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Abstract 
We consider the adhesion-less contact between a two-dimensional, randomly rough, rigid indenter, and various linearly 
elastic counterfaces, which can be said to differ in their spatial dimension D. They include thin sheets, which are either 
free or under equi-biaxial tension, and semi-infinite elastomers, which are either isotropic or graded. Our Green’s function 
molecular dynamics simulation identifies an approximately linear relation between the relative contact area a

r
 and pressure 

p at small p only above a critical dimension. The pressure dependence of the mean gap u
g
 obeys identical trends in each 

studied case: quasi-logarithmic at small p and exponentially decaying at large p. Using a correction factor with a smooth 
dependence on D, all obtained u

g
(p) relations can be reproduced accurately over several decades in pressure with Persson’s 

theory, even when it fails to properly predict the interfacial stress distribution function.

Graphical Abstract

Keywords Contact mechanics · Randomly rough surfaces · Theory · Simulation · Modelingmissing

1 Introduction

Mechanical contacts between nominally flat surfaces occur 
everywhere. Due to the microscopic roughness on most sur-
faces, real contact is only made in isolated, load-bearing 

patches in the interface, where local compressive stresses 
can exceed the nominal pressure significantly [1–3]. 
Depending on the applied load and the materials involved, 
plastic deformation can lead to a significant reduction of 
local stresses. However, to observe plastic deformation, the 
surfaces may have to be highly resolved [4]. At small or 
intermediate resolution, or, in the case of elastomers up to 
high resolution, an elastic description of the contact can be 
appropriate.
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Describing elastic contacts has attracted much attention in 
the recent past not only for three-dimensional, semi-infinite 
bodies [3, 5–7] but also for (quasi) two-dimensional [8–10] 
elastic counterfaces, in parts because of their implications 
in biology [11, 12]. The studies were triggered to a signifi-
cant degree by advances in the numerical modeling of sur-
faces [13–16], which made it possible to simulate systems 
sufficiently large to reflect the typical multi-scale nature of 
roughness [17–20]. Many of the simulations were conducted 
with the goal to test the validity of a contact-mechanics the-
ory proposed by Persson 20 years ago [3, 21–23]. It accounts 
for the deformation of the elastic body outside of the contact 
region unlike traditional approaches to the contact mechan-
ics conducted in the spirit of the Greenwood–Williamson 
model [24, 25]. The latter assumes the highest asperity to 
come into contact first, the second-highest to be second, and 
so on. Such so-called bearing-area models unavoidably lead 
to qualitatively incorrect conclusions [26], most notably they 
predict false displacement–load relations [7] and contact 
topographies [27], which are much too localized near the 
highest peak(s).

Persson’s theory has reproduced many experimental 
results as well as brute-force simulations to a rather great 
precision. This concerns in particular the dependence of 
the mean gap ug on pressure p [22, 28–32] including the 
distribution of the interfacial separation [33, 34] and the 
leakage rate that follows from it [34–36] as well as the auto-
correlation function of the interfacial stress [27]. Neverthe-
less, Persson’s theory remains to be seen skeptically [37]. 
This is in parts due to a false implementation of the theory, 
which, as discussed before [38], is certainly not a flaw of 
the theory itself. In addition, it could be argued that Pers-
son’s theory does not predict the pressure dependence of 
the relative contact area ar(p) very well. Twenty percent 
error in the predicted proportionality coefficient relating 
contact area with the applied pressure at small p are some-
times seen as problematic [5, 37]. Some authors even find 
logarithmic corrections to a linear ar(p) relation at small p 
[39, 40]. In this work, we will add algebraic correction for 
low-dimensional elastic body to this list. However, judging 
a contact-mechanics theory based on its ability to produce 
correct ar(p) dependencies can be seen critically, whenever 
the gap distribution function becomes quasi-singular near a 
gap of zero, since a significant fraction of the non-contact 
area may be within extremely small distances, e.g., within 
less than a Bohr radius and/or less than thermal fluctuations, 
when applied to real systems. Thus, the concept of contact 
area is somewhat ill defined outside the realm of continuum 
mechanics. In fact, the proper definition of contact area for 
atomistic systems remains a matter of occasionally heated 
debates [41–44].

The discussion in the precedent paragraph shows that 
meaningful tests of (contact-mechanics) theories are based 

on quantities that are insensitive to marginal changes of a 
criterion. The most simple quantities satisfying this require-
ment are the standard deviation of the interfacial stress ��p 
(in partial contact) and the average interfacial separation, 
or, mean gap, both as a function of pressure. Neither of the 
two functions suffer from any sensitivity to how contact area 
is defined.

While most attention has been paid to the contact mechan-
ics of semi-infinite solids, in which case the elastic energy to 
deform the surface with a single sinusoidal undulation scales 
linearly with the wave number q, it may also be interesting to 
study thin sheets. When the thickness of a freely suspended 
sheet is much less than the wave length, the elastic energy 
scales with q4 , as can be deduced by taking the q → 0 limit 
of Eq. (A.11) in Ref. [45]. Once the thin elastic sheet, e.g., a 
membrane, is set under tension, the small-q scaling changes 
to a quadratic q-dependence without directional dependence 
for equi-biaxial tension [11, 46]. In all three cases, the areal 
energy density of a superposition of sinusoidal undulations 
can be written as

where ũ(�) is the Fourier transform of the surface and

Here, E∗ is the contact modulus of a semi-infinite solid, � 
the equi-biaxially applied tension, and t the thickness of a 
thin sheet. Systems described by n = 2 can be the human 
lung [11] but also human skin on (sub-)millimeter scales, as 
demonstrated in the model validation of this work.

For elastic solids being graded in the direction normal to 
the interface but isotropic and homogeneous in the normal 
direction, the prefactor to |ũ(�)|2 can depend on the wave 
number q in a more general way than assumed up to this 
point. As will be shown in a subsequent work, a non-integer 
exponent of n = 1∕2—or any other value for 0 < n < 1 —
could be (crudely) realized by an elastomer, e.g., a hydrogel, 
designed in such a way that its elastic stiffness increases as 
an appropriate function with increasing distance from its 
surface. The extreme case of n = 0 would correspond to 
an Einstein solid, or, depending on viewpoint to a Winkler 
foundation, in which atoms are coupled harmonically to their 
lattice site. As argued in more detail in Sect. 4.2, an Einstein 
foundation would be valid for an infinitely dimensional elas-
tomer. This makes the extreme limits of the exponent n and 
the spatial dimension D considered in this work go from 
D = 2 for n = 4 via D = 3 for n = 1 to D = ∞ for n = 0 . 
For n = 2 and n = 0.5 as well as for n = 3 , which is added 
to the list of explored exponents, we abstain from providing 

(1)vfull
ela

=
∑
�

kn q
n

2
|ũ(�)|2,

(2)

kn =

{
E∗∕2n = 1, semi-infinite solid� n = 2, tensed membrane

E∗t3∕12 n = 4, thin sheet.
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effective spatial dimensions D but assume that D is mono-
tonically decreasing in n.

While models with non-integer dimension or even D > 3 
are rarely studied in engineering, expansion of theories about 
spatial dimensions is common practice in statistical mechan-
ics [47], among other reasons, because it allows properties 
for “allowed” (integer) dimensions to be predicted, or, at 
least to be better rationalized. In addition, mean-field theo-
ries are generally exact at (infinitely) large spatial dimension, 
which allows additional tests to be conducted for theories 
that make other approximations than mean field. This was 
our main motivation to include values for the exponent n in 
addition to those listed in Eq. (2), and their study turned out, 
as we find, quite illuminating.

Thus, in this study, we provide a unifying description of 
the contact mechanics from thin sheets to mean-field mod-
els and explore to what extent theoretical approaches are 
able to reflect the observed behavior. Towards this end, the 
model and the used Green’s function method are introduced 
first in Sect. 2. To provide the reader with a better intuitive 
understanding of some of the quite uncommon elastomers, 
their contacts with Hertzian indenters are summarized in 
Sect. 3. Persson’s theory for randomly rough indenters is 
extended to the generalized elastomers in Sect. 4, which also 
contains the closed-form solution for an indented Einstein 
solid. Results are presented in Sect. 5. In Sect. 6, we attempt 
to rationalize why Persson’s theory predicts the ug(p) rela-
tion so accurately, even when it fails to predict interfacial 
stress distribution functions. Finally, conclusions are drawn 
in Sect. 7.

2  Model and Numerical Method

The (default) model consists of an initially flat, linearly elas-
tic counterface and a nominally flat indenter with a random, 
self-affine height profile. The elastic body is squeezed from 
above against the indenter, which is fixed in space. Periodic 
boundary conditions are applied within the xy plane. The 
two surfaces interact through a non-overlap constraint.

The elastic energy used in the Green’s function molecular 
dynamics (GFMD) simulation is given in Eq. (1). The used 
exponents are all integers between zero and four and in addi-
tion, n = 0.5 . A motivation for the used values is given in 
the introduction, except for n = 3 , which was added to the 
list, because it is the largest integer exponent with “decent” 
properties. (Thin sheets, or, n = 4 , turned out to behave in a 
quite non-intuitive fashion and, moreover, were difficult to 
treat computationally.)

To realize the different expression in our existing C++ 
GFMD code, only a single (central) line needed to be modi-
fied, in which the prefactor of the restoring force in wave 
number space was initialized as kn qn rather than as E∗ q∕2.

The periodically repeated surface has a default height 
spectrum satisfying

where qr is the roll-off wave vector, qs the short-wavelength 
cut-off, and Θ the Heaviside step function. The absolute 
value of an individual Fourier coefficient h̃(�) is set to 

√
C(q) 

and a linear random number is drawn from (0, 2�) to deter-
mine its phase.

We focus our attention on a single, default disorder reali-
zation of the randomly rough indenter. Since some of the 
calculations require a rather fine discretization, the ratio 
qs∕qr was set to a relatively large value of 1/100. The roll-
off domain was also relatively narrow, i.e., the linear system 
size L was set to twice the roll-off wavelength �r = 2�∕qr . 
While the smallest possible simulation reflecting the full 
spectrum using a discretization of the elastic system into 
2n × 2n surface elements ( n ∈ ℕ ) is 512 × 512 , simula-
tions determining the contact area of thin sheets at small 
reduced pressure accurately necessitated a discretization into 
16k × 16k surface elements, 16k being shorthand notation 
for 215 . Thus, while some of the 512 × 512 systems need 
less than a minute to relax on a single core when using the 
so-called FIRE variant of GFMD [48], others take a rather 
long time, in particular as the low-dimensional elastomers 
do not only need a fine discretization but also significantly 
more iterations to relax.

In order to explore the validity of the observations, sur-
face topographies other than the default were also simulated. 
In addition, finite-width elastomers were simulated. Their 
response crosses over smoothly from bulk to thin-sheet elas-
ticity as the wave length of a surface undulation increases. 
Changes to the pertinent default parameters are mentioned 
where results are presented.

(3)C(q) ∝
{
1 + (q∕qr)

2
}−1−H

Θ(qs − q),

0 0.5 1 1.5 2 2.5 3
x / λ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

u(
x)

 / 
m

m

n = 1

n = 2

n = 3

Fig. 1  Experimentally measured displacement field [49] of a human 
index finger, u(x), (black lines) indented from below by a periodically 
repeated ridge (gray triangles) having a period of � = 2.5 mm as well 
as numerical solutions for various exponents n (colored, dashed lines)
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Results for the normal displacements of elastomers in con-
tact with a randomly rough indenter are expressed in units of 
the standard deviation of the height hstd and pressures in units 
of the standard deviation of the stress in full contact �� . For 
Hertzian indenters, the stress is normalized to the stress at the 
origin, in-plane lengths to the contact radius ac , and lengths 
normal to the interface are expressed as multiples of a2

c
∕Rc , 

where Rc is the radius of curvature. These unit choices turn 
the numerical values used for C(qr) , Rc , or for the various gen-
eralized contact moduli kn irrelevant. Note also that the term 
stress and the symbol � are both meant to refer to compres-
sive stress throughout this study. In addition, displacements 
increase with increasing (compressive) stress.

All simulations were run on single cores on a local work-
station with 13 TB memory.

2.1  Model Validation

To demonstrate that n ≠ 1 has real-world applications, 
we compare the displacement field u(x) of a periodically 
repeated acute ridge, which was determined numerically for 
all integer values 1 ≤ n ≤ 3 , to recent experiments [49], in 
which a human index finger was indented from below by 
sharp ridges, which were periodically repeated at a distance 
of � = 2.5 mm, see Fig. 1. This period is well below the 
O(10�m) thickness of the stratum corneum.

A displacement field produced with the correct depend-
ence of stiffness on the wave vector should match the 
experimental characteristics for most of the shown domain, 
because the actual contact in the experiment was localized 
within a tiny fraction of the period. While the n = 3 displace-
ment field is too pointed near the minima and too blunt near 
the maxima, the situation reverses for n = 1 , where u(x) is 
also too pointed near the maxima well outside the actual 
contact. In contrast, the n = 2 data match the trends per-
fectly well. This result does certainly not imply that skin is 
a stressed membrane. Instead, it could hint to the possibility 
that the stiffness of skin decreases more continuously from 
its surface to the epidermis than generally assumed.

3  Hertzian Contacts of Generalized 
Elastomers

To better rationalize the results for randomly rough indent-
ers, it may be in place to call to mind how the general-
ized elastic manifolds interact with a Hertzian (parabolic) 
indenter. Its height profile can be given by

While analytical solutions for the counterfaces have been 
identified in the literature [11], except potentially for n = 0.5 , 

(4)h(r) = −
1

2

r2

Rc

.

it is found beneficial to repeat some of the results here. It is 
seen particularly useful to (re-)derive the analytical solutions 
for the displacement fields for arbitrary n in terms of a Fou-
rier representation, because the contact mechanics of ran-
domly rough surfaces is arguably best interpreted in terms 
of spectral approaches, and results can be easily obtained for 
exponents n not considered so far.

The stress profiles for 0 ≤ n < 4 obtained with GFMD are 
consistent with the relation

(5)�(r) = �(0)

√
1 − (r∕ac)

2

�

Θ(ac − r)
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Fig. 2  (Compressive) stress �(r) of generalized elastic manifolds as 
a function of the distance r from the symmetry axis when contact is 
made with a parabolic indenter. The stress is normalized to its value 
at r = 0 , while r is expressed in units of the contact radius ac
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Fig. 3  Displacement fields u(r) of generalized elastic manifolds, 
in units of a2

c
∕Rc as a function of the distance r from the axis of a 

parabolic indenter in units of the contact radius ac . The indenter has 
a radius of curvature of Rc . Thin, black, broken lines indicate the 
asymptotic solutions of a point indenter presented in Sect. 3.1. They 
were shifted in vertical direction to match the (numerically) exact dis-
placement field at large r∕ac



Tribology Letters (2021) 69:25 

1 3

Page 5 of 19 25

and

Results are shown in Fig. 2. For n = 4 , stress is concentrated 
within the contact line, and both stress and displacement dis-
appear for r < ac . Moreover, the contact radius increases lin-
early with the cell dimension at fixed load, while for n < 3 , 
or even for n ≤ 3 , ac has a well-defined contact radius as a 
function of the normal load in the limit of large L.

The displacement field u(�) is the other spatial field 
of interest in contact mechanics. Figure 3 shows it in the 
vicinity of the contact edge for the elastic bodies defined 
in Eq. (1). The values of n considered in this study hap-
pen to be critical values for Hertzian and related indenters 
(i.e., bodies of revolution leading to a single contact line 
at any given load), where the behavior of the displacement 
field changes qualitatively. These changes are summarized 
in Sect. 3.2. To arrive at those results, it is sufficient to 
consider point indenters, which is done next in Sect. 3.1. 
While these calculations do not necessarily enhance the 
understanding of the remaining sections, some of them 
are seen as useful for the interpretation of the contacts 
made with randomly rough surfaces, in particular as the 
asymptotic form of the point indenters closely mimics the 
true displacement fields up to the proximity of the con-
tact radius, as can be appreciated in Fig. 3. For reasons of 
completeness, we state that GFMD simulations indicate 
that the gap between indenter and elastomer grows pro-
portionally to (r − ac)

(1+n∕2) in the immediate vicinity but 
just outside the contact, which means that the (1 + n∕2)

’th (fractal) derivative of u(x) is discontinuous at r = ac.

3.1  Derivation of Asymptotic Displacement Fields

The stress field associated with a point force acting on the 
origin of an infinitely large domain can be represented as

so that its (symmetric) Fourier transform reads

where F is the (compressive) force squeezing the sufaces 
together and � is the compressive stress. Using the 
stress–displacement relation

which follows from Eq. (1), the displacement field in real 
space, up to an additive constant, becomes 

(6)� = 2 − n.

(7)�(�) = F �(�) =
F

(2�)2 ∫ d2q ei�⋅�

(8)�̃�(�) =
F√
2𝜋

,

(9)�̃�(�) = kn q
n ũ(�),

 where J0 is a Bessel function of the first kind. The transi-
tion from Eqs. (10a) to (10b) can only be made for 1∕2 < n , 
since the Bessel function approaches 

√
2∕(� x) cos(x − �∕4) 

asymptotically for large x, which renders the integral on the 
r.h.s. of Eq. (10c) ill defined. For n < 1∕2 , a square or rec-
tangular integration must be assumed for the wave vectors 
to make the In convergent. For n ≥ 2 , the integrals In diverge 
because the integrand grows too quickly as the integration 
variable approaches zero. However, for a given cell dimen-
sion of a periodically repeated indenter, the integral in Eq. 
(10a) can be converted back into a (quickly convergent) sum 
over wave vectors and/or u(�) − u(0) is calculated, which 
alleviates the q → 0 singularity of the integrand.

For 1∕2 < n < 2 , the integrals In can be expressed, in 
principle, in terms of the gamma function and the regular-
ized generalized hypergeometric function. However, this 
general solution does not proof particularly useful for our 
purposes. Only one of the considered exponents falls into 
this domain, namely n = 1 , and for this exponent, it is 
easy to identify the asymptotic solution with elementary 
functions.

3.1.1  Asymptotic Displacement Field for n = 0

Since the displacement field is constant outside the contact for 
n = 0 , the calculations outlined above in this section are not yet 
needed. The non-contact displacement field simply assumes 
the height of the indenter at the contact line, u(ac) = h(ac) , 
which is mentioned here for reasons of completeness. The 
value of h(ac) can also be seen as the (negative) indentation 
depth, i.e., dn=0 ≡ u(r → ∞) = h(ac).

3.1.2  Asymptotic Displacement Field for n = 1∕2

As already mentioned, I1∕2 is not well defined. However, it 
can be regularized by multiplying the integrand with factors 
such as exp(−�qr) or exp{−(�qr)2} , in which case it yields 
the (numerical) value of I1∕2 ≈ 0.478(0) for � → 0 . Thus, the 
displacement field reads

(10a)u(�) =
1

(2�)2
F

kn ∫ d2qei�⋅�
1

qn

(10b)=
In F

2𝜋 kn r
2−n

for n>1∕2 with

(10c)In = ∫
∞

0

dq̃q̃1−n J0(q̃),

(11)u(r) = d1∕2 −
0.478(0)F

2� k1∕2 r
3∕2

.
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The indentation depth d1∕2 cannot be determined from this 
analysis, since it is specific to the shape of the indenter.

3.1.3  Asymptotic Displacement Field for n = 1

Since ∫ ∞

0
dxJ0(x) = 1 , it follows that

where d1 is the displacement in the limit r → ∞ . This is, of 
course, nothing but the well-known Boussinesq solution for 
regular semi-infinite solids, although in its usual formula-
tion k1 is substituted with E∗∕2 . For the case of a regular 
( n = 1 ) Hertzian indenter, the indentation depth is known 
to be d1 = a2

c
∕Rc

3.1.4  Asymptotic Displacement Field for n = 2

The integral I2 is divergent, because its integrand scales as 1/x 
when its integration variable x is small. From this scaling, it 
follows that the indentation depth must be a logarithmic func-
tion of the linear dimension of the simulation cell L, because 
the natural lower bound for the integration variable q is 2�∕L . 
From the prefactor, it also becomes clear that a 1∕r2−n depend-
ence for n → 2 should result in a ln(r) dependence. To ascer-
tain the prefactor to this relation, it is easier to calculate u�(r) 
first, which is obtained by multiplying the integrand on the 
r.h.s. of Eq. (10a) with q, so that

This yields, after inserting I1 = 1 and after dropping the 
index n = 2 in the displacement field,

where r2 is a reference value defining at what distance from 
the origin the asymptotic displacement field has the height of 
the exact displacement field in the origin. A similar logarith-
mic dependence of the elastic Green’s function is obtained in 
D = 2 for n = 1 , or whenever D − n = 1 , as D − n determines 
the scaling of the integral on the r.h.s. in Eq. (10a) with r, 
through prefactors would differ.

For r2 =
√
e ac , the just-derived displacement field coin-

cides within line width with the data obtained in GFMD 
simulations in the immediate vicinity of the contact edge. 
For this value of r2 , the analytical displacement field has the 
same slope at r = ac as the indenter.

(12)u(r) = d1 −
F

2�k1 r
,

(13)u�
n=2

(r) =
In=1 F

2� k2 r
.

(14)u(r) =
F

2� k2
ln(r∕r2),

3.1.5  Asymptotic Displacement Fields for n > 2

For n > 2 , the long-wavelength contributions dominate the 
integral on the r.h.s. of Eq. (10a). For a periodically repeated 
indenter, this means that the first few Fourier coefficients 
determine the displacement, unless, of course, n is very close 
to 2. In addition, the displacement is best given relative to 
r = 0 rather than to r = ∞ , because dn>2 diverges, while 
u(ac) − u(0) is finite.

The n = 3 and the n = 4 displacement fields for periodically 
repeated point indenters resemble the n = 2 and n = 3 solu-
tions for the periodically repeated line-ridge indenters shown 
in Fig. 1, respectively, i.e., approximately linear right outside 
the contact for the smaller value of n and reasonably close to a 
single sinusoidal undulation for the larger value of n.

A reasonably accurate closed-form expression for the 
displacement field of a n = 3 elastomer (indented by a peri-
odically repeated point indenter) can be obtained by using 
discrete Fourier sums. The first summand would be taken 
explicitly while the remaining terms could be approximated 
by an integral with a well-chosen lower integration bound, 
e.g., a wave number half way inbetween q0 and 

√
2 q0 . The 

solution of that integral then scales proportionally to r as 
expected from Eq. (10b), albeit with a different prefactor. 
Of course, this linear scaling only applies for r ≪ L , but it 
may hold for r ≫ ac if ac is sufficiently small compared to 
L. While this course of action leads to excellent results, the 
dashed n = 3 line accompanying the (orange) n = 3 displace-
ment field in Fig. 3 reflects the numerically exact displace-
ment field obtained by GFMD for a point indenter.

In principle, the n = 4 elastomer can be treated similarly as 
the n = 3 elastomer. However, this time the leading-order Fou-
rier summand is almost sufficient to deliver a good approxima-
tion to the displacement field throughout non-contact.

3.2  Comparison of Different Asymptotic Solutions

The just-presented asymptotic solutions of the displace-
ment fields allow a few conclusions to be drawn for local-
ized indenters, which are repeated periodically on a square 
domain. They should hold not only for Hertzian but also 
for related indenters such as circular flat-punch or conical 
indenters, i.e., whenever the asymptotic fields are quickly 
approached for radii r ≳ 2 ac . 

 (i) For n < 2 , the indentation depth dn is finite at con-
stant normal force per indenter, even if L tends to 
infinity. For n = 2 , dn diverges logarithmically and 
for n > 2 algebraically with increasing L.

 (ii) The far-field scaling relation u(r) ∝ rn−2 is rigorously 
valid as long as r ≪ L if 0.5 ≤ n < 2 . For smaller 
exponents, the u(r → ∞) asymptote is reached more 
quickly than with rn−2 , e.g., for n = 0 , it is reached 
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immediately at r = ac , while for n = 1∕4 , numeri-
cal evidence (not shown explicitly) for a u(r) ∝ r−2.25 
scaling was found. For n = 2 , the displacement field 
is logarithmic in r.

 (iii) For n > 2 , the prefactor to the (derivative of the) 
displacement field depends not only on the load per 
indenter but also on the period even if L ≫ ac.

 (iv) The volume �V  displaced by an indenter diverges 
for L → ∞ , unless n is below a critical value ncI with 
0.25 < ncI < 0.5 at which u(r) ∝ r−2 holds.

3.3  Contact Radius and (Relative) Contact Area

The final analysis in this section on Hertzian indenters is 
the estimation of the contact radius ac and the ensuing rela-
tive contact area for periodically repeated indenters. Dimen-
sional analysis is the simplest approach to obtain functional 
dependencies. Missing proportionality coefficients tend to 
be of order unity except close to critical points, where the 
dimensional analysis stops being applicable.

The displacement u(r = 0) of the indenting Hertzian tip 
relative to that at r → ∞ scales as a2

c
∕R for n < 2 as becomes 

clear from Fig. 3. This in turn makes the potential energy of 
a single indenter in response to an external load FN scale as

A characteristic wave number can be associated with 1∕ac so 
that the elastic energy satisfies

Minimizing the total energy, Uela + Upot , then yields

which contains the well-known, regular ( n = 1 ) case, for 
which the proportionality coefficient that is needed on the 
r.h.s. of Eq. (17) would be 3/2.

Equation (17) can be recast as

for a periodically repeated indenter, whose contact radius 
is small compared to the linear dimension of the periodi-
cally repeated cell. Here, �′

n
 is a unitless proportionality 

parameter.
Equation (17) can also be written as

where ��2
c
 is defined as

(15)Upot ∝ −FNu
2
g
∕Rc.

(16)Uela ∝ kna
−n+2
c

a4
c
∕R2

c
.

(17)a4−n
c

∝
FNRc

kn
,

(18)ar = ��
n

p Rc

kn a
2−n
c

(19)ar = �n
p

��c
,

Here, ⟨⋯⟩c indicates an average over the true contact 
with h(r) = r2∕(2Rc) for a Hertzian indenter. Using the 
rule for (fractional) derivatives of polynomials, i.e., 
dnqk∕dqn = Γ(k + 1) qk−n∕Γ(k + 1 − n) , ��c can be calcu-
lated to be

so that �′
n
 is shown to be ��

n
= �n

√
3 − nΓ(3 − n)∕�.

Equation (19) is a generalization of the ar ∝ p∗ rela-
tion, which was shown to be valid at small reduced pres-
sures, p∗ ≡ p∕��c for periodically repeated indenters with 
harmonic height profiles, |h(r)| = rm∕(mRm−1

c
) , squeezed 

against a three-dimensional elastic body [50]. The presented 
calculation can be repeated for arbitrary n and 0 < m , in 
which case the proportionality coefficient �n acquires a sec-
ond index. However, the proportionality between ar and p∗ 
remains valid for n < 2.

The (Hertzian) proportionality coefficient �n can be readily 
deduced for n = 0 and n = 1 from their analytical solution to be 
�0 = 2∕

√
3 and �1 = 3�∕(8

√
2) . �1∕2 was deduced numerically 

as follows: For a given normal force F and mesh size �a , the 
stress profile was computed and fitted with Eq. (5), which allows 
the determination of the contact radius with sub-mesh-size pre-
cision. For each normal force, the mesh size was decreased until 
the first fourth digit of ac only changed by plus-minus one. In 
the same way, F was divided by factors of 5 until its highest 
resolution value for ac leveled off. The numerical result yielded 
��
1∕2

= 0.665(5) , which translates into �1∕2 = 0.994(7) . Assum-
ing the exact values to be simple rational exponents of expres-
sions involving other simple rational numbers and the number 
�  ,  we bel ieve ��

1∕2
= (2∕3)2 (8�∕5)1∕4  and thus 

�1∕2 = (2∕3)3 (8�∕5)3∕4 to be exact.

4  Theory for Randomly Rough Surfaces

4.1  Persson’s Theory

In this section, we adopt Persson’s theory for the contact 
mechanics between nominally flat, randomly rough indent-
ers with (semi-)infinite elastomers to that with more general 
elastomers, i.e., those whose elastic energy is given by Eq. 
(1). In principle, the term kn qn could be replaced with any 
arbitrary function k(q). Since the following treatment allows 
this generalization to be made in the final equations, we kept 
the original expression of the elastic energy.

Let the stress at a point � in the contact be given by �(�) 
when all roughness existing in the spectrum with wave vectors 

(20)��2
c
= k2

n

⟨{
dn

drn
h(r)

}2
⟩

c

.

(21)��c =
kna

2−n
c

Rc

√
3 − nΓ(3 − n)
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|�′| < q have been considered in an exact solution of the con-
tact problem. When adding the Fourier coefficient associated 
with the wave vector � to a refined calculation, the stress at � 
will change by

if the closest non-contact point of � is further away than a 
distance ≳ q−1.

The just-described change of the local stress would lead to 
an expected increase of the second moment of the stress distri-
bution with k2

n
q2n

⟨|h̃|2⟩ if the just-described changes happened 
everywhere in the contact. This, in turn, would lead to a scale-
dependent smearing out of the (initial) pressure with a variance of

if all roughness Fourier components with q′ ≤ q had been 
considered. The situation can be associated with that of a 
random walker and thus with a diffusive process. Once a 
walker has reached � = 0 , it is no longer considered to be 
in contact and drops out of the process. The adsorbing bar-
rier of the random walk can be reflected by placing a mirror 
Gaussian at the negative nominal contact stress.

Compressive stress and pressure can be assigned the same 
sign, so that

where āc = 1 − ac is the relative non-contact area and

As argued in the introduction, requiring a theory to reproduce 
the pressure dependence of contact area is not a particularly 
telling test. Instead, it may be more sensitive to investigate 
the second moment of the interfacial stress, as it is insensitive 
to a contact criterium, which, in case of reality and all-atom 
simulations suffers from ambiguity. Since the first moment 
of the interfacial stress in mechanical equilibrium is identical 
to the nominal contact pressure, the standard deviation of the 
interfacial stress in Persson’s theory satisfies

and includes the contribution of the zero, non-contact stress 
to the std stress.

(22)𝛥𝜎(�) ≈ i kn q
n h̃(�) ei �⋅� + c.c.

(23)��2(q) =
∑

��,q�≤q
k2
n
q�

2n
C(��)

(24)Pr(𝜎) = āc𝛿(𝜎) +
exp

�
−

(𝜎−p)2

2𝛥𝜎2

�
− exp

�
−

(𝜎−p)2

2𝛥𝜎2

�
√
2𝜋𝛥𝜎2

,

(25)ac

� p

��

�
= erf

�
p√
2��

�
.

(26)

�2
p

��2
=

1

��2 ∫
∞

−∞

d�(� − p0)
2 Pr(�) = erf

�
p0√
2��

�

+

�
2

�

p0

��
exp

�
−

p
2
0

2��2

�
−

p
2
0

��2
erfc

�
p0√
2��

�

To obtain the mean interfacial separation, we proceed 
as usual and equate the elastic energy in (partial) contact 
vela with the work done by the external stress. The latter 
satisfies

At infinite pressure, the mean gap is equal to zero and thus

In partial contact, elastic energy only has to be paid in the 
points of contact. Thus, the spectrum only enters with a cer-
tain weight.

To lowest order, W(p,�) can be assumed to be the relative 
contact area. However, the real elastic energy in partial 
contact was argued to be less, at least for (isotropic) semi-
infinite solids. It was found that using weights

which are implicitly functions of p and � , improve the agree-
ment between theory with experiment or simulations [6]. At 
small partial contact, the weighting factor W is still linear in 
the relative contact area, however, with a (usually reduced) 
prefactor �n . As full contact is approached, W approaches 
unity. In Eq. (30), the dependence of W on ar was assumed 
to depend on the exponent n as denoted by the index n in 
�n . The origin of this correction factor, will be discussed 
further in Sect. 5.

The usual way to proceed from here would be to derive 
a double integral for the interfacial separation, which 
allows further analytical calculations to be conducted, 
albeit not without making approximations. For the pre-
sent purpose, it was found beneficial to compute vela(p) and 
to evaluate its pressure derivative numerically. Technical 
details of how this was achieved are discussed in the fol-
lowing section.

4.1.1  Implementation of Persson’s Theory

Persson’s theory is carried out with an exact representation 
of the spectrum of the simulated system at large wave-
lengths � and with a quasi-continuum approximation at 
small � . This was done by creating n� = 500 bins, such that 
the first bin represented the largest allowed wavelength and 
the last bin the shortest. The bins inbetween were chosen 
to have an equal width on a logarithmic scale. Each bin 

(27)dvela = −p(ug)dug = −p(ug)
dug

dp
dp.

(28)ug = ∫
∞

p

dp�
1

p�
v�
ela
(p�).

(29)vela(p) =
kn

2

∑
�

W(p,�)qnC(�).

(30)W =
{
�n + (1 − �n) a

2
r

}
ar,
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contains as entry the elastic energy that is required to make 
full contact with the modes associated with that bin as 
well as the stress variance accumulated over this and all 
lower-indexed bins.

For each bin, the relative contact area entering the 
weight function in Eq. (30) and thus also Eq. (29) is com-
puted as follows: First, ar is computed before and after (the 
modes contained in) a given bin is included into the sum 
and denoted by a−

r
 and a+

r
 , respectively. If they do not dif-

fer by more than 10%, their mean value is assigned to ar , 
otherwhise the mean relative contact area is computed by

The integral I on the right-hand-side yields

4.1.2  Comparison to Results for Periodically Repeated 
Indenters

Persson’s theory entails a similar relation as Eq. (19) at small 
p∗ for nominally flat contacts, except that the pressure is 
undimensionalized with the full-contact stress variance �� 
rather than with ��c , which is determined from the mean 
square n’th derivative of the height within the contact. If 
the theory were modified in a way that ��c could be deter-
mined over the real contact, the proper real-space substitu-
tion of Eq. (23) would be Eq. (20). Proceeding this way, 
�n is independent of n, since the linear expansion of Eq. 
(25) yields ac ≈

√
2∕� p∗ for all n so that a unique propor-

tionality coefficient �P =
√
2∕� ≈ 0.798 arises in Persson’s 

theory. Its value is in reasonable agreement with the results 
for Hertzian indenters and elastomers with exponents in the 
range 0 < n < 1 . This agreement is worth noting, because 
spherically symmetric indenters violate the random-phase 
approximation, one of the most criticized assumption made 
in Persson’s theory, in the worst possible way.

4.2  Einstein Foundation

In the limit of infinitely large dimensions, D → ∞ , the elas-
ticity of crystals becomes a mean-field model, in which 
each atom can be treated as if it were coupled harmoni-
cally to its lattice site. A hypercube of spatial dimension 
D > 3 has several hypersurfaces, e.g., D − 1 , D − 2 , but also 

(31)ār =
1

𝛥𝜎2
+ − 𝛥𝜎2

−
∫

𝛥𝜎2
+

𝛥𝜎2
−

d𝛥𝜎2ar(p∕𝛥𝜎).

(32)

I =
�
p
2 + ��2

−

� a
−
r

2
+

p��− e
−p2∕2��2

−√
2�

−
�
p
2 + ��2

+

� a
+
r

2
−

p��+ e
−p2∕2��2

+

√
2�

.

(zero-dimensional) vertices, (one-dimensional) edges, and 
(two-dimensional) surfaces. The atoms in such a two-dimen-
sional surface (in contact with a randomly rough, two-dimen-
sional surface) still have an infinite number of neighbors in 
the limit of D → ∞ . This is why their coupling also satisfies 
the Einstein model, even if the elastic coupling to lattice sites 
is potentially different for (hyper-)surface atoms than for bulk 
atoms. A realization of the Einstein solid would be a soft 
elastic body of thickness t resting on a perfectly rigid founda-
tion, in which only undulations with wave vectors q ≪ 1∕t 
would be allowed and a total displacement difference in the 
sheet well below t. In this case, the stiffness of a mode would 
be proportional to 1/t and independent of q as can be deduced 
from the q t → 0 limit of Eq. (A.9) in Ref. [45]

The Winkler foundation is occasionally used as a contact-
mechanics model [51]. It could be argued to be similar to the 
Einstein model, because it assumes a linear relation between 
displacements within the contact and a generalized stress 
field. However, it requires the latter to be transformed so 
that the resulting field can be interpreted as a true stress. 
Moreover, its use is only rigorous for indenters of rotational 
symmetry and singly connected contact patches. In the Ein-
stein model, stresses do not have to be transformed and the 
model is exact for D → ∞ . This is why it was decided to use 
the terms Einstein solid and Einstein foundation in this study 
rather than Winkler foundation.

The Einstein model can be solved analytically for a variety 
of cases. This includes a Gaussian height distribution, which 
is acquired in the thermodynamic limit for indenters satisfy-
ing the random-phase approximation. More precisely, any 
observable considered in this work can be expressed in closed 
form as a function of the height of the non-contact zone hnc 
relative to the mean height h0 of the randomly rough indenter.

As can be clearly seen in Fig. 3, the probability distribu-
tion of the displacement field of an n = 0 elastomer, Prn=0(u) , 
is identical to that of the indenter given that the indenter 
height is above the non-contact height threshold hnc , so that

where ār = 1 − ar is the relative non-contact area and

Moments of the displacement relative to the non-contact 
height satisfy

where the displacement is defined as positive if a point sits 
below the non-contact height.

(33)Prn=0(u) = ār𝛿(h − hnc) + Pr(h) Θ(hnc − h),

(34)ar = lim
�→0+ ∫

∞

hnc+�

dhPr(h).

(35)
⟨
uk
⟩
= ∫

hnc

−∞

dhPr(h) (hnc − h)k,
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Making the xy plane lie at the same height as the center 
of mass of the indenting surface and assuming a Gaussian 
height distribution yields the following first three, non-neg-
ative integer moments of the displacement field after some 
algebra 

 where ar may be interpreted as the zeroth moment of the 
displacement field for an Einstein foundation.

Equation (36) allows the dependence of the mean gap ug 
on the pressure to be determined. The mean gap can be seen 
as complementary to the displacement so that

and the pressure reads

Finally, all properties of interest in this study can be calcu-
lated as analytical functions of hnc and then plotted against 
each other.

(36a)ar =
1

2

�
1 + erf

�
hnc√
2 hstd

��

(36b)⟨u⟩ = hstd
exp

�
−h2

nc
∕(2h2

std
)
�

√
2�

+ hnc ar

(36c)⟨u2⟩ = hstd hnc
exp

�
−h2

nc
∕(2h2

std
)
�

√
2�

+ (h2
nc
+ h2

std
) ar,

(37)
�
ug(hnc)

�
= ⟨u(−hnc)⟩

(38)p = k0 u(hnc).

5  Results

To set the stage for further analysis, representative con-
tact cross-sections at close to 10% relative contact area 
are shown in Fig. 4. Like any other bearing model ignor-
ing elastic deformation outside the contact, the non-contact 
height is constant for the Einstein foundation ( n = 0 ). As n 
increases, the long-wavelength structure of the substrate is 
ever more followed. At the same time, the contact patches 
spread out more and more. For example, in the shown cross 
section, the n = 0 solid only makes contact at r ≈ −0.4 L and 
at r∕L ≈ 0.6 . For n = 1 , additional contacts arise at r∕L ≈ 0.1 
and r∕L ≈ 0.3 , while for n ≥ 2 , the contact appears to be 
almost uniformly spread out across the interface.

Due to the finite optical resolution, Fig. 4 can convey 
the impression that the large-n elastomers make more con-
tact than those with small n. However, the figure does not 
immediately reveal that the large-n elastomers rarely reach 
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Fig. 4  Displacement field of different counterfaces at a relative con-
tact area of ar = 0.1 ± 0.005 across one of two diagonals of the simu-
lation cell. The thin sheet (orange, n = 3 ) and the stressed membrane 
(green, n = 2 ) have most points within or close to the line width of 
the randomly rough indenter (black). All other counterfaces, namely, 
the regular, semi-infinite solid (red, n = 1 ), the elastically graded elas-
tomer (blue, n = 1∕2 ), and the Einstein solid (magenta, n = 0 ) have 
separations, which are clearly visible at the given resolution
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Fig. 5  Local stress profiles at ar = 0.1 ± 0.005 for a n = 0.5 (dotted 
blue line with squares), n = 1 (solid red line with circles) as well as 
for b n = 2 (dotted green line with triangles down) and n = 3 (solid 
orange line with triangle up). Stresses for n = 3 are divided by a fac-
tor of two to make the data fit on the same graph as the one for n = 2 . 
The discretization in a was 8k × 8k and in b 16k×16k
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the indenter’s valleys. Stress has the much greater sensitivity 
to reveal this trend.

To demonstrate to what extent the value of n affects the 
local contact geometry but also to introduce typical stress 
profiles of the various counterfaces, the stress profile of the 
asperity located near r∕L = −0.4 is shown next in Fig. 5. 
While the n = 1∕2 elastomer makes almost perfect contact in 
that asperity, the n = 3 elastomer makes close to its “usual” 
10% contact. It does so by sampling predominantly the peaks 
of the rigid indenters.

Figure 5 also reveals that the way how the interfacial 
stress disappears with the distance d from a contact edge 
is similar to that for a Hertzian contact geometry. It obeys 
the � ∝ d�∕2 scaling with the same dependence of the expo-
nent � on n as stated in Eq. (6). To fully reveal the nature 
of the stress singularities at the contact edge of an n = 3 
elastomer, very fine discretizations are required. Using 32k×
32k elements of the full default surface is still insufficient. 
Confirming that �(n = 3) = −1 also applies for randomly 
rough surfaces requires to zoom into individual asperities 
with even finer discretization. Results for thin beams ( n = 4 ) were not included in the 

comparison of contact topographies and stresses at 10% rela-
tive contact for different exponents. It is computationally 
impossible to reach that limit for n = 4 , because of the sin-
gular nature of contact stresses at the contact line making ar 
somewhat difficult to define.

5.1  Contact Area and Stress Distributions

One of the two central, scalar quantities to be determined in 
an elastic contact-mechanics calculation is the contact area. 
Figure 6a shows the numerical results for the various elastic 
counterfaces as a function of reduced pressure p∗ ≡ p∕�� 
including the theoretical prediction by Persson‘s theory, 
while Fig. 6b shows the ratio of the numerical results and the 
theoretical prediction. Note that the present definition of the 
reduced pressure deviates by a factor of two from the usual 
convention p∗

usual
≡ p∕E∗ḡ for semi-infinite solids, where ḡ 

is the root-mean-square height gradient.
While Persson’s theory predicts the deviations from full 

contact at large p∗ reasonably well for all studied systems, 
agreement for ar(p∗) at small p∗ is less satisfactory: for 
0.5 ≤ n ≤ 2 , logarithmic corrections to a linear ar(p∗) = �np

∗ 
dependence are required, while an entirely different power 
law is observed for n = 3 . The need for the logarithmic cor-
rections might disappear or at least be strongly suppressed 
in the thermodynamic limit, in particular for n = 1 [52]. 
However, the contact is spread out over many small patches 
for n = 2 , Thus, finite-size corrections to Persson’s theory 
conducted similarly as those for the interfacial stiffness of 
semi-infinite elastomers [30] would not apply to the contact-
area calculation of the n = 2 elastomer. New improvements 
to the theory may have to be identified, as for example, the 

0.01 0.1 1
p / ∆σ

0.0

0.2

0.4

0.6

0.8

1.0

a r

n = 0
n = 0.5
n = 1
n = 2
n = 3
Persson theory

(a)

0.01 0.1 1
p / ∆σ

0.0

0.5

1.0

1.5

2.0

a r / 
er

f (
p 

/ √
2
∆σ

)

n = 0
n = 0.5
n = 1
n = 2
n = 3

(b)

_

Fig. 6  a Relative contact area ar as a function of reduced pressure 
p∗ ≡ p0∕�� for different elastic counterfaces. b Ratio of computed 
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replacement of �� with ��c . Yet, as argued in the introduc-
tion, the reproduction of relative contact area is not seen 
as a critical assessment of a contact-mechanics theory for 
randomly rough surfaces, even if it is the most frequently 
performed traditional assessment of their validity.

A potentially more meaningful test for a contact-mechan-
ics theory is to make it predict the interfacial stress distri-
bution function Pr(�) . It is given by Eq. (24) in Persson’s 
theory, irrespective of the value of the exponent n. One of 
the difficulties in computing it in full simulations is that 
discretization effects lead to an overestimation of Pr(�) at 
small, positive values of �.

For non-adhesive contacts of semi-infinite ( n = 1 ) sol-
ids with randomly rough surfaces, it is well established that 
Pr(�) disappears as � approaches zero from above, for exam-
ple, Wang and Müser found a Pr(�) ∝ �0.7 at small � [10]. 
However, it is generally difficult to determine the precise 
(power) law with which this happens, also because very fine 
discretizations are required to unravel the asymptotic � → 0 
behavior. For semi-infinite solids, this is because the stress 
in real space disappears proportionally with 

√
d with the 

distance d of a contact point from the contact edge. This 
implies that the number of points with small � is scarcely 
distributed.

The larger (smaller) n, the more continuous (discontinu-
ous) is the disappearance of the stress with d in an indi-
vidual contact. While a quantitative analysis would require 
precise contact patch and contact line statistics, this trend 
is consistent with the � → 0 behavior observed in Fig. 7, 
small exponents n enhance the probability of small stresses 
near the contact line relative to large exponents.

The functional form of Pr(�) changes continuously with 
n. This becomes particularly noticeable for the asymptotic 
scaling in the � → 0+ limit. For small, positive stresses, we 
find Pr(�) ∝ �� , where �(n = 0.5) ≈ 0.3 , �(n = 1) ≈ 0.6 , and 
�(n = 2) = 1 for the default system, where the uncertainty 
in the exponent is approximately 0.1. The exponent for the 
n = 3 elastomer is difficult to determine for the default sys-
tem. Using a discretization of 32k×32k still turned out insuf-
ficient. For smaller systems, e.g., for an H = 0.8 indenter 
with a linear system size of merely L = 20 �s , evidence for 
super-linear scaling at small � was identified. The small 
probabilities at small � for n = 3 is not surprising, because 
the lowest contact stresses appear in the center of the contact 
patches rather than on their edges, which makes small posi-
tive interfacial stresses be rare.

The n = 3 stress distribution function is also special at 
large stresses in that it is the only one lacking Gaussian 
tails. Instead, Pr(�) disappears as a �−2.5 power law at large 
stresses, an issue that we will come back to in Sect. 6. 
Non-Gaussian tails in Pr(�) had also been observed previ-
ously for randomly rough, stepped indenters [53]. This 
similarity might originate from similar single-asperity 

stress profiles, as the flat-punch stress profile for a n = 1 
elastomer has the same functional dependence as the Hert-
zian stress profile of an n = 3 elastomer.

The lowest-order, non-trivial, positive, integer moment 
of the interfacial stress distribution function (defined over 
the entire apparent area including non-contact) in partial 
contact is the second (central) moment, ��2

p
 , as the first 

moment equals the nominal pressure. Therefore, it appears 
to be the most appropriate single number with which to 
quantify the shape of the stress distribution function as a 
function of pressure. Figure 8 compares the theoretical 
prediction, which again does not depend on n when stress 
is expressed in units of �� , to the results of ��p for differ-
ent n obtained with GFMD. The trends of all shown data 
sets are rather similar except, again, for n = 3 , which is 
discussed next.

The n = 3 elastomer is the only studied case, in which 
the interfacial standard deviation of the stress increases with 
decreasing pressure. This trend, however, is easily rational-
ized: When the first non-contact patches arise, so do the 
stress singularities at the contact edges, which increase the 
stress variance. Since the stress variance in an isolated Hert-
zian contact diverges for n = 3 , it should also diverge as soon 
as the contact edges have a finite weight, i.e., whenever the 
relative contact area drops below unity. In fact, even close 
to full contact, a quasi-logarithmic increase of ��p with the 
number of discretization points is observed.

In this entire section on stress distribution and contact areas, 
the n = 4 elastomers could not be considered, because of their 
peculiar contact mechanics, which makes the determination 
of the just-investigated properties impossible when contact 
is partial. However, it is clear that the discrepancies between 
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theoretical prediction and exact results become much accentu-
ated with increasing n for n > 2.

5.2  Mean Gap

The mean interfacial separation, or, short, the mean gap, ug , 
is the other important, scalar quantity, allowing a contact-
mechanics theory to be tested. It is the first (unitless) quantity 
studied in this work, whose dependence on the reduced pres-
sure p∕�� in Persson’s theory does depend on the exponent n. 
Figure 9 shows that the theory captures this dependence quite 
well for 0.5 ≤ n ≤ 4 when the correction factors listed in Eq. ( 
39) are used. The Einstein foundation is discussed separately, 
as it suffers from large size effects in ug(p∗) while allowing for 
an analytical solution in the thermodynamic limit.

For the most part, relative errors for 0.5 ≤ n ≤ 4 can be 
said to remain within close to 10% error for ug(p) at p ≤ �� 
and 20% for p(ug) when p ≥ �� . This level of agreement was 
achieved with the following parameters

used for �n throughout this study. These factors were identi-
fied to be useful after some trial and error, which is why 
further optimization might lead to a closer overall agreement 
between theory and simulation. However, we do not expect 
changes to be large, as the theory is not exact to begin with 
and fine tuning adjustable coefficients on one data set often 
leads to the deterioration of others in that case.

Given the dramatic difference between single-asperity con-
tact mechanics for the different n and given that the theory 
requires as (dimensionless) input only the height spectrum, 
the exponent n, and one correction factor for each value of n, 
we would argue that the accuracy of the predictions is rather 
impressive. It can even be called surprising, because the pre-
diction of the relative contact area, which enters the calcula-
tion of ar(p∗) , is much less convincing than that of ug(p∗) in 
particular for n = 4 , where relative contact areas could not 
even be determined with simulations. Yet, the agreement 
between theory and simulation might not be (entirely) fortui-
tous or it should have only been found for a single exponent n.

To demonstrate the effect that the correction factor � 
has on the pressure–displacement curve, we compare the 
results with and without correction factor exemplarily for 
the exponent n = 2 in Fig. 10. Close to zero contact area, the 
derivative �u∕� ln p is reduced by a factor of � compared to 

(39)�n =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

0.5 for n = 0

0.45 for n = 0.5

0.35 for n = 1

0.2 for n = 2

0.1 for n = 3

0.02 for n = 4.
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the original theory in which � had not yet been introduced 
implying � ≡ 1 . Close to full contact, the mean gap in the 
corrected theory is reduced by a factor of 3 − 2 �n compared 
to the original theory. These asymptotic scalings can be 
readily deduced from Eqs.,(28)–(30).

5.2.1  Transferability Test for Correction Factors

A natural question to ask is whether the numerical factors 
�n , which were crudely optimized on the GFMD data for 
the default system, see Eq. (39), also apply to other sys-
tems. To answer this question, additional sets of simula-
tions were run. These include a change of the Hurst exponent 
from H = 0.8 to H = 0.3 and the analysis of the ug for slabs 
of finite width, both presented in this section. Moreover, 
spectra were changed from roll-off to cut-off. Results were 
positive but are not reported for time reasons. Another issue 
appeared to be more urgent, namely the analysis of finite-
size effects at extremely small stresses. This is an interesting 
topic in itself, which is discussed in a seperate section in the 
context of the Einstein foundation.

In all transferability tests, the resolution of the simulations 
was set to �a = �s∕2 for reasons of computational efficiency, 
i.e., we abstained from performing systematically continuum 
corrections. However, ug is an extremely quickly converging 
quantity so that the continuum limit of ug and its estimate 
obtained at �a = �s∕2 tend to differ by less than one percent.

For the H = 0.3 simulations, all parameters were kept 
unchanged, except, of course, for the Hurst exponent. Fig-
ure 11 shows that the quality of the prediction does not 
deteriorate.

In another set of simulations, the thickness t of the semi-
infinite solid was reduced from infinity to different finite 

values. For these simulations, the Hurst exponent was set 
back to H = 0.8 . The spectrum was changed from a roll-off 
to a cut-off spectrum

for reasons that are mentioned in the section on finite-
size effects. Moreover, the roll-off domain, or rather cut-
off domain, was increased to L∕�s = 5.12 , while the ratio 
�r∕�s remained unchanged (=0.01). The cut-off domain 
was enlarged compared to the default simulations in order 
to increase the ratio of ug∕hstd , where simulations do not 
suffer from finite-size effects.

The boundary condition of the finite-width elastomer 
on the surface opposite to the interface is assumed to be 
constant stress. In this case, the contact modulus occurring 
in the expressions for stress and elastic energy for a semi-
infinite solid must be multiplied with a prefactor so that

where t̃ ≡ t q is the thickness of the three-dimensional n = 1 
elastomer in units of the inverse wave vector 1/q [45]. Thus, 
the elastomer behaves like a thin sheet for wave vectors 
q ≪ 1∕t and bulk-like for q ≫ t with a continuous transi-
tion between these two limits.

Because of the effective continuous change from n = 1 
at short wave lengths to n = 4 in at long wave lengths, the 
correction factor needs to be made a function of thickness 
so that the two limits are properly reflected. For the data 
presented in Fig. 12, the relation

(40)C(q) = C(qr)(q∕qr)
−2−2H Θ(q − qr) Θ(qs − 1),

(41)E∗
→

cosh (2 t̃ ) − 2 t̃2 − 1

sinh(2 t̃ ) + 2 t̃
E∗,
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was used, however, it may well be that better switching func-
tions can be designed.

While Persson’s theory does not reproduce the ug(p) 
relation for elastomers of varying thickness quite as con-
vincingly as for the other models presented in this study 
up to this point, it is still at least semi-quantitative. Yet, 
at very large pressures, which are not shown explicitly at 
high resolution, it predicts the ug(p) dependence similarly 
well as before. To further improve agreement between 
theory and simulation, it might also be helpful to modify 
the W(ar) dependence of Eq. (30).

5.2.2  Einstein Foundation and Finite‑Size Effects

The results for the Einstein foundation are presented sepa-
rately for mainly two reasons. First, the range of ug∕hstd , 
in which size effects are negligible, is somewhat reduced 
compared to the other elastic bodies, while the sensitivity to 
the specific random realization is much enhanced. Second, 
the ug(p) dependence of the Einstein foundation crosses the 
data for n = 0 and n = 1∕2 in the shown range of reduced 
pressures, so that the readability of the pertinent figures 
deteriorates substantially. Moreover, an exact solution is 
available for the Einstein foundation in the thermodynamic 
limit, which makes additional analysis possible.

Before presenting results on the Einstein foundation, it 
is useful to discuss finite-size effects first. In the thermo-
dynamic limit, that is, for �t ≡ �r∕L → 0 , the height dis-
tribution is Gaussian. Consequently, the height difference 
between highest and lowest point �h = hmax − hmin diverges. 

(42)𝛾(t̃) = 𝛾4 +
(
𝛾1 − 𝛾4

)
tanh(t̃∕6) However, this limit is approached so slowly that it is far 

from being reached in real systems. Typical values for the 
used height spectrum �h(�t) in units of hstd are �h(1∕2) ≈ 6 
(as in the default model), �h(1∕8) ≈ 8 , �h(1∕100) ≈ 10 , and 
�h(1∕1000) ≈ 11 . For a pressure, which is just slightly posi-
tive, a mean gap of roughly �h∕2 can be reached. Figure 13 
reveals these expectation to be accurate: deviations between 
the GFMD data and the exact solution start to matter when 
the mean gap approaches �h∕2.

An additional finding revealed in Fig. 13 is that Pers-
son’s theory does not match the ug(p) relation of the Einstein 
foundation for ug∕hstd ≳ 2.5 . Potential reasons are discussed 
separately in Sect. 6. An obvious concern is that n > 0 foun-
dation might behave similarly. To check this possibility, 
additional simulations were conducted for n = 0.5 and n = 1 , 
in which the following ratios were used: 2 ≤ L∕�r ≤ 32 , 
�r∕�s = 128 , and �s∕�a = 2 , where �a is the mesh size. For 
small pressures, deviations between the new data and the 
one presented in Fig. 9 remained below symbol size. We 
conclude that the good agreement between GFMD simula-
tions and theory revealed in Fig. 9 does not arise because 
of fortuitous error cancelation caused by finite-size effects.

6  Rationalizing the Accuracy of Persson’s 
Theory

Persson’s theory predicts ug(p) relations for different elastic 
counterfaces in an astoundingly accurate fashion, except for 
the Einstein foundation when ug∕hstd ≳ 2.5 , where the pre-
dicted trend is inaccurate. The judgment “astoundingly” is 
used because results from the GFMD simulations appear to 
violate central assumptions made in the theory, in particular 
for large n. 

1. The derivation of the ug(p) relation uses the scale-
dependent relative contact area as intermediate step, 
however, in contrast to the final result, the precision of 
ar(p) is relatively poor and even qualitatively incorrect 
for n > 2.

2. The estimate for how an arbitrary point changes the 
stress upon adding small-scale roughness is justified for 
points far away from a contact edge but poor for points 
close to it. Any system in which contact exists predomi-
nantly in small contact patches violates that estimate, for 
example, for n ≥ 2 but also for n = 1 with H < 0.5 [54].

3. The theory implicitly assumes that a point dropping out 
of contact is a point in which the stress has “diffused” 
continuously to zero upon the addition of small-scale 
roughness. However, the stress diverges near the contact 
edge for n > 2 and discontinuously drops from infinity 
to zero when contact is lost due to the addition of small-
scale roughness.
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4. The calculation of the elastic energy assumes the dis-
placement field to consist only of undulations with the 
same wave length as the indenter. However, for n < 1 , 
the slope of the displacement field is discontinuous at 
the contact edge. This implies the occurrence of short-
wavelength modes whose elastic energy is not accounted 
for in the theory.

Some of this criticism has been uttered before [32, 37] and 
even been quantified [32] for regular semi-infinite bodies. 
However, points 1–3 are accentuated for n > 1 , while point 
4 becomes more relevant for n < 1.

Another reason why the accuracy of the predicted ug(p) 
relation is deemed astounding is that the theory is extremely 
simple, though this may as well be argued to be a reason for 
why it works so well. One page of text and graduate-level 
mathematics are sufficient to develop all equations needed in 
this work from first principles, i.e., from the stress–displace-
ment relation of a single sinusoidal surface undulation, or, 
alternatively from the Boussinesq solution. The full Hertz 
solution, a central input ingredient to bearing-area models 
is much more complicated than that, and it is only the start-
ing point of many more pages of mathematics used even in 
the simple, original GW model, with even more pages of 
mathematics in “improvements” of that model, which then 
do not even produce meaningful mean-gap–displacement 
relations. Keeping in mind that a randomly rough contact is 
the superposition of many individual contact patches each 
of which is much more complex than a Hertzian contact, 
it seems counterintuitive that a good, approximate solution 
of an extremely complex problem is simpler than the exact 
solution of a seemingly simple problem.

So, why does Persson’s theory work so well even when 
it should not? In the following, two main rationals will be 
stated, one of which can be used to potentially adjust the 
theory and to rationalize the correction factor �n , which 
appears as a drop of bitterness needed to turn the theory 
from qualitative to (semi-)quantitative. First, the author of 
this study showed that Persson’s theory is exact for n = 1 
up to at least second order (any surface) and third order 
(random-phase approximation) in a rigorous field-theoret-
ical approach (cumulant expansion) to contact mechanics, 
in which the inverse range of repulsive interaction, � , was 
treated as a perturbative parameter and thus as small com-
pared to a height undulation [55]. The treatment presented 
in there can be easily generalized to arbitrary n by replacing 
the occurrence of any qE′ ( E′ of Ref. [55] being E∗ in this 
study) to 2qnkn . An interesting aspect of this work is that 
the formalism could be re-interpreted and re-used for the 
design of an effective repulsive-zone model. Assuming that 
the effect of all small-scale roughness has been absorbed 
into an effective potential, which would turn out as expo-
nential repulsion for sufficiently large separation, including 

larger-wave-length undulations into the treatment would 
renormalize that potential and render the repulsion effec-
tively longer ranged. In this procedure, assuming � to be 
small compared to the (additional) height fluctuation would 
actually be a meaningful starting point, while this was not 
well justified in the original work.

Another reason why the theory predicts even the ar(p) 
relation reasonably well, i.e., up to corrections logarithmic 
in p, is that it can be applied with a minor modification to 
single indenters with harmonic height profiles, for which the 
random-phase approximation is violated in the worst pos-
sible way. The generalization is that the stress variance �� 
is evaluated over the true contact rather than over the entire 
randomly rough surface. This modification is not only suc-
cessful for said single indenters but also for randomly rough 
indenters not satisfying the random-phase approximation 
in contact with a regular semi-infinite, elastic counterface 
[52]. Thus, assuming ar = erf(p∕��c) to hold, it needs to be 
understood how the true-contact-area stress variance ��2

c
 

deviates from the full-surface stress variance ��2 . Inspection 
of Fig. 4 reveals that the larger the exponent n, the more do 
the elastic counterfaces sample local peaks but no local val-
leys, while counterfaces with a small exponent n do sample 
local valleys in global (coarse-grained) peaks. This behavior 
automatically entails a reduction of ��c and thereby a reduc-
tion of elastic energy compared to configuration forming 
conformal contact with the indenter, which increases with 
increasing n.

None of the just-made arguments explains the first item in 
the list of reasons stated at the beginning of this section for 
why Persson’s theory should not be accurate. To rationalize 
this point, the concept of contact area and stress distribu-
tion needs to be thought about. Are these properties defined 
doing a calculation such that the elastomer’s undulations 
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u(�) are (a) fully resolved or (b) resolved only up to wave 
vectors which have been considered in the magnification-
dependent representation of the randomly rough indenter? 
In the latter case, Persson’s theory would predict at least the 
correct order of magnitude for the second moment of the 
stress distribution function, since the tails of the probability 
distribution Pr(�) appear to be quite accurate. In contrast, in 
the case of (a), any moment of the stress distribution func-
tion would be completely off. Thus, interpretation (b) seems 
to be the correct one, even if it still remains unclear why 
the n = 3 gap–pressure relation is obtained so accurately by 
Persson’s theory (Fig. 14).

The final result noted in this study pertains to the stress 
distribution function Pr(�) points for n = 3 and its sec-
ond moment in the continuum limit. For decreasing mesh 
sizes, Pr(�) approaches an algebraic decay according to 
Pr(�) ∝ 1∕�� with � ≈ 2.6 (and estimated errors of 0.15) for 
n = 3 and H = 0.8 . Since 𝛽 < 3 , the stress variance diverges. 
This is consistent with the results and the discussion of the 
second moment of the stress in Sect. 5.

7  Conclusions

In this work, Hertzian and randomly rough indenters in con-
tact with linearly elastic counterfaces were studied using 
both numerical and analytical methods. The elastic bodies 
differed in the way how their elastic energy depended on 
the wave lengths � of surface undulations. In most cases, 
this dependence was a �−n power law, with n ranging from 
n = 0 (elastic bodies of infinite spatial dimension) to n = 4 
(two-dimensional, freely suspended sheets) including n = 1 , 
which is representative of regular semi-infinite solids. For 
both Hertzian and randomly rough indenters, out-of-contact 
displacement and in-contact stress fields depend smoothly 
on the exponent n, although critical values for n exist, at 
which the behavior changes qualitatively. For example, the 
(compressive) stress near a contact edge approaches zero for 
n < 2 but diverges for n > 2 , while it is positive and finite for 
n = 2 . The latter exponent is representative for thin sheets 
under equi-biaxial tension.

A central result of this study is that Persson’s theory can 
be easily applied to the contact mechanics of the considered, 
generalized elastic bodies. The theory predicts the stress dis-
tribution function Pr(�) and thus the relative contact area ar 
to depend only on the ratio of pressure p and the root-mean-
square stress fluctuation in full contact �� . Green’s function 
molecular dynamics (GFMD) simulations reveal dependen-
cies of these quantities on n, which, however, are relatively 
minor for n ≤ 2 . Deviations between GFMD and theory 
worth noting are logarithmic corrections to the predicted 
linear ar(p) relation at p∕𝛥𝜎 ≪ 1 and a Pr(�) ∝ �� power 
law dependence for small stress in the case of partial contact, 

in which the exponent � appears as a smooth function of n 
rather than to assume the predicted constant value of n = 1 . 
Despite these shortcomings, Persson’s theory reproduces 
the dependence of the mean interfacial separation on pres-
sure at least semi-quantitatively, with the exception of the 
n = 0 Einstein (or Winkler or bearing-area) foundation 
at small pressures. For all other studied exponents in the 
range 0.5 ≤ n ≤ 3 , errors in either ug(p) at small p or p(ug) 
at small ug remain below 20%. This is an astoundingly close 
and systematic agreement given that the theory is somewhat 
inaccurate for the ar(p) dependence, which enters the ug(p) 
calculation.

In order to achieve close agreement between theory and 
simulation, a correction factor needed to be introduced 
for the calculation of the elastic energy in partial con-
tact. The correction factor, �n , was adjusted as a (smooth) 
function of n but not on the roughness profiles. For freely 
suspended elastic sheets of finite thickness t, it has to be 
made a function of the wave length so that �(q) reflects 
the semi-infinite and thin-sheet limits meaningfully, i.e., 
𝛾(q ≪ 1∕t) = 𝛾1 and 𝛾(q ≫ 1∕t) = 𝛾4 . Doing so allows 
elastic sheets of finite width to be modeled with a greater 
precision than before. Discrepancies between theoretical 
and computed ug(p) relations at small p no longer have to 
be hidden by avoiding their appropriate double- or semi-
logarithmic representations.

The present work identifies a potential origin of the 
correction factor �n used in Persson’s theory and why it 
decreases with n, the statistics entering the theory, i.e., 
the root-mean-square height gradient for n = 1 and related 
quantities for other n, are not the same in partial contact 
and in full contact, and the way how true contact samples 
the roughness of the indenter depends on n. The larger n at 
fixed relative contact area, the more does the elastic body 
sample the global minima but only local heights. Conse-
quently, the discrepancy between full averages of central 
quantities (i.e., root-mean-square height gradient for n = 1 
and related quantities for other n) and averages over partial 
contact deviate more for small n than for large n.

How can Persson’s theory be modified so that �� is 
determined over the true contact and not over the nominal 
contact? For small n, e.g., for n ≤ 1 , it might make sense to 
argue that ��c at a relative contact of ar should be averaged 
over the 100 ⋅ ar highest (or lowest) percentile range of the 
indenter to determine ��c according to Eq. (20). When 
doing so, the relative contact even at the smallest pressures 
would be predicted within O(10%) accuracy, as this version 
of Persson’s theory predicts the relative contact area of 
single Hertzian indenters within a few percent. As such, 
the range of validity of the theory can be further extended 
and also be applied to systems in which the random-phase 
approximation does not hold.
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How could bearing-area models be modified so that they 
apply to systems with n > 0 ? The worthlessness of this 
exercise should become obvious even to a mathematically 
challenged tribologist, as the assumed topography of the 
elastic body is that of the n = 0 curve shown in Fig. 4 no 
matter how large n. While there have been brave attempts 
to augment bearing-area models with rigorous boundary-
value methods (BVM), they appear to be less accurate but 
computationally more demanding than a full BVM treatment 
as revealed, for example, in the contact-mechanics challenge 
[7]. And who would want to pay more for less?
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