.5285470.v1
http://creativecommons.org/licenses/by/4.0/
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thesis by the author or were copied and potentially modified from the original publication (see
the next sections for detailed copyright information).

A.6.2 Chapter 3: RnBeads 2.0: Comprehensive Analysis of DNA Methylation
Data

The manuscript Müller et al. [140] has been published in Genome Biology under the Creative
CommonsAttribution 4.0 International License (http://creativecommons.org/licenses/by/
4.0/), which grants the following permission according to the publisher (taken from https:
//doi.org/10.1186/s13059-019-1664-9):

“Open Access This article is distributed under the terms of the Creative Com-
monsAttribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes
were made. The Creative Commons Public Domain Dedication waiver (http://
creativecommons.org/publicdomain/zero/1.0/) applies to the data made avail-
able in this article, unless otherwise stated.”

A.6.3 Chapter 4: Reference-free Deconvolution, Visualization and Interpretation
of complex DNA Methylation Data using DecompPipeline, MeDeCom and
FactorViz

The manuscript Scherer et al. [222] was published in Nature Protocols, which grants rights for
authors to reuse the contribution in their own thesis. The information below is taken from
the Nature Research website, which applies also to Nature Protocols (https://www.nature.com/
nature-research/reprints-and-permissions/permissions-requests).

“Ownership of copyright in in original research articles remains with the Author,
and provided that, when reproducing the contribution or extracts from it or from
the Supplementary Information, the Author acknowledges first and reference pub-
lication in the Journal, the Author retains the following non-exclusive rights:

To reproduce the contribution in whole or in part in any printed volume (book or
thesis) of which they are the author(s). (…)

Authors have the right to reuse their article’s Version of Record, in whole or in
part, in their own thesis. Additionally, they may reproduce and make available
their thesis, including Springer Nature content, as required by their awarding aca-
demic institution.

Authors must properly cite the published article in their thesis according to cur-
rent citation standards.”

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1186/s13059-019-1664-9
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http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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http://creativecommons.org/publicdomain/zero/1.0/
https://www.nature.com/nature-research/reprints-and-permissions/permissions-requests
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A.6.4 Chapter 5: Quantitative Comparison of Within-Sample Heterogeneity
Scores for DNA Methylation Data

The manuscript Scherer et al. [268] was published in Nucleic Acids Research under the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), granting
the following permissions according to the publisher (taken from https://doi.org/10.1093/
nar/gkaa120):

“This is an Open Access article distributed under the terms of the Creative Com-
monsAttributionLicense (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, pro-
vided the original work is properly cited.”

http://creativecommons.org/licenses/by/4.0/
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