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Abstract — Englisch

An obvious way to improve human healthcare is to develop new and more effective drugs.
Another opportunity is however to develop solutions that allow to utilize the available
drugs better. This includes more accurate and early diagnosis of pathologies, improved
therapy selection as well as digital and patient centric solutions in healthcare systems.
Especially in molecular diagnostics new biomarkers have been developed and partially
shown promising results in terms of improving patient care. In this work I describe the
development of respective platform techniques, biomarkers and computational solutions
during my PhD thesis.

First, I briefly introduce the concept of a flexible microarray platform and assays, such as
the MPEA assay, tailored for the fast and efficient quantification of miRNA signatures.
Then, I describe how we made use of respective platforms along with computational
solutions to improve the understanding of physiological and pathophysiological
processes. Further, I present results on my efforts to develop new molecular diagnostic
biomarkers based on circulating miRNAs. Here, my special focus was in cancer (most
importantly lung cancer) and diseases affecting the Central Nervous System (most
importantly Multiple Sclerosis, Alzheimer’s Disease and Parkinson’s Disease). Together
with the supervisors of my thesis I was among the first researchers worldwide to
recognize that small non-coding RNAs (most importantly microRNAs) measured from
body fluids have a great potential as biomarkers. An obvious advantage to messenger
RNAs is the small length of the molecules of only 17-22 nucleotides. This makes
microRNAs stable in vivo but also in vitro.

Finally, I will mention recent developments in patient care. The current trend is clearly
the digitalization of central parts of healthcare. This affects all stakeholders in the
healthcare system, most importantly medical doctors and patients. Especially patient
empowerment and self-containment of medical data is becoming more important. Again,
Multiple Sclerosis is used as an example. But also for physicians, computational tools have
to be implemented to support them in making treatment decisions from highly complex
data. In sum, my thesis describes the road from developing a molecular diagnostic
platform over the research on biomarkers for detecting disease in time towards holistic
computational solutions to improve patient care.
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Zusammenfassung — Deutsch

Es ist offensichtlich, dass man Krankheiten besser behandeln kann, wenn man neue und
effektivere Medikamente und Therapien entwickelt. Eine andere Moglichkeit ist es,
Losungen zu entwickeln, die es erlauben, vorhandene Medikamente besser einzusetzen.
Das schliefdt die frithzeitige Diagnose von Erkrankungen, eine verbesserte Wahl der
richtigen Therapie und die Entwicklung von patienten-zentrischen digitalisierten
Losungen mit ein. Insbesondere in der Molekulardiagnostik wurden neue
vielversprechende Biomarker entwickelt. In dieser Arbeit flihre ich meine Beitrage zur
Entwicklung von Plattform Technologien zum Messen von Biomarkern aus, erldautere die
Erforschung von Biomarkern selbst und beschreibe die Anwendung der dazugehorigen,
computergestiitzten Methoden.

Beginnen mochte ich mit einer Beschreibung der Entwicklung einer flexiblen Mikroarray
Plattform und Assays, wie zum Beispiel des MPEA Assays, die mafdgeschneidert fiir die
schnelle und effiziente Quantifizierung von miRNA Biomarkern sind. Dann gehe ich darauf
ein, wie wir Plattformen, Assays und computergestiitzte Losungen eingesetzt haben, um
physiologische und pathologische Prozesse besser zu verstehen. Aufierdem présentiere
ich Resultate meiner Bemiihung, neue molekulardiagnostische Biomarker basierend auf
zirkulierenden miRNA Mustern zu entwickeln. Hierbei habe ich mich auf Krebs
(vornehmlich Lungentumore) und Erkrankungen, die das Zentrale Nervensystem
betreffen (Multiple Sklerose und die Alzheimer Erkrankung), konzentriert. Gemeinsam
mit meinen Betreuern war ich unter den ersten Forschern weltweit, die das grofde
Potenzial kleiner nicht-kodierender RNAs (am wichtigsten dabei microRNAs), die aus
Blut gemessen werden konnen, erkannt haben. Ein offensichtlicher Vorteil gegeniiber
mRNA Biomarkern ist die kurze Lange von nur 17-22 Nukleotiden. Diese macht miRNAs
sowohl in-vivo als auch in-vitro stabil.

Letztlich gehe ich in meiner Arbeit auf momentane Entwicklungen in der
Patientenversorgung ein. Ein klarer Trend ist die Digitalisierung zentraler Teile der
Gesundheitsversorgung. Das betrifft alle Personen im Gesundheitswesen, allen voran
Mediziner und Patienten. Selbstbestimmung des Patienten wird besonders wichtig
werden. Hier dient mir wieder Multiple Sklerose als ein Beispiel. Auch fiir Arzte miissen,
angesichts der immer komplexeren Daten, computergestiitzte Losungen entwickelt
werden, die ihnen helfen, die richtige Therapieentscheidung zu treffen.
Zusammenfassend halte ich fest, dass meine Arbeit den Weg von der Entwicklung einer
molekulardiagnostischen Plattform {iber die Entwicklung von Biomarkern zur
Frihdiagnose von Erkrankungen bis hin zu ganzheitlichen computergestitzten
Losungen, die die Patientenversorgung verbessern, beschreibt.
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Kapitel 1

Einleitung

Seit der Veroffentlichung des ersten menschlichen Genoms im Jahre 2002 durch das
Human Genome Project (HGP) [1] und die Firma Celera werden stetig neue Technologien
entwickelt, die es uns ermoglichen, molekulare Muster aus verschiedensten Organismen
zu lesen. Entsprechende DNA oder RNA Muster werden in vielen verschiedenen Gebieten
verwendet, neben der Erforschung von Krankheiten die Menschen betreffen sind unter
anderem die Agrikultur und die Nutztierhaltung wichtige Anwendungsbeispiele fiir
molekulare Analysen. Hier werden Gene, Genexpression, Methylierung oder nicht-
kodierende RNA sowie Protein Muster erhoben, um Krankheiten des Menschen besser
erforschen beziehungsweise besser zu verstehen, wie der Ertrag von Tieren erh6ht
werden kann und Tiere unter Umstdnden ohne den Einsatz von schadlichen Antibiotika

geslinder leben konnen.

Die Technologien, die dabei entwickelt werden, sind zunehmend komplexer geworden.
Wahrend in den Anfiangen zu Beginn des Jahrtausends noch sogenannte Mikroarrays
eingesetzt wurden, hat die Firma Solexa im Jahr 2005 eine disruptive neue Technologie
fiir den Massenmarkt vorgestellt, Next-Generation Sequencing oder Hochdurchsatz-
Sequenzierung (HTS) [2]. Wahrend Mikroarrays zundchst Kklar fiir das Auslesen des
Transkriptoms (der zu einem bestimmten Zeitpunkt in einem bestimmten Zelltyp
vorkommenden Menge aller Gene eines Organismus) verwendet wurden, wurde HTS vor
allem fiir die Sequenzierung des Erbgutes (die Gesamtmenge der DNA, also Protein
kodierende Gene, regulatorische Elemente und andere Teile, deren Bedeutung zum Teil
noch nicht vollig klar ist) eingesetzt. In den vergangenen Jahren wurden jedoch mehr und
mehr Assays entwickelt, die es auch erlauben, HTS zur quantitativen oder zumindest
pseudo-quantitativen Messung des Transkriptoms und sogar weiterer Aspekte wie der
Methylierung der DNA prazise zu messen. Auch zur Entschliisselung nicht-kodierender
Elemente (kleine nicht kodierende RNAs wie piRNAs oder microRNAs (miRNAs) sowie
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Abbildung 1: Kosten je Genom. weniger als tausend Dollar
Der obere Teil der Abbildung zeigt den exponentiell verringert werden. Bereits heute
wachsenden Durchsatz moderner Sequenzier-Technologien. Im
unteren Teil wird schematisch dargestellt, dass die Kosten der

Sequenzierung nicht nur evolutiondr innerhalb der Technologie — Generation (sogenannte Nanoporen
Generationen sinken, sondern auch revolutiondren Charakter

zwischen verschiedenen Generationen haben. Sequenzierung) erfolgreich

eingesetzt. Die technische Weiter-

werden Sequenzierer der Dritten

entwicklung verspricht dabei, dass in einigen Jahren Gerate der Grof3e eines USB Sticks
ein Humanes Genom fiir weniger als 100 Dollar sequenzieren kénnen. Die Kosten je
Genom, der Durchsatz eines Sequenzierers je Tag und die zeitliche Abhangigkeit der
Sequenzierer Generationen wird in Abbildung 1 und Abbildung 2 dargestellt. Wegen
dieser rapiden technischen Entwicklung der Sequenzierung werden Mikroarrays heute
sehr viel seltener angewendet. Hauptsachlich, wenn eine relativ prazise Quantifizierung
von vielen Genen oder nicht-kodierenden Elementen gefragt ist, wird auf diese bewahrte,

hochparallele Technologie zuriickgegriffen.

Eine Herausforderung entsprechender Technologien ist eine stetig anwachsende
Komplexitit und damit auch eine sehr viel hohere Bedeutung von Algorithmen,
Datenstrukturen und Bioinformatik-Losungen. Das gilt fiir alle molekularen Messungen,
nicht nur HTS, sondern auch Proteinmuster, die mit Massenspektrometrie erhoben
werden. Abbildung 3 zeigt dabei anschaulich, um wie viele Gréfdenordnungen die
Gesamtgrofie von molekularen Datensdtzen in den vergangenen Jahren zugenommen hat.
Wahrend fiir Mikroarrays noch wenige Megabyte erreicht bzw. benétigt wurden, sind

heutige HTS Datenséatze leicht viele Gigabyte oder sogar Terabyte grof. Entsprechend
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Abbildung 2: Zeitliche Uberlappung und Reife der verschiedenen Sequenzier-Technologien.

erreichen Computer, die fiir das Speichern der Daten verwendet werden (sogenannte
Fileserver) Kapazititen die in den Petabyte Bereich gehen. Eine der grofdten
Herausforderungen ist es, addquate computer-gestiitzte Losungen fiir diese Problematik
zu entwickeln und die Ergebnisse solch komplexer Methoden fiir Arzte aufzubereiten.

Der vorangegangene Absatz hat einen kurzen Uberblick iiber die technische Entwicklung
in der Molekularbiologie und Genetik gegeben. Sicherlich erhebt dieser kurze Uberblick
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Abbildung 3: Die Komplexitdt verschiedener molekularer Technologien.
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Hochdurchsatz Methoden (HTS, Massenspektrometrie) haben dazu gefiihrt, dass Datensdtze heute oft viele
Giga- wenn nicht sogar Terabyte grofs sind.



keinen Anspruch auf Vollstindigkeit, wie es tiefgehende Ubersichtsartikel in diesem
Gebiet tun. Hierzu verweise ich auf geeignete Ubersichtsartikel [3-6]. Der Uberblick hilft
jedoch, die technischen Entwicklungen, die in Kapitel 3 und 4 beschrieben werden, besser
einzuordnen und er zeigt vor allem einen klaren Trend hin zu Hochdurchsatz-
Plattformen. Diese bisher nie dagewesene Menge an Daten motiviert auch die
Entwicklung hin zu computergestiitzten Analyse Methoden. Die technische
Weiterentwicklung, zusammen mit neuen Analyseverfahren, hat auch dazu gefiihrt, dass
die Forschung in Lebenswissenschaften insgesamt signifikante Fortschritte gemacht hat.
Uber diese Entwicklung, die parallel zur technologischen Weiterentwicklung
stattgefunden hat, wird im folgenden Abschnitt eingegangen.

Wahrend in den letzten Jahrzehnten des vergangenen Jahrhunderts hauptsachlich
Methoden wie PCR eingesetzt wurden, um einzelne Gene zu verstehen, hat es die
Entwicklung von DNA und RNA Mikroarrays in den vergangenen 30 Jahren ermdoglicht,
das Verstindnis von Genen im Menschen und vielen anderen Organismen auf einer
systematischen Ebene intensiv voranzutreiben [7-10]. Der Schritt von wenigen einzelnen
Genen hin zum Transkriptom, der Menge aller zu einem bestimmten Zeitpunkt
exprimierten Gene, war einer der wesentlichen Fortschritte in der Molekularbiologie der
vergangenen Jahrzehnte. Durch die oben beschriebene Entwicklung der
Sequenziertechnologie wurde neben Genen, die fiir Proteine kodieren weitere Elemente

identifiziert, die vom Genom abgeschrieben werden, aus denen aber keine Proteine
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Abbildung 4: Multi-Skalen in der Biologie und Biomedizin.

Angefangen vom genetischen Code mit seinen 3.3 Milliarden Basen und 20.000-25.000 Genen,
hunderttausenden regulatorischen Elementen und Proteinen in abermilliarden Zellen iiber Organe und
Organsysteme hin bis zu einem Individuum und einer Gemeinschaft von Individuen. Um die Komplexitdt
verstehen zu konnen sind prdzise molekulare Methoden, Medizinische-Bildgebung, aber auch computer-
gestiitzte Analysen notwendig.



gebildet werden. Diese Elemente werden nicht-kodierende RNA (ncRNA) genannt.
Generell wird zwischen langen [11] und kurzen nicht-kodierenden RNAs unterschieden
[12]. Kurze nicht-kodierende RNAs sind neben anderen miRNA, tRNAs, piRNA oder
yRNAs. Die Bedeutung dieser nicht-kodierenden Elemente fiir die Organisation von Zellen
wurde von Gomes bereits 2013 zusammengefasst [13]. Neben nicht-kodierenden RNAs
wurden viele andere epigenetische Mechanismen wie die Methylierung der DNA
zunehmend erforscht und durch Hochdurchsatz-Methoden zwischen 1993 und 2016
signifikante Fortschritte erzielt [14, 15]. Auch das Verstindnis der Modulation des
Chromatin Zustandes durch Histon-Modifikation hat das Verstdndnis liber regulatorische
Mechanismen der Genexpression verdndert [16]. Da auch massenspektrometrische
Verfahren weiterentwickelt wurden und sogar prazise quantitative Messungen von
Protein Mengen im hohen Durchsatz moglich werden [17, 18] ist es momentaner
Gegenstand vieler Forschungsprojekte, die verschiedenen -omics Technologien an
Patienten integrativ zu messen. Sogenannte multi-omics Studien sind einer der
momentanen Trends in der Molekularbiologie und der Biomedizin [19]. Solche hoch-
komplexen Studien erfordern allerdings auch spezielle Analyse-Strategien und neue
Algorithmen [20, 21]. Es ist sogar moglich, entsprechende molekulare Muster bis hin zu

einzelnen Zellen zu messen [22].

Die Erfahrung hat jedoch gezeigt, dass multi-omics Daten-Analysen auch
Herausforderungen bergen. Mehrere Milliarden Basen im Humanen Genom, 25.000 Gene,
hunderttausende regulatorische Elemente und mindestens ebenso viele Proteine
erlauben schier endlose Kombinationsmoéglichkeiten. Wahrend die Suche nach dys-
regulierten Genen noch der Suche nach der Nadel im Heuhaufen entspricht, begegnen wir
analog in multi-omics Analysen einer exponentiell gréf3eren Herausforderung. Noch dazu
kommt, dass es extrem wichtig, aber auch zeitaufwandig und weitaus schwieriger als
gedacht ist, Hochdurchsatz-Datensatze manuell zu kurieren [23]. Nichtsdestotrotz
werden entsprechende Anséatze fiir die verschiedensten Krankheiten angewendet, wie
zum Beispiel Kolon Karzinome [24], Brustkrebs [25], Leberkrebs [26], Lungenkrebs [27],
Kardiomyopathien [28] oder Alzheimer [29].

Die im ersten Teil der Einleitung beschriebenen Technologien dienen im weitesten Sinne
dazu, den genetischen Code zu lesen. Sie werden mit Hilfe von Algorithmen dazu
verwendet, den genetischen Code und was aus dem genetischen Code gemacht wird
besser zu verstehen. Beides kann in der Zukunft noch besser angewendet werden, um den
genetischen Code zu schreiben. Dabei spielen Gen Editing wie TALENs, ZNFs [30], oder
CRISPR Cas [31] schon heute eine wichtige Rolle.



Im Folgenden mochte ich kurz den Aufbau der vorliegenden Arbeit zusammenfassen. Fiir
meine Forschung spielt eine der oben genannten Molekiilklassen eine besondere Rolle,
microRNAs (miRNAs). Wahrend Gene, lange nicht-kodierende RNAs oder andere
Molekiile relativ empfindlich gegeniiber dufderen Einfliissen sind, haben sich miRNAs als
sehr stabil - in vivo und in vitro - gezeigt [32]. Gleichzeitig sind sie Masterregulatoren in
der Genexpression [33] und als Biomarker fiir eine Vielzahl von Erkrankungen
beschrieben [34]. Die Entwicklung von blutbasierten diagnostischen Tests basierend auf
miRNA Mustern steht im Fokus des zweiten Teils meiner Arbeit. Da miRNAs hier eine so
zentrale Bedeutung haben, mochte ich an dieser Stelle nicht nur auf die grundlegende
Primadrliteratur verweisen, in der die Entdeckung und Entwicklung von miRNAs sowie
ihre biologische Funktion erklart wird [35-38]. Ich habe das an die Einleitung
anschlief3ende Kapitel 2 den miRNAs gewidmet: Dort beschreibe ich die Hintergriinde der
Entdeckung, die Biogenese, die molekulare Funktion und den gegenwartigen Stand der

miRNA Forschung.

In Kapitel 3 gehe ich auf einige technische und Bioinformatik-Aspekte ein, die in der
Arbeit angewendet wurden. Kapitel 3 ist entsprechend kurz gehalten, da die projekt-
spezifischen Methoden in den einzelnen Kapiteln der Resultate detaillierter beschrieben

sind.

Im Resultat Kapitel 4 beschreibe ich zunachst eigene technologische Entwicklungen in der
Molekularbiologie (Kapitel 4.1). Das beinhaltet ein flexibles Mikroarray Instrument, das
Geniom, das dezentral im Labor eingesetzt werden kann, um mittels eines Synthese-
Verfahrens in Situ Mikroarrays liber Nacht herzustellen [39-41]. Diese Arbeiten habe ich
hauptsachlich aus Sicht eines Ingenieurs durchgefiihrt. Da in dieser Arbeit mafdgeblich die
Entwicklung der Biomarker beschrieben ist, dient Kapitel 4.1. hauptsachlich dazu, eine
Gesamtiibersicht und den Kontext zu bekommen. Fiir das Geniom Instrument wurden
verschiedene Assays entwickelt, wie zum Beispiel eine Anreicherung fiir sogenanntes
targeted-next-generation-sequencing tNGS oder der Microfluidic Primer Extension Assay
MPEA, der es erlaubt, miRNAs besonders exakt zu quantifizieren [42]. Dariiber hinaus
wird die Entwicklung klinischer Assays beschrieben, um miRNAs méglichst kostenglinstig
und schnell direkt im Krankenhaus (,,point-of-care”) zu messen [43, 44]. Final befasse ich
mich im Kapitel tiber Technologie-Entwicklung mit einer neuen Sequenzier-Technologie,
die in China entwickelt wurde (cPAS) und die besonders zur Quantifizierung kleiner RNAs

geeignet ist [45].

Die Erfahrung hat gezeigt, dass obwohl ein Wert in der Entwicklung von neuen
Technologien besteht, der eigentliche Schliissel zum Erfolg, der Einsatz der richtigen

Technologie ist, um biologisches oder medizinisches Wissen zu erlangen. Der zweite Teil



der Arbeit befasst sich genau damit: Wie konnen wir vorhandene Technologie einsetzen,
um Krankheiten frither zu erkennen und besser zu behandeln? Ausgehend von
Ergebnissen in der genetischen Diagnostik, dem Messen der DNA hat sich gezeigt, dass
RNA Muster, vor allem miRNA Muster, ein signifikantes Potenzial haben, Krankheiten frith
zu erkennen [46-49]. Besonders das minimal-invasive Messen von miRNA Signaturen aus
Blutproben ist ein vielversprechender Ansatz. Dabei ist es zundchst wichtig, die
technische Stabilitit der Marker nachzuweisen [50], aber auch biologische
Einflussfaktoren wie das Alter oder das Geschlecht miissen verstanden werden [51]. Auch
die organspezifische Komponente der zirkulierenden miRNA Muster ist von zentraler
Bedeutung fiir die Entwicklung minimal-invasiver Biomarker [52]. Alle vorgenannten
Aspekte bilden die Grundlage fiir die Erforschung von miRNA Mustern als Biomarker, hier
am Beispiel von Lungenerkrankungen [53-55] und Erkrankungen des zentralen
Nervensystems [56-58]. Der Vergleich von Mustern in Erkrankungen, die verschiedene
Organe betreffen, hat zudem eine generell krankheitsspezifische Komponente ergeben,
miRNAs, die unabhdngig der Erkrankung hoher oder tiefer exprimiert sind als in
Kontrollprobanden [34]. Die Entwicklung der miRNA Biomarker, der zentrale Bestandteil

meiner Arbeit, ist in Kapitel 4.2 beschrieben.

Ab Kapitel 4.3 werden Aspekte die iliber die miRNAs als Biomarker hinausgehen
behandelt. Das betrifft zum Beispiel die co-expression von miRNAs, also verschiedene
miRNAs die gegenseitig die Aufgabe der jeweilig anderen iibernehmen kénnen [59] und
Algorithmen, die es erlauben den Einfluss der Genregulation der Biomarker zu verstehen
[60]. Final werden in Kapitel 4.4 kurz Entwicklungen in der synthetischen Biologie
erldutert [61, 62]. Im Ausblick wird motiviert, dass das Editieren oder die Modifikation
von RNA hervorragende Therapieoptionen sind, die es wert sind weiter beleuchtet zu
werden. Auflerdem wird der stetig voranschreitende Trend der Digitalisierung im
Gesundheitswesen am Beispiel der Multiplen Sklerose skizziert. Patientenzentrische
Losungen, die auch die Selbstbestimmung des Patienten iiber seine Daten besser
ermoglichen, bilden die Grundlage, um vor allem chronische Krankheiten in Zukunft noch

effektiver behandeln zu konnen.

Die Resultate, die in dieser Arbeit zusammengefasst sind, beruhen auf 21
Originalarbeiten, die ich in den folgenden Kapiteln vorstellen mochte. Alle
Originalarbeiten finden sich im Anhang an die vorliegende Ausarbeitung. Wie in
komplexen wissenschaftlichen Arbeiten iiblich, sind diese Publikationen im Team
entstanden. Obwohl ich mich in der Darstellung auf meine Beitrage fokussiere schmalert
das nicht die Beitrage der Koautoren, die ich sehr zu schatzen weif3. Ihr Beitrag ist in den

entsprechenden Originalarbeiten gekennzeichnet.



|Kapitel 2

microRNAs

Viele Jahrzehnte wurde der Begriff ,Junk DNA“ von Wissenschaftlern verwendet. Dieser
bezeichnete urspriinglich die Teile der DNA, die scheinbar keine Funktion besitzen und
wurde in den 1960er und 1970er Jahren durch Susumu Ohno gepragt [63]. Seit dieser Zeit
wurde ,Junk DNA“ in der wissenschaftlichen Welt zunehmend diskutiert [64-71]. Die in
der Einleitung skizzierten Technologiespriinge haben es erlaubt, immer groéfieren
Bereichen des Humanen Genoms Funktionen zuzuweisen. Daten des ENCODE Projekts
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Abbildung 5: Die Biogenes von miRNAs.

Die Abbildung zeigt zusammenfassend wie miRNAs aus dem Genom abgeschrieben und prozessiert werden, bis hin zur reifen
miRNA. Die Abbildung ist modifiziert von Narayanese iibernommen.




(Encyclopedia of DNA Elements), die in mehreren Artikeln verdéffentlicht wurden und in
einem Science Editorial zusammengefasst worden sind, haben gezeigt, dass scheinbar
80% des Humanen Genoms eine Art der Funktion ausiiben und daher kein ,Junk” sind
[72]. Aber auch diese Arbeit wurde kontrovers diskutiert, so dass die Diskussion tiber
Junk DNA bis heute nicht abschliefdend geklart ist [73].

Fir einen Teil des Genoms ist klar, dass er eine Funktion ausiibt, obwohl keine Proteine
in ihm kodiert werden: nicht-kodierende RNAs. Diese nicht-kodierenden RNAs, die in
kurze und lange nicht-kodierende RNAs unterteilt werden, spielen eine essenzielle Rolle
in der Genregulation. Eine der Unterklassen, die am meisten untersucht wurde, sind
kleine nicht-kodierende RNAs, speziell miRNAs. In einem Artikel 2015 mit dem Titel ,Junk
DNA isn’t [74] hat Lin He die Rolle der nur 17-22 Nukleotide langen Molekiile in der
Genregulation beschrieben und dabei die Bedeutung von miRNAs fiir die Biomedizinische

Forschung zusammengefasst.

Entdeckt wurden miRNAs bereits zu Beginn der 1990er durch Lee, Feinbaum und Ambros
[35]. Sie zeigten, dass es im Genom von C. elegans kurze ,Gene“ gibt, die in RNA
umgewandelt werden und die Expression anderer Gene unterdriicken. Das
entsprechende Gen lin-4 wurde von den Autoren allerdings noch nicht mikroRNA
genannt. Was Lee und seine Mitarbeiter herausgefunden haben, war dass es zwei
Transkripte von lin-4 gibt, eines, dass 60 Nukleotide lang ist und eines, dass nur 20
Nukleotide lang ist. Diese entsprechen dem Precursor und reifer miRNA (siehe Abbildung
5 und Abbildung 6). Als Mechanismus wurde die Bindung an den 3’ untranslatierten
Bereich von Genen (Untranslated Region; UTR) beschrieben. Auflerdem wurde die
typische Haarnadelstruktur fiir miRNAs veroffentlicht, wie sie auch in Abbildung 6 gezeigt
ist. Der Begriff miRNA oder mikroRNA wurde erst 10 Jahre spater gepragt [37]. Zu dieser
Zeit war bereits viel iiber die Biogenese und Funktion bekannt. Aus dem Genom wird die
sogenannte pri-miRNA abgeschrieben. Diese wird durch Drosha und Pasha zur pre-
miRNA prozessiert. Mittels Exportin-5 wird diese aus dem Zellkern ausgeschleust. Das
Enzym Dicer schneidet dann die zwei reifen Formen, die als -3p und -5p Form bezeichnet
werden aus der pre-miRNA. Die Biogenese ist in der Ubersicht in Abbildung 5 gezeigt. In
der Terminologie werden die Precursor mit ,mir-“ bezeichnet, wahrend die reifen
miRNAs mit ,miR-“ gekennzeichnet sind. Da miRNAs sehr konserviert zwischen
Organismen sind [75] werden sie lblicherweise noch mit drei Buchstaben, die den
Organismus angeben, gekennzeichnet. Auferdem sind miRNAs in Klustern oder als
Familien organisiert. Dabei enthélt eine Familie mehrere sehr dhnliche Reprasentanten.
Mitglieder einer miRNA Familie werden mit den Buchstaben ,a“ ,b“ .. voneinander
abgegrenzt. Abbildung 6 zeigt ein Beispiel fiir eine der bekanntesten miRNAs aus der mir-

34 Familie. Beim Menschen wird diese miRNA zum Beispiel mit , hsa-mir-34a“ bezeichnet



B a
T—megémgj’

X
P

P

2]
<> ‘

pE-HIw ainjew
&

mature miR-34*

B
<®

ll:_ seed—>]

2
>

a

mir-34

:}

Y
G
A
R
¥

A 5%
R<ynS

Abbildung 6: Haarnadel-Struktur der mir-34.

Die Abbildung zeigt die Haarnadel-Struktur
der mir-34 gekennzeichnet sind die mature und
die mature (*) Form der miRNA (entsprechend
der -5p und -3p Form). Zusdtzlich ist der Seed
gekennzeichnet, die Region, die in der reifen
miRNA mafsgeblich fiir die Bindung an den
UTR des Zielgenes ist. Die Abbildung wurde
modifiziert von Paul Gardner iibernommen.

und hat entsprechend die beiden reifen Formen
yhsa-miR-34a-3p“ und hsa-miR-34a-5p. In
Abbildung 6 ist die erste der beiden reifen Formen
noch als (*) miRNA gekennzeichnet, diese
Bezeichnung wird heute normalerweise nicht
mehr verwendet. Abbildung 6 zeigt aufderdem fiir
die beiden reifen Formen noch ein wichtiges
Detail, die sogenannte Seed Region. Diese Seed
Region sind die 7 Basen, die fiir die Regulation der
Genexpression am entscheidendsten sind [76].
Eine Ubersicht iiber die Biogenese und die

Funktion von miRNAs ist in Abbildung 7 gezeigt.

Die bekannten miRNA werden seit 2003 in der
miRBase, die als Referenz Datenbank gilt,
gespeichert [77]. Zwischen 2003 und 2014

wurden insgesamt 21 Versionen der miRBase

veroOffentlicht [78-83]. In diesen Versionen
wurden - vor allem durch HTS Projekte -
zunehmend grofdere Zahlen an miRNAs
angegeben. Beim Menschen ist die Anzahl an
reifen miRNAs zum Beispiel auf 2.500
angewachsen. Zusammengenommen

entsprechen diese 2.500 miRNAs fast 0.002
Prozent des Humanen Genoms. Zusatzlich haben
mehrerer Studien in HTS Experimenten mehrere
tausend neue Kandidaten veroffentlicht [84-87],
die noch nicht in der miRBase annotiert sind. Fiir
viele der Kandidaten gibt es jedoch kaum eine
oder gar keine Validierung, sodass Schiatzungen
davon ausgehen, dass bis zu 60% der Kandidaten
in der miRBase und noch deutlich mehr in
anderen Projekten auf Artefakte, zum Beispiel

durch die Sequenzierung, zuriickzufiihren sind

[88]. Besonders die spaten Versionen der miRBase (allen voran Version 19, 20 und 21)

sind fiir miRNAs angereichert, die eher in Proben von schlechter Qualitat mit degradierter

RNA gefunden wurden. In den frithen Versionen der miRBase (vor allem Version 1-12)
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Abbildung 7: miRNA Biogenese und Funktion.

Die Abbildung die die Biogenese und die Funktion der Gen Regulation durch miRNAs iibersichtlich darstellt
wurde von  https://upload. wikimedia.org/wikipedia/commons/thumb/a/a7/MiRNA.svg/800px-MiRNA.svg.png
tibernommen.

sind entsprechende, wahrscheinlich fehlerbehaftete, miRNAs zu einem deutlich
geringeren Prozentsatz vertreten. Die miRNAs in diesen frithen Versionen wurden
auflerdem zu einem substanziell hoheren Maf3, mit anderen Techniken die auf

Hybridisierung beruhen (siehe auch Kapitel 3), wie zum Beispiel Northern Blots, validiert.

Aufbauend auf diesen Erkenntnissen wurden in verschiedenen Ansitzen zum einen neue,
sehr spezifische, aber auch sehr sensitive Datenbanken entwickelt. Die spezifischen
Datenbanken zielen darauf ab, die wahrscheinlichsten Kandidaten mit dem hochsten Maf3
an Validitat zu speichern. Das bekannteste Beispiel fiir eine entsprechende Datenbank ist
die miRGeneDB von Fromm und Mitarbeitern [89]. Die sensitiven Datenbanken
beinhalten neben den echt positiven miRNAs noch eine Vielzahl an potenziellen
Kandidaten. Von diesen Kandidaten ist naturgemafd nur ein Bruchteil echt positiv,
dennoch sind natiirlich auch mehr valide Sequenzen enthalten als in den spezifischen
Datenbanken. Entsprechende sensitive Losungen sind noch aus einem anderen Grund
wichtig: Da viele Kandidaten aus der Literatur nicht in Datenbanken abgelegt wurden,
sind etliche doppelt oder dreifach publizierte Kandidaten mit verschiedenen
Bezeichnungen bekannt. Die umfassendste Datenbank mit Sequenzen, die fiir kleine
nicht-kodierende RNAs stehen, ist miRCarta [90].

11



In den vergangenen Jahren wurden mehr und mehr Datensatze verdéffentlicht, die fiir den
Menschen (und andere Organismen) kleine nicht-kodierende RNAs in verschiedenen
Geweben, Zelltypen, Entwicklungsstadien und anderen Bedingungen nachweisen [91-
101]. Ein Internetbasiertes Programm zur Auswertung von entsprechenden Datensatzen
wurde in der AG von Prof Keller entwickelt, miRMaster [102]. Mit miRMaster wurden
bisher 298 Experimente ausgewertet, insgesamt haben dies 27,344 Sequenzier-Proben
enthalten und 345 Milliarden Reads wurden dabei prozessiert (Stand Februar 2018).
Diese Menge an Sequenzier-Daten von kleinen nicht-kodierenden RNAs entspricht
theoretisch der Masse an Nukleinsduren die in 4.200 Humanen Genomen enthalten ist.
Eine Meta-Analyse aller Datensatze hat ergeben, dass 874,123 Regionen liber das Genom
verteilt sind, die mit entsprechenden kurzen Fragmenten angereichert sind [103]. Diese
Regionen mit einer mittleren Lange von 31 Nukleotiden entsprechen ungefahr 0.8% des
Humanen Genoms und enthalten wahrscheinlich den Grof3teil aller existierenden miRNAs

und weiterer regulatorischen Elemente.

In meiner Arbeit ziele ich auf die Entwicklung von Biomarkern zum Einsatz in der
klinischen Diagnostik ab. Daher ist es notwendig sich von Anfang an auf valide Marker,
am besten mit bekannter Funktion, zu konzentrieren. Wie im vorherigen Abschnitt
beschrieben sind es vor allem die miRNAs aus den frithen Versionen der miRBase, die gut
charakterisiert sind, wahrscheinlich am wenigsten Artefakte aufweisen und daher die
geeignetsten Biomarker darstellen. Diese sind auch in Korperfliissigkeiten wie zum
Beispiel Blut haufig vertreten [104] und bilden daher die bestmégliche Grundlage fiir die
Entwicklung von nicht- oder minimal invasiven Markern zur Fritherkennung von

Erkankungen.
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|Kapitel 3

Methoden

In diesem Kapitel gehe ich auf die grundlegenden Methoden ein, die in den verschiedenen
Forschungsprojekten in meiner Doktorarbeit angewendet wurden. Zunachst werden die
experimentellen Techniken, die hauptsdchlich zum Einsatz kommen, beschrieben:
Mikroarrays und Hochdurchsatz-Sequenzierung (HTS). In diesem Abschnitt ist es vor
allem wichtig die konzeptionellen Unterschiede und Einsatzgebiete der Technologien zu
verstehen. Danach werden im zweiten Teil des Kapitels die grundsatzlich verwendeten

Methoden der Biostatistik und Bioinformatik erwahnt.

In den einzelnen Resultatunterkapiteln sind spezielle Techniken, die spezifisch
angewendet wurden, erldutert und es sind sowohl in diesem als auch im Resultatkapitel

weiterfiihrende Quellen mit Detailinformationen zu den jeweiligen Techniken angegeben.

3.1. Technologie

Mikroarrays: Mikroarrays sind iiblicherweise zweidimensionale Triger aus Glas oder Silikon
auf der in hoher Dichte Analyten aufgetragen sind. Zundchst wurden sie zum Messen von
Antikorpern verwendet, die ersten Mikroarrays zu diesem Zweck wurden bereits 1983
vorgestellt [105]. Daneben gibt es viele verschiedene Arten von Mikroarrays, wie zum Beispiel
Proteinarrays, Peptidarrays, Gewebearrays oder DNA Mikroarrays. Bei allen géngigen
Mikroarrays ist der Inhalt, also die Analyten die gemessen werden sollen, vorher fest definiert.
Im Falle von DNA Mikroarrays zum Messen der Genexpression bedeutet das, dass die Gene
die nachgewiesen werden sollen bekannt sein miissen und komplementére Fanger-Sonden zum
Nachweis der Gene miissen auf dem Glas- oder Silikontrdger an fest definierten Positionen
immobilisiert werden. Ublicherweise werden mehrere zehntausend Transkripte gleichzeitig
parallel nachgewiesen. Die Sonden konnen entweder auf der Oberflédche gespottet werden oder
durch ein Synthese-Verfahren ,,in-situ“ aufgebracht werden. Das Mikroarray System, das ich
konzipiert habe beruht auf der zweiten Technik und ist in Kapitel 4.1. im Detail beschrieben.

Das Grundprinzip der Messung ist dann bei allen Methoden vergleichbar. RNA die mit einer
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Markierung versehen wurde

Mikroarray

oder mit einer Markierung auf
dem Mikroarray versehen
werden kann, wird auf den
Array aufgebracht. In einem
normalerweise mehrere
Stunden dauernden Prozess
binden die RNAs, die

nachgewiesen werden sollen,

Abbildung 8: Mikroarray und HTS Flow Cell. an die Finger Sonden, die

Die Abbildung zeigt links schematisch eine Oberfliche eines Mikroarrays vorher immobilisiert wurden.
(der Firma Affymetrix) und rechts eines Trigers (der Firma Illumina) wie . . .
er fiir HTS verwendet wird. Obwohl die Unterschiede auf den ersten Blick Dieser Schritt nennt sich
marginal aussehen, sind die Technologien prinzipiell unterschiedlich. Die Hybridisierung. Nach  der
Abbildung wurde modifiziert von Thomas Shafee iibernommen.

Detektion mit Laser-Scannern

oder CCD Kameras werden
die Signale gemessen. Dabei ist eine der Kernherausforderungen, den dynamischen Bereich
festzulegen. Wenn zu wenig Material gebunden wird, kann keine Intensitdt und kein Signal
gemessen werden. Wenn zu viel eines bestimmten Genes vorhanden ist, ist die entsprechende
Position auf dem Mikroarray gesittigt. Eine typische Auftnahme eines Mikroarrays, hier von
der Firma Affymetrix, ist im linken Teil von Abbildung 8 gezeigt. Je intensiver ein Punkt, der
einem bestimmten Gen entspricht, leuchtet, um so mehr des Genes war in der Ausgangsprobe
vorhanden. Neben den oben beschriebenen technischen Herausforderungen kommen weitere
hinzu, wie zum Beispiel die Vergleichbarkeit zwischen Experimenten die durch geeignete
Normalisierungsmethoden sichergestellt werden muss.

Ein detaillierter Uberblick iiber Mikroarray Technologie fiir verschiedene Analyten wurde 2006
von Barbulovic-Nad et al. publiziert [106]. Ein umfangreicher Ubersichtsartikel zur

bioinformatischen Auswertung von Mikroarrays wurde von Wang veroffentlicht [107].

HTS: Im Vergleich zu Mikroarrays ist es bei der Hochdurchsatz-Sequenzierung (HTS) nicht
notwendig vor Versuchsdurchfithrung festzulegen, welche Gene gemessen werden sollen.
Unabhéngig ob DNA nachgewiesen wird, um Einzelbasenaustausche oder andere genetische
Verdnderungen zu entdecken oder ob die Expression von Genen gemessen werden sollen. Zur
HTS gibt es grundlegend verschiedene Ansitze wie die Sequenzierung durch Hybridisierung,
Sequenzierung durch Ligation, Sequenzierung durch Synthese oder Sequenzierung mittels
Halbleitertechnologie. Die einzelnen Methoden im Detail zu beschreiben liegt nicht im Fokus
dieser Arbeit; eine geeignete Ubersicht wurde von Liu und Mitarbeitern publiziert [108]. In
allen Fillen werden Methoden verwendet um parallel eine Vielzahl von Nukleinsdure-Ketten

zu messen. Im Falle der am héufigsten verwendeten Technologie, der Sequenzierung durch
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Synthese wie sie von der Firma Solexa entwickelt wurde und von Illumina seit mehr als einem

Jahrzehnt eingesetzt wird, werden auf einem Glastrager gebundene Molekiile, die sequenziert

werden sollen, schrittweise von Einzelstrdngen in Doppelstringe umgewandelt.

Adapter oligos

5°- AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT -3

5°- TCTTCTACAGTCANNNNNNNNNNNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCAC -3°

Adapter Anealing

5°- AATGATACG
GCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT -3’

A

37- (ACTGACCTCAAGTCTGCACAC AGAAGGCTA TGACATCTTCT -5

Adapter sysnthesis

AATGATACGGCGACCACC
G
AGATCTACACTCTTTCCCTACACGAC GCTCTTCCGATC TinnnnnNNNNNTGACTGTAGAAGA. -3°

FECEEEEECEECEEEEEE P e

3’ CACTGAccTCAAGTCTGCACACGAGAAGGCTAGANNNNNNNNNNNNACTGACATCTTCT -5

Adapter dT-tailing

AATGATACGGCGACCAC
CG,
AGATCTMCACTCTTTCCCTACACGﬂCGCTCTTCCGATCTnnnnnnnnnnnnTGAC#hTAGAAGA -3’

FECCEEEEEEECEEEEEEEEEEEETE e

3’- CACTGACCTCAAGTCTGCAO\C AGAAGGCT. TG ACATCTTCT -5°

Adapter and template ligation

5’- AATGATACGGCG,
ACCAC
CGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTnnnnnnnnnnnnTGACT -3’7

I|[IIIIIIIIIIIH|III\\III[III +

3’- CACTGACCTCAAGTCTGCACAC AGAA .

Final libraries with illumina and duplex adapters

5° - AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTnnnnnnnnnnnnTGACT

II||IIII|III|IIII||IIIIIIII|IIIIIIIII|IIIIIIIIIIIIIIIIIIIIIIHHIIIIIIIIII

3’- TTACTATGCCGCTGGTGGCTCTAGATGTGAGAAAGGGATGTGCTGCGAGAAGGCT)

GTCAMMMMMMMMMMMMAGATCGGAAGAGCACACGTCTGAACTCCAGTCACXXXXXXATCTCGTATGCCGTCTTCTGCTTG -3

PEELCEEEEEEEEEEEE R e e e e e e e

TCAGTmmmmmmmmmmmmTCTAGCCTTCTCGTGTGCAGACTTGAGGTCAGTGXXXXXXTAGAGCATACGGCAGAAGACGAAC -5°

5°- CAAGCAGAAGACGGCATACGAGATXXXXXXGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTANNNNNNANNNNTGACT
||||||||||||||||||l||||||||||||HH|||||||||||H\||||||||||||[||||||||||||||||||
3°- GTTCGTCTTCTGCCGTATGCTCTAXXXXXXCACTGACCTCAAGTCTGCACACGAGAA
GTCAMMMMMMMMMMMMTCTAGCCTTCTCGCAGCACATCCCTTTCTCACATCTAGAGCCACCAGCGGCATAGTAA -3

|||||\\H\\\H\\\IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII]IIIIIII

TCAGTmmmmmmmmmmmmAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGTATCATT -57

Abbildung 9: Schema des Herstellens der Sequenzier Bibliothek.

Die Abbildung zeigt schematisch, wie eine Sequenzier-Bibliothek fiir das
besonders genaue Duplex-Sequenzier-Verfahren hergestellt wird. In
Wirklichkeit besteht das experimentelle Protokoll von der Probe bis hin zur
Ausgabedatei (fasta) aus mehreren Dutzend Schritten. Die Abbildung ist von
https://upload. wikimedia.org/wikipedia/commons/2/23/Duplex_sequencing
_library _preparation_procedure.svg entnommen.

schritten. Eine weitere Herausforderung von HTS
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Datenauswertung. Wie schon in Abbildung 2 in der Einleitung dargestellt sind HTS Datensitze
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in der Regel drei bis vier GroBenordnungen umfangreicher als entsprechende Mikroarray
Datensitze. Zur Analyse der Datensitze, die mehrere Giga- bzw. je nach Ausmal der Studie
etliche terabyte Daten umfassen, wurden sehr viele verschiedene Auswerte-Pipelines
verdffentlicht [109-117]. Diese haben jedoch teilweise sehr unterschiedliche Resultate gezeigt,
selbst wenn die selben Eingabedaten verwendet wurden. Die Heterogenitit und Variabilitéit
dieser Bioinformatik Analyse Pipelines hat die Gesellschaft fiir Pathologie der USA und die
Gesellschaft fiir Medizininformatik in den USA veranlasst, einen ,,Best Practice Guide* fir

entsprechende Software Tools zu veroffentlichen [118].

Ein Vergleich von Mikroarrays und HTS, der weit iiber die Hintergrundinformation in diesem
Abschnitt hinaus geht, speziell im Umfeld Mikrobiologie, wurde von Roh et al. publiziert [119].
Fiir die in dieser Arbeit zentralen miRNAs haben Willenbrock und Mitarbeiter die beiden
Methoden verglichen [120]. Neben diesen Reviews hat Mestdagh speziell fiir die Analyse von
miRNAs 13 verschiedene Methoden systematisch evaluiert, darunter auch Mikroarrays und
HTS [121]. Diese Arbeit bietet den momentan vollstindigsten Uberblick iiber verfiigbare

Methoden und Techniken zur Quantifizierung von miRNAs.

3.2. Bioinformatik und Biostatistik

In diesem Abschnitt stelle ich kurz grundlegende statistische Methoden vor. Diese dienen
dazu einen Uberblick zu geben und ersetzen keinesfalls Fachliteratur. Fiir detaillierte
Beschreibungen so wie Formeln zu den verwendeten Tests habe ich mich am Fachbuch
,Probability and Statistics“ von DeGroot und Schervish aus dem Adison Wesley Verlag
orientiert. Alle statistischen Analysen sind in der frei verfiigbaren R Entwicklungs-

umgebung durchgefiihrt worden.

Test auf Normalverteilung: In meiner Doktorarbeit wurden in mehreren Teilprojekten
Daten erhoben die statistisch ausgewertet werden miissen. Oft sind es paarweise
Gruppenvergleiche die zum Einsatz kommen, um beispielsweise die Hypothese zu testen,
dass die Mittelwerte zweier Gruppen unterschiedlich sind. Ein Test der in der Biologie
und Medizin oft zum Einsatz kommt, ist der im ndchsten Absatz beschriebene T-test [122-
126]. Dieser parametische Test wird allerdings oft falsch angewendet [127]. Eine der
grundlegenden Annahmen ist, dass die Ausgangsdaten normalverteilt sind. Daher ist es
zunachst notwendig einen Test auf Normalverteilung durchzufiihren. Um beispielsweise
bei Genexpressionsdaten auf Normalverteilung zu testen, existieren verschiedene
Moglichkeiten [128]. Wir haben in der Regel den Shapiro-Wilk Test angewendet, der die

Hypothese tberpriift, dass die zugrunde liegende Grundgesamtheit einer Stichprobe
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normalverteilt ist. Wenn der Test auf Normalverteilung positiv war wurde der T-Test
angewendet, ansonsten wurde der nicht-parametrische Mann-Whitney-U Test
angewendet, der ebenfalls unten beschrieben ist. Es wurde die Implementierung des
Tests in R im ,Stats“ Paket verwendet (Funktion shapiro.test).

T-Test: Als grundlegender Test auf Unterschiede im Mittelwert von zwei Gruppen wurde
der t-Test eingesetzt, der haufig in biomedizinischen Fragestellungen angewendet wird
[122-126]. Wenn nicht explizit erwahnt, wurde der T-test als zweiseitiger ungepaarter
Test durchgefiihrt, unter der Annahme, dass die Standardabweichung beider Gruppen
identisch ist. Bei ungleicher Varianz kann der Welch-Test als Alternative verwendet
werden. Die Nullhypothese des t-Tests ist, dass die Mittelwerte der beiden zu testenden
Grundgesamtheiten identisch sind. Die Alternativ Hypothese ist, dass die Mittelwerte der
beiden Grundgesamtheiten voneinander abweichen. Es wurde die Implementierung des

Tests in R im ,Stats“ Paket verwendet (Funktion t.test).

Mann-Whitney-U-Test: Der Mann-Whitney-U-Test (Wilcoxon Rangsummen-Test,
Wilcoxon-Mann-Whitney Test WMW) testet fiir unabhdngige Stichproben, ob zwei
Verteilungen tlibereinstimmen, also ob die beiden zugrundeliegenden Verteilungen zu
derselben Grundgesamtheit gehoren. Der Mann-Whitney-U-Test wird dann verwendet,
wenn die Voraussetzungen flr einen t-Test fiir unabhangige Stichproben nicht erfiillt
sind. Er wird ebenfalls gangig in der Biostatistik eingesetzt [129]. Im Fall von Daten mit
vielen ,Ties“ wurde die am Lehrstuhl von Prof. Keller entwickelte exakte Losung des
WMW Tests angewendet, die auf dynamischer Programmierung beruht [130]. Wenn nicht
explizit erwdhnt, wurde als Standard ein zweiseitiger WMW Test fiir nicht gepaarte
Analysen verwendet. Es wurde die Implementierung des Tests in R im ,Stats“ Paket

verwendet (Funktion wilcox.test).

Adjustieren fiir Multiples-Testen: P-Werte aus den oben genannten Tests basieren auf
der Annahme, dass eine Hypothese getestet wurde. Der p-Wert ist dabei eine
Wahrscheinlichkeit, die zwischen 0% und 100% (respektive zwischen 0 und 1) liegen
kann. Der p-Wert gibt dabei an, wie wahrscheinlich es ist, ein Stichprobenergebnis wie
das vorliegende oder ein noch extremeres Stichprobenereignis zu erhalten, wenn die
Nullhypothese wahr ist. Im Falle von Hochdurchsatz-Methoden wird allerdings prinzipiell
eine wesentlich hohere Zahl an Hypothesen getestet, flir jedes Gen / Protein / miRNA eine
eigene. In diesem Fall ist die Wahrscheinlichkeit, dass ein mdéglicher, aber tatsachlich
nicht vorhandener Unterschied erkannt wird hoher. Diese Fehler werden als Fehler 1. Art
bezeichnet. Je mehr Hypothesen getestet werden, desto geringer wird gleichzeitig die
Wahrscheinlichkeit, dass ein tatsdchlicher vorhandener Unterschied erkannt wird, es

entstehen Fehler 2. Art. Um Multiples-Testen zu korrigieren, konnen verschiedene
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Ansatze gewahlt werden. Der wohl einfachste ist die Bonferroni Korrektur. Dabei wird
entweder das Alpha Fehlerniveau auf (0,05 / Anzahl an Tests) herabgesetzt oder
alternativ die erhaltenen p-Werte mit der Anzahl an Tests multipliziert. Im zweiten Fall
werden adjustierte p-Werte grofier als eins auf eins gesetzt. Wenn nicht explizit erwahnt,
sind p-Werte in meiner Arbeit fiir Multiples-Testen korrigiert. Allerdings wurde nicht die
Bonferroni Korrektur verwendet, sondern der Ansatz zum Kontrollieren der False
Discovery Rate (FDR) von Benjamini und Hochberg. Es wurde die Implementierung des
Tests in R im ,Stats“ Paket verwendet (Funktion p.adjust).

AUC / ROC Analyse: Eine weitere Analyse die oft zur Analyse der Qualitit von
Biomarkern verwendet wird (zum Beispiel in [131-136]) ist die Interpretation der
Receiver-Operating-Characteristic-Kurve (ROC Kurve). In einem Diagramm wird die
Sensitivitat (Richtig-Positiv-Rate) als Ordinate und die Falsch-Positiv-Rate als Abszisse
aufgetragen. Das Glitemaf? ist dann die Flache unter der ROC-Kurve, die Area Under Curve
(AUC). Der Wert der AUC kann wischen 0 und 1 liegen. Es ist wichtig hervorzuheben, dass
0,5 der schlechteste mogliche Wert ist, da dieser zu einer ROC Kurve nahe der Diagonale
und daher nahe des erwarteten Ergebnisses eines Zufallsprozesses liegt. Die
normalerweise als optimal beschriebene Kurve hat eine Flache grofier 0,5 und moglichst
nahe an 1. Eine Kurve mit einer Fliche kleiner 0,5 und nahe an 0 ist vom
Informationsgehalt her allerdings genauso gut. Ein Beispiel ist die Hoch- und
Runterregulation von Genen. Ein perfekt hochreguliertes Gen hat eine AUC von 1, ein
perfekt runterreguliertes Gen einen AUC Wert von 0. Interessant ist ebenfalls, dass sich
der p-Wert des WMW Tests aus dem AUC Wert ableiten ldsst. In meiner Arbeit wurde die
AUC nicht nur verwendet, um die Giite von einzelnen miRNAs abzuschitzen, sondern
auch, um die Performance von maschinellen Lernverfahren, speziell von den weiter unten
beschriebenen Support Vector Machines, zu evaluieren. Es wurde die Implementierung
der ROC Analyse in R im ,ROC“ Paket verwendet (Funktion AUC).

Varianzanalyse: Wenn mehr als nur zwei Gruppen miteinander verglichen werden, zum
Beispiel Multiple Sklerose, Alzheimer, Parkinson und Kontroll-Probanden, kann eine
Varianzanalyse (Analysis of Variance, ANOVA) angewendet werden. Auch die ANOVA
wird seit mehreren Jahrzehnten in der Biostatistik zur Beurteilung von Biomarkern
verwendet [137]. Generell ist die Varianzanalyse eine allgemeine Methode zur
statistischen Bewertung von Unterschieden in Mittelwerten zwischen mehr als zwei
Gruppen. In der einfachsten Form kann die ANOVA als Generalisierung des t-Tests
angesehen werden. Es gelten die drei Grundannahmen, dass die Stichproben unabhéngig
sind, alle Stichproben sind normalverteilt und es herrscht Varianzhomogenitat. Die
Nullhypothese lautet, dass kein Unterschied zwischen den Mittelwerten der zu testenden

Gruppen vorliegt, die Alternativhypothese besagt dementsprechend, dass zwischen
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mindestens zwei Mittelwerten ein Unterschied besteht. In meiner Arbeit wurden one-

way ANOVA in R im ,stats“ Paket verwendet (Funktion aov).

Hierarchisches Clustern: Clusteranalysen werden eingesetzt, um Strukturen in
Datensatzen zu erkennen. Eines der gangigsten Cluster Verfahren, das in der
biomedizinischen Forschung eingesetzt wird und sich seit etlichen Jahrzehnten bewahrt
hat, ist hierarchisches Clustern [138-143]. Im Grunde bezeichnet hierarchisches Clustern
eine Klasse von Verfahren die distanz- oder ahnlichkeitsbasiert sind. In meiner Arbeit
habe ich hauptsachlich hierarchische Cluster Methoden, basierend auf der Euklidischen
Distanz verwendet. Der verwendete Ansatz entspricht einem Bottom-Up Clustern. Jedes
Objekt (als zu clusternde Objekte werden sowohl Gene / miRNAs als auch Probanden
verwendet) bildet initial einen eigenen Cluster und dhnlichste Cluster werden in jedem
Schritt iterativ zusammengefiigt. Um die Ahnlichkeit zwischen zwei Clustern zu
definieren wurde ,complete linkage“ Clustering verwendet. Als grafische Ausgabe des
Prozesses werden sogenannte Dendrogramme generiert. Sie verbinden in einer
baumartigen Struktur die jeweils dhnlichsten Objekte. Je ndher an der Wurzel des Baumes
zwei Objekte zusammenkommen, um so undhnlicher sind sie. Umgekehrt, je ndher an den
Blattern Objekte zusammentreffen, um so dhnlicher sind sie. Als weitere grafische
Darstellung werden Heat Maps generiert. Heat Maps sind Matrizen, die beispielsweise fiir
jedes gemessene Gen oder jede gemessene miRNA eine eigene Zeile besitzen und fiir jeden
Probanden eine eigene Spalte. Oft werden Dendrogramme fiir Patienten und Gene
zusammen mit der Heat Map gezeigt. Durch das Clustering versucht man, Strukturen zu
finden, die bei einer bestimmten Gruppe der Probanden (zum Beispiel den Patienten)
anders sind als bei einer anderen Gruppe (zum Beispiel Kontrollen). Wenn nicht explizit
erwahnt, wurde ,unsupervised“ Clustering verwendet. Die Strukturen wurden gefunden,
ohne dass man die Information verwendet hat welches Individuum zu den Patienten oder
den Kontrollen gehorte. Um komplexe Signaturen grafisch darzustellen wurde
»supervised“ Clustering verwendet. Dies ist in jedem Fall explizit erwdhnt und dient wie
beschrieben nur der grafischen Darstellung von Signaturen in meiner Arbeit. Um die
Profile zu clustern habe ich in R das ,stats“ Paket verwendet (Funktion hclust). Um die
grafische Darstellung als Heat Map zu erzeugen wurde die heatmap.2 Funktion

verwendet.

Klassifikation: Um Patienten und Kontrollen basierend auf miRNA Mustern zu
unterscheiden wurden zusatzlich ,supervised“ Klassifikations Verfahren eingesetzt. In
diesem Zusammenhang ist es wichtig zwei Komponenten zu erwdhnen: ,feature
selection” und , cross validation“. Mit Methoden des maschinellen Lernens wird versucht,
Objekte basierend auf Eigenschaften in Klassen zuzuordnen. Wir haben uns mit einem

vergleichsweise einfachen Fall beschaftigt, dem Aufteilen von Probanden in zwei Klassen,
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basierend auf miRNA Mustern. Klassifikatoren haben zundchst basierend auf einem
Datensatz Muster gelernt. Anschlieflend wurden andere Profile in den trainierten
Klassifikator gegeben um fiir diese vorherzusagen zu welcher Klasse sie gehoren. Da ich
keinen eigenen Trainings- und Testdatensatz zur Verfiigung hatte, habe ich sogenanntes
,<re-sampling“, genaugenommen Kreuzvalidierung (,,cross validation®), verwendet. Dabei
wird der gesamte Datensatz zufillig in k gleichgrofie disjunkte Mengen aufgeteilt (k
wurde auf 10 gesetzt). K-1 Teile des Datensatzes wurden verwendet, um den Klassifikator
zu trainieren und um den k-ten Teil, der nicht verwendet wurde, vorherzusagen. Jeder
Proband wurde folglich in neun Trainings Sets verwendet und einmal selbst klassifiziert.
Da der Prozess stochastisch ist und eine Zufallskomponente birgt, wurde das Verfahren
fir jede Klassifikation mindestens zehnmal wiederholt. Zusatzlich war es fiir den
Klassifikator wichtig, die Parameter (hier die miRNAs) zu erkennen, die den
grofdtmoglichen Nutzen haben und die beste Trennung erlauben. Dazu wurde eine
,stepwise-forward“ Filter Subset Selektion angewendet. In jedem Schritt wurden
innerhalb der Kreuzvalidierung die miRNAs gewahlt, die die hochste Signifikanz auf dem
momentanen Trainings-Set hatten. Beginnend mit zwei miRNAs wurde die Anzahl
schrittweise erhoht und bis zu 250 miRNAs in die Klassifikation eingeschlossen. Um fiir
potenzielles ,overfitting“ zu testen wurden nicht-parametrische Permutationstests
durchgefiihrt. Als Klassifikatoren wurden verschiedene Standard Lernverfahren getestet.
Die besten Ergebnisse wurden generell mit Support Vector Machines mit Radialer Basis
Funktion als Kernel erzielt. Die Methodik der Klassifikation ist in der Alzheimer miRNA
Publikation ausgefiihrt [57] und ein exzellenter Hintergrund tber die verwendeten
Verfahren des maschinellen Lernens findet sich im Buch "The Elements of Statistical
Learning: Data Mining, Inference, and Prediction" von Trevor Hastie, Robert Tibshirani

und Jerome Friedman.
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|Kapitel 4

Resultate: Von der Plattform zum Biomarker

In diesem Kapitel stelle ich die wesentlichen wissenschaftlichen Ergebnisse meiner Arbeit
vor. Wie in der Einleitung skizziert befasse ich mich im ersten Teil mit der Entwicklung
von Plattformen und Assays, die es uns erlauben Nukleinsduren in hohem Durchsatz,
parallel und sehr exakt zu messen (Kapitel 4.1). Ebenfalls im Kapitel iiber technologische

Plattform ———— Assays ——— Biomarker ———

——— -

Genio
(Kapitel 4.1.1)

" MPEA |
(Kapitel 4.1.2)
| Stabilitat

(Kapitel 4.2.1)

Hochdurchsatz und
Grundlagenforschung

.....

surface

Lungenmarker
Kapitel 4.2.2)

Zeit

Immunoassay %".-\
(Kapitel 4.1.3) ~
Marker flr das ZNS

PoC klinische (Kapitel 4.2.3)

Anwendung

v
Abbildung 10: Ubersicht iiber die Forschung.

Die Entwicklungen, die in dieser Arbeit beschrieben werden sind in obiger Abbildung iibersichtlich dargestellt.
Die technischen und Assay-Entwicklungen in Kapitel 4.1 sind in orange dargestellt, die Biomarker Entwicklung
in griin. Auf der Assay Seite ist die Entwicklung vom grundlagenwissenschaftlichen Hochdurchsatz-Gerqdt bis hin
zur patientennahen (Point-of-Care PoC) Testung fortgeschritten.
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und Assay Entwicklung beschreibe ich meinen Ansatz molekulare Biomarker Signaturen
mit Standard-Methodik, die in zehntausenden Krankenhidusern vorhanden ist, in der
Routine zu messen. Obwohl die Techniken, die beschrieben werden, fiir alle Arten von
Nukleinsdauren geeignet sind, habe ich in meiner Arbeit einen starken Fokus auf kleine
nicht-kodierende RNAs, miRNAs gesetzt (siehe auch Kapitel 2). Daher skizziere ich im 2.
Teil der Resultate, wie die verschiedenen Plattformen eingesetzt werden, um miRNA
Biomarker zu finden (Kapitel 4.2). Danach befasse ich mich mit Eigenschaften von
miRNAs, die liber die rein deskriptive Korrelation der Biomarker mit Erkrankungen
hinausgehen (Kapitel 4.3). Im letzten Abschnitt gehe ich noch auf Aspekte und
Anwendungen in der Synthetischen Biologie ein (Kapitel 4.4). Die einzelnen Unterkapitel
in der Abhangigkeit zueinander und in ihrer zeitlichen Entwicklung sind in Abbildung 10

zusammengefasst.

In den einzelnen Kapiteln verweise ich jeweils kurz auf Publikationen und Patente zu den
jeweiligen Themen. Wie in der Einleitung beschrieben ist komplexe und interdisziplinadre
Forschung nicht ohne entsprechend interdisziplindare Kooperationspartner mdéglich. Die
Beitrage der einzelnen Partner, die ich sehr zu schiatzen weif3, sind in den entsprechenden
Originalarbeiten gekennzeichnet.

4.1. Technsiche Plattformen und Assays

4.1.1. Das Geniom

Ein Nachteil der frithen Mikroarray Technologie, Ende der 1990 Jahre, war die geringe
Flexibilitat. Bevor ich die Idee zu einem flexiblen Mikroarray System hatte, hatten andere
Firmen wie Affymetrix bereits kommerzielle Mikroarray Produkte auf dem Markt.
Allerdings war der Inhalt der Arrays von den Firmen vorgegeben und ,custom” Produkte
mit eigenem Inhalt waren teuer und haben mehrere Wochen bis Monate in der
Herstellung benotigt. Mein Ziel war und ist es, Forschern eine héhere Flexibilitat zu
ermoglichen. Diese Flexibilitat sollte es nicht nur erlauben eigene Gen Expressionsarrays
iber Nacht im eigenen Labor herzustellen, sondern auch viel weitreichendere
Anwendungen zu ermoglichen. Beispiele dafiir sind sogenanntes targeted Next-
Generation-Sequencing, wie es heute in der Rutine Diagnostik eingesetzt wird. Dabei wird
ein Set von Genen definiert, die auf einem Mikroarray oder in Losung angereichert
werden, sodass gerade die Fraktion der interessanten Gene sequenziert und ausgewertet
werden kann.
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Eine andere Anwendung, die in Kapitel 4.4. beschrieben wird, ist die Synthetische
Biologie. Forschern sollte es ohne Weiteres moglich sein, moglichst fehlerfreie
Oligonukleotide herzustellen. Die Herausforderungen an eine entsprechende Technologie
waren dementsprechend grof3. Standard Technologie zu verwenden, das Spotten von
Mikroarrays oder aufwendige photolithografische Verfahren, wie es zum Beispiel von
Affymetrix eingesetzt wurde, war entsprechend nicht moglich.

Die Losung, die ich konzipiert habe basiert anstatt dessen auf einer in-situ Oligonukleotid
Synthese die durch Licht aktiviert wird. In ein Glas-Silikon-Glas Sandwich werden dabei
zundchst bis zu acht Kandle - fiir maximal acht parallele Experimente - gedtzt. Unter
Verwendung von Standard-Synthese Chemikalien (Proligo) und 3’ Phosporamidite mit
einem photolabilen 5’ Schutz wird parallel in allen Kandlen eine Synthese von
vordefinierten Oligonukleotiden durchgefiihrt. Erwdhnenswert ist, dass die Oberflache
durch einen sogenannten Spacer zugdnglich gemacht werden muss. Dieser Set-up
ermoglicht es, die Synthesezeit unabhangig von der Anzahl von Sonden zu machen. Jedoch
wichst die Synthesezeit linear mit der Linge der Oligonukleotide an. Uber Nacht ist es so
moglich, fast 100,000 verschieden 25- bis 50-mere auf einem Mikroarray herzustellen.

Diese konnen entweder identisch oder vollig unterschiedlich sein.
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Transkription durchgefiihrt. In der Losung waren nicht markierte ATP, CTP, GTP und UTP
sowie Biotin markierte CTP und UTP Molekiile.

Im Folgenden werden die eigens hergestellten Mikroarrays mit der so vorbereiteten
Probe hybridisiert. Entscheidend ist, dass sowohl die Herstellung der Mikroarrays als
auch die Hybridisierung der Probe im selben Gerat erfolgen. Die Mikroarrays werden
dabei mit 15 Mikrogramm fragmentierter cRNA in 20 Mikroliter Losung hybridisiert. Die
Inkubationszeit betrdagt dabei 16 Stunden bei konstant 45 Grad Celsius. Nach 20-
miniitigem Waschen mit Pufferlésung wird fiir 15 Minuten ein Streptavidin Fluoreszenz-
farbstoff hinzugegeben. Die Signale werden mit einer CCD Kamera ausgelesen und mittels
Bildverarbeitung quantifiziert. Als Signalintensitdt kann entweder die absolute Menge
verwendet werden oder das Verhaltnis von ,perfect Match“ zu ,miss Match“ Sonden, also

Sonden, in die gezielt Veranderungen eingebaut wurden.

In einer ersten Studie konnte gezeigt werden, dass die Mikroarray Technologie, die ich
mafdgeblich entwickelt habe, sowohl sensitiv als auch reproduzierbar ist, einen
hinreichend grofen dynamischen Bereich (Dynamik Range) bietet und sich mit anderen
Methoden gut vergleichen lasst. Spike In Experimente in Konzentrationsreihen beginnend
bei 23 pikomolarer Losung bis zu 100 nanomolarer Konzentration haben gezeigt, dass die
gemessene Intensitit mit der tatsdchlichen Konzentration linear Kkorreliert. Der
dynamische Bereich war dabei drei Gréfienordnungen. Neben den Untersuchungen iiber
die Sensitivitdit und den dynamischen Bereich zeigt der Mikroarray auch eine hohe
technische Reproduzierbarkeit: der mittlere Korrelationskoeffizient bei wiederholten
Messungen liegt bei 0.99 und der Variationskoeffizient liebt bei 9%. Selbst im Vergleich
zu Affymetrix Mikroarrays wurden noch Korrelationswerte tiber 0.9 erreicht. Die hohe

Reproduzierbarkeit und der geringe Variationskoeffizient sind in Abbildung 11 gezeigt.

Die Geniom Technologie ist in allen Kennzahlen gleichwertig zu anderen Array
Technologien, sowohl von Affymetrix als auch von Agilent oder Illumina. Zur Messung von
Genexpressionsmustern wird heute neben Mikroarrays auch HTS eingesetzt. Die HTS
Methode bietet den Vorteil, dass Gene nicht nur quantifiziert werden kénnen, sondern
auch, dass verschiedene Splice Formen und Mutationen in Genen gefunden werden
kénnen. Daher wurde in den vergangenen Jahren zunehmend auf die HTS Technologie
gesetzt und flir das klassische Gen Expression Profilierung haben Mikroarrays an
Bedeutung verloren. Exzellente Ubersichtsartikel und direkte Vergleiche iiber die beiden
teilweise konkurrierenden, teilweise aber auch komplementaren Technologien wurden

von Su und Mitarbeitern sowie Zhao und Mitarbeitern publiziert [144, 145].
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Die Geniom Technologie, die ich in diesem Abschnitt beschrieben habe, ist aber keinesfalls
tiberfliissig, sondern wurde fiir drei Anwendungen weiterentwickelt. Ich habe die
Technologie verwendet, um kleine nicht-kodierende RNAs zu untersuchen. Im Gegensatz
zu Genexpression ist es hier wesentlich weniger wichtig, Mutationen zu finden. Bei den
im Mittel gerade 22 Basen langen RNAs, die nicht fiir Proteine kodieren, existieren
auflerdem keine Splicevarianten. Dafiir ist eine genaue Quantifizierung, wie sie durch
Mikroarrays ermdglicht wird, fiir die Diagnostik notwendig. Die entsprechenden Arbeiten
werden im Kapitel 4.2.1. beschrieben und Ergebnisse in Kapitel 4.2.2. vorgestellt. Neben
der Anwendung im Umfeld nicht-kodierender RNAs hat die Geniom Technologie eine
weitere Anwendung gefunden. Sie wird eingesetzt, um fehlerfreie Oligonukleotide schnell
zu synthetisieren, vom Glastrager abzulésen und in der Synthetischen Biologie
anzuwenden (Kapitel 4.4). Diese Anwendungsvariante hat der Genomik-Pionier Graig
Venter exklusiv fiir seine Firma SGI erworben. Zusatzlich wurde die entsprechende
Technologie verwendet, um Anreicherung fiir Gen Panels und anschlief3ende
Sequenzierung zu ermdoglichen [48]. Diese Methode, die heute in der genetischen Rutine-
Diagnostik eingesetzt wird und auf die ich in der Auswertung nicht weiter eingehe, nennt
sich targeted Next-Generation Sequencing. Es ist ebenfalls erwdhnenswert, dass die
Technologie nicht nur von mir und Kooperationen eingesetzt wurde, sondern auch von

anderen Forschern weltweit verwendet wird. [146-151].
Publikationen: Die Arbeiten, die in diesem Abschnitt beschrieben werden basieren

hauptsdichlich auf den folgenden Publikationen [39, 41]. Aufierdem wurde die
Technologie patentiert (DE-19940750.9-52).
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4.1.2. Microfuidic Primer Extension fir miRNAs

Im vorangegangenen Abschnitt haben ich das Konzept eines sehr flexiblen Mikroarray
Systems beschrieben, dass iliber Nacht eigene Mikroarrays mit neuem Inhalt
kostengiinstig herstellen kann. Insbesondere fiir die Quantifizierung von RNAs und hier
wiederum von kleinen RNA Stiicken ist die Technologie besonders geeignet.
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Abbildung 12: Die Entwicklung der miRBase.

Gezeigt sind die 21 miRBase Versionen die bisher verdffentlicht wurden und die Anzahl von humanen miRNA
Precursor in der miRBase. Die Entwicklungs-Zyklen am Anfang der Datenbank waren oft deutlich weniger als ein
Jahr. Die Abbildung oben ist mit Hilfe der miRCarta Datenbank erstellt worden.

Fiir miRNAs ist das schnelle Updaten der miRBase [79, 80] (siehe auch Kapitel 2), vor
allem in den Anfangen ein Problem: Wahrend grof3e Hersteller von Mikroarrays mehrere
Wochen bis Monate brauchen um einen entsprechend neuen Mirkroarray anzubieten,
kann das Geniom diesen iiber Nacht herstellen. Die Update Zyklen der 21 Versionen

waren oft aber deutlich geringer als ein Jahr (Abbildung 12).

Eine Herausforderung bei der Quantifizierung von miRNAs ist die Sequenz Homogenitat
- besonders am 3’ Ende von miRNAs innerhalb von miRNA Familien. Eines der
grundlegensten Beispiele ist die let-7 Familie. Einige Mitglieder der Familie sind in
Abbildung 12 als Multiples Sequenz Alignement gezeigt. Nur an drei Basen kénnen
Unterschiede festgestellt werden. Ein hdufig auftretendes Problem ist daher die

Kreuzhybridisierung: let-7a miRNAs hybridisieren in konventionellen Assays oft mit let-

7b Fanger Sonden.
let7-a-5p UGAGGUAGUAGGUUGUAUAGUU | .\ o0 oo
let7-b-5p UGAGGUAGUAGGUUGUGUGGUU | o _g
let7-c-5p UGAGGUAGUAGGUUGUAUGGUU | ist neben der Spezifitat fur die
let7-f-5p UGAGGUAGUAGAUUGUAUAGUU | Familienmitglieder auch eine
Abbildung 13: Ausgewdhlte Beispiele der let-7 Familie beim Menschen. hinreichende analytische

Sensitivitat:  Geringe  RNA

Die Basen, die sich unterscheiden sind in fett hervorgehoben. Die
Grafik ist in Anlehnung an Abbildung 24 aus Kappel et al. entstanden. Mengen (Wenige Nanogramm)
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sollen mit moglichst wenig Prdprozessierung und insbesondere ohne Amplifikation

akkurat gemessen werden.

Das Prinzip des MPEA Assays ist die

.. . . e M Standard
Fanger-Sonde die auf dem Mikroarray 254 Hybridization
254 £ MPEA

synthetisiert wird um einige Basen zu
verliangern. So entsteht ein Uberhang, die
zu messende miRNA ist kiirzer als die
synthetisierte Sonde auf dem Mikroarray.

DNA Polymerase kann dann verwendet

werden, um mit Biotin markierte Basen

Mean Level of Cross Hybridization (in %)

&
&
\’B\

8 B

einzubauen, die die Quantifizierung ohne s

) [ ] (4 © - 72)

vorherige Markierung der miRNAS Abbildung 14: Kreuzhybridisierung im MPEA Assay.

erlauben. Verschiedene Parameter MPEA im Vergleich zu Standard Mikroarray Assays fiir die

missen getestet werden, um die let-7 Familie. Fiir den MPEA Assay wird eine signifikant
. . niedrigere Kreuzhybridisierung und damit signifikant
optimalen Assay Bedingungen zu jge Spezifitit, vor allem am 3° Ende, erzielt. Die

definieren. Das beinhaltet die Abbildung entstammt aus Vorwerk et al.
Syntheserichtung (3’->5’ oder 5’->3"), die

Base die fiir die Verldngerung verwendet wird (bio-dATP, bio-dCTP, bio-dGTP oder bio-
dUT) und die Anzahl der Nukleotide, um die die Fanger-Sonde verldangert wird.

Diese Parameter sind systematisch ausgetestet worden. Die besten Resultate werden mit
bio-dATP erzielt. Dabei ist es entscheidend, dass die Synthese in Richtung von 3’ nach 5’
durchgefiihrt wird, das 3’ Ende muss auf dem Array immobilisiert werden. Diese
Syntheserichtung ist wichtig um die Spezifitit am 3’ Ende der miRNA zu erhdhen. Als
letzter Parameter ist die Anzahl der Nukleotide getestet worden, die ein optimales Signal
ergaben. Generell gilt, dass je mehr markierte Nukleotide eingebaut werden, um so
sensitiver die Messmethode wird. Ab einer bestimmten Anzahl tritt aber eine steirische
Hinderung ein. Getestet wurden alle Moglichkeiten von einer bis zu zwolf Nukleotiden.
Die besten Resultate werden bei 5 Nukelotiden erzielt. Danach tritt der beschriebene
Effekt der steirischen Hinderung auf. Der hier beschriebene Assay liefert reproduzierbare
und spezifische Ergebnisse bis hin zu 50 Nanogramm totale RNA als Eingangsmaterial.

Sogar bis zu 20 Nanogramm konnten noch verwertbare Ergebnisse erzielt werden.

Der MPEA Assay bietet in Kombination mit der Geniom Technologie eine sehr gute
Moglichkeit, flexibel miRNAs, immer aus der jeweils neuesten Version der miRBase, zu
messen. Besonders positiv neben der schnellen Durchfiihrung von Experimenten sind die
hohe Spezifitat und die analytische Sensitivitat. Daher bildet der MPEA Assay die Basis fiir

den Grofdteil der Arbeiten, die im Kapitel 4.2. beschrieben sind. In den vergangenen drei
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Jahren hat sich die miRBase kaum weiterentwickelt, das letzte Update datiert aus dem
Juni 2014. Dadurch ist ein Vorteil der Geniom Technologie fiir miRNAs entfallen.
Zusatzlich ist eine eigene Plattform fiir die Experimente die von vielen Technologien -
anderen Mikroarrays, HTS, oder RT-qPCR - durchgefiihrt werden koénnen nicht
wirtschaftlich und die Geniom Technologie, die kommerziell nicht mehr verfiligbar ist,
wird nicht weiterverwendet.

Daher werden momentan hauptsachlich die Agilent Micro-Array Technologie und cPAS
basierte Sequenzierung (Kapitel 4.1.4) eingesetzt um miRNA Profile zu generieren. Neben
solchen dezentralen Plattformen gibt es momentan den generellen Trend in der Medizin,
Messungen mindestens im Zentrallabor von Krankenhdusern, besser sogar direkt
patientennah , Point-of-Care” durchzufiihren. Der hier von mir beschriebene MPEA Assay
dient als Grundlage fiir den miRNA Immunoassay, der im folgenden Kapitel beschrieben
ist.

Publikationen: Die Arbeiten, die in diesem Abschnitt beschrieben werden basieren
hauptsdchlich auf [42], beinhalten aber bereits Aspekte aus [43]. Aufierdem ist die
Idee im Kontext in zwei sehr umfangreichen Patenten im Detail beschrieben
(EP2109499, DE102007018833).
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4.1.3. Point-of-Care miRNA Testung

Wie im vorangegangenen Abschnitt beschrieben gibt es einen stetigen Trend hin zur
Point-of-Care Testung. Das gilt im besonderen Mafie fiir Infektionserkrankungen [152],
aber auch fiir andere zeitkritische Tests wie die Messung von Troponin im Umfeld
kardiologischer Diagnostik [153]. Eine hervorragende Ubersicht bietet der Artikel von
John und Price [154].

Ein erheblicher Anteil der In-Vitro Standard-Diagnostik in klinischen Laboren sind
Immunoassays, sogenannte ELISA (Enzyme-linked Immunosorbent Assay) [155]. Diese
kostengiinstige (ein ELISA kostet oft weniger als ein Euro in der Herstellung) und schnelle
Technologie (Zeit vom Probeneingang bis zum Testergebnis sind in der Regel nur 1-2
Stunden) wird zur Messung von Proteinen eingesetzt und ist aus der Routine Diagnostik
nicht wegzudenken. Flir die Messung von Nukleinsduren, also DNA oder RNA, wurden

ELISA bisher hingegen nur wenig verwendet.

Ich habe daher das Konzept eines Immunoassays ahnlich klassischer ELISA Tests aber zur

spezifischen Messung von miRNAs entwickelt. Dabei ist die grundlegende Idee des Assays

Inkubation Hybridisierung  Waschen Detektieren
/ \ AE ,/{
ll ) . » Antit.)ody
= == = 1A
4
-
DNA ay
XXX XXX
Streptavndln Bead
6 min 18 min 7 min 18 min

b

Die Gesamtzeit fiir alle Schritte, die vollautomatisch durchgefiihrt werden, betrdgt 49 Minuten. Die Abbildung ist
modifiziert aus Kappel et al. entnommen.

Abbildung 15: Prinzip des miRNA Immunoassays.
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(Spezifitit fiir miRNA Familien Mitglieder zu erreichen) und die Methodik der
Auswertung &dhnlich zum vorher beschriebenen MPEA Assay. Der Ansatz ist ein
zweistufiger Test, der fiir das Siemens Centaur System entwickelt wurde, aber mit jedem
anderen Analyzer im Zentrallabor oder Point-of-Care Gerdt kompatibel ist. Die
wichtigsten Komponenten sind Streptavidin markierte Mikropartikel, eine mit Biotin
markierte Finger-Sonde, die komplementar der nachzuweisenden miRNA ist sowie ein
monoklonaler Antikorper, der spezifisch zur Detektion von DNA / RNA hybriden ist und

der mit Acridinium Ester markiert ist.

Im ersten Schritt des Assays werden die miRNAs einer biologischen Probe, in diesem Fall
einer Blutprobe, mit der Fanger-Sonde, die mit Biotin markiert ist, hybridisiert. Es bilden
sich dabei perfekte Heterohybride aus der miRNA und der Fanger-Sonde, die eine
einzelstrangige DNA ist. Im zweiten Schritt werden die Hybride mit der immobilisierten
Streptavidin Phase gebunden. Final wird der Antikérper zur Detektion der DNA/RNA
Hybride zugegeben. Der Antikorper ist sehr spezifisch, er erkennt nur perfekte Paare aus
DNA und RNA, ein Missmatch wird nicht erlaubt. Daher ist die Menge an gebundenem
Antikorper proportional zu der Menge an DNA/RNA Hybriden die wiederum proportional
zu der Menge der miRNA, die detektiert werden soll, in der Blutprobe ist.

Der voll automatische

Assay, der in Abbildung
15 bersichtlich und
schematisch gezeigt ist,
besteht im Detail aus den
folgenden Schritten:
Pipettiere 75 uL
Probenmaterial in eine
Kiivette. Pipettiere 75 pL
20 mmol/L  Sodium
Phosphat, pH 7.2, 300
- - mmol/L  NaCl, 0.1%
Log;o miRNA Konzentration (nmol/L) Triton  X-100, 0.5%

Logyo Signalintensitat
% Kreuzhybridisierung mit let-7a

Bovine Serum Albumin,

Abbildung 16: Analytische Sensitivitit und Spezifitdt des Immunoassays. 0.02% Sodium Azide und

Die Grafik zeigt fiir verschiedene Konzentrationen von let-7a, let-7b, let-7c  Biotin markiertes
und let-7f und eine Finger-Sonde, die spezifisch fiir let-7a ist, die . .
Signalintensitit  (linke Skala und Kurven) wund die prozentuale Oligonucleotid (10
Kreuzhybridisierung (rechte Skala und Balkenhéhe). Die Abbildung ist nmol/L) und inkubiere es
modifiziert aus Kappel et al. entnommen.

mit der Probe fiir 6

Minuten bei 37 °C. Pipettiere 150 pL der Solid Phase dazu und inkubiere dies fiir 18
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Minuten bei 37 °C. Trenne die Solid Phase von der Lésung. Wasche die Kiivette 6.75 min
at 37 °C. Pipettiere 95 pL Antikorper und inkubiere dies fiir 18 Minuten bei 37 °C. Wasche
die Kiivette nach Separation der Solid Phase. Pipettiere 300 uL Saure und 300 pL Base,

um die Chemolumineszenz zu erzeugen.

Der Assay wurde mit einem &hnlichen 2xperimentellen Set-Up, wie im vorherigen
Abschnitt fiir den MPEA Assay beschrieben, getestet. Verschiedene Konzentrationen (0.1-
30nmol/L) von Mitgliedern der let-7 Familie wurden gemischt. Im konkreten Beispiel, das
in Abbildung 16 gezeigt ist, wurde eine Fanger-Sonde, die spezifisch fiir let-7a ist,
zugegeben. Die maximale Kreuzhybridisierung, die beobachtet wurde liegt bei weniger
als 0.6%, die technische Spezifitit dementsprechend bei 99.4%. Weitere
Konzentrationsreihen haben gezeigt, dass selbst Konzentrationen von 1 Pikomol je Liter
stabil gemessen werden konnen. Die gemessene Konzentration hat mit der tatsachlichen
Konzentration dabei sehr exakt iibereingestimmt (Pearson Korrelation von 0.998).
Nachdem die technische Spezifitat und Sensitivitat bestimmt worden ist, wurde der Assay
auf biologische Proben angewendet. Als Beispiel dient das spater in Kapitel 4.2.3
beschriebene Set an Alzheimer miRNAs. Fiir alle getesteten Marker (hsa-miR-5010-3p,
hsa-miR-26a-5p, hsa-miR-151a-3p und hsa-let-7d-3p) wurden in 40 biologischen
Replikaten stabile Signale nachgewiesen. Bemerkenswert war der Variationskoeffizient
von miR-26a-5p, der nur 4% betragen hat. Auch Unterschiede zwischen Patienten und
Kontrollen, wie sie sonst typisch fiir miRNAs sind, konnten detektiert werden. Final
wurde der Immunoassay gegen RT-qPCR, als Gold Standard, getestet. In diesen
Experimenten war die Korrelation zwischen den beiden Technologien enorm hoch
(Pearson Korrelation 0.994) und zeigen dass der Immunoassay kompetitiv zur
klassischen RT-qPCR basierten Detektion on miRNAs ist.

Mit dem Immunoassay habe ich einen entscheidenden Beitrag geleistet, dass miRNAs in
Richtung Kklinische Testung weiterentwickelt werden koénnen. Die Limitation liegt
momentan in der Fahigkeit, mehrere miRNAs parallel aus der selben Probe zu messen.
Die einzige Moglichkeit die nicht nur konzeptionell vielversprechend war, sondern auch
verwirklicht werden konnte, ist ein serielles Multiplexing. Das bedeutet, dass der in
Abbildung 15 gezeigte Ablauf fiir jede miRNA hintereinander und nicht parallel
durchgefiihrt wird. Begonnen wird dabei mit der am niedrigst-konzentrierten miRNA in
der Probe. Das zusammen mit der verfligharen Menge an Ausgangsmaterial macht es
bisher moglich, etwa 4-8 miRNAs von einem Patienten und aus einer Blutprobe zu
messen. Fiir die meisten Anwendungen (siehe Kapitel 4.2.) ist diese Anzahl an Markern

ausreichend.
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Erwahnenswert ist, dass der Assay und die Lizenzen an dem Assay 2015 von der Firma
Biovendor gekauft worden sind und seit Ende 2017 kommerziell als miREIA Assay
angeboten werden (https://www.biovendor.com/mireia-breakthrough-assays). Die
Weiterentwicklung der Firma Biovendor erlaubt dabei sogar Messungen bis zu
Konzentrationen von 0.1 attomol/pl miRNA (0.1 Trillionstel Mol je Liter).

Publikationen: Die Arbeiten, die in diesem Abschnitt beschrieben werden basieren
hauptsdchlich auf [43]. Aufderdem wurde ein dhnliches Konzept mit anderem
Detektions-Mechanismus entwickelt und publiziert [44]. Details zu diesem parallelen
Ansatz habe ich in der vorliegenden Ausarbeitung nicht beschrieben. Der
Immunoassay wurde aufderdem patentiert (EP20120159196).

4.1.4. cPAS Sequenzierung

Ich habe mich in meiner Forschung damit befasst, miRNAs in die klinische Routine, oder
mindestens naher an die klinische Routine zu bringen. Dazu habe ich hauptsachlich die
Kern-miRNAs aus den frithen Versionen der miRBase betrachtet. Neben diesen und
weiteren miRNAs aus der miRBase sind jedoch Teile des humanen miRNomes unbekannt.
Die bisher beschriebenen Technologien, Mikroarrays, RT-qPCR und die klinischen Assays
die ich entwickelt habe, sind zur Detektion neuer miRNAs, die bisher nicht beschrieben
sind, ungeeignet. Im Gegensatz dazu bietet Hochdurchsatz Sequenzierung (HTS) die
Moglichkeit bisher noch nicht identifizierte miRNAs in speziellen Zelltypen, Geweben
oder Korperfliissigkeiten zu finden. Die wohl am meisten eingesetzte Methode ist

Sequenzierung durch Synthese, wie sie von der Firma Illumina eingesetzt wird.

Charakteristisch fiir diese Technologie ist normalerweise eine Amplifizierung des
Ausgangsmaterials. Das fithrt zu mehreren moglichen Fehlerquellen. ,Bias“ in HTS
Datensdtzen ist daher bekannt [156, 157] und weit verbreitet, insbesondere wenn es um
die Quantifizierung von RNAs geht [158]. In einer Studie mit der chinesischen Firma BGI
konnte jedoch gezeigt werden, dass eine Sequenzierung die nicht auf einer klassischen
PCR, sondern auf einer linearen Amplifikation beruht, deutlich bessere Resultate liefert
[45]. Das Prinzip der combinatorial probe-anchor synthesis (cPAS), wie sie auf dem
BGISEQ-500 Sequenzierer etabliert wurde, funktioniert mit DNA Nanoball (DNB)
Nanoarrays mit Hilfe einer schrittweisen Sequenzierung durch eine Polymerase. Diese
Methode zeigt vor allen Dingen bei kurzen Reads eine sehr hohe Genauigkeit. Auf3erdem

erlaubt es die Technologie, Milliarden von Molekiilen parallel zu messen. Die Methode, die
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von Complete Genomics / BGI hauptsachlich entwickelt wurde, um DNA zu sequenzieren,
eignet sich daher besonders fiir miRNA Anwendungen.

In einer Proof-of-Concept Studie wurden sechs Gehirnproben, zwei Herzproben und zwei
Blutproben sequenziert und insgesamt 300 Millionen Reads generiert. Technische
Replikate der sechs Gehirnproben haben eine mittlere Korrelation von 0.98 ergeben. Mit
anderen Technologien wie zum Beispiel der Sequenzierung mittels Illumina hat sich
immer noch eine Korrelation von 0.75 ergeben. Da fiir meine Forschung die Anwendung
als blutbasierte Biomarker besonders wichtig ist, méchte ich diesen Aspekt ndher
beleuchten und identische Blutproben gemessen auf Mikroarrays, mit Illumina
Sequenzierung und cPAS Sequenzierung vergleichen. Abbildung 17 zeigt den relativen
Anteil der 10 am haufigsten gefundenen miRNAs in Blutzellen, abhdangig von den drei
Technologien. Fiir [llumina Sequenzierung entsprechen 90.8% aller Reads einer einzigen
miRNA, miR-486-5p, die als miRNA in roten Blutzellen bekannt ist [159]. Die anderen
verwendeten Technologien haben ebenfalls eine Uberrepresentation dieser miRNA
gezeigt (7.7% aller Reads bei cPAS Sequenzierung und 17% der totalen Intensitat auf
Mikroarrays), jedoch war das Verhdltnis in keinem Fall so extrem wie bei Illumina

Sequenzierung. Validierung mittels RT-qPCR hat den Bias fiir diese miRNA in der [llumina
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hsa-miR-142-5p 0.1 hsa-miR-320a 0.6 hsa-miR-150-Sp 1.3
hsa-miR-425-5p 0.1 hsa-miR-185-5p 09 hsa-miR-8069 1,8
hsa.miR-484 0,1 hsa-miR-4732-3p 1,0 hsa-miR-25-3p 2,5
hsa-miR-22-3p 0,2 hsa-miR-150-5p 1,0 hsa-miR-223-3p 2,9
hsa-miR-16-5p 0.2 hsa-miR-425-5p 11 hsa-miR-16-5p 4,6
hsa-miR-92b-3p 0,3 hsa-miR-484 1,5 hsa-miR-15b-5p 5,4
® hsa-miR-25-3p 0.4 " hsa-miR-486-5p 7.7 ® hsa-miR-92a-3p 5.8
hsa-miR-451a 0.8 ¥ hsa-miR-92a-3p 133 >< “ hsa-miR-4454 59
¥ hsa-miR-92a-3p 5.5 hsa-miR-191-5p 20,0 ¥ hsa-miR-486-5p 17,0
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Abbildung 17: Verteilung der Signal Intensitit von miRNAs.

Die Abbildung zeigt fiir die 10 hdufigsten miRNAs wie viel % der totalen Signal Intensitdt je Technologie gemessen
werden. Die Abbildung ist modifiziert aus Fehlmann et al. entnommen.
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Technologie verifiziert. Im Umkehrschluss haben die Top-10 der miRNAs in der [llumina
Sequenzierung 98.6% aller Reads ausgemacht. Fiir alle anderen, mehr als 2,000 miRNAs
sowie potenziell neue Kandidaten bleiben zusammen gerade 1.4% der gesamten
Sequenzier-Kapazitat.

Der Bias in der gingigen Illumina Technologie zusammen mit den komplexen
Anforderungen an Labore und den Zeitaufwand der nétig ist (immer noch mehrere Tage)
und verhaltnismafdig hohe Kosten von mehreren hundert Euro, machen einen Einsatz der
entsprechenden Technik in der Standard-Diagnostik unwahrscheinlich. Im Gegensatz
dazu bietet die cPAS basiere Sequenzierung einige Vorteile. Zumindest in Service Laboren

ist ein Einsatz zur Diagnostik von Erkrankungen aus dem Blut moglich.

Publikationen: Die Arbeiten, die in diesem Abschnitt beschrieben werden basieren
hauptsdchlich auf [45].

4.1.5. Zusammenfassung der Technologien

Zusammenfassend habe ich in diesem Kapitel einen Uberblick iiber Technologien und
Assays gegeben, an deren Entwicklung ich beteiligt war und die zur Messung von miRNAs
in der Diagnostik eingesetzt werden konnen. Die verschiedenen Technologien haben
dabei verschiedene Vor- und Nachteile. Fiir die klinische Testung von kleinen miRNA Sets
in der Routine-Diagnostik ist die Immunoassay Methode wahrscheinlich am besten
geeignet, wahrend fiir die Grundlagenforschung die Sequenzierung die meisten neuen
Erkenntnisse verspricht. Mikroarrays liegen im Anwendungsspektrum zwischen diesen

beiden Extremen.

Insgesamt hat die Forschung aber gezeigt, dass es vielversprechender ist sich auf Inhalte
wie Biomarker in Krankheiten zu konzentrieren, statt auf die Entwicklung von
Plattformen. Um miRNAs zu messen, konnen Forscher bereits heute aus mehreren
Dutzend Technologien wahlen [160], die sie dazu einsetzen konnen miRNA Biomarker zu
detektieren und zu validieren. Mit diesem Thema beschaftige ich mich daher in den

folgenden Abschnitten.
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4.2. miRNAs als Biomarker

Im vorangehenden Abschnitt habe ich technologische Entwicklungen zur Messung von
miRNAs beschrieben. Im Laufe meiner Forschung hat sich der Fokus allerdings
schrittweise von der Technologieentwicklung, die ich als Ingenieur begonnen habe, iiber
Assay Entwicklung bis hin zur Anwendung der Detektion von Biomarkern, verschoben.
Grundlegend basiert der Forschungsansatz dabei auf drei wesentlichen Paradigmen:

1. Es sollen leicht zugdngliche Biomarker gemessen werden. Hier bieten sich
Korperfliissigkeiten wie zum Beispiel Blut an. Dieser Ansatz erlaubt eine breite
Anwendung unabhidngig des Organes oder der Erkrankung und ermdoglicht

gleichzeitig einfaches longitudinales Messen.

2. Da einzelne miRNAs nicht gentligend Aussagekraft haben, sollen Sets von miRNAs
gemessen werden. Je nach Komplexitit der Kklinischen Fragestellung sind
typischerweise 4-12 miRNAs notwendig, um hinreichende Genauigkeit zu

erlangen.

3. Die Muster sollen nicht in einer einzelnen Erkrankung betrachtet werden, sondern
liber verschiedene Erkrankungen hinweg. Das ist notwendig, um die Spezifitit

einer miRNA Signatur fiir eine Erkrankung abschétzen zu konnen.

Im Folgenden werde ich in vier Unterabschnitten auf die Entwicklung von miRNA
Biomarkern eingehen. Zunachst ist es essenziell, die technische und biologische Stabilitat
zu verstehen. Welche miRNAs koénnen unabhdngig duferer Einfliisse reproduzierbar
gemessen werden und sind am besten unabhdngig von ,Confoundern, wie zum Beispiel
dem Alter und dem Geschlecht (Abschnitt 4.2.1)? Anschliefiend beschreibe ich die
Anwendung im Umfeld der Diagnose von Lungenerkrankungen (Lungentumore /
Chronisch Obstruktive Pulmonary Disease COPD; Abschnitt 4.2.2) und Erkrankungen des
Zentralen Nervensystems (Multiple Sklerose und Alzheimer; Kapitel 4.2.3). Im vierten
Teil gehe ich dann auf den Aspekt des krankheitsiibergreifenden miRNOmes ein, also

welche miRNAs beispielsweise bei allen untersuchten Erkrankungen dysreguliert sind.
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4.2.1. Technische und biologische Stabilitat von miRNAs

Bevor miRNAs in der klinischen Diagnostik eingesetzt werden um Krankheiten zu
erkennen, ist es notwendig, Detailwissen tiber die biologische und technische Stabilitat zu

erlangen. Im Bereich der
technischen Stabilitdt ist es

Day 4 after collection

besonders wichtig, den

Day 3 after collection

Day 2 after collection I

Transportbedingungen Zu
kennen [50]. Aufserdem haben
Studien gezeigt, dass

Day 1 after collection

I - Einfluss von Lagerungs- und

Storage at . . .

I wiederholtes Einfrieren und
15
25

t i * Auftauen die Probenqualitat
Drei Ind|V|duen / beeinflusst. Die entsprechende
/

Funf Bedingungen Illl' Analyse flir miRNAs aus
Vollblutproben = wurde in
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34
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Abbildung 18: Stabilititsanalyse von miRNAs. Analytical Chemistry

veroffentlicht 50]. Das
Fiir drei Spender wurden fiinf verschiedene Bedingungen getestet. Die [50]
Abbildung ist modifiziert aus Backes et al. entnhommen. entsprechende Studien Set-Up

ist in Abbildung 18 gezeigt.

Flr drei Spender wurden 5 verschiedene Bedingungen getestet, die Lagerung bei
Raumtemperatur, bei -80 Grad und bis zu dreimaliges Einfrieren und Auftauen. Diese
Herangehensweise hat es erlaubt, abzuschéatzen wie stark die technische Variabilitat im
Verhaltnis zur intra-individuellen Variabilitdt schwank. Um zu verstehen, wie sich die
Muster insgesamt zwischen den verschiedenen experimentellen Bedingungen verhalten
haben, wurden multivariate statistische Methoden verwendet, das sind Methoden, die auf
mehreren sogenannten ,Features“ basieren. Im vorliegenden Fall ist jedes Feature die
Expression einer miRNA. In der Studie wurden Signale von 455 miRNAs zugleich
verwendet. Die Methoden, die die am besten interpretierbaren Ergebnisse gezeigt haben,
waren bottom-up hierarchisches Clustern mit der Euklidischen Distanz als Abstandsmaf3
und die vorwiegend als Dimensions-Reduktion genutzte Principal Component Analyse
(Hauptkomponenten Analyse). Generell haben die Proben, die gleichbehandelt wurden,
auch dhnliche Muster gezeigt. Insgesamt waren die Effekte aber vergleichsweise gering.
Dennoch zeigen die Resultate auch, dass es wichtig ist, Proben innerhalb einer Studie

absolut gleich zu behandeln.

Neben den Effekten die auf eine Probe insgesamt einwirken, ist es fast noch wichtiger zu

verstehen, auf welche Marker der maximale Einfluss besteht. Solche Marker konnen bei
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der Entwicklung und der Translation von Biomarkern zur Anwendung hin zum Beispiel

ausgeschlossen werden. Dazu wurde jede miRNA alleine in Varianzanalysen (ANOVA)

und beziiglich des Variationskoeffizienten hin untersucht. Die Varianzanalyse hat gezeigt,

dass fiinf miRNAs nach Adjustierung fiir Multiples-Testen signifikant waren. Diese sind
hsa-miR-320b (p = 0.0002), hsa-miR-320a (p = 0.001), hsa-miR-16-5p (0.018), hsa-miR-
18b-5p (0.037) und hsa-miR-375 (0.0375). Die entsprechenden Biomarker sollten bei der
klinischen Testung genauer beobachtet werden, da signifikante Schwankungen leicht auf

technische Artefakte hindeuten konnen. Interessanterweise waren die Schwankungen

zwischen Individuen normalerweise grofier als die technischen Schwankungen. Beispiele

- jeweils fiir technische Schwankungen und Schwankungen zwischen Individuen - sind in

Abbildung 19 gezeigt.

miR-375 Expression

IR-99a Expression

m
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11 12 13 14 15 21 22 23 24 25 31 32 33 34 35

Abbildung 19: Technische und interindividuelle Variabilitit von
miRNAs.

Der obere Teil der Abbildung zeigt die Variabilitit zwischen den
verschiedenen Experimenten fiir eine der variabelsten miRNAs. Hier
zeigten die Individuen jeweils dhnliche Expressionswerte. Im Vergleich
dazu ist unten die Schwankung einer miRNA, je nach Individuum
gezeigt. Hier ist die Expression zwischen den Experimenten etwa
gleich, aber der dritte Proband hatte signifikant hohere Level der
miRNA. Die Abbildung ist modifiziert aus Backes et al. entnommen.

Die Frage, die sich als nachste

stellt, ist die Ursache nach der

Schwankung in der
Expression zwischen
verschiedenen Personen.

Hierfiir kann es verschiedene
Griinde geben, entweder
schwanken die = miRNAs
tatsachlich so stark zwischen
beliebigen Individuen oder es
gibt  generelle  Einfluss-
faktoren die den Level
einzelner miRNAs
beeinflussen. Die wohl
klassischsten Beispiele dafiir
sind das Alter und das
Geschlecht. Um ein
Verstiandnis daftr Zu
erlangen, ist es notwendig,
gesunde Probanden
verschiedener Altersgruppen
und sowohl Manner als auch
Frauen zu vergleichen [51].
Die Analyse von 167 gesunden

Probanden mittels

Mikroarray und HTS hat einen deutlicheren Einfluss des Alters auf die miRNA Muster

gezeigt als es das Geschlecht gezeigt hat. Beziiglich des Geschlechts waren 144 miRNAs
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signifikant unterschiedlich reguliert, nach der notwendigen Adjustierung fiir Multiples-
Testen war jedoch keine miRNA mehr signifikant. Mit dem Alter der Probanden waren
insgesamt 318 miRNAs signifikant verkntipft. Nach der Adjustierung fiir Multiples-Testen
waren davon immerhin noch 35 Marker signifikant mit dem Alter Kkorreliert.
Entsprechende miRNAs miissen nicht zwangslaufig als Biomarker ausgeschlossen
werden. Es kann jedoch - je nach dem Umfang der Schwankung - sinnvoll sein, fiir
verschiedene Altersgruppen verschiedene Grenzwerte in einem klinischen Test
einzufiihren. Konkret konnte das heifden, dass im Falle von miR-34a ein Mann im Alter
von 35 Jahren bei 12 Nanogramm je Milliliter eine andere Diagnose erhalt als ein Mann
von 65 Jahren mit der gleichen absoluten Menge dieser miRNA oder eine zwanzigjahrige

Frau, die ebenfalls die gleiche Expressionsstiarke der miRNA zeigt.

MirNaCon, ein internetbasiertes Software-Tool (frei verfiigbar: http://www.ccb.uni-
saarland.de/mirnacon), erlaubt es anderen Forschern diese Betrachtung in ihrer
Forschung und der Translation der miRNA Biomarker zu berticksichtigen. Sie kdnnen eine
Liste von miRNAs eingeben und bekommen innerhalb weniger Sekunden angezeigt,
welche der miRNAs weder vom Alter noch vom Geschlecht abhdngig sind. Diese haben

eine hohere Chance in der Translation zur klinischen Testung.

Da die hier beschriebenen Muster auf Blut basieren stellt sich aufderdem die Frage, ob die
entsprechenden Marker auch im Gewebe gefunden werden. Gerade bei miRNAs ist eine
hohe Spezifitat fiir Gewebe bekannt. Da miRNAs aber wie oben aufgefiihrt auch von
Person zu Person schwanken, ist es notwendig, Organmuster von verschiedenen Organen
der selben Person zu messen, damit solche Schwankungen zwischen Personen nicht zu
artifiziellen organspezifischen Befunden fiihren [52]. Wie im frei verfiigbaren internet-
basierten Tool TissueAtlas gezeigt (https://ccb-web.cs.uni-saarland.de/ tissueatlas/), gilt
die Beobachtung, dass miRNAs sehr gewebsspezifisch exprimiert werden, nur bedingt. In
der Tat ist es so, dass 82.9% aller getesteten miRNAs einen mittleren Spezifitat-Index
hatten, also weder in allen Organen vorkamen noch spezifisch fiir einzelne Organe waren.
Dennoch waren insgesamt 143 miRNAs in allen getesteten Organen vorhanden. Das Blut
zeigte in erstaunlich vielen Fallen Expression fiir eher spezifische miRNAs und die im
Rahmen dieser Arbeit gemessenen PAXgene Muster, die auf Blutzellen basieren, scheinen
generell viele organtypische miRNAs zu enthalten. Der wohl interessanteste Aspekt
dieser Arbeit war, dass in einem Vergleich zwischen Spezies nicht etwa Mensch- und
Rattenmuster zusammen passten, sondern in fast allen Fallen die Gewebe des Menschen

mit den entsprechenden Geweben der Ratte am besten libereinstimmten.

Zusammenfassend haben die Ergebnisse in der grundlegenden Forschung tiber miRNAs

ergeben, dass die kleinen nicht kodierenden RNAs eher stabil sind und nur teilweise von
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aufderen technischen und biologischen Faktoren beeinflusst werden. Diese zu kennen ist
jedoch fiir die Entwicklung von Biomarkern wie sie in Kapitel 4.2.2 und 4.2.3 beschrieben

sind, unerlasslich.

Publikationen: Die Arbeiten, die in diesem Abschnitt beschrieben werden basieren
hauptsdchlich auf [50-52). Zusdtzlich wurde ein Patent angemeldet, um miRNAs aus
dem Blut besser quantifizieren zu kénnen (US2015184223).

4.2.2. Anwendungen im Bereich Lungentumore

Parallel zu den Untersuchungen der Stabilitat, die in Kapitel 4.2.1 beschrieben sind, habe
ich mit Prof. Keller und Prof. Meese an Lungentumormarkern, basierend auf miRNAs als
Anwendungsbeispiel fiir die Technologien und Assays, die in Kapitel 4.1. beschrieben
sind, gearbeitet. Lungentumore bzw. Lungenerkrankungen sind eines der
Hauptforschungsfelder in den AGs ,Klinische Bioinformatik“ und ,Humangenetik“ in
Saarbriicken und Homburg [53-55, 104, 161-166]. Aus dieser Vielzahl an Studien war ich

an zwei Arbeiten, auf die ich mich im Folgenden konzentrieren werde, beteiligt [54, 55].

Ziel der Untersuchungen war es sowohl neue blutbasierte Frithdiagnosemarker als auch
prognostische Marker fiir nicht kleinzellige Lungentumore (NSCLC) zu detektieren und
zu validieren. Zu Beginn der Studien waren deutlich weniger miRNAs bekannt als
momentan. Die rapide Entwicklung und die Entdeckung neuer miRNAs ist in Kapitel 2 und
Kapitel 4.1. erlautert und in Abbildung 12 grafisch dargestellt. Zur Zeit der ersten Studien
liber Lungentumore waren etwa 1,000 reife miRNAs beim Menschen bekannt - zum
Vergleich: heute sind es bereits 2,500 die in der miRBase stehen und etwa weitere 10,000
Kandidaten in miRCarta. Wie in Abschnitt 4.2.1. beschrieben, ist Blut ein ausgezeichnetes
Ausgansmaterial um miRNAs zu messen [104]. Nicht nur, dass das Probenmaterial leicht
zuganglich ist, auflerdem enthdlt das hier verwendete Vollblut viele verschiedene
Blutzelltypen, jeder mit einem eigenen komplexen miRNome [167-170]. Daher erlaubt es
Blut, nicht nur Unterschiede zwischen gesunden und erkrankten Probanden zu

identifizieren, sondern auch neue miRNAs zu entdecken.
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Tabelle 1: 30 neue miRNAs in Lungentumorpatienten und gesunden Kontrollen

Counts Counts
miRNA Major sequence Minor sequence

controls patients
hsa-can-miR-163 4370 3189 TCGCATTGAACCTGAGAGGCA CCTCCGGTATTCAAGCGATT
hsa-can-miR-277 514 493 GCCCGCCCCAGCCGAGGTT CCCCGREGCGGGEGGETTE
hsa-can-miR-811 688 262 GGGCCGTGGAGGTGGACTG GTGCACAACTGCAGGGGTGTG
hsa-can-miR-915 64 86 CTCTTCATCTACCCCCCAG GGAGGGTGTGGAAGACAT
hsa-can-miR-49 53 91 CGTTGCCATGTCTAAGAAGAA CTTCTTAGACATGGCAGCTTC
hsa-can-miR-473 49 60 GTCAGTTTGTCAAACTCTTT GGAGTTGTGATCCTTTGGAGA
hsa-can-miR-571 27 74 CGCAACCCACACACGGTCTCA AGACCGTGTGTGGGTTGCTGAG
hsa-can-miR-346 25 70 TTGGAATCCTCGCTAGAGCGT GCTCTAGCGGGGATTCCAATA
hsa-can-miR-675 49 27 CCACAAACCTGCCAGCCCTG GGGCGGCTATTGTGGGG
hsa-can-miR-275 46 30 TGGGETGTGGGCAGTGEGCEGECCAAGGACA GCAGTTGGCACCGTCCCCTGCGECTACCCACT
hsa-can-miR-385 60 5 GGCGGGCAGCGGETGAGGGGETGG GCGGGGCCCCGEACAAGGGTCCGCAGA
hsa-can-miR-213 28 33 TGCTCTTACATCTCAAACGAT CGGTTGAGATGCAAGGGCTGE
hsa-can-miR-881 48 10 GCCCCTTTCTCAGACCCCCA GGCCCTGGAAAGGGTCAG
hsa-can-miR-358 19 32 GCCCAGAGGATCACGGAGCCA GCTCCTTGCACCTGTGGETGE
hsa-can-miR-480 1 47 CTAGCAGTCTCAGGACACA TGCCCTGAGACTGCTAAGT
hsa-can-miR-56 20 25 ATCACCACCAAACCTGTTCTTC AGAACAGGTTTGGTGGGGATTC
hsa-can-miR-1040 20 19 GATTTCAGCGCTCTGLCCCT GGGCAGAGCACTGTGTGTGG
hsa-can-miR-288 13 20 GGGGCAGCAGAGGACCTGGGE CCTGATCCTCAGETGECCTCTC
hsa-can-miR-1011 17 15 GTCTTTTGCCCTTTCAGET CTGGAAGGGCAAAAGACTG
hsa-can-miR-839 14 16 GTGCCTGTGCAGAGGGAGET CCCCCTCCGAGCAGGCACTG
hsa-can-miR-1065 10 19 TTGGCCACCACACCTACCCCTT GGGTGATGGGTGTGGTGTCCACAGG
hsa-can-miR-454 4 24 CCACCTTCAAAGGCACTCCG GAGGCCTCTGCTGGTGETG
hsa-can-miR-390 17 11 TCCTCTCCTCCCTGTGCCGAC AAGCGCGGGGAGGGAGGATA
hsa-can-miR-23 14 14 ACCCACCTGATGCCCCGTCCCA GGGAGGGGCAGGAGGGGTGGAATG
hsa-can-miR-152 25 2 CCTCTTCCCAGCACTCCCCT GAGGGTTGCGGGAAGGGGGA
hsa-can-miR-555 15 11 AAAACAGGATAGGCACTAAA TAGAGCCTATCCTGTTTTGE
hsa-can-miR-678 7 19 CGGTCCCTAACCCCCTCCGGA CAGGGGAGGGAAGGGGAGCCGAG
hsa-can-miR-963 19 7 AGAAATTGGTTAAATTGGAGGG GACCAATTTAACCAATTACTAT
hsa-can-miR-942 18 7 CTCTCCCCGETTTTAACCCTA GGGTTAAGAGTGGGGAGAAGA
hsa-can-miR-308 17 8 ACACCAAAACAATGAAAAC TATCATTGTTTTAGTGTTT
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Wenn diese miRNAs noch unterschiedlich zwischen zwei Gruppen von Probanden
exprimiert sind, ist die Wahrscheinlichkeit einer biologischen Funktion und der Validitat
von entsprechenden miRNAs hoher. In der vorliegenden Studie wurde Blut von
Lungentumorpatienten (Adeno Karzinome und Plattenepithel Karzinome, Stage IA bis
[1IA, alle nicht therapiert) und Kontrollen verglichen. Aus dem PAXgene Blut wurden 1.5
Mikrogramm totale RNA fiir kleine RNAs angereichert (Ambion's flashPAGE Fractionator)
und gefallt.

Die Sequenzier Library wurde aus

miRNA Expression

100 Nanogramm
RNA  erstellt. ~Nachdem  die
Sequenzier = Adapter angefiigt
wurden, wurde die RNA in cDNA
Die  Fragmente
60-80 Basen lang,
bestehend aus den miRNAs und den
Sequenzier Adaptern. Nach 15 PCR
Zyklen zur Amplifikation wurde das
Standard -
angewendet. Die Daten wurden mit
RNA2MAP und eigenen Skripten in R
Marker
RT-qPCR

validiert. Insgesamt wurden in der

angereicherter

umgeschrieben.

waren dabei

Sequenzierprotokoll

prozessiert und neue

wurden  gezielt mit

control

Sequenzierung 530 Millionen kleine
RNAs

konnten 352 Millionen auf das

Abbildung 20: Clustering in Tumorpatienten und Kontrollen. Von diesen

sequenziert.

Die Heat Map zeigt die Expression der sieben neuen miRNAs
in  Kontrollprobanden und Lungentumorpatienten. Rot

Humane Genom gemappt werden.
bedeutet hohe Expression und Griin niedrige Expression. Die

vertikale blaue Linie trennt das Dendrogram in zwei Gruppen.
Nur ein Tumorpatient passt von seinem Profil her zu den
Kontrollen. Die Abbildung ist modifiziert aus Keller et al.
entnommen.

Nur 38 Millionen dieser Reads
mappten auf zu dieser Zeit bekannte
miRNAs. Immerhin konnten damit
64% abgedeckt

der miRBase

werden.

Die hohe Zahl von Reads, die auf das Humane Genom aber nicht auf die miRBase mappen,
erlaubt den Schluss, dass eine signifikante Anzahl neuer miRNAs in den Proben
vorhanden sein muss. Diese Vorhersage mit dem Tool miRDeep [85, 86] hat insgesamt
210 neue miRNA Kandidaten ergeben. Da solche neuen miRNAs oft falschpositive
Kandidaten enthalten, die auf Artefakte zurtickgefiihrt werden koénnen, [87, 171] ist
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weitere Prozessierung notwendig. Eigenes Filtern der Sequenzen hat tiber 80 % der
Kandidaten als niedrig exprimiert und wahrscheinlich falsch Positive markiert. Insgesamt
sind 30 neue miRNA Kandidaten nach der Filterung als wahrscheinlich echte miRNAs
verblieben. Diese sind in Tabelle 1 gezeigt, zusammen mit der Anzahl an Reads in
Kontrollen und Patienten und der -3p und der -5p reifen Form. Von den 30 miRNAs, die
in Tabelle 1 gezeigt sind, wurden 5 zufallig ausgewahlt und mittels RT-qPCR in Blut- und
Gewebeproben validiert. In allen Fallen konnten die urspriinglichen Befunde validiert

werden.

Die Hauptfragestellung war jedoch, ob miRNAs zwischen Patienten und Kontrollen
unterschiedlich exprimiert bzw. reguliert sind. Dazu wurden nicht nur die oben
beschriebenen neuen, sondern auch die bekannten miRNAs analysiert. Da die miRNAs an
sich nicht normalverteilt waren, sind die Ergebnisse des gangig verwendeten t-Tests in
diesem Fall moglicherweise irrefiihrend. Daher wurde der nicht-parametrische
Wilcoxon-Mann-Whitney Test verwendet. Nach der Adjustierung fiir Multiples-Testen
waren 70 miRNAs signifikant unterschiedlich zwischen den beiden Gruppen exprimiert.
71.4 % davon waren hoher in Lungentumorpatienten. Interessanterweise waren auch 7
neue miRNAs aus Tabelle 1 signifikant unterschiedlich zwischen den Kontrollen und
Patienten. Die Expressionswerte dieser 7 miRNAs in Kontrollen und Patienten sind in
Abbildung 15 gezeigt. Diese Abbildung zeigt auch, dass nur ein Patient von seinem Profil
her zu den Kontrollen passt. Die Genauigkeit der Zuordnung war folglich 95 %. Nicht-
parametrische Permutationstests haben gezeigt, dass man mittels weiterer statistischer

Lernverfahren die Genauigkeit sogar noch weiter erhéhen kann.

Die Studie hat den Nachweis erbracht, dass miRNAs aus dem Blut von Patienten und
Kontrollen ein enormes Potenzial besitzen, eine Diagnose von Tumoren sogar in frithen
Stadien zu erlauben. Selbst die niedrigen Grade (T1bNO) wurden korrekt erkannt. Die
vielversprechenden Ergebnisse wurden inzwischen in den AGs Keller und Meese ohne
meine Mitarbeit verifiziert [165]. Interessant ist auch, dass 70 % der 30 neu entdeckten
miRNAs in den folgenden Versionen der miRBase annotiert wurden. In allen Fallen haben
unabhdngige Forscher und Arbeitsgruppen entsprechende miRNAs gefunden und in die
Datenbank iibernommen. In miRCarta sind bis auf wenige reife miRNAs alle
Reprasentanten aus Tabelle 1 enthalten. Daher hatte die Studie, eine der ersten
tiberhaupt, die miRNAs aus Blut bei Lungentumoren untersucht hat, doppelte Bedeutung
fiir das Erkennen neuer miRNAs generell und fiir die Erkenntnis, dass miRNAs zwischen
Probanden und Kontrollen unterschiedlich reguliert und damit gute Biomarker zur

Friherkennung von Tumorerkrankungen sind.
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Neben der Friih-Diagnostik haben miRNAs allerdings auch erhebliches Potenzial zur
Prognostik bei Lungentumorpatienten gezeigt [172-177]. Hier waren es jedoch weniger
Profile von Blutzellen, sondern vielmehr Serum und Plasma Profile von miRNAs [178,
179]. Im Gegensatz zu den Blutzellprofilen spiegeln Serum und Plasma Profile die Tumore
direkter wieder, da auch vom Tumor sekrierte miRNAs gemessen werden konnen. Dabei
ist zu beachten, dass das Messen von miRNAs aus Serum und Plasma kontrovers
diskutiert wird [180, 181]. Entsprechend ist es wichtig die mdéglichen vorhandenen
Quellen fiir Fehler und Artefakte zu kennen, um ihnen bestmdéglich vorzubeugen.

Um zu untersuchen, inwieweit miRNAs prognostische Information untersuchen und ob
sie parallel und longitudinal zu einer Therapie gemessen werden kénnen, wurden 26
Patienten Uber einen Zeitraum von bis zu 18 Monaten nach Tumordiagnose und
Resektion untersucht [55]. Insgesamt wurde den Probanden zu 8 Zeitpunkten innerhalb
dieser 18 Monate Blut abgenommen. Als Kontrolle wurden Patienten selektiert, die an
anderen Erkrankungen der Lunge leiden. Zunachst wurde die Komplexitidt des miRNomes
untersucht, also die Anzahl an detektierten miRNAs in Kontrollen und Tumorpatienten zu
den jeweiligen Zeitpunkten. Insgesamt hat sich gezeigt, dass Tumorpatienten ein
reduziertes miRNome im Vergleich zu Patienten mit anderen Lungenerkrankungen
haben. Die Zahl der miRNAs hat dabei im Verlauf der Therapie stark geschwankt.

Das miRNA Repertoire wurde auch mit der Entwicklung von Metastasen korreliert, um
prognostische Information zu erhalten. Hier hat sich gezeigt, dass Patienten die
Metastasen entwickeln ein deutlich komplexeres miRNome hatten, im Vergleich zu
Personen die keine Metastasen entwickelt haben. Die Unterschiede in der Komplexitit
des miRNomes waren statistisch signifikant, ein ungepaarter t-Test hat einen p-Wert von
0.0096 ergeben. Neben dieser eher qualitativen Analyse wurde eine eher quantitative
Analyse der miRNA Expressionswerte durchgefiihrt. Zunachst wurden paarweise t-Tests
zwischen Kontrollen und Tumorpatienten zu jedem der 8 Zeitpunkte durchgefiihrt.
Anschliefend wurden die p-Werte logarithmiert mit dem Rang der 8 Zeitpunkte

verglichen.

Eine negative Korrelation bedeutet dabei, dass eine miRNA im Verlauf der 18 Monate
kontinuierlich stirker dysreguliert wird. Eine positive Korrelation bedeutet hingegen,
dass die miRNA sich analog kontinuierlich in der Expression den Kontrollen angleicht. Die
Analyse hat insgesamt 6 negativ korrelierte und 28 positiv korrelierte miRNAs ergeben.
Folglich hat sich die Mehrzahl der Marker im Verlauf der Therapie an das Kontrollniveau
angeglichen. Die miRNAs, die im Verlauf der 18 Monate zunehmend stirker vom
Kontrolllevel abgewichen sind, sind hsa-miR-181d, hsa-miR-670, hsa-miR-196b, hsa-
miR-3148, hsa-miR-762 und hsa-miR-539. Die miRNAs, die sich im Verlauf der
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longitudinalen Analyse am starksten dem Level der Kontrollen angepasst haben, waren
hsa-miR-184, hsa-miR-141, hsa-miR-4281, hsa-miR-454 und hsa-miR-301a.
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Abbildung 21: Zeit / Metastasendiagramme fiir 4 ausgewdhlte miRNAs.

Die Abbildungen enthalten im inneren Kreis die Information wie signifikant die miRNA zum jeweiligen Zeitpunkt
war (je grofier der blaue Teil desto signifikanter, alles auferhalb der rot gestrichelten Linie war signifikanter als
der Alpha Level von 0.05). Der duflere Kreis zeigt die Richtung der Regulation (griin bedeutet weniger exprimiert
im Vergleich zu Kontrollen, rot bedeutet hoher exprimiert). Der rechte Teil der Kreise entspricht den 8 Zeitpunkten
bei Patienten die keine Metastasen entwickelt haben, der linke Teil den 8 Zeitpunkten bei Patienten die Metastasen
entwickelt haben. Die Abbildungen wurden modifiziert aus Leidinger et al. iibernommen.

Der primare Endpunkt in der Studie war das Entwickeln einer Metastase. Daher wurden
die Profile der 8 Probanden die eine Metastase entwickelt haben zu jedem der 8
Zeitpunkte zu den 18 Patienten verglichen, die keine Metastase entwickelt haben. Um die
Vergleiche besser durchfiihren zu kénnen wurden dabei die unadjustierten p-Werte
verwendet. Zum Ausganszeitpunkt (vor der Resektion der Tumore) waren insgesamt 25
miRNAs signifikant unterschiedlich exprimiert. Direkt nach der Operation ist die Anzahl
auf 18 miRNAs gesunken (davon 4 iiberlappend). Zum Zeitpunkt drei waren die
Unterschiede am deutlichsten, 40 miRNAs waren signifikant unterschiedlich. Im
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Folgenden hat sich das Niveau zwischen Patienten die Metastasen entwickeln und solchen
die keine Metastasen entwickeln wieder angeglichen. Insgesamt waren unabhéangig der
Zeitpunkte 131 miRNAs signifikant unterschiedlich zwischen den beiden Gruppen, nach
Adjustierung fiir Multiples-Testen waren noch 38 davon signifikant. Der geringste p-Wert
wurde fiir hsa-miR-197 berechnet (p = 3x10-7). Diese miRNA war zu drei der Zeitpunkte
signifikant (TP2, TP3, TP5). Eine weitere miRNA, hsa-miR-630 war sogar zu vier
Zeitpunkten signifikant (TP1, TP2, TP4 und TP6), zu den jeweiligen Zeitpunkten
allerdings etwas schwacher als miR-197.

Das verhaltnismaf3ig komplexe Studien Set-Up das viele Analysen ermoglicht, macht es
schwer, Abbildungen zu generieren die intuitiv und gleichzeitig interpretierbar sind ohne
relevante Information zu verlieren. Konkret werden Patienten die Metastasen entwickeln
zu solchen verglichen die keine Metastasen entwickeln und zu Kontrollen die keine
Tumore haben. Die Vergleiche wurden zu acht Zeitpunkten durchgefiihrt; miRNAs
konnen also in bis zu acht Zeitpunkten in Patienten mit und ohne Metastasen jeweils
signifikant hoch- oder runterreguliert sein. Um diese Information iibersichtlich
darzustellen wurden spezielle Abbildungen basierend auf Kreisdiagrammen entwickelt.
Der innere Teil des Kreises reprasentiert den negativen Logarithmus des p-Wertes fiir
jeden Vergleich. Die farbliche Darstellung im dufieren Kreis reprasentiert die Richtung
der Regulation (griin bedeutet runterreguliert und rot bedeutet hochreguliert). Der
jeweils rechte Teil der Kreise entspricht den 8 Zeitpunkten bei Patienten die keine
Metastasen entwickelt haben und der linkte Teil, den jeweiligen Zeitpunkt der Patienten,
die Metastasen entwickelt haben. Durch diese Darstellung kann fiir jeweils eine miRNA

der fast komplette Informationsgehalt grafisch dargestellt werden.

Abbildung 21 zeigt fiir vier miRNAs die entsprechenden Diagramme. Die vorher erwahnte
miR-197 ist in Patienten ohne Metastasen fast zu allen Zeitpunkten signifikant hoher
vorhanden, im Vergleich zu Probanden ohne Tumorerkrankungen. Im Falle von Patienten
mit Metastasen schwankt die Richtung der Regulation, ist allerdings zu keinem Zeitpunkt
signifikant. Ahnliches gilt fiir miR-1227, hier schwankt die Regulationsrichtung nicht bei
Patienten mit Metastasen, ansonsten verhalt die miRNA sich aber gleich wie miR-197.
Analog ist miR-4294 bei Patienten die Metastasen entwickeln oft weniger exprimiert. Eine
weitere Beobachtung ist, dass miR-432, unabhangig ob Patienten Metastasen entwickeln

oder nicht, in Tumoren immer niedriger exprimiert als in Kontrollen.

Auch die Ergebnisse dieser Studie wurden mittels RT-qPCR validiert. Obwohl die
Ergebnisse an verhaltnismaf3ig kleinen Kohorten durchgefithrt wurden, scheinen die
Resultate vielversprechend. Insbesondere das longitudinale Studien Set-Up, welches auch

gepaarte statistische Analysen erlaubt, tragt dazu bei, dass liberzeugende Ergebnisse
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erzielt wurden. Natlirlich bedarf es hier, wie auch in der diagnostischen Studie, weiterer
unabhangiger Validierung, bis ein entsprechender Test im klinischen Kontext eingesetzt

werden kann.

Vor allem die Ergebnisse im Umfeld der frithen Diagnostik von Lungentumoren waren
bisher so positiv, dass eine weitere Validierung in den AGs Humangenetik und Klinische
Bioinformatik durchgefiihrt wurde. Diese Validierung der urspriinglichen Ergebnisse, die
ohne meine direkte Mitarbeit erfolgte, hat gezeigt, dass die Ergebnisse selbst an einem
Kollektiv von 3,000 Probanden (Lungentumorpatienten, gesunde Kontrollen und
Patienten mit anderen Erkrankungen wie COPD) Bestand haben. Ein entsprechendes

Manuskript wird zur Publikation vorbereitet.

Publikationen: Die Arbeiten, die in diesem Abschnitt beschrieben werden basieren
hauptsdchlich auf [54, 55]. Daneben wurde basierend auf der Methodik im ersten
Manuskript ein Patent angemeldet, das zeigt wie neue miRNAs im Vergleich von
Probanden und Kontrollen besser gefunden werden konnen (US201314442858
20131104).

4.2.3. Diagnose von Multipler Sklerose & Alzheimer

Wie im einleitenden Absatz zu Kapitel 4.2 beschrieben und spater im Abschnitt 4.2.4. im
Detail diskutiert wird, ist es wichtig, nicht nur zu verstehen, ob eine miRNA zwischen
Patienten einer Erkrankung und Kontrollen unterschiedlich exprimiert ist, sondern es ist
gleichermafden wichtig zu verstehen, wie spezifisch einzelne miRNAs oder miRNA
Signaturen fiir eine bestimmte Erkrankung sind. Dabei ist es sinnvoll, die richtigen
Kontrollen zu wahlen. Bei Lungentumorpatienten macht es zum Beispiel Sinn, nicht nur
gesunde Probanden als Kontrollen zu betrachten, sondern auch Patienten mit anderen
Lungenerkrankungen wie COPD. Dariiber hinaus kann es aufderdem niitzlich sein, andere
Erkrankungen mit in die Betrachtung einzubeziehen. Neben dem Punkt der Spezifitat der
Signaturen dient dies auch dem Verstiandnis, ob und wie weit miRNA Signaturen aus dem

Blut iiber ein bestimmtes Krankheitsbild hinaus generalisiert werden kénnen.

Neben Lungentumoren habe ich mich mit Erkrankungen des Zentralen Nervensystems
befasst und sowohl Multiple Sklerose als auch Alzheimer in meine Forschung

eingeschlossen [56-58].
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Multiple Sklerose: Bei der Multiplen Sklerose (MS) wurden sowohl Kontrollen (n=50)
als auch Patienten mit klinisch isoliertem Syndrom (CIS, N=25) und Relapsing-Remitting
Multiple Sclerosis (RRMS, n=25) Patienten eingeschlossen. Ziel der Studie war es,
molekulare Marker zu finden, die gangige und etablierte Kriterien [182, 183] in der
Diagnose von MS verbessern. Vor allem bei CIS und bei atypischen Formen der MS kann
ein entsprechender Marker von entscheidendem Vorteil sein [184]. Da wie in Absatz 4.1.
beschrieben, verschiedene Plattformen ihre jeweiligen Stirken und Schwachen haben,
wurde sowohl Mikroarray Technologie als auch HTS verwendet, um ein moglichst
umfangreiches Bild zu erhalten. Die Signaturen wurden auflerdem mittels RT-qPCR
validiert. Als Ausgangsmaterial wurden PAXgene Blutproben von den 100 Individuen
verwendet. Die experimentellen Methoden sind analog zu den vorher beschriebenen

Studien durchgefiihrt worden.

In den HTS Experimenten wurden insgesamt 835 miRNAs detektiert. 38 dieser miRNAs
waren signifikant unterschiedlich zwischen MS Patienten und Kontrollen exprimiert.
Darunter waren 16 mit geringeren Levels in MS Patienten und 22 mit hoheren Levels. Die
acht am stiarksten dysregulierten miRNAs hatten besonders hohe Effektgrofden. Sie
enthalten die fiinf geringer exprimierten hsa-miR-361-5p, hsa-miR-7-1-3p, hsa-miR-
5480-3p, hsa-miR-151a-3p, und hsa-miR-548am-3p sowie die drei hoher exprimierten
hsa-miR-22-5p, hsa-miR-27a-5p und hsa-miR-4677-3p. In der mikroarraybasierten
Analyse wurden deutlich weniger miRNAs gefunden: nur etwa jede zweite miRNA aus den
HTS Experimenten konnte gemessen werden. Insgesamt waren im Gruppenvergleich acht
miRNAs signifikant. Fiinf miRNAs die schwacher in MS Patienten waren (hsa-miR-146b-
5p, hsa-miR-7-1-3p, hsa-miR-20a-5p, hsa-miR-3653, hsa-miR-20b) und drei, die starker
waren (hsa-miR-16-2-3p, hsa-miR-574-5p, hsa-miR-1202).

Wenn man davon ausgeht, dass im HTS Experiment 1.9 % der miRNAs signifikant waren
und im Mikroarray Experiment 0.7 %, ist eine zufillige Uberlappung der beiden Sets an
miRNAs relativ unwahrscheinlich. Trotzdem stimmten drei miRNAs zwischen beiden Sets
tiberein (hsa-miR-16-2-3p, hsa-miR-20a-5p und hsa-miR-7-1-3p; p-Wert fiir die
Uberlappung entspricht 0.004). Keine der miRNAs zeigte eine Korrelation mit der Form
der MS, die Level zwischen CIS und RRMS Patienten waren nicht signifikant
unterschiedlich. Um Informationen tliber die Spezifitit der miRNAs fiir Erkrankungen zu
erlangen, haben wir eine 6ffentliche Datenbank, die HMDD (Human miRNA Disease
Database), abgefragt. Diese Analyse hat gezeigt, dass die oben beschriebenen miRNAs
tatsachlich gehauft in anderen Erkrankungen vorkommen. Fiir alle bis auf eine miRNA
konnte eine Korrelation zu mehr als acht verschiedenen Erkrankungen hergestellt
werden. Die miRNA, die daher am spezifischsten fiir MS ist, ist miR-16-2.
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Zusammenfassend wurden Signaturen fiir MS gefunden, die es erlauben die bisherige
Diagnose nach jetzigem Kenntnisstand mit Hilfe von miRNAs zu verbessern.
Erstaunlicherweise waren die Unterschiede zwischen der CIS und der RRMS Form der MS
relativ gering und statistisch nicht signifikant. Das kann allerdings an den
verhaltnismafdig kleinen Gruppen je untersuchter MS Art liegen. Wahrend fiir MS
insgesamt 50 Falle untersucht wurden, waren es je Subgruppe nur 25 Falle. Ein weiterer
Punkt, der genauer untersucht werden muss, ist die Spezifitat der Signatur fiir Multiple
Sklerose. Viele der gefundenen miRNA Marker wurden auch in anderen Krankheiten
entdeckt. Alleine miR-16-2 war sehr spezifisch und die Signatur die identifiziert wurde,

wurde als solche in keiner anderen Erkrankung in dhnlicher Form gefunden.

Alzheimer (AD): Als zweite Erkrankung des Zentralen Nervensystems habe ich die
Alzheimer Erkrankung ndher betrachtet. Alzheimer ist eine Volkskrankheit, die uns in den
niachsten Jahren und Jahrzehnten noch deutlich starker betreffen wird. Bereits 2015
lebten weltweit etwa 47 Millionen Menschen mit Alzheimer. Bis 2050 wird sich diese Zahl
laut aktueller Progonsen etwa verdreifachen. Die Entwicklung der Therapien fiir
Alzheimer ist in den vergangenen Jahren fast stagniert [185-188]. Fiihrende
Pharmafirmen ziehen sich teilweise sogar aus der Forschung an Medikamenten fiir
Alzheimer oder sogar Neurodegeneration insgesamt zuriick. Ein Beispiel ist das
Pharmaunternehmen Eli Lilly, das im Januar 2017 verkiindet hat, seine Bemiihungen in
diesem Umfeld weitestgehend einzustellen. Eine der Hauptherausforderungen ist es
dabei, dass die Patienten oft zu spat erkannt werden und mittels bildgebender Verfahren
wie MRT diagnostiziert werden. Ein Uberblick iiber die momentanen Diagnoseverfahren
mit Schwerpunkt auf molekulare Diagnostik und zirkulierende Biomarker Panels ist von
Zafari publiziert worden [189]. Auch bei der Alzheimer Erkrankung wurde das Potenzial
zirkulierender miRNA Muster, analog der Verfahren bei Lungentumoren und Multipler
Sklerose, getestet [56, 57].

In einer ersten Studie wurden Alzheimer Samples und Kontrollen, die in Bezug auf Alter
und Geschlecht zugeordnet waren, auf ihr Repertoire an miRNAs im Blut mit HTS
charakterisiert. Die experimentellen Methoden waren dabei wieder identisch zu der oben
beschriebenen MS Studie. Die Patientenproben wurden von der SAMPLE Studie (Serial
Alzheimer Disease and MCI Prospective Longitudinal Evaluation) von PrecisionMed (San
Diego, CA, USA) erhalten und einer ausfiihrlichen Standard Diagnostik (inklusive MRT
und Mini-Mental State Exam MMSE) unterzogen. In dieser Studie wurden 416 reife
miRNAs detektiert. Da die Read Zahlen wieder nicht normalverteilt waren, wurde der

nicht-parametrische Wilcoxon-Mann-Whitney (WMW) Test angewendet und die p-Werte
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wurden mittels der Benjamini-Hochberg (BH) Methode adjustiert. Die Analysen haben
180 dysregulierte miRNAs zwischen Patienten und Kontrollen ergeben, davon waren 90
jeweils hoher bzw. tiefer bei Alzheimer Patienten im Vergleich zu Kontrollen. Eine
netzwerkbasierte Analyse hat ergeben, dass unter den 180 miRNAs auch die
Krankheitskategorie ,Alzheimer miRNAs“ stark iiberreprasentiert war (p=0.01). Die
sechs miRNAs hsa-miR-21, hsa-miR-17, hsa-miR-29a, hsa-miR-29b, hsa-miR-106b und
hsa-miR-107 gehorten alle dieser Kategorie an. Neben den p-Werten wurde auch die AUC,
die Area Under The Curve, als weiteres Kriterium fiir die diagnostische Qualitat der
Biomarker berechnet. Bereits einzelne miRNAs hatten ausgezeichnete Werte mit AUC’s
tiber 0.91 und daher nahe dem Optimum von 1. Die am meisten tiberexprimierte miRNA
war miR-30d-5p, die am meisten nach unten regulierte miRNA war miR-144-5p. Die p-
Werte waren dabei jeweils 8x10-¢. Auch diese beiden miRNAs sind nicht spezifisch, neben

AD wurden sie in vielen anderen Erkrankungen (auch in MS, siehe oben) beschrieben.

Diese Resultate werfen zwei Fragen auf: Kann die Genauigkeit der Vorhersage durch die

Kombination von miRNAs in Signaturen verbessert werden und sind diese Signaturen

dann auch spezifisch fir

. 0,95 Sensitivitit AD. Um diese Frage zu

T 09 Genauigkeit beantworten wurden

2 0,85 W Spezifitat zunichst maschinelle

g 0,8 Lernverfahren (ML)

© 075 verwendet. Die besten

0,7 Ergebnisse haben Support

2 10 20 30 40 50 150 250 Vector Machines (SVM) mit

Anzahl an miRNAs Radialer Basis Funktion als

Abbildung 22: Genauigkeit in Abhdingigkeit der Anzahl an miRNAs in der AD  Kernel gezeigt. Die
Signatur.

Ergebnisse der

Die Abbildung zeigt die Spezifitit, Sensitivitit und die Testgenauigkeit des K]assifikation mittels SVM
AD Tests in Abhdngigkeit der Anzahl an miRNAs in der Signatur. Die . o )
Abbildung ist modifiziert aus Leidinger et al. entnommen. ist in Abhéangigkeit der

Anzahl an miRNAs in der
Signatur in Abbildung 22 gezeigt. Mit steigender Anzahl erhoht sich auch die Genauigkeit
der Vorhersage. Mit 250 miRNAs werden 90 % aller Proben korrekt zugeordnet.

Viele der miRNAs in der 250 Marker-Signatur haben jedoch eine hohe Redundanz gezeigt.
Daher war es moglich mit substanziell kleineren Sets bereits dhnlich gute Resultate zu
erzielen und dabei gleichzeitig die Gefahr des Overfittings zu reduzieren. Bereits mit 12
Markern war es moglich, eine Spezifitdt und Sensitivitat von 85 % zu erzielen. Diese 12-
Marker-Signatur besteht aus brain-miR-112, brain-miR-161, hsa-let-7d-3p, hsa-miR-
5010-3p, hsa-miR-26a-5p, hsa-miR-1285-5p und hsa-miR-151a-3p (hoher exprimiert bei
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AD Patienten) und hsa-miR-103a-3p, hsa-miR-107, hsa-miR-532-5p, hsa-miR-26b-5p,
und hsa-let-7f-5p (niedriger exprimiert in AD Patienten). Neben 10 bekannten miRNAs
waren auch zwei bisher nicht bekannte miRNAs in der Signatur, die anstatt des typischen
Vorsatzes ,hsa-miR“ mit ,brain-miR“ gekennzeichnet sind.

m hsa-miR-151a-3p

brain-miR-161

m hsa-let-7f-5p
2 1 B hsa-miR-1285-5p

B hsa-miR-107
@ 7 1 ¥ 27 agi anl. ¥ hsa-miR-103a-3p
§ g o | | 1 ] # M hsa-miR-26b-5p
a8 r'u F ' ® hsa-miR-26a-5p
2 T -1 1 W hsa-miR-532-5p

I 1

hsa-let-7d-3p

brain-mir-112

CONTROL
Alzheimer
MCI
Parkinson
Depression
Multiple
Sclerosis
Schizoprenia
Bipolar
Disorder

Abbildung 23: AD Signatur in anderen Ervkrankungen.

Die Abbildung zeigt die 12-miRNA Signatur die bei AD Patienten gefunden wurde im Verhdltnis zu anderen
Erkrankungen. Die Balkenhohe entspricht dabei der Expression der miRNAs. Jede Evkrankung hat dabei deutlich
sichtbar ihre eigene Signatur. Die Abbildung ist modifiziert aus Leidinger et al. entnommen.

Um zu verstehen, wie spezifisch die Signatur fiir AD ist, wurde eine Kohorte von 202
Patienten verschiedener Erkrankungen mittels RT-qPCR auf diese Signatur hin
untersucht. Die Erkrankungen die dabei betrachtet wurden, waren neben AD auch
Parkinson (PD) Schizophrenie (Shiz), Bipolare Stéorung (BD), Mild Cognitive Impairment
(MCI) und MS. Fiir Patienten aller Erkrankungen wurden die miRNA-Signaturen der 12
oben genannten miRNAs erhoben. Diese sind in Abbildung 23 gezeigt. Hier ist
anzumerken, dass die Werte fiir gesunde Probanden verwendet wurden, um eine
Normalisierung auf ein Ausgangsniveau zu erméglichen. Wie in Abbildung 23 gezeigt ist,
haben alle Erkrankungen spezifische Muster der 12-Marker miRNA-Signatur. Speziell in
MS und Depression wurden signifikant andere Muster nachgewiesen, entweder waren
alle miRNAs deutlich hoher oder deutlich niedriger exprimiert. Besonders bei Patienten
die unter Depression leiden wurden deutlich niedrigere Werte der miRNAs aus der 12-er
Signatur nachgewiesen. Erstaunlich war auch, dass die AD Patienten fast genauso gut von
MCI Patienten getrennt werden konnten wie von gesunden Kontrollen. Zwischen
verschiedenen Graden der AD Erkrankung (Patienten mit MMSE >19 wurden als milde

Form und Patienten mit MMSE 12-19 wurden als moderate Form betrachtet) zeigten sich
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hingegen keine unterschiedlichen Signaturen.

Insgesamt wurde mit der 12-Marker-Signatur eine relativ genaue Diagnostik von

Alzheimer in frithen Stadien ermdglicht. Da die Signatur es erlaubt MCI von AD Patienten

abzugrenzen, scheint sie sehr spezifisch fiir AD zu sein.
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Abbildung 24: AD miRNAs in den USA und Deutschland.

Die Abbildung zeigt die AUC Werte der miRNAs in den USA (X-Achse) und
Deutschland (Y-Achse). Die AUC Werte sind so gewdhlt dass AUC > 0.5
Hochregulation und AUC < 0.5 nach unten Regulation entspricht. AUC
Werte von genau 0.5 bedeuten, dass die miRNAs nicht unterschiedlich
zwischen Patienten und Kontrollen sind (horizontale und vertikale
gestrichelte Linie). Alle 68 miRNAs waren konkordant, entweder hoch-
exprimiert sowohl in AD Patienten in den USA und Deutschland (oberer
rechter Quadrant) oder niedrig-exprimiert sowohl in AD Patienten in den
USA und Deutschland (unterer linker Quadrant). Diskordante miRNAs (die
in beiden Kohorten in jeweils die entgegengesetzte Richtung exprimiert
wdren) wdren in den oberen linken bzw. unteren rechten Quadranten zu
finden. Die Abbildung ist modifiziert aus Keller et al. entnommen.

Natiirlich ist es wichtig,
entsprechende komplexe
Signaturen auch in einer
Kohorte

validieren. Da die Patienten

weiteren Zu

in der urspriinglich
verwendeten Kohorte aus
den USA stammen, war es
sinnvoll, eine nicht aus
Amerika stammende
Validierungskohorte Zu
wahlen. Als zweite Kohorte
und

wurden Patienten

Kontrollen die in
Deutschland

wurden gemessen und mit

gesammelt
den urspriinglichen
Signaturen verglichen.
Insgesamt wurden 290
HTS miRNA-Profile in diese
Analyse einbezogen. Die
Methodik dabei

wieder identisch zu der

war

vorher beschriebenen MS
und initialen AD-Studie.

Zusammengenommen wurden 3.85 Milliarden Reads in der Studie analysiert und dabei

580 miRNAs detektiert. Die gemeinsame Analyse der Daten hat ergeben, dass in der

ersten Kohorte (USA) 203 dysregulierte miRNAs vor und 127 dysregulierte miRNAs nach

Adjustierung fiir Multiples-Testen gefunden wurden. In der Kohorte aus Deutschland

waren 146 miRNAs dysreguliert bevor adjustiert wurde, 49 nach der Adjustierung. Von

den 203 und respektive 146 miRNAs stimmten 68 ilberein. Die Gesamtzahl an

exprimierten miRNAs betrug 580. Ein hypergeometrischer Test hat ergeben, dass die
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Uberlappung statistisch sehr signifikant war (p=0.0003). Noch entscheidender war, dass
wie in Abbildung 24 gezeigt alle miRNAs konkordant waren. Sie waren sowohl in den USA
als auch in Deutschland entweder niedriger oder hoher exprimiert, bei AD Patienten

verglichen zu Kontrollen.

Insgesamt konnten die miRNA

— ||
Muster verwendet werden, um .—v—. 1‘1_%‘] h

-5 0 5
Row Z-Score

AD Patienten von Kontrollen .
o o Patienten h
mit einer Genauigkeit von

etwa 90 % zu trennen. Grafisch N 0 R AN TRy e

ist diese Trennung in
Abbildung 25 gezeigt. Fiir die
signifikanten = miRNAs in

beiden Studien wurde eine

sogenannte Heat Map erzeugt.

Sie ist das Ergebnis eines

hierarchischen Clusterings

unter Verwendung der

MiRNASs

FECTEREETTEETT L Ll

Euklidischen Distanz. Analog

zur ersten Studie dber
Alzheimer miRNAs war auch

hier die Genauigkeit deutlich

besser, wenn  Signaturen

anstatt von einzelnen miRNAs
verwendet wurden. Wihrend Abbildung 25: Clustering der 69 AD miRNAs.

einzelne Marker eine AUC von Blaue Werte enisprechen hoher Expression, orangene Werte
. entsprechend niedriger Expression. Uber der Matrix und auf der
0.75 gezeigt haben, war es linken Seite der Matrix ist jeweils ein Dendrogram gezeichnet, das

méglich unter Verwendung zeigt, wie gut miRNAs (Zeilen) und Patienten (Spalten) zusammen
. ) . clustern. Die Abbildung ist modifiziert aus Keller et al. entnommen.

von SVM Klassifikation eine

AUC von 0.842 zu erreichen. Mit verbesserter statistischer Analyse war es sogar moglich,

die Klassifikatoren an Hand von Daten aus den USA zu trainieren und AD an deutschen

Patienten vorherzusagen. Hier lag die Genauigkeit bei immerhin noch 73 % (Daten nicht

gezeigt). Dieser erste grofiere Datensatz hat es auf3erdem ermdoglicht, Effekte der miRNAs

auf ihre Zielgene und Zielnetzwerke abzuschatzen. Siehe auch nachfolgendes Kapitel 4.3.
Zusammenfassend kann man sagen, dass es gelungen ist eine miRNA Signatur die fiir

Alzheimer spezifisch ist zu detektieren und an Hand von zwei diversen Kollektiven auf

zwei verschiedenen Kontinenten zu validieren.
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Publikationen: Die Arbeiten, die in diesem Abschnitt beschrieben werden basieren
hauptsdchlich auf den beiden Publikationen [56, 57]. Zusdtzlich wurden zwei Patente
angemeldet, um miRNA basierte Diagnostik aus dem Blut bei AD Patienten
durchzufiihren (W02017108535, US2016273040).

4.2.4. Das ,Disease miRNome*

Zentraler Aspekt in allen vorherigen Abschnitten war die Spezifitit von miRNAs fiir
Erkrankungen. In Kapitel 4.2.2 habe ich Signaturen in Lungentumoren und COPD
beschrieben und in Kapitel 4.2.3 von Erkrankungen des Zentralen Nervensystems. Schon
dabei wurden Uberlappungen in der miRNA-Expression gefunden, obwohl die
betrachteten Pathologien deutlich unterschiedlich voneinander sind. Das ldsst auf eine
gemeinsame, unspezifische Komponente von miRNAs im Blut von Patienten im Vergleich
zu Kontrollen schlieféen. Direkte Vergleiche basierend auf Daten aus der Literatur in
sogenannten Metaanalysen sind schwierig. Oft werden unterschiedliche Systeme zum
Sammeln des Blutes verwendet (EDTA / PAXgene / ...), verschiedene RNA Aufreinigungs-
methoden werden eingesetzt, andere analytische Methoden (HTS / Mikroarray / RT-
gqPCT /..) werden angewendet und die erhobenen Daten mit unterschiedlichen Methoden
ausgewertet. Um einen besseren Vergleich zu ermdéglichen ist die beste Alternative eine
Studie aufzusetzen, die auf exakten ,Standard Operating Procedures (SOPs)“ basiert. Ich
war Teilnehmer eines grofien Konsortiums von tiber 50 Wissenschaftlern, das SOPs zum
Sammeln, Messen und Auswerten von Blut basierten miRNA-Signaturen entwickelt und

an tiber 30 Erkrankungen getestet hat [34].
Insgesamt wurden in der entsprechenden Studie 454 Blutproben aus fiinf Zentren

eingeschlossen. Die  Kohorten beinhalten Lungentumore, Prostatatumore,

Pankreastumore, Melanom, Eierstockkrebs, Magentumore, Wilmstumore,
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Abbildung 26 : Das Disease miRNome.

Die Abbildung zeigt fiir jede mogliche Kombination von héher zu niedriger exprimierten miRNAs in wie vielen
Erkrankungen die miRNAs entsprechend reguliert waren. Die Grofie der Bubbles entspricht dabei der Anzahl der
miRNAs. Die Abbildung ist modifiziert aus Keller et al. entnommen.

Pankreaskrebs, Multiple Sklerose, COPD, Sarkoidose, Periodontitis, Pankreatitis und
Herzinfarktpatienten. Jedes der teilnehmenden Zentren musste neben den Patienten auch

Kontrollen ohne bekannte Erkrankung zur Verfligung stellen.

Flir alle Patienten und Kontrollen wurden 863 miRNAs aus Vollblut mittels Mikroarrays
gemessen. Die vergleichende Analyse der Erkrankungen hat ergeben, dass im
Durchschnitt 103 miRNAs je Erkrankung nach Adjustierung fiir Multiples-Testen
signifikant waren. 62 miRNAs waren dabei in mindestens sechs verschiedenen
Erkrankungen signifikant. Drei miRNAs wurden in neun Vergleichen gefunden (hsa-miR-
423-5p, hsa-miR-146b-3p und hsa-miR-532-3p), eine miRNA sogar in 11 (hsa-miR-
320d). Gerade einmal 121 miRNAs waren mit keiner einzigen Erkrankung signifikant
assoziiert. Erstaunlich war aufierdem, dass die Regulationsrichtung oft konkordant
zwischen den verschiedenen Erkrankungen war, miRNAs waren entweder generell hGher
bei Patienten als in Kontrollen vorhanden oder generell niedriger bei Patienten im
Verhaltnis zu Kontrollen. Das ,Disease miRNome*, das diesen generellen Bezug darstellt,

ist in Abbildung 26 gezeigt.
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Um die notwendige Spezifitat fiir die Diagnose von Erkrankungen zu bekommen wurden
Maschine-Learning-Verfahren analog zu den in der Alzheimer und Multiplen Sklerose
Studie vorgestellten Methoden verwendet: Klassifizierung mittels Support Vektor
Machines. Fiir die 14 Erkrankungen wurde eine diagnostische Genauigkeit von
mindestens 81 % erlangt, teilweise bis zu 100 %, zum Beispiel fiir bosartigen Hautkrebs.
Die mittlere Genauigkeit liber alle Erkrankungen die getestet wurden hinweg, lag bei 89
%. Schon Subsets von nur 10 miRNAs haben ausgereicht, um eine mittlere Genauigkeit
von 81 % zu erzielen. Eine unabhangige, gezielte Validierung mittels RT-qPCR, unter
Verwendung des WaferGen Systems, hat die Ergebnisse in dieser Studie am Beispiel von
Lungentumoren und COPD verifiziert. Insgesamt bestitigen die Ergebnisse die Resultate
aus den vorangegangenen Abschnitten. Wahrend einzelne miRNAs diagnostisches
Potenzial besitzen aber nicht spezifisch sind, erlaubt es die Kombination von miRNAs zu
kleineren Sets von etwa 10 Markern, sowohl die Genauigkeit zu verbessern als auch die

Spezifitat zu erhohen.

Publikationen: Die Arbeiten, die in diesem Abschnitt beschrieben werden basieren
hauptsdchlich auf [34] und wurden in einer weiteren Publikation verifiziert [190].

4.2.5. Zusammenfassung Biomarker Entwicklung

Die in vielen Originalarbeiten beschriebenen und in dieser Ausarbeitung
zusammengefassten miRNA-Signaturen sind vielversprechende Biomarker fiir
Erkrankungen. Nach der Charakterisierung der Signaturen in der Grundlagenforschung
und dem Gewadhrleisten der Stabilitat sind jetzt zwei weitere mafdgebliche Schritte
notwendig. Der erste ist es, die biologische Funktion und Wirkungsweise der miRNAs und
miRNA-Signaturen besser zu verstehen. Erste kleine Schritte dazu sind im nachsten
Abschnitt gezeigt. Daneben muss eine grofdere multizentrische Validierung durchgefiihrt
werden. Im Falle von Alzheimer wurde die Kohorte auf 500 Patienten erhoht, im Umfeld
Lungenerkrankungen sogar auf fast 3,000 Patienten und Kontrollen. Bisher scheinen sich
die Ergebnisse der kleinen Kohorten zu bestitigen, sodass die berechtigte Hoffnung
besteht, dass entsprechende miRNA Signaturen ihren Weg in die klinische Praxis finden.
Wichtig ist herauszustellen, dass flir den klinischen Einsatz die Marker selbst
entscheidend sind und nicht so sehr die Technologie mit der sie gemessen werden.
Sowohl fiir Immunoassays als auch Mikroarrays, HTS und RT-qPCR gibt es bereits klinisch
zugelassene Tests. Die Erkenntnisse, die aus diesen und anderen Studien gezogen
wurden, sind von Fehlmann et al. kiirzlich in einer umfassenden Arbeit zum humanen

nichtkodierenden Transkriptom zusammengefasst worden [103].
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4.3. Die Komplexitat und wechselseitige Wirkung von miRNAs

Stetig wachsende Datensitze ermoglichen es, auch die Effekte von miRNAs auf ihre
Zielgene besser abzuschatzen. Wie in der Einleitung und in Kapitel 2 beschrieben ist es
eine der Hauptfunktionen von miRNAs die Expression von Genen zu unterdriicken oder
entsprechend die mRNAs der Gene abzubauen. Eine Vielzahl von experimentell
validierten oder vorhergesagten Zielgenen von miRNAs ist in Datenbanken wie der
miRTarBase [191-194] oder der StarBase [195, 196] hinterlegt. Dariiber hinaus sind
miRNAs Teil eines komplexen Netzwerkes, zu dem auch andere Transkriptionsfaktoren
beitragen. Bereits in den Arbeiten iliber Alzheimer (Kapitel 4.2) hat sich gezeigt, dass
miRNAs gezielt Netzwerke modulieren und so wahrscheinlich einen substanziellen
Einfluss auf die Entstehung oder das Voranschreiten der Erkrankung haben kénnen.
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Abbildung 27: Genregulationsnetz der 68 Alzheimer miRNASs.

Das Netzwerk zeigt die signifikanten miRNAs aus beiden Alzheimer Studien die mindestens 5 Gene regulieren.
Dieses Genset, welches in der Mitte dargestellt ist, beinhaltet viele Schliisselgene fiir Alzheimer, zum Beispiel APP.
Die Abbildune ist modifiziert aus Keller et al. entnommen.
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In den Studien tber Alzheimer wurden insgesamt 68 miRNAs als dysreguliert erkannt.
Fiir 33 dieser miRNAs sind in der miRTarBase sowohl vorhergesagte als auch validierte
Zielgene enthalten. Insgesamt wurden 563 Interaktionen zwischen den 33 miRNAs und
349 Genen detektiert. Das Kernnetzwerk, das aus den Genen besteht die von mindestens
finf miRNAs reguliert werden und den entsprechenden miRNAs ist in Abbildung 27
gezeigt. Viele der 14 Gene, die in Abbildung 27 enthalten sind, sind fiir ihre Bedeutung in
Alzheimer bekannt. Das wahrscheinlich bekannteste davon ist APP, das fiir das Amyloid
Precursor Protein codiert und eine Schliisselrolle in der Entstehung von
Neurodegeneration inne hat [197, 198].

Differenziell Co-Exprimiert
Co-Exprimiert

hsa-miR-93
|

hsa-miR-484

hsa-miR-320d sa-miR-423-5p

hsa-miR-363 hsa-miR-320b
hsa-miR-720

Abbildung 28: Kern-Co-Expressions Netzwerk.

Die Abbildung zeigt zwei Cluster von miRNAs. Die auf der linken Seite stehenden miRNAs sind differenziell co-
exprimiert, die auf der rechten Seite stehenden miRNAs sind co-exprimiert. Da die Sequenzihnlichkeit einen
Einfluss hat, ist die Kantendicke proportional zur Ahnlichkeit der Sequenzen gewdihlt. Blaue Kanten entsprechen
positiver Korrelation, rote Kanten negativer. Gepunktete Kanten zeigen zudem die Paare an, die differenziell co-
exprimiert sind. Die Abbildung ist modifiziert aus Stihler et al. entnommen.

Es ist wichtig zu erwdhnen, dass die Interaktionen in Abbildung 27 aus der miRTarBase
entnommen wurden und alle Paare von miRNAs und Zielgenen experimentell gefunden
worden sind. Das ist in der Mehrzahl der Falle aber wiederum nur eine indirekte Evidenz
die auf Korrelationen beruht und aus Hochdurchsatzexperimenten abgeleitet wurde.
Prinzipiell sollte fiir jede einzelne dieser Interaktionen ein spezifisches Experiment, wie
zum Beispiel ein Luciferase Reporter Assay, durchgefiihrt werden [163]. Dies bedeutet
jedoch einen enormen experimentellen Aufwand, der nicht im Rahmen einer

theoretischen Arbeit moglich ist, sondern dedizierte Expertise im Labor erfordert.
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Die Mechanismen der Regulation von Genen durch miRNAs scheinen insgesamt
wesentlich komplexer als urspriinglich angenommen. Oft ist es nicht eine einzelne miRNA
die ein isoliertes Gen reguliert. Vielmehr arbeiten miRNAs, teilweise sogar miRNA
Familien kooperativ um komplette biochemische Pfade gezielt zu steuern [162, 163, 199-
201]. Dabei hat sich auch die co-Expression von miRNAs entwickelt. Um zu verstehen,
welche generelle Rolle miRNAs in Krankheiten einnehmen und wie sie gemeinsam
agieren, habe ich mir gezielt miRNA co-Expression und differenzielle miRNA co-
Expression angeschaut [59]. Basierend auf dem in Abschnitt 3.2.4. eingefiihrten Datensatz
iiber mehrere hundert Patienten und 863 miRNAs wurden alle paarweisen
Kombinationen von miRNAs untersucht (863*862/2 = 371.953 Kombinationen). Durch
stringentes Filtern nach der absoluten Korrelation und dem p-Wert wurden 184 Paare
von miRNAs, die entweder korreliert (118) oder antikorreliert waren (66), abgeleitet.
Eine Detailanalyse hat dabei ergeben, dass diese Paare zum Teil differenziell co-

exprimiert waren.

Konkret bedeutet das, dass die Korrelation entweder nur bei Kontrollprobanden oder nur
bei Patienten vorhanden war. Das auffalligste Beispiel war das Paar hsa-miR-23a/hsa-
miR-23b. Sowohl bei Tumorpatienten als auch bei Patienten die nicht an
Krebserkrankungen litten, waren diese beiden miRNAs stark korreliert. Bei gesunden
Probanden war die Korrelation hingegen fast nicht mehr sichtbar. Detaillierte Analysen
haben ein Netzwerk ergeben, das aus zwei Komponenten besteht und in Abbildung 28
gezeigt ist. Auf der linken Seite des Netzwerkes in Abbildung 28 sind differenziell co-
exprimierte miRNA Paare gezeigt, also solche die bei Erkrankungen ihre co-Expression

gewinnen oder verlieren, wahrend der rechte Teil die co-exprimierten miRNAs zeigt.

Auf der Suche nach Griinden fiir die co-Expression wurden verschiedene Hypothesen
aufgestellt und getestet. Eine mogliche Erklarung ist Sequenzdhnlichkeit. miRNAs mit
dhnlicher Sequenz koénnen beispielsweise evolutiondr konserviert sein und die selbe
Funktion ausiiben. Tatsachlich hat die Sequenzahnlichkeit eine signifikante Rolle gespielt.
Oft waren miRNAs mit dhnlicher Sequenz auch co-exprimiert. Allerdings gab es viele Flle,
bei denen sehr hohe co-Expression bestand (p < 10-16) aber keinerlei Ahnlichkeit in der
Sequenz festgestellt werden konnte. Ein weiterer Faktor, der signifikant dazu beigetragen
hat, dass miRNAs co-exprimiert waren, war die chromosomale Lokalisation. Oft waren
solche miRNA-Paare, die auf dem selben Chromosom teilweise direkt in miRNA Clustern
co-lokalisiert waren, auch sehr stark miteinander korreliert. Insbesondere miRNAs der
selben miRNA-Familien haben eine starke Tendenz zur co-Expression gezeigt. Eine
Cluster Analyse hat ergeben, dass es co-exprimierte miRNA-Cluster gibt, deren Ursache
weder auf Sequenzdhnlichkeit noch auf Familienzugehorigkeit oder chromosomale

Lokalisation beruhen.
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Meine Ergebnisse deuten darauf hin, dass miRNAs generell ein kooperatives Verhalten
zeigen, das weit liber das bekannte Maf3 hinausgeht. Sie konnen teilweise ihre Funktion
gegenseitig libernehmen und im Fall von Erkrankungen scheinen gezielt Teile des eher
homdoostatischen miRNA Regulationsnetzwerkes zusammenbrechen.

Publikationen: Die Arbeiten, die in diesem Abschnitt beschrieben werden basieren
hauptsdchlich auf [59].
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4.4. Anwendungen in der ,Synthetischen Biologie“

In meiner Doktorarbeit habe ich Plattformen und Assays entwickelt die zum Einsatz in
der Molekulardiagnostik geeignet sind. In Kapitel 2.1 habe ich ausgefiihrt, dass die
Technologien und Erkenntnisse aber auch dariiber hinaus eingesetzt werden kénnen.
Eine Entwicklung, die in den vergangenen Jahren rasant Fahrt aufgenommen hat, ist die
Synthetische Biologie. Im diesem Fachgebiet arbeiten Wissenschaftler interdisziplinar
zusammen (Biologen, Chemiker, Ingenieure, Informatiker), um biologische Systeme zu
erzeugen, die es so in der Natur nicht gibt. Angefangen mit neuen DANN-Oligonukleotid-
ketten konnen so biologische Systeme mit neuen Eigenschaften erschaffen werden [202,
203]. Der Begriff der Synthetischen Biologie ist bereits seit mehreren Jahrzehnten gepragt
und seit den 1980er Jahren werden entsprechende Systeme entwickelt [204-206]. Bereits
seit fast einem Jahrzehnt ist es moglich, komplette Bakteriengenome zu synthetisieren
und in lebende Bakterien einzubringen [207]. Die Forschung insgesamt hat sehr viele
verschiedene Anwendungsfelder [208-217], von denen die meisten eines gemeinsam
haben: sie bendtigen synthetische Oligonukleotide als grundlegende Bausteine. Diese
konnen erzeugt werden, indem gezielt in vorhandene DNA neue Mutationen eingebracht
werden, vorhandene natiirliche Code Stiicke ohne Veranderung neu kombiniert werden

oder man durch Syntheseverfahren beliebige Sequenzen herstellt.
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Abbildung 29: Grundkonzept des ,, Megakloners .

Die Abbildung zeigt, wie wir die Geniom-Plattform verwendet haben um hoch prdzise Oligonukleotide herzustellen. HTS wurde
im Workflow eingesetzt, um die bereits zu gréfieren Stiicken zusammengesetzten Fragmente Korrektur zu lesen. Die Abbildung
entstammt aus Matzas et al.
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Das in Kapitel 2.1. vorgestellte Geniom System besitzt genau diese Fahigkeit. In kurzer
Zeit - innerhalb eines Arbeitstages - kann eine Anzahl von mehreren hunderttausend
verschiedenen Oligonukleotiden der Lange von bis zu 50 Basen hergestellt werden. Diese
kénnen vom Glastrager geldst und in der Synthetischen Biologie eingesetzt werden. Eine
der Hauptherausforderungen ist dabei das moglichst fehlerfreie Herstellen von
kiinstlicher DNA. Bereits das erste vollstindige Bakteriengenom das kiinstlich erzeugt
wurde hat aus mehr als einer Million Basen bestanden. Wenn man dariiber nachdenkt
hohere Organismen komplett oder zu sehr grofden Teilen aus synthetischer DNA
y2herzustellen“, miissen viele Millionen oder Milliarden Basen mit sehr geringer Fehlerrate

erzeugt werden.

Die HTS Technologie bietet sich dabei an, um die erzeugten DNA Fragmente Korrektur zu
lesen, bevor sie zu grofleren DNA Stiicken - wie zum Beispiel Genen - zusammengesetzt
werden. Der entsprechende Ansatz wird Megacloning genannt [61] und ist in Abbildung
29 dargestellt.

Zunachst wird eine der oben genannten Quellen verwendet, um den bendtigten
grundlegenden Bausatz an DNA zu erhalten. Von jedem dieser grundlegenden Bausteine
werden mehrere Instanzen erzeugt. Jede mogliche Variante der DNA-Bausteine kann
Fehler enthalten. Daher werden sie mit einer sehr akkuraten Technologie, im
vorliegenden Fall mit der 454 Sequenzier-Technologie der Firma Roche, sequenziert. Der
Trager, der verwendet wurde um die Sequenzierung der DNA-Klone durchzufiihren, wird
im Anschluss an die Sequenzierung in den eigentlichen Megacloner gegeben. Ein
Computerprogramm extrahiert die Positionen der korrekt gelesenen Reads auf dem
Sequenziertrager. Ein Roboter steuert gezielt die Position mit dem korrekt gelesenen
Fragment an und extrahiert den DNA-Klon vom Objekttrager. Dadurch kénnen gezielt die
richtigen Fragmente ausgewahlt werden. Diese werden anschlief3end Stiick fiir Stiick zu

langeren Abschnitten zusammengesetzt.

Um die hohe Genauigkeit des Megacloners zu demonstrieren wurden 3.918 verschiedene
Sequenzen auf einem Geniom-Mikroarray hergestellt. Daraus wurden 319 DNA-Klone die
eine 100 %-ige Ubereinstimmung zu den gewiinschten Fragmenten zeigten mit dem
Megacloner vollautomatisch ausgewahlt. Wahrend von den urspriinglich ausgewahlten
Sequenzen nur 3.1 % absolut korrekt waren, zeigten die vom Megacloner vorselektierten
Fragmente eine 27,2-fach hohere Genauigkeit. Die Fehlerverteilung des nicht
korrekturgelesenen Pools und des Pools vom Megacloner sind im Vergleich zueinander in
Abbildung 30 dargestellt. Um zu demonstrieren, dass die entsprechenden Fragmente
auch zusammengesetzt werden konnen, wurden jeweils neun und zehn DNA-Stiicke nach

dem Megacloning zu zwei Genen ligiert. Die Gene wurden dann durch Sanger-
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Sequenzierung liberpriift und es hat sich eine Erfolgsrate von 87,5 % gezeigt.
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Abbildung 30: Performance des ,, Megakloners “.

Der obere Teil der Abbildung zeigt fiir ausgewdhlte Reads den korrekten Anteil in griin und Fehler in rot. Im
unteren Teil wird das Ergebnis nach dem Einsatz des ,,Megacloners* gezeigt. Die Abbildung entstammt aus
Matzas et al.

Um die Leistungsfahigkeit des Megacloners noch besser abzuschdtzen wurden langere
Fragmente basierend auf fast 400 Basen langen Oligonukleotiden zusammengesetzt. Aus
29 korrekt vorselektierten DNA-Klonen konnte ein 7,195 Basen langes DNA-Fragment
ohne Fehler erzeugt werden. Da kein Fehler in dem Fragment gefunden wurde, wurde ein
statistisches Modell gebildet, das die verschiedenen Fehlerraten kombiniert. Dadurch
wurde gezeigt, dass der Megacloner eine Genauigkeit von 5 Fehlern auf 100,000 Basen
erreicht. Im Vergleich zu der urspriinglich nicht korrekturgelesenen Fraktion ist die
Genauigkeit um einen Faktor von 500-mal verbessert worden. Durch den Megacloner
konnen auflerdem die Kosten der Gensynthese um einen Faktor von 10 verringert
werden.

Gerade in immer komplexer werdenden Synthese Projekten bis hin zur synthetischen
Herstellung von grofieren Teilen hoherer Organismen ist die Megacloner-Technologie ein
wichtiger Baustein, um die benotigte hohe Qualitdt in der Synthetischen Biologie zu
erlangen. Die Methode zum Herstellen von Oligonukleotiden und zum gezielten
Korrekturlesen und Extrahieren der richtigen DNA-Fragmente wurde inzwischen vom
Genomik-Pionier Graig Venter und seiner Firma Synthetic Genomics Incorporated gekauft

und werden dort eingesetzt, um die DNA-Synthese substanziell zu verbessern.

Publikationen: Die Arbeiten, die in diesem Abschnitt beschrieben werden basieren
hauptsdchlich auf [61]. Im Bezug zum Megacloner wurden aufSerdem vier Patente
angemeldet (US2017267999, US2010256012, EP2109499, DE102007018833).
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|Kapitel 5

Momentane Arbeit und Ausblick

Meine wissenschaftliche Tatigkeit habe ich als Ingenieur begonnen und Plattformen fiir
den Einsatz in der Molekulardiagnostik entwickelt. Spater habe ich mich mehr in
biologische Aspekte eingearbeitet und Assays konzipiert und Biomarker erforscht. Dabei
haben miRNAs eine essenzielle Rolle gespielt. Meine Arbeit ist dabei immer theoretischer
und computerlastiger geworden und ich bin zu den Grundlagen meines Studdiums
zuriickgekehrt. Wahrend ich am Anfang Auswertungen in Excel auf einem PC durchfiihren
konnte, bedarf es heute spezieller Software wie R oder hdheren und effizienteren
Programmiersprachen wie C++ und grofien Rechenclustern, um die Daten in alltdglichen
Projekten zu verarbeiten. Neben dem klassischen maschinellen Lernen werden Deep
Learning Aspekte und Kiinstliche Intelligenz quasi taglich wichtiger. Diese Entwicklung
wird meine zukiinftige Tatigkeit weiter mitbestimmen.

Die grundlegende Erforschung von miRNAs als Biomarker betrachte ich als
wissenschaftlich weitestgehend abgeschlossen. Die nachsten Schritte bestehen hier im
Messen grofierer Kohorten und in der experimentellen Aufklarung der biologischen
Wirkungsweise der miRNAs in Erkrankungen. Den ersten Teil der Arbeit, die klinische
Validierung, gehen der Lehrstuhl fiir Klinische Bioinformatik und die Arbeitsgruppe fiir
Humangenetik gemeinsam mit der Firma Hummingbird Diagnostic GmbH in Heidelberg
an. Den zweiten Teil, die Erforschung biologischer Mechanismen, bearbeitet maf3geblich
die Arbeitsgruppe Humangenetik.

Ich bin wihrend meiner Doktorarbeit von meiner Position als CTO von Siemens
Healthcare zu der Pharma Firma Merck KGaA in Darmstadt gewechselt. Dort leite ich das
globale Medical Device & Service Geschaft. Dennoch spielt Forschung in meinem Alltag
eine wichtige Rolle. Zwei natlirliche Entwicklungen, die sich in meiner vorliegenden
Ausarbeitung erkennen lassen, werden dabei weiter fortgefiihrt: Die Verlagerung der
Medizin hin zum Patienten und die Digitalisierung im Gesundheitswesen. Der wichtigste
Anwendungsfall ist dabei flir mich nach wie vor die Multiple Sklerose.

Mit meinem Team bei Merck entwickele ich Software, die es Patienten erlaubt ihre
medizinischen Daten - soweit moglich und sinnvoll - selbst zu verwalten und Arzten
gezielt mit geringem Aufwand Zugriff darauf zu geben. Dazu entwickeln wir bei Merck ein
gesamtes IT C)kosystem, Software fiir Patienten und Arzte, die sowohl auf mobilen
Endgeraten wie auch auf klassischen PCs eingesetzt werden kann und die es erlaubt
chronische Erkrankungen besser zu kontrollieren. Wir planen aufierdem molekulare
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Tests, wie die in dieser Arbeit beschriebenen miRNA-Signaturen fiir Multiple Sklerose, zu
verwenden, um den Patienten gezielter die richtige Behandlung zum richtigen Zeitpunkt
zukommen zu lassen. Dabei wird eine weitere Entwicklung in der Doktorarbeit
fortgesetzt: Unsere Biomarker waren zunachst fiir die Anwendung in Speziallaboren
gedacht, spater fiir die Anwendung in Zentrallaboren von Krankenhdusern oder sogar
Point-of-Care in den entsprechenden Fachabteilungen des Krankenhauses. Momentan
etablieren wir diese Bluttests in einer Art und Weise, dass Patienten sich die Probe selbst
zu Hause entnehmen koénnen. Ein Stich mit einer kleinen Lanzette und ein Tropfen Blut
aus dem Finger sind dazu ausreichend.

Durch unsere Losungen zielen wir darauf ab, Arzte in der Behandlung von MS Patienten
besser zu unterstiitzen. Diese Forschung wollen wir gemeinsam mit dem Uniklinikum des
Saarlandes und der Klinischen Bioinformatik an einem grofien Patientenkollektiv im
Saarland testen. Im Falle eines Erfolges kann die Losung wegen ihrer Modularitat und
Flexibilitdit dann auch ohne Weiteres auf andere Anwendungsfelder, wie zum Beispiel
Rheumatoide Arthritis oder neurodegenerative Erkrankungen, wie Alzheimer oder
Parkinson, libertragen werden.
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MICROFLUIDIC EXTRACTION METHOD
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ABSTRACT

Here we describe a novel microarray platform that
integrates all functions needed to perform any
array-based experiment in a compact instrument on
the researcher’s laboratory benchtop. Oligonucle-
otide probes are synthesized in situ via a light-
activated process within the channels of a three-
dimensional microfluidic reaction carrier. Arrays
can be designed and produced within hours accord-
ing to the user’s requirements. They are processed
in a fully automatic workflow. We have characterized
this new platform with regard to dynamic range, dis-
crimination power, reproducibility and accuracy of
biological results. The instrument detects sample
RNAs present at a frequency of 1:100 000. Detection
is quantitative over more than two orders of magni-
tude. Experiments on four identical arrays with 6398
features each revealed a mean coefficient of vari-
ation (CV) value of 0.09 for the 6398 unprocessed
raw intensities indicating high reproducibility. In a
more elaborate experiment targeting 1125 yeast
genes from an unbiased selection, a mean CV of
0.11 on the fold change level was found. Analyzing
the transcriptional response of yeast to osmotic
shock, we found that biological data acquired on
our platform are in good agreement with data from
Affymetrix GeneChips, quantitative real-time PCR
and—albeit somewhat less clearly—to data from
spotted cDNA arrays obtained from the literature.

INTRODUCTION

Microarrays have become a standard tool in molecular biology
that has revolutionized genomics research. Microarrays are
used extensively for gene expression profiling (1,2) in many
applications including the discovery of gene function (3,4),
drug evaluation (4-6), pathway dissection (7), classification of
clinical samples (8—10), exon mapping (11) and investigation
of splicing events (12). Arrays may be produced either by
deposition of presynthesized material (1,13—15) or by in situ
oligonucleotide synthesis (16,17). DNA arrays manufactured
by physical deposition of presynthesized material require
labor-intensive preparation and record-keeping of DNA
probes. In contrast, oligonucleotide arrays synthesized in sifu
using a photolithographic method (18) only require DNA
sequence data. However, cost and time spent in generating the
photolithographic masks render this approach as slow and
inflexible as the deposition methods. Recently, more flexible
microarray technologies have been developed. These employ
either ink-jet printing (19) or micromirror devices (20,21) for
in situ synthesis of customized oligonucleotide arrays.
Although these techniques provide full flexibility with respect
to the array design, the actual generation of the array and in
some cases even the hybridization and detection steps are
restricted to centralized manufacturer facilities. Again, the
investigator’s flexibility remains limited. In addition, array
synthesis and subsequent processing steps are not physically
linked and require error-prone manual handling. The geniom
platform described here is the first system to overcome these
restrictions. The investigator gains full control of the complete
workflow of any microarray experiment. The technology
integrates microarray production, hybridization and detection
in a compact benchtop unit. Automation of these processes

*To whom correspondence should be addressed. Tel: +49 621 3804 257; Fax: +49 621 3804 400; Email: michael.baum@febit.de
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and a powerful software interface allow the scientist to design
and perform microarray-based experiments using sequence
information derived from public databases. Microarrays are
generated by in situ oligonucleotide synthesis via a light-
activated process employing a digital micromirror device and
highly efficient photochemistry (22,23). Instead of a conven-
tional microscope slide, a truly micro-machined three-
dimensional microstructure bearing four individual channel-
like chambers (arrays) is used as a reaction carrier. This
approach allows one to run several array experiments on a
single carrier since up to four individual microarrays are
generated and may be hybridized sequentially or in parallel. In
contrast to the recently described maskless array synthesizer,
which also uses a micromirror device for in situ oligonucle-
otide synthesis (20), geniom is highly automated and
integrates all functions required to perform an array-based
experiment within a single device on the investigator’s
laboratory benchtop. A more detailed description of this
technology is presented by Stihler et al. (24) and can also be
found in Supplementary Material Figure 1.

In the study presented here, we characterized the geniom
technology on a technical level with regard to dynamic range,
discrimination power and reproducibility. In addition, we
validated complex biological results acquired on the geniom
platform by comparison with existing technologies and
conventional standards. Analyzing the transcriptional re-
sponse of Saccharomyces cerevisiae to osmotic shock, we
found a good agreement of data obtained on geniom arrays,
Affymetrix GeneChip data, and expression results obtained by
quantitative real-time PCR. Our study also revealed a high
concordance of geniom results and cDNA data from the
literature (25). While the actual fold-change values are less
consistent in this latter comparison, the vast majority of genes
included in our study showed the same trend of regulation in
both assay systems.

MATERIALS AND METHODS
Oligonucleotide arrays

Light-activated in situ oligonucleotide synthesis was per-
formed essentially as described by Singh-Gasson et al. (20)
using a digital micromirror device (Texas Instruments). The
synthesis was performed within the geniom device on an
activated three-dimensional reaction carrier consisting of a
glass-silicon-glass sandwich (DNA processor; see Supple-
mentary Material Fig. 1). Four individually accessible
microchannels (referred to as arrays) etched into the silicon
layer of the DNA processor are connected to the microfluidic
system of the geniom device. Using standard DNA synthesis
reagents (Proligo) and 3’-phosphoramidites carrying a 5’-
photolabile protective group (22,23), oligonucleotides were
synthesized in parallel in all four translucent arrays of one
reaction carrier. Prior to synthesis, the glass surface was
activated by coating with a spacer. The synthesized probe sets
may be the same or different for all four arrays. Actually, the
time needed for synthesis of standard arrays used in this study
is independent of the number of different probe sets, the probe
sequences and the number of probes synthesized within one
probe set (current limit: 14 000 features per array; corres-
ponding to 4 X 14 000 = 56 000 features per reaction carrier).

PAGE 2 OF 13

However, the probe length substantially influences synthesis
time. According to the conservative protocol used in this
study, the synthesis of four typical 25mer arrays (with 12 880
features each) takes ~15.5 h (including 1.5 h for the final
deprotection step). The yeast probe set (ten 25mer probes per
transcript) was calculated based on the full genome sequence
(retrieved online from http://genome-www.stanford.edu/
Saccharomyces/) using a combination of sequence uniqueness
criteria and rules for selection of oligonucleotides likely to
hybridize with high specificity and sensitivity. The selection
criteria were essentially as described in Lockhart et al. (2) with
modifications for the longer probes used here (25mers instead
of 20mers).

Yeast strain and growth conditions

Saccharomyces cerevisiae, wild-type strain W303-1A, MATa,
ura3-52, trplA2, leu2-3_112, his3-11, ade2-1, canl-100
(accession no. 20000A; EUROSCARF, Frankfurt a.M.,
Germany) was grown in 240 ml batch cultures at 30°C in
YPD (1% yeast extract, 2% peptone, 2% glucose) to an Aggg of
1.0. At this point, cells were collected for determination of
expression profiles under baseline conditions. Osmotic stress
was applied by adding prewarmed (30°C) 5 M NaCl to a final
concentration of 0.7 M NaCl. Cells were collected 45 min after
the addition of NaCl. Ten milliliters of suspension culture
were chilled on ice, cells were pelleted, washed once with
ice-cold water, frozen in a dry ice/ethanol bath and stored at
—20°C until use.

RNA extraction and preparation for hybridization

Total RNA was extracted from frozen cell pellets using a hot
phenol method (26). Amplification and labeling was achieved
using a modification of the procedure first described by Van
Gelder et al. (27) and Eberwine et al. (28). In brief, 5 ug of
total RNA were used as a starting material and converted into
double-stranded cDNA using an oligo(dT) primer with a 5" T7
RNA polymerase promoter sequence and the Superscript II
system for cDNA synthesis (Invitrogen). Double-stranded
cDNA was purified by phenol—chloroform extraction followed
by ethanol precipitation. Using the purified double-stranded
cDNA as a template, in vitro transcription was performed
using T7 RNA Polymerase (T7 Megascript Kit, Ambion) in
the presence of a mixture of unlabeled ATP, CTP, GTP and
UTP and biotin-labeled CTP and UTP [biotin-11-CTP
(PerkinElmer); biotin-16-UTP (Roche)]. Biotinylated cRNA
was purified on an affinity resin (RNeasy, Qiagen). The cRNA
yield was determined by measuring the light absorbance at
260 nm (1 OD at 260 nm corresponds to 40 pg/ml RNA). Prior
to hybridization, 15 pg of cRNA were fragmented randomly to
an average length of ~100 nt by incubating at 94°C for 35 min
in a 5 ul volume of 40 mM Tris-acetate pH 8.1, 100 mM
potassium acetate and 30 mM magnesium acetate. A detailed
description of the labeling protocol will be provided upon
request. Transcripts of the ampicillin® (amp"), kanamycin®
(kan’) and chloramphenicol® (cm") resistance genes used for
the determination of the dynamic range were prepared as
follows. Each gene was PCR amplified from a plasmid vector
(amp* from pBR322; cm' from pDNR-LIB; kan' from pLP-
GBKT?7) and the PCR product was cloned into pBluescript 11
SK (+) (downstream of the T3 polymerase promotor sequence;
between the BamHI and the EcoRI restriction sites). In
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addition, an Asg, sequence was inserted between the EcoRI
and HindlIII sites of the same vector (immediately downstream
of the resistance gene). Run-off transcripts [with a 3" A s, tail]
were generated using the T3 Megascript Kit (Ambion) and
1 pg of the HindIIl-digested construct as a template. One
microgram of the in vitro transcript was used as a template for
cRNA synthesis as described above. Different amounts of the
biotinylated cRNA were then spiked into the yeast cRNA
samples (prior to fragmentation).

Array hybridization, detection and data analysis

Microarrays were hybridized with 15 ug of fragmented cRNA
in a final volume of 20 pl. Hybridization solutions contained
100 mM MES (pH 6.6), 0.9 M NaCl, 20 mM EDTA and
0.01% (v/v) Tween-20 (referred to as MES-hyb). In addition,
the solutions contained 0.1 mg/ml sonicated herring sperm
DNA (Promega) and 0.5 mg/ml BSA (Sigma). RNA samples
were heated in the hybridization solution to 95°C for 3 min
followed by 45°C for 3 min before being placed in an array
which had been prehybridized for 15 min with 1% (w/v) BSA
in MES-hyb at RT. Hybridizations were carried out at 45°C
for 16 h without agitation. After removing the hybridization
solutions, arrays were first washed with non-stringent buffer
[0.005% (v/v) Triton X-100 in 6 X SSPE] for 20 min at 25°C
and subsequently with stringent buffer [0.005% (v/v) Triton
X-100 in 0.5X SSPE] for 20 min at 45°C. After washing, the
hybridized RNA was fluorescence-stained by incubating with
10 pg/ml streptavidin—phycoerythrin (Molecular Probes) and
2 pg/ul BSA in 6X SSPE at 25°C for 15 min. Unbound
streptavidin—phycoerythrin was removed by washing with
non-stringent buffer for 20 min at 25°C. Detection and feature
readout were performed using the CCD-based detection
system of the geniom device (Cy3 filter set). Processing of
raw data including background correction, array to array
normalization and determination of gene expression levels as
well as calculation of fold-change values were essentially as
described by Zhou and Abagyan (29). All steps were carried
out using the PROP algorithm of the geniom application
software which is based on the MOID algorithm described by
Zhou and Abagyan (29).

Affymetrix GeneChip reference data

Aliquots of the same biotinylated cRNA samples analyzed on
the geniom platform were sent to a service provider. The
samples were hybridized to Affymetrix yeast GeneChips (YG-
S98) according to the protocol in the Affymetrix GeneChip
Expression Manual. Starting from the raw data files (.cel files),
analysis was performed using both the Affymetrix MAS4
algorithm (at the service provider) and the PROP algorithm (at
febit).

Quantitative PCR

In vitro transcripts [with a 3 A, tail] of amp* (250 pg), kan'
(25 pg) and cm' (2.5 pg) were spiked into 5 ug of total RNA
from yeast (control and treated). cRNA was prepared as
described above but omitting the biotin labeling. The cRNA
was then converted into cDNA using random hexamer primers
and the Superscript II Kit. Quantitative PCR was performed
using the iCycler iQ™ (Bio-Rad). Reactions contained
~250 pg non-purified cDNA, 300 nM forward and reverse
primers (designed using the DNAMAN software; sequences
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will be provided upon request) and 25 pl of 2X QuantiTect
SYBR Green PCR Master Mix (Qiagen) in a final volume of
50 pl. Samples were incubated for 13.5 min at 95°C followed
by 50 cycles of denaturation (30 s at 95°C), annealing (30 s at
62°C) and extension (45 s at 72°C). The data obtained were
normalized using all three spike-in controls. Fold-change
values were calculated taking the PCR efficiencies into
account (30,31).

RESULTS
Dynamic range and discrimination power

Spiking experiments were performed to determine the
dynamic range of oligonucleotide arrays processed on the
geniom platform. Biotinylated cRNAs from three prokaryotic
genes (antibiotic resistance genes: amp', kan', cm') were
mixed and spiked into 0.75 pg/ul biotinylated cRNA back-
ground from yeast total RNA at molar ratios of 1:100-
1:100 000. In addition, kan" and cm" cRNAs were spiked at a
molar ratio of 1:10. Using an estimate of 15 000 copies of
mRNA per yeast cell (32-34) a frequency of 1:100 000
corresponds to that of an mRNA present at a density of one
copy per six to seven cells. In 15 pug of cRNA background and
a hybridization volume of 20 pl, a frequency of 1:100 000
corresponds to a concentration of ~22.7 pM and an absolute
amount of 0.45 fmol (approximately 2.7 X 108 molecules or
~0.15 ng) of specific RNA. Each combination of dilution and
background was hybridized six times with the exception of the
1:10 ratios which do not reflect situations encountered in
normal cells and therefore were hybridized only once. In order
to ensure optimal comparability of the data generated with the
geniom instrument to those from other in sifu synthesized
short oligonucleotide arrays that mostly include mismatch
(MM) controls, all samples were hybridized to arrays
containing 16 perfect match (PM)/MM probe pairs (25mers)
for each of 100 randomly chosen yeast genes, and 20 PM/MM
probe pairs (25mers) for each of the three prokaryotic genes,
although the geniom application software does not necessarily
require MM probes for gene expression analysis. The arrays
had been pretested for cross-hybridization. Yeast probes
cross-hybridizing to the spiked-in transcripts as well as probes
designed for these transcripts cross-hybridizing to the yeast
background had been removed.

As indicated in Figure 1, the hybridization intensity is
linearly correlated to the cRNA target concentration in the
range of 1:100 000-1:1000. In the range of 1:1000-1:100, the
signal increases by a factor of approximately six rather than 10
because the probes immobilized on the array are beginning to
saturate. Between 1:100 and 1:10, saturation proceeds and the
hybridization signal only increases by a factor of 1.5. At a
molar ratio of approximately 1:100 000, the critical level for
the discrimination power of the system is reached. While the
presence of the prokaryotic transcripts was detected above the
background in 14 out of 18 experiments at this level (six
replicate hybridizations for each of the three genes), the
remaining four experiments (three times kan' and once amp")
indicate that a ratio of 1:100 000 is the threshold level for at
least some probe sets. In experiments lacking the complex
cRNA background, the transcripts could be detected at
concentrations corresponding to a ratio of 1:1 000 000 (data
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Figure 1. Dynamic range of oligonucleotide arrays from the geniom plat-
form. Log—log plot of the normalized hybridization intensity (average of the
20 PM-MM intensity differences for each gene) versus concentration for
three different prokaryotic cRNA targets. The three cRNA targets (amp’,
kan, cm’) were spiked into labeled yeast cRNA at molar ratios of
1:100 000-1:100 and each dilution was measured six times. kan" and cm"
cRNA was additionally spiked once at a molar ratio of 1:10. The error bars
indicate the standard deviation calculated across the replicates after
elimination of outliers.

not shown). The dynamic range of two to three orders of
magnitude and the discrimination power of 1:100 000
measured here for arrays of the geniom platform compare
very well to data obtained with other commercially available
in situ synthesized (35) or spotted (13) oligonucleotide arrays.
For the Affymetrix GeneChips a dynamic range of three to
four orders of magnitude was initially reported (2). However,
these data were obtained using a customized array containing
probe sets with more than 500 PM/MM probe pairs per
transcript. In a more recent study on commercial GeneChips
with 20 PM/MM probe pairs per gene, a linear relationship
between transcript abundance and signal intensity was
observed at ratios of 1:150 000-1:15 000. Linearity ceased
above the 1:15 000 ratio and saturation emerged around the
1:150 level (36).

Reproducibility of raw data

Replicate experiments were performed to determine the
reproducibility of array synthesis, hybridization and technical
readout. Aliquots of the same cRNA sample were hybridized
to four identical arrays and the coefficient of variation (CV)
for each individual feature was calculated based on the raw
fluorescence intensities across the four replicates without
applying any data preprocessing steps like background
correction, array-to-array normalization, removal of outliers
or removal of low-intensity spots. Since we expected the CV
to be higher for features with a low intensity and lower for
features with a high intensity we again designed the arrays
with PM/MM probe pairs to obtain a balanced ratio between
high intensity (PM probes) and low intensity features (MM
probes). The four arrays each contained 6398 25mer probes
(corresponding to 3199 PM/MM probe pairs). The probe
sequences were derived from the Affymetrix HuGeneFL and
the Test2 GeneChips. In addition, each array included 154
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negative control features where a single “T’ mononucleotide
was synthesized instead of a 25mer probe. The arrays were
hybridized to aliquots of a cRNA sample from a pool of total
RNAs (Homo sapiens, Arabidopsis thaliana, Drosophila
melanogaster). This sample may be inappropriate for mean-
ingful biological experiments focusing on the expression of
specific genes but is very well suited for experiments with a
technical scope. Due to its high complexity, this sample is
likely to undergo specific hybridization, unspecific cross-
hybridization (including cross-species hybridization) as well
as extensive target—target interactions and thus will serve as a
good indicator for the reproducibility of the array synthesis
and the hybridization process in particular. For the analysis,
we first performed a pairwise comparison of the four arrays
(Fig. 2A-F). The average Pearson correlation coefficient
calculated on the raw intensities for all possible combinations
of two arrays was 0.986. To further investigate the
reproducibility of the system on the raw data level, the CV
for each of the 6398 features was calculated across the four
replicates and CVs were plotted as a frequency distribution
(Fig. 2G): 95% of all 6398 values were in the range of 0.03
(2.5th percentile) to 0.19 (97.5th percentile), the median CV
being 0.09. A slightly higher median CV of 0.10 was found
when the analysis was restricted to the 10% of features with
the lowest intensities. These features do not represent the
lowest features within a group consisting of only high-
intensity features but indeed have very low intensities close to
non-specific background. This is evident from the comparison
of the average intensity of these features to the local
background and to the negative control spots, where a
single ‘T” was synthesized instead of a 25mer probe. The
average intensity of the 10% lowest features within the total of
6398 features (value: 911), the average of the local back-
ground of all spots on the array (value: 1198) and the average
intensity for the negative controls (value: 1040) were all in the
same range. Actually, the average of the 10% lowest features
is even slightly lower than the average of the negative controls
and the average of the local background. The latter phenom-
enon is due to the fact that the local background—at least for
high intensity features—is increased by a ‘neighborhood’
effect caused by blooming of the hybridization signal. This is
in agreement with a recent study published by Machl et al. that
describes a similar ‘neighborhood’ effect for cDNA arrays
spotted on nylon membranes and hybridized with radioactive
labeled samples (37). Why the average intensity of the
negative control features somewhat exceeds the average
intensity found for the 10% lowest features is less obvious.
A possible explanation could result from the higher negative
charge of a 25mer probe as compared with a single ‘T’
nucleotide. In this case, the higher density of negative charges
would lead to an increased repulsion of the equally negatively
charged non-cognate targets that might reduce unspecific
binding of non-cognate targets at the 25mer features. Another
possible explanation is that steric hindrance for non-specific
binding of the streptavidin—phycoerythrin complex to the
glass surface might be higher for a feature with 25mers than
for a feature carrying “I” mononucleotides. This could result
in a slightly higher blocking effect of 25mers as compared
with “T” mononucleotides. In summary, our technical experi-
ments indicate a high reproducibility of geniom arrays on the
raw data level and suggest that the good reproducibility is
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Figure 2. Reproducibility of the geniom platform on the raw data level. Aliquots of a single cRNA sample from a pool of total RNA (H.sapiens,
D.melanogaster, A.thaliana) have been hybridized to four different arrays with 6398 features each. Raw intensity values (Supplementary Material Table 1)
represent the median of approximately 30 CCD pixels for each feature. No data preprocessing (such as background correction, normalization, elimination of
outliers or removal of low intensity features) was performed. (A-F) Pairwise comparison of raw intensities from the four arrays as scatter plots.
(G) Frequency distribution of CVs. The CV for each of the 6398 features (probes) was calculated across the four replicates and CVs were plotted as a

frequency distribution.

retained when applying geniom arrays to complex biological
expression profiling experiments with the majority of features
being in the low intensity range. However, in this case the
average CV value might be slightly higher compared to our
analysis with an unbiased distribution of raw intensity data
across the entire intensity range.

Reproducibility of fold-change and expression level
values

Having demonstrated a high reproducibility for the raw
intensity data, we evaluated the variability of fold-change
values, the ultimate result of standard gene expression
profiling experiments. We therefore measured the transcrip-
tional response of 1125 randomly chosen yeast genes to
osmotic shock in four identical experiments on eight arrays. In

contrast to the technical experiments described in the previous
sections, this experiment was designed as a real-world gene
expression profiling. As a consequence, the array design,
which included MM controls beforehand, was adapted to our
standard for expression arrays and the MM controls were
omitted. This approach was supported by the geniom appli-
cation software which operates on a algorithm similar to the
MOID principle (29) for gene expression profiling experi-
ments and thus does not require MM controls for calculating
expression levels and fold-change values. The eight arrays
used in this study each contained 12 880 features (including all
controls) with ten 25mer PM probes per transcript. Following
hybridization with aliquots of either a control sample or a
treated sample, we first calculated the CV of the 12 880
unprocessed raw intensities across the four arrays hybridized
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Figure 3. Reproducibility of the geniom platform on the fold-change level.
The transcriptional response of 1125 yeast genes to osmotic shock was
analyzed in four identical experiments and the fold-change values
(Supplementary Material Table 2A) were compared. (A) Diagram of log,
fold-change values. Each transcript is represented as a line colored accord-
ing to the log, fold-change value. The color code is given on the left.
(B) CVs of fold-change values. The CV for each of the 1125 genes was
calculated across the four experiments and graphed as a function of the
gene’s expression level (Ey value). The gene’s expression level represents
the average of the Ey values from the four control arrays. A trend line
representing the moving average of 100 genes is shown.

with the same sample. Mean CV values of 0.12 and 0.10 were
found for the arrays hybridized with the control sample and the
treated sample, respectively. A pairwise comparison of raw
intensity data from the four control arrays in each possible
combination revealed a mean Pearson correlation coefficient
of 0.984 (min: 0.979; max: 0.993). In an identical analysis
performed on the four arrays, hybridized with the cRNA
sample from osmotically shocked yeast cells, we found a mean
Pearson correlation coefficient of 0.986 (min: 0.977; max:
0.995). In conclusion, these values confirm the high
reproducibility of the raw intensity data demonstrated in the
last section and also suggest that the CV of the raw data is
almost the same for arrays designed with PM/MM probe pairs
(last section) and arrays with PM probes only (this section).
We next focused on the reproducibility of fold-change
values obtained from geniom arrays. Fold-change values were
calculated based on background-corrected and normalized
intensities of one control and one treated array. They were
subsequently compared between the four experiments
(Fig. 3A). For this purpose, the CV of the fold-change value
for each of the 1125 genes was calculated across the four
replicates and graphed as a function of the gene’s expression
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Table 1. CV of fold-change values as a function of the expression level
(Ey value)?

Classes of Ey Number of Average 95% of
values genes CvV CVs between
Up to 400 104 0.20 0.05-0.63
400-1000 391 0.12 0.03-0.29
1000-2000 299 0.10 0.02-0.20
2000-5000 185 0.10 0.03-0.21
>5000 146 0.09 0.03-0.22
All genes 1125 0.11 0.03-0.29

aThe CVs were calculated across four replicates (Fig. 3). Genes were
grouped into five different classes according to the average Ej value on the
four control arrays. The range that includes 95% of the CV values of a
certain class was determined by calculating the 2.5th and 97.5th percentiles
on all CVs within this class.

level (Fig. 3B). As expected, the CV was highest for genes
expressed at low levels (low Ey values) and decreased with
rising expression levels (high Ey values). Table 1 shows the
average CV for each of five different classes of 1125 genes
classified according to their expression level. With the
exception of genes expressed at very low levels (Ey < 400),
the average CV value remains below 0.2 throughout all classes
and even drops below 0.1 for highly expressed genes (Table 1).
The probe sets for the three prokaryotic spike-in controls
(amp’, kan', cm"; see Dynamic range and discrimination
power) produce Ey values of ~350 in the absence of these
transcripts. Ey values below 400 therefore indicate genes
expressed at very low levels or not at all. As shown in
Figure 3B and in Table 1, the distribution of CV values within
a class is considerably wider for classes with genes expressed
at low levels and narrower for classes including highly
expressed genes. For genes with Ey values below 400, for
instance, 95% of CVs fall into the range between 0.05 (2.5th
percentile) and 0.63 (97.5th percentile), whereas for genes
with an Ey level above 5000, the 95% range of the CVs is 0.03
and 0.22. The wider distribution together with the higher
average CV render fold-change values for genes expressed at
low levels less reliable than those of genes expressed at high
levels. This limitation is shared by most if not all array
platforms and is also documented for in situ synthesized
24mer arrays (38) and the Affymetrix GeneChip arrays (39).
The average CV calculated for all 1125 genes irrespective of
the expression levels is 0.11. It is worth noting, however, that
this value is strongly influenced by the selection of genes.
Adding more highly expressed genes would lower this value.
On the contrary, a biased selection of genes expressed at low
level would lead to a considerably higher CV. The selection of
genes included in our study was unbiased and spans the entire
expression range (Table 1). Thus, the average value of 0.11
presented in this study is likely to reflect the level of
reproducibility encountered in typical gene expression profil-
ing experiments on geniom arrays. In summary, our study
revealed CV values that suggest a high reproducibility of fold-
change values and compare favorably to data from spotted
35mer arrays where an average CV for the fold-change values
of ~0.3 was found (13). In addition, the CV values found on
the geniom platform are significantly lower than those
obtained with 24mer arrays synthesized on microscopic slides
using a maskless photolithographic instrument. For these
arrays, average CVs of the fold-change data typically are in
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Table 2. CVs of expression levels as a function of the expression level®
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Classes of E values Control

Treated

Number of genes Average CV 95% of CVs between Number of genes Average CV 95% of CVs between
<400 104 0.17 0.04-0.38 128 0.15 0.05-0.34
400-1000 391 0.13 0.04-0.30 383 0.12 0.03-0.25
1000-2000 299 0.13 0.05-0.25 274 0.11 0.04-0.21
2000-5000 185 0.14 0.06-0.24 167 0.12 0.06-0.20
>5000 146 0.12 0.05-0.20 173 0.10 0.04-0.18
All genes 1125 0.14 0.05-0.28 1125 0.12 0.04-0.26

aThe CVs were calculated across four arrays hybridized with aliquots of a control sample (control) and another four arrays hybridized with aliquots of a
sample from yeast cells which were harvested after an osmotic shock (treated). The genes were grouped into five different classes according to their mean
expression level on the four arrays. The range that includes 95% of the CV values of a certain class was determined by calculating the 2.5th and 97.5th

percentiles on all CVs within this class.

the range between 0.45 (average for low expressed genes) and
0.29 (average for highly expressed genes) (38). Besides the
fold-change data, the gene expression level is the most
important result of a gene expression profiling experiment.
This is particularly true for experiments which determine
relative mRNA levels within a single sample rather than
comparing two or more samples. In the experiment described
above, four arrays were hybridized with aliquots of a yeast
control sample and another four arrays were hybridized with
aliquots of a sample from yeast cells treated with an osmotic
shock. In order to investigate the reproducibility of expression
levels (Ey values) obtained with our platform, we calculated
CVs of the Ey values across the four replicates hybridized with
the same sample for each of the 1125 genes included in the
experiment. In agreement with results of a recent study
performed on Affymetrix GeneChips (40), the CV of the
expression levels was higher for genes expressed at low levels
(low Ey values) and lower for genes expressed at high levels
(high Ey values). As described above, we grouped the genes
into five different classes according to their expression level.
The average CV values calculated for these classes were in the
0.17-0.10 range. As shown in Table 2, a trend towards higher
CVs for genes expressed at low levels and towards lower CVs
for highly expressed genes is evident in the arrays hybridized
with the control sample as well as in the arrays hybridized with
the treated sample. This is a remarkable finding because the
same gene may have different Ey levels on the ‘control’ and
the ‘treated’ array: the genes that make up a certain expression
class are not necessarily the same for the control and the
treated sample. We therefore conclude that the high variability
found for genes expressed at low levels is indeed due to
technical parameters and is only slightly influenced by the
individual genes analyzed.

Accuracy of biological results

In an attempt to validate the accuracy of results from the
geniom platform we have analyzed the transcriptional
response of yeast to osmotic shock. The data acquired with
the geniom platform were compared with data from cDNA
arrays published by Rep et al. (25) and to reference data from
Affymetrix GeneChips which were generated as described in
the experimental protocol. Our study comprised 4857 genes
which were all analyzed twice on standard gene expression
arrays containing 10 PM probes per gene (25mers; without
MM controls). Using the same type of arrays we also
measured an additional group of 203 genes in 10 replicates.

These 203 genes were found to be involved in the cellular
response of yeast to osmotic shock in the experiments on
spotted cDNA arrays published by Rep er al. (25). This
selection of genes thus is biased with respect to the expected
fold-change values and is also likely to be biased with respect
to the expected expression level. However, since we were
interested in the accuracy of biological results obtained from
geniom arrays and the regulation of these 203 genes is known
to be the major response of yeast cells to osmotic shock, we
first focused the data analysis on these particular genes before
extending it to the total of 4857 genes. Figure 4 shows fold-
change values for these genes compared pair-wise between
geniom arrays, Affymetrix GeneChips and the cDNA arrays
used by Rep er al. (25). As indicated by a Pearson correlation
coefficient of 0.914 and a Spearman rank correlation coeffi-
cient of 0.889, a high conformity was found between the
geniom data and the GeneChip data despite comparing two
completely independent array platforms (Fig. 4A). Note that
the only parameter kept constant on both platforms was the
biological sample. When reducing the complexity by applying
the same analysis algorithm to both the raw intensity values
from the geniom arrays and the raw data from the GeneChips
(as found in the .cel file) an even higher similarity was found
and the Pearson correlation coefficient increased to 0.959
(Fig. 4B). For further analysis, we again focused on the
comparison of independent platforms (Fig. 4A, C and D)
grouping the genes into three different categories. Genes with
fold-change values =1.5 (log, value: 0.58) were considered to
be upregulated. Genes with fold-change values <-1.5 (log,
value: —0.58) were considered to be downregulated and genes
with fold-change values between —1.5 and 1.5 (log, value:
—0.58 to 0.58) were considered to be unaffected. Based on this
categorization, 184 out of 203 genes showed the same
tendency on Affymetrix and geniom arrays (142 upregulated,
30 downregulated, 12 unchanged). From the remaining genes,
nine were found to be regulated on the Affymetrix GeneChip
but unaffected on the geniom arrays and nine genes behaved
vice versa. Only one gene switched between the upregulated
and the downregulated categories. As indicated by the
correlation coefficients, the geniom data closely match the
GeneChip data. In addition, they are very similar to the data
obtained with cDNA arrays. A total of 174 out of 203 genes
showed the same tendency in the geniom and the cDNA data
set. A minority of 21 genes switched between unchanged on
the geniom arrays and regulated on the cDNA arrays, one gene
vice versa, and seven genes were found to be regulated in the
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Figure 4. Log-log plots comparing fold-change data from three different array formats. The transcriptional response of 203 yeast genes to osmotic shock was
analyzed on the geniom platform in 10 replicates. The average fold-change values were compared with data from Affymetrix GeneChips and to cDNA array
data from the literature (25) (Supplementary Material Table 2B). Genes that fall into the same category of regulation on the respective platforms are shown in
gray (cut-offs for categorization: fold-change <-0.58, downregulated; fold-change >-0.58 but <0.58, unchanged; fold-change =0.58, upregulated). Genes that
were found to be up- or downregulated on one platform but unchanged on the other are shown in yellow. Genes that behave the opposite way are shown in
red. (A) Comparison of geniom data and MAS4 calculated fold-change values from the Affymetrix GeneChips. (B) Comparison of geniom data and PROP-
calculated fold-change values from the Affymetrix GeneChips. (C) Comparison of geniom data and the cDNA array data from the literature (25).
(D) Comparison of Affymetrix GeneChip data and cDNA array data from the literature (25).

opposite sense on both platforms. The conformity between
geniom data and GeneChip data, however, is greater than the
similarity found between the cDNA data and either of the
oligonucleotide arrays (Fig. 4). In general, most genes showed
the same tendency on the spotted cDNA arrays and on both
oligonucleotide array formats. Thus, the major findings
described by Rep et al. (25) could be reproduced on geniom
arrays (Supplementary Material Table 2B). The actual fold-
change values, however, differ significantly between the
cDNA arrays and the oligonucleotide arrays. This is in good
agreement with studies that revealed substantial differences in
the overall performance of cDNA arrays and oligonucleotide
arrays. Generally, spotted cDNA arrays show a higher
sensitivity than short oligonucleotide arrays (19,41).
Conversely, spotted cDNA arrays are known to exhibit
lower specificity than short oligonucleotide arrays, primarily
because of cross-hybridization of highly homologous tran-
scripts and non-cognate cDNA probes and due to varying
hybridization efficiencies of long cDNA probes (42-45). An
additional factor that might contribute to the variance in the
fold-change values observed in our study is the biological
sample itself. The cDNA data were taken from the literature.
Therefore, the total RNA source used for the experiments on

the cDNA arrays was not identical to that used for the geniom
and the Affymetrix oligonucleotide arrays. A recently pub-
lished, extensive study designed as an interlaboratory com-
parison revealed that variations introduced by in vitro
handling steps and variations between replicate cultures in
particular can significantly influence the result of a gene
expression experiment (46). In addition, the labeling proced-
ures differ significantly: the oligonucleotide arrays used in this
study were hybridized to an amplified biotinylated cRNA
sample (synthesized starting from the total RNA, as described
in Materials and Methods) while the cDNA arrays used by Rep
et al. (25) were hybridized with a non amplified, [*3P]CTP-
labeled cDNA sample (synthesized from the total RNA via
reverse transcription). Taken together, the first part of our
study focusing on the 203 genes known to be regulated in the
cellular response of yeast to osmotic shock suggests a high
conformity of biological data obtained on geniom arrays and
data aquired on Affymetrix GeneChips. We also found that the
great majority of the 203 genes (86% when applying the
categorization criteria described above) showed the same
tendency on geniom arrays and spotted cDNA arrays. The
significant variation of the actual fold-change values found in
the latter comparison is likely to be caused by differences in
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Figure 5. Log—log plots comparing fold-change data from geniom arrays and Affymetrix GeneChips. The transcriptional response of 4857 randomly chosen
yeast genes to osmotic shock was analyzed on geniom arrays in two replicates and the average fold-change values were compared with data from Affymetrix
GeneChips (Supplementary Material Table 2C). For this comparison, the genes were grouped into ‘expressed at low level’ and ‘expressed at a higher level’
according to their expression level (average difference) on the GeneChip base array. Cut-offs at either 100 or 50 were used for the categorization. (A) Log—
log plot of the 1688 genes with an average difference above a cut-off at 100. (B) Log—log plot of the 2596 genes with an average difference above a cut-off
at 50. (C) Log—log plot of the 3169 genes with an average difference below 100. (D) Log—log plot of the 2261 genes with an average difference below 50.

the general performance of the two array formats and by
differences in the samples used for the experiments on the
respective platforms.

So far, we have restricted our analysis to the 203 genes
known to be involved in the cellular response of yeast to
osmotic shock. Most of these genes are highly regulated and
tend to be expressed at higher levels. They are therefore much
more likely to show the same trends on different platforms
than randomly selected genes. In order to investigate if the
high concordance of geniom and GeneChip data is confirmed
in experiments with a completely unbiased selection of genes,
we extended the analysis to all 4857 genes included in our
study. We compared the average fold-change values calcu-
lated on the two replicate experiments performed on the
geniom instrument to the fold-change values obtained from
the Affymetrix GeneChips. 3276 (68%) out of 4857 genes fell
into the same category; 1076 genes (22%) were unchanged on
the febit arrays but downregulated or upregulated on the
GeneChips; 436 genes (9%) were unchanged on the
Affymetrix GeneChips but regulated on the geniom arrays
and 69 genes (1%) were found to be regulated in the opposite
sense on both platforms (Supplementary Material Table 2C).
Overall, a mean Pearson correlation coefficient of 0.742 and
an average Spearman rank correlation coefficient of 0.759
were calculated on the fold-change level. Taken together,
these data indicate a considerably lower agreement of the

fold-change values for the 4857 randomly selected genes than
for the 203 genes from a biased selection. To address the
question of whether the poor conformity applies to all 4857
genes analyzed or if it is restricted to a certain subgroup of
genes, we refined our analysis taking the expression levels into
account. Mills and Gordon (39) investigated false-positive
rates using Affymetrix MullKsubA and MullKsubB
GeneChips. All genes recognized as increased or decreased
in same-to-same comparisons were defined as noise. Most of
these genes were clustered at expression levels below 250
(measured by the average difference between PM and MM of
all PM/MM probe pairs for one transcript). Grundschober et al.
(40) used GeneChip U34 and estimated CVs of triplicate
hybridizations to determine significant fold-changes thresh-
olds. They found the fold-change value to be reliable above a
cut-off expression level of 100. We applied this 100 cut-off as
well as a less stringent cut-off at 50 to our analysis. We
classified the 4857 genes according to their average difference
(expression level) on the GeneChip array (base array) into
‘expressed at low level’ (below the respective cutoff) and
‘expressed at a higher level’ (above the respective cut-off).
Then, we analyzed the agreement of the fold-change values
obtained with the GeneChips and the fold-change values
acquired from geniom arrays within these groups. As shown in
Figure 5A and B, we found a substantial correlation between
GeneChip data and geniom data for genes expressed at an
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elevated level: for genes with an expression level above 100, a
Pearson correlation coefficient of 0.915 was calculated and,
applying the same categorization criteria as used for the 203
genes, 83% of all genes (1401 out of 1688) showed the same
tendency on both platforms (Fig. 5A). A slightly lower but still
significant conformity was found for genes with an expression
level above the less stringent cut-off at 50: for these genes, the
Pearson correlation coefficient was 0.890, and 80% of all
genes (2067 out of 2596) showed the same tendency of
regulation (Fig. 5B). In contrast, we found only poor
correlations of fold-change values for the genes with an
expression level lower than the respective cut-offs: for genes
with an expression level lower than 100 (3169 genes) or lower
than 50 (2261 genes) we observed a Pearson correlation
coefficient of 0.679 and 0.634, respectively (Fig. 5C and D).

From these data we conclude that—at least for yeast—
fold-change values obtained from geniom arrays are in
good concordance with fold-change values acquired with
Affymetrix GeneChips (with the exception of genes expressed
at very low levels). This is a remarkable finding if the context
of the experimental design is considered. The only parameter
kept constant between the two platforms was the biological
sample. All other parameters, including the probe design and
the algorithm used for data analysis, were different for both
platforms. Despite this high correlation found for genes
expressed at elevated levels, our comparison also revealed
substantial differences in the fold-change values obtained with
both platforms with regard to genes expressed at low levels.
This finding was not unexpected and is likely to be caused by a
higher variation of fold-change values calculated on low
signal intensities. The fact that calculations based on such low
signal intensities are prone to increased variation is known for
most if not all array formats, including spotted 35mer arrays
(13), in situ synthesized 24mer arrays (38) and GeneChips
(39,40)—and was also found for the geniom platform in this
study.

We further demonstrated that geniom data not only match
data acquired with other array formats but also reflect the true
gene expression pattern of the biological system analyzed. We
used a non-array reference system and compared the gene
expression data from the geniom platform with those obtained
by quantitative RT-PCR (SYBR Green assay). For this
experiment, a subset of 56 genes from the 203 genes shown
in Figure 4 was selected. The choice was based on the fold-
change distribution in the array experiments, such that the
validated data set spans the entire range of fold-change values
observed. The selection was otherwise unbiased and random.
The quantitative RT-PCR analysis was performed with the
same RNA samples used for the array experiments. Seven out
of the 56 genes were excluded from the analysis due to PCR
efficiencies below 1.70. Table 3 compares the fold-change
values of the evaluable genes to the average fold-change
values from the 10 replicate experiments on the geniom
platform described above (Fig. 4). As indicated by the Pearson
correlation coefficient of 0.966 and the Spearman rank
correlation coefficient of 0.972, a very high conformity was
found between the two data sets. Due to the lower dynamic
range of oligonucleotide arrays as compared with quantitative
RT-PCR, the fold-change values for highly regulated genes
are compressed on the geniom platform. This phenomenon has
been described before for other spotted (13) or in situ
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synthesized (38) oligonucleotide arrays. Despite those differ-
ences in the fold-change values of highly regulated genes, our
study provided evidence that geniom arrays generate accurate
and reliable results and thus enable scientists to address
complex biological questions.

DISCUSSION

This study was designed to validate the geniom technology, a
novel and fully integrated oligonucleotide array platform for
gene expression profiling applications. We first focused on the
technical aspects and evaluated the discrimination power, the
dynamic range, and the reproducibility of the system. The
system is able to detect RNAs present at a frequency of
1:100 000. In good agreement with data published for other
oligonucleotide array platforms (13,35,36), detection is quan-
titative over more than two orders of magnitude. The geniom
technology integrates array synthesis, hybridization and
detection in a single benchtop device located in the investi-
gator’s laboratory. As quality assurance is a more demanding
issue for benchtop instruments compared with centralized
facilities, special attention was paid to data reproducibility.
Primary experiments on four identical arrays with 6398
features each revealed a mean CV value of 0.09 for the non-
processed raw intensities with an unbiased distribution across
the entire intensity range. In a more elaborate experiment
targeting 1125 randomly chosen yeast genes, we found the CV
for the fold-change values to be substantially influenced by the
expression level. The average CV values range between 0.20
for genes expressed at very low levels and 0.09 for genes
expressed at high levels. The CVs for the expression levels
range between 0.19 (average for genes expressed at very low
levels) and 0.10 (average for genes expressed at high levels).
Taken together, the CV values indicate a good reproducibility
of raw data, fold-change values and expression levels but also
revealed that expression results for genes expressed at low
level are considerably less consistent than those of genes
expressed at higher levels. This phenomenon is common to
most if not all array platforms and is known for the widely
used GeneChip arrays (39,40), in situ synthesized 24mer
arrays (38) and spotted 35mer arrays (13). By extending our
study from inter-array to inter-instrument comparisons we
demonstrated that different individual geniom instruments
perform equally well. For all four instruments included in our
study, the mean CVs for the fold-change values (mean value
across the entire expression range) were in the range of 0.11-
0.18 (data not shown). As a next step, the accuracy of
biological data was demonstrated by comparing the geniom
data from a real-world experiment to reference data obtained
from Affymetrix GeneChips, data from quantitative RT-PCR
and cDNA array data from the literature (25). In this
experiment, we were able to reproduce the major findings of
Rep et al., who investigated the transcriptional response of
yeast to osmotic shock in great detail on cDNA arrays and
generated a list of 203 genes which they identified as the main
responders to the osmotic shock treatment (25). Despite
substantial differences in the actual fold-change values, the
great majority of the 203 genes showed the same tendency of
regulation on the geniom oligonucleotide arrays. By compar-
ing the geniom data for these genes to reference data acquired
on Affymetrix GeneChips we found a high conformity of
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Table 3. Comparison of fold-change data from geniom arrays and quantitative RT-PCR?

Gene Geniom arrays Quantitative RT-PCR
Average fold- Average fold- Average fold- Average fold-
change change (log,) change change (log,)

YMRI175W 111.05 6.80 164.81 7.36

YBR117C 85.37 6.42 2112.88 11.04

YER150W 34.41 5.10 76.91 6.27

YDL223C 29.00 4.86 42.23 5.40

YALO61W 21.70 4.44 23.62 4.56

YDL204W 19.18 4.26 33.15 5.05

YGR248W 19.12 4.26 2.04 4.46

YKLI151C 13.54 3.76 10.67 3.42

YHRO87W 9.88 3.30 33.58 5.07

YGRO066C 8.57 3.10 16.75 4.07

YMLO054C 7.25 2.86 4.39 2.14

YHR094C 6.44 2.69 8.31 3.05

YML100W 6.35 2.67 7.08 2.82

YLR267W 5.12 2.36 3.06 1.61

YER103W 491 2.30 4.32 2.11

YKL150W 421 2.07 5.48 2.45

YHR022C 4.02 2.01 5.63 2.49

YLRO31W 3.98 1.99 4.36 2.12

YEL039C 3.71 1.89 2.96 1.56

YMRO31C 3.06 1.61 1.50 0.59

YCL040W 291 1.54 4.25 2.09

YERO054C 2.62 1.39 3.18 1.67

YDRS533C 2.31 1.21 2.06 1.04

YGR170W 2.27 1.18 1.69 0.76

YJL149W 222 1.15 3.30 1.72

YDR100W 2.09 1.06 1.84 0.88

YDR463W 2.08 1.06 1.50 0.58

YLRO042C 2.06 1.04 2.13 1.09

YERO41W 1.72 0.78 -1.05 -0.07

YGR146C 1.54 0.63 1.46 0.55

YMRO30W 1.45 0.54 2.11 1.08

YHRO86W 1.30 0.38 -1.09 -0.12

YDL135C 1.15 0.21 -1.93 -0.95

YKL160W -1.17 -0.22 -2.56 -1.35

YBLO02W -1.18 -0.24 -1.53 -0.61

YGR138C -1.24 -0.31 —2.64 -1.40

YDR324C -1.39 -0.48 -10.36 -3.37

YKL109W -1.84 -0.88 -4.99 -2.32

YER165W -2.19 -1.13 -7.59 -2.92

YGRI155W -3.04 -1.61 -7.15 -2.84

YGLO55W -3.29 -1.72 -10.69 -3.42

YDL198C -3.32 -1.73 -37.42 -5.23

YHR128W -3.68 —-1.88 —-12.13 -3.60

YIL217W -3.92 -1.97 -7.19 -2.85

YDLO14W —4.47 -2.16 —22.89 —4.52

YGRO60W —4.55 -2.19 -16.32 —4.03

YKRO13W —4.60 -2.20 -1.96 -0.97

YERO052C -6.24 —2.64 -21.92 —4.45

YGR234W -8.91 -3.16 —33.48 -5.07

2Values in the geniom columns represent averages from 10 identical experiments (Fig. 4). All fold-change
values can be found in Supplementary Material Table 2B.

fold-change data. A larger experiment comprising 4857 yeast
genes from a random selection, confirmed the high correlation
of geniom data and Affymetrix data. Despite a high correlation
of fold-change data for highly expressed genes, however,
substantial differences in the fold-change values were evident
for genes in the low expression level. This was not an
unexpected finding and is in good agreement with a higher
variation of fold-change data found for genes expressed at low
levels on both the Affymetrix GeneChips (39) and the geniom
arrays. In an attempt to demonstrate that geniom data not only
match data obtained from other array formats but also reflect

the gene expression pattern of the biological system analyzed,
we used quantitative real-time PCR to measure the fold-
change of 56 yeast genes that span the entire expression range.
Due to the lower dynamic range of geniom arrays as compared
with real-time PCR we observed some differences in the fold-
change values of highly regulated genes, reflecting the
compression of geniom data in the high-intensity range.
Nevertheless, a Pearson correlation coefficient of 0.966
clearly indicated a high concordance between the geniom
data and the data obtained by quantitative real-time PCR. In
conclusion, our data suggest that the geniom technology
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produces reproducible and reliable results and complements
other well established array platforms. Due to its design,
however, it provides a number of new opportunities. The
sequence of each individual probe may be varied on each array
and all that is required to generate a new array is sequence
information. Sequence updates or results from a previously
performed array experiment can be incorporated into new
array designs. The automation ensures convenient handling of
the machine and thus may contribute to a more widespread use
of the complex array technologies.

In this study, we have validated the geniom platform for
gene expression profiling experiments. Supported by the small
reaction volumes and the design of the arrays as three-
dimensional microchannels, however, the system is also well
suited for other applications involving enzymatic reactions
such as primer extension, ligation or on-chip PCR.

SUPPLEMENTARY MATERIAL
Supplementary Material is available at NAR Online.
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The lack of efficient high-throughput methods for enrichment of specific sequences from genomic DNA represents a key
bottleneck in exploiting the enormous potential of next-generation sequencers. Such methods would allow for a systematic
and targeted analysis of relevant genomic regions. Recent studies reported sequence enrichment using a hybridization step
to specific DNA capture probes as a possible solution to the problem. However, so far no method has provided sufficient
depths of coverage for reliable base calling over the entire target regions. We report a strategy to multiply the enrichment
performance and consequently improve depth and breadth of coverage for desired target sequences by applying two
iterative cycles of hybridization with microfluidic Geniom biochips. Using this strategy, we enriched and then sequenced
the cancer-related genes BRCAl and TP53 and a set of 1000 individual dbSNP regions of 500 bp using lllumina technology. We
achieved overall enrichment factors of up to 1062-fold and average coverage depths of 470-fold. Combined with high
coverage uniformity, this resulted in nearly complete consensus coverages with >86% of target region covered at 20-fold or
higher. Analysis of SNP calling accuracies after enrichment revealed excellent concordance, with the reference sequence
closely mirroring the previously reported performance of lllumina sequencing conducted without sequence enrichment.

[Supplemental material is available online at http:// www.genome.org. The sequence data from this study have been sub-
mitted to the NCBI Short Read Archive (http:// www.ncbi.nlm.nih.gov/ Traces/sra/sra.cgi) under accession no. SRA009002.]

Next-generation sequencing (NGS) platforms have transformed
genetic variation studies by a massive reduction of cost and se-
quencing effort (Shendure et al. 2004, 2005; Margulies et al. 2005;
Bentley 2006; Johnson et al. 2007; Harris et al. 2008). However, this
technology advance has not yet been matched by an equal im-
provement at the front end: the isolation of target DNA sequences
for analysis (Garber 2008). Although untargeted sequencing of
even whole human genomes has been shown to be feasible, such
large projects exceed the current capacity of NGS instruments and
are cost prohibitive for the majority of research laboratories
(Bentley et al. 2008; Wang et al. 2008). Many future applications
would greatly benefit from focusing on specific genomic subsets.
This can be the targeted sequencing of components of a single
genome such as the whole exome but also fractions of more
complex samples, for example, when applied to microbial com-
munities, host-pathogen mixtures, or somatic variants.

Technologies are thus urgently required to selectively isolate
genomic sequences at a scale and specificity that cannot easily be
met by traditional enrichment approaches like PCR. An ideal en-
richment technology for NGS would allow highly multiplexed
access to any desired genomic loci. Enrichment thereby has to be
uniform and efficient to enable maximal consensus coverage of
the target region with sufficient depth for accurate base calling and
with minimal sequencing effort. Furthermore, the method should
not interfere with accuracy of base calling by causing allelic bias or
dropout.

Several recent studies have started to address this bottleneck
by using solution- or microarray-based sequence capture relying
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on hybridization. Two studies using solution-phase sequence
capture with padlock or molecular inversion probes have been
published that targeted large numbers of small genomic regions in
a single reaction. Although the multiplexing level of one of these
methods was high, low uniformity of coverage was reported as
a serious drawback of both of these approaches (Dahl et al. 2007;
Porreca et al. 2007). Still another approach made use of long, bio-
tinylated RNA probes for solution-phase hybridization. However,
the overall workflow depended on multistep enzymatic processing
of DNA capture probes including PCR and in vitro transcription,
possibly introducing bias and errors into the probe library. More-
over, very long hybridization times of several days were applied
(Gnirke et al. 2009), which is rather time-consuming even com-
pared with approaches relying on solid-phase hybridization.

Recently, sequence enrichment using solid-phase hybridiza-
tion to DNA microarrays with flexible content has been described
(Albert et al. 2007; Hodges et al. 2007; Okou et al. 2007; Bau et al.
2009). For several projects targeting different regions, enrichment
factors of several hundred- to a 1000-fold have been reported,
resulting in good depth of coverage for at least a fraction of the
target region. However, covering the full target region with the
depth sufficient for reliable base calling has emerged as a key
challenge (Garber 2008).

In fact, no method has so far been able to reach an enrich-
ment performance that allows for full consensus coverage of
a target with satisfactory depth, and before now, it was not clear
whether optimization of the most obvious experimental variables
such as hybridization stringency, probe design, or blocking con-
ditions would overcome this problem. Given that reported target
sizes are typically in the range of kilobases to megabases, the
fraction of target sequence in a human DNA sample relative
to background is only 3.1 X107°% to 3.1 X 10 2% for 1 kb and
1 Mb, respectively. This range of concentration presents a serious

1616 Genome Research
www.genome.org

19:1616-1621 © 2009 by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/09; www.genome.org



Downloaded from genome.cshlp.org on February 5, 2018 - Published by Cold Spring Harbor Laboratory Press

Targeted next-generation sequencing

purification challenge, e.g., similar to the most demanding protein
purifications. Although the specificity of protein—protein inter-
actions employed in protein purifications (e.g., antibody-antigen
interactions or affinity tag binding) can be much higher than the
specificity of Watson-Crick base pairing, the application of multi-
ple rounds of chromatography is a standard procedure to obtain
target protein of sufficient purity (Coligan et al. 2008).

We transferred this purification strategy to DNA sequence
isolation by performing two instead of one cycles of enrichment
using microfluidic Geniom biochips before Illumina NGS. We
show that for different target sequences enrichment performance
dramatically increases from the first to the second cycle, indicating
a multiplicative effect. This effect on enrichment performance is
accompanied by a significant increase of the percentage of target
region being covered. This results in higher enrichment factors than
previously reported for sequence capture methods prior to Illumina
NGS (Hodges et al. 2007; Gnirke et al. 2009). A comprehensive
analysis of SNP calling performance after enrichment shows that
the method does not interfere with base-calling accuracy.

Using a microfluidic array platform with integrated hardware
thereby results in several advantages. The hybridization steps em-
ployed are four times shorter than in other methods, which results
in shorter overall process times. Furthermore, the process can be
highly automated, which supports improved handling effort,
reduces contamination risk, and increases reproducibility.

Results and Discussion

The sequence enrichment technology reported here, called
HybSelect, is conducted in three main steps: hybridization, washing,
and elution. First, a genomic DNA library is hybridized to a Geniom
biochip containing target-specific DNA capture probes. After wash-
ing and elution, the sample is subjected to a second cycle of en-
richment and analyzed by an NGS platform. Though the process
should be applicable to any NGS platform, experiments for this
study were analyzed using the Illumina Genome Analyzer II (GAII).

Capture of cancer-related genes

We chose the human genes BRCA1 and TP53 as our first targets for
enrichment, because of their well-known role in the development
of certain cancers.

We designed an array of 50mer DNA oligonucleotide probes
with a tiling density of 8 bp. A Geniom biochip is composed of
eight individual microfluidic channels, each having a capacity for
>15,000 capture probes; we used part of one channel for synthesis

of the tiling array. To prevent the enrichment of repetitive ele-
ments, we excluded low-complexity probes from the array design,
which reduces the region of interest (ROI) of 100 kb to a core
region of 54 kb actually covered by capture probes (hybselected
region [HR]). This corresponds to a capacity of >1.8 Mb ROI or >1
Mb HR per biochip. Next, we subjected a human Illumina paired-
end library to a first round of hybridization on the biochip for 16 h
with active mixing of the sample.

Two independent experiments, A and B, were conducted in
parallel to test the reproducibility of the process. After four con-
secutive washing steps, we eluted the samples and amplified them
using the Illumina paired-end primers, which afforded sufficient
amounts for a second hybridization step. Processing of the en-
riched samples on an Illumina GAII instrument yielded 8,217,673
and 7,624,181 paired-end reads of 2 X 36 bp for the individual
samples. The reads were used for further analysis after homopol-
ymeric and ambiguous sequences were filtered out.

After this first cycle of enrichment, mapping of the reads to
the ROI revealed that 61.8% to 88.8% of the HR was covered at
least once, exhibiting a similar range to what was previously
reported for one cycle of microarray-based sequence enrichment
and Illumina sequencing (Table 1). In this study, between 12% and
91% of target sequence were reported to be covered at least once,
depending on sequence context and library fragment size (Hodges
et al. 2007). The average depth of coverage was between 2.9- and
5.0-fold for all target regions for both experiments (Table 1).
Overall, the data suggest similar or better reproducibility than
previously reported for microarray-based sequence capture (Albert
et al. 2007; Hodges et al. 2007; Okou et al. 2007; Bau et al. 2009).
Importantly, analysis of the uniqueness of obtained read pairs
revealed that more than 98% for both runs, were unique, which is
higher than previously reported for standard Illumina GAII se-
quencing without any enrichment method (Quail et al. 2008). This
clearly shows that no detectable library representation bias has
been introduced during the HybSelect process that would com-
promise the information value of obtained reads.

Impact of a second enrichment cycle on capture performance

We next subjected the enriched sample from experiment A to
a hybridization process under the same conditions applied in the
first enrichment cycle. Sequencing yielded 7,433,555 paired end
reads of 2 X 36 bp that were filtered as described above.

Figure 1 shows a graphic view of the ROI with HR regions and
coverage depth distribution of mapped reads from the first and

Table 1. Mapping data of reads obtained from one or two cycles of array-based sequence enrichment of human genomic DNA samples for
different target regions and lllumina GAIl paired-end sequencing
Average depth of 1 5% 10% 20x
Reads coverage Enrichment consensus consensus consensus consensus
Experiment”  Target ROI HR on HR (fold/base) (fold) (%) (%) (%) (%)
A (cycle 1) BRCA1 81,155 45,498 5265 3.8 22.9 77.3 22.8 5.2 1.5
TP53 19,179 8178 1131 5.0 27.3 88.8 47.9 8.7 0.9
B (cycle 1) BRCAT 81,155 45,498 4426 2.9 20.5 61.8 8.2 2.2 1.1
TP53 19,179 8178 737 3.3 19.0 83.3 19.8 2.6 0.8
A (cycle 2) BRCAT 81,155 45,498 74,269 58.1 356.4 96.5 87.3 79.5 68.8
TP53 19,179 8178 23,109 101.3 616.9 98.5 92.9 89.6 86.2
NA18558 1000 loci 1,498,000 498,000 4,300,087 315.6 713.3 96.9 92.1 87.5 80.4
NA18561 1000 loci 1,498,000 498,000 6,281,911 469.1 1061.9 97.5 93.7 90.5 85.5
?First cycle of enrichment for BRCAT and TP53 was conducted in duplicate (Experiments A and B).
(ROI) Region of interest; (HR) hybselected region (see text).
Genome Research 1617
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Figure 1. Graphic overview of mapping analysis of an lllumina paired-end sequencing run with a human genomic DNA sample enriched for the genes
BRCAT and TP53. Shown is the capture probe region used for array-based enrichment (black line at top), coverage depth distribution obtained from the
first enrichment cycle (middle), and coverage depth distribution from the second enrichment cycle (bottom) to a representative part of the TP53 gene
(nucleotides ~9500-14,000). The obtained consensus sequences are shown as black lines. X-axis, the nucleotide position of the gene; y-axis, the fold
coverage depth. Note that the scale of the y-axis varies between the two mappings.

second cycle for a representative region of TP53. Reads were
obtained almost exclusively in the HR that is covered by capture
probes with some overlap to adjacent regions. Moreover, the sec-
ond cycle experiment strongly increased depth of coverage and
apparently also uniformity over the whole region compared with
the first cycle of enrichment. Overall, 96.5% and 98.5% of BRCA1
and TP53 were covered at least once after this second enrichment
cycle (Table 1). The individual enrichment factors (representation
of HR sequence in the obtained sequence reads divided by their
representation in the human genome) for the two genes obtained
from the second cycle were 15.6- and 22.6-fold, respectively, sim-
ilar to the enrichment factors for the first cycle (22.9- and 27.3-
fold), which indicates a multiplicative enrichment effect. This
resulted in final enrichment factors for the overall process of 356.4-
and 616.9-fold. Interestingly, quantitative analyses suggest that
biochips that are reused for the second enrichment cycle result in
comparable enrichment factors as observed for the standard pro-
cess (Supplemental Fig. 1).

Further analysis revealed that the average depth of coverage
was also higher for both regions after the second enrichment cycle,
being 58.1- and 101.3-fold for BRCA1 and TP53, respectively.

However, the most striking effect was observed for consensus
coverages of the HR (percent of HR covered with reads) at increased
minimum coverage depths. These numbers are especially impor-
tant, since a certain minimal depth of coverage is generally re-
quired for base calling. This makes a consensus coverage with the
minimal depth for reliable base calling the most relevant param-
eter of an experiment in terms of analytical value for the targeted
region. Recent whole human genome sequencing projects using
[llumina technology revealed that >95% of both homo- and het-
erozygous single nucleotide polymorphisms (SNPs) can be accu-
rately called at a coverage depth of 20-fold or higher when paired-
end reads are used (Bentley et al. 2008; Wang et al. 2008). The
consensus coverage of the HR (i.e., target region) at more than 20-
fold depth of coverage can therefore be considered a key parameter
for targeted NGS using Illumina instruments.

Strikingly, the consensus coverage with at least 20-fold cov-
erage depth increased between 46- and 96-fold for the two genes
from the first to the second cycle of enrichment (Table 1). In total,
68.8%-86.2% of the target regions were covered at =20-fold, ex-
ceeding previously reported data for targeted sequencing using
microarray-based enrichment and Illumina NGS (Hodges et al.
2007).

Capture of 1000 SNP loci

A crucial performance criterion of an enrichment method is its
accuracy of base calling. In principle, several steps of the overall

process could lead to allelic bias or dropout, which would prevent
the practical use of the method for resequencing studies.

To evaluate our method in this direction, we aimed at the
enrichment of 1000 nonoverlapping loci of 500-bp size through-
out the human genome, each harboring a central dbSNP position.
Capture probes with a tiling density of 8 bp were synthesized
on four channels of a Geniom biochip, and genomic DNA of two
CHB individuals (Chinese individuals from Beijing, HapMap IDs
NA18558 and NA18561) was subjected to the two-cycle HybSelect
process as described above.

A total of 19,762,440 and 19,405,469 paired end reads of
2 X 36 bp were obtained that were mapped to the ROI after fil-
tering. For the two samples, enrichment factors of 713.3- and
1061.9-fold were obtained. This resulted in average depths of cov-
erage of 315.6- and 469.1-fold over the whole HR (Table 1). Im-
portantly, 80.4% or 85.5% of the HR for all 1000 regions was
covered with a depth of at least 20-fold, corresponding well to the
obtained consensus coverages for BRCAI and TP53. This should
allow for reliable analysis of most nucleotide positions within the
targeted sequence regions.

We performed detailed analysis of consensus coverages and
read distributions on the level of the individual loci (a list con-
taining the locus-wise analysis of obtained reads, consensus cov-
erages at one-, five-, 10-, and 20-fold depth of coverage, en-
richment factors, and average coverage depths can be found in
Supplemental Table 1). Figure 2 shows a histogram of the average
depths of coverage for all loci. Remarkably, most regions were
covered at a depth of between 250- to 500-fold, with decreasing
numbers for higher and lower coverage depths. On average, 90%
and 94% of the regions were covered at =20-fold, respectively.

Next, we analyzed the uniformity of coverage depth for the
whole set of loci. For the most cost-effective sequence capture,
uniformity should be maximal since this avoids redundant reads in
overcaptured regions. We found that across all regions a fraction of
27%-30% exhibited the average depth of coverage or more. Fifty-
one percent to 53% had a normalized coverage depth of 0.5-fold,
the average depth of coverage (Supplemental Fig. 2). These data
match a uniformity recently reported for a solution-phase capture
experiment combined with Illumina NGS technology for a com-
parable, discontiguous exon target (Gnirke et al. 2009). The
availability of long-read platforms like the Roche/454 instrument
and the continuing increase of read lengths of the Illumina Ge-
nome Analyzer and the ABI SOLiD system raise the question how
this might impact the coverage characteristics of the method
when applied to these systems. We anticipate that longer read
lengths might further improve uniformity and consensus cover-
ages, since regions with lower coverage could be rescued by reads
from fragments captured at more distant sites.

1618 Genome Research
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Figure 2. Statistical analysis of average coverage depths and consensus coverages of 1000 human
500-bp loci obtained from mapping analysis after sequence enrichment from the two HapMap refer-
ence samples NA18558 and NA18561 and lllumina GAIl sequencing. Shown is a histogram of average
coverage depths for the HR of individual 500-bp loci for both samples as depicted in the figure.

We next questioned how individual sequence contexts im-
pact the capture performance for the specific regions. Analysis
of the correlation between average depth of coverage and GC-
content of the 1000 regions for NA18561 revealed that 99.9% of all
regions with a moderate GC-content of 40%—-60% were covered
>20-fold and 98.8% even >50-fold (Supplemental Fig. 3). This
suggests considerable potential to even improve the observed
capture performance by simple alterations in probe design.

Regional coverage distribution

The design of the dbSNP loci capture experiment with non-
overlapping regions of identical size and targeted with identical
numbers of capture probes allows a facile statistical analysis of the
average spatial distribution of coverage depth over all 1000 ROIs.
It is important to evaluate which fraction of coverage falls
into the HR. Since library molecules can extend into the adjacent
region within range of the fragment size distribution of the library,
sequencing reads can be generated for
this noninformative part of the ROI. This
effectively decreases the achievable frac- 1,0 4
tion of desired data in the NGS instru-
ments sequence output. Previous micro-
array studies indicate that the fraction
of reads falling into a probe region fol-
lows a binomial pattern and depends on
the sizes of these regions and the length
of the library fragments. The larger the
probe region and the shorter the frag-
ment size are, the lower the overlap and
the lower the content of noninformative
sequence tend to be (Hodges et al. 2007).
In a recent publication, there is fur- 0,0 -
ther supporting evidence for the notion
that longer capture probes could also
increase the fraction of noninformative
reads. In this study (Gnirke et al. 2009),
170mer probes were used, exceeding the
120-bp median length of human exons.
Since library fragments preferentially hy-
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bridize with a maximal part of the probe
sequence, this leads to considerable over-
lap into surrounding regions and only
a small fraction of 47% in the informa-
tive regions. This diminishes the practi-
cal use of this enrichment approach for
[llumina end sequencing with standard
read length.

Analysis of spatial coverage depth
distribution for our experiment (NA18561)
revealed a binomial pattern with maxi-
mal coverage depths in the middle of
the HR and relatively low representation
of reads falling into noninformative re-
gions (Fig. 3). Coverage depth was thereby
highly uniform with only approximately
twofold higher depth for the center com-
pared with the edges of the probe regions.
Overall, 81% of total coverage was ob-
tained for the targeted HR.

2500  >2500

SNP calling accuracy

To assess the applicability of the approach for SNP detection, we
analyzed the nucleotide representations of the 1000 captured
dbSNP positions. Six hundred of these SNPs were chosen from
chromosome 1 and have previously been genotyped in the Hap-
Map project; 400 additional HapMap SNPs were chosen from
ENCODE regions on several different chromosomes (dbSNP IDs can
be found in Supplemental Table 1). SNPs were thereby selected to
have an increased content of 50% heterozygous genotypes within
the HapMap CHB population. This allows a balanced analysis of
homo- and heterozygous positions and imposes a higher challenge
to the process owing to higher coverage requirements and poten-
tial bias in nucleotide representation for heterozygous positions.
We first filtered the regions for SNP coverage depths of 20-fold or
higher as a stringent and pre-established criterion for reliable
base calling (Bentley et al. 2008; Wang et al. 2008). Of 1000 SNPs,
913 SNPs fullfilled this criterion, with 449 being homozygous and
464 being heterozygous in the reference data (sample NA18561,

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

Nucleotide position

Figure 3. Average spatial distribution of coverage depths for ROl of 1000 human 500-bp dbSNP loci
obtained from mapping analysis after sequence enrichment from a human genomic DNA sample and
lllumina GAIl sequencing. The x-axis shows the nucleotide positions of the ROI, consisting of the core
region covered by capture probes for array-based sequence enrichment (HR, nucleotide positions 501—
1000) with flanking regions of =500 nucleotides. The y-axis shows the coverage depth for all 1000 loci of
sample NA18561 averaged for each 50-bp segment and normalized to the maximal depth of coverage.
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Supplemental Table 2). Nucleotide analysis and comparison with
HapMap reference data (data from HapMap project phases 1 and 2)
revealed an overall concordance of 98.6% for all SNPs. Notably,
concordance was significantly higher for homozygous positions
(99.1%) than for heterozygous positions (98.1%), which suggests
that combined call rates for both allele types would be higher for
regions that are not enriched for heterozygous occurrences. Anal-
ysis of all 464 heterozygous SNP positions revealed an allelic ratio
of 0.49, indicating a well-balanced enrichment of both alleles.
Interestingly, very similar concordance (98.8-99.1%, de-
pending on mapping algorithm) was previously reported for
nontargeted whole-genome sequencing using Illumina technol-
ogy and comparison to HapMap reference data of the same proj-
ect phases (Bentley et al. 2008; Wang et al. 2008). This indicates
that the HybSelect process does not interfere with the accuracy of
SNP calling and provides a useful tool for resequencing studies.

Conclusion

Sequence enrichment performance

Although several approaches for enrichment of genomic sequen-
ces have been reported, no method so far has shown an enrich-
ment performance allowing for reliable SNP calling over the full
target region. This has previously been highlighted as the main
challenge for hybridization-based sequence enrichment and se-
verely impairs the actual power of NGS technologies (Garber 2008).

Our data show that enrichment factors, consensus coverage,
and average depth of coverage for target regions can be multiplied
by applying two instead of one enrichment cycle. Compared with
two recent studies reporting targeted enrichment using Illumina
NGS technology, this resulted in superior enrichment performance
and excellent consensus coverages for all targeted regions. Im-
portantly, our calculation of enrichment factors does not include
a prefiltering of raw reads for reads uniquely mapping to the hu-
man genome. This can reduce the fraction of usable raw reads by
a factor of ~0.4-0.5 (Gnirke et al. 2009), whereas the number of
unique reads mapping to the target should not be altered. Since
this affects the ratio of on-target reads vs. total reads and thus the
calculation of enrichment factors and the fraction of on-target
reads, we believe that our actual process performance is even better
in terms of these parameters than reported here.

Furthermore, this performance was achieved with standard
short-read end-sequencing and should further improve with in-
creasing read lengths. Average coverage depths in our experiments
exceed those in other studies using this sequencing mode by up to
more than one order of magnitude. Uniformity of coverage
thereby matches comparable experiments as reported previously.

Uniqueness of NGS reads received after sequence enrichment
has not been analyzed in previous studies and consequently the
actual value of published coverage depths remains unclear. In
contrast, our data show that no significant representation bias is
observed in libraries after the HybSelect process, which indicates
that no PCR duplicates account for the observed performance. We
further showed that the process does not interfere with SNP calling
and allows for efficient resequencing of large fractions of the tar-
geted regions with accuracies typically observed for [llumina NGS
technology with nonenriched samples.

Advantages of microfluidic biochip architecture

Previous approaches for sequence enrichment employed hybrid-
ization steps of >60 h and multiple manual washing and elution

steps resulting in long processing times (Albert et al. 2007; Hodges
et al. 2007; Okou et al. 2007; Gnirke et al. 2009).

Microfluidic array architecture with associated short hybrid-
ization times and a high level of automation throughout the
HybSelect procedure enables fast processing and easy handling,
despite the use of two enrichment cycles. The total process time
starting with a sequencing library and resulting in an enriched,
purified, and quantified library ready for Illumina sequencing is
less than 60 h, shorter than the hybridization step of any pre-
viously reported approach alone.

The used biochips are scalable between one and eight sam-
ples and/or 230 kb and >1.8 Mb ROI (125 kb-1 Mb HR) with only
1.5 pg of lllumina library needed per array. This scalability facili-
tates adjustment of an experiment to different target sizes and can
significantly reduce per sample cost for small targets. Further
quantitative analyses suggest that biochips can be reused within
the two-cycle protocol with typical enrichment performances,
which would reduce cost of the approach.

We believe that further improvements in probe design and
process optimization will allow us to reach depths of coverage that
will enable efficient multiplexing of pooled samples. The general
strategy to apply iterative cycles of sequence enrichment might
thereby not only facilitate efficient targeted NGS for human geno-
mic subsets. It might also enable analysis of much more complex
samples that demand enrichment factors far beyond the possible
limit of a single-cycle experiment, e.g., for environmental samples,
low abundance cancer cells, or pathogens in a human background.
We are therefore convinced that the HybSelect enrichment method
will find wide application for large-scale, targeted genomics studies.

Methods

Microarray design and synthesis

Light-activated in situ oligonucleotide synthesis on Geniom bio-
chips (febit biomed gmbh, Heidelberg, Germany) was performed as
described previously (Baum et al. 2003). One biochip contains
eight individual, microfluidic channels each containing an array
of >15,000 individual DNA probe features.

For the enrichment of the two human genes BRCA1 and TP53,
S50mer probes were tiled across the target regions with a density of 8
bp, corresponding to a total ROI of 100 kb or a capacity of >1.8 Mb
per biochip. Probes were allowed to have a maximal content of 25
low-complexity bases in a row and a maximal total content of low-
complexity bases of 80% according to the Hg18 annotation. This
resulted in 6700 probes and a reduction of the ROI to the actual
probe region (Hybselected region [HR]) of 54 kb, corresponding to
a total capacity per biochip of >1 Mb HR.

For enrichment of the 500-bp dbSNP loci, 1000 nonover-
lapping regions from high-complexity sequence context through-
out the human genome were chosen containing a central dbSNP
position. A total of 57,000 S0mer probes were designed with a til-
ing density of 8 bp and synthesized on four array channels again
resulting in a capacity of >1 Mb HR per biochip. For all experi-
ments, array designs for the two enrichment cycles were identical.

DNA sample preparation

Human genomic DNA samples NA18558 and NA18561 were
obtained from Coriell Repositories. DNA samples for enrichment of
BRCAT1 and TP53 were purchased from Promega. Five micrograms
of human genomic DNA were dissolved in 190 pL of water and
fragmented for 30 min by sonication at high intensity (Bioruptor,
Diagenode). Preparation of the paired-end adaptor-ligated gDNA

1620 Genome Research
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library ready for sequencing on an Illumina Genome Analyzer II
(Ilumina) was performed according to the manufacturer’s standard
protocol including excision of the size fraction of 300-400 bp from
an agarose gel. The sample was analyzed by a Bioanalyzer experi-
ment (Agilent), quantified by UV measurement (Nanodrop 1000,
Thermo Scientific), and stored in water at —20°C until use.

Hybridization and elution

For each array, 1.5 ng of an adaptor-ligated gDNA library were
dissolved in febit Hybmix-4 or -5, heated to 95°C for 5 min, and
placed on ice. The sample mixture was injected into the micro-
fluidic arrays of the biochip and hybridization was performed for
16 h at 45°C or 50°C with active movement of the sample using
a febit active mixing device. After hybridization, each array was
automatically washed with 6X SSPE at room temperature and
0.5X SSPE at 45°C within the Geniom One instrument (febit
biomed gmbh). Each array was subsequently washed with SSPE-
based febit stringent wash buffers 1 and 2 at room temperature. For
elution of the enriched samples, arrays were each filled with 10 pL
of febit elution reagent in a febit hybridization holder and in-
cubated at 70°C for 30 min. Solution was manually transferred
into an Eppendorf tube and dried by vacuum centrifugation in
a Speed-Vac at 65°C. After an amplification step according to the
Illumina library preparation procedure using paired-end primers
for 18-35 cycles, the sample was treated like the original library
and subjected to a second round of enrichment under the same
conditions as before. After enrichment, hundreds of picograms of
DNA library are typically recovered from each array depending on
the array template as judged by qPCR using the Illumina adaptor
primers and SYBRgreen quantitation (data not shown).

NGS using lllumina technology

Eluted samples were subjected to 10 cycles of PCR according to
Illumina paired-end library preparation kit and purified by a
MinElute PCR purification column (Qiagen). Quantification of
samples was done by the Quant-It Picogreen assay (Invitrogen)
using the Nanodrop 3300 instrument. Sequencing was performed
using an Illumina GAII system using the paired-end mode and read
lengths of 36 bp according to the manufacturer’s protocol.

Data analysis

Paired-end sequencing reads were first filtered by removing reads
with ambiguous nucleotide calls (three or more N) and reads with
34 ormore A (or Tor C or G). Reads from File 1 and File 2 of the two
paired-end sequencing runs were aligned to target genes by using
RazerS (Weese et al. 2009), which is part of SeqAn, an open-source
C++ library of efficient algorithms and data structures for the
analysis of biological sequences (Doring et al. 2008). The parame-
ters used were “-gn 1 -f -r -i 94 -rr 100 -m 10,” which allows up to
two mismatches. The output alignment files were matched for
each pair of reads: The two reads were mapped to opposite strands
and in correct orientation and the length between the two reads
(inclusive) was within 100-500 bp. The paired reads were matched
to the ROI to obtain the reads for analysis of coverage depth. For
the 1000 SNP loci experiment, the HR (being all loci of 500 bp)
with extensions of =500 bp for each locus was defined as ROI. The
fold coverage for each base within the probe regions was calcu-
lated. For unique amplicon analysis, each pair of read sequences
was counted only once, and duplicates were ignored. For visuali-
zation, reads on the HR obtained by paired-end mapping were
mapped with the CLC genomics workbench using single-end mode
and default conditions. For SNP analyses, base representations for
each target position were calculated in percent. For positions with

one base represented >90%, position was called homozygous. If no
position was represented >90%, but two bases were represented
>10%, position was called heterozygous for these two bases.
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Sequence capture methods for targeted next generation sequencing promise to massively reduce cost of
genomics projects compared to untargeted sequencing. However, evaluated capture methods specifically
dedicated to biologically relevant genomic regions are rare. Whole exome capture has been shown to be a
powerful tool to discover the genetic origin of disease and provides a reduction in target size and thus
calculative sequencing capacity of >90-fold compared to untargeted whole genome sequencing. For further
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Ech/)me Sequencing cost reduction, a valuable complementing approach is the analysis of smaller, relevant gene subsets but
Genomics involving large cohorts of samples. However, effective adjustment of target sizes and sample numbers is

hampered by the limited scalability of enrichment systems. We report a highly scalable and automated
method to capture a 480 Kb exome subset of 115 cancer-related genes using microfluidic DNA arrays. The
arrays are adaptable from 125 Kb to 1 Mb target size and/or one to eight samples without barcoding
strategies, representing a further 26 - 270-fold reduction of calculative sequencing capacity compared to
whole exome sequencing. Illumina GAII analysis of a HapMap genome enriched for this exome subset
revealed a completeness of >96%. Uniformity was such that >68% of exons had at least half the median depth
of coverage. An analysis of reference SNPs revealed a sensitivity of up to 93% and a specificity of 98.2% or
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higher.
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Introduction

The enormous capacity of Next Generation Sequencing (NGS)
instruments has dramatically changed the scope and comprehensive-
ness of genomics studies [1-8]. Beside current large scale studies like
the 1000 genomes project that are mainly addressed by a limited
number of genome centers, the possibility of sequencing relevant
subsets of a genome with high sample throughput and at low cost has
become a major interest of numerous researchers.

Several new concepts for sequence enrichment have been
reported recently that have started to provide a means for efficient,
targeted NGS projects. However, these methods still suffer from
various drawbacks like limited scalability in terms of sample numbers,
poor uniformity resulting in partial dropout of target coverage and
time-consuming and complicated workflows [9-11]. Three basic
principles of solution phase sequence capture have been reported so
far, with each having its own advantages and drawbacks. Molecular
inversion probes (MIP) or Selector probes have been used for
enrichment of multiple discontinuous target regions with partially

* Corresponding author. Fax: +49 6221 6510 329.
E-mail address: daniel.summerer@febit.de (D. Summerer).

0888-7543/$ - see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.ygeno.2010.01.006

high grade of multiplexing and completeness, i.e. percent of target
covered [12,13]. However, relatively low uniformity of coverage was
also reported and part of the sequencing information was attributed
to artifical probe sequence introduced during the enrichment work-
flow [12-14].

Solution phase enrichment with very long, biotinylated RNA
probes has been reported recently [15,16]. However, a drawback of
the method was a multi-step capture probe library construction with
the potential to introduce bias. Moreover, the length of probes
resulted in overrepresentation of off-target reads for short end
sequencing that could only be overcome by complicated construction
of shotgun libraries or more expensive long read sequencing [15].
Finally, PCR in microdroplets has been demonstrated for sequence
enrichment [17], but flexibility of this approach is limited by the
requirement of individually synthesized primers and suffers from
the fact that primer binding sites have to be designed outside of
the actual target regions to avoid nonsense reads from primers
incorporated into enriched amplicons. This reduces the amount
of relevant information within the sequencers base output and might
complicate amplification of regions surrounded by repetitive
sequence.

The majority of sequence enrichment methods reported so far was
based on solid phase capture using in situ synthesized DNA
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microarrays with flexible content [18-27]. Overall, these methods
have relatively short and simple workflows compared to solution
phase capturing. A reported drawback was the need for relatively long
hybridization times compared to solution phase capture. Three array
formats have been used for targeted NGS to date, all allowing for in
situ synthesis of capture probes and thus providing high flexibility of
targeted sequences.

However, for all enrichment approaches, setups dedicated to
selected subsets of biologically meaningful genomic loci have been
rare. Two very recent studies described the enrichment of the whole
human exome with a target size of 26.6 - 34 Mb using microarray
capture with two different formats [25,27]. This approach has proven
to be a powerful discovery tool, i.e. to reveal the genetic origin of
disease by comprehensive exome sequencing of a limited number of
individuals [24]. However, owing to the comprehensiveness of the
method, significant capacity of not scalable microarrays had to be
used for enrichment per sample and multiple sequencing instrument
compartments were needed to achieve good coverage depths and
completenesses [25,27].

A valuable complementing approach would be the analysis of a
smaller subset of relevant genes but involving large cohorts of
samples. This would for example allow for an efficient follow-up of
genome wide association studies involving whole genome or whole
exome sequencing or for other focused studies involving gene sets
known to be involved in e.g. cancer development, cardiovascular
diseases or drug response. From an economic point of view, such
projects would greatly benefit from enrichment systems that are
highly scalable to achieve effective further downsizing of targets and
increase of sample numbers. Compared to untargeted sequencing,
whole exome enrichment approaches represent a drastic reduction in
calculative sequencing capacity of 94 - 120-fold. Consequently,
focused analysis of relevant genomic subsets with target sizes in the
range of several hundred Kb to 1 Mb represent a further reduction in
the same order of magnitude.

We report a scalable approach termed HybSelect for selective
capturing of focused exome subsets using compartmentalized,
microfluidic biochips. The biochips can be processed with up to
eight samples in parallel without barcoding strategies and are
applicable to target sizes between 125 Kb and 1 Mb. This represents
areduction of calculative sequencing effort of 26 — 270-fold compared
to current whole exome approaches. We demonstrate selective
capture and sequencing of 115 cancer-related genes with a target
size of 0.48 Mb resulting in a capacity of 2 samples per biochip
without barcoding strategies. Moreover, the method uses a very
simple workflow and is highly automated with potential benefits for
cost, reproducibility and contamination risk.

Materials and Methods
Microarray Design and Synthesis

Light-activated in situ oligonucleotide synthesis on Geniom
Biochips was performed as described previously [28]. One Biochip
holds eight individual, microfluidic channels each containing an array
of 15.624 individual DNA probe features of which ~120.000 are
available for custom probes.

Exon sequences of 115 cancer-related genes from the cancer
genome project were downloaded from NCBI and 55.589 50mer
probes were tiled across the exon targets of the full region with an
average probe density of 9 bp targeting sense and antisense strand in
an alternating manner. Each exon was covered by at least 17 probes,
i.e. small exons were extended to fit the tiling scheme. The full region
of interest (ROI) was 9.2 Mb, corresponding to a core target actually
containing exonic sequence of 0.48 Mb. Calculated for the whole
biochip, this corresponds to a total capacity of ~20 Mb ROI or >1 Mb
target size.

DNA sample preparation

The human genomic DNA sample NA18507 was obtained from
Coriell repositories. 5ug were dissolved in 80l of water and
fragmented 2 times for 15 min by sonication at medium intensity
(Bioruptor, Diagenode, Liége, Belgium). An end repair was performed
using T4 DNA polymerase, Klenow Fragment of E. coli DNA
polymerase I and T4 PNK in T4 DNA ligase buffer for 30 min at 20 °C
(all NEB, Ipswich, USA). After purification using the MinElute PCR
purification protocol (Qiagen, Hilden, Germany), A deoxynucleotides
were added to polished doublestrands using the Klenow fragment (3’-
5- exo", Qiagen) in presence of 200 pM dATP in Klenow fragment
reaction buffer for 30 min at 37 °C. After another MinElute PCR
purification, Illumina paired end sequencing adaptors were ligated
according to the manufactures protocol. After a Qiaquick PCR
purification (Qiagen), ligation mixture was loaded onto a 2% agarose
TBE gel and a library band of 200 - 400 bp was excised. Gel slice was
purified with the Qiaquick gel extraction kit and 1 of 30 pL eluate was
used for a 50 pL amplification reaction using Phusion HF Mastermix
(Finnzymes, Espoo, Finland) and 0.2 uM of each primer of pairs pairs
AAT GAT ACG GCG ACC ACC GAG ATC TAC ACT CTT TCC CTA CAC GAC
GCT CTT CCG ATC and CAA GCA GAA GAC GGC ATA CGA GAT CGG TCT
CGG CAT TCC TGC TGA ACC GCT CTT CCG ATC or ACA CTC TTT CCC TAC
ACG ACG CTCTTC CGATC and CTC GGC ATT CCT GCT GAA CCG CTCTTC
CGATC. Cycling conditions were: 30 s, 98 °C, then 18 times 10 s, 98 °C;
305, 65°C; 30s, 72 °C; then 300 s, 72 °C. Purification was performed
using the Qiaquick PCR purification protocol. Libraries were analyzed
by Bioanalyzer analysis (Agilent, Santa Clara, USA), quantified by
Nanodrop 1000 UV measurement (Thermo Scientific, Waltham, USA)
and stored in water at -20 °C until use.

Sequence capture protocol

For four arrays, 6 ng adaptor-ligated gDNA library were dissolved
in febit Hybmix-4, heated to 95 °C for 5 min and placed on ice. Sample
mixture was placed into the sample loading station of the Geniom RT
Analyzer and automatically injected into the microfluidic channels of
the biochip. Sample was denatured within the chip at 80 °C for 10 min
and hybridized for 16 h at 42 °C with active movement of the sample.
After hybridization, each array was automatically washed with 6x
SSPE at room temperature and 0.5x SSPE at 45 °C. Each array was
subsequently washed with SSPE-based febit stringent wash buffers 1
and 2 at room temperature. All protocol steps were carried out in a
completely automated fashion by the Geniom RT Analyzer instrument
without manual interference. For elution of the enriched samples,
arrays were filled with 10 pL of 90% formamide in water each using an
elution holder and incubated at 70 °C for 30 min in an oven. Solution
was manually transfered into an Eppendorf tube and dried by vacuum
centrifugation in a Speed-Vac at 65 °C. After an amplification step as
described under DNA sample preparation for 35 cycles, the sample
was treated like the original library and subjected to a second round of
enrichment under the same conditions as before.

Eluted samples were subjected to 10 cycles of PCR according to the
conditions described under DNA sample preparation and purified by
Qiagen MinElute PCR purification (Qiagen, Hilden, Germany). Quan-
tification of samples was done by the Quant-It Picogreen assay
(Invitrogen, Carlsbad, USA) using the Nanodrop 3300 instrument
(Thermo Scientific).

Data analysis

Paired-end Solexa reads (32.878.698 reads with 36 bp length for
replicate 1 or 20.700.622 reads with 50 bp in length for replicate
2) were first filtered by removing reads with ambiguous nucleotide
calls (3 or more N) and reads with 34 or more A (or T or C or G). This
resulted in 15.816.258 or 10.954.170 reads usable for mapping for the
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two replicates, respectively. Reads from File 1 and File 2 of the two
paired end sequences were aligned with target genes by using razers,
which is part of SeqAn, an open source C++ library of efficient
algorithms and data structures for the analysis of biological sequences
[29]. The parameters used were “-gn 1 -f -r -i 94 -rr 100 -m 10” which
allows up to 2 (36 bp reads) or 3 (50 bp reads) mismatches. The
output alignment files were matched for each pair of reads: the two
reads were mapped to opposite strands and in correct orientation and
the length between the two reads (inclusive) was within 100-500 bp.
The paired reads were further matched to extended regions covered
by probes (consensus) to get the reads on target. The fold coverage for
each base within the probe regions was calculated for unique reads.
For SNP calling, individual base fractions for each position having a
coverage of 5-fold or higher were calculated and positions were called
homozygous if one base accounted for at least 80% and all other bases
accounted for less than 10%. If two bases accounted for at least 20%
each, the position was called heterozygous. Each called base was
compared with UCSC genome hg18 (dbSNP130 masked version). If a
difference was found, this position was identified as SNP. SNPs existed
in dbSNP were separated from those new ones to calculate the
percentages of known vs. novel SNPs.

Results and Discussion
General Workflow for Exome Subset Capture and Sequencing

The overall HybSelect workflow makes use of two key hardware
components. The microfluidic Geniom Biochip containing eight
individual channels each harboring an array of 15624 freely
programmable DNA capture probes is used as sequence enrichment
matrix (Fig. 1A). This biochip is processed by the Geniom RT Analyzer
which allows for automated sample injection, hybridization with
temperature control and active mixing, washing protocols and
imaging (Fig. 1B). The HybSelect workflow consists of three basic
steps: preparation of a standard genomic DNA library for sequencing,
capturing of desired library fragments on the microfluidic arrays
including stringent washing to remove unwanted fragments and
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elution followed by next-generation-sequencing (Fig. 1C). Application
of the capture step after library preparation thereby allows facile
adaption to different NGS platforms, since all current platforms use
adaptor ligated libraries. Thus, no changes to suppliers linker
mediated PCR protocols are necessary to adjust library amounts
when needed.

We designed an exome subset capture array for enrichment of 115
genes identified in the Cancer Genome project of the Wellcome Trust
Sanger Institute as a set highly relevant to the onset of various cancer
types. Genes from the cancer gene census list excluding genes known for
translocation mutations were used. The final array design contained
genes ranging in size from 2.8 to 73.0 Kb with 1819 exons having a
minimal, maximal and median size of 2 bp, 8686 bp and 134 bp,
respectively. The design covered a total genomic region of interest (ROI)
0f' 9.2 Mb which corresponds to a core exonic region of 0.48 Mb covered
by probes. ~56.000 50-mer tiling probes targeting sense and antisense
strands in an alternating manner were synthesized with the Geniom
One instrument using ~44% of the capacity of a biochip.

Two individual human DNA libraries of the well-characterized
Yoruban HapMap sample NA18507 [7,25,30] with length distributions
of 200-400 bp and adaptors for Illumina paired-end sequencing were
prepared, hybridized for 16 h on two different biochips, and the arrays
were washed to remove weakly bound library fragments. The
enriched, single stranded samples were eluted, amplified using
[llumina paired end primers and subjected to a second cycle of
hybridization and washing. After elution, samples were made double
stranded by a limited number of PCR cycles.

Sequencing on one lane of a flowcell of an [llumina GA Il instrument
for each sample using the paired-end mode yielded a total of 15.8 and
11.0 million individual paired end reads after filtering for homopol-
ymeric or ambiguous reads and removal of reads not mapping
uniquely to the human genome.

Completeness and Uniformity of Target Coverage

Paired end reads were mapped against the genomic region
covered with capture probes and coverage was analyzed. For the

| s - -
N
Washing Elution Next Generation Sequencing

Fig. 1. Hardware and workflow used in the HybSelect process. A: Top view of the microfluidic Geniom Biochip with 8 individual channels each containing an array of 15624 DNA
oligonucleotide probes. B: Front view of the Geniom RT Analyzer, a fully integrated microarray processing station allowing for automated sample injection, hybridization with
mixing, temperature control, fluidic control and fluorescence detection. C: Workflow of the HybSelect process. Genomic DNA (1) is fragmented and a next generation sequencing
library is constructed (2). Library is hybridized to a biochip containing capture probes for the desired target sequences (3) and washed to remove unwanted fragments (4). Desired

library fragments are eluted (5) and used for next generation sequencing (6).
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two independent replicate experiments, completenesses, i.e. percen-
tages of the target covered at least once, were >96% for both samples
(Table 1). For percentages of exon- and gene-wise median coverages,
numbers increased to >97% and 100%, respectively. This completeness
is in line with previous studies and shows only negligible dropout of
target sequence (For a detailed, gene-wise analysis of on-target reads,
average target coverages, and percentages of target covered >1-, 5-
and 10-fold, see Supplementary Table 1).

Beside completeness of coverage, the uniformity of coverage depth
is an important parameter of a sequence capture method, since even
coverage avoids redundant reads in over-captured regions.

Analysis for all 115 genes revealed that 96% of all genes were in a
range of coverage depth of <1 log. This indicates a low dependence of
capture efficiency on individual genes and suggests wide applicability
of the method to various sequence contexts. A more detailed analysis
of coverage uniformity is shown in Fig. 2. The individual median target
coverages of all 1819 exons for both replicates were normalized by
dividing them by the median target coverage of all exons. By plotting
the fraction of total exons exhibiting a specific normalized target
coverage, it is possible to analyze and compare coverage uniformity of
experiments independently of e.g. platform-dependent effects or
overall sequence yield [15,22]. Of all exons, 46.9% and 48.8% exhibited
the median target coverage or more, respectively. 69.7% and 68.1%
had a normalized target coverage of 0.5 and 84.3% and 85.0% of 0.2.
This data indicates similar or better uniformity compared to recently
reported studies for solution-phase exonic capture experiments
combined with Illumina NGS technology [15-17].

For further improvements, we sought to elucidate the origin of
target coverage variability for individual exons. Fig. 3 shows the actual
median target coverages of replicate 1 either for all exons (A) or in
dependence of GC content of exons (B). A clear trend is visible that
comparably low target coverage is obtained for GC contents outside of
an optimum range with a lower limit of ~40% and a higher limit of
~60%. This trend is more dominant for exons with low GC contents
compared to high GC contents. Overall, 58.5% of all exons fell into the
optimum range of 40-60%. For these exons, an excellent completeness
of 99.2% was obtained with 98.5% of exons having a target coverage of
5-fold or higher. These data suggest that applying more stringent GC-
content criteria during probe design might substantially improve
performance of the approach.

Another aspect for further improvement is the dependence of
target coverage and exon size. Since sizes of targeted exons span a
large range between 2 - 8686 bp, we were interested in dependence
of exon-wise median target coverage and exon size. A histogram
analysis revealed low variation of target coverage between exons of
middle and larger sizes (Supplementary Fig. 1). However, it also

Table 1
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Fig. 2. Uniformity of per base coverage visualized by a normalized coverage distribution
plot. Graph shows fraction of targeted exons exhibiting a target coverage equal or
higher than the normalized target coverage shown on the x-axis. Normalized target
coverage was calculated by dividing individual median target coverages of exons by the
median target coverage for all exons. For 0.5- and 0.2-fold of normalized target
coverage, exon fractions are indicated as dotted lines.

pointed at a possibility for a facile further improvement of the
method. Very small exons (1-30 bp) exhibited relatively low median
target coverage of only 9.5-fold whereas exons 31-60 bp in size were
covered at a median of 73-fold with a trend for even higher target
coverages for larger exons. Hence, overall performance could also be
increased by using denser tiling schemes for extended regions around
very small exons.

Detection of Single Nucleotide Polymorphisms (SNP)

Since resequencing for variant discovery is currently the most
important application of NGS platforms, a crucial parameter of any
sequence enrichment method for NGS is its potential to detect and
correctly call novel SNPs. For such an analysis, we included all exon
bases of Yoruban HapMap sample NA18507 with coverages of 5-
fold or higher which has been used as quality criterion for SNP
calling previously [16]. This corresponds to a SNP calling sensitivity
(percent of target sufficiently covered for SNP detection) of 88.6 -
93% (Table 1). In these regions, 4998 and 4702 coding SNPs
(cSNPs) were detected in the two samples, respectively. A
comparison with dbSNP revealed that 89.2% and 91.0% of these
SNPs were matching previous database entries. This compares to
74% matches recently obtained for a genome-wide comparison of

Statistics of mapping of sequencing reads obtained from Illumina paired end sequencing of two replicate samples enriched for exons of 115 cancer genes. Shown are the sizes of the
ROI (region of interest), the target (exonic region covered by capture probes), the number of on-target reads obtained by the two individual sequencing runs of one lane each,
average target coverages (fold) and percentages of target covered at a depth of at least 1-fold, 5-fold, 10-fold and 20-fold. Percentages are shown base-wise, exon-wise and gene-

wise.
General Metrics: ROI Target On Target Reads Average Target Coverage
Replicate 1 9345045 482093 2663643 183.82
Replicate 2 9345045 482093 817614 74.05
Percent of Bases covered: @ >1-fold @ >5-fold @ >10-fold @ >20-fold
Replicate 1 97.2 93 89.4 833
Replicate 2 96.5 88.6 80.5 68.9
Percent of Exons covered: @ >1-fold @ >5-fold @ >10-fold @ >20-fold
Replicate 1 98.5 95.8 93.2 86.4
Replicate 2 97.8 934 84.3 71.2
Percent of Genes covered: @ >1-fold @ >5-fold @ >10-fold @ >20-fold
Replicate 1 100 100 100 100
Replicate 2 100 100 100 93.9
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Fig. 3. Exon-wise analysis of median target coverages obtained from mapping of paired end reads of an Illumina GAII sequencing run with sample replicate 1 enriched for 115 cancer
related genes. A: Shown is the median fold target coverage for the 1819 individual exons. X-axis shows the individual exon number, y-axis shows the median target coverage for
individual exons. B: Median per base coverage for 1819 exons in dependence on exons GC content. X-axis shows the individual median target coverage for exons, y-axis shows the

GC content of individual exons in percent.

[llumina sequencing data of the identical HapMap sample [7].
However, in a recent whole exome sequencing project of this
sample using [llumina technology, 89.1% concordance was obtained
for cSNPs only, which closely mirrors the concordance obtained for
our solely exonic target [25].

This indicates a low potential of the approach for false positive calls
that could originate from e.g. suboptimal conditions of enrichment,
sequencing or mapping methods and would cause an excess of newly
identified SNPs vs. previously known database entries.

We next analyzed the percental nucleotide representations of all
HapMap reference SNP positions contained in the targeted exons. 836
SNPs with reference data were present in the captured regions that
were used for further analysis. Of 836 SNPs, 790 (94.5%) and 754
(90.2%) SNPs were thereby covered 5-fold or higher for the two
replicates. Nucleotide analysis and comparison to HapMap reference
data (HM-All, data from all HapMap project phases) revealed an
overall concordance of 98.2% and 99.1% for all SNPs, similar to
specificities reported previously for array based sequence capture
[14,22,27] and other enrichment methods [15-17]. Generally,
specificity could be further enhanced by increasing the minimum
depths of coverage used for filtering of callable positions, however, for
the cost of decreasing sensitivities [7,8].

To further understand the origin of SNP calling discrepancies
between targeted Illumina sequencing and HapMap genotyping
results, we made a follow-up analysis for all non-concordant SNP
positions. Different types of discrepancies thereby may hint at
different error sources. For example, heterozygous sequencing calls
for homozygous HapMap genotypes may hint at accidental base
substitutions generated by PCR during library preparation or the
HybSelect process when present in one replicate. Presence in both
replicates may rather hint at a systematic error e.g. in sequencing,
read mapping or HapMap genotyping, since random PCR artifacts in
both samples seem unlikely. However, a systematic error that could
be associated with a hybridization-based sequence capture method
may be loss of heterozygousity due to preferential binding of capture
probes to the complementary allele. In our study, there were 21 non-
concordant calls found at 14 different positions within the total 1544
calls for SNPs with coverage at 5-fold or higher for both replicates (see
Supplementary Table 2). Of these, only 6 (5 positions) were missed
heterozygote alleles of which only two occurred in both replicates. In
contrast, the majority of discrepancies (12 at 6 positions) were called
in both replicates of the sample with almost identical base fractions,
suggesting systematic errors that are independent of the sequence

capture process. Three positions had relatively low coverage of <8-
fold and one position had coverage of >5-fold in only one of the
replicates.

These data suggest that the majority of non-concordant calls are
due to systematic errors in process steps aside from the actual
HybSelect procedure and that the actual calling specificity is
substantially higher than stated above. Additionally, specificity
might increase even further with higher coverage depth of SNPs
that were covered poorly.

Conclusion

Taken together, we present a highly scalable method to enrich
focused, biologically relevant exome subsets with increased sample
numbers. The method provides excellent completeness of coverage
with similar or better coverage uniformity than previously reported
for exonic targets. This is reflected by high sensitivity and specificity of
SNP calling. Our data further suggest that this performance could be
even further increased by relatively simple alterations of protocol
parameters, i.e. probe design algorithms in terms of GC content and
tiling density for very small exons. Microfluidic array architecture
with associated short hybridization times and a high level of
automation throughout the procedure thereby enables fast processing
and easy handling with potential benefits for cost, reproducibility and
contamination.

The method efficiently amends technologies involved in large-
scale discovery studies such as whole genome or whole exome
sequencing. For efficient follow-up projects involving massive sample
numbers, scalability of enrichment methods becomes crucial to
reduce needed capacities of enrichment and sequencing instrumen-
tation. The architecture of the presented biochip features eight
individual array channels with free scalability between 0.125 and
1 Mb and/or one and eight samples. Depending on target size, a
throughput of eight samples per two days is the current throughput
without barcoding strategies. However, since coverage of most target
bases obtained is significantly higher than the threshold of >5-fold
used for SNP calling, it is reasonable to assume that a severalfold
increase in throughput could be achieved by barcoding with limited
loss in sensitivity. We envision that current efforts for improvement of
probe design along the parameters identified in this study as well as
further increase in read lengths and numbers of NGS instruments will
again strongly increase the potential for massive multiplexing with
high numbers of barcoded samples.
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Beside the cancer-related biochip presented here, we currently
design further pre-evaluated sub-exome biochips for various fields
such as neurodegenerative or cardiovascular disease, drug response or
human aging.
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A strategy allowing for amplification, detection and genotyping of different genomic DNA targets in a
single reaction container is described. The method makes use of primer-directed solution-phase
amplification with integrated labeling in a closed, microfluidic oligonucleotide array. Selective array
probes allow for subsequent detection and genotyping of generated amplicons by hybridization. The
array contains up to 15,624 programmable features that can be designed, de novo synthesized and tested
within 24 hours using an automated benchtop microarray synthesizer. This enables rapid prototyping
and adaptation of the system to newly emerging targets such as pathogenic bacterial or viral subtypes.
The system was evaluated by amplifying and detecting different loci of viral (HPV), bacterial (Bacillus
sp.) and eukaryotic (human) genomes. Multiplex PCR and semi-quantitative detection with excellent
detection limits of <100 target copies is hereby demonstrated. The high automation grade of the system
reduces contamination risk and workload and should enhance safety and reproducibility.

Introduction

The ever increasing understanding of organism complex nucleic
acid repertoire such as genome structure and stability, microbial
diversity or transcriptional dynamics has called for highly parallel
detection, identification and quantification of nucleic acids.
Owing to its excellent sensitivity and accuracy, PCR has hereby
been a central target for the development of highly multiplexed
assay technologies.

To increase throughput of PCR assays, several strategies have
been followed. One strategy is the combination of multiple homo-
genous PCR systems using several specific or degenerate primer
pairs within one reaction vessel. Target detection is then often
achieved by using fluorescent signaling probes, such as labeled
oligonucleotides that undergo changes in fluorescence behavior
owing to nucleolytic cleavage or conformational changes during

Corresponding author: Summerer, D. (daniel.summerer@febit.de)
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PCR product formation [1-5]. Many of these methods are very
mature, allow for quantitative real-time analysis of samples for
multiple targets and have found widespread application in
research and molecular diagnostics. However, a limitation of
homogenous multiplex PCR systems with fluorescent signaling
has so far been the relatively low multiplexing grade owing to
spectral overlap and resulting cross-talk of fluorophores.

A second strategy for increased throughput that circumvents
cross-talk by spatial separation is the parallelization of individual,
homogenous PCR setups with limited or no primer-pair multi-
plexing within single reactions. However, scaling PCR to analyze
larger numbers of targets and samples simultaneously is limited by
the logistics and cost of the assay when performed in traditional
multiwell-plate formats. Consequently, recent developments have
focused on the miniaturization of individual PCR reactions lead-
ing to parallel methods with high to very high throughput [6-14].
Although multiplexing grade in terms of amplification targets
within a given sample can be increased by higher parallelization
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of individual reactions, this approach is limited. Partitioning of a
sample has to be compensated by increased sensitivity of indivi-
dual assays. Moreover, this strategy is inapplicable in cases where
the required assay numbers for a sample exceed copy numbers of
individual targets due to overdilution. However, assays in mole-
cular diagnostics may often require the detection of low abun-
dance nucleic acids in the range of <100 copies per sample, which
imposes an intrinsic limit to the approach. Hence, there is increas-
ing demand for methods that combine high multiplexing grade of
targets without sample partitioning during PCR. One attractive
option is to apply heterogenous detection systems to multiplex
PCRs conducted in single vessels. This allows for spatial separation
of detection events and individual readout without signal cross-
talk as in homogenous detection systems. This strategy has, for
example, been used in a method that applies beads with indivi-
dual, target-specific receptors such as oligonucleotide probes that
are simultaneously added to an amplicon mixture for binding. Up
to 100 different bead types can thereby be optically identified by
fluidic separation and color coding and bound PCR products
quantified by fluorescence [15,16].

Even higher multiplexing grades can be achieved by the use of
oligonucleotide arrays that can simultaneously detect hundreds of
thousands or millions of different nucleic acid sequences in par-
allel [17]. Numerous microarray-based assays have been described
for the detection of different target types such as viruses, bacterial
pathogens or human genetic variants [18-23]. However, work-
flows of such methods have been rather labor- and time-intensive
with partially separated amplification, labeling, microarray hybri-
dization, washing and detection, often involving purification and
individual hardware for the various processing steps.

Here, we describe a method using only one processing station
and a single, microfluidic oligonucleotide array that serves as a low
volume compartment for all steps of a nucleic acid detection and
typing process. This includes amplification and labeling of nucleic
acid targets, array hybridization, washing, fluorescent staining and
detection of individual PCR products. The method is evaluated
with viral, bacterial and human nucleic acid targets in multiplex-
ing mode and a detection limit of <100 copies is demonstrated. By
using a fully automated platform for de novo array synthesis, probe
content is highly flexible with a prototyping iteration cycle of
probe design, microarray synthesis, experimental testing and
microarray redesign of less than 24 hours. This allows the rapid
development of novel assay formats to adapt the system to novel
target sequences such as emerging viral or bacterial pathogenic
subtypes.

Materials and methods

DNA samples and oligonucleotides

Plasmid containing the entire genome of HPV 6b (ATCC-45150D)
was obtained from LGC Promochem. Bacterial genomic DNA was
obtained from ATCC. Used species were B. cereus (ATCC 14579), B.
subtilis str. 168 (ATCC 23857) and B. thuringiensis ser. israelensis
(ATCC 35646). Oligonucleotides were purchased from Sigma
Genosys.

Amplification protocols
For HPV PCR experiments, varying copy numbers of pHPV6b were
amplified using Absolute Mastermix (ABgene) in the presence of

100 wm  Biotin-16-dUTP and 0.5 M primer pool MY09
(CGTCCMARRGGAWACTGATC), 0.5 uM primer pool MY11
(GCMCAGGGWCATAAYAATGG), varying amounts of human
genomic DNA (Promega) and/or 0.25 pm primer B-Glob_fwd
(CAACTTCATCCACGTTCACC) and 0.25 pm primer B-Glob_rev
(GAAGAGCCAAGGACAGGTA). PCRs from a single mastermix
were conducted as control in parallel in tubes using a Mastercycler
(Eppendorf) and in a microfluidic Geniom Biochip using an
Amplispeed microarray slide thermocycler (Advalytix) or a Gen-
iom RT Analyzer instrument. Cycling conditions were as follows:
15 min 95°C, then 10 times: (1 min 95°C, 1.5 min 57°C, 1 min
72°C), then 25 times: (1 min 95°C, 1 min 55°C, 1 min 72°C), then
5 min 72°C. Product mixtures were either analyzed by agarose gel
electrophoresis or immediately hybridized in microfluidic chan-
nels for reactions carried out in a Geniom biochip (see below).
After PCR establishment, identities of all PCR products were con-
firmed by Sanger sequencing.

6-Plex PCRs targeting four Bacillus strains, HPV 6b and human
B-globin contained the same concentrations of primers MYO09,
MY11, B-Glob_fwd and B-Glob_rev as well as 0.5 pm of each of
the primers B.cereus_446_F (CCTACTATAATCCATGCA), B.cer-
eus_446_R (GGAGAAGATAGAATTGCT), B.Sub_395_F (CCTTCT-
ATTTCTAACGCA), B.Sub_395_R (CGATAATCATTGATCCGT),
B.Thu.Isr_407_F (CCATTCATGATAACTGCT), B.Thu.Isr_407_R
(GGTACCGTAATTATTGGA). Reactions further contained 1x Ther-
moStart buffer (Abgene), 500 um of each dATP, dGTP and dCTP,
125 pm TTP, 18.75 pM Biotin-16-dUTP, 0.03125 U/uL ThermoStart
DNA polymerase (Abgene) and varying amounts of different tem-
plates as specified in the ‘Results’ section. Cycling conditions were as
described above. Product mixtures were either analyzed by agarose
gel electrophoresis or immediately hybridized in microfluidic chan-
nels for reactions carried out in a Geniom biochip (see below).

Microarray design and synthesis

Light-activated in situ oligonucleotide synthesis was performed
essentially as described [24] using a digital micromirror device
(DMD, Texas Instruments). This allows for light-directed activa-
tion on a microfluidic array consisting of a glass-silicon-glass
sandwich within the Geniom instrument (febit biomed). Depend-
ing on the number of DMD micromirrors used for one feature and
for the spacing between features, each chip consists of eight arrays
with 6776 (2 x 2 mirrors for each feature with 1 mirror spacing) or
15,624 (1 mirror for each feature with 1 mirror spacing) individual
features.

For selective detection, 21mer tiling probes for the targeted PCR
products of B-globin (248 probes), HPV 6b (880 probes, including
surrounding region of target sequence) were designed with a 1 bp
resolution to analyze the complete sequences for the specific
regions. For further array designs after initial experimental valida-
tion of sensitivity and selectivity of probes, a 6776-feature setup
was used.

Bacillus detection probes were designed against forward and
reverse strands of amplicon regions with a target size of 25 bp using
a Sbp tiling offset. Probes were further selected to eliminate
ambiguous bases, runs of four or more identical bases (polyN)
and to maximize 5'-terminal uniqueness across the target gen-
omes. Each experimental amplicon generated 60-70 probes per
strand and PCR product target.
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Microarray hybridization, detection and data analysis

For experiments using purified, labeled PCR products, samples
were dissolved in febit hybridization mix-1, including febit control
oligo mix, heated to 95°C for 5 min and placed on ice. Geniom
biochip was denatured by washing with water at 80°C and incu-
bated with febit prehybridization buffer for 15 min at room tem-
perature. Buffer was removed and sample was injected into
microfluidic arrays and incubated for four hours at 45°C. Samples
were removed and the biochip was automatically washed conse-
cutively with 6x SSPE at room temperature and 0.5x SSPE at 45°C
within the Geniom device. Streptavidin—(R)-phycoerythrin (SAPE,
Invitrogen) in 6 x SSPE was injected and the biochip was incubated
for 15 min at room temperature and then washed with 6x SSPE.
Fluorescence image was acquired using the integrated detection
system of the Geniom device.

For experiments using integrated hybridization of PCR product
mixes, the biochip was directly used for PCR without denaturation
or incubation with febit prehybridization buffer. PCRs were con-
ducted using the Amplispeed microarray slide thermocycler (Adva-
lytix) or a Geniom RT analyzer instrument. PCR mastermix as
described above was injected into microfluidic channels and bio-
chip was subjected to the PCR program. Chip was denatured for
5 min at 95°C immediately after the PCR reaction, cooled to 45°C
and incubated for 16 h. Afterwards the target solution was
removed from arrays and analyzed by electrophoresis on a 2.5%
agarose gel. Biochip was washed and stained as described above.
After the first wash step after SAPE-incubation, a protocol for signal

amplification was performed. For 6-plex PCRs, incubation with an
antibody-solution (1x MES, 0.925 m NaCl, 0.05% Tween-20, 1 mg/
ml BSA) containing multi-biotinylated anti-streptavidin antibody
(Vector Laboratories; BA-0500, 1:167 diluted) and goat IgG (Sigma;
15256, 1:100 diluted) as second antibody was conducted. After a
second incubation with SAPE and washing, amplified fluorescence
was detected. For PCRs targeting HPV 6b and human B-globin
only, signal amplification was conducted using the Anti-Biotin
Oyster 550 (900) signal amplifier antibody (Genisphere) at 10 ng/
L under the conditions described above. For the analysis of fully
integrated microarray experiments, raw fluorescence intensities
were recorded, medians of probe replicates were calculated and
medians of background features (consisting of a single T residue)
were subtracted.

Results and discussion

We aimed at developing an integrated system for multiplex detec-
tion and subtyping of various DNA targets using a single reaction
vessel with a simple and automatable workflow. The established
approach makes use of the closed, microfluidic Geniom biochip
that contains eight individual microchannels with a volume of
~3 pL each presenting an array of 6776 or 15,624 DNA capture
probe features on its inner surface. The overall workflow is out-
lined in Fig. 1. A purified genomic DNA sample is mixed with a PCR
mastermix containing all components necessary for efficient
amplification of targeted loci including biotin-16-dUTP for inte-
grated random labeling. The mixture is injected into the chip and
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FIGURE 1

Overview of fully integrated amplification, detection and typing of genomic DNA targets. (a) General workflow. Purified nucleic acid sample containing target
nucleic acid is combined with PCR mastermix. Mixture is injected into a microchannel of a Geniom biochip containing selective DNA probes for binding of formed
PCR products. Amplification protocol including integrated labeling, hybridization, washing, fluorescent staining and detection is automatically conducted in the
employed processing platform. (b) Scheme of in-chip process. Sample DNA molecules are amplified in the presence of biotin-16-dUTP (1) leading to randomly
biotinylated PCR products (2). Products are hybridized to selective DNA capture probes and non- or weakly bound DNA is washed away (3). Chip is incubated with
Streptavidin—(R)-phycoerythrin, washed and fluorescence is recorded (4).
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amplification is performed within the chip followed by a thermal
denaturation and a hybridization step at 45°C for selective binding
of the probes. After stringent washing, the chip is incubated with a
fluorescent streptavidin conjugate (Streptavidin—(R)-phycoery-
thrin, SAPE), washed and an antibody-based signal amplification
process is conducted. Fluorescence is recorded and analysis reveals
the presence of individual amplicons.

For the detection of viral genomes, a generic PCR for the
amplification of an L1 region fragment of various human papillo-
mavirus (HPV) subtypes based on the known degenerate primer
system MY09/11 was established [25]. The MY09/11 primer set is
especially well suited for subtyping using high density DNA micro-
arrays, because PCR products have sufficient size to allow for the
design of probes against multiple L1 loci, thereby enhancing
reliability of subtype discrimination. Other generic primer systems
like the GP5+/GP6+ or SPF mixes yield much smaller products and
therefore do not sufficiently match the potential of microarray
probe content [26-28]. To verify the presence of human genomic
DNA within a sample, PCRs were performed as duplex PCRs
containing a second primer pair targeting the human B-globin
gene, which is widely used as positive control marker in human
detection assays. Additionally, a multiplex PCR represents a more
challenging test-case for the microchannel environment.

For subtyping of PCR products, capture probes were designed for
the B-globin control product and the L1 PCR product of primer
pair MY09/11. 21mer tiling probes with a resolution of 1 bp were
designed to cover the whole region of all PCR products and a
prototype array with a 15,624 feature density was synthesized. In
that way, a maximal number of probes per sequence can be
experimentally validated by the hybridization of individual PCR
products from which a fraction with desired sensitivities and
selectivities can be chosen for the design of an optimized subtyp-
ing array. Purified, biotinylated PCR products of HPV 6b and B-
globin were individually hybridized to two arrays containing all
designed probes and relative binding efficiencies as well as cross-
hybridization tendencies were determined. All probes exhibiting a
median discrimination of the noncognate PCR product of >6 were
used for the design of a second generation subtyping array. This
resulted in 168 and 78 probes specific for B-globin and HPV 6b,
respectively.

This selection was further evaluated in a second round of cross-
hybridization experiments for the selection of a minimal number
of highly specific probes with a 6776 probe array. Overall, 8 probes
for HPV 6b and 3 probes for B-globin were used for the final array
design. Using 8 probes per target thereby results in a theoretical
multiplexing level of >260 or >600 targets when array densities of
6776 or 15,624 features/array are used and each probe is included
in 3 replicates.

PCRs targeting HPV and the human B-globin gene were con-
ducted in the microchannels of a Geniom biochip with a volume
of ~3 pL per channel using the Geniom RT Analyzer as processing
station. This platform facilitates the workflow of the in chip PCR
by featuring integrated PCR temperature cycling, hybridization,
washing routines, fluorescence staining and detection. Plasmids
containing genomes of HPV subtype 6b were spiked in varying
concentrations into a background of human genomic DNA. This
allows for controlled titration of virus copies in a typical complex-
ity of a patient sample.

As a first test, PCR product formation was analyzed by agarose
gel analysis after the removal of the PCR mixture from the chan-
nels to assess product purity and detection limit with a standard
technique. In singleplex mode, of HPV L1 PCR product was clearly
visible with a detection limit of ~620 copies per 3 pL PCR reaction
within a background of 0.5 ng human genomic DNA per reaction
with good reproducibility (Fig. 2).

When targeting B-globin in a singleplex PCR, product forma-
tion was visible when starting with 0.25 ng (~75 genome copies) of
human genomic DNA. Moreover, both the B-globin and HPV L1
products could be detected by agarose gel electrophoresis when
using 310 copies of HPV 6b and 0.25 ng human genomic DNA as
starting amounts in multiplex PCR mode (Fig. 2). This demon-
strates that the employed microchannels can be used as PCR
reaction containers that allow for excellent sensitivity. Impor-
tantly, these results were obtained using previously known stan-
dard PCR primer systems and standard reaction conditions
without special adaptation of the applied conditions to the micro-
channels.

Next, PCR product typing performance of the microarray was
tested in the fully integrated workflow with PCR conducted in the
microchannels. Chips used for multiplex PCRs containing differ-
ent starting amounts of human gDNA and HPV 6b with a non-
template control PCR were conducted with integrated hybridiza-
tion, washing, staining and detection. Fluorescence data of probe
features are shown in Fig. 3. No significant fluorescence was
observed in negative controls for HPV 6b-specific probes, whereas

FIGURE 2

Multiplex PCR for generic amplification of HPV and specific control
amplification of B-globin from samples containing human genomic DNA and
HPV genomic DNA. PCR was conducted using the primer pool MY09/11 for
generic amplification of the HPV L1 region, specific primers for human B-
globin and biotin-16-dUTP for integrated labeling. All PCRs were performed
in the microfluidic channels of a Geniom biochip. L: Ladder. 1: PCR conducted
with 620 copies HPV 6b and 0.5 ng human gDNA as template with primers
targeting HPV only. 2: Replicate PCR of lane 1. 3: PCR conducted with 310
copies HPV 6b and 0.25 ng human gDNA as template with primers targeting
HPV and human B-globin. 4: PCR conducted with 310 copies HPV 6b and
0.25 ng human gDNA as template with primers targeting human B-globin
only. 5: negative control.
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some background fluorescence was visible for the B-globin probes
in the absence of template. However, observed fluorescence for all
tested probes clearly exhibited dependence on starting amount of
template for both targets. This allows a semi-quantitative analysis
of target nucleic acids and could be employed for the determina-
tion of viral load and amount of host cell material within a patient
sample. Importantly, the detection limit using fluorescence of
probe-bound amplicons is lower than the limit obtained for agar-
ose gel electrophoresis and allows the detection of ~100 copies of
HPV 6b, ~75 human genome copies and a viral load of 1.3 HPV 6b
copies per human genome copy.

To test further targets and more demanding PCR complexities, a
6-plex PCR system was next established. Four primer pairs target-
ing individual loci on three different Bacillus strains (Bacillus
cereus, Bacillus subtilis and Bacillus thuringiensis ser. israelensis) were
designed for maximal specificity between these strains. Primer
pairs were individually tested in PCR tubes against their respective
target genomic DNA (data not shown). For a 6-plex PCR, the three
primer pairs were used in combination with primers specific for
HPV 6b and B-globin. PCRs targeting B. cereus (3000 genome

copies/array), B. subtilis (3000 copies) and B. thuringiensis ser.
israelensis (2300 copies) in the presence or absence of human
genomic DNA (1 ng/array) were conducted in parallel using a
regular PCR tube or the microchannels of a biochip as reaction
container. All microchannels contained identical sets of capture
probes specific for the targeted amplicons. PCR products were
formed in both the presence and absence of human genomic
DNA with no clear resolution of Bacillus-related products, presum-
ably owing to similar amplicon lengths (Fig. 4a). No significant
formation of byproducts was observed and no product was present
in negative control PCR without genomic DNA. PCRs carried out
in microchannels with integrated hybridization and fluorescence
imaging afforded a collection of capture probes with sufficient
intensity for further analysis (Fig. 4b). In contrast to agarose gel
electrophoresis, the presence of all three Bacillus-related products
was indicated by fluorescence signals in positive reactions (Fig. 4b,
1-2), whereas no significant fluorescence was observed for most
probes in the negative control PCR (Fig. 4b, 3). PCRreactionsin the
absence of human genomic DNA were carried out in duplicate
using two arrays and individual capture probes within the two
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FIGURE 3

Fluorescence data of hybridization of PCR products from integrated amplification, labeling and selective detection of HPV subtype 6b and human B-globin. All PCRs
were performed in the microfluidic channels of a Geniom biochip with primer pairs targeting HPV 6b and human B-globin with starting template amounts as depicted
in the diagram. (a) Fluorescence data of probes specific for human B-globin. (b) Fluorescence data of probes specific for HPV 6b. NTC = Non-template control PCR.
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FIGURE 4

6-Plex PCR targeting different Bacillus species and human g-globin. (a) Agarose gel analysis of PCRs carried out in PCR tubes using six individual primer pairs and
different genomic DNA templates. Expected amplicon lengths for targets are Bacillus cereus: 446 bp, Bacillus subtilis: 395 bp, Bacillus thuringiensis ser. israelensis:
407 bp, human B-globin: 300 bp. L = Ladder. 1: PCR conducted in the presence of genomic DNA of Bacillus cereus, Bacillus subtilis and Bacillus thuringiensis ser.
israelensis. 2: PCR conducted in the presence of genomic DNA of Bacillus cereus, Bacillus subtilis and Bacillus thuringiensis ser. israelensis and human genomic DNA. 3:
Control PCR conducted in the absence of template DNA. (b) Diagram of fluorescence intensities of different array capture probes obtained after integrated PCR,
hybridization, fluorescence staining and detection in microchannels of a biochip. Identical PCR mixtures as described in A were used. 1a, b: Two replicates
conducted under conditions as used in A, Lane 1. 2, 3: PCRs conducted under conditions as in A, lanes 2 and 3, respectively.

replicates exhibited similar fluorescence intensities (Fig. 4b, 1a,b).
No fluorescence was observed for probes specific for human B-
globin. For PCR in the presence of human genomic DNA (Fig. 4b,
2), fluorescence intensities seemed to differ slightly from PCRs in
the absence of human gDNA. This might reflect an impact of the
additional product formation on efficiency of PCRs targeting
Bacillus species. However, probes correctly indicated the presence
of individual Bacillus-related products. Additionally, the presence
of the human B-globin PCR product was clearly indicated by the
respective probes. These data show that PCRs involving multiple
genomes and up to six primer pairs can be conducted within the
microchannels and products can be selectively detected with
excellent sensitivity.

In summary, we have developed a fully integrated system to
combine all steps of a typical protocol for detection and typing of
genomic targets from non-amplified samples. The method allows
for semi-quantitative detection and typing of viral, pro- and
eukaryotic targets covering different complexities with high
sensitivity and selectivity. Owing to the fast cycles of microarray
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High-fidelity gene synthesis by retrieval of
sequence-verified DNA identified using
high-throughput pyrosequencing
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The construction of synthetic biological systems involving
millions of nucleotides is limited by the lack of high-quality
synthetic DNA. Consequently, the field requires advances in
the accuracy and scale of chemical DNA synthesis and in the
processing of longer DNA assembled from short fragments.
Here we describe a highly parallel and miniaturized method,
called megacloning, for obtaining high-quality DNA by using
next-generation sequencing (NGS) technology as a preparative
tool. We demonstrate our method by processing both chemically
synthesized and microarray-derived DNA oligonucleotides with
a robotic system for imaging and picking beads directly off of
a high-throughput pyrosequencing platform. The method can
reduce error rates by a factor of 500 compared to the starting
oligonucleotide pool generated by microarray. We use DNA
obtained by megacloning to assemble synthetic genes. In
principle, millions of DNA fragments can be sequenced,
characterized and sorted in a single megacloner run, enabling
constructive biology up to the megabase scale.

Current de novo gene construction!~ rests on 1990’s technology for
chemical oligonucleotide synthesis, which is costly and has error rates
of 1 in 300 base pairs (bp). Errors are typically avoided by manually
selecting the best Sanger sequences using electrophoretic automation.
Recent innovations in programmable array technology®-® offer the
possibility to synthesize pools of thousands to millions of sequences
per array with lengths comparable to conventional synthesis. The
technology thus provides an extremely rich source of DNA oligo-
nucleotides with great flexibility and superior efficiency regarding
throughput and cost per bp. However, the error rate of microarray-
derived oligonucleotides is typically higher compared to conven-
tional synthesis, making error avoidance or correction necessary.
Furthermore it is challenging to divide the derived oligonucleotide
pools, containing vast amounts of species, into subpools—necessary,
for example, to guide the assembly of synthetic genes, chromosomal
regions or whole pathways in synthetic biology.

Megacloning turns NGS from a previously purely analytical
method into a preparative tool, and represents a tremendous source

of sequence-verified DNA where the yield from one NGS run is
equivalent to that from hundreds to thousands of Sanger-sequence
runs. It therefore addresses the challenge of error reduction for both
conventional and microarray-derived DNA oligonucleotides. The
method yields high-quality DNA libraries containing perfect parts
with desired and correct sequences in adjustable ratios useful for a
wide range of (bio-)technological applications.

Here we present a proof-of-concept study aimed at the retrieval
of clonal DNA with known sequence from an NGS platform after
sequencing (Fig. 1). The workflow comprises the input of DNA of
short length, an NGS run to generate sequence-verified DNA clones,
the identification of DNA with desired sequence on the sequencer’s
substrate and the retrieval of the clones of choice. The sources for
the input DNA are for the most part independent of the megacloning
step. For the present work, input DNA was derived from conven-
tional oligonucleotide synthesis and from DNA microarrays. We used
the NGS platform GS FLX from Roche 454 Life Sciences®!. Owing
to its open-top architecture, accessibility of the beads and the bead
size, this platform is well suited for a pick-and-place approach using
micropipettes to retrieve specific beads from the 454-Picotiterplate
(PTP) and transfer them into conventional multi-well plates for fur-
ther processing.

First, we established a technical setup for the controlled extrac-
tion of beads. The PTP at this stage contained a natural sample from
human DNA, and extraction was done using a micropipette controlled
by a microactuator device (Supplementary Data). To assess the fidel-
ity of our setup, we compared the reads coming from the GS FLX
platform with Sanger-derived sequences of DNA amplified from
extracted beads. The alignment of Sanger sequences to the NGS reads
matched 99.9%. Only two mismatches were obtained in 2,410 bp.
Both were putative insertions in the GS FLX reads occurring at
homopolymer stretches and therefore have a high likelihood of being
platform-specific, base-calling artifacts® (Supplementary Data).

Next we collected a set of 319 beads with DNA clones from a micro-
array-derived pool initially containing 3,918 sequences. The beads for
extraction were selected to ensure that their GS FLX reads perfectly
matched sequences in our starting pool. The obtained DNA and the
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Figure 1 Coalescence of DNA reading and writing. The general approach begins with DNA from

a variety of sources. Here we used oligonucleotides synthesized from microarrays as well as from
conventional sources. Then, next-generation sequencing is used to read and identify oligonucleotides
with desired sequences. Here we used the GS FLX platform (454/Roche). Finally, the DNA is sorted
and retrieved selectively, in this case with a microactuator-controlled micropipette guided by two
microscope cameras. The technologies used for retrieval depend on the sequencing platform.

natural DNA and its subsequent sorting
and reordering.

The absence of errors in 7,195 bp of DNA
obtained from 29 extracted beads raised the
question of achievable error rates from the
megacloner process. Therefore we explored
the potential of megacloning using a statistical
model. This model considers two main sources

untreated pool were compared after being sequenced independently
on a Genome Analyzer II (Illumina GAII). We mapped 3.1% of reads
from the initial (nonenriched) DNA pool without errors to the set
of 319 selected sequences. In the enriched pool the fraction of reads
mapping perfectly to the target sequences was 84.3%. The increase
by a factor of 27.2 shows clearly a successful enrichment of selected
and correct sequences (Fig. 2a,b). Also the analysis of reads on the
level of single-target sequences shows that for 94% of the sequences
in the selected pool, 50% or more of the reads were correct (Fig. 2c).
Error-prone sequences contained a high number of different species
likely to be caused by known sequence variations on the GAII, as
reported previously!.

To test the assembly of gene fragments based on megacloned
oligonucleotides stemming from a microarray, we assembled two
gene fragments, each ~220 bp in length, combining either nine
or ten megacloned, bead-derived amplicons in a PCR-based gene
assembly reaction!?!3, The obtained assemblies were cloned and
Sanger sequenced. Seven out of eight clones matched the target
sequence perfectly. Interestingly, one clone showed insertions and
deletions all located within a region 23 bp wide. Errors in assem-
blies originating from inaccuracies in the starting material could
be expected to be distributed evenly over the entire construct. As
this sequence was otherwise free of errors, these defects were likely
caused by misassembly rather than errors in the building blocks used
(Supplementary Data).

To further evaluate the capabilities of the megacloning approach to
generate biologically functional genes, we applied the method to DNA
fragments 274-394 bp in length and extracted 32 beads from the PTP
carrying putatively correct sequences. These DNA fragments were
the product of gene assembly reactions!? using overlapping 40-mer
oligonucleotides synthesized using conventional phosphoramidite
chemistry and could be assembled into a model gene encoding B-b-
glucuronidase (uidA)'* (2,080 bp).

Three Sanger sequences obtained from the bead DNA were totally
unrelated to the expected sequence and were probably caused by
wrong bead extraction or contamination. The remaining 29 sequences

of error—namely, wrong sequencing calls and
polymerase errors during DNA amplification!®. The calculations esti-
mated the chance of finding one error in our extracted sequence space
of ~7,200 bp to be 29%, which is in line with our experimental findings.
The theoretical error rate of bead amplicons after megacloning using
the setup employed in this study was estimated to be 1 error in 21 kbp
(Supplementary Data). Compared with the error rate in the starting
material of 1 error in 40 bp (determined from GAII data of the initial
microarray pool), this equals a 500-fold error reduction.

We further calculated the expected amount of reads from NGS
that match the target sequences of a given pool without errors. These
numbers are crucial to estimate the complexity of pools that can be
processed in one megacloner run. The resulting efficiency and cost
structure are influenced mainly by three parameters: the error rate of
the starting pool, the sequencing accuracy and the length of the vari-
able sequence (Supplementary Data). With an error rate of 1 error
in 40 bp and an average sequencing accuracy of 99.9% in the GS FLX,
we expect a five- to tenfold cost reduction in producing DNA frag-
ments (compared to conventional oligonucleotide synthesis) that can
be achieved now with the prototype device (Supplementary Data).
Because these fragments are largely free of errors, further savings can
be expected in gene synthesis because the cost of subsequent sequenc-
ing for final quality control will be lower.

In this work we demonstrated the targeted retrieval of bead-bound
DNA from a high-throughput sequencer without major modifications
to the sequencing process. Previous methods for error correction in
DNA pools”!7-2! do not adequately handle collections of closely related
oligonucleotide sequences that occur during assembly of repetitive
sequences or multi-gene family libraries. They also do not enable hier-
archical assembly strategies, which are made possible by the ordered
selection and physical separation of clonal DNA described here.

The megacloner process has been proven to be useful for retrieval
and sorting of correct and functional sequences and to increase the
portion of error-free sequences in a sample substantially. This tech-
nology allows the processing of DNA from microarrays but also from
a variety of other sources, such as conventional oligonucleotide syn-
thesis or natural DNA fragments.
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Megacloning could be optimized beyond the estimates in this work
of one error in 21 kbp from input DNA having an error rate of 1 in
40 bp. Although such raw material can be obtained by state-of-the-art
microarray technologies, the quality of input DNA could be increased
further by addressing the amplification step of bead-bound DNA—for
example, with higher fidelity polymerases, as the predicted contribu-
tion of the polymerase to the error rate is 4.7-fold higher than the
expected error rate of the megacloner itself (Supplementary Data).
Another accessible parameter for optimizing the overall process in
terms of error rates is improvement in the quality of the DNA starting
material. Also, optimization of sequencing accuracy could be a way to
improve the ability to select correct parts after NGS. This is, however,
the subject of ongoing optimization in the scope of NGS development,
including ligase-based methods with improved accuracy?2.
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The pool used in our conceptual study contained ~4,000
sequences. According to our results and extrapolations, this can be
increased to ~30,000 sequences per pool with the described setup.
As the bead extraction is generally independent of the pool com-
plexity, it is mainly limited by the NGS platform and the quality of
the starting material (Supplementary Data). More advanced micro-
array formats are able to deliver libraries with even higher complex-
ity and of sufficient quality to fit into a gene assembly process?>.
Therefore, with an appropriate degree of automation that reaches
an extraction frequency of two or three beads per minute, which is
achievable with state-of-the-art robotics, the work-up of one PTP
becomes possible within days, resulting in > 10° bp per plate. Hence,
the downstream process (amplification, cleanup, assembly) will
represent the next bottleneck.

Il Before megacloning
[l After megacloning

llio

200 250 300

300

200 250

Selected oligos

Figure 2 NGS-based comparison of untreated and megacloned oligonucleotide pools from microarray. (a) Comparison of the initial microarray
oligonucleotide pool (blue) and the pool enriched with the megacloner technology (red) based on the results of the [llumina GAIll runs. The bars in
set 1 represent the fraction of reads that could be mapped allowing up to three errors. Bars in set 2 show the fractions of perfectly matching reads to
the sequence set of the initial pool (3,918 sequences). The difference between the blue and the red bar in set 2 represents the enrichment of correct
sequences by megacloning. The bars in set 3 and set 4 show the fractions of reads mapping to sequences from the selected pool of 319 sequences.
The difference between blue and red bars in set 3 shows the enrichment of a selected 319 sequences before megacloning compared with after. Blue
and red bars in set 4 represent the enrichment of sequences that are in the set of 319 selected sequences and that are correct. (b) Histogram of read
counts in the Illumina GAIl data of the initial pool (blue) and the enriched megacloned sample (red). Only reads mapping without errors to one of the
319 selected target sequences have been taken into account. To compare the two NGS runs on the basis of read counts, we converted the numbers
into parts-per-million (p.p.m.) from the total number of filtered reads. (c) Composition of reads from the Illumina GAll data including 319 selected
sequences in the initial pool (top) and the enriched pool (bottom). The oligonucleotides are sorted by the fraction of correct reads. Green, correct reads;
red, error-prone reads (compartments in the red bars represent single sequences with a read count of 0.1% or more of total reads for the particular
sequence); light blue, sum of nonunique error-prone reads where each sequence represents less than 0.1% of total reads for the particular sequence;
blue, unique reads. In the lllumina GAIl data set from the enriched sample, just 315 out of 319 selected sequences could be detected.
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Our next focus in the present context is improvement and
automation of physical bead extraction. The workflow used in this
study still involved a considerable number of manual steps and some
human intervention, which was identified as the most important
source of error in terms of extraction of unwanted beads. Therefore,
the success rate of ~90% (29 beads out of 32) has to be increased for
the bead localization and retrieval process.

The method described here holds the potential to decrease produc-
tion cost for synthetic DNA by one or more orders of magnitude. This
source of high-quality DNA could aid the field of synthetic biology, as
well as the production of libraries for antibodies or enzyme variants.
In addition to synthetic sources, the sorting of natural DNA could
enable the quick reconstruction or combination of DNA fragments
to assemble genes, chromosomes or genomes, while simultaneously
including synthetic parts of DNA.

The principle that we applied here using the GS FLX technology
should also be generally applicable to other available NGS platforms
such as Illumina’s GAIL, SOLiD, the Polonator or others. In the
present context, the advantage of the GS FLX platform is the robot-
accessible platform architecture and the comparably large size of the
beads. Owing to different architectures of the other platforms, such
as partially closed systems and substantially smaller DNA carriers,
harvesting DNA from those will require a different mechanism, such
as optical approaches including photosensitive and cleavable linker-
molecules. The advantage of these platforms is a considerably higher
number of DNA clones, which potentially could increase the capacity
and throughput of the technology up to the gigabase level.

METHODS
Methods and any associated references are available in the online version
of the paper at http://www.nature.com/naturebiotechnology/.

Note: Supplementary information is available on the Nature Biotechnology website.
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ONLINE METHODS

Oligo synthesis, sequence design, adaptors. Oligonucleotides used for this
work were synthesized on programmable microarray synthesizers using light-
directed synthesis methods®. Conventional oligonucleotides used for gene
assembly were obtained from Sigma Aldrich. Harvesting of oligonucleotides
from microarray surfaces was performed by chemical cleavage of succinate-
ester bonds using ammonia hydrochloride solution.

Amplification of microarray-derived oligonucleotide pools by emulsion
PCR. Microarray-derived oligonucleotide pools were amplified before NGS
using emulsion PCR?“. Therefore universal terminal sequences were attached
during synthesis and served as primer regions. Amplification primers con-
tained adaptors for sequencing on the Illumina GAII platform and/or the 454
GS FLX (Supplementary Data).

Sequencing on the 454 GS FLX. The sample preparation for the PCR-
amplified oligonucleotides was done according to the manufacturer’s proto-
cols (Roche/454). To keep the DNA intact after sequencing, we exchanged the
bleaching cleaning buffer with TE buffer before the sequencing run to avoid
degradation of DNA during the final cleaning steps of the Roche sequencer.

Data analysis of 454 data and image conversion. NGS reads obtained from
the GS FLX sequencer were aligned to the target sequences in the oligonucleo-
tide pool to find the best matching sequence for every read and to perform
further analysis, such as error rate estimation. Perfect matching sequences
were selected and localized in the sequencer image by using the coordinates
attached to every read sequence. For sequence data analysis, we used various
Python scripts using the BioPython package. The images from the GS FLX
sequencer were converted into the TIFF standard format using the Python
Imaging Library.

Bead localization and extraction. After aligning the GS FLX reads to the
set of target sequences, we selected reads that perfectly matched one of the
desired oligonucleotide sequences in the pool. For localization of beads we
located the corresponding chemiluminescent signals in the converted raw
image from the GS FLX platform using the x- and y-coordinates that were
included in the NGS raw data. To locate beads in the PTP, we identified refer-
ence points in the raw image and their corresponding positions in the PTP
using suitable patterns of light signals. Based on these reference points the
bead positions on the PTP were calculated using an algorithm for scaling and
rotation. The extraction was performed with a micropipette with an outer
diameter of 28 um. For pipette handling we used a three-axis microactuator
(Supplementary Data). Before extraction of beads the PTP was stored under
a water layer to prevent desiccation and shrinking of beads. After picking, the
beads were transferred immediately into a PCR vial and stored under water
until further processing.

Amplification of DNA from beads. Amplification of bead-bound DNA
was performed with the primers 454-A and 454-B, targeting the Roche/454
adaptors, or ‘slx-fw-long’ and ‘slx-rev-long’ for Illumina adaptors. For ampli-
fication of fragments with 40-mer variable regions, primers were 5’-bioti-
nylated to facilitate subsequent removal of primer regions on a streptavidin
matrix. PCR conditions: 20 mM Tris-HCI (pH 8.8), 10 mM ammonium-
sulfate, 10 mM potassium chloride, 2 mM magnesium-sulfate, 0.1%
Triton X-100, 200 pM each ANTP, 2% (vol/vol) DMSO, 1 uM each primer,
50 U/ml native pfu polymerase (Fermentas). Cycling: initial denaturation
96 °C (2 min); then 30 cycles of 96 °C (30 s), 63 °C (30 s), 72 °C (30 s) and
final elongation 72 °C (3 min). After amplification, all PCR products were
analyzed on PAGE (Supplementary Data) to check specificity and yield.

doi:10.1038/nbt. 1710

For generation of the subpool containing 319 sequences, we estimated the
concentration on the basis of the gel analysis and mixed the amplicons in
equimolar concentrations.

Illumina sequencing and data analysis. As the sample contained suitable
adaptors all steps regarding adaptor ligation have been omitted. All other steps
were done according to the protocols from Illumina.

The NGS raw data obtained from Illumina GAII were processed by the
following steps.

1. Truncation of reads to the length of the variable regions (40 bp).
2. Filtering out reads containing ambiguities (filtered reads).
3. Group reads with similar sequences (bins).

Subsequently for each read we identified the best matching target sequence
from the oligonucleotide pool by mapping all reads to a pseudo-genome using
rapid alignment of small RNA reads (razerS) (http://www.seqan.de/projects).
The pseudo-genome was generated by concatenation of the variable parts
of pool sequences separated by 40-mer poly-T stretches. The corresponding
target sequence could then be determined by the matching position in the
pseudo-genome. Alignments from the razerS output were used to determine
insertions, deletions and substitutions. To compare the two GAII runs based
on the number of correct reads, we converted the read counts into parts-per-
million units (p.p.m.), taking the number of filtered reads before the matching
procedure (after step 2) as a basis.

Assembly of gene fragments from conventional oligonucleotides. Gene frag-
ments > 200 bp were assembled from conventionally synthesized 40-mer oligo-
nucleotides having a constant overlap region of 20 nucleotides to the adjacent
oligomer. Primer regions for 454 sequencing and restriction sites for primer
removal were included during assembly. The assembly reaction contained
5 nM of each construction oligonucleotide and 200 nM of terminal primers.
PCR conditions: 1x KOD polymerase buffer (Novagen), 1.25 mM MgSO,,
40 UM each ANTP, 5 U/ml KOD Hot Start Polymerase (Novagen). Cycling
for gene assembly: initial denaturation 96 °C (4 min); then 30 cycles of 96 °C
(10s), 55-40 °C touchdown (30's), 72 °C (10 s). For subsequent amplification:
96 °C (10's), 55 °C (30 °s), 72° (30 s), final elongation 72 °C (3 min).

Assembly of genes from >200 bp fragments. Gene assembly up to 2 kbp
were performed according to the protocol used for assembly of > 200 bp from
oligonucleotides.

Primer removal and cleanup of bead amplicons before gene assembly. For
removal of primer regions amplicons were incubated with Lgul restriction endo-
nuclease in 1x Tango buffer (Fermentas) for 3 h at 37 °C. For > 200 bp fragments,
small restriction fragments containing primer regions were removed by PCR
purification columns (GenElute PCR Clean-Up, Sigma Aldrich). For cleanup
of microarray-derived fragments, we used 40-mer variable region biotinylated
primers during bead DNA amplification and removed restriction products con-
taining biotin residues using streptavidin matrix. The 40-mer fragments were
ethanol precipitated and dissolved in water before further processing.

Assembly of genes from 40-mer double-stranded DNA fragments. For the
assembly of genes from 40-mer dsDNA we used a two-stage assembly pro-
tocol including a primerless PCR followed by a PCR for amplification of the
resulting products described previously!3.

24. Williams, R. et al. Amplification of complex gene libraries by emulsion PCR.
Nat. Methods 3, 545-550 (2006).
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In a multicenter study, we determined the expression profiles
of 863 microRNAs by array analysis of 454 blood samples from
human individuals with different cancers or noncancer diseases,
and validated this ‘miRNome’ by quantitative real-time PCR.

We detected consistently deregulated profiles for all tested
diseases; pathway analysis confirmed disease association of the
respective microRNAs. We observed significant correlations

(P =0.004) between the genomic location of disease-
associated genetic variants and deregulated microRNAs.

MicroRNAs (miRNAs) can regulate hundreds of genes post-
transcriptionally and appear to regulate virtually all cellular pro-
cesses. Owing to these properties, miRNAs have a critical role not

BRIEF COMMUNICATIONS |

only in physiological but also in pathological processes'. Although
most reported miRNA expression profiles have been generated from
solid tissues, there is growing evidence that miRNA profiles are readily
accessible from body fluids, such as blood?>. The aim of our multi-
center study was to elucidate and compare blood expression profiles
of 863 miRNAs for different human diseases to test for disease-specific
alterations. The generated blood-based ‘miRNome’ data have been
deposited in the Gene Expression Omnibus and updated versions are
available at http://genetrail bioinf.uni-sb.de/wholemirnomeproject/.
We applied identical standardized experimental and biostatistical pro-
cedures to the 454 analyzed blood samples from individuals with lung
cancer, prostate cancer, pancreatic ductal adenocarcinoma, melanoma,
ovarian cancer, gastric tumors, Wilms tumor, pancreatic tumors,
multiple sclerosis, chronic obstructive pulmonary disease (COPD),
sarcoidosis, periodontitis, pancreatitis or acute myocardial infarction
and from unaffected individuals (controls). All participating cent-
ers had to contribute samples to the control group (Supplementary
Table 1). The different control cohorts had a high degree of
reproducibility between the centers (Supplementary Fig. 1).

The platform we used is a highly specific primer extension-
based microarray that shows a very small degree of cross-
hybridization and can be used to distinguish between members
of the let-7 family*. To test for technical variance, we repeated the
measurements on four samples (two blood samples and two tissue
samples) and found a median correlation of 0.97. The correla-
tion between different samples was significantly lower as shown
by two-tailed unpaired Wilcoxon Mann-Whitney test (P < 0.05)
(Supplementary Fig. 2). To estimate the biological variance, we
analyzed blood samples taken from a healthy individual at three
different time points during the day (9 a.m., 12 noon and 3 p.m.),
with duplicate measurements at each time. Median correlation
between the time points was 0.98 and between duplicates it was
0.99 (Supplementary Fig. 3).

On average, we found for each disease 103 deregulated miRNAs
(P < 0.05; t-test after Benjamini-Hochberg adjustment). A total
of 62 miRNAs (7.18% of all 863) were deregulated in at least six
diseases in comparison to controls (Supplementary Table 2), and
24 miRNAs (2.78%) were deregulated in >50% of the 14 analyzed
diseases. One miRNA (hsa-miR-320d) was deregulated in
11 diseases and three miRNAs (hsa-miR-423-5p, hsa-miR-146b-3p
and hsa-miR-532-3p) were deregulated in nine of the tested
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Figure 1 | Bubble plot of miRNAs that are up- or downregulated in several
diseases. Bubble sizes correspond to the number of deregulated miRNAs. Orange
bubbles denote miRNAs that are more often significantly down-regulated

(P < 0.05) than upregulated. Blue bubbles denote miRNAs that are either more
often upregulated or equally frequent up- and downregulated. Homo sapiens
(hsa)-miR-320d was significantly deregulated (P < 0.05) in 11 diseases.

diseases. Known properties of these miRNAs are listed in
Supplementary Table 2. Most miRNAs were consistently deregu-
lated, that is, they were either up- or downregulated in the major-
ity of diseases (Fig. 1). Analysis of the human microRNA disease
database® revealed that only a few of the miRNAs deregulated in
blood were also previously reported as deregulated in solid tissues
derived from individuals with the same diseases (Supplementary
Table 3). A total of 121 miRNAs (14%) were not deregulated in
any of the 14 analyzed diseases.

We carried out pathway analysis of putative target genes for
miRNAs that were deregulated in at least six of 14 diseases (n = 62)
and for miRNAs that were not deregulated in any disease (n = 121).
We extracted the targets with P < 0.001 for both miRNA sets
using GeneTrail®’. We found a total of 7,598 target genes for both
miRNA sets. Of these genes, 27% were targets of miRNAs in both
sets, 21% were targets of miRNAs that were frequently deregu-
lated and 52% were targets of miRNAs that were not deregulated
in our study. We applied an over-representation analysis relying
on the hypergeometric distribution using GeneTrail to find signi-
ficantly enriched (P < 0.05) biochemical pathways. For the set of fre-
quently deregulated miRNAs, we found several disease-associated
pathways (Supplementary Table 4) including ‘pathways in cancer’
We did not detect any enriched pathway for the target genes of
the 121 miRNAs that were not significantly deregulated in any
disease. Pathways with significantly fewer (P < 0.05) targets than
expected are indicated in Supplementary Table 4.

To explore whether the significantly deregulated miRNAs are in
close genomic physical proximity to known susceptibility variants,
we extracted 3,495 published single-nucleotide polymorphisms
(SNPs) from the US National Institutes of Health genome-wide
association study catalog (accessed 28 July 2010) and searched
for the coding sequence of miRNAs in a genomic window of
250 kilobases (kb) around these SNPs. We detected 241 cases of
physical proximity between SNPs and miRNAs. Of these, seven
were related to diseases included in our study, representing
interesting candidates for testing the hypothesis that miRNA
deregulation depends on nearby genetic variants. Of the seven
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SNPs, four are associated with heart diseases, including cardiac
structure and function (rs7910620) and mean platelet volume
(rs2393967, rs10914144 and rs10506328), two with multiple scle-
rosis (rs703842 and rs17445836) and one with melanoma. Notably,
the relevant miRNA was significantly deregulated (P < 0.05) in
the same disease, in six of the seven cases. To test whether these
results could occur by chance, we carried out 10° non-parametric
permutation tests. The proximity of genetic variants and deregu-
lated miRNAs was significant (P = 0.004). All pairs of SNPs and
adjacent miRNAs are summarized in Supplementary Table 5 and
one representative example is presented in Figure 2.

To distinguish individuals with disease from controls or from
individuals with other diseases by miRNA profiling, we applied
machine-learning techniques. Each of the 14 diseases was separated
from controls with an average accuracy of 88.5%, ranging from at
least 81.3% to up to 100% (Supplementary Table 6). By using only
two miRNAs, we obtained an average accuracy of 72.5%, whereas
the use of ten miRNAs resulted in an average accuracy of 80.6%
(P =0.0002, two-tailed unpaired Wilcoxon Mann-Whitney test)
(Supplementary Fig. 4). Next, we performed pair-wise classifica-
tion analyses between different diseases using samples collected at
the same site to exclude between-institution bias. For the separa-
tion between pancreatic cancer and other pancreatic diseases, the
accuracy was not significant (P > 0.05). However, this result does
not necessarily imply a general similarity between miRNA profiles
of malignant and nonmalignant diseases of the same organ. For
example, we could distinguish lung cancer from COPD with an
accuracy of 91.7%, corresponding to a highly significant classifica-
tion (P < 107%). COPD is a common co-morbidity of lung cancer
and also precedes tumors in 50-90% of cases®. Thus, a biomarker
separating individuals with lung cancer from those with COPD
but without cancer may prove useful.

We performed an independent validation of the miRNA profiles
using different technologies and cohorts of individuals. In previous
studies, we had confirmed 474 deregulated miRNAs in different
diseases by performing quantitative real-time PCR (qRT-PCR)
on samples from several individuals with lung cancer, melanoma,
glioma and acute myocardial infarction®!!. Here we addition-
ally performed a large-scale validation for a larger dataset includ-
ing data for 44 individuals with lung cancer and 41 with COPD.
We selected 18 significantly deregulated (P < 0.05) miRNAs that sepa-
rate both diseases in quadruplicate by qRT-PCR using the SmartChip
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Figure 2 | Representative example for the physical proximity of a significantly
deregulated miRNA and a known SNP. A schematic of the human chromosome
10q21 with hsa-miR-1296 (magenta) and four SNPs (arrows) including SNP
152393967 (SNP database (dbSNP) accession number) that is associated
with heart diseases. The plot shows expression and s.d. of hsa-miR-1296

in the blood of individuals with acute myocardial infarction (AMI, n = 20)
compared to that in healthy controls (n = 70). P = 0.006.
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Real-Time PCR System (WaferGen Biosystems). Of those 18 miRNAs,
we validated 14, that is, these miRNAs were deregulated in a
comparable manner in array and qRT-PCR experiments. The
remaining four miRNAs were only rarely expressed as indicated by
mean threshold cycle (Ct) values >28.5. In Supplementary Table 7
we list raw qRT-PCR data and the variance for the replicates.
The overall correlation of the quantile normalized qRT-PCR and
array results for the 45 analyzed miRNAs (27 miRNAs of previous
studies and 18 miRNAs in the present study) was as high as 0.86
(Supplementary Fig. 5). We provide scatter plots and fold changes
for all tested miRNAs (Supplementary Table 8).

We developed the concept of disease probability plots (DPPs)
to determine the probability that a miRNA expression profile
correctly indicates that an individual has one or several of the
analyzed diseases. We computed the probabilities via a regression
approach for each individual sample. Analyzing all DPPs, we pre-
dicted the correct disease in 67.45% of all individuals (exemplary
DPPs are available in Supplementary Fig. 6). Assuming that all
diseases are almost equally frequent in our dataset, this translates
into an over eightfold increased accuracy of disease prediction by
miRNA profiling as compared to random guessing.

Although our study supports the idea that blood cells have an
miRNA pattern that varies between different diseases, there are
several points to be considered when blood miRNA patterns are
associated with diseases. Any association between a miRNA pat-
tern and a disease can be confounded by co-morbidity for another
disease. Furthermore, blood cells may not contribute equally to
an miRNA pattern, with expression variation in a few cell types
accounting for most of the pattern. Indeed, as recently shown for
27 different cell populations isolated from normal mouse hemato-
poietic tissues, different blood cell types have specific miNA
expression patterns'?. Distribution of the complete blood count
(CBC) is known to vary in disease, for instance owing to cancers
or diseases of the blood!® or bone marrow, cancers that spread to
the bone marrow, autoimmune disease or side effects of medica-
tions. There are also variations in CBC in healthy individuals. It is
possible that changes in miRNA profile in disease reflect shifts in
the distribution of different blood-cell types. We tested this pos-
sibility using principal-component analysis; specifically, we car-
ried out standard principal-component analysis on the expression
matrix (http://genetrail.bioinf.uni-sb.de/wholemirnomeproject/)
and computed for each principal component the fraction of the
overall data variance. Although it is likely that shifts in cell popu-
lations affect the overall miRNA profiles, we observed that even
27 different cell populations, represented by the first 27 principal
components with highest variance, can account for only about 60%
of the total variance in the miRNA profiles. Taken together, the
ability to recognize systematic features in human blood cells and
the relatively small normal CBC variation in healthy individuals

BRIEF COMMUNICATIONS |

provides support for the feasibility of using miRNA expression pat-
13

terns in peripheral blood as the basis for detection of disease’>.

Identifying the complex relationships between disease and
changes in miRNA expression patterns in blood cells could con-
tribute not only to an understanding of the mechanism behind
the pattern and of disease associations but provide insight into
the pathological processes because miRNAs in turn influence the

expression of thousands of genes.

METHODS
Methods and any associated references are available in the online
version of the paper at http://www.nature.com/naturemethods/.

Accession codes. Gene Expression Omnibus: GSE31568.
Note: Supplementary information is available on the Nature Methods website.
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ONLINE METHODS
Blood samples. The blood samples were collected and proc-
essed from five different institutions working closely together
with the Heidelberg Biomarker Discovery Center (http://www.
bdc-heidelberg.com/biomarker-discovery/index.cfm). The par-
ticipating centers were the German Cancer Research Center
(Deutsches Krebsforschungszentrum), Saarland University,
Heidelberg University, Kiel University and Wuerzburg
University. Groups at each of these centers provided samples
from individuals with disease and from healthy individuals.
Blood was extracted using PAXgene Blood RNA tubes (BD).
All blood donors participating in this study gave their informed
consent. A complete list of screened samples is provided in
Supplementary Table 1.

miRNA extraction and microarray screening. A total of 2.5 ml
to 5 ml of blood were extracted in PAXgene Blood RNA tubes.
The PAXgene Blood RNA tubes ensure stabilization of RNA and
hence stabilization of the expression profiles. Blood cells were
obtained by centrifugation at 5,000¢ for 10 min at room tempera-
ture (18-25 °C). The miRNeasy kit (Qiagen) was used to isolate
total RNA including miRNA from the resuspended blood cell
pellet according to the manufacturer’s instructions. The eluted
RNA was stored at =70 °C.

All samples were shipped overnight on dry ice and analyzed
with the fully automated Geniom RT Analyzer (febit biomed) at
febit’s in-house genomic service department using the Geniom
Biochip miRNA Homo sapiens version v12 to v14. Geniom bio-
chips consist of a meandering microchannel that forms the so-
called ‘biochip. Each biochip can be used to analyze eight different
samples independently. The flexible oligomer synthesis is done
in situ inside the microchannels using a light-directed process. The
probes were designed as the reverse complements of the mature
miRNA sequences as published in miRBase plus nucleotides at the
5’-end of the capture oligonucleotide as needed for the enzymatic
extension (microfluidic primer extension assay; MPEA). For con-
ventional miRNA hybridization assays the reverse complement of
the miRNA sequences as published in the miRBase releases version
12.0 to 14.0 (ref. 14) (in total 863 mature miRNAs and miRNA star
sequences) were synthesized with seven intraarray replicates®.

We mixed 250 ng of total RNA with 1 pl of 5 pM miRNA spike-in
mix and dried it in a tabletop speedvac (Univapo 100H). Each RNA
pellet was fully resuspended in 25 pl of hybridization buffer and
denatured for 3 min at 95 °C. Until the hybridization, the denatured
samples were kept on ice. Microarray hybridization was performed
using the Geniom RT Analyzer and Geniom miRNA biochips
Homo sapiens. The samples were loaded automatically and hybridi-
zation of unlabeled sample has been carried out for 16 h. On-chip
sample labeling with biotin was carried out by MPEA® Therefore,
streptavidin R-phycoerythrin conjugate (SAPE) solution, antibody
solution, equilibration buffer (1x NEB 2; New England Biolabs),
stop buffer (6x SSPE; Applied Biosystems) and enzyme solution
were placed into the RT Analyzer. The array equilibration was fol-
lowed by incubation with enzyme solution. Enzyme incubation
was stopped with stop buffer. SAPE staining, signal amplification
and detection proceeded fully automated within the Geniom RT
Analyzer. All steps from sample loading to miRNA detection were
processed fully automatic inside the machine. As internal control
standards five different probes labeled with Cy3 or biotin (bio)
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were included: 5’-[Cy3]TCACTCATGGTTATGGCAGCACT
GC-3"(80nM), 5’-[bio)] GTTAGTTCGCCAGTTAATAGTTTGCG-3’
(12nM), 5-[bio] TCTTACCGCTGTTGAGATCCAGTTC-3’ (4 nM),
5’-[bio] CCCACTCGTGCACCCAACTGATCTT-3’ (0.4 nM) and
5’-[bio] CCATCCAGTCTATTAATTGTTGCCG-3’ (0.04 nM).

The enzymatic MPEA together with the fully automated han-
dling ensured a high degree of specificity as well as excellent
reproducibility.

The detection pictures were evaluated using the Geniom Wizard
Software. For each feature, the median signal intensity was calcu-
lated. Following a background correction step, the median of the
seven replicates of each miRNA was computed. To normalize the
data across different arrays, quantile normalization!> was applied
and all subsequent analyses were carried out using the normalized
and background subtracted intensity values. Since the miRBase has
been upgraded twice in the past year from version 12.0 to version
14, we used for the final data analysis the 863 miRNAs that were
consistently present in all three versions. The whole miRNome
data are available for download from the project homepage (http://
genetrail.bioinf.uni-sb.de/wholemirnomeproject/) and in the Gene
Expression Omnibus!®.

Statistical analysis. Single miRNA analyses were carried out using
t-tests (unpaired, two-tailed) after verifying approximate normal
distribution using Shapiro-Wilk test. The resulting P values were
adjusted for multiple testing using Benjamini-Hochberg’s adjust-
ment!”. In addition, the area under the receiver characteristic
curve was computed.

Supervised classification of samples was carried out using sup-
port vector machines (SVM)!8 as implemented in the R 1071
package!®. As parameters of the SVM, we evaluated different ker-
nel methods including linear, polynomial (degree 2 to 5), sigmoid
and radial basis function kernels.

To detect miRNAs that contribute most diagnostic information
and thus lead to accurate classifications, a subset selection tech-
nique has been applied. Specifically, an iterative filter approach
based on the ¢-test was carried out. In each iteration, the s miRNAs
with lowest P values were computed on the training set in each
fold of a standard tenfold cross-validation, where s was sampled in
regular intervals between 2 and 500 miRNAs. The respective subset
was used to train the SVM and to carry out the prediction of the
test samples in the cross validation. To compute probabilities for
classes, a regression approach based on the output of the support
vectors has been applied. To test for overtraining, nonparametric
permutation tests were applied. All computations were carried out
using the publicly available R statistical language!®.

To evaluate the classification, we computed accuracy, specificity
and sensitivity.

Pathway analysis. To detect biochemical networks that are puta-
tively regulated by disease miRNAs, we carried out a so-called
overrepresentation analysis. For a set of miRNAs, we extracted
the targets using Genetrail (http://genetrail.bioinf.uni-sb.de/) via
MicroCosm V5 (http://www.ebi.ac.uk/enright-srv/microcosm/
htdocs/targets/v5/) that uses the miRanda algorithm. To reduce
the number of false positive miRNA targets, we applied a signifi-
cance value threshold of 0.001 (ref. 6). The set of putative mRNA
targets of disease relevant miRNAs was used as input for the web-
based gene set analysis tool GeneTrail to find Kyoto Encyclopedia

doi:10.1038/nmeth.1682
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of Genes and Genomes (KEGG) pathways that are significantly
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MicroRNAs (miRNAs) are increasingly envisaged as biomarkers for various tumor and
non-tumor diseases. MiRNA biomarker identification is, as of now, mostly performed in a
candidate approach, limiting discovery to annotated miRNAs and ignoring unknown ones with
potential diagnostic value. Here, we applied high-throughput SOLiD transcriptome sequencing of
miRNAs expressed in human peripheral blood of patients with lung cancer. We developed a
bioinformatics pipeline to generate profiles of miRNA markers and to detect novel miRNAs with
diagnostic information. Applying our approach, we detected 76 previously unknown miRNAs and
41 novel mature forms of known precursors. In addition, we identified 32 annotated and seven
unknown miRNAs that were significantly altered in cancer patients. These results demonstrate that
deep sequencing of small RNAs bears high potential to quantify miRNAs in peripheral blood and
to identify previously unknown miRNAs serving as biomarker for lung cancer.

Introduction

For many human diseases there is still a lack of peripheral
biomarkers for efficient disease detection, therapy monitoring,
and estimation of prognosis. Especially in patients with lung
cancer, timely diagnosis and early specific treatment is crucial
to improve patients’ individual outcome. This is often difficult
since today’s diagnostic procedures only allow comparatively
late diagnosis and hence treatment. Novel biomarkers for lung
cancers, regardless of the underlying histological differences,
that allow specific discrimination between patients from
healthy individuals could markedly improve clinical care.
MiRNAs regulate a manifold of biological processes
through negative regulation of gene expression. This reveals
their high potential to influence almost every—physiological
or pathophysiological—molecular pathway. Recent evidence
also suggests that miRNAs impact on the development of
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human diseases including cancer. Most recently, miRNAs were
furthermore recognized as promising non-invasive biomarkers
for diverse human disorders.!®

While array-based technologies or quantitative real-time
PCR (qRT-PCR) have commonly been used to characterize
the annotated human miRNome known at the time of these
studies, next-generation sequencing (NGS) approaches now
offer the option of getting an even deeper understanding of
miRNA profiles in human diseases. However, only a few
studies examined miRNA profiles in human blood or other
body fluids including serum and plasma by NGS. Most of the
published NGS studies focus on the analysis of already known
miRNAs but less on the identification of novel miRNAs. For
example, for non-small cell lung cancer (NSCLC) a four-miRNA
serum signature was identified using Solexa sequencing.’ In
addition, miRNA signatures derived from serum of patients
with esophageal squamous cell carcinoma and gastric cancer
were identified by high-throughput sequencing.®® Further-
more, a 13-miRNA-based biomarker was identified that
discriminates between HBV cases from controls and HCV
cases, and also HBV-positive hepatocellular carcinoma cases
from controls and HBV cases.'® Ge et al.'' revealed the
potential of NGS of miRNAs circulating in maternal plasma
for non-invasive prenatal diagnostics and Luo er al.'* already
identified placenta-specific miRNAs in pregnant women. One
study that provides novel miRNA was from Vacz et al. who
predicted 370 novel miRNAs in PBMC of healthy
individuals."

This journal is © The Royal Society of Chemistry 2011
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Here, we performed NGS of small RNAs in human peripheral
blood of patients with lung cancer and of healthy control
individuals. By using SOLiD sequencing technology and DNA
barcoding we generated over 25 million sequencing reads per
sample and identified numerous known and novel miRNAs
specific for lung cancer. The results of this study are integrated
in the “Whole Disease miRNome” project,® which aims to
improve our understanding of the human miRNome in a wide
range of human pathogenic processes.

Materials and methods
Study population

For the NGS approach, we obtained whole blood samples
from ten patients with non-small cell lung cancer (NSCLC)
and ten healthy individuals (Table 1). We collected 2.5-5 ml
whole blood in PAXgene™ Blood RNA tubes (PreAnalytiX)
and stored the samples at —20 °C until extraction of total
RNA. Lung cancer patients and healthy individuals showed a
non-significant difference in gender distribution (Fishers Exact
test p-value of 0.36).

For quantitative real time PCR (qQRT-PCR) we obtained
lung cancer tissue from 16 different patients. Lung cancer
tissue samples were stored at —80 °C after resection until RNA
isolation. We combined the isolated RNA from those tissues
to four pools, i.e., one squamous cell lung cancer pool, one
adenocarcinoma pool, one large cell lung cancer pool, and one
small cell lung cancer pool.

Considering the ethnic groups, all individuals were Caucasians
with except of one Persian among the healthy blood donors.
The enclosed lung cancer patients did not undergo any radio-
or chemotherapy before blood drawing and tumor resection.
All tumor patients were smokers or former smokers with 7 to
80 pack years.

Local ethics committee has approved the analysis of blood
and tissue from patients and controls and participants have
given their informed consent.

Table 1 Characteristics of blood donors

Isolation of total RNA from blood cells and tissue

The RNA isolation of the PAXgene™ Blood RNA Tubes was
performed as previously described.* The RNA was stored at
—70 °C until use. For the isolation of RNA from tissue, samples
were homogenized in 2 ml QIAzol lysis reagent and incubated
for 5 min at RT. Then 200 pl chloroform were added, vortexed
for 15 s, and incubated for 2-3 min at RT. Subsequently, we
followed the same protocol as applied for blood.

Library preparation

1.5 pg of total RNA was enriched for the fraction of small
RNAs (1040 nt) using Ambion’s flashPAGE Fractionator,
followed by sodium acetate precipitation. SOLiD internal
adapters were ligated using 100 ng enriched fraction. After
ligation, smallRNAs were transcribed into cDNA with
Reverse Transcriptase. cDNA fragments between 60 and 80 nt
(small RNAs + adaptors) were isolated from a 10% TBE
Urea Gel (Novex-System, Invitrogen). RNA from gel slices
was amplified with 15 PCR cycles using the same 5'-Primer for
each sample and ten different 3’-Primers including the barcode
sequences (SOLiD Multiplexing Barcoding Kit 01-16). A total
of ten purified and barcoded DNA libraries was analyzed with
a HS-DNA Chip in the Agilent Bioanalyzer 2100 and subse-
quently pooled in equimolar amounts.

Next generation sequencing

The pooled libraries were diluted to a concentration of 41 pg pl ™.
DNA was amplified monoclonally on magnetic beads in an
emulsion PCR. Emulsions were broken with butanol and the
remaining oil was washed off the templated double-stranded
beads. DNA on the bead surface was denatured to allow
hybridization of the enrichment beads to the single stranded
DNA. Using a glycerol cushion the null beads can be separated
from the templated beads. After centrifugation, the enriched
magnetic beads were in the supernatant. The enrichment-beads
were separated from the magnetic beads by denaturation.
The 3’-end was enzymatically modified for deposition on the

Sample Age Gender Tumor classification TNM classification Clinical staging Therapy Ethnicity
Lung cancer 715 76 Male Squamous cell lung cancer T2bN1 11B No Caucasian
Lung cancer 721 57 Male Squamous cell lung cancer T3NO 1B No Caucasian
Lung cancer 731 71 Male Lung adenocarcinoma T1bNO 1A No Caucasian
Lung cancer 735 65 Female Squamous cell lung cancer T2bN1 1B No Caucasian
Lung cancer 739 59 Female Lung adenocarcinoma T3NO 11B No Caucasian
Lung cancer 742 67 Male Squamous cell lung cancer T2aN1 ITA No Caucasian
Lung cancer 744 56 Male Lung adenocarcinoma T2aN2 1A No Caucasian
Lung cancer 746 72 Male Lung adenocarcinoma T2aN1 IIA No Caucasian
Lung cancer 747 61 Male Lung adenocarcinoma T3N1 IIIA No Caucasian
Lung cancer 748 69 Female Squamous cell lung cancer T2aNO 1B No Caucasian
Control 1 30 Female Healthy — — — Caucasian
Control 2 53 Male Healthy — — — Caucasian
Control 3 25 Female Healthy — — — Caucasian
Control 4 29 Male Healthy — — — Caucasian
Control 5 29 Female Healthy — — — Caucasian
Control 6 60 Male Healthy — — — Caucasian
Control 7 43 Female Healthy — — — Caucasian
Control 8 36 Male Healthy — — — Caucasian
Control 9 51 Female Healthy — — — Caucasian
Control 10 29 Female Healthy — — — Persian
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sequencing slide. 700 Million Beads were loaded onto a Full
Slide and sequenced on a SOLID 4 analyzer.

Mapping of reads

Mapping of SOLiD sequencing reads against known miRNAs
and the genome was done using the RNA2MAP tool (version 0.5)
from Applied Biosystems (http://solidsoftwaretools.com/gf/
project/rna2map/). To use the default parameters of this
mapping pipeline, we first trimmed the reads to a size of
35 nt. To reduce the overhead of computation, we reduced
the amount of reads per sample to those being unique in the
sample. The RNA2MAP pipeline included three steps:
(1) reads are filtered against tRNAs, rRNAs, and other repetitive
elements; (2) the remaining reads are mapped against the
predicted precursor sequences of miRNAs from miRBase
(version 16'471%); (3) the remaining reads are mapped against
the human genome (hg19). The mapped genome reads served
as input for the prediction of novel miRNAs with miRDeep.!”
The predicted novel miRNA precursor sequences were added
to the precursor sequences of miRBase and step 2 of the
RNA2MAP pipeline was repeated to retrieve the counts for
both the known and novel predicted precursor sequences.

Prediction of novel miRNAs

For the prediction of novel miRNAs, we used a probabilistic
model of miRNA biogenesis in combination with the
frequency of RNA reads along the secondary structure of
the miRNA precursor as implemented in miRDeep."”
Previously, we transformed the output of the alignments of
RNA2MAP to the so-called ‘blastparsed’ format of miRDeep.
To this end, we removed the sequencing adaptor, converted
the colorspace mapping into bases, re-counted the
mismatches, adjusted the alignment length, and computed a
bit score and an E-value as described previously.'® The
miRDeep pipeline itself was run with default parameters using
Randfold (v 2.0,'”) and a fasta file containing the mature
miRNA sequences from miRBase v16 (without human
sequences) to improve accuracy and sensitivity. To reduce the
number of false positive predictions, we ran 100 permutation
tests and excluded a predicted novel miRNA if found in any of
the permutation runs. The remaining putative novel miRNAs
(p-value < 0.01) were mapped with BLAST (v 2.2.24%%), against
known ncRNA and miRNA sequences from diverse sources
(miRBase v16, snoRNA-LBME-db*'), ncRNAs from Ensembl
“Homo_sapiens. GRCh37.59.ncrna.fa”  ((ftp://ftp.ensembl.org/
pub/release-59/fasta/homo_sapiens/ncrna/) NONCODE v 2.0%).
We excluded sequences that aligned with more than 90% of their
length (allowing 1 mismatch) to any of the ncRNA sequences.

Distribution of miRNA reads across the miRNA precursors

Since we performed a size selection we do not intent to
measure the expression level of the miRNA-precursor but of
the mature miRNAs. The mapping of mature miRNA reads to
the respective precursor sequence, however, offers the option
to understand how the mature miRNA reads distribute along
the precursor. To consider the distribution of reads mapping
to a miRNA precursor, we computed for each precursor
separately the coverage of each base position for lung cancer

samples and controls. Likewise, we also computed for each
base position of each precursor a significance value using the
Wilcoxon Mann—Whitney (WMW) test.

Downstream analysis

To further evaluate the NGS miRNA profiles, we carried out
statistical computations using R.%* The Shapiro-Wilk test has
been applied to determine whether miRNA counts across all
samples are normally distributed. To normalize samples standard
quantile normalization has been applied to make the different
sequencing runs comparable to each other. Expression of a
miRNA i in a sample j has been measured as the normalized
read count of this miRNA in the respective sample. The
Grubbs test has been carried out for detecting outliers. The non-
parametric WMW test has been performed for detecting
differentially regulated miRNAs. To further assess the validity
of the signature we carried out non-parametric permutation
tests. Here, the class labels have been randomly shuffled 100
times and the same analyses as for the original class labels have
been carried out. A p-value was computed as the fraction of
random runs with a likewise significant result as the original
computations.

In addition to WMW analysis, we performed an analysis
considering the total length of a miRNA precursor to identify
possible novel miRNAs that derive from this precursor. In
detail, we computed for each precursor m and each base i the
WMW significance value for the respective position in the
precursor at position i, testing the hypothesis that read counts
of miRNA m at position i are significantly higher for lung
cancer samples as compared for normal controls. For each
miRNA precursor, we then counted the number of bases with
WMW significance values <0.05. Furthermore, the area
under the receiver operator characteristics (AUC) curve has
been computed for each miRNA. Cluster analysis has been
done using the ‘hclust’ package.

For computing targets of deregulated miRNAs, the
miRANDA algorithm has been applied and only miRNA-mRNA
relations with p-values < 0.0001 have been considered.** To
carry out gene set enrichment of target genes, we used
GeneTrail and carried out a so-called over representation
analysis.>>?°

Validation of miRNA expression by qRT-PCR

To verify the accuracy of NGS-based miRNA quantification,
expression levels of the newly identified miRNAs hsa-can-
miR-49, hsa-can-miR-1040, hsa-can-miR-675, hsa-can-miR-
213, hsa-can-miR-915, and hsa-miR-98 new were assessed
using qRT-PCR (measured in duplicates) according to manufac-
turer’s instructions (ABI, USA). We performed qRT-PCR with
the RNA of the 20 blood samples from ten lung cancer patients
and ten healthy individuals and with the RNA of the four lung
cancer tissue pools.

gRT-PCR was done as follows: custom miRNA primers
were synthesized by Qiagen (Hilden, Germany). The small
nuclear RNA RNU6B-2 served as endogenous control. Hsa-miR-
577 served as negative control and hsa-let-7g served as positive
control. These two control miRNAs have been selected from our
array-based study including 454 blood samples.® While hsa-let-7g
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Table 2 Sequencing reads

Uniquely mapped reads without

Sample Total reads Unique reads Mappable reads Uniquely mapped reads mismatches to miRNAs
Control 1 21546906 6483422 15622637 8702194 2983422
Control 2 25780926 9347407 16942 190 13006925 1777253
Control 3 27351543 8199034 19697 784 12352288 1626120
Control 4 26575164 8512058 18039852 12548 571 1572865
Control 5 25621021 9831745 16 609 732 15823914 1256992
Control 6 21508 347 7430551 14738961 11323006 1399058
Control 7 21667199 6770030 15103061 11940299 1097079
Control 8 26375514 10592366 16959721 17492 668 1198169
Control 9 26510814 9508 500 16289 720 6923836 1803276
Control 10 19342152 4736279 14178971 4909 246 2863519
Lung cancer 715 39838662 12057004 28320865 18976323 2219591
Lung cancer 721 20553924 7382608 13931434 10072355 1982624
Lung cancer 731 29427176 10086 103 20025354 16223858 1837469
Lung cancer 735 25970295 9902069 16703 580 13628112 1938176
Lung cancer 739 17517290 5864764 12274764 8527749 1693297
Lung cancer 742 41063105 16480873 24454710 24251687 1259950
Lung cancer 744 16378241 6369296 10235069 8255511 1645217
Lung cancer 746 42718 688 14847395 27930159 19550059 3062906
Lung cancer 747 18571825 6795712 12133853 9606735 1432632
Lung cancer 748 34928 862 13648517 22 178 040 16980397 3099004
SUM 529247654 184845733 352370457 261095733 37748619
Average 25875610 8929732 16 656 656 12450429 1735275
Std Dev 7691588 3001406 4935673 4897476 586987

was highly expressed in most samples in this study, hsa-miR-577
was one of the lowest expressed miRNAs across this compre-
hensive cohort.

miRNA target prediction and functional analysis

For the prediction of targets of the newly identified miRNAs,
we applied the miRanda algorithm (version 3.3a)?’ with
default parameters to 3’ UTR sequences downloaded from
the UCSC Table Browser.”® The predicted mRNA targets
were tested for functional enrichments using GeneTrail.*®

Specificity of uniquely mapping reads and comparison to miRBase

Although the first step of RNA2MAP is a filtering step to
remove reads that map against tRNAs, rRNAs, and other
repetitive elements, we wanted to verify that potential reads that
can be mapped to the mature forms of our novel miRNAs do
not map to other noncoding RNAs. Therefore, we downloaded
noncoding RNA sequences from Ensembl (http://www.ensembl.
org/info/data/ftp/index.html), as well as mRNA exon sequences
and intergenic sequences from the UCSC Table Browser.” To
compare the results to those of already annotated miRNAs, we
carried out the same analysis for all known miRNAs from the
miRBase (v17). The mature forms of our novel miRNAs and
the known miRNAs were used in a BLAST analysis against the
downloaded fasta sequences. We extracted the novel/miRBase
miRNAs, where at least one mature form matched without a
mismatch with at least 90% of its length.

Results

High-throughput transcriptome sequencing results in high
coverage of the human miRNome

We sequenced the small RNA fraction of 20 blood samples
including ten samples of lung cancer patients and ten samples
of healthy individuals. Details on the samples including tumor

type and clinical staging are provided in Table 1. In total, we
obtained 530 million reads including 185 million unique reads
for the 20 samples. Of all reads, 352 millions were mappable to
the human genome including 38 millions that were mappable to
human miRNAs known at the time of this study (miRBase v16)
without any mismatch. The prediction of novel miRNAs was
based on the 352 million reads. All read counts of the 20 blood
samples are summarized in Table 2 and presented as a bar-chart
in Fig. 1. By using the uniquely mapped reads we detected 770
known miRNAs and known miRNA precursors representing
64% of the known human miRNome (miRBase v16).

Detection of novel miRINAs expressed in peripheral blood

For the prediction of novel miRNAs, we applied a probabilistic
model of miRNA biogenesis that considers the frequency of
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Fig. 1 Mapping statistics. The blue bars show the average of the
mappable read counts of all 20 analyzed blood samples together with
the respective standard deviations. The grey bars indicate the average
of the mappable read counts of the 20 single blood samples.
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RNA reads along the secondary structure of putative miRNA
precursors. Initially, we detected 1081 putative novel miRNA
precursor sequences. Next, we carried out two filter steps to
reduce the number of false positives. First, we performed 100
permutation tests, eliminating 520 (48.1%) of the initially
identified putative miRNA sequences. We blasted the remaining
sequences against different data collections of small non-
coding RNAs and found 351 (32.5%) sequences with at least
one hit with already annotated small RNAs under the condi-
tion that one mismatch was allowed. After eliminating those
351 miRNAs, we obtained 210 putative novel miRNA
sequences (unknown at the time of the study according to
miRBase v16). To verify the specificity of putative reads
mapping to the mature forms of the 210 novel miRNAs, we
performed a BLAST analysis with the sequences of the mature
forms against other non-coding RNA sequences (rRNA,
tRNA, miRNA, snRNA, snoRNA, lincRNA), as well as
mRNA and intergenic sequences. The same analysis was done
for all known miRNAs from miRBase v17. As presented in
Fig. 2, our newly identified miRNAs and the known miRNAs
from miRBase showed a very similar distribution. Most of the
miRNAs (55% of known miRNAs and 53% of newly identified
miRNAs) did not map against any of the other RNA resources
or intergenic regions. We found hits in intergenic regions for
38% of known and 43% of novel miRNAs. In both groups, 4%
of miRNAs matched against mRNAs, while mapping against
other non-coding RNA regions was insignificant.

Out of the 210 putative novel miRNA sequences, 30 miRNAs
were identified with at least 25 reads that mapped uniquely to a
precursor. As summarized in Table 3, each of these 30 miRNA
sequences was detected in at least two blood samples, and two
sequences were found in all 20 blood samples. On average,
putative new miRNA sequences were detected in 16 out of
20 samples. Of the 30 putative novel miRNAs, four miRNAs
have now been included in the recent miRBase release v17 and
are highlighted in Table 3.

miRNAs annotated in miRBase

no match
55%

Putative novel miRNAs

intergenic

no match  lincRNA_/ rRNA \_tRN, snoRNA

53% 0% 0% 0% 0%

Fig. 2 Results of the BLAST analysis. We mapped the mature forms
of miRBase v17 and our novel miRNAs to different groups of
noncoding RNAs, mRNA, and intergenic sequences. The pie chart
indicates the numbers of miRNAs mapping to the respective nucleic
acid groups.

For all novel miRNAs as well as known miRNAs we
computed a histogram plot (Fig. 3). While the median read
count for miRNAs annotated in miRBase v16 was 24 reads,
the median read count of novel miRNAs was still 18 reads per
miRNA. For both, known and novel miRNAs the highest
proportion of miRNAs lies in the range of up to 50 reads per
miRNA. Considering all miRNAs covered by up to 150 reads
the novel miRNAs were more frequent than the known
miRNAs, providing evidence that the identified miRNA
candidates are detected at a substantial level. The histogram
plots for all single samples that essentially validate the general
picture are provided in Fig. 1 (ESI¥).

Next, we randomly selected five miRNA sequences from the
newly identified 30 miRNAs that were identified with at least
25 reads that mapped uniquely to a precursor and carried out
a qRT-PCR analysis. The qRT-PCR was performed with the
ten different blood samples of healthy controls, the ten blood
samples of lung cancer patients, and four pools of different
types of lung cancer tumor tissues to compare the abundance
of the respective miRNAs in blood and tumor tissue of lung
cancer patients. In addition to these five miRNAs we also
tested one miRNA as positive control and one miRNA as
negative control. Based on previous array-based experi-
ments®? we selected miRNA hsa-let-7g that has usually been
highly expressed in our previous experiments as positive
control and miRNA hsa-miR-577 that has usually not been
expressed as negative control. The AC-values of all novel
miRNAs measured in blood samples fall in between the
positive and negative control AC-values as shown in Fig. 4.
The comparison between tissue samples and blood samples of
lung cancer patients showed higher expression of all five
miRNAs in the cancer blood samples as indicated by lower
AC-values. In detail, the expression of three miRNAs (hsa-
can-miR-1040, hsa-can-miR-675, and hsa-can-miR-915) was
significantly lower in lung cancer tissue as compared to
patients’ blood and in two cases (hsa-can-miR-49 and hsa-
can-miR-213) almost not detectable in lung cancer tissue as
indicated by AC-values of 20 and 25. Notably, the latter
miRNAs are more than one million less abundant in tissue
than in blood of the tumor patients. The comparison between
blood of lung cancer patients and blood of controls revealed
higher expression of all five miRNAs in blood of cancer
patients providing further evidence for an increase of specific
miRNAs in blood of lung cancer patients. In summary, our
gRT-PCR experiments validated the high-throughput sequen-
cing experiments very well.

Functional target analysis of putative miRNAs

For known miRNAs validated and putative targets are known
in the literature. These also show an enrichment in functional
categories, e.g., KEGG pathways.*® As described in the
“dictionary on microRNAs and their putative target pathways™>'
common targets of miRNAs are mRNAs involved in regula-
tory pathways as the “p53 signaling pathway” or the “TGF-
beta signaling pathways” and disease related categories as
“Pathways in cancer”. As described in the Materials and
methods section we carried out a search for putative targets
of the novel putative miRNAs. The respective target gene set
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Table 3 miRNA sequences with at least 25 reads that mapped uniquely to precursors. All analyses were performed using miRBase release v16.
During the publication process miRBase v17 was released. Overlaps of previously unknown novel miRNAs (according to miRBase v16) with the
recent miRBase v17 are indicated in bold and the official names and sequences are given in brackets

Number Counts in Counts in
of blood blood of blood of

miRNA samples controls patients Major sequence Minor sequence
hsa-can-miR-163 20 4370 3189 TCGCATTGAACCTGAGAGGCA CCTCCGGTATTCAAGCGATT
hsa-can-miR-277 18 514 493 GCCCGCCCCAGCCGAGGTT CCCCGGCGCGGGCGGGTTC
(hsa-miR-4707) (hsa-miR-4707-3p: (hsa-miR-4707-5p:
AGCCCGCCCCAGCCGAGGUUCUL) GCCCCGGCGCGGGCGGGUUCUGQG)
hsa-can-miR-811 20 688 262 GGGCCGTGGAGGTGGACTG GTGCACAACTGCAGGGGTGTG
hsa-can-miR-915 19 64 86 CTCTTCATCTACCCCCCAG GGAGGGTGTGGAAGACAT
hsa-can-miR-49 18 53 91 CGTTGCCATGTCTAAGAAGAA CTTCTTAGACATGGCAGCTTC
(hsa-miR-4659a) (hsa-miR-4659a-5p: (hsa-miR-4659a-3p:
CUGCCAUGUCUAAGAAGAAAACQ) UUUCUUCUUAGACAUGGCAACG)
hsa-can-miR-473 19 49 60 GTCAGTTTGTCAAACTCTTT GGAGTTGTGATCCTTTGGAGA
hsa-can-miR-571 17 27 74 CGCAACCCACACACGGTCTCA AGACCGTGTGTGGGTTGCTGAG
hsa-can-miR-346 18 25 70 TTGGAATCCTCGCTAGAGCGT GCTCTAGCGGGGATTCCAATA
hsa-can-miR-675 18 49 27 CCACAAACCTGCCAGCCCTG GGGCGGCTATTGTGGGG
hsa-can-miR-275 16 46 30 TGGGTGTGGGCAGTGGGCGGGC GCAGTTGGCACCGTCCCCTGCG
CAAGGACA CCTACCCACT
hsa-can-miR-385 11 60 5 GGCGGGCAGCGGGTGAGGGGGTGG GCGGGGCCCCGGACAAGGGT
CCGCAGA
hsa-can-miR-213 17 28 33 TGCTCTTACATCTCAAACGAT CGGTTGAGATGCAAGGGCTGC
hsa-can-miR-881 8 48 10 GCCCCTTTCTCAGACCCCCA GGCCCTGGAAAGGGTCAG
hsa-can-miR-358 17 19 32 GCCCAGAGGATCACGGAGCCA GCTCCTTGCACCTGTGGCTGC
hsa-can-miR-480 2 1 47 CTAGCAGTCTCAGGACACA TGCCCTGAGACTGCTAAGT
hsa-can-miR-56 16 20 25 ATCACCACCAAACCTGTTCTTC AGAACAGGTTTGGTGGGGATTC
hsa-can-miR-1040 17 20 19 GATTTCAGCGCTCTGCCCCT GGGCAGAGCACTGTGTGTGG
hsa-can-miR-288 15 13 20 GGGGCAGCAGAGGACCTGGGC CCTGATCCTCAGCTGCCCTCTC
(hsa-miR-4688) (hsa-miR-
4688:UAGGGGCAGCAGAGGACCUGGG)
hsa-can-miR-1011 17 17 15 GTCTTTTGCCCTTTCAGCT CTGGAAGGGCAAAAGACTG
hsa-can-miR-839 16 14 16 GTGCCTGTGCAGAGGGAGCT CCCCCTCCGAGCAGGCACTG
hsa-can-miR-1065 14 10 19 TTGGCCACCACACCTACCCCTT GGGTGATGGGTGTGGTGTCCACAGG
(hsa-miR-4701-5p) (hsa-miR-4701-5p: (hsa-miR-4701-3p:
UUGGCCACCACACCUACCCCUU) AUGGGUGAUGGGUGUGGUGU)
hsa-can-miR-454 14 4 24 CCACCTTCAAAGGCACTCCG GAGGCCTCTGCTGGTGCTG
hsa-can-miR-390 14 17 11 TCCTCTCCTCCCTGTGCCGAC AAGCGCGGGGAGGGAGGATA
hsa-can-miR-23 11 14 14 ACCCACCTGATGCCCCGTCCCA GGGAGGGGCAGGAGGGGTGGAATG
hsa-can-miR-152 3 25 2 CCTCTTCCCAGCACTCCCCT GAGGGTTGCGGGAAGGGGGA
hsa-can-miR-555 16 15 11 AAAACAGGATAGGCACTAAA TAGAGCCTATCCTGTTTTGC
hsa-can-miR-678 15 7 19 CGGTCCCTAACCCCCTCCGGA CAGGGGAGGGAAGGGGAGCCGAG
hsa-can-miR-963 11 19 7 AGAAATTGGTTAAATTGGAGGG GACCAATTTAACCAATTACTAT
hsa-can-miR-942 11 18 7 CTCTCCCCGCTTTTAACCCTA GGGTTAAGAGTGGGGAGAAGA
hsa-can-miR-308 9 17 8 ACACCAAAACAATGAAAAC TATCATTGTTTTAGTGTTT

has then been used as input for the gene set analysis tool
GeneTrail*® and compared with all human genes. We detected
a total of 59 KEGG pathways being significantly enriched for
targets of our miRNA candidates following multiple testing
adjustment by the Benjamini Hochberg approach. The most
significant pathways include “Metabolic pathways” (p-value of
7.88 x 107%) and “Pathways in cancer” (p-value of 1.1 x 107
being already described as target pathways of known miRNAs.*!

Besides these functional categories we also tried to identify
known miRNAs that show a significant overlap in their target
genes as compared to the novel miRNAs. Here, we found
39 known miRNAs that showed an enriched overlap in their
targets and the targets of our novel miRNAs. These most
prominent known miRNAs were hsa-miR-29¢ and hsa-miR-30c
with significance values of 3.07 x 10~ in both cases. The complete
results are provided in Table S1 (ESI¥).

miRNA biomarker signatures predict lung cancer

To identify possible disease discriminating miRNA signatures,
we first performed unsupervised hierarchical clustering of

miRNAs derived from all samples. Therefore, we excluded
noisy and extremely abundant features and two clear outliers
(Grubbs test p-value < 0.01). Using the Euclidian distance
measure we identified separate clustering of lung cancer blood
samples and control samples (p = 0.00025). Only one control
blood sample clustered together with the ten lung cancer
samples. This result was confirmed by a principle component
analysis. The convex hulls of the first and second principle
component of lung cancer samples and controls do not show
any overlap (Fig. 2, ESI¥).

Next, we determined and quantified differentially regulated
single miRNAs. Here, we focused on the mature miRNAs but
also tested whether the miRNA was significantly deregulated
at all. To this end, we considered the expression of the
precursor to be the sum of reads mapping to the precursor.
The most abundant miRNA was hsa-miR-223 with a total of
8.6 million uniquely mapped reads in all 20 blood samples.
The second most abundant miRNA was hsa-miR-425 with
0.7 million reads. The tenth most abundant miRNA, hsa-miR-
339-5p, shows only 87000 reads which are two orders of
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Fig. 3 Read frequencies for the known and the novel miRNAs. The
histogram plot shows for each known and putative novel miRNA the
frequency of unique read counts without mismatch. The rose shaded
boxes indicate the putative novel miRNAs, the blue shaded boxes
indicate the known miRNAs, and the green boxes indicate the overlap
between both. In both cases, i.e., novel and known miRNAs, highest
proportion of miRNAs can be found in the area between 1 and
50 reads. In an intermediate range between 51 and 150 reads per
miRNA the novel miRNAs are more frequent while in higher ranges
the known miRNAs are more frequent.

magnitude less reads than the most abundant miRNA
hsa-miR-223. The uniquely mapped read counts for the ten
most abundant miRNAs are listed in Table 4. These numbers
indicate that the total read counts of miRNAs are not
normally distributed. This is also shown by the Shapiro—-Wilk
test with a significance value <0.05. Since many single
miRNAs were not normally distributed we applied the non-
parametric WMW test that detected 70 significantly deregulated
miRNAs after adjustment for multiple testing including
50 miRNAs (71.4%) that were up-regulated in blood of lung
cancer patients and 20 miRNAs (28.6%) that were down-
regulated. After exclusion of precursor sequences, we still
found 39 deregulated miRNAs, including 28 (71.8%) that were

Table 4 miRNAs with highest unique read count

miRNA Unique read count
hsa-miR-223 8646130
hsa-miR-425 684517
hsa-miR-185 509 690
hsa-miR-17 367360
hsa-miR-25 297148
hsa-miR-130a 267587
hsa-miR-150 159224
hsa-miR-93 149 657
hsa-miR-20a 112031
hsa-miR-339-5p 86571

up-regulated in blood of lung cancer patients and 11 (28.2%)
that were down-regulated. Out of these 39 miRNAs, hsa-miR-
140-3p, hsa-miR-130b*, and hsa-miR-181a* showed the lowest
calculated AUC value of 0.03 (i.e. more abundant in control
samples), and miR-99b, and miR-590-3p showed the highest
AUC value of 1 (i.e. more abundant in lung cancer samples),
demonstrating a high diagnostic potential of these miRNAs.
Bar-plots of two representative miRNAs with maximal
(hsa-miR-590-3p) and minimal (hsa-miR-140-3p) AUC values
are given in Fig. 5. Interestingly, out of the 39 miRNAs,
32 have previously been annotated in miRBase including six
miRNAs that have been associated with lung cancer, namely
hsa-miR-140, hsa-miR-145, hsa-miR-30e, hsa-let-7d, hsa-let-7g,
and hsa-miR-98. Out of the 32 miRNAs found in miRBase v16,
25 miRNAs were found to be differentially expressed in our
previous study based on miRNA screening on microarrays.*
Importantly, the direction of deregulation was identical for 21
of 25 miRNAs (84%) in the previous and in the present study.
Besides the 32 known miRNAs we also found seven putative
miRNAs being significantly deregulated. A cluster heatmap of
these seven miRNAs and all 20 samples is provided in Fig. 6. As
presented in the cluster dendrogram we found two clear clusters
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Fig. 4 qRT-PCR validation of novel miRNAs. The dashed lines denote the AC-values of the positive control hsa-let-7 and the negative control
hsa-miR-577. The AC\-values of the indicted five novel miRNAs are given for blood of controls, blood of patients and lung cancer tissues. High

AC-values indicate low abundancy of miRNAs.
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Fig. 5 Normalized read counts for two representative miRNAs with maximal and minimal AUC values. The barplots show the read counts of the
two miRNAs hsa-miR-590-3p (AUC = 1) that is up-regulated in lung cancer samples and hsa-miR-140-3p (AUC = 0.03) that is down-regulated
in lung cancer samples. Lung cancer patients are indicated as blue bars and controls are indicated as red bars. The horizontal solid black lines
denote the respective group medians and the horizontal dashed black lines denote the optimized separation threshold. Based on this threshold for
hsa-miR-590-3p no sample is wrongly classified, for hsa-miR-140-3p one cancer sample highlighted with a blue circle is considered to be normal
(false negative, FN) while one control sample highlighted with a red circle is considered to be a cancer sample (false positive, FP).
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Fig. 6 Hierarchical clustering heatmap. The heatmap with dendro-
gram at the top and on the left side shows the clustering of the 7 novel
miRNAs that were significantly deregulated in lung cancer samples
compared to the control samples. The cluster on the left contains nine
of ten controls, the cluster on the right contains all ten lung cancer
samples and one control sample.

separating lung cancer from controls. Again, only one control
clustered together with the lung cancer samples. For this
clustering we achieved a highly significant p-value of 0.0001
using Fisher’s exact test. We repeated the clustering 100 times
with randomly distributed class labels by carrying out 100
non-parametric permutation tests but did not find any result

with a likewise significance. To check the stability and validity
specifically of the novel miRNAs we performed further permuta-
tion tests. Here, the class labels of all samples have been
randomly shuffled at the beginning of the statistical analysis
before WMW tests have been carried out. Again, we performed
100 non-parametric permutation tests and again we did not find
a single one with a similarly high number of significant miRNAs.

Table 5 provides detailed information on all 39 significantly
deregulated miRNAs.

Identification of novel mature miRNAs derived from known
precursors

Considering the distribution of mature miRNA reads across
known and novel miRNA precursors, we usually detected two
clear peaks, representing the two mature forms of the respective
miRNA precursor (Fig. 7). For hsa-miR-339, we found 3-fold
up-regulation of hsa-miR-339-3p and 2-fold up-regulation of
hsa-miR-339-5p in lung cancer, matching exactly the two known
mature forms. Likewise, hsa-miR-98 showed two clear peaks.
While the major form of hsa-miR-98 that was up-regulated in
blood of controls was deposited in miRBase, a minor miRNA
has not yet been annotated. qRT-PCR with the respective primer
confirmed that this new minor miRNA, denoted as miR-98 new,
was detectable and significantly over-expressed (2.3-fold) in
blood of lung cancer patients (Fig. 8).

To identify further novel minor forms of known miRNA
precursors, we aligned all reads against known precursor
sequences and searched for hits that are not already known
major miRNAs. Altogether, we detected 41 novel forms of
validated miRNA precursors (Table 6). Out of those, 25 (61%)
were even more abundant than the already known form
considering all reads combined from the 20 blood samples.
Comparing the blood samples of lung cancer patients and
controls, we found that the abundance of 30 of the 41 newly
identified forms (73%) was at least as high in blood of lung
cancer patients as in blood of normal controls.
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Table 5 Differentially expressed miRNAs in peripheral blood

Median read Median read

counts in counts in Fold WMW WMW Micro-array* Concor- dance

miRNA controls patients change rawp adjp AUC HMDD (fold change) microarray and NGS
hsa-miR-140-3p 1421.0 3593.2 0.4 0.0004 0.0161 0.03 Down — —
hsa-miR-130b* 181.0 313.8 0.6 0.0004 0.0161 0.03 — Up (0.05) YES
hsa-miR-181a* 10.1 40.0 0.3 0.0001 0.0150 0.03 — Up (0.8) YES
hsa-miR-25 9798.5 19948.3 0.5 0.0007 0.0172 0.05 — Up (0.85) YES
hsa-miR-551a 2.8 9.6 0.3 0.0005 0.0161 0.07 — Up (0.77) YES
hsa-miR-22 785.5 1917.5 0.4 0.0005 0.0161 0.07 — Up (0.92) YES
hsa-miR-326 27.9 53.4 0.5 0.0005 0.0161 0.07 — Up (0.82) YES
hsa-miR-151-3p 54.5 96.5 0.6 0.0005 0.0161 0.07 — Up (0.85) YES
hsa-miR-501-5p 53.1 72.5 0.7 0.0013 0.0222 0.07 — Up (0.7) YES
hsa-miR-186 2181.4 4476.8 0.5 0.0014 0.0231 0.08 — Up (0.34) YES
hsa-miR-93* 649.3 2242.3 0.3 0.0007 0.0172 0.08 — Up (0.67) YES
hsa-can-miR-948 4.8 15.6 0.3 0.0007 0.0172 0.08 — — —
hsa-miR-1248 3.8 154 0.2 0.0017 0.0246 0.08 — Up (0.92) YES
hsa-miR-188-3p 2.8 7.8 0.4 0.0017 0.0246 0.08 — — —
hsa-miR-21* 35 11.9 0.3 0.0017 0.0246 0.08 — Down (1.3) NO
hsa-miR-339-5p 1839.4 5461.0 0.3 0.0019 0.0253 0.09 — Up (0.78) YES
hsa-miR-362-3p 63.8 149.0 0.4 0.0022 0.0256 0.09 — Up (0.63) YES
hsa-miR-145 376.5 1287.2 0.3 0.0028 0.0316 0.10 Tumor suppressor Up (0.49) YES
hsa-can-miR-445 35 16.8 0.2 0.0032 0.0332 0.11 — — —
hsa-can-miR-885 2.5 6.6 0.4 0.0032 0.0332 0.11 — — —
hsa-can-miR-189 13.4 40.2 0.3 0.0021 0.0253 0.11 — — —
hsa-can-miR-719 5.1 11.1 0.5 0.0045 0.0405 0.12 — — —
hsa-miR-378* 3429 708.8 0.5 0.0046 0.0405 0.12 — Up (0.42) YES
hsa-miR-26b* 119.6 2329 0.5 0.0046 0.0405 0.12 — — —
hsa-miR-505 32.6 42.4 0.8 0.0046 0.0405 0.12 — Up (0.62) YES
hsa-miR-339-3p 103.5 214.3 0.5 0.0039 0.0372 0.13 — Up (0.98) YES
hsa-miR-425 20779.8 40304.7 0.5 0.0053 0.0454 0.13 — Up (0.92) YES
hsa-miR-30e 234.8 414.0 0.6 0.0052 0.0447 0.14 Down Up (0.83) YES
hsa-can-miR-536 21.4 11.9 1.8 0.0028 0.0316 0.90 — — —
hsa-let-7d 1570.8 650.4 2.4 0.0017 0.0246 0.92 Down Down (1.11) YES
hsa-can-miR-574 5.9 1.4 4.2 0.0010 0.0186 0.94 — — —
hsa-miR-574-3p 3806.2 1344.6 2.8 0.0010 0.0186 0.94 — Up (0.71) NO
hsa-let-7g 1433.1 367.2 3.9 0.0010 0.0186 0.94 Down Up (0.73) NO
hsa-miR-98 48.8 11.3 43 0.0001 0.0161 0.96 Up NSCLC vs. SCLC — —
hsa-miR-144* 2643.0 788.8 3.4 0.0004 0.0161 097 — Down (1.6) YES
hsa-miR-3200-3p 30.1 1.2 24.6 0.0003 0.0161 098 — — —
hsa-miR-126* 574.1 155.0 3.7 0.0003 0.0161 098 — — —
hsa-miR-99b 38.4 1.1 36.5 0.0002 0.0161 1.00 — Up (0.87) NO
hsa-miR-590-3p 17.0 1.9 9.2 0.0002 0.0161 1.00 — — —

WMW = Wilcoxon Mann—Whitney test, rawp = raw p-value, adjp = adjusted p-value, AUC = area under the receiver operator characteristics
curve. HMDD = human miRNA and disease database. Up-regulation in lung cancer patients is indicated in bold type and down-regulation in

lung cancer patients is indicated in normal type.

Discussion

miRNAs are believed to change future diagnostics of many
human diseases. In this study we identified miRNA profiles
with diagnostic information for lung cancers by next-generation
sequencing. We identified 32 known miRNAs and seven novel
miRNAs that were significantly altered in cancer patients,
providing a tool to detect manifest lung cancer of different
histological grading in peripheral blood.

While most miRNA sequencing studies have been performed
on cell lines and solid tissues, only a minority was done on
human blood. Since miRNA profiles are known to be tissue
specific,”®3* it can be expected that blood also contains a
specific profile with so-far unknown miRNAs. We were able
to identify completely novel miRNAs and previously unknown
mature miRNAs of already known miRNA precursors. These
results together with previously published studies suggest that
miRNA profiling from blood bears high potential to serve as a
novel biomarker class for human diseases.

As for any biomarker approach, standardization is essential to
make miRNA profiles derived from human blood comparable
between different clinical centers, studies, cohorts, and disease
entities. Hence, we employed a standardized workflow, starting
from blood collection to molecular barcoding and miRNA
profiling using SOLiD next-generation sequencing technology
and ending with a sophisticated bioinformatic evaluation. We
found by this approach an extremely high dynamic range of
quantification of specific miRNAs. Over 8 million reads have
been sequenced for hsa-miR-223 that was the most abundant
miRNA. Recently, Fehniger ez al. showed that this miRNA is
present in resting NK cells where it may contribute to control
Granzyme B translation.*® An other recent sequencing study
on PBMCs also reported a wide range of expression levels
spanning five orders of magnitude.'® In this study the let-7
family accounted for almost 80% of all reads. In agreement
with these results, we found 0.5 million reads for all let-7
family members. Hence, although only few NGS studies on
miRNAs have been published so far, the methodology seems
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to be already very powerful.”'> To further underline this
hypothesis, we related our NGS data to findings that we
previously obtained by microarray-based technologies.* For
this former study we also analyzed the miRNA expression
profiles of blood from lung cancer patients. The blood samples
were collected under the same conditions and the RNA
isolation was performed using the same protocol as for the
present study. Of the 32 known miRNAs deregulated in the
present study, 25 miRNAs were also differentially expressed in
our former study, including 21 miRNAs (84%) that were
regulated in the same direction, e.g., they were either up- or
down-regulated in both studies. These findings confirm the
high reproducibility of both approaches even on different
biological replicates and across different platforms, and
demonstrate the feasibility to perform biomarker discovery
by these techniques.

In another recent study, we investigated 13 different human
pathologies for deregulated miRNAs in patients’ blood using
the same microarray-based technology as mentioned above
and the same protocol for the collection of blood and the
isolation of RNA.® We found a high overlap between the
32 known miRNAs significantly deregulated in the present
NGS study and the miRNAs significantly deregulated in the
former microarray study. Nearly all of the 32 miRNAs were
deregulated in at least one of the 13 diseases (see Table S2,
ESIt). Only the two miRNAs hsa-miR-98 and hsa-miR-181a*
were not deregulated in our former study and hsa-miR-3200-3p
was not included in our former study as it was based on older

miRBase versions (v12—14). The highest overlap was found for
melanoma (15 miRNAs of 32 miRNAs, 46.86%), multiple
sclerosis (12 miRNAs of 32 miRNAs, 37.5%), sarcoidosis
(18 miRNAs of 32 miRNAs, 56.25%) and acute myocardial
infarction (12 miRNAs of 32 miRNAs, 37.5%).

The comparison of our present study and a former sequencing
study from Chen and co-workers from 2008 revealed less overlap.®
In this study, that was based on miRBase v10, the miRNome
of serum and PBMCs of lung cancer patients and healthy
individuals was analyzed by SOLEXA sequencing. They only
detected 12 of the 32 miRNAs in PMBCs of lung cancer
patients and/or healthy individuals. But interestingly, eight of
those 12 miRNAs were deregulated in the same direction. As
one example, hsa-miR-25 that was twice as much expressed in
blood of lung cancer patients compared to controls in our
present study was also higher expressed in lung cancer PBMCs
and identified as lung cancer specific serum miRNA in the
study of Chen and co-workers.

Biomarker studies are often confounded by variables as
gender, age or therapy status. While the lung cancer patients
included in our study did not get any radio- or chemotherapy
before blood drawing or cancer resection and there was no
significant difference in the gender distribution, the age
between control and case cohort varies. The study by Hooten
et al*® addressed aging related changes of miRNAs. From
their study, we extracted 165 miRNAs that may be influenced
by the age. Of these, only three (1.8%) overlap with the
32 known miRNAs that were significantly deregulated in lung
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blood of controls.

cancer samples in our study. These include hsa-miR-181a*, hsa-
miR-26b*, and hsa-let-7d. This analysis considers just the
significance, without considering the direction of regulation.
While all three miRNAs were down-regulated in older patients
in the study of Hooten et al., hsa-miR-181a* and hsa-miR-26b*
were up-regulated in the lung cancer samples, representing in our
case the older cohort as compared to the controls. In summary
we can conclude that the aging effect seems to play a minor role
as compared to the pathogenic processes in lung cancer.

Another putative confounding variable could be the smoking
status of individuals. To check whether our miRNAs are related
to smoking induced changes we extracted the miRNAs with
known smoking association from a review by Tomankova et al.”’
We did not found a single miRNA out of the 32 significantly
deregulated miRNAs to be related to smoking induced changes.
Likewise, we extracted 24 miRNAs from the study of Schembri
et al.®® and again did not found any overlapping miRNAs.

We also evaluated the biological relevance of the 32 signifi-
cantly differentially expressed miRNAs by carrying out a
statistical pathway analysis. Using the miRanda algorithm?*
we predicted targets for different miRNA sets. Using
GeneTrail*2® we computed significantly enriched biological
categories, i.e., categories with more target genes of miRNAs
in a given set as compared to a reference set containing all
miRNAs detected in our sequencing study. For example, we
found the JNK and stress associated pathways being signifi-
cantly enriched in the set of the 32 differentially expressed
miRNAs. We performed the same analysis for the novel
miRNAs and identified 59 KEGG pathways being signifi-
cantly enriched for targets of our miRNA candidates with
“Metabolic pathways” (p-value of 7.88 x 107°) and “Path-
ways in cancer” (p-value of 1.1 x 107% being already
described as target pathways of known miRNAs.*! It is however,
important to realize that the predictions of functional annotations

Table 6 41 novel mature forms (according to miRBase v16) of known miRNA precursors identified in blood: all reads from the 20 blood samples
combined identified 25 novel miRNAs that were higher abundant than the known mature form (indicated in bold). Bold italic and italic values

represent at least two-fold up- and down-regulated miRNAs, respectively

Median for Median for Median for
Total reads known known Novel mature form miRBase v16 Total novel Median for
Known miRNA for known  pre-miRNAs pre-miRNAs (known forms now included in reads novel miRNAsin novel miRNAs
precursor pre-miRNAs in controls in patients miRBase release v17) miRNAs  controls in patients
hsa-miR-1306 12 0.5 0.5 CACCUCCCCUGCAAACGUCCAG 16507 427.5 490
hsa-miR-3194 6 0 0 GCUCUGCUGCUCACUGGCA 28 0.5 1
(hsa-miR-3194-3p)
hsa-miR-597 7 0 0 GUGGUUCUCUUGUGGCUCA 35 1.5 1.5
hsa-miR-1303 28 1 1 GGGCAACAUAGCGAGACC 51 1.5 1.5
hsa-miR-3173 12 0.5 0 GCCCUGCCUGUUUUCUCCUUUGU 1042 45.5 34
(hsa-miR-3173-5p)
hsa-miR-1273¢ 1721 35.5 72 AGAGUCUCGUUCUGUUGCCCAA 417 9 34
hsa-miR-1273d 9 0 0 CUGCACUUCAGCCUGGGUGA 39 1.5 2
hsa-miR-939 199 11.5 6 CCUGGGCCUCUGCUCCCCAGU 63 2.5 3
hsa-miR-153-1 — — — UCAUUUUUGUGAUCUGCAGCU 27 0.5 1
hsa-miR-3153 1 0 0 GUCCCUGUCcccuucceccece 25 1 0.5
hsa-miR-1307 862 41 335 CGACCGGACCUCGACCGGCU 410 11.5 17.5
hsa-miR-3155 1 0 0 CUCCCACUGCAGAGCCUGG 74 3 1.5
hsa-miR-107 4562 221 136 GCUUCUUUACAGUGUUGCCUUG 403 13 26.5
hsa-miR-579 278 16.5 12 CGCGGUUUGUGCCAGAUG 22 0 1
hsa-miR-2110 340 12 10 CACCGCGGUCUUUUCCUCCCACU 899 32,5 42.5
hsa-miR-1255b-2 — — — CACUUUCUUUGCUCAUCCA 26 0.5 1.5
hsa-miR-3138 8 0 0 CUUCCCCCACCUCACUGCC 64 3.5 3
hsa-miR-1278 — — — AUGAUAUGCAUAGUACUCCCA 26 1 1
hsa-miR-874 588 23.5 26 GGCCCCACGCACCAGGGUAAG 56 1 3.5

This journal is © The Royal Society of Chemistry 2011

Mol. BioSyst., 2011, 7,3187-3199 | 3197



Downloaded by Universitat des Saarlandes on 14 November 2011
Published on 25 October 2011 on http://pubs.rsc.org | doi:10.1039/C1MB05353A

Table 6 (continued)

Median for Median for Median for
Total reads known known Novel mature form miRBase v16 Total novel Median for
Known miRNA for known  pre-miRNAs pre-miRNAs (known forms now included in reads novel miRNAsin novel miRNAs
precursor pre-miRNAs in controls in patients miRBase release v17) miRNAs  controls in patients
hsa-miR-610 — — — CCCAGCACACAUUUAGCUCAC 27 1.5 1
hsa-miR-584 702 40.5 30.5 CAGUUCCAGGCCAACCAGGCU 448 13 19.5
hsa-miR-196a-1 — — — CAACAACAUUAAACCACCCGAU 588 1 1
hsa-miR-3162  — — — CCCUACCCCUCCACUCCCCA 89 4 2.5
(hsa-miR-3162-3p)
hsa-miR-301a 1012 64.5 26.5 CUCUGACUUUAUUGCACUAC 68 1 4
hsa-miR-660 4154 179.5 206 CCUCCUGUGUGCAUGGAUUA 649 16 29.5
hsa-miR-3140 24 0.5 1 CCUGAAUUACCAAAAGCUUU 76 2.5 4.5
(hsa-miR-3140-5p)
hsa-miR-98 544 47.5 9.5 UAUACAACUUACUACUUUCC 172 3 8.5
hsa-miR-382 31 1 1 AUCAUUCACGGACAACACUUU 40 1 1.5
hsa-miR-3143 223 12 12 AACUCUUUACAAUGUUUCU 29 1 1
hsa-miR-627 267 9 11 CCUCUUUUCUUUGAGACUCACU 319 6.5 225
hsa-miR-210 16511 330.5 975.5 GCCCCUGCCCACCGCACACUGC 696 20.5 26.5
hsa-miR-421 7963 135.5 150.5 CCUCAUUAAAUGUUUGU 23 1 0.5
hsa-miR-3127 5 0 0 CCCCUUCUGCAGGCCUGCU 75 1.5 4
(hsa-miR-3127-3p)
hsa-miR-1294 52 2 2 CAACAGUGCCAACCUCACAGGA 1101 42.5 58.5
hsa-miR-3944  — — — GUGCAGCAGGCCAACCGAGA 50 2 2
(hsa-miR-3944-5p)
hsa-miR-3922  — — — CAAGGCCAGAGGUCCCACA 30 0.5 2
(hsa-miR-3922-5p)
hsa-miR-1289-1 — — — AGACUCUUGGUUUCCACCCCCA 48 1.5 0.5
hsa-miR-942 1862 57.5 85 ACAUGGCCGAAACAGAGAAGU 77 4 2.5
hsa-miR-190 478 29.5 9 CUAUAUAUCAAACAUAUUCCU 100 5.5 1.5
hsa-miR-1538 12 0 1 AACAGCAGCAACAUGGGCCUCG 146 5 6
hsa-miR-3676 19 0 1 GAUCCUGGGUUCGAAUCCCA 2551 89 151.5
are based on in silico approaches and each target awaits Hedwig-Stalter foundation, HOMFOR, and Deutsche

experimental confirmation.

The Sanger miRBase shows a rapidly increasing content,
mainly driven by increased sequencing capacity at significantly
decreased cost. Since the first release in 2008, a total of 32
versions have been released. Most recently, a new release (v17)
was announced. Mapping the miRNAs detected in this study to
this latest release we found an overlap of about 9% between
our newly identified miRNAs and the miRNAs recently
included in the new miRBase release v17, representing an
independent validation. These miRNAs include hsa-can-miR-
243, hsa-can-miR-277, hsa-can-miR-929, hsa-can-miR-586,
hsa-can-miR-637, hsa-can-miR-912, hsa-can-miR-9, hsa-can-
miR-288, hsa-can-miR-674, hsa-can-miR-49, hsa-can-miR-
180, hsa-can-miR-1003, hsa-can-miR-74, hsa-can-miR-430,
hsa-can-miR-782, hsa-can-miR-865, hsa-can-miR-670, hsa-can-
miR-1065, and hsa-can-miR-814.

In summary, our study shows for the first time the potential
of NGS to identify and quantify in a single step known and
completely novel miRNAs with diagnostic potential for lung
cancer. In the foreseeable future as many as 100 samples can
be sequenced per run, making NGS of blood borne miRNAs
an attractive alternative to other approaches. In addition, a
standardized NGS approach as applied in this study will help
to reveal specific expression patterns of miRNAs for a larger
variety of diseases and patient cohorts.
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Abstract

Background: Expression profiling provides new insights into regulatory and metabolic processes and in particular
into pathogenic mechanisms associated with diseases. Besides genes, non-coding transcripts as microRNAs
(miRNAs) gained increasing relevance in the last decade. To understand the regulatory processes of miRNAs on
genes, integrative computer-aided approaches are essential, especially in the light of complex human diseases as
cancer.

Results: Here, we present miRTrail, an integrative tool that allows for performing comprehensive analyses of
interactions of genes and miRNAs based on expression profiles. The integrated analysis of mMRNA and miRNA data
should generate more robust and reliable results on deregulated pathogenic processes and may also offer novel
insights into the regulatory interactions between miRNAs and genes. Our web-server excels in carrying out gene
sets analysis, analysis of miRNA sets as well as the combination of both in a systems biology approach. To this end,
miRTrail integrates information on 20.000 genes, almost 1.000 miRNAs, and roughly 280.000 putative interactions,
for Homo sapiens and accordingly for Mus musculus and Danio rerio. The well-established, classical Chi-squared
test is one of the central techniques of our tool for the joint consideration of miRNAs and their targets. For
interactively visualizing obtained results, it relies on the network analyzers and viewers BiNA or Cytoscape-web, also
enabling direct access to relevant literature. We demonstrated the potential of miRTrail by applying our tool to
mMRNA and miRNA data of malignant melanoma. MiRTrail identified several deregulated miRNAs that target
deregulated mRNAs including miRNAs hsa-miR-23b and hsa-miR-223, which target the highest numbers of
deregulated mRNAs and regulate the pathway “basal cell carcinoma”. In addition, both miRNAs target genes like
PTCH1 and RASAT that are involved in many oncogenic processes.

Conclusions: The application on melanoma samples demonstrates that the miRTrail platform may open avenues
for investigating the regulatory interactions between genes and miRNAs for a wide range of human diseases.
Moreover, miRTrail cannot only be applied to microarray based expression profiles, but also to NGS-based
transcriptomic data. The program is freely available as web-server at mirtrail.bioinf.uni-sb.de.
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Background

Gene expression profiles have gained increasing rele-
vance over the last three decades and have become
essential in modern biomedical sciences. About two dec-
ades ago, a further class of RNAs has been discovered:
these non-coding oligonucleotides are indeed tran-
scribed from the human genome, but no proteins are
assembled according to their blueprints. MicroRNAs are
a subgroup of these non-coding RNAs, currently attract-
ing more and more attention. They have first been
reported in a work by Ruvkun [1] and their first appear-
ance in experiments has been associated with Lee et al
[2].

MicroRNAs usually consist of 17 to 23 nucleotides
and are detectable in the majority of human tissues and
almost all bodily fluids [3-5]. It is known today that
microRNAs influence the expression of target genes by
binding to the corresponding mRNA, leading to its inac-
tivation. Over 50% of all human coding genes seem to
be targets of these short non-coding RNAs. MicroRNAs
hereby help to control and fine-tune physiological cellu-
lar processes like differentiation, proliferation, or apop-
tosis. Nowadays, it also became apparent that
microRNAs have a strong impact on pathological pro-
cesses as well: Various microRNAs show altered expres-
sion patterns in human disorders including malignant
[6-10], neurological [11], cardiovascular [12,13], or rheu-
matic diseases [14,15]. In order to get new insights into
the molecular mechanisms leading to a specific disease,
increasing attention is paid to the interaction of micro-
RNAs and mRNAs of target genes.

The technologies that are most commonly applied to
measure miRNA expression profiles are closely related
to the methods for measuring gene expression profiles,
namely quantitative real-time polymerase chain reaction
(qRT-PCR) [16,17], oligonucleotide microarrays [18,19],
and high-throughput sequencing [20,21]. These three
technologies allow measuring the expression of sets of
miRNA very efficiently. While qRT-PCR is mostly
applied to rather small subsets of miRNAs, microarrays
enable to profile the whole human miRNome and high-
throughput sequencing is additionally applied to detect
novel mature forms of miRNAs. Remarkably, with the
still growing number of miRNAs, and the likewise grow-
ing number of biological experiments carried out with
the above-mentioned high-throughput methods, and the
manifold of possible interactions between miRNAs and
mRNAs, computer aided analyses are essential to grasp
the information hidden in the large data sets. Therefore,
much ongoing work focuses on the combined analysis
of miRNAs and their targets. Two classes of bioinfor-
matics approaches related to this topic are 1) tools that
aim at discovering the targets of miRNAs and 2) tools
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that aim at an integrative analysis of miRNA and mRNA
sets. Algorithms belonging to the first class usually rely
on sequence-complementarity and often also include
thermodynamical aspects [22], machine learning [23-25],
or experimental validation steps [26]. An overview of
respective programs, including a comparison, can be
found in [27]. Additionally, approaches primarily based
on experiments are becoming prominent in recent years
[28,29]. Naturally, these approaches are more likely to
reveal significant miRNA - mRNA interaction pairs than
computational approaches. However, they usually
require not unimportant amounts of time and resources
and, e.g. by design, might also miss relevant interactions.
While not strictly being a tool for the discovery of tar-
gets or for an integrated analysis of miRNA and mRNA
sets, TAM [30] offers enrichment analyses on miRNA
sets, thus potentially paving the way to link common
functions with related miRNAs. Tools for the second
purpose, an integrative analysis of genes and their
miRNA regulators, include MMIA [31], DIANA-mirEx-
Tra [32], or miRGator [33]. MMIA, allows to combine
expression profiles of miRNA and mRNA experiments
and then performs a pathway analysis on the intersec-
tion of the predicted target mRNAs and the according
inversely correlated mRNAs. Additional analyses include
Transcription Factor Binding Sites enrichment and dis-
eases that are found to be associated with the inversely
deregulated miRNAs. DIANA-mirExTra web-server
integrates the potentially novel prediction of miRNAs
having one or more of the submitted genes as their tar-
gets. This, likewise, allows shedding light on the func-
tion of the miRNAs. In detail, the algorithm investigates
the 3’ UTR sequences of deregulated genes and searches
for over-represented six nucleotide long motifs, thus,
enabling the identification of matching miRNAs. Finally,
miRGator uses public expression data to analyze expres-
sion correlation between miRNA and target mRNA/pro-
teins. The miRNA - target interactions are based on
miRanda [22], PicTar [34], and TargetScanS [35] and
the function of miRNAs is inferred from the related tar-
get mRNAs. To this end, a statistical enrichment analy-
sis is performed for the established GO-terms, pathways,
and also disease associations. Moreover, it integrates a
first approach towards a manual inspection of the
underlying network, offering vertex- or edge-filtering
but, to-date, no ways to further cope with this informa-
tion. Here, we present miRTrail (freely available to non-
commercial users at mirtrail.bioinf.uni-sb.de), a knowl-
edge-based tool for integrative network analysis that
allows for studying the interactions between microRNAs
and their target genes, and especially in the case of dis-
eases, the implications of expression changes on patho-
genic processes. Our tool excels by its broad



Laczny et al. BMC Bioinformatics 2012, 13:36
http://www.biomedcentral.com/1471-2105/13/36

functionality, as (1) it can be applied to a single disease
or a group of diseases, (2) it covers a wide variety of
biochemical categories, and it can be used to evaluate
(3) qRT-PCR, microarray, as well as NGS-based tran-
scriptome data. In its current stage, the organisms of
Homo sapiens, Mus musculus, and Danio rerio are sup-
ported and further extension is continuing. While many
solutions exist that provide either analyses of miRNAs,
or mRNAs, or a combination of both, miRTrail allows
for the simultaneous, combined statistical analysis of all
of these three. A schematic description of its workflow
is presented in Figure 1, depicting the integration of the
provided data about miRNA and mRNA deregulation
and the offered statistical analyses intended to facilitate
the work with such complex information, especially
when used in combination. As such, our tool is able to
not only give initial but also thorough insights, even for
a very detailed inspection of the given input based on
the network analysis.

One of the original goals of our research was to
improve the understanding on the molecular level of
melanoma. Thus, as a first application, we investigated
miRNA and mRNA expression profiles of this cancer
entity, integrating information from 1) the gene expres-
sion omnibus GEO [36], 2) the PhenomiR 2.0 human
miRNA and diseases database [37], 3) target prediction
algorithms [38], and 4) biochemical pathway information
of different resources integrated via the BNDB and
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GeneTrail [39]. By applying miRTrail to these data, we
found highly significant coherences between dysregu-
lated miRNAs and matching dysregulated targets of
these miRNAs. An additional network analysis high-
lighted the potential implications of eight miRNAs via
their target mRNAs on pathogenic processes in
melanomas.

Implementation

In this section, we start by describing the general idea
behind miRTrail, followed by the data, techniques and
tools that are used to provide the rich functionality, as
well as information on the exemplary input data.
Here, the input is originating from publicly available
services like NCBI GEO and PhenomiR. Our tool is
not restricted to these services, as they are intended
for demonstration purposes. Especially, all of miR-
Trail’s functionality is available for the organisms of
Homo sapiens, Mus musculus, and Danio rerio, and
can easily be extended to support other organisms in
the future.

Methodoloy - Multipartite graph

Our webservice miRTrail allows for the joint/integrated
analysis of miRNA and mRNA entities, in respect to
given diseases - since the latter protein-coding RNAs
are targets of the former non-coding RNAs. We decided
to realize the integration of data by constructing a graph

/ User input ﬂ

hsa-miR-192
hsa-let7a
hsa-miR-21

/[— Results —]\

1) Contingency Table

MRNA set

HOX1
BMP10
RAS1A

Figure 1 Workflow. Workflow of miRTrail. User submits two RNA sets (one is the set of deregulated miRNAs, the other is the set of deregulated
mRNAs, both for the same disease). Orange color represents information flow of miRNA-related information: For each provided miRNA, the
target mRNAs are determined (based on microCosm predictions or custom, uploaded interactions). This information then is used by miRTrail,
indicated by the red arrow. In general, red color represents flow of mRNA-related information: The uploaded mRNA set as well as the miRNA
targets are used in GeneTrail to perform ORAs as described in the “Methods'-section. Blue color represents information flow of results-related
information, e.g. for the overlap of pathway sets. Finally in the results, the network analysis allows for targeted inspection of the provided
information, based e.g. on miRNA families-related subnetworks. The modular design of miRTrail becomes visible here, also allowing for
convenient extension of future analyses and usage for a diversity of different organisms.

[2) Venn Diagram ]

3) ORA of
a) MiRNA targets
b) Dereg. mRNAs
c) (anb)

4) Common Pathway
Analysis

5) Network Analysis
a) Visualization
- b) ORA of custom

\’ selected network/
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or network. To be exact, an r-partite or multipartite
graph G:

G=(V,E)

with:

e V=Vur Y Vir U Vg

e VxnVy=0Ofor X # Yand X, Y e {miR, mR, di}

¢ E = Enredi Y Emir-di Y Emir-mr

e Ex _y={wv)|ue Vx,ve Vy, Xz Yjfor X, YV
€ {miR, mR, di}

where the vertex-set V is the union of disjoint vertex-
subsets, the edge-set E is the union of disjoint edge-sub-
sets, and an edge only connects vertices of different ver-
tex-subsets.

For each user and the according uploads, individual
networks are created. An efficient and open-source
interface for the creation of graphs is offered by the C+
+ Boost Graph Library and the associated adjacen-
cy list-construct.

MicroRNA - Target mRNA Interactions
The actually known 20,000 genes and 1,000 miRNAs
allow for 20 million possible interaction pairs, where a
miRNA may regulate a gene. To find the most reliable
candidates, prediction algorithms have been developed.
One of the most prominent algorithms for miRNA - tar-
get mRNA interactions is the miRanda algorithm and
the respective web-resource microCosm [38]. The miR-
anda algorithm is sequence-complementarity based and
includes a thermodynamic analysis of the miRNA - tar-
get mRNA complex. The results are then post-processed
by a filtering on conservation of the target site. Micro-
Cosm offers miRNA - target mRNA interactions in
combination with a p-value threshold. In the beginning,
we decided to perform analyses for three thresholds
(0.01, 0.001, 0.0001), and extracted all interactions hav-
ing a value smaller than the respective alpha level, yield-
ing 279,225, 85,050, and 26,984 interactions,
respectively. Because of the heterogenity of the expres-
sion data, we finally chose to use a threshold of 0.01, in
turn leading to approximately 400 target mRNAs per
miRNA in human. The appropriate predictions for the
other supported organisms are automatically selected by
miRTrail according to the organism in the identifiers of
the uploaded miRNA deregulation information.
Alternatively, custom pairwise miRNA - target mRNA
interactions can be uploaded in a tab-delimited format,
thus allowing e.g. for the use of experimentally validated
interactions. Details on the exact format for this input
can be found on the homepage of miRTrail, especially
regarding gene and miRNA identifiers.
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Analysis of independance

Based on the pairwise miRNA - target mRNA interac-
tions (for a custom prediction-threshold (default of 0.01)
or from a custom list provided as upload), the miRNA
and (target) mRNA of each pair is compared to the
input in order to see if it is up-, down- or not deregu-
lated. This information is tabulated in a contingency
table to provide an overview to the user. An according
p-value is calculated, based on a Chisq-distribution with
4 (6 - 2) degrees of freedom. Given that the uploaded
information about dysregulated genes/mRNAs only con-
tains entries with the same direction of deregulation, the
computation of an according p-value is not allowed by
miRTrail and no p-value will be displayed, but instead a
note for the user. However, the table will nevertheless
be displayed as an overview.

To help the researcher get an impression about the
influence of the used miRNA - target mRNA interac-
tions in this step, especially when using data from pre-
diction algorithms, we offer an option to randomize
upon the provided data of miRNA and mRNA deregula-
tion. The deregulation pattern (genes/miRs being up- or
downregulated) is kept as-is while the identifiers are
sampled at random. This functionality is available via
the “Randomize"-button.

MicroRNAs from PhenomiR

For integrating dysregulated miRNAs, we used Pheno-
miR 2.0 (last update: 2011-02-15). This service offers
manually curated data about differential regulation for a
variety of diseases.

Specifically, we used the data for entry/ID: 639, con-
cluding the results of a published melanoma study
based on microRNA low density arrays, including 666
microRNAs. Selection of the statistically significantly
dysregulated miRNAs in the miRNA extracts of adult
melanoma patients and benign nevi controls was done
with univariate Two-sample T-test and a significance
level of 0.05. The size of the patient samples is 10 and 4
for the control, respectively. An overview of the num-
bers of up- and downregulated miRNAs can be found in
Table 1.

MessengerRNAs from NCBI's GEO
The NCBI Gene Expression Omnibus (GEO) is a public

repository providing data from microarray experiments,

Table 1 Summary of deregulated genes and miRNAs

# up-reg # down-reg sum of up and down
genes 2550 2218 4768
miRNAs 16 17 33

Deregulated genes (from NCBI GEO) (o = 0.05) and deregulated miRNAs
(Phenomir 2.0).
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next-generation sequencing, and other high-throughput
functional genomic data. The microarray experiments,
in particular, must comply with MIAME guidelines in
order to be accepted by NCBI's GEO.

We extracted the microarray expression profiles from
data set GDS1375 (series published: 2005-08-25), includ-
ing 63 arrays for 45 melanoma and 18 benign nevi sam-
ples. Due to possible variations between the
experiments, we carried out a quantile-normalization of
the expression values for all genes present on the
respective data set. Selection of differentially expressed
genes was performed on the normalized data using the
univariate Two-sample T-test and a significance level of
0.05. An overview of the numbers of up- and downregu-
lated genes can be found in Table 1.

GeneTrail

The gene set analysis tool GeneTrail has been developed
to help in the analysis of readily available or newly cre-
ated high-throughput data. It allows for a comprehen-
sive and efficient statistical evaluation of large genomic
or proteomic datasets and covers a plethora of biological
categories and pathways, e.g. KEGG, TRANSPATH,
TRANSFAC, and GO. Analyses can be either performed
via an ‘Over-Representation Analysis’ (ORA) comparing
a reference set of genes to a test set or a ‘Gene Set
Enrichment Analysis’ (GSEA) based on a sorted list of
genes. While the calculation of ORA p-values relies on
Hypergeometric distribution, many existing tools offer
the calculation of GSEA p-values based on permutation
tests, usually limited to a fixed number of permutations
for performance reasons. GeneTrail integrates an exact
calculation [40] corresponding to a commonly used
non-parametric unweighted permutation test. This cal-
culation is based on dynamic programming and thus
allows, especially for large sets, a higher accuracy than
by using a fixed number of permutations.

Recently, GeneTrail has been extended to directly
allow the analysis of expression data originating from
the NCBI GEO, resulting in GeneTrail Express [41].
This integration greatly facilitates the selection of differ-
entially regulated genes and allows for a fast evaluation
of the expression profiles in respect to biological cate-
gories and pathways.

Visualization: BiNA and Cytoscape-web

While computational approaches are very important in
contemporary research, manual inspection is often
desireable to support the automatic analyses or to iden-
tify new aspects. To this end, we decided to include the
visualization of the resulting interaction network of
miRNAs and their (putative) targets. Due to the large
amount of integrated data, efficient means for focusing
are crucial. Therefore, we provide respective
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subnetworks, depending either on the choice of indivi-
dual miRNAs or on members of miRNA-families con-
tained in the input. Furthermore, only deregulated
miRNAs are respected that are connected to deregulated
target mRNAs, either by the prediction algorithm or the
provided custom interactions, as we envision these enti-
ties and relations as the most relevant. For the actual
visualisation, two selections are available for the user:
BiNA and Cytoscape-web.

BiNA is a visualization and analysis tool for various
biological networks. We developed a plug-in for the Java
Webstart version of BiNA, which takes the miRTrail
results and uses the visualization capabilities of BINA
for presenting the network. The user can choose
between different graph layouts (organic, hierarchic, and
orthogonal) and can modify the visualization in many
ways. By default, the target-mRNA nodes are sized
according to their degree for easier retrieval of high-
degree nodes. It is also possible to save the network in
different file formats for reusing the data in other tools
or BiNA again. For larger graphs, this visualization-
option is probably beneficial.

Cytoscape-web is modeled after the Cytoscape Java
network visualization and analysis software [42]. Its
JavaScript API allows for an integration into HTML-
pages and convenient display of networks. We offer the
user a choice of three different graph layouts (Circular,
Radial, Tree) and the possibility to select the first neigh-
bors of a selected node. Zoom and pan functionality is
available and target-nodes are also sized according to
their degree. As the graph is directly displayed in the
browser-window, this visualization is especially suitable
for a quick inspection of the network. Finally, we imple-
mented context-menu items that greatly facilitate the
search for related publications by performing NCBI
PubMed queries ("inclusive” or “exclusive”) for a custom
selection of miRNA and mRNA nodes, given a disease
was specified in the input.

Results and Discussion

In the following, we will describe the range of different
functions offered by miRTrail. Subsequently, an analysis
of cutaneous malignant melanoma versus benign nevi is
performed to illustrate the potential of our tool.

Functionality of miRTrail

The miRTrail webserver recieves two dysregulation sets
in separate text-files as input, one is the set of dysregu-
lated miRNAs and the other is the set of dysregulated
genes. For each uploaded identifier (for miRNAs, the
standard annotation of miRBase is used, for genes the
HGNC GeneSymbol annotation, respectively), the infor-
mation whether the respective gene/miRNA is upregu-
lated ('1") or down-regulated ('-1’) has to be provided in
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the files by the user. Optionally, the disease of interest
can be specified to allow for convenient NCBI PubMed
queries for related information.

As the next step, the user can either choose a target-
prediction threshold for microCosm targets predictions
or can provide a list of custom pairwise miRNA - target
mRNA interactions, potentially originating from pro-
prietary experiments or other prediction algorithms.
The default threshold for microCosm targets predictions
is 0.01, amounting to around 280,000 miRNA - target
mRNA interactions. Here, the user can also opt-in for a
thorough GeneTrail analysis. Based on this information,
the analyses are then carried out and, finally, the user is
directed to the results. These will be stored uniquely for
each analysis performed and can be shared with others
by simply providing them with the link of the results
page. The results presented herein can be reproduced
using the example files provided by miRTrail.

The first provided analysis computes a contingency
table relating the dysregulation of miRNAs and the dys-
regulation of target mRNAs and calculates the according
p-value, based on a x> distribution. This analysis allows
for estimating whether there is an independance in the
deregulation of the miRNAs and the target mRNAs.

Second, a Venn diagram is computed, providing the
dysregulated genes that are targets of dysregulated miR-
NAs (overlap of the diagram), the not-dysregulated tar-
gets of dysregulated miRNAs (left part of the diagram)
and the dysregulated genes that are not targets of the
dysregulated miRNAs (right part of the diagram). For
this Venn diagram, a p-value using the Hypergeometric
distribution is calculated to show whether there exists a
significant overlap between dysregulated genes and tar-
gets of dysregulated miRNAs. Third, gene set enrich-
ment analyses for three gene sets are carried out using
the comprehensive functionality of GeneTrail. Indepen-
dently of each other, a so-called Over-Representation
Analysis (ORA) - based on the Hypergeometric distribu-
tion - is carried out for the dysregulated genes, targets
of dysregulated miRNAs and dysregulated targets of dys-
regulated miRNAs. In all cases, the gene sets are tested
for significant enrichments/depletions in KEGG path-
ways. If the user previously decided to perform all
GeneTrail analyses, the results will also include informa-
tion about GO terms, TransPath pathways, transcription
factors from Transfac, SNPs, and chromosomal location,
among many others. By clicking on the ‘details’ button,
the complete list of results is provided. Moreover, an
overview showing the biological categories being signifi-
cant in at least two of the three analyses is created. The
“code” represents in which of the pairwise overlaps the
respective category was found, similar to the file-permis-
sion scheme in Linux. So, a code of “2” e.g. shows that a
category was found in the enrichment analysis of the
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dysregulated targets of dysregulated miRNAs as well as
in the results of the dysregulated genes. A code of “3”
would hence mean that this category was additionally
found in the results of the targets of dysregulated miR-
NAs. Accordingly in Table 2, e.g. the “DNA replication”
pathway was found to be enriched for dysregulated tar-
gets of dysregulated miRNAs as well as for the dysregu-
lated genes/mRNAs.

Finally, we carry out an integrative network-analysis
approach on the comprehensive network containing
dysregulated genes, dysregulated miRNAs, and the target
interactions between them. A subset of interesting miR-
NAs and their according targets is selected as well as a
custom degree constraint. The subset can be con-
structed either by selecting individual miRNAs, s. Figure
2, or miRNA families based on an Over-Representation
Analysis of miRNA-family data from miRBase (miFam.
dat) [43], s. Figure 3. The custom degree constraint
allows the selection of the genes being the target of at
least as many miRNAs as specified by the parameter.
Based on this selection, using the Java Webstart-based
viewer BiNA [44] or the web-based viewer Cytoscape-
web [45], we show the resulting network, allowing for a
manual inspection of the inherent interactions. In the
network visualizations, nodes with rectangular shapes
belong to miRNAs, nodes with round shapes to genes,
red color means up-regulation, green color means
down-regulation, and genes and miRNAs are connected
by edges if a putative miRNA - target interaction exists.
Additionally, a more fine-grained ORA is available,
being performed only on the genes that are contained in
the custom selection, which is also separately available
as a list. These genes are assumed to be the most dis-
ease-relevant as they are found to be deregulated and
simultaneously putative targets of deregulated miRNAs
while, at the same time, being central to the network,
according to their degree. This list is analysed for
enrichments/depletions in KEGG pathways, Gene

Table 2 Overlapping pathways

Related mRNA set  Code
a, b c 7

Pathway

Olfactory transduction 04740
DNA replication 03030
Lysosome 04142

C

@

Prostate cancer 05215 C

Small cell lung cancer 05222

S|o|o|o|o
(SN N ENE NN N

Systemic lupus erythematosus 05322

a: Pathways related to targets of dereg. miRNAs

b: Pathways related to dereg. targets of dereg. miRNAs
c: Pathways related to dereg. mRNAs

Code: Arithmetic sum of the following:

1: Found for a and b

2: Found for b and ¢

4: Found for a and c
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Select miRNAs for final network:

Submit selection

O Check all

hsa-miR-23b with 115 targets
hsa-miR-223 with 105 targets

hsa-miR-193b with 103 targets
hsa-miR-424 with 100 targets
hsa-miR-20a with 98 targets
hsa-miR-98 with 98 targets
hsa-miR-891a with 94 targets
hsa-miR-566 with 93 targets
[0 hsa-miR-22 with 80 targets
[0 hsa-miR-197 with 78 targets
[0 hsa-miR-493 with 76 targets
[0 hsa-miR-632 with 75 targets
[0 hsa-miR-382 with 73 targets
[0 hsa-miR-888 with 72 targets
[0 hsa-miR-604 with 71 targets
[0 hsa-miR-432 with 66 targets
[J hsa-miR-650 with 66 targets
O hsa-miR-510 with 59 targets
[0 hsa-miR-571 with 56 targets
[0 hsa-miR-539 with 53 targets
[0 hsa-miR-211 with 52 targets

Toggle More/Less

o ZB

ZENTRUM FUR
BIOINFORMATIK

dysregulated target mRNAs.

email to webmaster

W3C m“g

Figure 2 MiRNA selection (individual). Demonstrates the selection of miRNAs of interest. Link next to the each miRNA shows the respective

Ontology terms, OMIM disease relations, and NIA
human disease gene sets. A thorough GeneTrail analysis
can also be chosen here.

Melanoma case study

We compared the expression profiles of cutaneous
malignant melanoma to those of benign skin nevi sam-
ples from adult patients. While the proportion of mela-
noma cases among skin cancer patients is rather low

(4%), it accounts for almost 75% of all skin cancer-
related deaths. Even more, the prognosis for advanced
melanoma is very poor (5-year survival-rate is only 5%)
[46]. Hence, we decided to validate our tool based on
melanoma data and to identify new aspects of this dis-
ease, potentially helping in the creation of promising
new therapies for advanced melanoma patients.

An illustration of the the results page for the miRTrail
analysis on the melanoma miRNA and mRNA samples,
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Select miRNAs for final network:

Submit selection
O Check all

Family Count p (raw) p (adj) O/U expect
mir-650 1  0.0251497 0.0457267 T 0.025
mir-632 1  0.0251497 0.0457267 T 0.025
mir-604 1  0.0251497 0.0457267 T 0.025
mir-197 1l 0.0251497 0.0457267 T 0.025
mir-571 1  0.0251497 0.0457267 T 0.025
mir-22 1 0.0251497 0.0457267 T 0.025
mir-223 1  0.0251497 0.0457267 T 0.025
mir-566 1  0.0251497 0.0457267 T 0.025
mir-322 1 0.0251497 0.0457267 T 0.025
mir-432 1 0.0251497 0.0457267 T 0.025
mir-493 1  0.0251497 0.0457267 T 0.025
O mir-891 1l 0.0496963 0.0662617 T 0.05
O mir-23 1 0.0496963 0.0662617 T  0.05
O mir-204 1 0.0496963 0.0662617 T  0.05
O mir-193 1 0.0496963 0.0662617 T  0.05
O mir-154 2  0.0796647 0.0995809 T 0.478
O mir-743 1 0.0970349 0.114159 1 0.101
O mir-17 A EHIE506 «0.20562288 M 0:201
O let-7 5 0.264875 0.278816 T 0.302
O mir-506 gl 0.386957 0.386957 T 0.478
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Figure 3 MiRNA selection (families). Demonstrates the selection of miRNAs based on enriched miRNA families. All significant families (p(ad})
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as mentioned in the previous section, can be seen in
Figure 4.

Analysis of independance

Using our tool, for the melanoma samples and a predic-
tion threshold of 0.01 for the human miRNA - target
mRNA interactions from MicroCosm targets, we were

able to find statistical evidence about the dependance of
deregulation of miRNAs and target mRNAs. The contin-
gency table yielded a p-value of 0.025 (o = 0.05). Inter-
estingly, independant of the miRNA being up- or
downregulated, similar amounts of interactions were
found for targets, then, being up (450 and 480), down
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Characteristics of input:

« MIRNA input: mirtrail_example_mirna.txt
« MRNA input: mirtrail_example_mrna.txt
« Organism: hsa

Uploaded miRNA set size: 33

Uploaded mRNA set size: 4768
Target p-value threshold:  0.01
Number of target mRNAs: 6234

Results: s seconss)

Contingency Table: @
p-value: 0.0252684

Randormize
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not

miR

miRup down

target up

450 484 31539

target
down
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target

not
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Venn diagram: @

p-value: 0.999928
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Dereg. mRNAS
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GeneTrail results: @
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Common categories: @

6 KEGG categories between at least two RNA sets

Network analysis @

Select the miRNAs of interest

Select the miRNA families of interest

2 signif. KEGG categories details
9 signif. KEGG categories details
24 signif. KEGG categories details
details
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details
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Figure 4 Results Page. This illustrates the results page of a miRTrail analysis. The network visualization and subsequent analyses are available in
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(394 and 355), or not deregulated (3193 and 3385),
respectively. In turn, more targets were found to be up-
regulated for dysregulated miRNAs as well as for not
dysregulated miRNAs. Surprisingly, 805 (450 + 355)
interactions were found with both miRNA and predicted
target, being deregulated in the same direction. Finally,
as expected, a large number of interactions was found
were both, the miRNA and the predicted target, were
not deregulated (212782).

ORA of the three mRNA sets

Inspecting the ORA results, showed one KEGG path-
way (GPI-anchor biosynthesis) to be significantly
enriched for the set of targets of dysregulated miRNAs.

In turn, the over-representation analysis of dysregu-
lated targets of dysregulated miRNAs revealed nine
significant pathways, including cancer related cate-
gories, like Non-small cell lung cancer, Prostate cancer,
Small cell lung cancer, Endometrial cancer, and
Glioma as well as enrichments in the Lysosome path-
way and DNA replication. The analysis of the dysregu-
lated mRNAs revealed the highest number of
statistically signifi cant KEGG categories with a total of
24. Here again, several cancer-related pathways were
found to be enriched as well as pathways like Cell
cycle, Focal adhesion, or even signaling pathways (e.g.
TGEF-beta signaling pathway).



Laczny et al. BMC Bioinformatics 2012, 13:36
http://www.biomedcentral.com/1471-2105/13/36

The result of the pairwise overlaps of the resulting
pathway sets is described in Table 2. Among those, the
DNA replication pathway [47] as well as the Lysosome
pathway [48,49] have already been attributed to
melanoma.

Network analysis

From the 33 input miRNAs, 21 were found to have dysre-
gulated targets for a prediction threshold of 0.01. The
miRNA with the least dysregulated targets was hsa-miR-
211 (52 targets) while hsa-miR-23b was the miRNA with
the most dysregulated targets (115). For this analysis, we
decided to use the eight miRNAs having more than 80
dysregulated targets (miR-23b [50], miR-223, miR-193b
[51], miR-424, miR-20a [52], miR-98, miR-891a, and miR-
566), see Figure 2. We left the custom degree constraint at
the default of 1 for the subsequent ORA. The resulting
mRNA set comprises the dysregulated mRNAs that were
predicted targets of at least one of the eight earlier miR-
NAs. Specifying a higher constraint would lead to a smal-
ler network with only the mRNA nodes being targets of at
least as many miRNAs as specified by this parameter and
the according miRNA nodes, respectively.

ORA of subnetwork The analysis of KEGG pathways
showed significant enrichments for the three cancer-
related categories: Prostate cancer, Non-small cell lung
cancer, and Endometrial cancer. These categories were
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found to be enriched for genes that were deregulated
while being targets of deregulated miRNAs, hence, the
genes that are assumed to be the most disease-relevant
due to their joint deregulation.

A total of 274 GO terms were found to be enriched or
depleted for all of the three GO-trees, with enrichments
in anti-apoptosis, cell proliferation, cell cycle, transcript
initiation, RNA elongation, and regulation of transla-
tional initiation among others in the biological subtree.

Furthermore, an enrichment (RASA1 and PTCH1) for

“Susceptibility to basal cell carcinoma” was found in the
OMIM categories.
Visualization For this step, we decided to focus on
smaller miRNA and mRNA sets to increase the visibility.
However, also large selections can be efficiently handled
and used for detailed manual inspections. Exemplary
visualization can be found in Figure 5 and 6, for BiNA
and for Cytoscape-web, respectively.

Conclusions

The constantly increasing availability of data from differ-
ent origins and of different nature allows for more com-
plex and comprehensive analyses. To this end, we
developed miRTrail to integrate information about RNA
deregulation in diseases and putative interactions of
miRNAs and mRNAs. Our tool provides a large

B} . BiNA - Biological Network Analyzer
File Edit View Selection Tools Analysis Desktop Help
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Figure 5 Visualization: BiNA. Subnetwork of top-8 miRNAs and a degree constraint for the target mRNAs of 3, thus, only seven miRNA nodes
are displayed. Round shape represents mRNAs, rectangular miRNAs, respectively. Red color indicates upregulation, green color downregulation,
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hsa-.-566

hsa-.-ZOa

Figure 6 Visualization: Cytoscape-web. Subnetwork of top-8 miRNAs and a degree constraint for the target mRNAs of 3, thus, only seven
miRNA nodes are displayed. Round shape represents mRNAs, rectangular miRNAs, respectively. Red color indicates upregulation, green color
downregulation, respectively. Size of the mRNAs is according to their degree.

collection of different analyses and performs in a trans-
parent way, requiring only minor activity by the user,
while offering versatile results. This greatly facilitates the
adaption of this tool as it does not require complicated
initial learning. Via the visualisation component, miR-
Trail enables the user to easily inspect the interactions
and, thus, also to further process upon the selection.

MiRTrail - results will also be of great help in any
scheme that aims in experimental confirmation of
miRNA-targets. The final proof, here, requires extended
experiments including the identification of the specific
targeted region of a gene by in vitro binding and the
analysis of in vivo effects by altered miRNA expression.
The melanoma case study shows that we were able to
detect highly significant results, despite the fact that we
did not use autologous samples. This sets the ground
for specific experimental assays that focus on significant
miRNA - mRNA interactions in this tumor type. Hence,
miRTrail is of great interest for the life sciences commu-
nity as it can use data from next-generation sequencing,
qRT-PCR, or microarray experiments.

Availability and requirements

Project name: miRTrail
Project home page: http://mirtrail.bioinf.uni-sb.de
Operating system(s): Platform independent
Programming languages: C++, php
Other requirements: JavaWs version 1.6 or higher
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Abstract

Co-regulation of genes has been extensively analyzed, however, rather limited knowledge is available on co-regulations within the
miRNome. We investigated differential co-expression of microRNAs (miRNAs) based on miRNome profiles of whole blood from
540 individuals. These include patients suffering from different cancer and non-cancer diseases, and unaffected controls. Using hierarchi-
cal clustering, we found 9 significant clusters of co-expressed miRNAs containing 2-36 individual miRNAs. Through analyzing multiple
sequencing alignments in the clusters, we found that co-expression of miRNAs is associated with both sequence similarity and genomic
co-localization. We calculated correlations for all 371,953 pairs of miRNAs for all 540 individuals and identified 184 pairs of miRNAs
with high correlation values. Out of these 184 pairs of miRNAs, 16 pairs (8.7%) were differentially co-expressed in unaffected controls,
cancer patients and patients with non-cancer diseases. By computing correlated and anti-correlated miRNA pairs, we constructed a net-
work with 184 putative co-regulations as edges and 100 miRNAs as nodes. Thereby, we detected specific clusters of miRNAs with high
and low correlation values. Our approach represents the most comprehensive co-regulation analysis based on whole miRNome-wide
expression profiling. Our findings further decrypt the interactions of miRNAs in normal and human pathological processes.

Keywords: Co-expression; Microarray; MicroRNA; Network analysis

Introduction

Microarray experiments have been applied for almost three
decades in the detection of disease-relevant changes in gene
expression patterns. While in early ages genes have mostly
been considered independently from each other, cluster
[1,2] and classification [3-5] technologies have more
recently been applied to find patterns of differentially
expressed genes. Finally, gene set analysis approaches
[6,7] and methods integrating pathway topology [8,9] have
been developed to understand the interplay of genes. These

# Equal contribution.
* Corresponding author.
E-mail: ack@bioinf.uni-sb.de (Keller A).

approaches have been successfully applied to studies in
small non-coding RNAs, e.g., microRNAs (miRNAs).
With the increasing availability of expression profiles for
various diseases, differential co-expression of genes moved
into the focus of attention. The term “differential co-
expression” was firstly coined by Bennets in 1986 [10]
studying the co-expression of alpha-actins within the
human heart. In 1992, Swiderski reported differential co-
expression of long and short form type IX collagen tran-
scripts during avian limb chondrogenesis [11]. Co-expres-
sion analysis of genes using microarray technology has
also been applied to other human pathologies, including
cancer [12]. In 2009, Mo and co-workers presented a
stochastic model to identify co-expression patterns of
differential gene pairs in prostate cancer progression [13].
Comprehensive methods to detect differential co-

1672-0229/$ - see front matter © 2012 Beijing Institute of Genomics, Chinese Academy of Sciences and Genetics Society of China. Published by Elsevier

Ltd and Science Press. All rights reserved.
http://dx.doi.org/10.1016/j.gpb.2012.08.003
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expression have been developed by Lai who reported an
efficient pattern recognition algorithm [14]. This algorithm
used Expected Conditional F-statistic that incorporates
statistical information of location and correlation or other
scores as proposed by Koska and Spang [15]. Subse-
quently, several tools and software packages with respec-
tive functionality have been developed including
CoXpress [16], DiffCoEx [17], dCoxS [18] and differential
co-expression framework [19].

Only a few studies have been reported for analysis of dif-
ferential co-expression for miRNAs. An example is the
construction of an miRNA-miRNA synergistic network
via co-regulating functional modules and disease miRNA
topological features [20]. One reason for the lack of
miRNA co-expression studies is certainly the paucity of
miRNA expression profiling data. Gene expression profiles
have been measured for almost three decades in numerous
microarray experiments, of which hundreds of thousands
are currently available through the Gene Expression Omni-
bus [21,22], however, only a fraction of array data sets are
available for miRNAs. The most frequently applied micro-
array platform is the Agilent miRNA microarray 2.0.
Another technology which is frequently applied is the
MPEA assay (Febit Biomed, Heidelberg) that has been
used to measure several hundred blood-based miRNA
profiles which are the source for our meta-analysis.

Previously, Riveros and co-workers reported a compre-
hensive study for differential co-expression of miRNA that
was derived from whole blood of patients with multiple
sclerosis [23], providing evidence that differential co-expres-
sion from body fluids can be accessed. miRNA expression

BT 16

patterns from human blood cells are increasingly discussed
for their potential as a minimal invasive diagnostic tool.
Most recently, we reported blood-based miRNA expres-
sion patterns for 14 different human pathologies [24]
including lung cancer [25], COPD [26], multiple sclerosis
[27], ovarian cancer [28], glioblastoma [29], and acute
myocardial infarction [30]. Since the various cohorts are
relatively small as compared to the large number of poten-
tial pair-wise co-expressions, we combined the different
data sets into a meta-analysis. Here, we investigate the dif-
ferential co-expression patterns using the data of a total of
540 blood-based miRNA expression profiles.

Results and discussion
Co-localization and co-expression of miRNAs

As a first approach towards understanding the interplay of
miRNAs, we applied hierarchical clustering to the data set
containing 540 samples measured for the expression of 863
miRNAs. To reduce the noise, we excluded miRNAs with
low expression values (detailed in Material and methods).
An average linkage bottom up clustering detected a total
of nine significant clusters (P < 0.05). These clusters each
contain 2-36 miRNAs (Figure 1). Notably, many clusters
contained miRNAs with similar sequences. Good example
for co-expression related to similar sequences is Cluster 8
that contains hsa-miR-23a and hsa-miR-23b or Cluster 5
that contains hsa-miR-19a and hsa-miR-19b. The biologi-
cal mechanism underlying co-expression of miRNAs with
similar sequence remains to be elucidated. It is possible that
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Figure 1 Cluster dendrogram of miRNAs
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Red boxes denote significant clusters as computed by bootstrap re-sampling. The red values were calculated by bootstrap re-sampling and those >95%,
corresponding to significance level of 0.05, are considered as significant. Values in green and gray indicate bootstrap probability (BP) and the edge number
in the dendrogram, respectively. The significant clusters with approximately unbiased (AU) value greater than 95% (P < 0.05) are labeled with numbers in

circle in increasing order from left to right.
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Figure 2 Alignments of co-expression miRNA clusters with similar or

different sequences

Pairwise sequence alignment indicated that hsa-miR-23a and hsa-miR-23b
in Cluster 8 (upper panel) and hsa-miR-19a and hsa-miR-19b in Cluster 5
(middle panel) show high sequence similarity, while there is lower sequence

similarity for hsa-miR-1260 and hsa-miR-30c in Cluster 3 (lower panel).

Table 1 Co-localization of correlated miRNAs
miRNA Position Strand Correlation
hsa-miR-20a 13:90801320 AF 0.79
hsa-miR-17 13:90800860 AF
hsa-miR-20b X:133131505 - 0.79
hsa-miR-106a X:133131894 —
hsa-miR-18a 13:90801006 AF 0.74
hsa-miR-20a 13:90801320 Ak
hsa-miR-423-5p 17:25468223 + —0.56
hsa-miR 144 17:24212677 -
hsa-miR-423-5p 17:25468223 F —0.51
hsa-miR-21 17:55273409 AF
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Figure 3 Representative expression profiles of correlated miRNA pairs
A. Positive correlation. Expression of two positively-correlated miRNAs, hsa-miR-17 and hsa-miR-20a, was measured for 540 individuals including
controls (n = 72, black circle), cancer patients (n = 276, red circle) and non-cancer patients (n = 192, blue circle). B. Negative correlation. Expression of
two negatively-correlated miRNAs, hsa-miR-423-5p and hsa-miR-144, was measured for 540 individuals including controls (black circle), cancer patients
(red circle) and non-cancer patients (blue circle). A complete list of the disease types and the respective numbers of patients is shown in Table 4.
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co-expressed miRNAs of similar sequence share similar
targets. Other than that, reduced specificity of hybridiza-
tion-based approaches could partially explain this
co-expression. On the other hand, as expected, we also
found many miRNAs that clustered together but had dif-
ferent sequences, such as hsa-miR-1260 and hsa-miR-30c
in Cluster 3. Respective pair-wise sequence alignments
(hsa-miR-19a/hsa-miR-19b, hsa-miR23a/hsa-miR23b,
hsa-miR-1260/hsa-miR-30c) are shown in Figure 2.

To test the hypothesis that miRNAs belonging to the
same polycistronic miRNA cluster or the same miRNA
family are co-expressed, we additionally performed enrich-
ment analyses. For each significant set containing more
than 5 miRNAs (Clusters 4, 6 and 7 in Figure 1), we per-
formed the enrichment analysis separately to see whether
the selected miRNA clusters or families are over-
represented. In line with our expectations, the let-7a,
miR-106a, miR-106b, miR-15a and miR-17 clusters were
significantly enriched (all P < 0.005) in our Cluster 6,
whereas members of the miR-192 polycistronic miRNA
cluster were mostly found in Cluster 7 (P = 0.001). Like-
wise, we also found a strong enrichment of miRNA fami-
lies in our clusters, such as the let-7 family (P = 0.002),
the miR-15 family (P =0.001), the miR-320 family
(P =0.00002) and the miR-17 family (P = 3E-8) in Cluster
6 and the miR-103 family (P = 0.001) in Cluster 7. Interest-
ingly, no significant enrichment for a known miRNA clus-
ter or family was found in Cluster 4, indicating that our
clustering approach groups not only polycistronic (and
thus co-transcribed) miRNA clusters or known miRNA
families, but also miRNAs that are co-expressed for differ-
ent reasons. In addition, divergent behavior of individual
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Table 2 Differential co-expression in diseases

Genomics Proteomics Bioinformatics 10 (2012) 285-294

miRNA 1 miRNA 2 Overall correlation Control correlation Cancer correlation Non cancer correlation Variance
hsa-miR-377" hsa-miR-5481 0.756 —0.129 0.522 0.842 0.245
hsa-miR-196b hsa-miR-5481 0.73 —0.028 0.416 0.864 0.199
hsa-miR-5481 hsa-miR-135b 0.72 —0.023 0.373 0.863 0.197
hsa-miR-423-5p hsa-miR-144 —0.556 0.052 —0.651 —0.462 0.132
hsa-miR-595 hsa-miR-574-5p 0.743 0.121 0.78 0.62 0.118
hsa-miR-363 hsa-miR-320d —0.507 0.019 —0.481 —0.624 0.114
hsa-miR-320c hsa-miR-363 -0.519 -0.022 -0.539 —0.56 0.093
hsa-miR-320b hsa-miR-144 —0.575 —0.078 —0.619 —0.582 0.091
hsa-miR-106a hsa-miR-720 —0.577 —0.128 —0.626 —0.582 0.076
hsa-miR-106a hsa-miR-320c —0.504 —0.068 —0.499 —0.568 0.073
hsa-miR-144 hsa-miR-320a -0.571 —0.143 —0.642 —0.542 0.07
hsa-miR-126 hsa-miR-720 —0.513 -0.079 —0.537 —0.534 0.069
hsa-miR-144 hsa-miR-720 —0.552 —0.144 —0.584 —0.56 0.061
hsa-miR-720 hsa-miR-20b —0.58 —0.187 —0.599 —0.602 0.057
hsa-miR-23b hsa-miR-23a 0.708 0.323 0.751 0.709 0.056
hsa-miR-17 hsa-miR-151-3p —0.512 —0.205 —0.378 —0.657 0.052

miRNAs belonging to the same polycistronic cluster or
family provides evidence for a significant post-transcrip-
tional component in miRNA expression.

An additional reason for putative co-regulation of miR-
NAs might be their co-localization in the genome. To this
end, we searched for miRNAs that have been clustered
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Figure 4 Correlations of 16 miRNA pairs with variance > 0.05

hsa-miR-106a / hsa-miR-720

together based on the expression data and are located on
the same chromosome. Subsequently candidate pairs were
mapped to the exact chromosomal position. We found five
pairs of miRNAs that showed a high absolute correlation
(£=0.50r =0.5) and are located on the same chromosome,
as presented in Table 1. Three of those five miRNA pairs
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Differential co-expression of these miRNA pairs is shown separately for cancer patients (red), non-cancer patients (green) and healthy controls (blue).
Co-expression of the miRNA pairs was more frequently detected in cancer and non-cancer patients than in healthy controls.
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Table 3 Non-differential co-expression in diseases
miRNA 1 miRNA 2 Overall correlation Control correlation Cancer correlation Non-cancer correlation Variance
hsa-miR-593" hsa-miR-646 0.791 0.813 0.803 0.77 <0.001
hsa-miR-93 hsa-miR-20b 0.737 0.758 0.751 0.721 <0.001
hsa-miR-593" hsa-miR-214 0.834 0.815 0.824 0.852 <0.001
hsa-miR-330-3p hsa-miR-621 0.858 0.887 0.859 0.851 <0.001
hsa-miR-593" hsa-miR-331-3p —0.503 —0.5 —0.488 —0.523 <0.001
hsa-miR-374b hsa-miR-374a 0.722 0.729 0.734 0.702 <0.001
hsa-miR-621 hsa-miR-593" 0.838 0.852 0.849 0.822 <0.001
hsa-miR-330-3p hsa-miR-214 0.801 0.825 0.793 0.815 <0.001
hsa-miR-452" hsa-miR-593" 0.748 0.754 0.756 0.727 <0.001
hsa-miR-500 hsa-miR-195 —0.532 —0.509 —0.54 -0.52 <0.001
hsa-miR-1228" hsa-miR-149" 0.719 0.755 0.731 0.73 <0.001
hsa-miR-107 hsa-miR-331-3p —0.67 —0.685 —0.658 —0.675 <0.001
hsa-miR-330-3p hsa-miR-452" 0.793 0.809 0.793 0.792 <0.001
hsa-miR-509-5p hsa-miR-933 0.842 0.854 0.841 0.848 <0.001
hsa-miR-584 hsa-miR-362-5p 0.713 0.709 0.703 0.715 <0.001
hsa-miR-1184 hsa-let-7i" 0.792 0.786 0.788 0.792 <0.001
showed positive correlation while the remaining two pairs ~ was about 10 million base pairs (Mb). Moreover,

showed negative correlation. The three pairs with positive
correlation are located within a distance of 500 base pairs
of each other and were each on the same strand. On the
other hand, larger genomic distances were found for the
two negatively-correlated miRNA pairs. For example,
the distance between hsa-miR-423-5p and hsa-miR-144
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Figure 5 Correlations of 16 miRNA pairs with variance < 0.00053

hsa-miR-452* / hsa-miR-593*

hsa-miR-423-5p was located on the plus strand whereas
hsa-miR-144 was located on the minus strand. Figure 3
shows expression values of one pair of positively-correlated
miRNAs, namely hsa-miR-20a/hsa-miR-17 (Figure 3A)
and one pair of negatively-correlated miRNAs, namely
hsa-miR-423-5p/hsa-miR-144 (Figure 3B) for 540 analyzed
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Differential co-expression of these miRNA pairs is shown separately for cancer patients (red), non-cancer patients (green) and healthy controls (blue). Co-

expression of the miRNA pairs was comparable in the three groups.
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Figure 6 Correlation network

Network was constructed with all positive correlations between pairs of miRNAs with a correlation of at least 0.7 (blue edges) and all negative correlations

of at least

—0.5 (red edges). The thickness of the edges corresponds to the alignment score. The pair-wise sequence alignment was computed using edit

distance. Dashed edges indicate correlations that were different in controls and in patients.

blood samples. The results showed that the cohorts
behaved similarly for each of the pairs.

Differential co-expression of miRNAs

The 540 individuals participating in this study can be
grouped in three different cohorts, including unaffected
healthy individuals (control), cancer patients (cancer) and
non-cancer patients (non cancer). For these three cohorts
we asked whether the correlation is equally high in all three
groups or whether certain cohorts deviate from the others.
To this end, we computed for each pair of miRNAs the
correlation values for the three cohorts separately. As a

result of the calculation for all

<Sg3 > - m = 371,953 pairs, the values of correla-

tion range from —0.67 to 0.89 with average correlation of
0.013. As the slight positive average correlation already
indicates, we obtained slightly more positive correlations
than negative ones. Thus, we applied different thresholds
for positive and negative correlations to acknowledge this
non-symmetric distribution. We only considered posi-
tively-correlated miRNA pairs with correlation values
higher than 0.7 and negatively-correlated miRNA pairs
with values lower than —0.5. Using these thresholds we
obtained 184 miRNA pairs out of 371,953 pairs in total
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(0.05%). Of these 184 miRNA pairs, 118 were positively
correlated and 66 were negatively correlated. To estimate
the extent of differential expression in the 3 cohorts, we
computed the variance of the correlation values, ranging
from 107> to 0.24 with an average of 0.02. The 16 miRNA
pairs with the highest variance, corresponding to the most
differentially-regulated miRNAs (variance >0.05), are sum-
marized in Table 2 and Figure 4 and the 16 miRNA pairs
with the lowest variance (variance <0.00053) are indicated
in Table 3 and Figure 5.

By examining the differential co-expression of the 16
miRNA pairs with variance >0.05, we found that both
the cancer patients and the non-cancer patients deviate
from the healthy controls. As compared to the healthy con-
trols, co-expression of these 16 miRNA pairs was detected
significantly more frequently in both cancer and non-can-
cer disease groups. Overall the correlation between cancer
and non-cancer diseases was 0.95 while decreased correla-
tion was revealed between control and cancer and between
control and non-cancer diseases, which is 0.59 and 0.49,
respectively. Further analysis identified five miRNA pairs
that were positively correlated in patients but not in
healthy controls. For example, the pair hsa-miR-23a/hsa-
miR-23b showed correlation of 0.71 in non-cancer patients
(P <10"'%) and 0.75 in cancer patients (P < 10~'°) but only
0.32 in healthy controls (P < 0.01) with the respective 95%
confidence intervals as 0.69-0.80, 0.63-0.79 and 0.07-0.54.
Moreover, we found 11 miRNAs that were highly anti-
correlated, ie., negatively correlated both in cancer and
in non-cancer patients but again not correlated in healthy
controls.

These results indicate that the observed overall high var-
iance for the 16 miRNA pairs is mostly due to the healthy
controls. While the 16 pairs were only weakly correlated in
healthy controls they were correlated or anti-correlated in
the patients. The results that may be biased due to slightly
different cohort sizes may give first and certainly only pre-
liminary evidence that miRNA expression may be more

hsa-miR-151-3p

homogenously coordinated in patients, possibly indicating
a change in expression regulation that is common to differ-
ent types of disecases.

Interestingly, all miRNAs of the miRNA pairs that are
negatively correlated in cancer or non-cancer patients but
not in healthy controls have been previously related to
human diseases according to the Human miRNA and
Disease Database (HMDD) [31]. For examples, the known
disease-associated miRNAs that were identified as nega-
tively correlated in our study included hsa-miR-17 that
was according to the HMDD associated with 33 different
diseases, hsa-miR-128 with 18 diseases, hsa-miR-20b with
9 diseases, hsa-miR-423 with 4 diseases and hsa-miR-363
with 3 diseases. This finding is even more profound, since
only about one third of all known miRNAs in the HMDD
are related to one or more diseases [31]. Obviously, the
analysis of co-expression can contribute to the identifica-
tion of disease-associated miRNAs.

Anti-correlation of expression and co-localization of
miRNAs

Besides pairs of miRNAs that were correlated in patients
and that were co-localized, we also identified co-localiza-
tion of miRNA pairs for miRNAs which are anti-
correlated in patients. For example, hsa-miR-423-5p and
hsa-miR-144 are co-localized on chromosome 17 and are
negatively correlated (—0.56). Specifically, the correlation
value for this miRNA pair was —0.65 in non-cancer patients
and —0.46 in cancer patients, respectively. However, we did
not find a negative correlation for this miRNA pair in
healthy controls (correlation of 0.05) (Tables 1 and 2).

Putative co-regulation network
Based on the analysis of co-regulated miRNAs, we con-

structed a network with 184 correlations (correlation value
>0.7 or <—0.5). As shown in Figure 6, the derived network
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Figure 7 Differential co-expression sub-network

Sub-network of miRNAs was constructed with correlations that were different between controls and patients (left side) and correlations that were similar
between controls and patients (right side). The indication of edges was same as that used in Fig. 6.
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Table 4 Cohort characteristics

Class Disease No. of samples
Control Healthy 72
Cancer Lung tumor 35
Ductal adenocarcinoma 45
Melanoma 35
Ovarian cancer 15
Prostate carcinoma 35
Wilms tumor 50
Other pancreatic tumors 48
Tumor of stomach 13
Non cancer Multiple sclerosis 23
Sarcoidosis 45
Periodontitis 18
COPD 27
Myocardial infarction 20
Pancreatitis 37
Benign prostate hyperplasia 22
Sum 540

Note: COPD, chronic obstructive pulmonary disease.

encompasses 100 different miRNAs. Roughly, the network
can be divided into one large connected component and
several small components consisting of 2 to 4 miRNAs
each. The large connected component can again be subdi-
vided into two clusters. The upper cluster shown in Figure 6
contains mostly positively correlated miRNA pairs as indi-
cated by blue edges while the cluster shown at the bottom
of Figure 6 contains both positive correlations and negative
correlations (indicated by red edges). While the miRNAs in
the upper cluster do not show obvious sequence similarity
as indicated by thin edges, positively correlated miRNAs of
the lower cluster show high sequence similarity as indicated
by thick edges. The small components with two to four
miRNAs are mostly positively correlated. For most of
these pairs, the positive correlation is associated with
sequence similarities, as for example for the pair of
hsa-miR-23a and hsa-miR-23b and the pair of hsa-miR-
1247a and hsa-miR-1247b.

Additionally, many of the positive and negative correla-
tions shown in the bottom cluster are different between
healthy controls and patients. The differences are visualized
as a sub-network in Figure 7. The sub-network separates
miRNAs with different correlation between healthy con-
trols and patients (on the left) and miRNAs with similar
correlations in healthy controls and patients (on the right).
Among the miRNAs with similar correlations are four
miRNAs of the let-7 family that have previously been asso-
ciated with many human malignancies [31]. In addition,
each of the remaining miRNAs of the sub-network has
previously been associated with at least one human disease
according to the HMDD [31].

Conclusion

Over almost three decades it has been shown that co-
expression and specifically differential co-expression of

genes play an important role in human pathogenic pro-
cesses. However, differential co-expression has not been
thoroughly analyzed for the miRNome. This is in part
due to the lack of respective high-throughput data sets
allowing the analysis of miRNA-miRNA interactions.
We enlarged a recently published set of 454 whole miR-
Nome profiles [24] to a total of 540 profiles. Analysis of
the miRNA co-expression from these profiles provides sup-
porting evidence that genomic localization and sequence
similarity are associated with co-expression. In addition,
we report a significantly enriched clustering for miRNAs
that belong to the same miRNA families or polycistronic
miRNA clusters. Moreover, our findings also support that
the co-expression may be more pronounced in patients,
compared to the healthy controls. Network based analysis
allows us to detect specific clusters of miRNAs with high
and low correlation. Interestingly, many of the identified
differentially co-expressed miRNAs have previously been
associated with human pathogenic processes. Notably,
the reported data have not been measured from tissues
but from blood cells. Since different tissues have specific
miRNA profiles, a co-expression analysis would make
sense only for one tissue type but not enabling a meta-anal-
ysis of different diseases. However, different blood cell com-
positions in different diseases might influence the overall
result of our meta-analysis. Another limitation of our study
is certainly the applied microarray technology. Novel
approaches such as next-generation small RNA sequencing
will likely improve the specificity of respective analyses in
the future.

In summary, in human diseases, co-expression and
differential co-expression of miRNAs seems to be of similar
importance to co-expression of protein-coding genes.

Materials and methods
Patients

The screened cohort contains a total of 540 subjects includ-
ing healthy controls (n = 72), cancer patients (n = 276) and
patients with non-cancer diseases (n = 192). The detailed
characteristics of the cohort are listed in Table 4. All blood
donors participating in this study signed the informed con-
sent form and the local ethics committee approved the
analysis of miRNA expression in blood. Blood samples
were collected using PAXgene Blood RNA tubes (BD,
Franklin Lakes, New Jersey, USA).

miRNA extraction and microarray screening

Total RNA isolation was performed using miR Neasy Mini
Kit (Qiagen) as described previously [25].

Microarray analyses were done on the Geniom RT Ana-
lyzer using Geniom miRNA Biochips (Febit Biomed
GmbH). Each of the 863 human miRNAs (Sanger miR-
Base v12.0 to v15.0) was present in at least seven replicates
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on each of the 540 arrays. The screening was done using
micro-fluidics primer extension assay (MPEA) [32]. This
assay differs from a standard hybridization assay in that
it includes an additional primer extension step. The MPEA
assay is verified to be very sequence-specific at the end of
miRNAs and thus minimizes the cross-hybridization
effect, which is of especially high importance for our cross-
hybridization study.

Data processing and bioinformatics analysis

At the first preprocessing step, all arrays were locally back-
ground corrected. Then, the replicates of each miRNA on
each microarray were merged by computing the median
intensity value. To account for between-array effects, stan-
dard quantile normalization was performed [33], which
showed superior performance as compared to normaliza-
tion via spike-in or housekeeping miRNAs in previous
experiments. All computations then were carried out on
the expression matrix containing 863 rows representing
863 miRNAs and 540 columns representing the 540 indi-
viduals. The statistical analyses were carried out using R
[34] if not mentioned otherwise. To reduce the noise, we
excluded miRNAs with low expression values, ie., the
median signal intensity of a miRNA must be great than
500 for a specific miRNA to be considered in our study.

For hierarchical clustering, the pvclust package has been
used. The package computes P values for hierarchical clus-
tering based on a multiscale bootstrap resampling, helping
to interpret clusters. Specifically, clusters that are highly
supported by the data will have low P values while weaker
clusters end up with non-significant P values. Significant
clusters are enclosed with red boxes in the respective
dendrogram. We used /-abs(cor(x,y)) as a distance mea-
sure for the clustering, where cor(x,y) corresponds to the
Pearson correlation coefficient of all 540 observations for
two miRNAs x and y. By using this distance function, we
detect miRNAs that are highly correlated and anti-corre-
lated. In more detail, an average linkage bottom up cluster-
ing was carried out.

To compute differential expression and differential co-
expression, we again used the pair-wise Pearson correlation
of all 863 miRNAs, for all 540 samples together but also
for the different groups of controls, cancers and non-cancer
diseases, separately. As a result of this analysis, we calcu-
lated for (823) = w = 371,953 miRNA pairs
four different correlation values, the overall value and the
single values for the three groups. To find the miRNA pairs
with different behavior in different groups, we computed
the variance of the 371,953 pairs as 1 ((coreommori — cor;)’+

2 2 h
(Corcancerj - COil‘i) (cornonf(‘am‘er‘i - COI"I- ))a whnere corcontru/,i

corresponds to the correlation of control samples for a
miRNA pair i, corgucer; corresponds to the correlation of
cancer samples for a miRNA pair i, cor,oncancer.i COTTE-
sponds to the correlation of control samples for a miRNA

pair i, and cor; corresponds to the average of the three
correlation values for miRNA pair 7.

Empirically, we considered miRNA pairs with correla-
tions above 0.7 as highly co-expressed and with correla-
tions below -0.5 as anti-correlated. Using Cytoscape [35]
we visualized the network of these miRNA pairs and visu-
alized the results using Cytoscapes mapping functionality
with an organic layout.
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Abstract

Background: MicroRNAs (miRNAs) are short, noncoding RNAs with gene regulatory functions whose expression
profiles may serve as disease biomarkers.

Objective: The objective of this study was to perform a comprehensive analysis of miRNA expression profiles in blood
of patients with a clinically isolated syndrome (CIS) or relapsing—remitting multiple sclerosis (RRMS) including next-
generation sequencing (NGS).

Methods: miRNA expression was analyzed in whole blood samples from treatment-naive patients with CIS (n = 25) or
RRMS (n = 25) and 50 healthy controls by NGS, microarray analysis, and quantitative real-time polymerase chain reac-
tion (QRT-PCR).

Results: In patients with CIS/RRMS, NGS and microarray analysis identified 38 and eight significantly deregulated miR-
NA:s, respectively. Three of these miRNAs were found to be significantly up- (hsa-miR-16-2-3p) or downregulated (hsa-
miR-20a-5p, hsa-miR-7-1-3p) by both methods. Another five of the miRNAs significantly deregulated in the NGS screen
showed the same direction of regulation in the microarray analysis. qRT-PCR confirmed the direction of regulation for
all eight and was significant for three miRNAs.

Conclusions: This study identifies a set of miRNAs deregulated in CIS/RRMS and reconfirms the previously reported
underexpression of hsa-miR-20a-5p in MS. hsa-miR-20a-5p and the other validated miRNAs may represent promising
candidates for future evaluation as biomarkers for MS and could be of relevance in the pathophysiology of this disease.

Keywords
Multiple sclerosis, clinically isolated syndrome, microRNAs, biomarker, next-generation sequencing, microarray, real-time
polymerase chain reaction

Date received: 9 December 2012; revised: 5 June 2013;accepted: 10 June 2013

Introduction

According to current diagnostic criteria, diagnosis of multi- radiological, and cerebrospinal fluid findings.!> While
ple sclerosis (MS) relies on a combination of clinical, establishing a diagnosis of MS is usually straightforward in
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patients with typical clinical and paraclinical presentations, it
can be challenging in patients with atypical features.*
Furthermore, differentiation of MS from alternative diagno-
ses, such as other inflammatory central nervous system
(CNS) diseases, can be difficult, especially in patients with a
clinically isolated syndrome (CIS). Identification of bio-
markers, defined as parameters that can be objectively meas-
ured and evaluated as indicators of pathogenic processes,’
therefore appears desirable to further facilitate the diagnosis
of MS. In addition, biomarkers could aid in monitoring dis-
ease activity and in the evaluation of treatment responses.

MicroRNAs (miRNAs) are short (about 20-24 nucleo-
tides in length), single-stranded regulatory RNAs that modu-
late gene expression at the posttranscriptional level by
repressing translation or degradation of specific messenger
RNA (mRNA) targets. About 1500 miRNAs have been
described in humans so far, and more than one-third of all
human genes may be controlled by miRNAs.%7 miRNAs
thus represent an important gene regulatory mechanism,
increasingly recognized to be involved in physiologic and
pathologic processes both in the CNS and the immune sys-
tem.8° Of note, miRNAs are present in a stable form in
human blood,'? and previous studies performed by others
and ourselves suggest that miRNA expression profiles deter-
mined in serum or whole blood samples hold promise as
diagnostic biomarkers in various human diseases, including
cancer and autoimmunity.'-'? Others, and our group, have
consequently investigated miRNA profiles in whole blood,
peripheral blood mononuclear cells, purified leukocyte sub-
sets, or plasma of patients with MS in comparison to healthy
controls.!3->> While all those studies identified some differ-
ences in the expression levels of certain miRNAs, they were
limited by either the number of miRNAs studied, the number
of patients included, or possible confounding effects of con-
comitant immunomodulatory therapy.?6 Moreover, while
former studies were based on microarray technology or
quantitative real-time polymerase chain reaction (QRT-PCR),
next-generation sequencing (NGS) has meanwhile emerged
as a novel, powerful, and unbiased methodological approach
to miRNA expression profiling.?7-28

Here, we performed a comprehensive analysis of miRNA
expression patterns in whole blood samples from 50 treatment-
naive patients with a CIS or relapsing—remitting MS (RRMS)
as well as 50 matched healthy controls using NGS, microarray
analysis of 1205 human miRNAs, and qRT-PCR. Our analysis
identified several miRNAs deregulated in patients with CIS/
RRMS, which may represent promising candidates for future
evaluation as biomarkers for MS and could provide insights
into the pathophysiology of this disease.

Patients and methods
Sample collection

From November 2009 to February 2011 about 2.5 ml of
blood was collected in PAXgene Blood RNA tubes (Becton

Dickinson, Heidelberg, Germany) from 50 patients (36
female, 14 male) followed at the Department of Neurology
and NeuroCure Clinical Research Center, Charité —
Universitdtsmedizin Berlin, with a diagnosis of a CIS (n =
25) or RRMS (n = 25) according to the McDonald 2005
criteria.? Fifty age- (+ 4 years) and gender-matched healthy
adults were included as controls. Patients were categorized
into those with stable disease (no relapse within a period of
at least two months before blood withdrawal, » = 31) and
patients with active disease (relapse at the time of or within
two months before blood withdrawal, n = 19). Data on the
use of oral contraceptives were available from 19 of the 36
female patients included in the study. Seven of these 19
women took oral contraceptives. None of the patients took
any long-term immunomodulatory or immunosuppressive
therapy at the time of or prior to inclusion into the study.
Patients had not been treated with glucocorticosteroids for
at least two months before blood withdrawal. Pregnancy or
intercurrent diseases at the time of blood withdrawal were
exclusion criteria. The study was approved by the institu-
tional review board of Charité — Universititsmedizin Berlin
(EA1/131/09) and all participants provided written
informed consent. Coded samples were stored at —20°C and
shipped on dry ice to the Department of Human Genetics,
Saarland University, for further blinded processing.

RNA isolation

Total RNA including miRNA was isolated using the
PAXgene Blood miRNA Kit (Qiagen) following the manu-
facturer’s recommendations. Isolated RNA was stored at
—80°C. RNA integrity was analyzed using Bioanalyzer
2100 (Agilent) and concentration and purity were measured
using NanoDrop 2000 (Thermo Scientific). A total of four
samples (three controls and one patient with RRMS) failed
the quality criteria and were excluded from the study.

NGS

The total RNA concentration required for NGS was > 1 ug
per sample. A total of 37 of the 100 samples collected in our
study met this requirement and were included in the NGS
analysis. Isolated RNA was shipped on dry ice to the
Institute of Clinical Molecular Biology (IKMB), Christian-
Albrechts Universitit, Kiel, Germany, where NGS was per-
formed. Individual samples were tagged with molecular
barcodes and then sequenced together in multiplexed pools.
The TruSeq Small RNA sample preparation Kit (Illumina)
was used to generate multiplexed sequencing libraries,
which were afterwards sequenced on a HiSeq2000 System
(Illumina) using the 50 bp fragment sequencing protocol.
Resulting sequencing reads were demultiplexed using the
CASAVA 1.8 software package (Illumina) and quality
checked using FastQC tools (Babraham Institute). A primary
mapping analysis using the miRDeep2-pipeline? was con-
ducted to ensure that a significant proportion of miRNAs
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Table I. miRNAs deregulated in NGS and microarray analysis and validated using qRT-PCR. For the NGS analyses the average read
counts are given, for the microarray analyses the mean signal intensity values are given, and for the qRT-PCR the mean ACT values

are given. Bold font indicates upregulation of the respective miRNA in CIS/RRMS, normal font indicates downregulation in CIS/RRMS
compared to controls. Note that higher ACT values indicate lower expression.

miRNA NGS Microarray qRT-PCR

Control CIS/RRMS  pvalue  Control CIS/RRMS  pvalue Control CIS/RRMS  p value
hsa-miR-22-5p 6 9.681 0.004 1034.25 1075.84 0.594 7.17 7.12 0.88
hsa-miR-125b-5p 4.806 14.444 0.018 22.979 42.036 0.156 5.02 3.66 0.0006
hsa-miR-629-5p 4.847 8.958 0.024 8.385 9.988 0.224 7.45 7.21 0.46
hsa-miR-16-2-3p  418.792 793.625 0.05 26.77 50.538 0.00/ 7.62 6.55 0.014
hsa-miR-100-5p 3.993 44.25 0.04 12.678 26.817 0355 6.06 4.46 0.005
hsa-miR-20a-5p 7.194 6.847 0.049 255.718 96.802 0.018 1.93 2.62 0.2
hsa-miR-15la-3p  580.403 455.056 0.009 51.266 43.992 0.61 2.23 233 0.7
hsa-miR-7-1-3p 2.68I 0.563 0.001 3.106 0.1 0.02 6.02 6.46 0.16

miRNA: microRNA; NGS: next-generation sequencing; qRT-PCR: quantitative real-time polymerase chain reaction; CIS: clinically isolated syndrome;

RRMS: relapsing—remitting multiple sclerosis.

were sequenced. In total, 37 samples from 16 patients (five
RRMS, 11 CIS) and 21 controls were analyzed in two mul-
tiplexed pools. On average, 1.5 million—2 million high-
quality sequencing reads per sample were obtained (at a
total of 92.28 million reads), of which up to 70% contained
miRNA information. The raw illumina reads were first
preprocessed by cutting the 3” adapter sequence. This was
performed by the program fastx_clipper from the FASTX-
Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/). Reads
shorter than 18 nucleotides after clipping were removed.
The remaining reads were collapsed, i.e. after this step we
had only unique reads and their frequency per sample. For
the remaining steps, we used the miRDeep?2 pipeline. These
steps consist of mapping the reads against the genome
(hgl9), mapping the reads against miRNA precursor
sequences from miRBase release v18 (http://www.mirbase.
org/), and summarizing the counts for the samples.

Microarray measurement

Microarray analysis was performed as previously described
using SurePrint 8x60K Human v16 miRNA microarrays
(Agilent, CatNo G4870A) that contain 40 replicates of each
of'the 1205 miRNAs of miRBase v16 (http://www.mirbase.
org/).30 Except for the four samples that failed the quality
control criteria, all remaining 96 samples were included in
the microarray study. All samples were analyzed as indi-
vidual samples and not pooled.

qRT-PCR

We composed a set of 40 age- and gender-matched patient
and control samples that were also used for microarray and
NGS analyses. Samples included in the qRT-PCR study
were analyzed as individual and not as pooled samples. The
group of patients included 10 CIS and 10 RRMS patients.

qRT-PCR was performed at the Comprehensive Biomarker
Center GmbH, Heidelberg, Germany, using the Tagman
qRT-PCR system (Applied Biosystems). The small RNAs
RNU6B and RNU48 were used as endogenous controls.
However, as RNU6B yielded very high Ct values, we used
only RNU48 for normalization with the deltaCT method.3!
The mean + standard deviation Ct value of RNU48 of the
40 samples analyzed was 25.45 + 0.82.

Bioinformatic analysis

The same analyses were performed for NGS as well as
microarray results. Following quantile normalization, we
computed for each miRNA the area under the receiver
operator characteristic curve (AUC), the fold-change, and
the significance value (p value) using ¢ tests. Because of the
exploratory nature of this study, no adjustments for multiple
testing were made. P values < 0.05 were considered statisti-
cally significant. Based on this analysis, we computed a
Venn diagram for the significant NGS and microarray results.
Concordant candidate miRNAs were validated using qRT-
PCR and further analyzed. For each concordant miRNA
we extracted relevant disease interactions from the human
microRNA disease database (HMDD, http://202.38.126.151/
hmdd/mirna/md/).

Results

Demographics of patients with CIS/RRMS and healthy
controls studied in this work are summarized in
Supplemental Table 1. We applied three experimental
approaches to comprehensively analyze miRNA profiles in
patients with CIS/RRMS (Figure 1). Using NGS, we first
carried out a screening in a cohort of 16 cases and 21 con-
trols. Secondly, we performed a microarray analysis on an
enlarged cohort encompassing 49 cases and 47 age- and
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Figure |. Project overview.Three experimental methods including NGS, microarray, and qRT-PCR were applied to comprehensively
analyse miRNA expression profiles in patients with CIS/RRMS and healthy controls.
NGS: next-generation sequencing; qRT-PCR: quantitative real-time polymerase chain reaction; CIS: clinically isolated syndrome; RRMS: relapsing—

remitting multiple sclerosis.
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Figure 2. Number of miRNAs and frequency of samples in which these miRNAs were detected.The upper curve indicates the results
of NGS, the lower curve indicates the results of microarray screening. By NGS 353 miRNAs were detectable in at least half of all
investigated samples, by microarray analysis 228 miRNAs were detectable in at least half of all investigated samples (see dashed lines).

miRNA: microRNA; NGS: next-generation sequencing.

gender-matched controls. Both high-throughput analyses
yielded eight miRNA candidates that were, thirdly, ana-
lyzed by qRT-PCR in 20 cases and 20 controls.

NGS screening

We initially performed a high-throughput screening in
blood samples from 16 patients with CIS/RRMS and 21
controls. Altogether, we found a total of 835 miRNAs
being expressed in at least one of the samples. Figure 2
shows the number of miRNAs and the frequency of sam-
ples in which these miRNAs were detected; 353 miRNAs

were detectable in at least half of the investigated sam-
ples. Following normalization, ¢ tests demonstrated that
expression of a total of 38 miRNAs significantly differed
between patients and controls. Out of the 38 deregulated
miRNAs 16 were downregulated and 22 were upregulated
in CIS/RRMS. The eight strongest deregulated miRNAs
are shown in Figure 3. These eight miRNAs included five
downregulated miRNAs, namely hsa-miR-361-5p, hsa-
miR-7-1-3p, hsa-miR-5480-3p, hsa-miR-151a-3p, and
hsa-miR-548am-3p and three upregulated miRNAs,
namely hsa-miR-22-5p, hsa-miR-27a-5p, and hsa-miR-
4677-3p.
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Figure 3. The eight most deregulated miRNAs identified by
NGS.The median read counts of the control samples (dark gray)
and the median read counts of the MS samples (light gray) of the
eight most deregulated miRNAs identified by NGS are indicated
together with the standard deviation. Expression in healthy
controls is set to 100.

miRNA: microRNA; NGS: next-generation sequencing; MS: multiple
sclerosis.

Microarray screening

We next screened an enlarged cohort of 49 patients with
CIS/RRMS and 47 matched healthy controls by microar-
rays. We detected significantly fewer (p = 6.5 x 10-7) miR-
NAs in the microarray compared to the NGS study (Figure
2). In detail, microarray analysis detected 382 miRNAs that
were expressed in at least one sample. These were only
46% of the 835 miRNAs that were detected by NGS in at
least one of the samples. Furthermore, microarray analysis
detected only 228 miRNAs that were expressed in at least
50% of all samples. In the microarray experiments we
detected a total of eight significantly deregulated miRNAs
(Figure 4). Out of the eight deregulated miRNAs, five miR-
NAs were downregulated (hsa-miR-146b-5p, hsa-miR-7-
1-3p, hsa-miR-20a-5p, hsa-miR-3653, hsa-miR-20b) and
three were upregulated (hsa-miR-16-2-3p, hsa-miR-
574-5p, hsa-miR-1202) in patients with CIS/RRMS.

Overlap in significantly deregulated miRNAs
between NGS and microarray analyses and
correlation with clinical parameters

As described above, we detected 38 significantly deregu-
lated miRNAs by NGS and eight significantly deregulated
miRNAs by microarray analysis. These numbers corre-
spond to 1.9% of all known miRNAs for the NGS experi-
ment and 0.7% of the miRNAs on the biochip for
microarray analysis, respectively. This makes a random

Figure 4. The eight most deregulated miRNAs identified
by microarray analysis. The median signal intensities of the
control samples (dark gray) and the median signal intensities
of the MS samples (light gray) of the eight most deregulated
miRNAs identified by microarray analysis are indicated
together with the standard deviation.Values of healthy
controls are set to 100.

miRNA: microRNA; MS: multiple sclerosis.

overlap between the two data sets unlikely. However, three
miRNAs, namely hsa-miR-16-2-3p, hsa-miR-20a-5p, and
hsa-miR-7-1-3p, were identified by both NGS and micro-
array analysis (Figure 5). We performed one million per-
mutation tests to confirm that this overlap is highly
significant (p = 0.004). In addition, five of the 38 miRNAs
identified by NGS (miRNAs hsa-miR-22-5p, hsa-miR-
125b-5p, hsa-miR-629-5p, hsa-miR-100-5p, and hsa-miR-
151a-3p) showed the same direction of regulation in the
microarray analysis, i.e. each of these miRNAs was either
up- or downregulated in both approaches, although the
deregulation of these five miRNAs in the microarray
experiments was not statistically significant. Table 1 sum-
marizes the expression and significance values of the eight
miRNAs identified as deregulated by both methods. We
also compared the expression levels, as measured by
microarray, of those eight miRNAs with the clinical dis-
ease activity (active vs stable disease) and diagnosis (CIS
vs RRMS) of the patients included in this work. When
assessed by unpaired ¢ tests, none of the comparisons
revealed significant differences, suggesting that within our
patient group the analyzed miRNAs were not influenced
by clinical disease activity or a diagnosis of CIS vs RRMS.
Finally, as an estimate of the individual ability of each of
the eight differentially expressed miRNAs to discriminate
patients with CIS/RRMS and controls, we also calculated
receiver operating characteristic (ROC) curves for each of
these miRNAs wusing microarray and NGS data
(Supplemental Figure 1).

Downloaded from msj.sagepub.com at SAARL UNIVERSITAETS on July 12, 2013



Multiple Sclerosis Journal 0(0)

6
sequencing microarray
miR-4714-3p
miR-22-5p miR-424-5p
miR-125b-5p MiR-545-5p
miR-4677-3p  miR-181b-3p
miR-629-5p  miR-1285-5p
miR-181b-5p  miR-1260a
miR-148a-3p  miR-4435
miR-335-5p  miR-30d-5p miR-146b-5p)
miR-27a-5p miR-30e-5p y miR-574-5p
miR-190b MiR-548s miR-1202-5p
miR-23b-3p miR-548p miR-3653-5p
miR-181d miR-5480-3p miR-20b-5p
miR-3688-3p  miR-548am-3p
miR-4326 miR-548ah-3p
miR-99a-5p  miR-361-5p
MiR-100-5p  miR-30a-5p
miR-23a-3p  mjR-151a-3p
MiR-330-50 mir-548av-3p

Figure 5. Venn diagram showing the significantly deregulated
miRNAs identified by NGS and microarray screening. NGS
identified 38 miRNAs and microarray analysis eight miRNAs
significantly deregulated in CIS/RRMS.Three miRNAs were

identified by both approaches.
miRNA: microRNA; NGS: next-generation sequencing; CIS: clinically
isolated syndrome; RRMS: relapsing—remitting multiple sclerosis.

gRT-PCR validation

The eight miRNAs listed in Table 1 were further analyzed
using qRT-PCR in a set of 20 patients with CIS/RRMS and
20 healthy controls. All eight miRNAs showed the same
direction of regulation in the qRT-PCR analysis as in the
NGS or microarray experiments. Three miRNAs, including
hsa-miR-125b-5p, hsa-miR-16-2-3p, and hsa-miR-100-5p,
were significantly deregulated according to the qRT-PCR
results (Table 1). Figure 6 shows the mean ACT values and
standard deviations for the qRT-PCR validation. Figure 7
summarizes the comparison of the expression analysis of
the eight miRNAs using NGS, microarray, and qRT-PCR.

Disease specificity of the identified miRNAs

We extracted the known disease associations for all human
miRNAs deposited in the HMDD and calculated the num-
ber of miRNAs in relation to the number of disease associa-
tions (Figure 8). We then focused on the disease associations
of the eight concordant miRNAs identified by our NGS and
microarray analyses. On average, each human miRNA
deposited in the HMDD is associated with eight diseases.
Computing the number of disease interactions for each of
the eight miRNAs identified in this work, we found that all
but one (hsa-miR-16-2-3p) of the eight miRNAs have pre-
viously been associated with more than eight diseases, indi-
cating that they have a higher than average number of
disease interactions.

gRT-PCR
10.00

ACT

Figure 6. qRT-PCR validation of the eight miRNAs.The bar
diagram shows the mean ACT values and standard deviations for
the eight tested candidate MS markers. Note that higher ACT
values indicate lower expression. Controls: dark gray bars; MS:
light gray bars. qRT-PCR: quantitative real-time polymerase chain
reaction; miRNA: microRNA; MS: multiple sclerosis.

Discussion

The present study is the first to apply NGS as a novel meth-
odological approach to miRNA profiling in patients with
MS. Using NGS and subsequent verification by microarray
analyses, we identified a set of eight miRNAs, including
five miRNAs that were found to be upregulated and three
miRNAs that were found to be downregulated by both
methods in patients with CIS/RRMS as compared to con-
trols. qRT-PCR experiments corroborated regulation of all
of these miRNAs.

One advantage of NGS is that it permits the unbiased
detection of theoretically all miRNAs in a given sample,
regardless of whether they have previously been described.?’
Besides not being restricted to the annotated human
miRNome, the sensitivity of NGS is also higher than that of
microarray technologies. Thus, out of the 38 differentially
expressed miRNAs identified by NGS, seven miRNAs
(18.4%) were not included on the SurePrint 8x60K Human
v16 miRNA microarray, which is restricted to the content of
miRBase v16, and 14 miRNAs (36.8%) were included but
not detected by the array approach. In line with the higher
sensitivity of NGS, the maximum number of miRNAs
detected in a single blood sample was more than two times
higher (835 vs 382) in the NGS as compared to the microar-
ray screen. Nevertheless, the overlap of three significantly
deregulated miRNAs identified by NGS and microarray
technology indicates that converging results can be obtained
by these two approaches, in keeping with recent data from
a study of lung cancer patients.?®

Concerning possible functions of the identified miRNAs
in MS, a potential role in the regulation of immune response
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Figure 7. Comparison of the expression analysis of the eight
miRNAs using NGS, microarray, and qRT-PCR. The height of
the bars represents the logarithmized fold changes of each
miRNA and each used analysis method (NGS: dark gray

bars, microarray: light gray bars, qRT-PCR: middle gray bars).
Significant differences as compared to controls (p < 0.05) are
indicated by asterisks.

miRNA: microRNA; NGS: next-generation sequencing; qRT-PCR:
quantitative real-time polymerase chain reaction.

pathways has been previously described for three of the
eight miRNAs, namely hsa-miR-20a-5p, hsa-miR-100-5p,
and hsa-miR-125b-5p.19-3233 Nevertheless, whether and
how the identified miRNAs may play a pathogenically rel-
evant role in MS await further clarification. A database
search of human miRNA disease interactions showed that
all but one of the eight identified miRNA were previously
associated with at least 10 different human diseases.
Although this suggests that each single miRNA is not
highly specific for CIS/RRMS, future analyses should
explore whether combinations of certain miRNAs may dis-
play an increased specificity.

Factors influencing miRNA expression profiles in blood
under physiological conditions have not been studied in
detail. As a possible limitation of this study, we cannot
exclude that, for instance, hormonal changes during the
menstrual cycle or use of oral contraceptives might influ-
ence miRNA expression levels in blood. However, since
patients and controls were very well matched for gender
and age, and assuming that a similar percentage of female
patients and controls took oral contraceptives, we consider
it unlikely that hormonal changes during the menstrual
cycle or use of oral contraceptives might have severely
biased our results.

The overall number of miRNAs identified as signifi-
cantly deregulated tended to be lower in the present as
compared to previous miRNA expression studies in MS.!3-
25 This is most likely explained by the more stringent exper-
imental strategy applied in the present work, consisting of
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Figure 8. Frequency of disease associations.The figure shows
the frequency of relations to diseases for all miRNAs according
to the HMDD. The eight miRNAs identified by NGS and
microarray analysis as deregulated in CIS/RRMS are indicated.
Black bars represent the top 5% of all miRNAs with the most
disease associations.

miRNA: microRNA; HMDD: human microRNA disease database; NGS:
next-generation sequencing; CIS: clinically isolated syndrome; RRMS:
relapsing—remitting multiple sclerosis.

an initial screen with two independent methods (NGS and
microarray) and further concentration on those miRNAs
that were found to be deregulated by both methods.
Interestingly, miRNAs identified herein partially over-
lapped with miRNAs formerly shown to be deregulated in
MS. hsa-miR-22-5p, one of the five miRNA found to be
upregulated in the present screen, has previously been
reported as upregulated in plasma,'?® active brain lesions,3*
and CD4*CD25* regulatory T cells!® of patients with MS.
Furthermore, in accordance with our present findings, hsa-
miR-20a-5p was found to be underexpressed in patients
with MS by microarray analysis (Illumina Sentrix Array
Matrix) and qRT-PCR.! Comparing the present results
with our own initial study,!” we also detected significant
overlaps. In detail, we previously identified hsa-miR-
629-5p (p = 0.0009) and hsa-miR-100-5p (p = 0.04) as
significantly upregulated in MS, while we found hsa-
miR-20a-5p to be downregulated (p = 0.0009). Likewise,
hsa-miR-125b-5p was upregulated in our former work,
although barely missing the significance threshold (p =
0.06). Importantly, together with the present study, hsa-
miR-20a-5p has now been shown to be downregulated in
whole blood of patients with MS in three independent
cohorts of patients with MS and controls by various meth-
odological approaches (different microarray platforms,
gRT-PCR, NGS). Facing the rapidly growing number of
miRNAs being associated with MS, reproduction of results
in independent cohorts appears essential for identification
of meaningful candidates, and hsa-miR-20a-5p may be
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one of those. Indeed, in a recent in silico analysis of
miRNA-mRNA interaction networks in MS hsa-miR-
20a-5p emerged as one of the central hubs, regulating about
500 genes, as identified by miRNA-mRNA predictions
algorithms.? Furthermore, many of the 19 currently known
experimentally verified genes being targeted by hsa-miR-
20a-5p are involved in the regulation of T cells.?> For
instance, the hsa-miR-20a-5p target gene CDKNI1A (cod-
ing for cyclin kinase inhibitor p21) plays a role in T cell
activation and has been associated with systemic autoim-
munity.3

Altogether, we herein show that application of NGS to
miRNA profiling in MS is feasible and can identify novel
as well as previously described miRNAs that are deregu-
lated in patients with MS as compared to healthy controls.
The identified miRNAs may be regarded as a set of inter-
esting candidates for future evaluation as biomarkers for
MS. Further experimental analyses of functional aspects of
those miRNAs may help to improve our understanding of
the pathophysiology of this multifactorial disease.
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Abstract

Background: Alzheimer disease (AD) is the most common form of dementia but the identification of reliable, early
and non-invasive biomarkers remains a major challenge. We present a novel miRNA-based signature for detecting
AD from blood samples.

Results: We apply next-generation sequencing to miRNAs from blood samples of 48 AD patients and 22
unaffected controls, yielding a total of 140 unique mature miRNAs with significantly changed expression levels.

Of these, 82 have higher and 58 have lower abundance in AD patient samples. We selected a panel of 12 miRNAs
for an RT-gPCR analysis on a larger cohort of 202 samples, comprising not only AD patients and healthy controls
but also patients with other CNS illnesses. These included mild cognitive impairment, which is assumed to
represent a transitional period before the development of AD, as well as multiple sclerosis, Parkinson disease, major
depression, bipolar disorder and schizophrenia. miRNA target enrichment analysis of the selected 12 miRNAs
indicates an involvement of miRNAs in nervous system development, neuron projection, neuron projection
development and neuron projection morphogenesis. Using this 12-miRNA signature, we differentiate between AD
and controls with an accuracy of 93%, a specificity of 95% and a sensitivity of 92%. The differentiation of AD from
other neurological diseases is possible with accuracies between 74% and 78%. The differentiation of the other CNS
disorders from controls yields even higher accuracies.

Conclusions: The data indicate that deregulated miRNAs in blood might be used as biomarkers in the diagnosis of

AD or other neurological diseases.

Keywords: Alzheimer disease, miRNA, biomarker, next-generation sequencing, quantitative Real Time PCR

Background

Alzheimer disease(AD) is the most common form of
neurodegenerative illness leading to dementia which is
predicted to affect as much as 1 in 85 people globally by
2050 [1]. While early-onset (familiar) AD has been
reported in younger people, the majority of (sporadic)
AD cases is diagnosed in people aged over 65 years [2].
As of today, final diagnosis of AD can only be achieved
by autopsy making the identification of reliable, early, and
non-invasive biomarkers a major challenge. Finding such
non-invasive, reliable diagnostic tools is of paramount
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importance as it appears that early intervention in the pro-
dromal stage of AD or the identification and therapy of
those patients with mild cognitive impairment who will
transform to AD rapidly might be a possibility to delay the
onset of AD substantially [3].

A prominent example of recently developed AD bio-
marker assays is the combinatorial analysis of the con-
centration of peptides and proteins: beta-amyloid-1-42
(A3 42), tau, and/or p-tau in the cerebrospinal fluid
(CSF). According to the S3 guidelines, an increased level
of tau protein together with a decreased level of beta-
amyloid-1-42 provides strong evidence for the presence
of AD [4]. The combinatorial analysis of all three factors
yields even higher diagnostic accuracy than the combi-
nation of only two of the above-mentioned proteins [5].

© 2013 Leidinger et al, licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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Furthermore, combinatorial analysis of Af} levels and tau
levels can discriminate between patients with stable mild
cognitive impairment (MCI) and patients with progres-
sive MCI into AD or other types of dementia with a suf-
ficient diagnostic accuracy [6]. Nevertheless, according
to the S3 guidelines, the analysis of CSF biomarker is
only indicated to confirm the diagnosis if other clinical
symptoms give evidence for the presence of neurode-
generative dementia or for the differential diagnostics of
other forms of diseases that can cause symptoms like
dementia (encephalitis, neuroborreliosis, multiple sclero-
sis, Lues, brain abscess, metastases).

The use of peripheral markers, like A} and tau in
easily accessible peripheral cells (in particular platelets
and skin fibroblasts), as a diagnostic tool has been
under investigation for more than 10 years [7,8]. Mole-
cular genetics analyses of common single nucleotide
polymorphisms (SNPs) in genes such as presenilin or
ApoE4 did not significantly improve risk estimation for
the susceptibility of AD [9]. Likewise, there is no consis-
tent evidence for an association between AD and genetic
variation of mitochondrial DNA (mtDNA) [10].

There is increasing effort to develop molecular diagnos-
tic markers that meet requirements like easy accessibility,
for example, from blood, sufficiently high specificity and
sensitivity, low costs and applicability by laboratories with
standard equipment. Several blood, plasma, or serum born
AD biomarkers have been proposed to meet these criteria.
Doecke et al. recently presented a panel of protein biomar-
kers to reliably detect AD with an accuracy of 85% [11].
Moreover, Tan et al. provided evidence that the proteins
p53 and p21 can be used to detect AD using blood sam-
ples. A receiver operating characteristic curve analysis
revealed a specificity of 76% and a sensitivity of 84% for
p53, 88% and 82% for p53(serl5), 80% and 75% for p21,
and 84% and 68% for p21(thr145) [12].

Besides proteins microRNAs (miRNAs) have also
demonstrated their potential as non-invasive biomarkers
from blood and serum for a wide variety of human
pathologies [13]. A deregulation of miRNA expression
might be involved in neurological dysfunction or neuro-
degenerative processes. Interestingly, Liang et al. [14]
showed that the expression pattern of brain and blood
PBMC cluster together which might be an indication that
a specific blood based expression signature might prove
to be useful as biomarker for AD and other neurological
diseases. MiRNA expression analyses can be readily
applied for in vitro diagnostic testing by molecular diag-
nostics and CLIA (Clinical Laboratory Improvement
Amendments) laboratories.

While altered miRNA patterns have been exhaustively
investigated in AD patients’ tissue samples or cell cultures
[15-18], less information on circulating miRNAs in AD is
known. A recent serum profiling of AD patients provided
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first evidence that expression changes of circulating miR-
NAs may be valuable biomarkers for AD [19].

We describe our results obtained by applying the next-
generation sequencing (NGS) approach to screen the
expression of all human miRNAs in blood from exten-
sively characterized AD patients and healthy controls.
Patient blood was obtained from the SAMPLE (Serial
Alzheimer diseaseand MCI Prospective Longitudinal Eva-
luation) Registry of PrecisionMed (San Diego, CA, USA)
and blood from age-matched healthy donors from the
ACE (Aging Cognition Evaluation) Registry, a Preci-
sionMed- UBC (The University of British Columbia) col-
laboration. We identified 140 unique differentially
expressed miRNAs between AD patients and controls.
Validation of a 12-miRNA signature was carried out by
RT-qPCR in a cohort of 202 samples encompassing
patients suffering from other neurological disorders
including mild cognitive impairment as a potential preli-
minary stage of AD, and other neurodegenerative dis-
eases like Parkinson disease and multiple sclerosis as well
as mental diseases like schizophrenia (SCHIZ), major
depression (DEP), and bipolar disorder (BD).

A combination of AD-specific miRNA expression signa-
tures with the rapidly developing and expanding amyloid
load imaging techniques may be useful as non-invasive
diagnostic tools in AD diagnosis in the future [20].

Results

Initial biomarker screening using next-generation
sequencing

To detect potential AD biomarkers we examined blood
from well-characterized patients and controls. We
obtained blood from the SAMPLE (Serial Alzheimer disea-
seand MCI Prospective Longitudinal Evaluation) Registry
of PrecisionMed (San Diego, CA, USA). SAMPLE is a
sample depository resulting from a longitudinal study that
evaluates cognition in women and men, who are recruited,
evaluated, cognitively studied, and sampled from 12 to 15
experienced investigative sites in USA. All participants
underwent several tests (that is, Alzheimer Disease Assess-
ment Scale-cognitive subscale (ADAS-Cog), Clinical
Dementia Rating (CDR), Wechsler Memory Scale, and
Mini-Mental State Exam (MMSE)) to evaluate cognition.
Blood from age-matched healthy donors was obtained
from the Ace Registry, which is a biological sample bank
of serial patient samples with linked serial cognition data,
based on a cognition battery selected from UBC'’s proprie-
tary computerized testing platform.

We carried out high-throughput NGS of 22 healthy
control samples (C) and 48 AD patient samples using Illu-
minaHiSeq 2000 sequencing with eight multiplexed sam-
ples on each sequencing lane. We detected not only
known human miRNAs, but also novel miRNA candidates
that have previously not been included in the miRBase



Leidinger et al. Genome Biology 2013, 14:R78
http://genomebiology.com/2013/14/7/R78

v18 [21,22]. These miRNA candidates are, however, much
less abundant compared to the known human miRNAs.
After removing the least abundant miRNAs (that is, all
miRNAs with <50 read counts summed up across all sam-
ples of each group) we detected a total of 383 different
miRNA precursors resulting in 416 unique mature
miRNA forms.

To compare the NGS results of the AD patient sam-
ples with the samples from healthy donors we first com-
puted Wilcoxon-Mann-Whitney (WMW) test and
adjusted the significance values for multiple testing
using Benjamini-Hochberg adjustment. All miRNAs
with adjusted significance values <0.05 were considered
statistically significant. We also computed the area
under the receiver operator characteristics curve (AUC).
In total, we detected 180 significantly dys-regulated
miRNAs (140 unique mature miRNAs) including 90
miRNAs (58 unique mature miRNAs) that were down-
regulated and 90 miRNAs (82 unique mature miRNAs)
that were upregulated in AD samples compared to
healthy control samples (see Additional file 1-Table S1).
Additional file 2-Figure S1 shows a heatmap for 180 sig-
nificantly dys-regulated miRNAs. The most upregulated
miRNA was hsa-miR-30d-5p (AUC of 0.0819) with a P
value of 8.35*10°and the most downregulated miRNA
was hsa-miR-144-5p (AUC of 0.9138) with P value of
8.35*107. While the high AUC value indicates that each
of these miRNAs has sufficient power to differentiate
between AD and healthy controls, they are not specific
for AD since both miRNAs have already been described
for many other human pathologies, including different
neoplasms [13]. Among the significantly dys-regulated
miRNAs are also 15 novel miRNA candidates (called
brain-miR) that were all upregulated in AD compared to
controls. A list of all novel mature miRNAs is provided
in Additional file 3-Table S2. To gain first insight into
the biological function of the mature miRNAs that were
dys-regulated between AD patients and healthy control
individuals, we applied a miRNA over-representation
analysis for these miRNAs using the TAM (tool for
annotations of human miRNAs) database [23,24]. The
TAM database classifies over- or under-represented
miRNAs according to the categories miRNA family,
miRNA cluster, miRNA function, miRNA associated
diseases, and tissue specificity. We detected for all
dys-regulated miRNAs 56 significant categories (P value
<0.05 after adjustment for multiple testing), with the
interesting categories miR-30 family with five miRNAs
being upregulated (P value 6.64*10™*), the let-7 family
with nine downregulated miRNAs (P value 5.65*107),
and the disease category Alzheimer disease for which six
dys-regulated miRNAs were relevant, including hsa-miR-
21, hsa-miR-17, hsa-miR-29a, hsa-miR-29b, hsa-miR-106b,
and hsa-miR-107 (P value 0.0139).

Page 3 of 16

To determine whether the 140 unique differentially
expressed miRNAs between AD patients and healthy
controls cluster together within a same genomic region,
which would suggest presence of common regulatory
mechanisms for their expression, we sorted all miRNAs
according to their position on each chromosome. Then,
we assigned the miRNAs to one of the following three
classes: not dys-regulated; upregulated in AD; and
downregulated in AD. Finally, we searched for regions
that contain at least three different dys-regulated mature
miRNAs by applying window sizes varying between
1,000 and 100,000 base pairs. Within regions encom-
passing <1,000 base pairs we detected two clusters
including one on chromosome 19 with the upregulated
miRNAs hsa-miR-99b-5p and hsa-miR-125a-5p and the
downregulated miRNA hsa-let-7e-5p and a second clus-
ter on chromosome 22 with the downregulated miRNAs
hsa-let-7a-5p and hsa-let-7b-5p and the upregulated
miRNA hsa-let-7b-3p. Analyzing regions of up to 5,000
base pairs, we found on chromosome 9 a dense cluster
with a total of five dys-regulated miRNAs including the
downregulated miRNAs hsa-let-7a-5p, hsa-let-7f-5p, and
hsa-let-7d-5p and the upregulated miRNAs hsa-let-7f-1-
3p and hsa-let-7d-3p. For regions up to 30,000 base
pairs, we discovered one region on chromosome 6 with
three co-located miRNAs including hsa-miR-30c-5p,
hsa-miR-30a-3p, and hsa-miR-30a-5p, all of which were
upregulated. To understand whether the miRNAs are
regulated by specific transcription factors (TF), we
extracted potential TF binding sites from the UCSC gen-
ome browser but found no evidence for a significant
enrichment for specific TF binding sites.

In the next step, we performed classification of AD and
control samples using a standard machine learning
approach. In a cross-validation loop, we stepwise added
the miRNAs with lowest significance values and repeat-
edly carried out radial basis function support vector
machines (SVM). As shown in Figure 1, a signature of
250 miRNAs yields an accuracy, specificity, and sensitiv-
ity of 90%. Since this set of miRNAs contains a significant
amount of redundant miRNAs with largely identical
information and high correlation among many miRNAs,
a significantly smaller set of miRNAs is likely to yield
comparably accurate distinction between AD samples
and samples from healthy controls. We selected 12 miR-
NAs with limited cross-correlation, including strongly
dys-regulated miRNAs that show a potential to separate
AD from controls. We furthermore compared our NGS
results with previous studies on different types of cancer
and non-cancer diseases [13] in order to ensure that the
selected miRNAs are not dys-regulated in several other
diseases. Besides known miRNAs we also included two
unknown miRNAs, namely brain-miR-112 and brain-
miR-161. Finally, the selected 12-miRNA signature
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Figure 1 Classification performance dependent on miRNA
combinations. With increasing number of miRNAs the accuracy,
specificity, and sensitivity increases towards convergence at 90%.

contains the miRNAs brain-miR-112, brain-miR-161,
hsa-let-7d-3p, hsa-miR-5010-3p, hsa-miR-26a-5p, hsa-
miR-1285-5p, and hsa-miR-151a-3p, all of which are
upregulated in AD and the downregulated miRNAs hsa-
miR-103a-3p, hsa-miR-107, hsa-miR-532-5p, hsa-miR-
26b-5p, and hsa-let-7f-5p.

Validation of a 12-miRNA signature by RT-qPCR

To validate the 12-miRNA signature we employed RT-
qPCR and included not only additional patients with
AD, but also patients with other diseases including neu-
rological disorders. In total, we analyzed 12 miRNAs in
202 samples as detailed in Table 1.

We first considered the miRNA fold quotients that
were obtained for AD samples and controls. We com-
pared the fold quotients of each of the 12 miRNAs
between initial NGS screening cohort and the RT-qPCR
validation cohort. All but two of the 12 miRNAs, namely
hsa-miR-1285-5p and hsa-miR-26a-5p, have been dys-
regulated in the same direction in both approaches, indi-
cating a high degree of concordance between screening
and validation study. Both hsa-miR-1285-5p and hsa-
miR-26a-5p have been significantly upregulated in AD in
the NGS screening experiment while downregulated in
the RT-qPCR validation (see Figure 2). This discrepancy
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might be due to the duplication of the AD sample cohort.
However, SVM classification on the RT-qPCR data to
separate AD and controls using linear kernels in 10-fold
cross-validations with 100 repetitions reached on average
an accuracy of 93.3%, a specificity of 95.1%, and a sensi-
tivity of 91.5%. The computed means, standard devia-
tions, and confidence intervals for the repetitions
concerning specificity, sensitivity, and accuracy are pre-
sented in Table 2, as well as the results for the control
classifications with the randomly permuted class labels.

To evaluate whether the selected miRNAs are stage-
dependent we further grouped the AD patients accord-
ing to their MMSE score into mild AD (MMSE >19,
n = 39) and moderate AD (MMSE 12-19, n = 46). The
MMSE is a short test of 30 questions used to screen for
cognitive impairment. Each question to be answered is
scored with points, with a maximum possible score of
30 points. This questionnaire can be used to estimate
the severity of cognitive impairment and to follow the
course of cognitive changes in an individual over time.
Normally, patients reaching 27 to 30 points do not suf-
fer from dementia, 10 to 26 points are indicative for
mild-to-moderate dementia, and less than 9 points indi-
cates severe dementia. We found no significant expres-
sion differences of the 12-miRNA signature between the
mild AD group and the moderate AD group.

As patients with other neurological disorders can show
similar symptoms as AD patients, we decided to validate
our AD NGS results also with samples from patients
with several neurological diseases. Specifically, we asked
whether other neurological disorders show significant
deviations in the expression of the 12 miRNAs. The
results of this validation help to determine whether the
investigated miRNAs have the potential for clinical appli-
cations. We analyzed patients with neurodegenerative
diseases (MCI, Parkinson disease (PD), multiple sclerosis
(clinically isolated syndrome, CIS)) and patients with psy-
chiatric disorders (SCHIZ, BD, and DEP) for the signa-
ture of 12 miRNAs. The pattern, which was closest to

Table 1 Overview of the blood samples analyzed using NGS and RT-qPCR

Sample group N Age (mean * SD) Sex (female/male) MMSE (mean % SD) Cohort size Cohort size
NGS RT-qPCR

AD 106 72.7(104) 53/53 189 (34) 48 94

Healthy control 22 67.1 (7.5 1/11 293 (1.2) 22 21

Mild cognitive impairment 18 739 (6.2) 9/9 253 (14) - 18

Multiple sclerosis 16 323 (10.7) 12/4 NA - 16

PD 9 69.7 (9.0) 1/8 252 (4.2) - 9

DEP 15 452 (9.1) 0/15 NA - 15

BD 15 419 (13.7) 14/1 29.5 (1.6) - 15

SCHIZ 14 417 (7.9) 1713 26.1 (4.3) - 14

AD: Alzheimer disease; BD: bipolar disorder; DEP: major depression; MMSE: Mini-Mental State Exam; NA: not available; NGS: next-generation sequencing; PD:

Parkinson’s disease; RT-gPCR: quantitative real-time PCR; SCHIZ: schizophrenia.
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Figure 2 Comparison of the expression analysis results of AD patients versus healthy controls (fold changes) obtained by NGS and RT-
gPCR for the 12-miRNA signature.

Table 2 Summary of the SVM classifications containing the means, standard deviations, and 95% confidence intervals
(Cl) of the accuracy (acc), specificity (spec), sensitivity (sens) running 100 repetitions of 10-fold cross-validations with

linear kernel.

Comparison Classification Permutation test
Acc Spec Sens Acc Spec Sens
AD vs. control 933% + 4.6 95.1% + 54 91.5% + 5.8 50.7% £ 125 50.7% £+ 133 50.7% =+ 14.1
C1:92.4-94.2% C1:94.1-96.2% C1:904-92.7% Cl:48.2-53.1% Cl:48.1-533% Cl:47.9-53.4%
MCl vs. control 84.2% + 3.7 81.1% + 56 87.7% + 3.7 513% + 114 52.0% + 12.2 504% + 13.5
Cl:83.4-84.9% Cl:80.0-82.2% Cl:87.0-88.5% Cl:49.0-53.5% Cl:50.0-54.4% Cl:47.8-53.1%
PSY vs. control 971% + 16 953% + 1.7 99.0% =+ 24 48.7% + 106 485% + 124 49.0% + 121
C1:96.8-97.4% Cl:95.0-95.6% C1:98.5-99.4% Cl:46.7-50.8% Cl:46.0-50.9% Cl:46.6-50.8%
Other ND vs. control 82.8% + 5.0 84.0% + 5.8 814% + 6.7 503% £ 103 50.7% £ 11.7 50.0% + 12.0
Cl:81.8-83.7% Cl:83.0-85.2% Cl:80.1-82.7% Cl:48.3-52.3% Cl:48.4-53.0% Cl:47.6-52.3%
NEURO vs. control 86.1% + 5.7 88.7% + 6.8 83.6% + 6.6 49.9% + 10.8 50.1% + 11.5 49.8% + 133
Cl:85.0-87.2% Cl:87.3-90.0% Cl:82.3-84.9% Cl:47.8-52.1% Cl:47.9-52.3% Cl:47.2-52.3%
AD vs. MCl 756% = 7.8 76.7% + 83 74.6% =+ 9.7 50.6% * 94 51.2% £+ 104 499% + 11.7
Cl:74.1-77.2% Cl:75.1-784% Cl:72.7-76.5% Cl:48.7-52.4% Cl:49.1-532% Cl:47.7-52.2%
AD vs. PSY 77.8% + 4.0 76.3% + 4.8 792% + 54 50.0% + 80 49.1% + 9.3 51.1% + 103
Cl:77.0-78.5% Cl:754-77.3% Cl:78.1-80.2% Cl:48.5-51.6% Cl:47.3-50.9% Cl:49.1-53.1
AD vs. other ND 738% * 44 752% + 47 724% + 64 50.1% = 7.3 492% + 94 51.0% + 85
Cl:72.9-74.7% Cl:74.2-76.1% Cl:71.2-73.7% Cl:48.7-51.5% Cl:47.4-51.1% Cl:49.3-52.7%

The right part of the table contains the results for the permuted class labels. PSY = psychological disorders (DEP, BD, SCHIZ), other ND = other

neurodegenerative disorders (PD, MS, MCI), NEURO = PSY + other ND
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AD was SCHIZ, where we found six up- and six downre-
gulated miRNAs. We found a strong overall downregula-
tion for most of the selected 12 miRNAs for patients
with DEP and PD and a strong overall upregulation for
patients with MCI, CIS, and BD (Figure 3).

In addition, we also applied machine learning proce-
dures using SVM to estimate the accuracy, sensitivity,
and specificity of the 12-miRNA signature regarding the
other neurological diseases in comparison to the control
group and to AD. The results of these classifications are
also listed in Table 2. Interestingly, while the 12 miRNAs
were chosen for their potential to separate AD and con-
trols, this signature also separates the group of the psy-
chological disorders (DEP, BD, SCHIZ) from controls
with an accuracy of 97.1%, a specificity of 95.3%, and a
sensitivity of 99.0% whereas other neurodegenerative dis-
eases (PD, multiple sclerosis, mild cognitive impairment)
were separated from controls with a worse accuracy of
82.8%, a specificity of 84.0%, and a sensitivity of 81.4%.
The average accuracy for the other classifications against
controls (that is, MCI versus control and neurodegenera-
tive and psychological disorders versus control) reached
values of 84.2% and 86.1%, respectively. Furthermore,
we tested how well the 12-miRNA signature separates
AD from MCI, AD from psychological disorders, and
AD from other neurodegenerative diseases, respectively.
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The average accuracy for these comparisons was between
73.8% and 77.8%. Since the 12-miRNA signature has
been tailored to differentiate between AD and controls,
other miRNAs may likely contribute to a signature that
permits also a better differentiation between the other
tested diseases and AD.

Prediction of miRNA targets and over-representation
analysis
Target gene prediction of the 10 known miRNAs from the
12-miRNA signature revealed 2,354 genes that may be
regulated by those miRNAs. These target genes were used
to perform an over-representation analysis and identified
73 computed Gene Ontology (GO) categories with P
values <0.05 and FDR adjustment. Interestingly, we found
a significant enrichment of miRNA targets in the GO cate-
gories nervous system development, neuron projection,
neuron projection development, and neuron projection
morphogenesis. These GO categories are listed in Table 3
together with the predicted miRNA target genes involved
in these categories. Furthermore, target genes that have
already been related to AD or other neurological diseases
are also listed in the table in separate columns.

Target gene prediction for the two unknown target
genes brain-miR-112 and brain-miR-161 revealed 234
target genes for brain-miR-112, but only six target genes
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Table 3 Results of the over-representation analysis of the predicted target genes of the 10 known miRNAs.

Subcategory

Subcategory Expected Observed Pvalue

alternative
name

(FDR)

Target genes

AD BD DEP

PD SCHIZ Multiple
sclerosis

Nervous
system
development

GO:0007399

159,555

215

0,000921692 ARSB ATM GJAT JAG1 LEP NDP PTEN PAFAH1B1

TWIST1 DRD1 IGF1R GDF6 SMPD1 KCNMAT1
NTRK2 CTNS NF1 INSC SLC6A3 FBXO45 IGF1
ADM APC DLG4 GRIN2A PAX7 PPT1 GPSM1
FEZF1 TSC1 DISC1 GLRB BMPR1B CDK6 CX3CR1
CELSR2 ID4 ERBB3 FGF2 AFF2 GLRA2 GSK3B
HOXB3 LAMC1 LRP6 LSAMP NGF NPAS2 OPHN1
P2RY1 PEX13 POU3F1 PTPRZ1T SALL1 SMARCC1
STRN T TFAP2A TGFB2 TIAM1 NR2C2 YWHAH
ZIC1 ULKT ENCT IRS2 ADAM23 KALRN SEMASA
EDNRB DMD AQP4 GMFB SDHA SLCTA2 GDA
VCAN DVL1 EPHA4 EPHA7 KIF5C LRP2 POU4F2
RPS6KA3 SPOCKT TGFBR1 AXIN2 DCLKT MED1
ONECUT2 SIMT CNTN2 ATF1 DLX6 ERBB4
SMAD4 SIX3 NHLH1 POU3F2 REST ABI2 PURA
SMADT NABT SIX1 PPARD PRKCQ CHERP
MAB21L2 TBR1 CHLT FRS2 FKTN BTG2 SHOX2
SLC5A3 ZNF24 WWP1 STMN2 RAPGEF5 PIP5K1C
ATXN10 RACGAPT GREM1 NRGT CNTNAP2
RPS6KAG6 CYFIPT ULK2 NLGN1 RUFY3 ARHGAP26
NFASC CLASP2 NIPBL SUFU PDGFC HPCAL4
RAPGEFL1 SHC3 FZD3 SIX4 BAIAP2 CSGALNACT1
PCDHB10 NMUR2 VANGL2 SEMAGA CNTN3
LRRCAC RET GNAO1 SCN2A FGF12 XRCC5 NTN4
BCR ADAM22 ACSL4 FGFRT HTRSA NOTCH2
TTLL7 PGAP1 JHDM1D ATXN3 ZEB1 NDEL1
MAP2 B3GNT5 CHD6 SLITRK6 ELAVL3 HOOK3
ATOH8 WNT3A ZIC5 FGF1 SOX6 PDESA SNAP25
GRIN3A CREBT NRXNT NRXN3 TPM3 FYN
SEMA6D HOXA1 BDNF ALDHS5AT UNC5B DMBX1
IL6ST UHMK1 DCX CUX1 ATL1 GLDN RNF6
FAMS5C CCNGT NRP2 GAS7 ACSL3 RCANT SYNJ1
PCDH9 MOG RTNT QKI LIG4 MBNLT CCDC64
WNK1

DRD1 DRD1 BCR
IGF1R DISC1 SNAP25
GSK3B GSK3B BCR  CREBI1
FGF1 HTR5A BDNF
FYN BDNF

BDNF SYNJ1

BDNF LEP DRD1 SLC6A3 JAGT
GRIN2A DISCT YWHAH
SLCTA2 CHL1 NRGI1
FZD3 HTR5A SNAP25
BDNF SYNJ1

Neuron
projection

GO:0043005

49,9516

79

0,00411039

ADRB2 CA2 PAFAH1B1 ATP1A2 DRD1 GABRAG
GAD1 GRM3 IGF1R KCNJ2 NPY1R PGR AR
KCNMAT NF1 TACR1 MYO5B ACTN2 GRM1 APC
GRIN2A ATXNTL MYO5A PPTT OPRM1 TSC1
HTR2A CALCR OPHNT STRN TGFB2 ULK1 PRSS12
KALRN BNIP3 SLCTA2 DVL1 EPHA7 KIF5C NCAM2
KIFSA CNTN2 ABI2 PURA CAPRINT IGF2BP1
SCNTA STMN2 SNCA STAT1 EPB41L3 ATXN10
CNTNAP2 RUFY3 NFASC ERC2 KIAA1598 SEMAGA
SCN2A GAN TTLL7 CPEB1 NDEL1 MAP2 PSD2
CALDT SNAP25 GRIN3A TPM3 AQP11 UHMK1
EXOC8 DICERT ATLT ANKSTB RNF6 CCNGI1
CACNATC NRP2

DRD1 DRD1 HTR2A
IGFIR HTR2A

HTR2A

SNCA

SNCA DRD1 GAD1 GRM3 ADRB2
GRIN2A HTR2A SLC1A2
SNAP25
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Table 3 Results of the over-representation analysis of the predicted target genes of the 10 known miRNAs. (Continued)

Neuron GO:0031175 43,1466
projection
development

67

0,0162232

GJAT PTEN PAFAH1B1 IGF1R ADM APC FEZF1 IGF1R
DISCT BMPR1B CELSR2 ERBB3 LAMC1 NGF BDNF
OPHN1 PTPRZ1 STRN TIAM1 YWHAH ULK1

KALRN DMD VCAN DVL1 EPHA4 EPHA7 KIFSC

POU4F2 DCLKT CNTN2 ATF1 POU3F2 ABI2

SMAD1 TBR1 STMN2 PIP5K1C ATXN10 CYFIP1

ULK2 RUFY3 NFASC FZD3 BAIAP2 SEMAGA

LRRC4C GNAOT ACSL4 FGFR1 NDELT MAP2

SLITRK6 WNT3A SNAP25 GRIN3A CREB1 NRXN1

NRXN3 HOXAT BDNF UNC5B UHMK1 DCX ATL1

RNF6 NRP2 GAS7 CCDCo4

DISC1
BDNF

SNAP25  BDNF DISCT YWHAH FZD3 -
CREB1 SNAP25 BDNF
BDNF

Neuron GO:0048812 33,5906
projection
morphogenesis

52

0,0462928

GJA1 PAFAH1B1 IGF1R ADM APC FEZF1 BMPR1B  BDNF
CELSR2 ERBB3 NGF OPHN1 PTPRZ1 TIAM1 IGF1R
YWHAH ULKT KALRN DMD VCAN DVL1 EPHA4

EPHA7 KIF5C POU4F2 DCLK1 CNTN2 POU3F2

SMAD1 TBR1 PIPSK1C CYFIPT ULK2 RUFY3

NFASC FZD3 BAIAP2 SEMAG6A LRRC4C NDEL1

SLITRK6 WNT3A SNAP25 CREBT NRXNT NRXN3

HOXA1 BDNF UNC5B DCX ATLT RNF6 NRP2

GAS7

BDNF

SNAP25  BDNF FZD3 SNAP25 BDNF -
CREB1 YWHAH
BDNF

This table lists interesting Gene Ontology (GO) subcategories and over-represented target genes with Pvalues <0.05 and FDR adjustment related to nervous system development. Target genes associated with AD and

other neurological diseases are listed separately.

AD: Alzheimer disease; BP: bipolar disorder; DEP: major depression; PD, Parkinson’s disease; SCHIZ: schizophrenia
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for brain-miR-161. Over-representation analysis was
done for both brain-miRNAs separately. Here, we identi-
fied 126 GO categories with P value <0.05 for brain-miR-
112, with significant enrichment of miRNA targets in GO
categories associated with nervous system and neuron
function (see Table 4). For brain-miR-161 no significant
GO categories were found.

Discussion

At present, there is no single molecular test that is suitable
to reliably diagnose AD with adequate specificity and sen-
sitivity. Tests for the analysis of CSF proteins like Af342 or
tau have high specificity and sensitivity, but are only indi-
cated as confirmation of AD diagnosis based on clinical
symptoms or as differential diagnosis to differentiate
between AD and other forms of diseases that can cause
symptoms like dementia. The analysis of SNPs in certain
genes (for example, ApoE) yields too low diagnostic accu-
racy and is therefore not recommended as diagnostic test
for AD. Furthermore, Ray et al. yielded promising results
by the identification of 18 proteins in blood plasma that
could differentiate AD patients from controls with 90%
accuracy [25].

Here, we investigate whether blood-borne miRNA
expression signatures might contribute to AD diagnosis.
Until now, many efforts have been made to understand
the role of miRNAs in neurodegenerative disorders, as
summarized by Eacker et al. [26]. However, there are only
two publications dealing with the miRNA expression in
peripheral blood mononuclear cells (PBMC) of AD
patients. The study by Villa et al. analyzed the expression
of heterogeneous nuclear ribonucleoprotein (hnRNP)-A1,
that is involved in the maturation of APP mRNA, and
showed that the decreased expression of hsa-miR-590-3p
is negatively correlated with the increased hnRNP-A1
mRNA levels [27]. The study by Schipper et al. [28] inves-
tigated the expression of 462 different miRNAs in PBMCs
of 16 AD patients and 16 healthy controls to identify miR-
NAs that are responsible for the regulation of transcrip-
tion of mRNA species that were previously reported to be
downregulated in PBMCs of AD patients [29]. Only a
modest relative increase of miRNA expression in AD
PBMC in the range of 1.1- to 1.4-fold was found for nine
miRNAs, namely hsa-miR-34a, hsa-miR-579, hsa-miR-
181b, hsa-miR-520h, hsa-miR-155, hsa-miR-517%, hsa-let-
7f, hsa-miR-200a, and hsa-miR-371. These data link the
development of AD pathology to systemic dysfunction in
the cellular stress/antioxidant response and genomic
maintenance [28].

Using high throughput sequencing, we identified 140
unique miRNAs from 180 precursors that were differen-
tially expressed between whole blood obtained from AD
patients and healthy controls. It is incumbent upon the
investigator, who proposes a set of miRNAs as done here

Page 9 of 16

to examine whether there is any known connection of
these miRNAs and their target genes to neurodegenera-
tion. Below we discuss this aspect in respect to our find-
ings of dys-regulated miRNAs in blood of AD patients
compared to healthy controls.

According to our TAM analysis out of the downregu-
lated miRNAs, six were associated with the disease cate-
gory Alzheimer disease including hsa-miR-21, hsa-miR-17,
hsa-miR-29a, hsa-miR-29b, hsa-miR-106b, and hsa-miR-
107. In a mouse model, Wang et al. investigated the invol-
vement of hsa-miR-106b in the TGF-$ signaling pathway
that plays a key role in the pathogenesis of AD and found
an inverse correlation between the expression of hsa-miR-
106b and TGF-fB type II receptor (TBR II) protein level
[30]. In addition, Hebert et al. showed that hsa-miR-106b
affects the expression of Amyloid precursor protein (APP)
in vitro. Furthermore, they found a statistically significant
decrease in hsa-miR-106b expression in sporadic AD
patients, but the correlation between miR-106b and APP
expression in AD brain was not significant [31]. The same
group showed an inverse correlation between increased
BACE] levels and decreased miR-29a/b-1 expression [15].
Shioya et al. also observed a decreased expression of hsa-
miR-29a in brain tissue of AD patients [32]. They also
identified neuron navigator 3 (NAV3), a regulator of axon
guidance, as a target of hsa-miR-29a and found elevated
NAV3 mRNA levels in AD brains [32]. Hsa-miR-17 was
shown to regulate APP expression in vitro and under phy-
siological conditions in cells [31,33]. MiR-21 was shown to
be downregulated in time-course assays of mature murine
primary hippocampal cell cultures after neuronal Af treat-
ments [34].

We further performed over-representation analysis with
the 2,354 predicted targets of the 10 known miRNAs of
our 12-miRNA signature. Here, several GO categories,
with significant enrichment of miRNA targets in the GO
categories linked to the nervous system, were found. Most
interestingly, some of these target genes have already been
related to AD or other of the investigated neurological dis-
eases. One of the most prominent examples is DRD1 that
encodes the Dopamine receptor D1, which is the most
abundant dopamine receptor in the central nervous sys-
tem. DRD1 is associated with AD, BD, and SCHIZ.
Another example, DISC1 (disrupted in SCHIZ), associated
with BD and SCHIZ, encodes a protein involved in neurite
outgrowth and cortical development. BDNF (brain-derived
neurotrophic factor) important for survival of striatal neu-
rons in the brain is known to be downregulated in AD
patients and also associated with BD, DEP, PD, and
SCHIZ. IGFIR is the only target gene that was exclusively
found to be associated with AD. The protein encoded by
this gene is increased in temporal cortex surrounding and
within Af3-containing plaques, but a significantly lower
number of neurons of AD patients express IGFIR [35].



Table 4 Results of the over-representation analysis of the predicted target genes of brain-miR-112.

Subcategory Subcategory Expected Observed Pvalue Target genes AD BD DEP PD SCHIZ Multiple
alternative (FDR) sclerosis
name

Neurogenesis GO:.0022008 119612 31 0.000284421 ONECUT2 ANK3 CACNB3 CDK6 CELSR3 FGFR2 MEF2A NFIB PICALM PLAGT - DIsct - - DIsCt -

PLXNAT PSD4 PTPRR RAB11A RPS6KA4 SIX4 COL4A4 DFNB31T DISCT SRF

STX3 ADCY1 CDKN1C CNP ENAH HOXC10 LIF LRP6 ROCKT RPS6KA3

TFAP2A
Neuron GO:0030182 103.937 27 0.000801251 ONECUT2 ANK3 CACNB3 CELSR3 FGFR2 MEF2A NFIB PICALM PLXNAT - - - - - -
differentiation PSD4 PTPRR RAB11A RPS6KA4 COL4A4 DFNB31 SRF STX3 ADCY1 CDKN1C

CNP ENAH HOXC10 LIF LRP6 ROCKT RPS6KA3 TFAP2A
Neuron GO:0048666 845.125 23 0.00159317  ONECUT2 ANK3 CACNB3 CELSR3 FGFR2 MEF2A NFIB PICALM PLXNAT - - - - - -
development RAB11A RPS6KA4 COL4A4 DFNB31 SRF STX3 ADCY1 CDKN1C CNP ENAH

LIF ROCK1 RPS6KA3 TFAP2A
Nervous system GO:0007399 184.019 37 0.00268227  ONECUT2 ANK3 CACNB3 CDK6 CELSR3 FGFR2 MEF2A NFIB PICALM PLAGT FGF1 ~ DISCT - - DIsCt -
development PLXNAT PSD4 PTPRR RABT1A RPS6KA4 SEMASB SIX4 COL4A4 DFNB31

DISC1 FGF1 SRF STX3 SULF1 ADCY1 ARHGEF15 CDKN1C CNP ENAH

HOXC10 LIF LPHNT LRP6 MEN1T ROCK1T RPS6KA3 TFAP2A

Neuron projection GO:0031175 736.077 19 000946322  ANK3 CACNB3 CELSR3 FGFR2 MEF2A NFIB PICALM PLXNA1 RAB11A - - - - - -

development RPS6KA4 COL4A4 SRF STX3 ADCY1T CNP ENAH LIF ROCK1 RPS6KA3

Neuron projection GO:0043005 633.844 16 0.0262424 ALOX5 ANK3 MYLK2 NFIB SLC38A7 DFNB31 DISC1 FRMPD4 GRIA4 SLC6AT BACE1 DISCT - - DISCt -

STX3 AAKT ALDOC ARHGEF15 BACET LPHN1 GRIA4

Neurotransmitter: GO:0005328 0215825 3 0.0330004 SLC6A20 SLCO6AT SLCEAG - - - - - -

sodium symporter

activity

Neuron projection GO:0048812 624.756 15 00391162 ANK3 CACNB3 CELSR3 FGFR2 MEF2A NFIB PICALM PLXNA1 RPS6KA4 - - - - - -

morphogenesis COL4A4 ADCY1 CNP ENAH ROCKT RPS6KA3

Neurotransmitter GO:0005326 0272621 3 0.0412241 SLC6A20 SLC6AT SLCEAG - - - - - -

transporter activity

Neuroblast division — GO:0055057 00795144 2 0.0412241 FGFR2 LRP6 - - - - - -

Forebrain neuroblast GO:0021873 00795144 2 0.0412241 FGFR2 LRP6 - - - - - -

division

Generation of GO:0048699 112797 31 0.000188727 ONECUT2 ANK3 CACNB3 CDK6 CELSR3 FGFR2 MEF2A NFIB PICALM PLAGT - DIsC1 - - DiIsc1 -

neurons PLXNAT PSD4 PTPRR RAB11A RPS6KA4 SIX4 COL4A4 DFNB31 DISCT SRF

STX3 ADCY1 CDKNTC CNP ENAH HOXC10 LIF LRP6 ROCK1 RPS6KA3
TFAP2A
Cell morphogenesis  GO:0048667 616.805 15 0.0366659 ANK3 CACNB3 CELSR3 FGFR2 MEF2A NFIB PICALM PLXNA1 RPS6KA4 - - - - - -

involved in neuron
differentiation

COL4A4 ADCY1 CNP ENAH ROCKT RPS6KA3

This table lists interesting Gene Ontology (GO) subcategories with Pvalues <0.05 and FDR adjustment related to nervous system development.
AD: Alzheimer disease; BP: bipolar disorder; DEP: major depression; PD, Parkinson’s disease; SCHIZ: schizophrenia
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This suggests that IGF1R signaling normally controlling
vital growth, survival, and metabolic functions in the brain
is disturbed in AD brains. The two unknown miRNAs
revealed 234 target genes for brain-miR-112, but only six
target genes for brain-miR-161. In the over-representation
analysis for brain-miR-112 we also identified GO cate-
gories linked to the nervous system, including targets like
DISC1 as discussed above. For brain-miR-161 we found
no significant GO categories. However, a literature review
of the six target genes of brain-miR-161 revealed some
interesting findings. GRID1 (glutamate receptor, ionotro-
pic, delta 1), predicted to be a target gene of brain-miR-
161, encodes a gene product that is a subunit of glutamate
receptor channels which mediate most of the fast excita-
tory synaptic transmission in the central nervous system
and play key roles in synaptic plasticity. Interestingly,
GRID1 has previously been associated with SCHIZ and
BD [36-38]. Another predicted target gene CCDN2
(Cyclin D2) plays a role in corticogenesis [39].

However, we have to point out that our analysis is
based on whole blood. Previous findings on cancer sug-
gest that the miRNA expression pattern between blood
cells and cancer tissue do not necessarily show the same
expression pattern but some overlaps can be found
[40-42]. Unfortunately, tissue and blood samples of the
same patients were not available for the present study.
Nevertheless, we performed database analysis and
extracted all miRNAs deregulated in AD and the corre-
sponding literature out of the Human MiRNA& Disease
Database [43]. In total, we found 18 different publica-
tions, with 15 publications on AD brain tissue and/or cell
culture models. Out of those studies, 29 different miR-
NAs deregulated in AD are listed in the HMDD. Com-
paring these miRNAs with our data revealed eight of the
29 miRNAs that were significantly dys-regulated in blood
cells in our study. There is, however, no evidence
whether these overlaps were found by chance or not. Any
link between deregulated miRNAs in blood of patients
with neurological diseases and the disease itself has to be
considered with caution.

Since a large set of miRNAs often contains a significant
amount of redundant miRNAs with largely identical infor-
mation content the differentiation between AD samples
and healthy controls using a reduced set of miRNAs may
likely yield comparably accurate results. Therefore, a panel
of 12 miRNAs with limited cross-correlation, including
most strongly dys-regulated miRNAs that show a potential
to separate AD from controls, was selected. Some of these
12 miRNAs have already been related to AD. For example,
Wang et al. showed in a computational analysis that the
3-untranslated region (UTR) of beta-site amyloid precur-
sor protein-cleaving enzyme 1 (BACE1) mRNA is targeted
by hsa-miR-107 and that BACE1 mRNA levels tended to
increase as miR-107 levels decreased in the progression
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for AD. An increased BACE1 expression is an important
risk factor for sporadic AD [15]. Nelson et al. also showed
a negative correlation between the expression of hsa-miR-
107 and BACE1 [44]. Interestingly, hsa-miR-107 that was
also part of our 12-miRNA signature investigated in the
presented study was also downregulated in blood of AD
patients compared to healthy controls. Augustin et al. [45]
recently investigated miRNAs that are predicted to target
another AD-related gene, namely ADAM10, which con-
trols the proteolytic processing of APP and the formation
of the amyloid plaques. Database analyses prompted them
to further investigate two miRNAs that were also included
in our 12-miRNA signature, namely hsa-miR-107 and hsa-
miR-103. They found that predicted target genes of hsa-
miR-107 and hsa-miR-103 showed significant overlap with
the AlzGene database. In a reporter assay ADAMI10
expression was reduced by both miRNAs. These two miR-
NAs were also investigated in relation to the expression of
cofilin protein in a transgenic mouse model [46]. Cofilin
binds to actin resulting in the formation of Hirano bodies,
which may play an essential role in AD pathogenesis. In
APP transgenic mouse brains hsa-miR-107 and hsa-miR-
103 levels were decreased while cofilin levels were
increased and in a luciferase assay it was demonstrated
that hsa-miR-107 and hsa-miR-103 were able to reduce
the expression of cofilin. In our RT-qPCR approach both
miRNAs hsa-miR-107 and hsa-miR-103 showed the same
expression pattern, that is, both were downregulated in
blood of AD, PD, DEP, and SCHIZ patients and upregu-
lated in mild cognitive impairment, multiple sclerosis, and
BD patients. All other miRNAs of our 12-miRNA signa-
ture have not been identified or investigated so far in rela-
tionship to AD.

While we showed the 12-miRNA signature’s potential to
separate AD patients from controls with an accuracy of
93.3%, we also tested its applicability as differential diag-
nostic biomarker to separate AD from other neurological
diseases. As we expected, the accuracy decreased when
trying to use this signature for separating other neurode-
generative diseases from controls or separating AD from
other neurological disorders. Remarkably, the classification
of psychiatric disorders versus controls yielded an even
better accuracy than for AD versus controls. These find-
ings suggest a relevance of the considered 12 miRNAs also
for psychological disorders. The association of the 12-
miRNA signature with neurological diseases in general is
further underlined by the results of our over-representa-
tion analysis using GeneTrail. Here, we found four signifi-
cant GO categories related to nervous system and neurons
with an over-representation of target genes of the 10
known miRNAs from our 12-miRNA signature. In addi-
tion, out of the 10 known miRNAs nine miRNAs are
already included in the HMDD and five of those miRNAs
that were previously associated with neurological diseases
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including AD, PD, and SCHIZ. As mentioned above, Yao
et al. [46] showed that reduced levels of hsa-miR-103 or
hsa-miR-107 are associated with elevated cofilin protein
levels and formation of rod-like structures in a transgenic
mouse model of AD. Both miRNAs were also downregu-
lated in our study. Martins et al. [47] showed that hsa-
miR-151a-3p and hsa-miR-26a-5p are differentially
expressed in PBMCs (peripheral blood mononuclear cells)
of PD patients and controls. In prefrontal cortex tissue of
individuals with SCHIZ hsa-miR-26b was downregulated
[48]. Target analysis of the miRNA that was not included
in HMDD, hsa-miR-5010-3p, revealed target genes
involved in nervous system processes. For example, pre-
dicted targets of hsa-miR-5010-3p include the NFASC
(neurofascin), that functions in neurite outgrowth, and
organization of nodes of Ranvier on axons, NPY (Neuro-
peptide Y), that is one of the most abundant neuropep-
tides in the mammalian central nervous system [49],
NLGNI1 (neuroligin 1), that may be involved in the forma-
tion and remodeling of central nervous system synapses,
NRXN3 (neurexin3), that functions in the nervous system
as receptors and cell adhesion molecule, and NCAN (neu-
rocan), that seems to be a genetic risk factor for BD.

Finally, one has to take into account that AD is a com-
plex progressive neurodegenerative disease causing cogni-
tive, behavioral, and functional problems that are also
found in other neurological diseases. Furthermore, demen-
tia is not only caused by AD but can result from other
neurological disorders. Dementia patients often suffer
from other additional mental and behavioral problems like
depression, anxiety, psychosis, agitation, and aggression
further complicating correct classification. As AD shares
common neuropsychiatric symptoms with other neurolo-
gical diseases there might be an overlap with the asso-
ciated medication.

Most importantly one needs to point out that as the
patients included in our study are not treatment-naive,
we cannot exclude the influence of administered drugs on
the miRNA signature. As an example, Bocchio-Chiavetto
et al. showed that chronic anti-depressant treatment has
effects on the blood miRNA profile [50]. Furthermore, we
have to point out that we do not have a birth cohort.
Nevertheless, the age distribution between the AD samples
and the control samples used for NGS is not significantly
different (P value 0.1147). The age distribution of AD
patients, MCI patients, PD patients, and controls is quite
similar. Patients suffering from multiple sclerosis, DEP,
BD, or SCHIZ are about 20 to 30 years younger. The dif-
ferences in the age distribution are due to the differences
between the onsets of the diseases. In previous studies [51]
we already investigated the influence of age and gender on
the miRNA expression profile of whole blood. We did not
find any statistically significant deregulated miRNAs
between men and women. The miRNA with the lowest
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P value was hsa-miR-423 (P value 0.78). To test for the
influence of age we compared the profiles obtained from
old versus young patients by splitting the total group in
half based on the age. Here, the miRNA with the lowest P
value was hsa-miR-890 (P value 0.87). Again, we did not
find any deregulated miRNAs. In summary, we found no
evidence that age and gender have a substantial influence
on the miRNA profiles. Both miRNAs mentioned above
were not significant in the present study on AD.

Conclusion

Here we identified 140 unique differentially expressed
miRNAs between AD patients and healthy controls. Using
a signature of 12 miRNAs differentially expressed between
AD patients and healthy controls we were not only able to
distinguish with high diagnostic accuracies between AD
patients and healthy controls, but also between AD
patients and patients suffering from other neurological dis-
orders including mild cognitive impairment as a potential
preliminary stage of AD, and other neurodegenerative dis-
eases like PD and multiple sclerosis as well as mental dis-
eases like SCHIZ, DEP, and BD. However, additional work
will be needed to elucidate the applicability of this 12-
miRNA signature as a potential diagnostic test for AD and
the above-mentioned effects of the drug treatments com-
monly used in the treatment of the disease. Hopefully,
tests of this non-invasive and relatively cheap kind will be
applicable to prodromal AD cases and to MCI patients
with the aim to recognize early AD to initiate treatment.

Materials and methods

Patient details

We analyzed the expression of miRNAs in peripheral
blood of a total of 215 patients and healthy controls,
either by NGS or by RT-qPCR or by both methods (see
Table 1). In detail, we obtained 2.5 mL blood collected in
PAXgene Blood RNA tubes (PreAnalytiX) from patients
with AD (n = 106), patients with mild cognitive impair-
ment (MCI) (n = 18), patients with multiple sclerosis
(clinically isolated syndrome, CIS) (n = 16), patients with
PD (n = 9), patients with DEP (n = 15), patients with BD
(n = 15), patients with SCHIZ (n = 14), and from healthy
controls (C) (n = 22). Samples from patients with AD
stem from the Biorepository and Tissue Bank Preci-
sionMed (San Diego, CA, USA) (n = 97) and the Univer-
sity Clinic of Erlangen (Germany) (n = 9), samples from
healthy controls and from patients with MCI, PD, DEP,
BD, and SCHIZ stem from PrecisionMed (San Diego,
CA, USA) and samples from patients with CIS stem from
Charité Berlin (Germany). Detailed patient characteristics
are listed in Additional file 4-Table S3. AD and MCI
patients were diagnosed by using state of the art criteria.
In detail, in order to be included in the ‘probable AD’
group, patients fulfilled the following criteria of the
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NINCDS-ADRDA (National Institute of Neurological
and Communicative Disorders and Stroke and the Alz-
heimer disease and Related Disorders Association) [52]:
MMSE >14 and <26, deficit in two or more areas of cog-
nition, progressive worsening of memory and other cog-
nitive functions, no disturbance of consciousness, onset
between the ages of 40 and 90 years, most often after 65
years, and absence of systemic disorders or other brain
diseases that could account for the progressive deteriora-
tion in cognition. Furthermore, MRI or CT reports that
were compatible with AD are available. The median
MMSE score for the AD patients was 18.9 (3.4).

Samples included in the MCI group fulfilled the follow-
ing criteria: MMSE >22 and <28, not demented, memory
complaint, preserved general cognitive function, intact
activities of daily living: (allowed problems with 2 or less
of the following: phone calls, meal preparation, handling
money, completing chores), abnormal memory function
documented by scoring below the education adjusted
cutoff on the Logical Memory II subscale (delayed para-
graph recall) from the Wechsler Memory Scale-Revised
(maximum score = 25) with (a) <8 for 16 years or more
of education, (b) <4 for 8-15 years of education, (c) <2
for 0-7 years of education. The median MMSE score for
the MCI patients was 25.3 (£1.4).

The study was approved by the institutional review
boards of Charité - Universititsmedizin Berlin (EA1/182/
10) and the study was performed in accordance with the
Helsinki declaration. Written informed consent was
obtained from all patients participating in the study.

Samples and clinical data supplied by PrecisionMed are
handled in strictest compliance with all applicable rules
and regulations including the recommendations of the
Council of the Human Genome Organization (HUGO)
Ethical, Legal, and Social Issues Committee (HUGO-ELSI,
1998); with the United Nations Educational, Scientific, and
Cultural Organization’s (UNESCO) Universal Declaration
on the Human Genome and Human Rights (1997); and
with recommendations guiding physicians in biomedical
research involving human subjects adopted by the 18th
World Medical Assembly, Helsinki, Finland, 1964 and
later revisions.

RNA isolation

Total RNA including miRNA was isolated using the PAX-
gene Blood miRNA Kit (Qiagen) following the manufac-
turer’s recommendations. Isolated RNA was stored at -80°
C until use. RNA integrity was analyzed using Bioanalyzer
2100 (Agilent) and concentration and purity were mea-
sured using NanoDrop 2000 (Thermo Scientific).

Library preparation and next-generation sequencing
We first analyzed samples from AD patients (1 = 48)
and healthy controls (n = 22) by NGS.
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For the library preparation, 200 ng of total RNA was
used per sample, as determined with a RNA 6000 Nano
Chip on the Bioanalyzer 2100 (Agilent). Preparation was
performed following the protocol of the TruSeq Small
RNA Sample Prep Kit (Illumina). Concentration of the
ready prepped libraries was measured on the Bioanalyzer
using the DNA 1000 Chip. Libraries were then pooled in
batches of six samples in equal amounts and clustered
with a concentration of 9 pmol in one lane each of a single
read flowcell using the cBot (Illumina). Sequencing of 50
cycles was performed on a HiSeq 2000 (Illumina). Demul-
tiplexing of the raw sequencing data and generation of the
fastq files was done using CASAVA v.1.8.2.

NGS data analysis

The raw Illumina reads were first preprocessed by cutting
the 3’ adapter sequence using the program fastx_clipper
from the FASTX-Toolkit [53]. Reads shorter than 18 nts
after clipping were removed. The remaining reads are
reduced to unique reads and their frequency per sample to
make the mapping steps more time efficient. For the
remaining steps, we used the miRDeep2 pipeline [54].
These steps consist of mapping the reads against the gen-
ome (hg19), mapping the reads against miRNA precursor
sequences from miRBase release v18, summarizing the
counts for the samples, and the prediction of novel miR-
NAs. Since the miRDeep2 pipeline predicts in our case the
novel miRNAs per sample, we merged the miRNAs after-
wards as follows: first, we extract the novel miRNAs per
sample that have a signal-to-noise ratio >10. Subsequently,
we merge only those novel miRNAs that are located on
the same chromosome, and both their mature forms share
an overlap of at least 11 nucleotides. The remaining puta-
tive novel miRNAs were mapped with BLAST (v 2.2.24,
[55]) against known ncRNA and miRNA sequences from
diverse sources (miRBase v18 [56], snoRNA-LBME-db
[57], ncRNAs from Ensembl ‘Homo_sapiens.GRCh37.67.
ncrna.fa’[58], NONCODE v3.0[59]). We excluded
sequences that aligned with >90% of their length (allowing
1 mismatch) to any of the ncRNA sequences. All NGS
data are publicly available in GEO database (GSE46579
[60]).

Bioinformatics analysis

For the NGS analysis, we excluded miRNAs with <50
read counts summed up across all samples of each group
(AD or control), since these were considered lowly abun-
dant. We normalized the read counts using standard
quantile normalization. Next, we calculated for each
miRNA the area under the receiver operator characteris-
tic curve (AUC), the fold-change, and the significance
value (P value) using Wilcoxon-Mann-Whitney (WMW)
test. All significance values were adjusted for multiple
testing using the Benjamini-Hochberg approach [61,62].
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The bioinformatics analyses have been carried out using
the freely available tool R [63]. For classification pur-
poses, we used support vector machines (SVM) from the
R package e1071. If not stated otherwise, we computed
the group-wise classifications using linear kernels in
10-fold cross-validations with 100 repetitions. In addi-
tion, we computed the classification of permuted class
labels with the same parameters as control. If group sizes
were unbalanced, we randomly selected samples from the
bigger group to match the sample sizes in the smaller
group in each repetition.

Database analysis

MiRNA enrichment analysis was performed using the
TAM tool [23,24]. The miRNA targets of the known
miRNAs were predicted using miRDB [64-66]. Targets
for the unknown brain-miRs were predicted using Tar-
getScan [67,68]. TargetScan is able to predict targets of
miRBase miRNAs as well as targets of other sequences
by using the heptamer seed sequence (nucleotides 2-8)
of a potential miRNA. For brain-miR-161 we used the
heptamer UUCGAAA, for brain-mir-112 GCUCUGU.
With the predicted miRNA target genes we performed
an over-representation analysis using the gene set analy-
sis tool GeneTrail [69,70] with default settings. The
P values for the biological categories were adjusted by
False Discovery Rate (FDR) [71] and were considered
significant if <0.05. Furthermore, we searched for
miRNA-disease interactions using the Human MiRNA&
Disease Database (HMDD [43,72]).

Quantitative real time-PCR (RT-qPCR)

For validation purposes we analyzed the expression of
single miRNAs using quantitative real time-polymerase
chain reaction (RT-qPCR) in the same samples as used
for NGS, if sufficient amounts of RNA were available.
We used the miScript PCR System (Qiagen) for reverse
transcription and RT-qPCR. A total of 200 ng RNA was
converted into cDNA using the miScript Reverse Tran-
scription Kit according to the manufacturer’s protocol.
The RT-qPCR was performed with the miScript SYBR®™
Green PCR Kit in a total volume of 20 pL per reaction
containing 1 pL ¢cDNA according to the manufacturer’s
protocol. For each miScript Primer Assay we addition-
ally prepared a PCR negative-control with water instead
of cDNA (non-template control).

We further expanded the number of samples by further
samples from patients with AD, MCI, CIS, PD, DEP, BD,
and SCHIZ, resulting in a total of 202 samples analyzed by
RT-qPCR (see Table 1). In detail, we analyzed with RT-
qPCR a total of 94 samples from AD patients, 18 samples
from MCI patients, 16 samples from CIS patients, nine
samples from PD patients, 15 samples from DEP patients,
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15 samples from BD patients, 14 samples from SCHIZ
patients, and 21 samples from healthy controls.

Out of the NGS results we selected 12 miRNAs
deregulated between patients with AD and healthy indi-
viduals. The set contained the following miRNAs: The
upregulated miRNAs brain-miR-112, brain-miR-161,
hsa-let-7d-3p, hsa-miR-5010-3p, hsa-miR-26a-5p, hsa-
miR-1285-5p, and hsa-miR-151a-3p as well as the down-
regulated miRNAs hsa-miR-103a-3p, hsa-miR-107, hsa-
miR-532-5p, hsa-miR-26b-5p, and hsa-let-7f-5p,
respectively.

While 10 of the 12 miRNAs have already been anno-
tated in the miRBase, two miRNAs, namely brain-miR-
112 and brain-miR-161, were newly identified and not
yet included in miRBase [21,22]. As endogenous control
we used the small nuclear RNA RNU48.

Additional material

Additional file 1: Table S1. Table listing the 180 significantly dys-
regulated miRNAs (140 unique mature miRNAs).

Additional file 2: Figure S1. Heatmap for the 180 miRNAs significantly
dys-regulated in AD patients compared to control individuals.

Additional file 3: Table S2. Table listing all novel mature miRNAs.

Additional file 4: Table S3. Table listing patient characteristics and
indicates which samples are included in NGS analysis and/or in the RT-
gPCR.
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BACKGROUND: MicroRNAs (miRNAs) measured from
blood samples are promising minimally invasive bio-
marker candidates that have been extensively studied
in several case-control studies. However, the influence
of age and sex as confounding variables remains largely
unknown.

METHODS: We systematically explored the impact of
age and sex on miRNAs in a cohort of 109 physio-
logically unaffected individuals whose blood was
characterized by microarray technology (stage 1).
We also investigated an independent cohort from a
different institution consisting of 58 physiologically
unaffected individuals having a similar mean age but
with a smaller age distribution. These samples were
measured by use of high-throughput sequencing
(stage 2).

RESULTS: We detected 318 miRNAs that were signifi-
cantly correlated with age in stage 1 and, after adjust-
ment for multiple testing of 35 miRNAs, remained sta-
tistically significant. Regarding sex, 144 miRNAs
showed significant dysregulation. Here, no miRNA re-
mained significant after adjustment for multiple test-
ing. In the high-throughput datasets of stage 2, we
generally observed a smaller number of significant
associations, mainly as an effect of the smaller cohort
size and age distribution. Nevertheless, we found 7
miRNAs that were correlated with age, of which 5 were
concordant with stage 1.

concrusions: The age distribution of individuals re-
cruited for case-control studies needs to be carefully
considered, whereas sex may be less confounding. To
support the translation of miRNAs into clinical appli-
cation, we offer a web-based application (http://www.
ccb.uni-saarland.de/mirnacon) to test individual

miRNAs or miRNA signatures for their likelihood of
being influenced.
© 2014 American Association for Clinical Chemistry

The potential of microRNAs (miRNAs)” as biomarkers
on the basis of tissue or body fluids is increasingly rec-
ognized. Since their discovery, miRNA profiles from
serum, plasma, or blood cells have been generated and
statistically evaluated for a multitude of human patho-
genic processes, including almost all cancer entities but
also many noncancer diseases, such as multiple sclero-
sis, acute myocardial infarction, Alzheimer disease,
and chronic obstructive pulmonary disease (1-11).

The majority of the existing biomarker studies
have been carried out by use of case-control designs.
One would expect that matching of both groups for
confounding factors in these studies was a prerequisite.
However, biomaterials from existing retrospective co-
horts often do not meet the high requirements for
RNA-based molecular analysis, and the buildup of ad-
equately large matched disease and control cohorts can
be problematic. Especially in diseases effecting elderly
persons, it can be highly challenging to recruit suitable
healthy control cohorts of the same age distribution.
Consequently, many published studies fail to match
the 2 most basic confounders, age and sex.

The influence of these fundamental confounding
variables, age and sex, on miRNA profiles from bodily
fluids has not been fully explored. However, various
miRNAs are known to exert key roles in aging, and
other miRNAs are encoded on sex chromosomes (12),
which already suggests that a relevant portion of hu-
man miRNA profiles will depend on the age and sex
distribution of samples. In our analysis, we systemati-
cally investigated the influence of age and sex on
miRNA profiles in a large cohort of physiologically un-
affected individuals. We detected a statistically signifi-
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cant number of miRNAs that were influenced by age or
sex of the respective individuals. We validated our ini-
tial findings using an independent cohort of 58 samples
from physiologically unaffected controls by applying
high-throughput sequencing.

Materials and Methods

STUDY DESIGN AND BLOOD SAMPLE COLLECTION
In this study, we included 109 physiologically unaf-
fected individuals (stage 1), whose blood has been par-
tially measured as part of the human bloodborne
miRNome project (1). This collection contains whole
miRNome-wide measurements according to Sanger
miRBase (13, 14) version 14, for 454 samples. The re-
maining control samples have been included in the sec-
ond version of the human bloodborne miRNome proj-
ect, containing a total of 1050 samples measured by the
same microarray technology. In a second cohort (stage
2), we measured an additional 58 physiologically unaf-
fected controls using an independent technology, high-
throughput sequencing on Illumina HiSeq 2000.

All blood samples were collected by use of a stan-
dard operating procedure in PAXgene Blood RNA
tubes (Becton Dickinson). All blood donors participat-
ing in this study provided written informed consent,
and the local ethics committee approved the study.

miRNA EXTRACTION AND MICROARRAY SCREENING (STAGE 1)
We carried out miRNA extraction and microarray
measurement as previously described (1). In brief,
2.5-5 mL of venous blood was collected in PAXgene
Blood RNA tubes. Total RNA, including small RNAs,
was extracted and stored at —70 °C. All samples of
stage 1 were screened by use of the Geniom RT Ana-
lyzer system (Febit Biomed) with the Geniom Biochip
miRNA Homo sapiens covering 848 common miRNAs
in versions 12—14 of the Sanger miRBase. Each miRNA
was represented by at least 7 replicated features on the
microarray; for each miRNA, the median signal inten-
sity was calculated.

HIGH-THROUGHPUT SEQUENCING (STAGE 2)

For library preparation, we used 70 ng total RNA per
sample, as determined with a RNA 6000 Pico Chip on
the Bioanalyzer 2100 (Agilent). For preparation, we
used the TruSeq Small RNA Sample Prep Kit (Illu-
mina). Ready prepped libraries were measured with the
Bioanalyzer by use of the DNA 1000 Chip and subse-
quently pooled in batches of 6 samples in equal
amounts. Sequencing libraries were then clustered with
a final concentration of 9 pmol in 1 lane each of a
single-read flow cell by use of the cBot instrument (II-
lumina). Sequencing of 50 cycles was performed on a
HiSeq 2000 (Illumina). Demultiplexing of the raw se-
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quencing data and generation of the fastq files was
done with CASAVA version 1.8.2.

BIOSTATISTICAL ANALYSIS

To account for variations between different microar-
rays, we applied standard quantile normalization to the
raw expression intensities. All downstream analyses
were carried out on the normalized intensity values.
We performed all bioinformatics calculations using the
free and publicly available statistical language R (http://
www.r-project.org/), if not mentioned otherwise.

For next-generation sequencing (NGS) data anal-
ysis, we preprocessed the raw [llumina reads by cutting
the 3’ adapter sequence by use of the program fastx_
clipper from the FASTX-Toolkit. After that, we used
the miRDeep2 pipeline using the standard parameters
for retrieving the miRBase counts for release version 20
and prediction of novel miRNAs. We applied HG20 as
the reference genome for this analysis. Because the mi-
croarray experiments were measured by use of previ-
ous miRBase versions, whereas high-throughput se-
quencing results relied on the most recent version of
the miRBase, we used the sequence of miRNAs as
unique identifiers to match between the different
miRBase versions.

To assess significance values for quantifying differ-
ences between males and females, we applied the para-
metric unpaired two-tailed #-test after verifying that
data were approximately normally distributed by use of
the Shapiro—Wilk test. To compute significance values
for correlation coefficients, we applied test statistics on
the basis of Pearson’s product—-moment correlation co-
efficient. Cluster analysis was carried out by use of R.
Hierarchical clustering on the basis of the Bioconduc-
tor package Heatplus was applied to calculate heat
maps and dendrograms. The hclust and cuttree func-
tions were used to extract clusters out of the dendro-
gram. By use of this clustering information, contin-
gency tables were generated, and Fisher test was applied
to calculate significance values.

WEB SERVICE

To make the calculations available for other research-
ers, we implemented a web-based tool that is freely
available for noncommercial usage (http://www.
ccb.uni-saarland.de/mirnacon). Our tool receives as
input either the IDs of a set of miRNAs along with the
respective miRBase version or a set of miRNA se-
quences. These sequences are then matched to the most
recent version 20 of miRBase and mapped to our ex-
perimental data. For further input parameters, the user
can select the significance threshold (standard value
0.05) and a lower boundary for significance values
(standard value 0.001). This boundary is just applied
for the graphical representation of the results, i.e.,
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miRNAs with significance below this value are pre-
sented at the cutoff. Because the analysis itself may be
biased by different age distributions in the test set, users
can input the mean age and SD of the study population
used for their study. Our tool then automatically ex-
tracts a subcohort of our samples that best matches the
user’s age distribution.

For output, our tool generates a scatterplot show-
ing the background distribution of miRNAs in our
study (gray dots); the miRNAs uploaded by the user
(red dots); and whether the miRNAs are not influenced
by age and sex (green area of the scatter plot), influ-
enced by either age or sex (gray area of the scatter plot),
or influenced by age and sex (red area of the scatter
plot). Furthermore, we generate a tabular output con-
taining the uploaded ID, the respective sequence, the
ID in the most recent version 20 of the Sanger miRBase,
and whether this miRNA is influenced by age and/or
sex.

Results

We included a total of 109 controls in the microarray-
based miRNA assessment of stage 1. The miRNA bio-
markers were profiled by use of miRNA microarrays
covering 848 miRNAs across versions 12-14 of the
Sanger miRBase. The cohort contained samples from
65 women and 44 men with a mean age of 57.3 (SD
25.5) years, range 19-105 years.

Likewise, 58 independently collected and mea-
sured controls were processed by use of high-
throughput sequencing and mapped to miRBase ver-
sion 20. The cohort contained 12 women and 46 men.
Considering age, the individuals in the second cohort
had a similar mean age as the stage 1 cohort (58.3
years); however, this cohort had a much smaller age
variance (SD 8.6 years, range 4475 years). Age distri-
bution metrics for both cohorts are provided in Sup-
plemental Table 1, which accompanies the online ver-
sion of this article at http://www.clinchem.org/content/
vol60/issue9.

IMPACT OF AGE ON miRNA PROFILES

First, we calculated the correlation of each miRNA to
the age of the individuals, providing us with 848 differ-
ent correlation coefficients. Additionally, we calculated
significance values for the respective correlations and
considered unadjusted as well as adjusted P values
(Bonferroni adjustment). Of the 848 miRNAs, 318
were significantly correlated with age (raw P value of
<0.05). Notably, around one-third (107) were nega-
tively correlated with age, whereas two-thirds (211)
were positively correlated with age. This shift in the
distribution toward positive correlation can be seen in
Fig. 1 (right side of the histogram). In this figure, all

miRNAs with a correlation coefficient >0.5 are given.
Notably, even after adjustment for multiple testing by
use of the conservative Bonferroni approach, 35
miRNAs remained significant (adjusted P value
<0.05). The 35 miRNAs along with the raw signifi-
cance values and the correlation coefficients are de-
tailed in Table 1.

Regarding the stage 2 cohort with a more narrow
age distribution but comparable mean age, we calcu-
lated a substantially smaller amount of significantly as-
sociated miRNAs. Whereas the stage 1 cohort quartiles
are 34, 57.5, and 71 years, the validation cohort quar-
tiles are 53, 56, and 65 years. Despite these differences,
we observed 7 of the originally detected miRNAs that
were expressed and significantly correlated with age in
the second cohort. Of these 7 miRNAs, 5 showed the
same direction of dysregulation as in stage 1. The
miRNAs significantly influenced by age in both stages
include hsa-miR-1284, hsa-miR-93-3p, hsa-miR-
1262, hsa-miR-34a-5p, and hsa-miR-145-5p, meaning
that these miRNAs may be most strongly affected by
aging. The markers are summarized in Table 2 together
with the respective correlation values. Fig. 2 shows
scatter plots for the most significantly downregulated
miRNA, namely hsa-miR-106a, and the miRNA with
the best fit between microarrays and NGS, hsa-miR-
93-3p. Each image shows a significant positive or neg-
ative correlation of miRNA expression with age of in-
dividuals, respectively.

Next, we investigated the dependency of age—
miRNA correlations on the age distribution. To this
end, for the 23 most significant correlations from Table
1, we calculated the correlation for subcohorts with
approximated mean age of 40, 50, 60, and 70 years. As
the spider diagram in Fig. 3 shows, the significance for
these miRNAs substantially changed with different
subcohorts. The most significant results were detected
for the subcohort with a mean age of 60 years, where 10
miRNAs were significantly correlated (inside of the
gray-shaded area of the spider diagram). By contrast,
for the 40- and 70-year subcohorts, just 2 of the
miRNAs remained significant.

IMPACT OF SEX ON miRNA PROFILES

We also calculated significance values for the sex of all
individuals. In this analysis, we detected much lower
numbers of significantly associated miRNAs. Although
318 significant markers were found in stage 1 for age,
we found only 144 miRNAs significant before adjust-
ment for multiple testing in case of sex. Although this
number is much higher than the expected number of
significant miRNAs at an « level of 0.05, no miRNA
remained significant after Bonferroni adjustment
(P value <0.05 after adjustment; smallest P value after
adjustment: 0.09).
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Fig. 1. Histogram of positive and negative correlated miRNA.
The histogram shows the left and right tail of the correlation of miRNAs versus the age of patients and reveals a clear shift for

positive correlation.

For stage 2, we calculated significantly different
expression levels depending on sex for 6 of the differ-
entially expressed miRNAs, with only 3 miRNAs (hsa-
miR-219a-1-3p, hsa-miR-548¢-3p, and hsa-miR-130a-
3p) being concordant in both cohorts, demonstrating
that differences in miRNA were mainly due to the con-

founding factor age, but less to sex.

miRNA PATTERNS CLUSTER INDIVIDUALS REGARDING
AGE AND SEX
In addition to the above correlation analysis, we carried
out unsupervised and supervised cluster approaches.
First, we extracted the 10 most variable miRNAs and
calculated whether these miRNAs separate the individ-
uals with respect to sex (male vs female) or age (young
vs old, cutoff mean age). With respect to sex, we
reached a significance value of 0.01 after separating the
data into 2 clusters. With respect to age, we found an
even more significant clustering with a P value of
0.0067, confirming our initial findings that the age of
individuals has a larger impact on miRNA than their
sex (see online Supplemental Fig. 1).
Additionally, we applied a supervised clustering
approach. Here, we included the most significantly

4  Clinical Chemistry 60:9 (2014)

correlated miRNAs (raw P value <0.05) for the clus-
tering, limiting the analysis, however, to the 50
miRNAs with highest data variance. As expected, the
significance of the clustering substantially improved.
With respect to age, the significance value went down
to 0.0004; for sex, down to 0.0006 (see online Supple-

mental Figs. 2 and 3).

REPRESENTATION OF RESULTS AND WEB-BASED ANALYSIS
Because our results indicated a moderate influence of
sex and a substantial influence of age on bloodborne
miRNA profiles, we implemented a web-based solu-
tion for providing other researchers with easy access to
the respective data and the ability to visualize the de-
gree of influence of age and sex on candidate miRNA
biomarkers of their studies. As input, users can choose
between the miRNA sequence or miRBase miRNA IDs.
For the latter, all versions starting from miRBase 16 are
implemented. Furthermore, the user can specify a sig-
nificance threshold as well as parameters for improved
graphical representation. As demonstrated above, the
overall age distribution has the highest impact on
miRNAs. Thus, users can also specify the average age
and SD of their cohort. Our algorithm, which relies on
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Table 1.
Significantly age-correlated miRNAs (stage 1,
adjusted P value <0.05).

miRNA Correlation Raw P value
hsa-miR-106a —0.680 4.54E—14
hsa-miR-20b —0.657 6.43E—13
hsa-miR-151-3p 0.628 1.21E-11
hsa-miR-103 —0.592 3.41E-10
hsa-miR-320d 0.578 1.06E—09
hsa-miR-20a —0.569 2.19E-09
hsa-miR-93 —0.557 5.56E—09
hsa-miR-720 0.548 1.07E—-08
hsa-miR-126 —0.533 3.13E-08
hsa-miR-301a —0.530 4.00E—-08
hsa-miR-1260 0.526 5.14E—08
hsa-miR-17 —0.524 5.83E—08
hsa-miR-331-3p 0.505 2.12E-07
hsa-miR-30c 0.491 5.18E—-07
hsa-miR-590-5p —0.486 6.97E—07
hsa-miR-320c 0.485 7.22E—-07
hsa-miR-30d 0.477 1.16E—06
hsa-miR-107 —0.471 1.68E—06
hsa-miR-24 —0.470 1.79E—-06
hsa-miR-1262 0.470 1.81E—06
hsa-miR-526b* 0.456 3.94E-06
hsa-miR-664 0.452 4.75E—06
hsa-miR-548i 0.444 7.40E—06
hsa-miR-197 0.433 1.28E—05
hsa-miR-892a 0.433 1.29E—-05
hsa-miR-30a 0.429 1.58E—-05
hsa-miR-20a* —0.427 1.79E—-05
hsa-miR-374a —0.425 1.94E—05
hsa-miR-29¢* 0.425 1.95E—05
hsa-miR-15b —0.423 2.15E—-05
hsa-miR-144 —0.421 2.44E—05
hsa-miR-520c-3p 0.420 2.50E—05
hsa-miR-96 —0.413 3.45E—05
hsa-miR-339-5p 0.404 5.38E—05
hsa-miR-106b —0.403 5.71E—05

the results of stage 1, then searches dynamically for a
subcohort that matches the requested parameters of
the user.

In the tabular output, the miRNA-ID is shown, as
well as its mapping to the most recent ID in miRBase
version 20 and the sequence of the miRNA. In the
fourth and fifth column of the output table, the poten-

Table 2. Overlap between stage 1 and stage 2 with
respect to age.

Array NGS
miRNA correlation correlation P value
hsa-miR-1284 0.258594528  0.386691307 0.002713735

hsa-miR-23a-5p®  0.238861262 —0.370263342 0.004224409
hsa-miR-652-3p® —0.204746216  0.367868659 0.004497567

hsa-miR-93-3p 0.390291436  0.320291239 0.014241407
hsa-miR-1262 0.469537126  0.301844226 0.021293944
hsa-miR-34a-5p  0.269430053  0.279969853 0.033292267
hsa-miR-145-5p  0.284076368 0.272182316 0.038738333

@ Discordant between microarray and NGS experiments.

tial influence of age and sex are documented. We tested
our tool on a hypothetical disease signature with 9
markers (chosen from studies on different diseases). Of
these, 2 (miR-144 and miR-20b) are potentially influ-
enced by age, whereas 7 (miR-1, miR-127-5p, miR-
1270, miR-1271, miR-1272, miR-144*, and miR-20a*)
are not influenced significantly. Fig. 4 presents the
graphical output of the tool. The miRNAs in the upper
right quadrant (green) are not significantly influenced.
The miRNAs in the lower right quadrant are poten-
tially influenced by age and thus highlighted by red
points. The red-shaded lower right quadrant would
contain miRNAs that are influenced by age and sex. All
miRNAs uploaded by the user are shown as colored
dots, and the distribution of the miRNAs from stage 1
of this study are represented by gray dots. The tool is
freely available for noncommercial applications at
http://www.ccb.uni-saarland.de/mirnacon/.

Discussion

miRNAs are increasingly recognized as biomarkers for
various diseases, including almost all cancer entities
and metabolic, neurological, and cardiovascular disor-
ders. We investigated here the role of the confounding
variables age and sex on the miRNA profiles observed
in whole peripheral blood.

Despite the euphoria about the potential clinical
application of miRNAs in disease detection and esti-
mation of prognosis, many miRNA biomarkers show
discrepant results in independent investigations of the
same disease. In addition to technical challenges such
as sample handling, RNA processing, and storage, as
well as differences in the underlying measurement
technology such as microarrays or high-throughput se-
quencing, many obstacles remain that could addition-
ally affect this observation. In recent publications,
some confounding factors for miRNAs from serum or
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Fig. 2. Example scatter plots for positive and negative correlation of 2 miRNAs with age.
Distribution of miRNA and age are presented above and on the right of the plots, respectively.
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Fig. 3. Spider diagram showing the variance of significance depending on mean age.
On a logarithmic scale, the diagram presents the significance of correlation with the age for 4 age groups. The highest
significance (closest proximity to the center) was detected for the age cohort of 60-year-old individuals.
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Fig. 4. Graphical output of miRNACon, the web service for dynamic calculation of potential confounding variables.

x axis, P value for sex; y axis, P value for age. Gray dots belong to background miRNAs, green dots to user-specified miRNAs
that seem to be not affected by sex and age, and red dots to affected miRNAs.

plasma were found to include patient treatment (15)
and comorbidities. However, the role of the funda-
mental confounders age and sex are only partially un-
derstood. We show here that age potentially has a
higher influence on the expression of miRNAs than
Sex.

Knowledge about the confounding factors and
their influence on certain miRNAs has considerable
consequences. First, a well-designed study with ade-
quately sized case and control cohorts should be a pre-
requisite. However, often it is very challenging to have

suitable control cohorts of healthy individuals match-
ing the age distribution of cases. This is obviously most
important when studying diseases of the elderly, such
as neurodegenerative diseases or chronic heart failure.
Another way to circumvent potential bias due to non—
equally distributed variables would be the implemen-
tation of the findings presented here in statistical ap-
proaches to select appropriate subcohorts in silico, to
use, e.g., the ages as additional input variables for
machine-learning methods or to dynamically build
models. A more straightforward approach would be to
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verify miRNAs by use of the provided online applica-
tion and exclude strongly influenced candidates from
the respective signatures.

Although we found age to be a strong confounder,
all analyses revealed only a limited influence of sex on
miRNA patterns. Nevertheless, we investigated the
most differentially expressed miRNAs between males
and females in more detail to support the hypothesis of
sex-dependent miRNA regulation by comparing them
to those experimentally affected by estrogen. We inves-
tigated blood cells, and the study by Maillot et al. (16)
relied on breast cell cultures exposed to estrogen. They
found 23 miRNAs that are significantly downregulated
after estrogen signaling has been induced and thus de-
pend indirectly on sex. Of these 23 miRNAs, 18 are
expressed higher in males (78.3%) in our cohorts. Al-
though these miRNAs were not significantly differen-
tially expressed after adjustment for multiple testing,
these results hint at a limited sex-dependent miRNA
signature in blood cells. Here, larger cohorts may reveal
whether the differences are actually significant.

A challenge in generalizing our findings is techni-
cal variation between different platforms. Most fre-
quently, array technology and NGS are applied to
screen for mRNA or miRNA biomarkers, and quanti-
tative reverse-transcription PCR is applied to validate
the results. In 2010, Git et al. presented a technological
evaluation (17), concluding that the actual overlap be-
tween the platforms was low. As a consequence, our
web service currently incorporates only the microarray
data of the larger cohort with the higher age variation.
The extension to NGS is planned for one of the suc-
ceeding versions, as well as to provide similar function-
ality for serum and plasma.

Another interesting observation of our study is
that age-related miRNAs may also have biological
meaning. For several miRNAs, animal studies could
provide evidence for their role in senescence or anti-
aging. For instance, hsa-miRNA-34a was recently rec-
ognized as positively correlating with age, suppressing
important downstream targets and leading to telomere
shortening and cardiomyocyte dysfunction/apoptosis
(12). In line with these results, Li et al. describe miR-
34a as being upregulated in tissue and blood of older
mice (18 ). This makes miR-34a a good positive control
for our study. Indeed, miR-34a is significantly corre-
lated with age in our results (raw P value 0.0086). In
contrast, Li et al. (18) describe miR-196a to be inde-
pendent of age. Concordant with these results, this
miRNA is not significantly regulated with age in our
study (raw P value 0.08). Thus, miR-196a represents a
valuable negative control for our study. The miRNAs
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correlating to age identified here might also harbor
functional properties that are important for age re-
search and represent potential pharmaceutical targets.
Hence, our repertoire of miRNAs includes appealing
targets for further functional workup.

In summary, our study provides evidence that es-
pecially age is an important confounding variable for
miRNA biomarker profiles in human blood samples,
whereas sex shows just a limited effect on bloodborne
miRNA patterns. We make the results of this study
available to researchers through an easy-to-use web-
based tool. Clearly, there should be a focus on addi-
tional common confounders, such as smoking, kidney
and liver function, and others, to systematically dissect
their influence on miRNAs from body fluids and tis-
sues. With these precautions, miRNAs have the poten-
tial to proceed into clinical application for many dis-
eases that are currently difficult to diagnose.
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MicroRNA In Vitro Diagnostics by Use of Immunoassay
Analyzers
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BACKGROUND: The implementation of new biomarkers
into clinical practice is one of the most important areas in
medical research. Besides their clinical impact, novel in
vitro diagnostic markers promise to have a substantial
effect on healthcare costs. Although numerous publica-
tions report the discovery of biomarkers, only a fraction
of those markers are routinely used. One key challenge is
a measurement system that is compatible with clinical
workflows.

METHODS: We designed a new immunoassay for
microRNA (miRNA) quantification. The assay com-
bines streptavidin-linked microparticles, a biotinylated
catcher oligonucleotide complementary to a single
miRNA species, and finally, a monoclonal antibody to
DNA/RNA heterohybrids labeled with acridinium ester.
Importantly, our assay runs on standard immunoassay
analyzers. After a technical validation of the assay, we
evaluated the clinical performance on 4 Alzheimer dis-
ease miRNAs.

RESULTS: Our assay has an analytical specificity of 99.4%
and is at the same time sensitive (concentrations in the
range of 1 pmol/L miRNA can be reliably profiled). Be-
cause the novel approach did not require amplification
steps, we obtained high reproducibility for up to 40 bio-
logical replicates. Importantly, our assay prototype ex-
hibited a time to result of <3 h. With human blood
samples, the assay was able to measure 4 miRNAs that
can detect Alzheimer disease with a diagnostic accuracy
of 82% and showed a Pearson correlation >0.994 with
the gold standard qRT-PCR.

coNcLUsIONS: Our miRNA immunoassay allowed the
measurement of miRNA signatures with sufficient ana-
lytical sensitivity and high specificity on commonly avail-
able laboratory equipment.

© 2014 American Association for Clinical Chemistry

A substantial number of molecules, including DNA,
RNA, microRNAs (miRNAs),” proteins, and methylated
sites in the genome or metabolites, are reported as disease
markers for various human pathologies, but only a small
fraction will be translated to clinical routine use. One
challenge is often poor diagnostic specificity or sensitiv-
ity, which can be overcome in some instances by com-
bining biomarkers. The second major challenge is the
reliable measurement of novel markers on platforms that
are commonly used in clinical laboratories. Although
current molecular methods used to measure DNA or
miRNA biomarkers, such as quantitative RT-PCR
(gRT-PCR) and next-generation sequencing (NGS), are
available in selected clinical laboratories, they are rather
expensive. Moreover, compatibility with clinical high-
throughput workflows is challenging. The adaption of
miRNA assays to platforms and technologies that would
overcome those issues may foster their use.

Small noncoding RNAs such as miRNAs have im-
portant functions in nearly all cellular processes owing to
their ability to regulate the expression of many protein-
coding genes (7). Associations have been described for a
large fraction of the >2000 known miRNA diseases,
which have been collected in databases such as the Hu-
man miRNA and Diseases Database (2). Because of their
ability to regulate target gene translation through either
silencing or degradation of the target mRNA, miRNAs
are involved in pathological processes such as cancer,
neurological disorders, and heart disease (3-5). Further-
more, complex miRNA signatures have been increasingly
recognized as stable and powerful biomarkers for hu-
man pathologies (6—14), making them ideal bio-
marker candidates. For the application of biomarkers in
routine clinical settings, body fluids such as serum, urine,
and cerebrospinal fluid represent preferable sources for
biomarkers. Notably, blood cells contain a rich repertoire
of disease-related markers.

Specific miRNA expression signatures for many hu-
man cancer and noncancer diseases have been identified
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(6, 15-18). Following biomarker discovery studies with
limited sample cohorts, the suitability of blood-based
miRNA expression signatures as early disease detection
biomarkers is increasingly being investigated in larger val-
idation studies, either in comparison to or in combina-
tion with known serum protein biomarkers (78). In par-
ticular, the first tissue-based tests for measurement of
specific miRNA expression signatures are already com-
mercially available on qRT-PCR platforms (Rosetta
Genomics). However, such tissue-based qRT-PCR tests
have important downsides. First, they require substantial
hands-on time. Second, gRT-PCR platforms are not used
in many clinical laboratories, and tests performed on these
platforms are usually less integrated into workflows than
immunoassays. The lesser penetration of qRT-PCR and
other molecular methods in the clinical laboratory com-
pared with immunoassays is also reflected by the fact that
molecular methods other than blood bank tests made up
only 5% of all in vitro diagnostic sales in 2011, compared
with a 25% market share of immunoassays (excluding blood
bank tests) (79). Third, tissue-based miRNA expression sig-
natures require invasive sampling and are therefore more
complicated to implement than blood-based tests in routine
diagnostic applications. Given these downsides to tissue-
based tests, blood-based miRNA diagnostics by use of im-
munoassay represents an interesting opportunity to intro-
duce miRNA testing into clinical laboratories.

To promote the translation of miRNA tests further
into routine use, and to address the challenges mentioned
above, we developed a new miRINA measurement principle
on the basis of an immunoassay format. Immunoassay plat-
forms are already routinely used in clinical laboratories
worldwide, and many immunological tests such as cardiac
troponin are carried out on these commercial systems. After
successfully setting up the assay format, we evaluated the
assay performance on an Alzheimer disease (AD) miRNA

panel (11).
Methods

SAMPLE COLLECTION

We carried out miRNA measurements with PAXgene
Blood RNA tubes (Preanalytix, Becton Dickinson).
These tubes can be used to collect 2.5 mL blood from
donors, according to the manufacturer’s recommenda-
tions. We collected blood samples from 40 healthy vol-
unteers. The Institutional Ethics Committee of the Uni-
versity Erlangen-Nuremberg approved the study. All
donors met the relevant guidelines (20, 21) and tested
negative for human immunodeficiency virus, hepatitis B
virus, and hepatitis C virus.

miRNA EXTRACTION

The pellets from 2.5 mL blood collected in PAXGene
tubes were obtained by 10-min centrifugation at 4500¢
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according to the manufacturer’s instructions, and the su-
pernatant was removed immediately. The pellets were
then resuspended in 4 mL RNase-free water by vortex-
mixing and collected by 10-min centrifugation at 4500g.
We then isolated total RNA including miRNA from the
pellets with the miRNeasy Mini Kit (Qiagen) according
to the manufacturer’s recommendations. Isolated RNA
was pooled, divided into aliquots, and stored at —80 °C
until use.

miRNA qRT-PCR MEASUREMENT

We analyzed the miRNAs using stem-loop primers for
qRT-PCR with TagMan® probes on a Stratagene MX-
3005P real-time cycler, essentially as previously described
(22). The master mix for real-time PCR, M-MuLV H
Plus Reverse Transcriptase, dANTPs, and RNase inhibitor
were obtained from Peqlab and stored at —20 °C. The
synthetic miRNAs were obtained from Biomers.net. The
sequences of primers are described in Supplemental Ta-
ble 1, which accompanies the online version of this article
at heep://www.clinchem.org/content/vol61/issue4. We
dissolved the synthetic miRNAs in Rnase-free water with
30 mU/uL RNase inhibitor to a concentration of 100
pmol/L and divided the miRNA solution to 5 wL/tube
to be stored at —80 °C until use. The calibration curve
was determined by qRT-PCR with the synthetic miRNA
from 0.1 pmol/L to 1 nmol/L. The primer sets for qRT-
PCR were obtained from Biomer.net. The sequences of
primers for measuring the synthetic miRNAs are de-
scribed in online Supplemental Table 2.

miRNA IMMUNOASSAY

The miRNA immunoassay presented in this study is a
2-step nucleic acid capture immunoassay adapted to the
Advia Centaur® Immunoassay System (Siemens Health-
care Diagnostics). This immunoassay analyzer platform
can be used to measure protein and small molecule ana-
lytes by respective assays with acridinium ester technol-
ogy (23). The components of our assay prototype con-
sisted of the solid phase (containing streptavidin-linked
microparticles), a biotinylated catcher oligonucleotide
complementary to a single miRNA species (the biotinyl-
ated catchers are described in online Supplemental Table
3), and finally a monoclonal antibody to DNA/RNA
heterohybrids (24) labeled with acridinium ester. The
antibody, which was developed in the 1980s, specifically
binds to DNA/RNA hybrids without any obvious bias
toward a specific sequence (24, 25).

In the assay, the purified miRNA from a blood sam-
ple is first hybridized to the biotinylated catcher oligonu-
cleotide, generating perfectly matched DNA/RNA het-
erohybrids. In a second step, these biotinylated DNA/
RNA heterohybrids are then incubated with and bound
to the streptavidin-labeled solid phase. In the next step,
the acridinium ester-labeled antibody to DNA/RNA
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Fig. 1. The 4 fully automated main steps carried out on the immunoassay analyzer. AE, acridinium ester.

heterohybrids is added. This antibody can bind only to
perfectly matched heterohybrids and does not bind to
mismatched heterohybrids. The amount of antibody
bound will therefore be proportional to the amount of
perfectly matched heterohybrids present in the reaction,
which again is proportional to the amount of that specific
miRNA species present in the blood sample. Chemilu-
minescence is then triggered by addition of acid and base
reagent (26).

The following 9 automated steps were carried out
with the Advia Centaur system. (2) Pipetting 75 pL sam-
ples in a cuvette. (4) Pipetting 75 pL reagent (20 mmol/L
sodium phosphate, pH 7.2, 300 mmol/L NaCl, 0.1%
Triton X-100, 0.5% bovine serum albumin, 0.02% so-
dium azide) containing biotinylated oligonucleotides (10
nmol/L) and incubating for 6 min at 37 °C. (¢) Pipetting
150 L solid phase and incubating for 18 min at 37 °C.
(d) Separating solid phase from the mixture and remov-
ing the liquid phase. (¢) Washing the cuvette with wash-
ing solution 1 and incubating for 6.75 min at 37 °C. ()
Pipetting 95 uL antibody reagent and incubating for 18
minat 37 °C. (¢) Separating solid phase from the mixture
and removing the liquid phase. () Washing the cuvette
with wash solution 1. (7) Pipetting 300 uL reagent A
(acid) and 300 L reagent B (base) to generate a chemi-
luminescence signal. The workflow is presented schemat-
ically in Fig. 1. The concepts and information presented
in this article represent research and are not commercially
available.

CALIBRATION CURVES AND CALCULATION OF
CONCENTRATIONS

We measured the calibration curve with synthetic
miRNAs from a concentration of 1 pmol/L to 1 nmol/L
on an the Advia Centaur system, carrying out a second-
degree polynomial analysis to determine the equation of
the relationship between relative light unit (RLU) counts
and miRNA concentration. We then measured the bio-
logical samples on the same Advia Centaur system. The
concentration of a certain miRNA of biological samples
was calculated from the RLU counts on the basis of the
equation of the calibration curve.

STATISTICS

We carried out all statistical calculations with the
freely available R programming language (version
3.0.2). Hypothesis tests were carried out, if not men-
tioned explicitly, as 2-tailed unpaired tests. In cases where
the parametric #-test was applied (evaluating the null
hypothesis that the means of 2 normally distributed
populations are equal), approximate normal distribu-
tion was verified by Shapiro—Wilk test (evaluating the
null hypothesis that measurements come from a nor-
mally distributed population).

To show the distribution of miRNA measurements,
we generated box-whisker plots, and to provide a per-
measurement representation, we provided bee swarm
plots as included in the beeswarm R package.
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(A), Technical specificity of the assay for miRNA let-7a. The red line shows the response for let-7a. The detected false-positive signals for 3
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Results

miRNA IMMUNOASSAY

As shown in Fig. 1, our assay works as follows. Total
RNA isolated from PAXgene blood is used for the
hybridization assay. The total RNA is hybridized with
a biotinylated DNA catcher and forms a DNA-
miRNA duplex. Streptavidin-coupled magnetic beads
are added to the solution, and the DNA catcher binds to
the beads through biotin—streptavidin interaction. Un-
bound miRNAs and other RNAs are washed away so
that just the DNA-miRNA duplex remains. A mono-
clonal antibody specific to DNA-miRNA hybrids la-
beled with acridinium ester is added to the solution,
binding to the DNA-miRNA hybrids. A light signal pro-
portional to the number of DNA-miRNA hybrids is
monitored and reported. Altogether, the entire experi-
mental setup, including RNA purification and miRNA
profiling, requires <3 h.

SPECIFICITY OF THE IMMUNOASSAY

To evaluate the analytical specificity of the immunoassay,
we distinguished members of the let-7 family that dif-
fered by just a single base. The miRNA to be quantified
was selected to be hsa-let-7a. Synthetic molecules of this
miRNA were added in 6 concentrations from 0.1 to 30
nmol/L to the respective catcher, leading to background-
corrected results between 1201 counts (0.1 nmol/L) and
4.6 million counts (30 nmol/L). Next, we carried out the
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same measurement with the 3 miRNAs hsa-let-7b, hsa-
let-7¢c, and hsa-let-7f. For the lowest concentrations,
signals were beyond the detection limit; for the higher
concentrations, we measured up to 21222 counts (hsa-
let-7¢, 30 nmol/L). The results are shown in Fig. 2A. In
this figure, the lines represent log10 values of raw counts
and the bars correspond to the percentage of crosstalk
(false-positive light signals) with hsa-let-7a. Whereas the
signals for hsa-let-7b and hsa-let-7f remained in the
range of the background even for the highest concen-
trations, for hsa-let-7¢, low signals at very high concen-
trations could be measured. The crosstalk never exceeded
0.6%, demonstrating a specificity of 99.4% for the
miRNA immunoassay.

SENSITIVITY AND LOWER LIMIT OF DETECTION OF THE
IMMUNOASSAY

Next, we systematically evaluated the limit of detection
of the immunoassay. We selected 1 of the miRNAs in-
cluded in our AD panel (71), namely hsa-miR-5010-3p.
With a catcher probe, we performed 20 replicates for
different concentrations between 1 and 10 pmol/L. Ad-
ditionally, we performed 20 replicates of blank controls
representing the background signal. As shown in Fig. 2B,
we were able to measure signals substantially exceeding
the background noise even for miRNAs at concentra-
tions of 1 pmol/L. Whereas the blank controls (shown in
red) had a median intensity of 1411 RLU counts (SD
211) (horizontal red dashed line), 1 pmol/L hsa-miR-
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5010-3p resulted in 1904 RLU counts (SD 863) (P =
0.001, 2-tailed unpaired #test). For 2 pmol/L hsa-miR-
5010-3p, 3270 RLU counts (SD 314) were reported; for
3 pmol/L 3666 RLU (SD 493), and for 10 pmol/L
10226 RLU (SD 1208). Altogether, the concentration of
hsa-miR-5010-3p correlated significantly with the
counts measured by our assay (Pearson correlation 0.998,
P = 0.0001). In all measurements carried out with our
immunoassay, we recorded just a single oudlier (Fig. 2B,
concentration of 1 pmol/L, Grubbs test 2 < 0.001).

ABILITY TO MEASURE MODERATE CHANGES IN miRNA
ABUNDANCE

The variation in blood-based miRNA concentrations in
diseases is frequently limited. We have found that varia-
tions in circulating miRNA patterns are usually moderate
(2-fold expression changes). We thus explored the poten-
tial of the miRNA immunoassay to measure changes in
concentrations typical for miRNAs found in previous
studies. Specifically, we carried out 2 experiments on dif-
ferent concentration scales. First, we started at a concen-
tration of 3 pmol/L and increased the concentration by
0.3 pmol/L in each step until we reached an absolute
concentration of 4.8 pmol/L after 7 dilution steps. The
R between the concentration and RLU counts reached
0.91 (see online Supplemental Fig. 1). For all measured
data points, we found deviation between the expected
measurement given the linear regression line and the ac-
tual measurement to be <5%. For the 3.6 pmol/L data
poing, a slightly higher difference was observed (expected
according to regression line, 3760 RLU; actually mea-
sured, 3995 RLU). Nevertheless, our assay was able to
measure even 10% changes reliably in the lower concen-
tration range. To demonstrate that this could also be
achieved for the higher-abundance miRNAs, we per-
formed similar experiments, increasing abundance by an
order of magnitude. Specifically, we started at 30 pmol/L
concentration and increased it by 3 pmol/L up to 60
pmol/L in the 11th step. The R value was even higher
and reached 0.98 (Fig. 3). These results demonstrate the
linearity of measurements for concentrations of >3 or-
ders of magnitude and also provide evidence that even
small changes in miRNA abundance can be quantified by
our prototype assay.

MULTIPLEX IMMUNOASSAY

Originally, the assay format was designed as single-plex
assay. Although this setup does not prevent routine ap-
plication, an automated measurement of several miRNAs
from the same sample would be beneficial. Therefore, we
explored the potential of serial multiplexing. We mixed 8
synthetic miRNAs (miR-5010-3p, miR-151a-3p, let-
7d-3p, miR-107, miR-26b-5p, miR-103a, miR-26a-5p,
and let-7f-5p) in increasing concentrations. Starting
from the miRNA with lowest concentration, we per-
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Fig. 3. Increased resolution of quantification in the range
between 30 and 60 pmol/L derived from synthetic miR-
5010-3p miRNAs.

formed measurement of the single-plex assay. The super-
natant, however, was not discharged but reentered the
measurement cycle with the next miRNA. The same ex-
periments were also done for aliquots of the single-plex
assay. The results of single-plex vs multiplex are shown in
online Supplemental Fig. 2. Generally, we observed a
good correlation; however, those miRNAs with just a
single mismatch, such as miR-26a and miR-26b, showed
slight variations. Additionally, the experiments revealed a
lower performance for let-7f-5p. These preliminary re-
sults demonstrate that 8-plex measurements are possible
but that increasing the degree of multiplexing decreases
the analytical specificity and sensitivity of the assay.

TRANSFER TO BIOLOGICAL MEASUREMENTS

After exploring the limit of detection, analytical sensitiv-
ity, and specificity of our miRNA immunoassay with
synthetic miRNAs, we tested 4 miRNAs of our AD
miRNA  panel, hsa-miR-5010-3p, hsa-miR-26a-5p,
hsa-miR-151a-3p, and hsa-let-7d-3p, with 40 replicates
of biological samples to evaluate their potential for clin-
ical application beyond the measurement of the synthetic
miRNAs presented above. The miRNAs were selected so
that most informative markers of the signature were com-
bined while ensuring that lower-abundance markers were
also included. Thus, we purposely selected the three -3p
mature and the higher-abundance -5p mature form of
miR-26a. We generated calibration curves for all 4
miRNAs, as described in Methods, to enable quantifica-
tion with our novel assay.

These previously published miRNAs allow for de-
tecting patients with AD with diagnostic accuracy, spec-
ificity, and sensitivity of 82%, 85%, and 80%, respec-
tively (area under the curve 0.91) (7). On the
immunoassay analyzer system, we measured 40 replicates

for the 4 miRNAs and controlled the process with 20
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pmol/L spike-in controls (Fig. 4). The measurements
were carried out with aliquots of the pooled samples by
use of the single-plex assay. Again, even for the lowest-
abundance miRNAs hsa-miR-5010-3p and hsa-miR-
151a-3p, stable signals above the background were ob-
served. For the background, we calculated 1391 RLU
(SD 222). For miR-5010-3p, RLU counts were already
2835 (SD 516) (2-tailed unpaired #test between back-
ground and miR-5010-3p, 2 < 10~ 2%). For miR-151a-
3p, 2738 RLU (SD 604) was found, with 2-tailed un-
paired #-test significance of <10, indicating that the
difference between this miRNA and the background was
highly significant.

In all 240 measurements, 2 outliers (0.8%) were
observed. For miR-26a-5p, the mean concentration was
561.3 pmol/L (SD 19.9), let-7d-3p had a mean concen-
tration of 38.3 pmol/L (SD 9), miR-151a-3p had a mean
concentration of 5 pmol/L (SD 0.8), and miR-5010-3p
had a mean concentration of 3.5 pmol/L (SD 0.5). Given
these mean values and SDs, we calculated CV values of
0.04 (miR-26a-5p), 0.24 (let-7d-3p), 0.16 (miR-151a-
3p), and 0.13 (miR-5010-3p). Although the CV values
were generally low (miR-26a-5p showed a CV of 0.04),
let-7d-3p showed an increased CV. The CV values of the
blood samples were in the same range as the technical
evaluation CV values.

In developing a new test, it is important to bench-
mark it against the gold standard, in this case qRT-PCR.
We quantified the same samples by qRT-PCR as de-
scribed in Methods. We found a high correlation be-
tween QRT-PCR and the Advia Centaur system (Pearson
correlation >0.994, P = 0.006) (Fig. 5). For hsa-miR-
5010-3p, hsa-miR-151a-3p, let-7d, and hsa-miR-26a-
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Fig. 5. Correlation with qRT-PCR for 4 Alzheimer miRNAs in
blood samples.

5p, the concentrations on the immunoanalyzer system
were 3.5, 5, 38.3, and 561.3 pmol/L, respectively, and on
gqRT-PCR the concentrations were 11.7, 12.5, 58.7, and
335.6 pmol/L. Although these results indicated differ-
ences between the technologies, the results showed a gen-
eral concordance.

Discussion

Our novel method involves hybridization of miRNA
from a patient sample to complementary biotinylated
DNA oligonucleotides, followed by detection of the
DNA-miRNA hybrids by a monoclonal antibody that
specifically binds to DNA-miRNA hybrids. Using this
setup, we were able to obtain a prototype assay that can
measure miRNAs from biological samples without any
preamplification step. Our assay has an analytical speci-
ficity of 99.4%, a limit of detection in the range of 1
pmol/L, and a time to result of <3 h, including RNA
purification and miRNA profiling. We obtained stable
results over a dynamic range of 4 orders of magnitude.
Additionally, the amplification-free detection allows for
less biased miRNA measurements. This advantage, how-
ever, results in a current lower limit of detection of 1
pmol/L. Although many blood-based miRNAs can be
profiled with the proposed assay, the sensitivity has to be
further improved to measure other samples with lower
miRNA concentrations, such as serum. Another draw-
back of our assay is the currently limited multiplexing
capability. We demonstrate first results on a multiplexing
concept here, but more work is required to obtain the
same specificity as for the single-plex assay. Another
point that has to be taken into account is that the used



miRNA In Vitro Diagnostics with Inmunoassay Analyzers

antibody can react with different DNA-RNA hybrids
with different affinity (24 ), influencing the sensitivity of
the assay for this miRNA and requiring additional
calibration.

In a test on clinical samples, we found an outstand-
ing correlation with qRT-PCR data (Pearson correlation
>0.994), which as of now represents the gold standard
for miRNA expression analysis. Our assay is currently a
research assay that aims to lay the basis for further devel-
opment, with the challenging goal to promote the usage
of miRNAs as clinical IVD tests.

Besides its application to measure miRNAs, our
assay design bears the potential to be extended to other
nucleic acid test formats, in particular to those that
still require preamplification of the target nucleic acid.
For example, the method described by Yehle et al.
(25), which allows bacterial typing by hybridization of
16s rRNA to strain-specific oligonucleotides, could be
adapted to our automated assay format. Moreover, high-
abundance mRNAs or rRNAs could be quantified by
hybridization to complementary DNA oligonucleotides
in the assay format described in this article.

Our miRNA immunoassay has a low time-to-result,
comparable to that of qRT PCR, and is still faster than
NGS, for which typically at least 1 day (and frequently
several days) is required. At the same time, our assay is
inexpensive, with costs in the same range as established
and marketed immunoassays, which are below those of
qRT-PCR or even NGS, and microarrays, which are still
in the range of several hundred dollars. In turn, NGS has
a much higher multiplexing capability and allows for
integrative screening of all miRNAs, even those that are
not annotated in databases. NGS is thus a perfect bio-

marker discovery tool, whereas our assay is tailored for
much higher throughput in terms of samples at a de-
creased degree of multiplexing. Among the most impor-
tant points with respect to our miRNA immunoassay is
that the required hardware is installed in many central
laboratories of hospitals worldwide.

In summary, we developed a method that has the
potential to change the current practice to measure
miRNAs, by providing a means to analyze miRNAs on
commonly used immunoassay analyzers, thus providing
substantial advantages over existing methodologies.
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ABSTRACT

There is an urgent need of comprehensive longitudinal analyses of circulating
miRNA patterns to identify dynamic changes of miRNAs in cancer patients after
surgery. Here we provide longitudinal analysis of 1,205 miRNAs in plasma samples
of 26 patients after lung cancer resection at 8 time points over a period of 18 months
and compare them to 12 control patients. First, we report longitudinal changes with
respect to the number of detected miRNAs over time and identified a significantly
increased number of miRNAs in patients developing metastases (p = 0.0096). A
quantitative analysis with respect to the expression level of the detected miRNAs
revealed more significant changes in the miRNA levels in samples from patients
without metastases compared to the non-cancer control patients. This analysis
provided further evidence of miRNA plasma levels that are changing over time after
tumor resection and correlate to patient outcome. Especially hsa-miR-197 could be
validated by qRT-PCR as prognostic marker. Also for this miRNA, patients developing
metastases had levels close to that of controls while patients that did not develop
metastases showed a significant up-regulation.

In conclusion, our data indicate that the overall miRNome of a patient that later
develops metastases is less affected by surgery than the miRNome of a patient who
does not show metastases. The relationship between altered plasma levels of specific
miRNAs with the development of metastases would partially have gone undetected
by an analysis at a single time point only.

a study on more than 900 patients who underwent early
NSCLC curative-intend resection about 13% of patients
developed lung cancer recurrence and 78% of the

INTRODUCTION

The fact that most non-small cell lung cancer

(NSCLC) patients are diagnosed in late stages with locally
advanced or metastatic disease, makes NSCLC to one of
the most deadly cancers with a 5-year overall survival
rate of around 17% [1]. The detection and resection of
NSCLC in early stages is of profound relevance as it
is normally correlated with a substantially improved
prognosis [2]. Nevertheless, the rate of recurrences and
metastases is high, even in early stage lung cancers. In

recurrences occurred within two years after operation.
[3]. Disseminated tumor cells can already be present
in early tumor stages before resection but they are not
detected by conventional histopathology analysis and
tumor staging and are often staged as NO tumors [4].
The overall incidence of recurrence lies around 30% to
70% depending on lung cancer stage [5-7]. To improve
the overall survival rate there is an urgent need for the
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identification of new prognostic factors. Second, intensive
follow-up is important to reduce lung cancer mortality by
the detection of recurrences after surgery [8].

MicroRNAs (miRNAs) found in body fluids indicate
a high impact as diagnostic and prognostic biomarker
as they play a crucial role in many cellular processes
by regulating an extended number of target genes due
to mRNA degradation or inhibition of the translation of
the target mRNA [9, 10]. Until now, substantial effort
has been undertaken to identify disease-specific miRNA
profiles suitable for early diagnosis of diseases and to
predict disease outcome [11, 12]. While many case-
control studies have revealed a plentitude of miRNAs as
biomarker candidates, dynamic changes over extended
time periods have not been explored for the majority of
them. Most respective studies are either limited in the
number of time-points, patients, or considered miRNAs.

An analysis of the physiological fluctuation of
serum miRNA profiles of samples taken from 12 healthy
individuals over varying time periods up to 17 months
revealed miRNA profiles that showed a high correlation
and no significantly differentially expressed miRNAs
were found. This suggests that circulating miRNAs are
stable over extended time periods in healthy individuals
[13]. Thus, changes in the overall abundance of circulating
miRNAs due to a certain disease make them to good
biomarker candidates. Changes of few miRNAs have
for example already been monitored in a kinetic study
over months in serum of 15 colorectal cancer patients
[14]. However, just few studies investigate circulating
miRNA profiles for changes between lung cancer
samples collected before and after cancer resection [15,
16]. We recently performed a first follow-up study on
lung cancer patients over a period of 18 months after
lung cancer resection to identify miRNA signatures that
possibly contribute to disease monitoring [17]. Although
we analyzed 8 different time points and profiled a large
number of miRNAs, a major limitation of this study
was the small cohort size of only 5 patients. We now
screened 26 patients for up to § time points — prior
to surgery, following surgery and subsequently in 3
months intervals. Additionally, we compare the miRNAs
identified in plasma of the lung cancer patients to those
measured in samples obtained from12 control patients
that suffered from other non-cancer lung diseases.
Altogether, 215 single complex miRNA profiles have
been generated using a microarray approach. Since one
key criterion for a potential application in clinics beyond
technical sensitivity and specificity is the reproducibility
of measurements we applied a microarray technology
that has been described to be most reproducible among
12 commonly used commercial systems [18]. Following
background correction, adjustment for batch effects and
normalization, bioinformatics analysis was applied in
order to identify and validate the most relevant regulated
miRNAs towards their usefulness as potential prognostic

lung cancer biomarker.

RESULTS

The main aim of our study was to provide a
comprehensive longitudinal analysis of circulating
miRNAs in plasma of lung cancer patients following
surgery to identify miRNAs with prognostic relevance. In
detail, we analyzed 1,205 different miRNAs in 26 lung
cancer patients over a period of 18 months measured at 8
time points including one time point prior and up to seven
time points after cancer resection. The expression profiles
of the lung cancer samples were compared to 12 patients
suffering from other non-cancer lung diseases that served
as control.

miRNA repertoire in lung cancer patients over
time and in non-cancer controls

We determined for all lung cancer patients and each
time point (TP) and for all controls the average number of
miRNAs detected in each sample (Figure 1). The samples
obtained from lung cancer patients contained independent
of the time point a lower number of miRNAs compared
to the non-cancer controls (on average 295 miRNAs
were detected in lung cancer samples and 331 in control
samples). However, only for TP5 the difference between
the average number of miRNAs detected in the lung cancer
plasma samples compared to controls was significant
(adjusted p-value 0.025). Lung cancer samples collected
at TP2 showed with an average number of 321 detected
miRNAs the lowest difference compared to controls
(adjusted p-value of 0.67). Since the analysis of plasma
samples obtained from the same individuals at different
time points also enables paired testing of consecutive
time-points we investigated whether significant changes
of miRNA levels can be observed over time. Here, we
found the most significant differences average number
of detected miRNAs between TP1 and TP2 (raw p-value
0.019) and between TP5 and TP6 (raw p-value 0.016).

We also asked whether the miRNA repertoire differs
in its quantity between lung cancer patients developing a
metastases compared to those not developing metastases.
The results are presented in Figure 1B, where for both
groups and all time points the average number of miRNAs
are shown. For patients not developing metastases we
observed significant increase of miRNA repertoire from
TP1 to TP2 and TP5 to TP6. For the other patients
no significant alterations in the miRNA number were
discovered, although the differences between different
time points seems to be higher. But, as the standard
deviation for the number of detected miRNAs is higher
in the samples obtained from patients that developed
metastases, the differences were not significant. But
generally, we observed larger miRNA repertoire of
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Figure 1: Comparisons of the overall numbers of detected miRNAs. A. Box plot showing the overall number of detected
miRNAs for all non-cancer control samples and all lung cancer samples for each time point separately. B. Bubble plot indicating the overall
number of detected miRNAs for the non-cancer control patients as well as for the lung cancer patients that developed metastases and the
lung cancer patients that did not develop metastases for each time point, separately.
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Table 1: Correlation analysis of miRNA pattern over time for all lung cancer patients

combined and the non-cancer control patients

miRNA Correlation p-Value Lower CI Upper CI

hsa-miR-181d -0.95 0.0003 -0.99 -0.80
hsa-miR-670 -0.81 0.0139 -0.95 -0.38
hsa-miR-196b -0.80 0.0179 -0.95 -0.34
hsa-miR-3148 -0.78 0.0219 -0.95 -0.30
hsa-miR-762 -0.76 0.0290 -0.94 -0.25
hsa-miR-539 -0.74 0.0342 -0.93 -0.22
hsa-let-7d* 0.71 0.0467 0.16 0.93
hsa-miR-484 0.72 0.0432 0.17 0.93
hsa-miR-3663-5p 0.72 0.0429 0.18 0.93
hsa-miR-183 0.73 0.0385 0.20 0.93
hsa-miR-17* 0.74 0.0362 0.21 0.93
hsa-let-7¢ 0.74 0.0345 0.22 0.93
hsa-miR-548c-5p 0.75 0.0326 0.23 0.94
hsa-miR-3189 0.75 0.0325 0.23 0.94
hsa-miR-20b 0.75 0.0322 0.23 0.94
hsa-miR-29b 0.75 0.0321 0.23 0.94
hsa-miR-224 0.75 0.0317 0.24 0.94
hsa-miR-501-5p 0.76 0.0301 0.25 0.94
hsa-miR-20a 0.76 0.0280 0.26 0.94
hsa-miR-370 0.76 0.0272 0.26 0.94
hsa-miR-18a 0.78 0.0226 0.30 0.94
hsa-miR-532-5p 0.78 0.0220 0.30 0.95
hsa-miR-1915 0.78 0.0217 0.31 0.95
hsa-miR-146b-5p 0.78 0.0212 0.31 0.95
hsa-miR-3654 0.80 0.0177 0.34 0.95
hsa-miR-451 0.80 0.0161 0.36 0.95
hsa-miR-374a 0.81 0.0145 0.38 0.95
hsa-miR-3180-3p 0.84 0.0093 0.45 0.96
hsa-miR-10b* 0.84 0.0087 0.46 0.96
hsa-miR-184 0.85 0.0075 0.48 0.96
hsa-miR-141 0.85 0.0071 0.49 0.96
hsa-miR-4281 0.86 0.0061 0.51 0.97
hsa-miR-454 0.88 0.0038 0.57 0.97
hsa-miR-301a 0.88 0.0037 0.57 0.97

CI = confidence interval

patients that develop metastases. Independent of the
time point we observed 286 miRNAs for patients not
developing metastases while the remaining patients
revealed 316 miRNAs (two-tailed unpaired #-test p-value
0f 0.0096). Interstingly, the analysis of the 12 non-cancer
control samples revealed 331 detected miRNAs.

For the following quantitative analysis we only

focused on the 485 miRNAs that were expressed in at least

5% of all tested 215 individual samples.
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Correlation analysis of miRNA pattern over time
for all lung cancer patients combined and the non-
cancer control patients

To identify miRNAs that show an overall increase
or decrease from the first to the last measurement we
first calculated pair-wise significance values between the
miRNA profiles of the 12 non-cancer controls and the
profiles of the 26 lung cancer patients for each of the time
points using two-tailed unpaired #-test. Next, we correlated
the logarithm of the significance values obtained by the
two-tailed unpaired #-test with the rank of the time points.
We discovered 6 negatively and 28 positively correlated
miRNAs (raw p-value of correlation below 0.05). These
34 miRNAs with correlation values, p-values and upper
and lower confidence interval are provided in Table 1.
Notably, a strong negative correlation indicates that the
respective miRNA is not de-regulated in samples from
lung cancer patients at the beginning of the time course
(high p-values at early time points) but shows increasing
difference in miRNA plasma levels from non-cancer
controls over time (low p-values at the end). In contrast,
strong positive correlation indicates that the respective
miRNA is de-regulated at the beginning (low p-values at
early time points) but shows decreasing difference to the
non-cancer control miRNA level over time (high p-values
at the end). The miRNAs with correlation values around
zero do not show increasing or decreasing significance
over time but are rather constantly expressed. Although no
miRNA was significant following adjustment, we observed
a substantial increased number of miRNAs significant
prior to adjustment as compared to the expected number
of 24 random miRNAs. Figure 2 presents exemplarily
the miRNA plasma levels of hsa-miR-370 (representative
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for positive correlated miRNAs) and hsa-miR-181d
(representative for negative correlated miRNAs).

Correlation analysis of miRNA pattern over time
for single lung cancer patients

Beside the analysis of the miRNA changes for
all patients combined, our study set-up also allows the
analysis of the miRNA time courses for single patients.
We calculated for each patient and each miRNA separately
correlation values between miRNA expression and time-
points and estimated the significance values for the
respective correlation. We excluded miRNAs that did
not revealed significant correlation for at least 10% of
all patients. For the remaining miRNAs we calculated
in how many patients a miRNA was positive or negative
correlated over time and calculated the difference of
positive and negative correlated patients for each of these
miRNAs. We excluded miRNAs for which the number of
patients with a positive correlation largely corresponded
to the number of patients with a negative correlation. As
threshold we considered only miRNAs with a difference of
at least 30% between positively and negatively correlated
patients. We thereby identified 16 miRNAs including 10
positively and 6 negatively correlated miRNA. Although
the overall tendency of certain miRNA levels to either
increase or decrease over time is in agreement with the
results obtained with the expression levels for all patients
combined, the data for the single patients show strong
variability. These miRNAs indicate that although a
general trend exists single patients substantially deviate
from the general trend (see Supplemental Figure 1 and
Supplemental Table 1).

hsa-miR-181d
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Figure 2: Examples of the correlation analysis of miRNA pattern over time for single miRNAs shown for each patient
separately. hsa-miR-370 is an example for a positive correlated miRNA and has-miR-181d is an example for a negative correlated
miRNA. In both figure panels the y-axis shows the normalized expression values (in log scale) and the x-axis indicates the time points 1

to 8.
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Identification of plasma miRNAs influenced by
the development of metastases

To understand the changes of miRNA levels over
time we related the changes to a clinical endpoint. This
was also in keeping with the goal to discover prognostic
miRNAs. Thus, we choose the development of metastases
as endpoint and asked whether patients with metastases
show different plasma miRNA levels as compared to
patients without clinically identified metastases. To
this end we calculated significance values for each time
point with respect to the two groups of patients, i.e.,
patients developing metastases (n = 8) versus patients
not developing metastases (n = 18). At the time point
directly before cancer resection (TP1) we found 25
plasma miRNAs that showed significantly different
plasma levels between patients with and those without
metastases (non-adjusted p-value < 0.05). At TP2, i.e.,
shortly after resection four of the 25 miRNAs were still
significant, but in total 18 miRNAs showed significantly
different abundance (non-adjusted p-value < 0.05). The
highest number of 40 miRNAs with significantly different
plasma levels between patients that developed lung cancer
metastases and patients that did not develop metastases
was obtained at TP3 around three moths after resection.
At TP4 9 miRNAs were significant, at TP5 33 miRNAs,
at TP6 13 miRNAs, at TP7 18 miRNAs, and at TP8 23
miRNAs. However, for the comparisons of the single time
points no miRNAs remained significant after multiple
testing. This fact is not necessarily due to decreased effect
sizes for single time points but may reflect the comparably
small cohort size.

We also performed a more general comparison of
all expression values independent of the time point and
compared all lung cancer samples to the non-cancer
controls. To evaluate the patterns we considered both, raw
and adjusted p-values. Of the 485 analyzed miRNAs, 139
were significantly altered between cancer patients and
non-cancer controls, of which 56 remained significant
following adjustment. Lowest p-values of below 10
were found for hsa-miR-3647-5p and hsa-miR-144. In
the comparison of non-cancer controls versus lung cancer
patients that did not develop metastases 138 miRNAs were
significant (55 following adjustment) and 125 miRNAs for
the comparison of controls versus metastases developing
patients (41 following adjustment). Importantly, we also
discovered 131 miRNAs that were significantly altered
between patients that developed metastases and those
that did not (38 following adjustment). Here, the highest
significance was reached for hsa-miR-197 (p = 3x10
7). This miRNA was also significant in the previously
mentioned comparison of controls compared to lung
cancer patients that did not develop metastases (p = 0.004)
while it was not significantly differentially regulated for
controls versus patients that developed metastases (p = 1).
The most significant changes (p < 0.05) for this miRNA

were found at TP2, TP3, and TP5. Another miRNA, hsa-
miR-630 was even significant in four time points, i.e.,
TP1, TP2, TP4, and TP6. Hsa-miR-130b was the most
significant miRNA that showed larger deviation of lung
cancer patients that developed metastases from controls
(» = 0.0004) than patients that did not develop metastases
(p = 0.083).

The full list of the 485 miRNAs with the expression
data and the non-adjusted p-values is provided in
Supplemental Table 2.

To compare the metastases and non-metastases
group directly to non-cancer controls, we calculated
for each miRNA the p-values for the comparison of its
expression value in plasma samples collected from lung
cancer patients that developed metastases and those that
did not at each time point versus its expression value
in plasma samples from non-cancer controls. In total,
139 miRNAs were significant in the comparison of the
samples obtained before resection (TP1) from lung cancer
patients that did not develop metastases with the non-
cancer controls, but only 98 miRNAs in the comparison
of the samples obtained before resection (TP1) from
lung cancer patients that developed metastases with the
non-cancer controls. We observed the same trend in the
comparison of the non-cancer controls and the lung cancer
samples obtained shortly after resection (TP2). Here 92
miRNAs were significant in the group of patients that
did not develop metastases and only 72 in the group of
patients that developed metastases. Figure 3 shows the
above mentioned comparions for selected miRNAs as pie
charts and all data are provided in Supplemental Table 3.
The miRNA hsa-miR-197 was significantly up-regulated
at 7 time points (non-adjusted p-values) for the group of
patients that did not develop metastases while not in the
group of patients that developed metastases. Similarly,
hsa-miR-1227 was constantly up-regulated, however,
again just the patients without metastases were significant.
In contrast, hsa-miR-4292 was more significantly
down-regulated in the group of patients that developed
metastases as compared to the group of patients that did
not develop metastases.

We next focused only on the samples obtained
from lung cancer patients and compared the samples
collected before surgery at TP1 with samples from each
other time point after surgery (TP2 to TPS8) resulting
in 7 comparison. The calculated #-test p-values for the
respective comparisons are listed in Supplemental Table
4. This analysis was done separately for patients with and
without metastases. For the patients without metastases the
comparison of the sample drawn before cancer resection
(TP1) and the sample obtained shortly after resection
(TP2) revealed 103 significant miRNAs, while we found
for the same comparison only 44 significant miRNAs in
samples obtained from patients that developed metastases
during follow-up and this trend was observed for all of the
7 comparisons. This indicates a trend to a more profound
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change in the miRNA pattern for samples of patients that
did not develop lung cancer metastases.

We found 2 miRNAs including hsa-miR-454
and hsa-miR-3152 that were significantly deregulated
in all seven comparisons, and 2 miRNAs including
hsa-miR-181b and hsa-miR-98 that were significantly
deregulated in 6 out of the 7 comparisons. Of those
miRNAs deregulated in patients without metastases
hsa-miR-454 was also significantly deregulated in two
comparisons of patients with metastases and hsa-miR-98
in only one. In contrast, hsa-miR-3152 and hsa-miR-181b
that were significantly deregulated in patients without
metastases were not significantly deregulated in patients
with metastases. Hsa-miR-454, hsa-miR-181b, and hsa-
miR-98 were down-regulated at TP 2-8 compared to TP 1
in patients without metastases and hsa-miR-3152 showed
significantly increased plasma levels at TP 2-8 compared
to TP 1.

We also found one miRNA, namely hsa-miR-101,
that showed significantly decreased plasma abundance in
all seven comparisons of patients with metastases but was
not significantly deregulated in the comparisons of patients
without metastases. Has-miR-186 was still significant
in 6 of 7 comparisons of patients without metastases,
but also in two comparisons of patients with metastases.
Both miRNAs were down-regulated at time points 2-8
compared to time point 1 in patients with metastases.

In sum, the data demonstrate that miRNA changes
over time can be related to clinical end points like the
development of metastases and that effects are largest 3
months following surgery.

qRT-PCR validation of selected miRNAs

In the previous section we described miRNAs
identified by microarray that are correlated to lung cancer
and that have a potential prognostic impact. Using qRT-
PCR we exemplarily measured the time courses consisting
of the up to 8 time points for 4 patients, including 2
patients did not develop metastases (patients J and P)
and two patients that that later on developed metastases
(patients V and Z) and three miRNAs (hsa-miR-197, hsa-
miR-130b, hsa-miR-762). Additionally, the 12 samples
from non-cancer control patients were analyzed using
qRT-PCR. One very interesting and potentially prognostic
miRNA was hsa-miR-197 as this miRNA was significantly
up-regulated in 7 of 8 time points (TP1 to TP7) in plasma
of patients that did not develop metastases compared to
plasma of non-cancer control patients but it was similarly
abundant in plasma from lung cancer patients that
developed metastases and in plasma of non-cancer control
patients. Investigating the miRNA abundance using qRT-
PCR at the different time points for the four patients
and 12 controls we were able to reproduce these results.
Although the considered cohorts were comparably small,
the difference between cases and controls was significant

(0.004). While considering all measurements without
respect to the time points slightly missed the alpha level
of 0.05 (p = 0.059), the paired analysis of the time course
for both lung cancer patient groups (with metastases and
without metastases) was significant (p = 0.025). In detail,
the time course of all patients matched in general well
between microarray and qRT-PCR. The most significant
miRNA where the mean expression value of all samples
from patients of the metastases group was lower than the
mean expression value of all samples from patients of the
non-metastases group and all samples from non-cancer
controls showed the highest mean value was hsa-miR-
130b. Although the time courses of the analyzed patients
generally showed a high concordance with a median
correlation value of 0.75 for all patients and the controls
we were not able to reproduce the lower expression of this
miRNA in patients that developed metastases. Especially
the time course of patient Z for hsa-miR-130b plasma
levels that was measured by microarray could not be
validated completely by qRT-PCR. However, the higher
plasma levels in non-cancer control samples were indeed
validated. As third candidate we picked hsa-miR-762,
which shows a similar behavior in the mean expression
values according to microarray as hsa-miR-130b. Here,
we observed for two patients deviations in the time course
as compared to array measurements (patients P and V).

In sum, for patient J all three miRNAs were
validated, while for the other patients two of three
miRNAs were reproduced. For patients P and V hsa-
miR-762 diverged and for patient Z hsa-miR-130b.

In Supplemental Figure 2A-2L a comparison of
the microarray data and the qRT-PCR data for the up to 8
samples for the four different lung cancer patients and the
three miRNAs is shown.

As there is no endogenous smallRNA or miRNA
that can reliably serve as “housekeeping gene” that is
stably detected/abundant in serum or plasma [19] we used
as normalizer the miRNA mimic syn-cel-miR-39, that
was spiked into the plasma sample before RNA isolation.
Interestingly, this synthetic miRNA cannot only serve as
normalizer but can also be used to control the extraction
process. In the present study the mean Ct value was
2143.13.

DISCUSSION

There is an undisputable requirement for molecular
tests to assist in the diagnosis, prognosis and prediction
of cancers including lung cancer. Although histological
evaluation of tumor tissues from biopsies will at least for
the near future remain the ‘gold standard’ of diagnosis,
these samples necessarily represent only a single time
point in the overall tumor development. Blood based
tests open the possibility to monitor the course of tumor
development. Currently, there are, however, only few
blood based markers in clinical use including CA125
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for ovarian cancer, CA19-9 for pancreatic cancer, CEA
for colon cancer, and PSA for prostate cancer [20].
These established markers have, however, rather limited
accuracy, which can be improved by longitudinal
measurements as shown for PSA where continuously
increasing levels strongly indicate a carcinoma [21]. As of
now, there is no biomarker established for lung cancer in
a screening setting.

Beside the need to have measuring from different
time points of tumor development, there is a need to
have biomarkers that do not rely on the measuring of a
single kind of molecule like the aforementioned markers.

miR-197 P8 ém

Since combinations of different molecules can be more
accurate and are likely to be more robust than single-
molecule markers, an increasing number of studies
aimed at identifying marker signatures. Notably miRNA
signatures appear of especial interest due to their rather
high stability in body fluids. Since the first description
of miRNAs in serum of patients with diffuse large B cell
lymphoma, blood born miRNAs have been related to
tumor diagnosis and prognosis [19, 22]. The majority of
these studies, however, analyzes miRNA pattern at one
time point only. In addition, the analysis of circulating
miRNAs has some methodological challenges. As these
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Figure 3: The pie charts for miRNAs significant in the comparison of non-cancer controls and the lung cancer samples
collected at the different time points and for patients with and without metastases separately. MiRNAs were measured at
eight different time points. The time points are numbered TP1 to TP8 and each time point TP1 to TP8 is compared to the non-cancer controls.
The right part of each pie chart represents the comparison between non-cancer controls and lung cancer patients without metastases and
the left part of the pie chart represents the comparison between non-cancer controls and lung cancer patients with metastases. Each sector
represents one comparison with the color of the outer ring indicating down-regulation (green) or up-regulation (red) at the respective time
point compared to non-cancer controls. The inner part of the circle indicates the significance values with blue shaded sectors representing

significant differences and the grey sectors not significant differences.
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challenges are exhaustively summarized in a recent
review article by Moldovan et al. [23] we do not want
to further discuss them here in more detail. Nevertheless,
Moldovan et al. [23] found out that there are many
studies comparing different biological fluids side-by-side
and find little or no difference in extracellular miRNA
quantification. Interestingly, higher concentrations were
consistently found in sera and a possible explanation for
that might be that platelets, that contain a wide spectrum
of miRNAs, may release their content into the serum
during coagulation. This is one argument for the use of
plasma samples. But, we are aware of the disadvantages
of heparinized plasma samples in terms of the effect of
heparin on downstream applications. However, as for the
current study only heparinized plasma was available we
established a protocol that includes a heparin digestion
step to isolate RNA that could be used for downstream
analyses like microarray and qRT-PCR. We also checked
for RNA extraction efficiency by using a synthetic miRNA
mimic (syn-cel-miR-39).

Our study on 1,205 different miRNAs in 26 lung
cancer patients over a period of 18 months measured at up
to 8 time points is the most comprehensive longitudinal
analysis of miRNA signatures in cancer patients. This
is the follow-up of a proof-of-principle study that we
published previously [17]. However, our previous study
focused only on the changes of the plasma miRNA profile
over time after surgery without the comparison with
non-cancer control samples. In addition, we compared
our microarray data with circulating miRNAs that were
previously described in literature as deregulated in lung
cancer and found 11 of 35 published miRNAs detected
in all samples prior to surgery. In the present study these
11 miRNAs were also detected in all analyzed plasma
samples obtained from lung cancer patients at TP1, i.e.,
prior to surgery. However, these 11 miRNAs were also
detectable in all of the analyzed samples from non-cancer
controls and there was no difference in expression level
after adjustment between both groups. These findings
indicate that the respective miRNAs are not well suited as
reliable diagnostic biomarkers for lung cancer.

For the correlation analysis of the single patients and
time points, we identified in the present study 6 negative
correlated miRNAs and 10 positive correlated miRNAs.
The comparison of the correlated miRNAs for each lung
cancer patient between our former study and the present
study is complicated by the different analysis methods. In
the former study, we considered the miRNAs with positive
or negative correlation for each patient, respectively. In
the present study, we also calculated the correlation of
each miRNA for each patient but excluded those miRNAs
that do not show a general trend to positive or negative
correlation. Thus the list of miRNAs is smaller and we
find only an overlap of two miRNAs. The miRNA hsa-
miR-24 was negatively correlated in patient B in the
former study and is also negatively correlated in most

of the 26 patients, including patient B analyzed in the
present study. The miRNA hsa-miR-1202 was negatively
correlated in patient D in the former study but in the
present study it is positively correlated in the majority of
patients. Interestingly, when only considering patient D it
shows a negative correlation.

A correlation analysis of the plasma miRNAs
identified in samples of all lung cancer patients combined
and the non-cancer control patients revealed 6 negative
correlated miRNAs that showed no deregulation of the
lung cancer samples at the beginning but increasing
difference from the non-cancer control samples in
expression over time and 28 positive correlated miRNAs
that were deregulated in lung cancer samples at the
beginning but levels to the non-cancer control expression
level over time. As control samples were not included in
our former study, a comparison for this analysis was not
possible.

Overall, our data show that miRNA levels are
changing over time after tumor surgery and that these
changes are not necessarily fluctuating around a median
value but can have a clear tendency to either increase or
decrease. Since circulating miRNA profiles in healthy
individuals seem to be rather stable over time, the
observed changes in our study are likely to be disease
related [13]. This idea of miRNA pattern changing in
the course of a disease under treatment is consistent
with previous reports on changes in the abundance of
circulating miRNAs between samples collected prior and
after radiochemotherapy of head and neck cancer patients
[24]. A study on 4 miRNAs in 82 lung carcinoma patients
identified altered serum levels in samples obtained before
surgery and samples obtained 10 days after surgery [16].
Likewise, 90 miRNAs were analyzed in plasma obtained
before and after tumor removal in 32 squamous cell lung
cancer patients [15].

It remains the question of the biological meaning
of the increasing or decreasing miRNA levels. In a
longitudinal expression analysis of 3 miRNAs on serum
samples of 15 patients with colorectal cancer over a
period of three years post surgery or after chemotherapy,
the authors found that serum levels of miRNAs returned
to normal levels after cancer resection or chemotherapy
in the samples from patients with good prognosis [14].
However, our data for single patients show a strong
fluctuation between the different time points making a
biological interpretation difficult. The specific variations
of miRNA levels over time in single patients may be
due to a combination of factors that are related to the
physiological state and the specific treatment response
of each patient and it will be highly demanding to define
the specific influence of any of these factors on a specific
miRNA plasma level.

Nevertheless, variations of miRNA levels over
time might be related to clinical endpoints such as the
development of metastases. For example, we found a
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higher number of miRNAs that were significantly changed
in plasma levels between the time point TP1 before and
the time points TP2 to TP8 after surgery in patients
that did not develop metastases during the follow-up
compared to the patients that developed metastases. These
relationships between miRNA plasma levels would have
gone undetected by an analysis at a single time point only.
Besides a potential diagnostic value of altered miRNA
levels, the changes observed in the present study might
help to contribute to the understanding of systemic aspects
associated with metastases. Overall, our data indicate
more changes of miRNA levels in patients without
metastases as compared to patients with metastases. This
is not only true for the comparisons between the time point
before surgery with all seven time points after surgery but
also for the comparison between the time point before
surgery with the first time point directly after surgery and
also for the comparison of TP1 samples with the non-
cancer control samples. As described above, the latter
comparison identified more significantly altered miRNAs
in patients without metastases as compared to patients
with metastases, possibly indicating that the miRNome of
patients that developed metastases is more similar to the
miRNome of non-cancer controls than the miRNome of
patients that do not develop metastases during the follow-
up.

Nevertheless, we are aware of the limitations of the
present study and thus do not intend to over-interprete
our findings. For example we want to point out that we
analyzed groups of different sizes, i.e., the group of
patients that did not develop metastases encompassed 18
patients while we obtained only blood of eight patients that
later on developed metastases. In addition, as discussed
above, the choice of the right blood collections system
is very crucial for downstream analyses. Furthermore,
the here presented results have to be confirmed in larger
patient cohorts in future studies.

Although highly hypothetical, our data may indicate
that the overall miRNome of a patient that later develops
metastases is less affected by surgery than the miRNome
of a patient that is not prone to develop metastases. An
overall stability of the miRNome has previously been
reported for healthy adults by MacLellan et al. [13].
Possibly, such an overall stability can also be found for
a pathological status and changes of the miRNA pattern
would indicate either a treatment success or a significant
deterioration of the patients’ health.

MATERIALS AND METHODS

Study population

We obtained blood from 26 different NSCLC
patients. Blood of lung cancer patients was drawn directly

before tumor resection (TP1), around two weeks after
tumor resection (TP2) and then around three months
(TP3), six months (TP4), nine months (TPS5), 12 months
(TP6), 15 months (TP7) and 18 months (TP8) after tumor
resection. From 3 patients we obtained only blood from 7
time points and from one patient we obtained blood only
from 6 time points. In a follow-up of 4 years, 18 patients
were free of metastases or recurrences. In addition, we
obtained blood from 12 patients from the same clinic that
did not suffered from lung cancer but from other non-
tumor lung diseases. Blood of all patients was drawn
in Lithium-Heparin monovettes (Sarstedt). Plasma was
isolated by centrifugation at 3000 rpm for 10 min and
stored at -80°C until use. Samples were collected with
patient informed consent. The local Ethics Committee
approved the study (Arztekammer des Saarlandes, 01/08).
Patient details are provided in Supplemental Table 5.

Isolation of total RNA including miRNA

As it is well known that heparin is co-purified with
RNA and can interfere with downstream applications
the RNA was isolated using an optimized protocol for
Lithium-Heparin plasma samples as previously described
[17]. We first treated 100ul plasma with 10pg Heparinase [
(Sigma) and 100U RNaseOUT™ (Life Technologies) and
incubated the mixture at 25°C for 1 hour. Nuclease free
water (Life Technologies) was added to a final volume of
250ul. A total of 750ul TRIzol®LS (Life Technologies)
was added and incubated at RT for 5 min. Then, 20pug
glycogen, 5pul spike-in miRNA (miRNA mimic syn-cel-
miR-39, 5nM, Qiagen) and 200u1 chloroform were added,
vigorously vortexed, and incubated for 3 min at RT. After
centrifugation at 14000rpm and 4°C, the aquaeous phase
was transferred into a new tube and RNA was precipitated
with 1,5 volumes of 100% ethanol. RNA was then isolated
using the miRNeasy Mini Kit (Qiagen) according to
manufacturers instructions but with the use of the RNeasy
Mini Elute column to allow for a reduced elution volume
of 15ul. RNA concentration was measured using the
Nanodrop2000 (ThermoScientific) and RNA quality was
checked using the Bioanalyzer2100 and the Small RNA
Kit (Agilent).

Quantitative real time PCR (qRT PCR)

Using quantitative Real Time-Polymerase Chain
Reaction (qQRT-PCR) with the miScript PCR System
(Qiagen) we validated the microarray data for three
exemplarily chosen miRNAs (hsa-miR-130b, hsa-
miR-762, hsa-miR-197) and the follow-up samples from
two patients that developed metastases and two patients
that did not. In brief, 2 ul RNA was converted into cDNA
using the miScript II Reverse Transcription Kit and the
HiSpec Buffer according to the manufacturers” protocol.
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The PCR was performed with the miScript SYBR®™ Green
PCR Kit in a total volume of 20ul per reaction containing
2ul (1:5 diluted) cDNA according to the manufacturers’
protocol on a StepOne Plus Real Time Analyzer (Life
Technologies). Data were normalized using the spike-in
miRNA mimic syn-cel-miR-39 (Qiagen).

miRNA microarray

Microarray analysis has been performed according
to manufacturer’s instructions and as previously described
using SurePrint G3 8x60K miRNA microarrays (Agilent)
[20]. In brief, a total of 100 ng total RNA was processed
using the miRNA Complete Labeling and Hyb Kit
(Agilent) to generate fluorescently (cyanine-3) labeled
miRNA. The microarrays, that contain 40 replicates
of each of the 1,205 miRNAs of miRBase v16 (http:/
www.mirbase.org/ [26]) were hybridized with the labeled
miRNA for 20 hours at 55°C and 20rpm. Microarray scan
data were further processed using Feature Extraction
software (Agilent). The Feature Extraction software
removes outlier pixels, does statistics on inlier pixels
of features and backgrounds. It further flags outlier
features and backgrounds and subtracts the background
from features. The output of the Feature Extraction
Software provides the raw background corrected
miRNA data (gTotalGeneSignal) and the present calls
(IsGeneDetected). The results of the microarray analyses
are freely available in the GEO database under accession
number GSE68951 (http://www.ncbi.nlm.nih.gov/geo/).

Biostatistics

All downstream biostatistics calculations have
been carried out using the freely available statistical
programming environment R. Two analysis strategies were
carried out. First, we focused on the present calls, i.e. the
information whether a miRNA m in patient p is expressed
significantly above the background. This information was
obtained from the Agilent feature extraction software
according to manufacturers instruction and as sketched
above. For all samples and miRNAs a binary matrix was
build, where entries (m,p) equaled 1 if miRNA m was
present in patient p and 0 otherwise. To minimize the
noise contributed by low expressed markers we focused
for all analyses on the miRNAs that were expressed above
background in at least 5% of all tested samples. Using this
definition, we performed all further analyses using 485
miRNAs.

In addition to the present call analysis, we likewise
carried out a quantitative analysis of the expression level
for the detected miRNAs. Since microarrays frequently
show batch effects we tested and corrected for such
technological bias. In detail, the identification and
visualization of the batch effects was performed using the

R-package “pvca”. The ComBat function of the R-package
“sva’” was then applied in order to account for the found
batch effects in the data. Quantil normalization has been
carried out using the Bioconductor “preprocessCore”
package. Pairwise two-tailed #-tests have been carried
out. Here, each time point following resection has been
compared to the time point prior to resection. The results
have been displayed as circular diagrams, specifically,
time points are ordered clockwise such that each time
point has an own sector. The shading of the sector
denotes the significance, the further the shading, the more
significant the respective time point is for this miRNA.
Moreover, correlation between time-points and expression
or significance values have been calculated using Pearson
Correlation coefficient and a significance value for each
correlation has been calculated using the “cor.test”
function. For assessing the significance of correlations we
calculated a statistic based on Pearson’s product moment
correlation coefficient, which follows a t-distribution.
Additionally, 90% Confidence Intervals for the correlation
are provided, which are calculated based on Fishers Z
Transform. If not mentioned explicitly, p-values have
been adjusted for multiple testing using the Benjamini-
Hochberg approach.
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ABSTRACT: Whole blood derived miRNA signatures deter-
mined by Next-Generation Sequencing (NGS) offer themselves as
future minimally invasive biomarkers for various human diseases.
The PAXgene system is a commonly used blood storage system
for miRNA analysis. Central to all miRNA analyses that aim to
identify disease specific miRNA signatures, is the question of
stability and variability of the miRNA profiles that are generated by
NGS. We characterized the influence of five different conditions
on the genome wide miRNA expression pattern of human blood
isolated in PAXgene RNA tubes. In detail, we analyzed 15
miRNomes from three individuals. The blood was subjected to
different numbers of freeze/thaw cycles and analyzed for the
influence of storage at —80 or 8 °C. We also determined the
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influence of blood collection and NGS preparations on the miRNA pattern isolated from a single individual, which has been
sequenced 10 times. Here, five PAXGene tubes were consecutively collected that have been split in two replicates, representing
two experimental batches. All samples were analyzed by Illumina NGS. For each sample, approximately 20 million NGS reads
have been generated. Hierarchical clustering and Principal Component Analysis (PCA) showed an influence of the different
conditions on the miRNA patterns. The effects of the different conditions on miRNA abundance are, however, smaller than the
differences that are due to interindividual variability. We also found evidence for an influence of the NGS measurement on the
miRNA pattern. Specifically, hsa-miR-1271-Sp and hsa-miR-182-5p showed coefficients of variation above 100% indicating a

strong influence of the NGS protocol on the abundance of these

F or the identification of biomarkers and even more for the

translation from basic research to clinical routine, it is
crucial to understand how markers vary depending on different
storage conditions and technical analysis. Especially for
complex marker profiles like miRNA signatures, a systematic
bias will compromise their diagnostic and prognostic values.
While tissue based miRNA profiles have first been in the focus
of research, there are increasing efforts to identify miRNA
signatures as non- or minimally invasive markers in body fluids,
such as blood, serum, or urine. Besides Heparin and EDTA
blood tubes, PAXgene blood RNA tubes have frequently been
used to collect patients’ blood. Examples of PAXgene blood
RNA pattern include biomarkers for myocardial infarction,’
lung cancer,”’ multiple sclerosis,”® melanoma,® ovarian
cancer,” chronic obstructive pulmonary disease,” glioblastoma,9
and Alzheimefs disease.'’ More recently, miRNA profiles of

single blood cell types or exosomes have been accom-
plished." "

7 ACS Publications  © xxxx American Chemical Society

miRNAs.

To obtain profiles of miRNAs, different technologies have
been applied. In the early stages of miRNA profiling,
microarrays have been widely used to generate miRNA
patterns. High-throughput qRT-PCR platforms also enable
the parallel measurement of hundreds of miRNAs. As the most
recent technology, Next-Generation Sequencing (NGS)
generates millions of short reads that can be aligned to
known miRNAs annotated in the miRBase.'> Likewise, new
miRNA candidates can be predicted by aligning the fragments
to the target genome. To facilitate clinical applications, other
methods such as immunoassays are currently developed.'*
Technical stability of the profiles for reliable biomarker
discovery is of high impact, independent of the applied
screening technique. Since NGS is increasingly applied to
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Figure 1. Study set up: 4 donors without known disease affection were included. For the first three donors, 5 blood tubes were extracted and
processed over the next 4 days (panel A). For the fourth donor, 5 blood tubes were extracted and handled in duplicates (panel B). All patients are

labeled by X-Y, where X is the patient number and Y the condition.

generate patient based miRNA signatures we investigated NGS-
related variability and stability of miRNA pattern that are
derived from PAXgene samples. In detail, we investigate three
main question: First, markers are frequently discovered in
retroperspective studies. Often, samples that are stored in
biobanks are thawed and a part of the sample is used for
measurement. We asked whether additional freeze/thaw cylces
have a significant influence of miRNAs. Second, we asked how
storage at 8 °C relates to the samples stored at —80 °C. The
time was thereby restricted to 4 days. Third, we also
investigated the influence of NGS on the variability/stability
of miRNA patterns by performing two NGS batches echa
containing technical replicates of five PAXgene blood tubes,
which were all taken from the same individual.

B MATERIALS AND METHODS

Study Setup and miRNA Profiling. In this study, we
focused on the influence of freeze/thaw cycles and short time
storage of PAXGene blood samples. We performed 25 miRNA
measurements from 4 individuals. To minimize the influence of
pathogenic processes healthy individuals without known

diseases affection were investigated. All blood donors
participating in this study gave their informed consent. For
each of the first three individuals we collected 5 PAXgene
Blood RNA tubes. The first tube has been stored at —80 °C for
4 days, while the second tube has been frozen at —80 °C and
was subsequently subjected to one additional freeze/thaw cycle
on the first day and finally stored again at —80 °C for the
remaining days. The third tube has been subjected to an
additional freeze/thaw cycle on the first day, frozen again at
—80 °C, subjected to a second additional freeze/thaw cycle on
the second day and stored at —80 °C for the remaining days.
The fourth tube has been subjected to one freeze/thaw cycle on
the first day, a second freeze/thaw cycle on the second day, a
third additional freeze/thaw cycle on the third day and stored at
—80 °C for the fourth day. The fifth tube has been stored at 8
°C for 4 days. The study setup is sketched in Figure 1A. For all
samples independent miRNA isolation using the PAXgene
Blood miRNA Kit and individual library preps using the
IMumina TruSeq small RNA Library Prep Kit have been
generated according to manufacturer’s instruction.

To determine the influence of NGS on the miRNA pattern,
NGS was performed on miRNAs isolated from a single
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Figure 2. Cluster heat map with dendrogram on top and left. Color scale for the clustering heat map is provided in the upper left corner. The
samples are colored as follows: The three different cycles are shown in three different blue shadings above the heat map, orange samples have been
directly handled and the four-day refrigerator samples are colored in green. The three different cycles that are shown in three different blue shadings
above the heat map mix between the orange samples that have been directly handled (clustering on the left side) and the four-day fridge control
samples that are colored in green (clustering on the right side). This left cluster also contains the samples that have been frozen and thawed once
while the right cluster contains the samples with three freeze/thaw cycles. PCA, which has been used to generate a 2-dimensional mapping of the

high-dimensional miRNA profiles, confirmed these clustering results.

individual. We have taken five PAXgene tubes from this donor
(storage at —80 °C), isolated the RNA and performed two
batches of library preps and NGS runs on these five RNA
eluates (10 miRNomes). An overview of the study setup is
illustrated in Figure 1B.

For each of the 25 libraries, Illumina HiSeq2500 runs have
been carried out according to manufacturer’s instruction. For all
samples around 20 Million raw sequencing reads have been
generated. All miRNA extractions and sequencing runs have
been carried out by CeGaT GmbH (Tiibingen, Germany).

Bioinformatics Analysis. We preprocessed the raw
sequencing data as described previously.lo In brief, the reads
were mapped against the current miRBase v21 sequences by
using the miRDeep2 pipeline.'® The raw miRBase counts for all
samples were summarized in an expression matrix.

In order to carry out hierarchical clustering and calculate heat
maps source code from the heat map.2 function, provided as
part of the “gplots” CRAN package (version 2.12.1) has been
used. In more detail, hierarchical clustering relying on the
Euclidian distance has been carried out on quantile normalized
data (normalization has been done by the “preprocessCore”
package using standard parameters). As alpha level, 0.05 has
been used through the manuscript. If not stated explicitly, p-
values have been adjusted for multiple testing using the
Benjamini—Hochberg approach.'® Analysis of variance has been
calculated by using the “anova” package.

B RESULTS AND DISCUSSION

In total, we generated 25 miRNomes from four individuals by
NGS. Fifteen miRNomes have been derived from three
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Figure 3. (A) Boxplot resulting from the ANOVA for conditions 1—5 and donors 1—3. For miR-37S signals increase for samples stored for 4 days at
the refrigerator. The color scheme corresponds to Figure 2. (B) log of normalized read counts for conditions 1—S and donors 1—3 for miR-99a-Sp.
The overall high variability is due to the overall higher expression of that miRNA in donor 3 as compared to the first two donors.

individuals to determine the influence of different storage
conditions and freeze/thaw cycles (see Figure 1A) and from the
fourth individual 10 NGS runs have been performed (S
consecutive blood drawings, two technical replicates that have
been processed in batches, see Figure 1B).

The expression values of blood miRNAs showed a high
dynamic range of approximately 7 orders of magnitude. Out of
2588 human miRNAs annotated in miRBase 21, we found 1252
different miRNAs in at least one of the 25 samples analyzed.
1060 miRNAs remained after markers covered by just a single
read were removed. Regarding the distribution of NGS reads to
miRNAs we observed significant variations. 90.3% of all reads
matched to hsa-miR-486-5p and 5% to hsa-miR-92a-3p. The
remaining 4.7% reads (approximately 20 million reads),
matched to 1250 miRNAs. To minimize a potential bias
introduced by very low abundant miRNAs, we empirically
determined a threshold of 50 counts and continued the analysis
with a remaining set of 455 miRNAs. All miRNAs with absolute
read count and percentage of all reads mapping to this miRNA
are summarized in Supporting Table 1.

Influence of Storage Conditions and Additional
Freeze/Thaw Cycles on miRNA Patterns from Human
Blood. To determine the effect of different storage conditions
and additional freeze/thaw cycles on the miRNA pattern, we
first employed cluster analysis and Principal Component
Analysis (PCA) as two commonly applied statistical ap-

proaches, on the set of 455 miRNAs. In detail, we performed
a complete linkage hierarchical clustering using the Euclidian
distance as distance measure. The results for all miRNAs
measured under five different conditions for three individuals,
are summarized in Figure 2 as heat map with dendrograms on
top for the storage conditions and on the left side for the
miRNAs. The heat map indicates clustering of samples that
have been stored throughout the experiment at —80 °C without
additional freeze/thaw cycles (indicated by an orange color in
the heat map). Likewise, the samples that have been stored at 8
°C for 4 days without changing the storage condition (indicated
with green color in the heat map), cluster together as well. In
addition, samples that have been stored at —80 °C without
thawing cluster together with samples that have been stored at
—80 °C with only one additional freeze/thaw cycle (indicated
by an light blue color in the heat map). We also observed a
clustering of samples that are stored at —80 °C with three
additional freeze/thaw cycles (indicated by a dark blue color in
the heat map) with samples that have been stored solely at 8
°C. The results may be indicative of an overall influence of the
time period during which a sample is stored either at —80 °C or
at 8 °C. The PCA, which has been used to generate a 2-
dimensional mapping of the high-dimensional miRNA profiles,
largely confirmed the clustering results.

After having investigated the systematic effects on the
miRNA patterns, we analyzed whether single miRNAs show
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differences under the tested storage conditions. Therefor an
analysis of variance (ANOVA) as well as the coefficient of
variation (CV) have been applied. ANOVA identified 41
markers that were significant according to raw ANOVA p-
values and an alpha level of 0.05. Since multiple markers were
measured, the p-values had to be adjusted for multiple testing,
resulting in 5 miRNAs being still significant, including hsa-miR-
320b (p = 0.0002), hsa-miR-320a (p = 0.001), hsa-miR-16-5p
(0.018), hsa-miR-18b-Sp (0.037), and hsa-miR-375 (0.0375).
As one example of a significant miRNA, has-miR-375 is
presented as boxplot in Figure 3A. For miRNA-375, we found a
significant difference between samples that have been stored at
8 °C for 4 days and samples that have been stored at —80 °C.
We did not find a significant influence of the freeze/thaw
cycles. All miRNAs along with the raw and adjusted p-values
are presented in Supporting Table 2.

Finally, we addressed the question of the importance of the
miRNA changes observed under the different storage
conditions. To this end, we compared the differences between
the three donors to the differences between the different
storage conditions. An analysis of the coefficient of variation
highlighted 37 miRNAs with the standard deviations exceeding
the mean value (CV > 1). The mean value, standard deviation
and CV for all miRNAs are presented in Supporting Table 3.
Largest CV was calculated for miR-1291 (mean of 24.6,
standard deviation of 40.7, CV of 1.7). One example is
provided in Figure 3B, where the log of normalized read counts
of the five different conditions for the three individuals is
presented for miR-99a-5p. For this miRNA, the mean value is
508, the standard deviation 624 and the CV 1.23. The variation
of the five measurements for each of the individuals is
substantially smaller than the deviation between individuals 1
and 2 compared to individual 3, which had high read counts for
this miRNA. In general, we observed that the variability of
miRNA abundance between different donors was higher than
the miRNA variability under different storage conditions.

We conclude that there is a general systematic influence of
the storage conditions on miRNA patterns. Largest variability
was observed between storage at 8 °C and samples stored at
—80 °C without additional freeze/thaw cycles. The specific
effect of the storage conditions has to be verified for each single
miRNAs separately. Importantly, the effects of storage
conditions on miRNA abundance are generally smaller than
the differences due to inter donor variability.

While we investigated a short time period, the long time
storage of samples has also been investigated. Seelenfreund and
co-workers reported that miRNA from PAXGene tubes can be
recovered even after periods of up to 4 years, if samples are
frozen at —80 °C."”” In this study, a subset of all known
miRNAs analyzed by qRT-PCR has been included. Viprey et al.
considered even longer time periods of up to 5 years."” In detail
they evaluated the reliability of expression for a subset of 377
miRNAs by qRT-PCR. The authors did not observe a
correlation of miRNA abundance with storage time. As most
stable reference miRNAs, miR-26a, miR-28—5p, and miR-24
were identified. These miRNAs were also not affected
significantly in our study with respect to freeze/thaw cycles,
indeed rendering them as reasonable and stable reference
markers.

Influence of NGS Preparation on miRNA Patterns
from Human Blood. As mentioned above, two NGS runs
with different library prep were performed with each on
miRNAs isolated from five PAXgene tubes from a single

individual and thus resulting in 10 miRNomes. The five
samples of the first NGS run have been processed together, and
likewise the samples of the second NGS run with a slightly
changed preprocessing step as mentioned in material and
methods. The results of the analysis are summarized as heat
map in Figure 4. The dendrogram on top of the heat map show
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Figure 4. Cluster heat map with dendrogram on top. The samples are
colored with respect to the blood drawing (first row on top of the heat
map) and according to the analytical NGS batch (second row on top
of the heat map).

the clustering of different blood tubes and sequencing
procedures, while the dendrogram on the left side for the
miRNAs. The heat map indicates no clustering between the five
different blood sample tubes (indicated by five shadings of red).
However, a strong clustering between the two different NGS
preparations is shown (indicated by an orange color for the first
NGS run and a blue color for the second NGS run). These
results show a significant influence of the NGS preparation on
the miRNA pattern identified in human blood. The findings
from this cluster analysis were confirmed by a PCA.

We next addressed the question of importance miRNA
changes observed for the NGS preparations by analyzing the
coefficient of variation. The analysis showed lower CV values
for the 10 miRNomes measured by two NGS preparations than
for the miRNome obtained under different storage conditions.
The standard deviation exceeded the mean for only 21 miRNAs
the majority of which were low abundant. Only two miRNAs
with expression levels (normalized read counts >5) showed
average CV values >1 including hsa-miR-182—5p with average
value of 2,824 and standard deviation of 2,960 resulting in a CV
of 1.05 and hsa-miR-1271—Sp with average read count of 5.7
and standard deviation of 6.2 resulting in a CV of 1.07. As
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indicated by the barplot of logarithmized normalized read
counts in Figure 5A, the second batch of NGS library

>
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Figure 5. Normalized (Panel A) and raw (panel B) read counts for
hsa-miR-182—5p. Shown are logarithmized reads for five replicated
blood drawings (denoted 41, 42, 43, 44, and 45) in two NGS
batches. The first batch is highlighted in orange the second in blue.
Panels C and D present the same analysis for the second variable
miRNA, has-miR-1271—-5p (please note the absolute scale in contrast
to the logarithmic for panels A and B).

preparation (indicated in blue) showed for hsa-miR-182—Sp
significantly higher expression level as the first NGS library
preparation (indicated in orange). Notably, an analysis of raw
read counts revealed the same behavior indicating that the
differences between the two NGS batches are not due to the
normalization process (Figure SB). The same values are
presented in Figure SC and SD for miR-1271-5p. This
miRNAs was almost not present in the second NGS batch
while substantially expressed in the first batch. The CV values,
mean and standard deviations for all miRNAs are presented in
Supporting Table 4.

In summary, we found evidence for an influence of the NGS
measurement on specific miRNAs’ profiles including the library
preparation.

B CONCLUSION

In this study, we systematically explored the influence of
different conditions and freeze/thaw cycles on miRNA profiles
generated by using NGS. Furthermore, we investigated the
stability and reproducibility of the respective miRNA patterns
by carrying out 10 replicated measurements of the same
individual.

For selected miRNAs, we found an influence with respect to
up to three additional freeze thaw cycles. Directly processed
samples showed overall closest proximity to samples under-
going one freeze/thaw cycle. Interpreting the replicated
measurements of the same donor also revealed a certain degree
of variability. Specifically, we observed that the influence of the
NGS procedure of miRNAs seems to be partially exceed the
variability of the blood drawing and miRNA extraction. These
results were determined by considering all miRNAs for the
analysis, with techniques such as clustering and PCA as well as
considering the coefficient of variation. However, the variability
was only observed for a subset of all miRNAs. It is therefore
essential to be aware of the potential pitfalls of sample storage
and NGS preparation that can contribute to the variability of
miRNAs. If specific case control studies present these miRNAs
as candidates to detect a disease, further in-depth validation is
required.
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ABSTRACT: MicroRNAs are auspicious candidates for a new
generation of biomarkers. The detection of microRNA panels in
body fluids promises early diagnosis of many diseases, including
cancer or acute coronary syndrome. For a fast, sensitive, and
specific detection of microRNA panels on the bedside, medical
point-of-care systems that measure those biomarkers are required.
As microchips are promising technical tools for a robust signal
measurement at biochemical interfaces, we developed an assay for
the electrochemical multiplex quantification of microRNAs on a
CMOS chip with interdigitated gold electrode sensor positions.
The method is based on the formation of a tripartite hybridization
complex and subsequent both-sided ligation of the target nucleic
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acid to a reporter and capture strand. With a time to results of 30 min, the reported assay achieves a limit of detection below 1
pM, at a specificity down to single mismatch discrimination. It also offers very good signal dynamics between 1 pM and 1 nM,
thus, allowing reliable quantification of the detected microRNAs and easy implementation into automated devices due to a

simple workflow.

MicroRNAs (miRNAs) are short, noncoding transcripts of
18—24 bases that play an important role in the
regulation of gene expression.”” Especially the utilization of
blood-borne miRNAs as noninvasive biomarkers is a promising
field for new medical applications.”™> As miRNA levels within
the body fluids of patients can be used to diagnose diseases like
different types of cancer or heart disease,® ™’ diagnostic
techniques for fast, cheap and unbiased quantification of
miRNAs need to be developed.

Current detection technologies fail to meet all of the criteria
needed for the broad application of miRNA-based diagnostic
assays in medicine. In particular, most methods that are able to
deliver valuable data about clinically relevant miRNAs, like
next-generation sequencing, quantitative real-time PCR (qRT-
PCR) or microarray, are time-consuming, require amplification
or are costly.'

Electrochemical detection approaches promise a robust and
cost-effective alternative to optical techniques and are therefore
designated to be used in integrated medical devices for point-
of-care (POC) diagnostics.11 Microchip modules offering an
array of sensor spots with interdigitated gold electrodes have
been combined with gold—thiol coupled capture probes and an
electrochemically active reporter enzyme product, to form a
powerful measurement system for the detection of viral DNA,

A - ACS Publications  © 2015 American Chemical Society

bacterial RNA and PCR products, as reported previously.*”"*
In this article we present a new miRNA quantification assay
format, which leverages this detection mechanism. The assay
format is based on hybridization and subsequent ligation of the
target miRNA to an immobilized capture-component and a
label enzyme-reporter conjugate. The reported method is well
suited for application in POC diagnostics, as it is very fast and
free of target amplification or prelabeling.

B MATERIALS AND METHODS

Chip Module. The CMOS microchips used in this study
were supplied by Siemens Corporate Technology (CT),
Erlangen, Germany. These monolithically integrated silicon
chips presented an array of 16 X 8 sensor positions (spots) on
the surface (Figure 1A), with each spot encircled by a
polymeric ring structure (Figure 1B). The microchips were
implemented into a sealing compound forming a cavity to serve
as an interface between the sensor array and the reaction
solutions. The sensors comprised two interdigitated gold
electrodes for the generation and detection of a p-aminophenol
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Figure 1. CMOS chip module and schematic overview of experimental
setup. (A) Picture of a chip module in size comparison with a fingertip.
The red frame marks the sensor array with 16 X 8 positions, which is
encircled by the black sealing compound to form a reaction chamber
when the module is covered by a flat gasket. (B) Detailed view of a
single sensor position showing the interdigitated electrodes
surrounded by a polymeric ring. (C) Schematic drawing of the
experimental setup with the cartridge and the reader device as the
main components comprising several functional units. Blue arrows
represent fluidic connections, red arrows mechanical and thermal
effects, yellow arrows indicate data transfer and electrical control.
PDA: personal digital assistant.

(pAP) redox cycling process as has been described
previously.'>'°

Experimental Setup for CMOS Chip Measurements. A
fully integrated reader device prototype and suitable cartridges
with fluidic channels and reagent reservoirs were provided by
Siemens CT, Erlangen. The cavity of the chip module was
covered with a polydimethylsiloxane (PDMS; SYLGARD 184)
gasket to form a reaction chamber which was connected to the
fluidic channels of the cartridge after assembly. Following the
introduction of the sample the cartridge was inserted into the
reader device, which included a pump and valves to control the
cartridge fluidics, a Peltier element for thermal regulation of the
reaction chamber, contacts for communication with the
microchip, corresponding electronics and a personal digital
assistant with control software offering a graphical user interface
and measurement data storage (Figure 1C). Additionally, a
mechanism was embedded that could press the PDMS gasket
onto the chip surface with a defined pressure in order to lock
the spots of the sensor array during signal acquisition
(“LockSpot”). This procedure increases the measurement
signal by reducing the volume of the redox cycling reaction
chamber above the interdigitated electrodes and prevents cross-
talk between the sensor spots.'”’"*

Nucleic Acids. All synthetic oligonucleotides used in this
study are listed in Tables 1—4. Capital letters represent DNA-,
lowercased letters RNA-bases. The Esterase 2 reporter
conjugate was synthesized as described by Wang et al.”” The

Table 1. Synthetic miRNA Targets (RNA)

name sequence (5’ — 3')

miR-191 phosphate-caa cgg aau ccc aaa agc agc ug

miR-145 phosphate-guc cag uuu ucc cag gaa ucc cu
miR-181a phosphate-aac auu caa cgc ugu cgg uga gu
miR-425 phosphate-aau gac acg auc acu ccc guu ga
miR-636 phosphate-ugu gcu ugc ucg ucc cgc ccg ca
miR-15a phosphate-uag cag cac aua aug guu ugu g
miR-30c phosphate-ugu aaa cau ccu aca cuc uca gc
miR-362 phosphate-aau ccu ugg aac cua ggu gug agu
spike-in phosphate-aga ucg cca uac ccu gga gau a
let-7a phosphate-uga ggu agu agg uug uau agu u
let-7b phosphate-uga ggu agu agg uug ugu ggu u
let-7¢ phosphate-uga ggu agu agg uug uau ggu u
let-7f phosphate-uga ggu agu aga uug uau agu u

Table 2. Immobilization Strands (DNA/RNA Chimeras)

name sequence (S’ — 3')¢

IS 1 thiol-T4-CAG GAC GAT GAT GGc acg
1S2 thiol-T4-GAC CCA GCT CGT AGa ccg
IS 3 thiol-T4-CGA CGA TAG CTT GGu acg
IS 4 thiol-T4-TCA ACT TGT GCA GCc agc
1SS thiol-T4-CAC GTC AGA CAG CTc cag
IS 6 thiol-T4-CTT CTC GGT GTC CAc agg
1S 7 thiol-T¢-ACG TGT CTT CCG ctc g

IS 8 thiol-T¢-TAG GCT GAT GCC gca a
1S9 thiol-T4-GAG TCA CCT GCG CTg aac
IS 10 thiol-T¢-GCT AGA GCT GCG guc g

“Tg: T base spacer.

Table 3. Specific Capture Strands (DNA)

name sequence (5’ — 3') complement

SCS-miR-191 GGA TTC CGT TGC GTG CCA TCA IS1
TCG TCC TG

SCS-miR-181a  GCG TTG AAT GTT CGG TCT ACG IS2
AGC TGG GTC

SCS-miR-15a ATG TGC TGC TAC GTA CCA AGC 1S 3
TAT CGT CG

SCS-miR-425 GAT CGT GTC ATT GCT GGC TGC IS 4
ACA AGT TGA

SCS-miR-145 GGA AAA CTG GAC CTG GAG CTG I
TCT GAC GTG

SCS-miR-30c AGG ATG TTT ACA CCT GTG GAC 1S 6
ACC GAG AAG

SCS-miR-636 GAC GAG CAA GCA CAC GAG CGG 1S 7
AAG ACA CGT

SCS-miR-362 GTT CCA AGG ATT TTG CGG CAT 1S 8
CAG CCT A

SCS-spike-in TAT GGC GAT CTG TTC AGC GCA 1S9
GGT GAC TC

SCS-negative GTA CCG ATC CTA CGA CCG CAG IS 10
CTC TAG C

SCS-let-7a TAC TAC CTC AGC TGG CTG CAC IS 4
AAG TTG A

spike-in miRNA has an artificial alien sequence, which has no
BLAST match in the Homo sapiens RefSeq RNA database,”” to
be applicable in measurements of endogenous RNA samples.

Endogenous total RNA including miRNAs was extracted
from blood donor samples collected in PAXgene tubes as
described by Keller et al.”* The collection and use of human
samples was approved by the Institutional Ethics Committee of
the University Erlangen-Nuremberg, Germany.
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Table 4. Reporter Conjugate and Specific Reporter Strands
(DNA)

name sequence (S’ — 3')¢ complement

RC-Est2 phosphate-GCA ACG AGC GC-T,
Esterase2

SRS-miR-191 GGT TGC GCT CGT TGC CAG CTG RC-Est2
CTT TTG

SRS-miR-181a  GGT TGC GCT CGT TGC ACT CAC RC-Est2
CGA CA

SRS-miR-15a GGT TGC GCT CGT TGC CAC AAA RC-Est2
CCATT

SRS-miR-425 GGT TGC GCT CGT TGC AGG GAT RC-Est2
TCC TG

SRS-miR-145 GGT TGC GCT CGT TGC AGG GAT RC-Est2
TCC TG

SRS-miR-30c GGT TGC GCT CGT TGC GCT GAG RC-Est2
AGT GT

SRS-miR-636 ~ GGT TGC GCT CGT TGC TGC GGG RC-Est2
CGG

SRS-miR-362 GGT TGC GCT CGT TGC ACT CAC RC-Est2
ACC TAG

SRS-spike-in GGT TGC GCT CGT TGC TAT CTC RC-Est2
CAG GG

SRS-let-7a GGT TGC GCT CGT TGC AAC TAT RC-Est2
ACA ACC

“T,: T-base spacer.

Oligonucleotide Annealing. For the capture units, 20 yuM
each of the immobilization strand (IS) and the complement
specific capture strand (SCS) were added to 300 mM NaCl, 10
mM MgCl,, and 0.02% Tween 20 in S0 mM Tris/HCI at pH
7.6, incubated at 60 °C for 2 min and slowly cooled down to
room temperature.

In case of the reporter units, for each nucleic acid target 0.7
UM of the Esterase 2 reporter conjugate (RC-Est2) and 1 uM
of the target specific reporter strand (SRS) were annealed using
the same procedure.

Chip Spotting. Immobilization of the capture units on the
chip surface was done with a SciFlexArrayer SS (Scienion)
spotting system. Spotting solutions were made of 10 uM
capture double-strand diluted in 3X SSC buffer pH 8.0, 1.5 M
betaine, and 100 yuM TCEP. The cleaned gold electrodes of
each sensor position were covered with 1.2 nL of the respective
spotting solution, with each of the 16 columns of the sensor
array forming an eight spot detection cluster for one miRNA
target. The capture units for let-7a, spike-in, and negative
control covered three clusters each that were distributed on the
chip surface. After an incubation time of 2 h at room
temperature and 50% humidity the chip modules were washed
with ultrapure water, blocked with The Blocking Solution
(Candor Bioscience) for 15 min in a humidity chamber, dried
and stored in a N, atmosphere until further use.

MiRNA Detection Assay. A quick ligation buffer was
prepared for the ligation reaction containing 50 mM NaCl, 10
mM MgCL, 1 mM DTT, 1 mM ATP, and 7.5% PEG-6000 in
66 mM Tris/HCl buffer at pH 7.6.”” The esterase 2 substrate p-
aminophenyl butyrate (pAPB) was synthesized as described by
Wang et al."” The utilized cartridge offered reagent reservoirs of
70 (ligation solution), 60 (low salt buffer), and 240 uL
(substrate reagent), respectively. Unless otherwise stated, 1X
SSC buffer was used as system fluid, which was also utilized to
rinse the reaction chamber between assay steps. The applied
volume of sample solution was 60 uL (exception: 10 ng/uL
measurement in Figure 7A: 48 uL). The assay protocol is
described in Figure 2 and the corresponding figure legend.

Data Recording and Analysis. During measurement, the
reader device digitally recorded a single data point per sensor
spot every 0.5 s. For that purpose the electrical currents
received from both interdigitated electrodes were automatically
summarized by addition of the absolute values. We analyzed
these raw data using Labview 2011 software (National
Instruments). The slope (AI) was calculated as described in
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Figure 2. Schematic assay principle and protocol. Hybridization (A): The sample solution containing the target nucleic acids, 5.8 nM of each
Esterase 2 reporter unit and 0.05% Tween 20 in 5x SSC buffer was drawn over the chip surface in three portions and incubated for 5 min each to
form a tripartite complex with the immobilized capture units. The reaction chamber was washed with system fluid to remove any excess of reporter.
Ligation (B): T4 DNA Ligase (100 u/ml, Thermo Scientific) was applied to the array in quick ligation buffer for S min. Then the reaction chamber
was washed with low salt buffer (2 mM NaCl in 2 mM Tris/HCl pH 7.6) for S min to get rid of all assay components not covalently bound by
ligation. Measurement (C): 1 mM pAPB enzyme substrate in 20 mM NaCl, 20 mM Tris/HCl pH 7.6 was pumped on the array surface and the
sensor spots were locked for data acquisition. pAPB was converted to pAP by surface bound Esterase 2 enzymes and subsequent redox cycling at the
interdigitated gold electrodes was measured. All assay steps were executed at 37 °C: L, label enzyme (esterase 2); pAP, p-aminophenol; QI,

quinoneimine.
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the General Principle. For each target, the AI values gained
from all corresponding spots in three consecutive measure-
ments at the end of one assay run (technical replicates) were
used to calculate the median and the median absolute deviation
(MAD). The median was preferred over the arithmetic mean to
eliminate outliers caused by irregularities in the employed
materials (sensor electrodes, surface of PDMS gasket).
Correction of calculated values by negative control was done
by subtraction of the median of the negative signals from the
respective median and addition of the MAD of the negative
signals to the corresponding MAD value.

miRNA qRT-PCR Measurement. qRT-PCR quantification
of miRNA was performed using assays and accompanying
reagents from Life Technologies. Life Technologies reagents:
Tagman microRNA RT kit (Cat. No. 4366597), Tagman
universal MMIX II with UNG (Cat. No. 4440045), Tagman
microRNA assays INV (Cat. No. 4427975, INV 002299 for
miR-191-5p, INV000480 for miR-181a-Sp, INV 000389 for
miR-15a-5p, INV001516 for miR-425-5p, and INV 000419 for
miR-30c-Sp). Measurements were performed on the Stratagene
MX-3005p Real-Time PCR System (Agilent Technologies)
according to the manufacturers’ instructions. Standard curves
with concentrations from 1 pM to 10 nM were generated for
each target miRNA to calculate the molar concentrations of the
endogenous miRNAs in the analyzed total RNA sample.

Calculation of Endogenous miRNA Concentrations.
Standard curves for the CMOS chip assay were measured with
synthetic miRNAs from 1 to 100 pM total concentration in the
sample solution. The equation of the relationship between the
signal AI and the target concentration was calculated using a
linear trend line. The endogenous miRNA was measured
employing chip modules from the same immobilization batch.
The target concentrations in the total sample solution were
calculated using the respective equation. The volume fraction of
the total RNA sample in the sample solution was incorporated
in the calculation to obtain the original target concentration.

Bl RESULTS AND DISCUSSION

General Principle. The presented method makes use of a
generic esterase 2-coupled reporter oligonucleotide (reporter
conjugate, RC-Est2)'” and a set of thiol-modified chimeric
capture immobilization strands (IS). Additionally complemen-
tary counter-strands with overhangs specific for the target
miRNAs (specific reporter/capture strands, SRS/SCS) are
required to form preannealed double-stranded reporter and
capture units. The sequences of all assay components used in
this study can be found in Tables 2—4. Prior to the assay
procedure, the capture double-strands had been immobilized
on the interdigitated electrodes of their respective sensor
positions by gold—thiol coupling.

In the first step of the assay run, the reporter double-strands
and the miRNA targets were incubated with the surface-bound
capture units to form a tripartite hybridization complex, which
is stabilized by base-stacking effects at the three emerging nick-
sites (Figure 2A).”>>° After a short washing step performed to
remove the excess of reporter units, ligase was added to
covalently connect the two ends of the target miRNA to the
adjacent reporter and capture strand (Figure 2B). As
phosphorylated 5’-RNA-ends cannot be efficiently ligated to
3’-OH-DNA ends by T4 Ligases,”” a chimeric 5'-thiol-modified
oligonucleotide strand with a major DNA part and four RNA-
bases at the 3’-end was used. After the ligation step, the
reaction chamber was washed with a low salt buffer to remove

all assay components that were not covalently bound to the
immobilized capture strands (Figure 2C). To read out the
esterase 2 reporter signal, p-APB substrate was added and the
electrical current caused by pAP redox cycling at the
interdigitated gold electrodes was measured. The whole process
was fully automized with a time to results (TTR) of only 30
min.

Figure 3 shows an example of raw electrical current data
collected during a measurement at the end of a 100 pM target
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Figure 3. Electrochemical signal course. The digitally recorded raw
data of the electrical currents (I) acquired from a miR-30c specific
sensor position and a negative control sensor during assay runs with
miR-30c target concentrations of 100 (A) and 0 pM (B) are plotted
over measurement time. Reporter units for nine different miRNAs
(cardiac panel) and at least one additional miRNA target (showing
positive signals) were present in the sample solution of both assay
runs. The sensor positions were locked at time point 0 s. Points 0.5,
1.0, and 1.5 were used to calculate the slope of the electrical current
(AI) in downstream data analysis.

miRNA and a 0 pM control assay. The current shows an
increase over time only when the sensor target was present in
the hybridization sample, proving a successful practical
execution of the described procedure. In downstream analysis
the raw data of the experiments were processed by using three
time points (0.5 to 1.5 s) to calculate the slope of the current
for each sensor position with the least-squares linear fit
technique.

Multiplex. To investigate the ability of the here proposed
quantification method to measure several miRNAs in parallel in
a multiplex setup, a panel of measurement components for
eight miRNAs related to cardiovascular disease®**™** (cardiac
panel), a spike-in, and a negative control were designed,
respectively (see Tables 1—4). Using this set of assay
components, four members of the cardiac panel, miR-191,
-15a, -145, and -636, were multiplex measured at a
concentration of 100 pM each. In a second assay run, the
same concentrations of the other four target nucleic acids of the
panel, miR-181a, -425, -30c, and -362, were detected in the
same manner. The spike-in control was used in both runs to
secure comparability of the results. As the data confirms, the
reported method provides a very good multiplexing capacity
being insensitive to cross-talk effects (Figure 4).

Sensitivity. Calibration curves for all miRNA members of
the cardiac panel were determined by repeating the assays
described in Multiplex and applying several different concen-
tration levels of the target miRNAs. A double logarithmic
overlay of the acquired data points illustrates very good signal
dynamics between 1 pM and 1 nM target concentration. This
demonstrates the suitability of the presented method for
miRNA quantification at low concentration levels (Figure SA).

DOI: 10.1021/acs.analchem.5b02850
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Figure 4. Multiplex measurements with an eight miRNA target panel.
The results of two assay runs with reporter units for miR-191, miR-
181a, miR-15a, miR-425, miR-145, miR-30c, miR-636, miR-362
(cardiac panel), and spike-in are shown. The sample solutions also
contained 200 pM spike-in and 100 pM of each panel miRNA divided
on the two assays. Medians and median absolute deviations (MAD)
were plotted after correction by negative control.
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Figure S. Standard curves and analytical sensitivity. (A) The multiplex
assays from Figure 4 were repeated with different target concentrations
ranging from 100 fM to 10 nM. Medians and MADs were plotted to
obtain standard curves for all miRNAs of the cardiac panel. (B) Data
of miR-191 were corrected by negative control and normalized to the
spike-in signal. The 3MAD-line (median+3*MAD) was gained from a
control experiment with only spike-in control as target nucleic acid.

Figure 5B illustrates a sigmoidal calibration curve obtained from
the normalized measurement data for miR-191. The corre-

sponding zero line representing the median plus three median
absolute deviations (MADs) was gained from a zero
concentration control assay. The shown data indicate a high
analytical sensitivity considering the absence of any target or
reporter amplification in the applied method.

Specificity. The biggest challenge for the specificity of
nucleic acid detection assays is the differentiation of targets that
differ only in a single or few nucleotides. When working with
miRNAs the let-7 family is often used as a benchmark for
specificity testing, as several of its members exhibit only one or
two nucleotide differences. Four candidates of this family (let-
7a, let-7b, let-7c, and let-7f) were selected to evaluate the
specificity of the assay format (Figure 6A). The assay
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B
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let7c 8
let-7f 0
14
0+
spike-in " let-7a
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Figure 6. Discrimination of let-7 family members. (A) Let-7b, -7c, and
-7f sequences differ from the assay target let-7a only by one or two
mismatches (shaded dark gray). (B) 1 nM of each synthetic miRNA
target was measured in separate assay runs. The sample solutions
contained reporter units for let-7a and spike-in as well as 1 nM spike-in
target in 2X SSC buffer with 0.05% Tween 20. A 0.5X SSC buffer was
used as system fluid. Medians and MADs were plotted after correction
by negative control. The table shows the relative signal for each
miRNA after normalization to the spike-in control in percent.

components were designed for the quantification of let-7a.
One nM of each target was measured separately in the presence
of the spike-in control. The acquired data point out that let-7b
with two mismatches and let-7f with a single mismatch near the
central nick site of the tripartite hybridization construct can be
distinguished from let-7a very well, leading to no false-positive
signal at the let-7a specific sensor positions (Figure 6B). Let-7c
shows a cross hybridization of 8% caused by an unfavorable
position of the single mismatch. Presumably an optimized
oligonucleotide design and fine-tuning of the hybridization
conditions could improve this result if required. Overall the
presented miRNA quantification method exhibits high
specificity, which is comparable to the performance of
commercially available miRNA detection assays (Affymetrix
QuantiGene 2.0 miRNA Assay; Exiqgon miRCURY LNA
microRNA Array).

Endogenous miRNA. The reported miRNA detection
method was used to quantify endogenous miRNAs of the
cardiac panel in purified total RNA samples from donor blood.

12108 DOI: 10.1021/acs.analchem.5b02850
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Different amounts of total RNA were taken from a single
sample and were multiplex measured utilizing the validated
assay components for the eight miRNAs. For miR-191, miR-
181a, miR-15a, miR-425, and miR-30c the detected signal
corresponded with the concentration of total RNA in the
hybridization solution (Figure 7A). Two miRNAs (miR-636,
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Figure 7. Quantification of endogenous miRNAs in total RNA
samples from donor whole blood. (A) Different amounts of total RNA
from a single purification sample were measured with the reported
detection method applying the cardiac panel assay components and
200 pM spike-in. Medians and MADs were plotted after correction by
negative control. (B) Three assay runs with 1 ug total RNA from a
second sample and 200 pM spike-in target were performed using the
cardiac assay panel to investigate reproducibility. Medians and MADs
of the five higher abundant miRNAs were plotted after negative
control correction and normalization to the spike-in control. The table
shows calculated CV values for the diagramed miRNA candidates.

miR-362) did not show this correlation due to very low
abundance in the measured sample. The miR-145 signal levels
gained from the measurements of the two lower RNA amounts
were inverted hinting to a miRNA concentration near the limit
of the analytical sensitivity in the investigated range of sample
material. The measured signal for the spike-in control was
reciprocal to the applied relative sample volume suggesting a
sensitivity of the synthetic miRNA to remaining impurities in
the endogenous RNA fraction, whereas the detection system
was not affected. This has to be taken into account when
comparing the spike-in signals acquired from measurements of
samples from different purification runs.

Figure 7B shows the normalized signals for miR-191, miR-
181a, miR-15a, miR-425, and miR-30c determined from three

equal assay runs. The same amount of material was taken from
a single total RNA sample for all three experiments. The results
reveal a good reproducibility (CV values 0.04—0.16) of the
reported quantification method for the multiplex measurement
of endogenous miRNAs.

Finally, we compared the measured quantities for the five
higher abundant miRNAs of the cardiac panel with values
obtained by qRT-PCR. For this purpose, a pool of extracted
total RNA from several purifications was analyzed applying
both quantification methods. The molar concentration of each
target miRNA in the total RNA sample was calculated from the
measurement data using corresponding standard curves. The
resulting concentration values reveal a weak correlation
between the two quantification methods. Details are provided
in the respective scatter plot (Figure 8). This is, however, in-
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Figure 8. Comparison with qRT-PCR results. A pool of extracted total
RNA was measured with the reported detection method as described
in Figure 7 (2 pg total RNA per run) and with qRT-PCR. The
concentrations of the five higher abundant miRNAs of the cardiac
panel were calculated for two ligation assay runs and three qRT-PCR
experiments, as described in Materials and Methods. The mean values
were plotted in a scattergraph.

line with known results. Intraplatform comparability of different
miRNA detection systems is known as consisting challenge.”*
Specifically, several studies have already demonstrated limited
correlations between hybridization-based methods and qPCR
when analyzing miRNA expression profiles.”> ™’ Stated reasons
include lack of standardized normalization, differences in
miRNA processing, and difficulties with the distinction of
precursors and mature miRNAs.** The efficiency of the
detection of frequently occurring variants of miRNA targets,
so-called isomiRs, has even been shown to vary considerably
between different gPCR platforms.38 Therefore, a case-related
validation of the suitability of a detection system for the analysis
of a specific miRNA expression pattern will be necessary prior
to clinical application.

B CONCLUSIONS

The miRNA detection method reported in this paper is
sensitive, specific and very fast. The presented data show an
analytical sensitivity below 1 pM target concentration, and
though amplification-based methods like qRT-PCR might be
more sensitive, they are additionally prone to errors caused by
contaminations and amplification bias.** Furthermore, the
specificity of this hybridization-based measurement technique
was demonstrated by successful discrimination of down to
single nucleotide mismatch candidates of the let-7 family.

DOI: 10.1021/acs.analchem.5b02850
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An extraordinary characteristic of the reported assay is the
excellent quantifiable range over 3 orders of magnitude with a
TTR of only 30 min. Therefore, a high resolution for the
quantification of target nucleic acids is ensured. The keys to this
feature are the use of a huge excess of reporter compounds and
its effective removal prior to the signal measurement through a
harsh washing step. Thus, both fast formation of the
hybridization construct and low background signal are
combined. The covalent attachment of the label enzyme to
the immobilized capture molecule via ligation and the
utilization of a very stable label enzyme are crucial to maintain
the positively labeled capture sites during the low salt washing
conditions.

A combination of the reported approach with a CMOS array
microchip for electrochemical redox cycling signal acquisition
allowed for an 8-plex (plus controls) measurement of a
predefined miRNA panel. As the microchip provides 128 sensor
positions there is still room for extension of the number of
simultaneously quantified miRNAs. The assay procedure itself
is simple and thus was easily integrated into a portable reader
device prototype offering a fluidic system and an electronic
signal read-out (Siemens CT), whereby fully automated assay
runs were enabled.

This portable quantification system can be a great tool to
evaluate or utilize diagnostically relevant miRNA biomarker
panels that are currently investigated for a multitude of different
diseases by numerous research groups.
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Abstract

Introduction: Molecular biomarkers for Alzheimer’s disease (AD) can support detection and
improved care for patients, but novel candidates require verification. We previously reported a 12-
micro RNA (miRNA) blood-based signature using next-generation sequencing (NGS) of 54 AD cases
and 22 controls.

Methods: We performed validation of 49 AD cases and 55 controls using NGS and also included 20
mild cognitive impairment and 90 multiple sclerosis samples to identify nonspecific markers. Thus,
103 AD cases, 77 unaffected controls, and 110 diseased controls were sequenced. Although the initial
cohort came predominantly from the United States, the validation samples were collected in Germany.
Results: Five hundred eighty miRNAs were detected in the blood. In the initial cohort, we observed
203, in the validation cohort, 146 dysregulated miRNAs at a significance level of 0.05. With 68
miRNAs, the overlap was significant (P = .0003). Likewise, the area under the receiver operator
characteristic curve values of the miRNAs correlated (correlation of 0.93; 95% confidence interval

0.89-0.96; P <107'9).

Discussion: MiRNAs have the potential to support AD diagnosis and patient care.
© 2016 Alzheimer’s Association. Published by Elsevier Inc. All rights reserved.

Keywords: Alzheimer’s disease; miRNA; Biomarker; Validation

1. Introduction

Alzheimer’s disease (AD) care represents one of the
grand challenges in health care systems worldwide. It is
the most common form of dementia affecting already in

A part of the study has been funded by Siemens Healthcare. Siemens had
no influence in study design, study set up, cohort selection, or data analysis.

*Corresponding author. Tel.: +49-681-302-68611; Fax: +49-681-302-
68610.

E-mail address: andreas.keller@ccb.uni-saarland.de

http://dx.doi.org/10.1016/j.jalz.2015.12.012

2009 more than 27 million individuals. Given demographic
changes, it is expected that by 2050, the worldwide number
of AD patients continuously will rise to 86 million [1]. The
identification of peripheral biomarkers for an early, at best
presymptomatic, detection of AD has the potential to
improve AD patient care. Currently, B-amyloid (AB) and
tau protein levels in the cerebrospinal fluid (CSF) are applied
to distinguish between patients with AD and elderly individ-
uals without AD [2]. In addition to these tests and imaging-
based approaches that are applied in clinical routine

1552-5260/© 2016 Alzheimer’s Association. Published by Elsevier Inc. All rights reserved.



566 A. Keller et al. / Alzheimers & Dementia 12 (2016) 565-576

(e.g., positron emission tomography, structural magnetic
resonance imaging [MRI] or functional-connectivity MRI),
many molecular biomarker panels have been proposed for
improved diagnosis. An overview of respective novel early
test candidates is provided here [3]. Such tests are frequently
not validated or just to a limited amount. Among the most
promising candidates are multiplexed protein panels, as
described by Doecke et al. [4], or lipidomic panels as
described by Mapstone et al. [5]. Another class of markers
are small non-coding micro RNAs (miRNAs). These have
been described as circulating markers in many human pa-
thologies [6]. Like other biomarker panels, blood-borne
miRNAs were usually validated just to a restricted degree.
Few studies reveal the full potential of respective test on
large cohorts. Among the most promising studies are vali-
dated biomarker signatures in pancreatic cancer, as recently
described by Schultz et al. [7].

For AD, over a dozen studies in blood cells, plasma, and
serum have been carried out. The heterogeneity in study set-
up, underlying technology, number of miRNAs profiled,
cohort sizes, and biostatistics impedes a comparison or
meta-analysis of the studies. Among the studies, we pre-
sented a case-control study on a US cohort of AD patients
and controls that indicated a certain potential of miRNAs
as AD markers [8]. After an initial screening using next-
generation sequencing (NGS) of 54 AD cases and 22
unaffected controls, we performed technical and biological
validation of 12 markers, including 10 known miRNAs
and two novel miRNA candidates, using real-time
quantitative reverse transcription PCR (RT-qPCR). Toward
a clinical application, we recently established a novel assay
that allows for quantifying respective miRNA on immuno-
assay analyzers that are used for routine diagnosis in central
laboratories worldwide [9]. This assay allows for quanti-
fying miRNAs with performance metrics comparable with
standard enzyme-linked immunosorbent assay tests.

Whether the initially proposed signature measured pre-
dominantly from US samples can be replicated in an inde-
pendent cohort remained, however, unclear. To facilitate
clinical application, respective independent validation is,
however, urgently required. Thereby, it is essential to use
the same technologies (miRNA extraction, miRNA
profiling, and biostatistics) to prevent falsified results intro-
duced by bias. We, thus, set out to understand whether the
miRNAs that have been discovered in the screening can be
replicated in a German cohort by NGS. Although one alter-
native would have been to measure only the 12 miRNAs
evaluated by RT-PCR in the initial study, we profiled the
full portfolio of miRNAs by NGS again to understand how
well the miRNAs overall can be replicated in a group of pa-
tients with different ethnical background.

Altogether, we screened 290 individuals by NGS,
including the initial 54 AD cases and 22 unaffected controls
that have been previously published, a replication cohort
consisting of individuals collected in Germany of 49 AD
cases and 55 controls. Beyond these samples, we also

included 20 mild cognitive impairment (MCI) patients and
90 multiple sclerosis (MS) patients to understand whether
the discovered miRNAs are specific for AD. Thereby, we
generated almost 4 billion small RNA reads that were eval-
uated by computer-aided approaches.

2. Methods
2.1. Patients and miRNA profiling

We collected 2.5-mL blood from AD patients, controls,
and MCI and MS patients in PAXgene Blood RNA tubes
(PreAnalytiX) tubes. Patient characteristics (age, gender,
age of onset, mini-mental state examination, Montreal
cognitive assessment score, A} 42, tau and phospho-tau
values, antidementive drugs, beta-blocker, and antihyperten-
sive drugs) of the novel AD (n = 49) and unaffected control
(n = 55) cohort are presented in Table 1.

The analytical procedure was performed as described pre-
viously [6,8]. In brief, from the tubes, total RNA was isolated
using the PAXgene Blood miRNA Kit (Qiagen) following
the manufacturer’s instruction. For sequencing library
preparation, 200 ng of total RNA was used (quantified by
RNA 6000 Nano Chip using Bioanalyzer 2100 [Agilent]).
Preparation was performed according to the protocol of
the TruSeq Small RNA Sample Prep Kit (Illumina).
Concentration of the ready prepped libraries was measured
by using the Bioanalyzer (DNA 1000 Chip). Libraries
were then clustered with a concentration of 9 pmol with
six samples in one lane. Sequencing of 50 cycles was
performed on a HiSeq 2000 instrument (Illumina) and
demultiplexing of the raw sequencing data was done using
CASAVA version 1.8.2.

Table 1
Information on newly measured AD samples and controls in the validation
study

Alzheimer’s

Variable disease Controls P value
Age 70.7 = 8.2 673+ 7.8 .034
Age of onset 68.7 = 8.1 NA .39
Gender (f/m) 22/27 29/26 44
MMSE (0-30) 21.6 = 3.8 29.5 = 0.86 <107'¢
MoCA (0-30) 159 + 4.7 28.8 + 2.1 <107'®
Abetad?2 (pg/mL) 453 + 209 NA NA
Tau (pg/mL) 629 *+ 334 NA NA
p-tau (pg/mL) 83 £43 NA NA
Antidementive 14/34 NA NA
drugs (yes/no)
Beta-blockers 7/31 NA NA
(yes/no)
Other antihypertensive 17/21 NA NA

drugs (yes/no)

Abbreviations: AD, Alzheimer’s disease; NA, not applicable; MMSE,
mini-mental state examination; MoCA, Montreal cognitive assessment;
p-tau, phosphorylated tau.

NOTE. For age, age of onset, MMSE, and MoCA, two-tailed unpaired ¢
tests were calculated. For gender, Fisher’s exact test has been applied. With
respect to the age of onset, the age distribution was compared with the age
distribution of controls.
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2.2. Statistical analysis

All 290 samples were processed by miRDeep2 as
described previously [8,10] before downstream analysis in
R (version 3.0.2) had been carried out. For all samples
together, quantile normalization was performed and all
miRNAs with <5 reads in less than five samples were
excluded to minimize noise. This procedure resulted in a
set of 580 miRNAs that were further investigated. Where
applicable, P values were adjusted for multiple testing
using Benjamini-Hochberg correction. For hypothesis
testing, we calculated unpaired two-tailed ¢ tests. Because
not all miRNAs were normally distributed, we also calcu-
lated nonparametric Wilcoxon Mann-Whitney (WMW) tests
(unpaired, two tailed). Beyond the hypothesis tests, the area
under the receiver operator characteristic curves (AUC) was
calculated for each miRNA. For correlating AUCs in both
cohorts, AUCs were provided in an interval between 0 and
1. miRNAs with higher expression in AD have AUC <0.5
and miRNAs with higher expression in controls >0.5, miR-
NAs that are equally abundant have AUCs of around 0.5. To
calculate confidence intervals (CIs) for the AUC, 1000 boot-
strap samples have been performed using the pROC
package. As further statistical approaches, we performed
hierarchical clustering as implemented in the Heatplus R
package (read counts were transformed to z-scores and com-
plete linkage clustering relying on the Euclidian distance
was done). We also carried out principal component analysis
(PCA) as implemented in the prcomp R package and showed
the first versus second principal component as scatter plot.
Finally, analysis of variance (ANOVA) has been applied to
the three groups: AD, unaffected controls, and diseased con-
trols (MCI/MS).

To combine the predictive power of multiple miRNAs,
machine learning has been performed similar to the
approach described previously for lung cancer [11]. In
detail, support vector machines using a radial basis function
as kernel were trained and evaluated using fivefold cross
validation on the complete data set. To account for variations
between different cross-validation runs, the procedure has
been repeated with 20 random partitions in test and training
data. To select most informative miRNAs with respect to
AD, a stepwise forward feature selection based on the P
values has been carried out. Here, in each iteration, the k fea-
tures (k was varied between two and 500 features) with
lowest P values in the training part of the cross validation
were selected and subsequently evaluated on the test sample
part. To check for potential over training, 20 repetitions of
permutation tests have been performed. Here, the complete
subset selection step as well as the classification was carried
out with randomly permuted class labels.

2.3. MiRNA enrichment and targetome analysis

We applied the miEAA tool (http://www.ccb.uni-saar
land.de/mieaa_tool), which builds up on GeneTrail [12],

which is tailored for gene set enrichment analysis, to find
categories that are enriched with the 68 miRNAs significant
in both studies and compared them to the background of all
580 miRNAs that were expressed in this study. All results
with adjusted P values <.05 in an overrepresentation anal-
ysis after adjustment for multiple testing were considered
significant.

To investigate putative downstream effects, we focused
only on validated targets that have been extracted from the
most recent build of the miRTarBase database (release 6,
September 2015) [13]. We excluded the targets with weak
interactions and include only those with functional interac-
tions from that database leaving us with 6862 pairs of miR-
NAs targeting genes. Of these, 1638 have been duplicated
entries, which were also removed, leaving us with 5224 pairs
of miRNAs and validated targets. For the 68 miRNAs that
overlapped in both studies, we built the full target network
and also considered hubs, i.e., genes that are targeted by at
least five miRNAs. Because these results may be biased to-
ward more frequently analyzed miRNAs or genes, we also
carried out random permutation tests. From all 580 miRNAs
that were expressed but not among the 68 miRNAs overlap-
ping in both studies (512 miRNAs) as background distribu-
tion, we randomly picked 68 miRNAs and performed the
same analysis as mentioned previously. Specifically, we
counted how many miRNAs target the hubs that are discov-
ered for the original data. This random procedure has been
repeated 10,000 times.

3. Results

For each of the 290 individuals (54 AD cases and 22 un-
affected controls that have been previously published, novel
49 AD cases and 55 controls, 20 MCI and 90 MS patients),
about 14 million reads were generated, totaling 3.85 billion
NGS reads that have been statistically evaluated. The main
goal of the present study is to compare the results on the pre-
viously published screening cohort (54 AD patients and 22
unaffected controls with similar age/gender distribution)
and the newly measured German validation cohort (49 AD
patients and 55 unaffected controls with similar age/gender
distribution).

Beyond the validation of the initial results comparing AD
to unaffected controls, we asked whether the signatures
found by NGS are specific for AD. We, thus, sequenced 90
MS and 20 MCI samples that were used as non-AD controls.
After excluding miRNAs that are expressed close to the
background and contribute substantially to the noise in the
signatures, 580 markers remained in our final data set
(Supplementary Table 1).

In the following, we first compare the overall signatures
in the screening and replication cohort and then focus specif-
ically on the initially published signature. Second, we
compare the miRNA abundance to clinical information
such as therapy. Third, we derive in silico downstream infor-
mation on the targets and target networks of the reported
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Alzheimer miRNAs, and fourth, we compare the Alzheimer
patients to patients with other diseases (MS and MCI).

3.1. Comparing AD samples to controls

First, we compared the dysregulation of all miRNAs be-
tween AD patients and unaffected controls in the screening
and replication, not including the MCI and MS patients.
Because for all miRNAs the abundances were not normally
distributed, we performed WMW tests for calculating signif-
icance values in addition to ¢ tests (the ¢ test P values are pro-
vided in Supplementary Table 1). In the US cohort, we
observed 203 dysregulated miRNAs at a significance level
of 0.05 before adjustment and 127 dysregulated miRNAs af-
ter adjustment for multiple testing using WMW tests. In the
validation cohort, we observed lower effect sizes and gener-
ally higher P values. Here, 146 miRNAs were dysregulated
at a significance level of 0.05 before adjustment, 49 remain-
ing after adjustment for multiple testing. In both cohorts, we
found slightly more miRNAs with lower expression in AD
patients. Of the 203 and 146 miRNAs, 68 overlapped. Given
the total number of 580 expressed miRNAs, 203 miRNAs in
the screening, and 146 in the validation cohort and an over-
lap of 68 miRNAs, we asked whether this overlap is statisti-
cally significant. Using the hypergeometric distribution, we
calculated a statistically significant overlap (P =.0003). De-
tails on the significance values (raw and adjusted ¢ test and
WMW test, P values, and AUC values) are provided in
Supplementary Table 1. To provide further evidence for
the high degree of concordance, we correlated the AUC
values of the 68 miRNAs in the screening and validation
cohort (Fig. 1). The correlation was as high as 0.93 (95%
CI, 0.89-0.96) with a significance value <10~ ', Impor-
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Fig. 1. AUC values for the comparison AD versus matched controls in the
screening cohort (x-axis) and the validation cohort (y-axis). Abbreviations:
AUC, area under the receiver operator characteristic curves; AD, Alz-
heimer’s disease.

tantly, all 68 miRNAs match in the direction of regulation
in the screening and replication cohort. As a graphical repre-
sentation, we illustrate the expression of the 68 miRNAs as
heat map after hierarchical clustering in Fig. 2. This heat
map, which is based on z-scores of miRNAs in the screening
and validation cohort, highlights a cluster with most controls
on the right hand side, most AD patients in the middle, and a
cluster containing AD and controls on the left hand side.

Initially, we published a 12-miRNA marker signature,
containing 10 miRNAs known from miRBase and two novel
miRNAs discovered in our screening cohort. In the replica-
tion, we focused only on known miRNAs as annotated in
the reference database because novel miRNAs predicted by
NGS may represent artifacts. Fig. 3 details all markers that
have been dysregulated in the replication in the same direc-
tion as initially observed. However, not all miRNAs’ P values
(two-tailed WMW test adjusted for multiple testing) were
below the alpha level of .05 in the replication. Especially
miR-5010-3p and miR-26b-5p with significance values of
0.16 and 0.82 were not significantly dysregulated. Nonethe-
less, the correlation of AUC values of the screening and vali-
dation cohort was similar to the 68 markers overlapping in
both studies (0.92), indicating that already the initial signa-
ture has been reasonably selected using only one cohort.

The marker with the lowest P value in the discovery and
validation study combined was miR-151a-3p (adjusted
P value of 1077) with an AUC of 0.74. On average, we
measured 3758 reads in AD samples versus 2158 reads in con-
trol samples. Overall, largest AUCs were reached for hsa-miR-
17-3p (AUC 0.77, adjusted P value of 10~ °). For miRNA
17-3p and 151a-3p, the receiver operator characteristic
(ROC) curve is exemplarily shown in Figs. 4A and B, respec-
tively. The blue shaded areas in the ROC curves correspond to
the 95% CI that have been calculated by 1000 bootstrap sam-
ples. Altogether, the combined analysis of both cohorts yielded
192 significant miRNAs (two-tailed WMW test) before adjust-
ment for multiple testing of which 127 remained significant
after adjustment (details in Supplementary Table 1).

Although already single markers have a remarkable diag-
nostic potential, we performed a classification using Support
Vector Machines (SVMs). The procedure has been carried
out with a filter-based subset selection on the complete data
set using 20 repetitions of fivefold cross validation (details
are provided in the Methods section). In combining the pre-
dictive power of miRNAs using SVMs on 200 markers, the
AUC increased significantly (z-score base P value of <.05)
from 0.77 for best single marker to 0.84 on average for the
200 marker signatures. A representative example from the
repeated cross-validation runs is presented in Fig. 4C. With
the AUC, also the accuracy of the classification improved.
For the best single marker accuracy, specificity and sensi-
tivity were 73.3%, 75.3%, and 71.8%, respectively. By using
signatures, the accuracy increases to 78.2%. Specificity and
sensitivity were 68.9% and 87.6%. As the ROC curve
in Fig. 4C demonstrates, specificity and sensitivity can,
however, be well traded off against each other.
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Fig. 2. Heat map after hierarchical clustering of the 68 miRNAs overlapping in both studies. Green individuals are controls, and red individuals AD cases. The
color code for the cases and controls are projected between the dendrogram and the heat map. This figure contains all AD samples and all controls from the
screening and validation cohort. Abbreviations: miRNA, micro RNA; AD, Alzheimer’s disease.
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tion vice versa). The effects were, however, frequently lower in the replica-
tion cohort. Abbreviations: miRNA, micro RNA; AUC, area under the
receiver operator characteristic curves.

3.2. Correlation of miRNome to therapy and other
available clinical information

Because we had access to CSF markers of neurodegener-
ation, we correlated the available clinical and neurochemical
information with the miRNA repertoires. Furthermore, the
patients included in the study got different therapies such
that we were also able to estimate variations in miRNA abun-
dance correlated to the therapy.

First, we investigated a potential influence of antidemen-
tive and antihypertensive drugs. We did not observe any sig-
nificant miRNA differences between AD patients with and
without such treatment after adjustment for multiple testing.
These data suggest that the influence of typical drug therapy
on the miRNA pattern in the blood of the AD samples is
negligible.

Disease duration may also influence miRNA pattern. In
the present study, we included patients’ blood samples close
to the time of initial diagnosis but also samples of patients at
more advanced stages. The mean lag time between diagnosis
and blood collection was 2 years. We, therefore, compared
samples of AD patients with disease duration <2 years to
samples of patients with longer disease durations. In this
comparison, we again calculated nonsignificant P values;
none of the miRNAs remained significant after adjustment
for multiple testing.

In a third comparison, we correlated values of cerebrospi-
nal biomarkers including Abeta42, tau, and phosphorylated
tau to all miRNAs separately. As for the drug analysis, we
also did not observe any significant miRNA after adjustment
for multiple testing.

3.3. MiRNA categories and the AD miRNAs’ targetome

To understand common grounds of the respective miR-
NAs, we applied miEAA using the standard parameters.

Specifically, we searched for categories that contain more
of the 68 miRNAs overlapping in both cohorts as compared
with the background of 580 miRNAs. With the lowest P
value, we of course found our initial Alzheimer disease
miRNA set. With respect to the organs category from miR-
Walk [14], we, e.g., observed overrepresentation of blood
platelets and erythrocytes but also neurons. We also found
a negative correlation of AD miRNAs with increasing age
in individuals without known disease affection, meaning
that the AD miRNAs per se were less expressed in controls
older than 100 years [15]. All enriched categories at a signif-
icance level of 0.05 are summarized in Supplementary
Table 2 along with the miRNAs contained in the respective
categories.

We also investigated putative downstream effects and
analyzed the targetome as described in the Materials and
Methods section. Focusing on validated targets of the 68
miRNAs, we discovered a total of 563 interactions. The re-
sulting network contains 33 miRNAs and 349 target genes.
Of the 349 targeted genes, 14 are validated targets of at least
five of the 33 miRNAs overlapping in both studies: VEGFA,
DICERI1, AGO1, PTEN, CDKNIA, APP, RB1, CCNDI,
CCND2, WEEL, IL13, HMGA2, TNFRSF10B, and MYC.
The resulting subnetwork containing the respective hubs is
presented in Fig. 5.

Because these analyses may be biased toward more
frequently analyzed genes or miRNAs, we performed
10,000 permutation tests. For randomly selected 68 miRNAs
from the background distribution, the same analyses as for
the original 68 miRNAs were done. As compared to the
563 interactions in the original data, we observed an average
of 390 miRNA-target interactions in the permutation tests,
targeting on average 330 genes. Both numbers were lower
compared with the original data; however, still 7.7% (overall
number of interactions) and, respectively, 39.5% (overall
number of genes) permutation runs exceeded the original re-
sults. Considering on the number of hubs, e.g., genes that are
targeted by at least five miRNAs, we found an average of 1.3
genes across the 10,000 permutation test runs. In none of
these runs, 14 genes were found to be targeted by at least
five miRNAs as for the original data, indeed the maximal
value was eight genes. Especially for the genes AGOI,
APP, and IL13, not a single miRNA targeting these genes
in the background distribution of 10,000 runs was observed.
Calculating the P value for each gene as fraction of permu-
tation tests with at least the same number of miRNAs target-
ing the respective gene (P value for those genes without any
hit were set to 1/10,000), all 14 genes remained significant at
an alpha level of 0.05 after adjustment for multiple testing.

3.4. Differentiation of AD from MCI and MS

In the previous section, we have described a successful
validation of miRNAs that distinguish between AD samples
and controls without known affection and similar age/gender
distribution. We also observed potential relevance of the
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miRNAs to changes in the metabolism of patients. The spec-
ificity of respective changes for AD remained, however, un-
answered. We, thus, asked whether similar differences could
be likewise detected in other diseases. In further computa-
tions, we first differentiated between AD and MCI patients.
Again, we observed a substantial upregulation of miRNAs in
AD patients. The lowest P value was discovered for miR-
30c-5p. Here, 5836 reads mapped on average to AD samples,

whereas 2158 mapped to MCI samples. Correspondingly,
the adjusted P value was 4 X 10~ " and the AUC was 0.9.
In sum, we found 148 significant miRNAs after adjustment
for multiple testing remaining below the alpha level of
0.05. Of these, 119 were upregulated in AD and 29 were
downregulated in AD samples as compared to MCI. The
classification results for MCI versus AD again exceeded
the single marker performance; however, from the limited
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MCI cohort, stable signatures can be derived just to a limited
extent.

Besides MCI, we also compared the AD profiles to neuro-
inflammatory disorders. For MS (clinically isolated syn-
drome [CIS] as well as relapsing-remitting multiple
sclerosis [RRMS]), we achieved the highest performance.
Here, the AUC derived from the SVM model was 0.983
(95% CI, 0.969-0.997). Comparing AD to both MS subtypes
CIS and RRMS, we did not observe significant differences in
classification performance.

To provide further evidence that the results of AD, unaf-
fected controls, and diseased control (MCI and MS) are
different, we performed PCA and plotted the first versus sec-
ond component as scatter plot (Fig. 6). Although the three
cohorts show an overlap, the tendency of different patterns
can be well observed, the unaffected controls are predomi-
nantly in the upper left part, the AD samples at the bottom,
and the MS samples in the upper right part. Another advan-
tage of our study is that for specific miRNAs, the patterns in
those three cohorts can be directly compared to each other.
Exemplarily, the two miRNAs differentiating between AD
and controls presented in Fig. 4 are shown as box plots in
Figs. 7A and B. For miR-151a-3p (adjusted ANOVA P value

of 6 X 10~ '?) and miR-17-3p (adjusted ANOVA P value of
3 X 107", the differences between AD and unaffected
controls can be observed. At the same time, diseased con-
trols show a similar pattern as the unaffected controls, indi-
cating that these miRNAs are specific for AD. On the other
hand, miR-363-3p (adjusted ANOVA P value of 10~°) pre-
sented in Fig. 7C is not only dysregulated in AD versus con-
trols but also in MCI and MS against controls and, thus, not
specific for AD. In sum, the results demonstrate that AD pa-
tients can be well separated from matched controls with
similar age and gender distribution. Likewise, MCI patients
show characteristic profiles that deviate from AD patients’
profiles. Other neurologic disorders such as CIS and
RRMS reveal even larger differences from AD and control
profiles. Although a difference in the age of MS patients to
the AD patients may contribute to the substantial differences
in miRNA abundance, our results suggest that our signatures
are rather specific for AD.

4. Discussion

To provide evidence that miRNAs measured from body
fluids are reasonable disease markers, additional validation
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in independent cohorts has to be carried out. In the present
study, we compared results of a miRNA marker discovery
study on AD that has been performed on a US cohort with
a German validation cohort. Between both studies, we
observed a good concordance, 68 markers were significant
in both studies.

Of the original marker signature, we focused on the 10
miRNAs from the reference database miRBase [16], leaving
out the two novel candidates that deserve further investiga-
tion toward the question whether the molecules represent
actual miRNAs or are artifacts from the NGS procedure.

Of the miRNAs, some were dysregulated significantly in
both studies although the baseline level of miRNA between
the US and German patients varied. One example is an
miRNA from our original study: miR-1285-5p has average
normalized read count of 8.9 and 3.6 in AD and controls
samples in the United States cohort. In the German cohort,
normalized read counts were 21.6 and 15.6 in AD and con-
trols. This miRNA was downregulated in AD samples from
United States and Germany; however, the absolute levels of
that miRNA were higher in samples from Germany. Because
these variations may reflect actual changes in miRNA levels
but likewise sample handling may affect levels, especially
for lower abundant miRNAs, technologies with improved
quantification such as RT-PCR or immunoassay technology
are likely more suitable for routine application. Likewise,

different threshold values in miRNA abundance of individ-
uals from different ethnics groups could be reasonable.
With respect to our recently published immunoassay, we
observed that around 25 of the 68 miRNAs are expressed
in a sufficient manner to be above the detection limit of
the immunoassay, whereas the remaining 43 would be too
close to the detection limit of this amplification-free quanti-
fication approach. This together with the required degree of
multiplexing makes RT-PCR a more reasonable platform for
measuring the AD miRNAs in clinics as compared with our
immunoassay.

Using machine learning techniques, we were able to
distinguish well between AD patients and controls. Because
of the previously described bias, we performed the whole
classification procedure as cross-validation on the complete
data set.

An enrichment analysis highlighted target genes that are
controlled by the dysregulated miRNAs. Our analysis high-
lighted 14 genes that are targeted by at least five of the 68
miRNAs dysregulated in both cohorts: VEGFA, DICERI,
AGO1, PTEN, CDKNIA, APP, RB1, CCNDI1, CCND?2,
WEEI, IL13, HMGA?2, TNFRSF10B, and MYC. Many of
those are key players for AD such as AP A4, or at least
described in the context of AD. Vascular endothelial growth
factor is known to be expressed in the brain of AD patients,
e.g., in frontal and parahippocampal cortex [17]. Thomas
et al. also report an increase of VEGF with disease severity.
Recently, it has been reported that exogenous As stimulate
normal adult human astrocytes to produce and secrete even
VEGF-A through calcium-sensing receptor-mediated
mechanism [18]. Beyond the expression in the brain, low
serum levels of VEGF are described to be associated with
AD [19].

In addition, the tumor-suppressor PTEN has been re-
ported to accumulate in Alzheimer neurofibrillary tangles
[20]. Specifically, PTEN, alters tau phosphorylation [21,22].

miR-26b, which has been already included in our previ-
ously published signature on downstream targets, has been
investigated. The known signaling cascades involve upre-
gulation of Rb1/E2F leading to substantial downstream
effects [23]. This miRNA was downregulated in blood of
AD patients in the screening and validation cohort, the de-
gree of downregulation was, however, marginal in the
replication (Fig. 3). Interestingly, this miRNA is described
to be upregulated in the brain of AD patients, showing the
opposite behavior than blood-borne patterns. Inverse regu-
lation of tissue and blood profiles has already been
observed, e.g., in the case of cancer miRNAs [24]. A
comprehensive PubMed analysis indicated several hundred
hits for nine of the 14 genes related to AD. A less obvious
example was Weel, which is active in neurons of normal
brain and is less active in AD patients. It is postulated
that it promotes activation of Cdc2/cyclin B1 and, thus,
represents a mitotic regulator, contributing to neurodegen-
erative processes [25].
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The core of our study was, however, to test whether the
initial miRNA signature from the screening cohort can be
replicated and beyond this, to compare the signature to other
diseases. To address the question whether the validated
signature is specific for AD patients, we compared the pro-
files also to MCI and MS patients. In both comparisons,
we observed significant miRNAs that let us distinguish be-
tween AD and the other two diseases. Although the prox-
imity of AD patients to MCI patients was closer as
compared with unaffected controls, we found larger differ-
ences from neuroinflammatory disorders. The different pro-
files between MCI and AD patients let us ask on significant
alterations in miRNA abundance depending on the disease
duration. In correlating the miRNA level to the disease dura-
tion of AD patients, we did, however, not observe a signifi-
cant influence. There are three reasons, the observed time
period may be too short, the observed cohort size is too small
to discover small changes in the abundance of single miR-
NAs, or there is indeed no significant correlation between
both variables. Similarly, we did not observe significant cor-
relation of medication to miRNA abundance. Although we
found a certain tendency for several miRNAs, no correlation
remained significant at an alpha level of 0.05 after adjust-
ment for multiple testing. As for the correlation to medica-
tion and disease duration, the correlation to other markers
may become significant if larger cohorts are tested.

5. Conclusion

In this study, we performed a blinded validation of a US
case-control study on AD with German patients and controls
that show comparable age and gender distribution. In gen-
eral, both cohorts showed a very substantial degree of
concordance. In this study, the medication of patients and
the duration of the disease had just a very limited influence
on the AD patients’ miRNA profiles. Increased cohorts are
required, however, to provide further evidence that miRNA
signatures are indeed not correlated to the disease duration
or therapy. Beyond distinguishing between AD patients
and unaffected controls, we also report differences in
miRNA abundance between AD, MCI, and MS patients.
Especially the comparison of AD and MCI patients may
contribute to the in-time detection of patients. Because small
sets of markers were sufficient to perform accurate diag-
nosis, a clinical application on established platforms such
as RT-PCR seems to be feasible.
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RESEARCH IN CONTEXT

1. Systematic review: We previously published an
article on Alzheimer micro RNAs (miRNAs) and a
systematic review on novel molecular Alzheimer
biomarkers. The result was that almost all novel
markers require additional validation.

2. Interpretation: Our findings suggest that miRNA sig-
natures can be well validated and may contribute to
in-time diagnosis of Alzheimer’s disease and on the
long term to improved patient care.

3. Future directions: The next reasonable step is the
validation of a cohort of around 1000 individuals us-
ing the markers that were significant in both
screening and validation study using another technol-
ogy such as RT-PCR.
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ABSTRACT

We present a human miRNA tissue atlas by deter-
mining the abundance of 1997 miRNAs in 61 tissue
biopsies of different organs from two individuals col-
lected post-mortem. One thousand three hundred
sixty-four miRNAs were discovered in at least one
tissue, 143 were present in each tissue. To define the
distribution of miRNAs, we utilized a tissue speci-
ficity index (TSI). The majority of miRNAs (82.9%) fell
in amiddle TSI range i.e. were neither specific for sin-
gle tissues (TSI > 0.85) nor housekeeping miRNAs
(TSI < 0.5). Nonetheless, we observed many differ-
ent miRNAs and miRNA families that were predom-
inantly expressed in certain tissues. Clustering of
miRNA abundances revealed that tissues like several
areas of the brain clustered together. Considering -3p
and -5p mature forms we observed miR-150 with dif-
ferent tissue specificity. Analysis of additional lung
and prostate biopsies indicated that inter-organism
variability was significantly lower than inter-organ
variability. Tissue-specific differences between the
miRNA patterns appeared not to be significantly al-
tered by storage as shown for heart and lung tis-
sue. MiRNAs TSI values of human tissues were sig-
nificantly (P = 10-8) correlated with those of rats;
miRNAs that were highly abundant in certain hu-
man tissues were likewise abundant in according
rat tissues. We implemented a web-based repository

enabling scientists to access and browse the data
(https://ccb-web.cs.uni-saarland.de/tissueatlas).

INTRODUCTION

Knowing the expression and distribution of different
molecule classes in tissues is essential for the understand-
ing of both physiological and pathological mechanisms. The
gene expression atlas (1), hosted at the European Bioin-
formatics Institute, collects gene expression patterns under
different biological conditions in various organisms. Like-
wise, the Human Protein Atlas presents information on pro-
teomes in various tissues (2). For the class of small non-
coding nucleic acids, the so-called microRNAs or miRNAs,
there is a lack of up-to-date databases showing their tissue-
specific distribution. The first and as of now most com-
prehensive analysis of miRNA abundance in different tis-
sues has been reported by Landgraf et al. in 2007 (3). This
sequencing-based study reported 340 miRNAs in 26 organs.
We recently investigated the miRNA repertoire of different
blood cell types (4), already indicating a complex miRNA
repertoire strongly dependent on the considered cell types.
To improve the understanding of the miRNA abundance in
human tissues, we now profiled 1997 different mature miR-
NAs for 61 tissues. In contrast to the previous catalogue of
miRNAs in human tissues, we measured all miRNA pro-
files from only two different individuals to minimize inter-
individual variability. We selected an array-based analysis to
have a robust platform for determining the miRNA abun-
dance. The applied Agilent microarray technology has been
proven sensitive and, more important, reproducible in a re-
cent comprehensive platform comparison (5). Using this
technology, we achieved technical Pearson correlation co-
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efficients of between 0.97 and 1 for technical replicates in
previous studies.

Here, we first characterize technical stability of our ap-
proach before we describe variations in the abundance of
the miRNAs across tissues. To provide easy access to the
tissue atlas, we implemented a web-based repository that
also links results to important miRNA resources. This web
service is freely available online at https://ccb-web.cs.uni-
saarland.de/tissueatlas.

MATERIALS AND METHODS
Tissues and RNA extraction

Tissues analysed in this study originated from two male
bodies. Both cadavers were obtained as anatomical gift to
be dissected in a study of medicine under German law. The
first body was from a 65-year-old male patient, who suffered
from multiple myeloma, a cancer that forms in a type of
white blood cells (plasma cells). The body was stored at 4°C
upon arrival at the anatomical institute and tissue samples
were collected the following day, i.e. 2 days post-mortem.
In total, we analysed 24 different tissues, i.e. adipocytes,
arachnoid mater, artery, colon, small intestine (ileum), dura
mater, brain, urinary bladder, skin, myocardium, bone (rib),
liver, lung, stomach, spleen, muscle, gall bladder, muscle fas-
cia, epididymis, intercostal nerve, kidney, thyroid, testis and
tunica albuginea of testis.

The second body was from a 59-year-old male individual,
who died a natural death. The body was frozen at —20°C
after arrival at the anatomical institute and dissected af-
ter 3 weeks of storage. Autopsy showed no signs of can-
cer. As we aimed at increasing the resolution our tissue at-
las, we collected 37 samples including several sub-areas for
different organs, i.e. nine brain areas (grey matter, white
matter, frontal, temporal, occipital, nucleus caudatus, tha-
lamus, pituitary gland and cerebellum), dura mater, spinal
cord, nerve, artery, vein, myocard, muscle, lymph node, thy-
roid, esophagus, stomach, pancreas, duodenum, jejunum,
colon, liver, three kidney areas (kidney unspecified, medulla
and cortex), spleen, adrenal gland, prostate, testis, skin,
adipocyte, lung, pleura and bone marrow.

To assess the influence of RNA degradation originating
from different storage times of the tissue on the miRNA
profile, we used normal lung and normal heart tissue that
was stored in physiological salt solution at 4°C for 1, 2, 3, 7
and 14 days, before RNA isolation. To understand short-
term effects on the miRNA pattern in a comprehensive
manner, we analysed lung tissue from another individual.
The following 16 time points were profiled: 0, 0.5, 1, 1.5, 2,
3,4,5,6,9,12, 24, 36, 48, 72 and 96 h.

To estimate inter-individual variations, we exemplarily
performed in-depth analysis for lung tissues. For 16 normal
tissue biopsies from different individuals, the miRNA ex-
pression intensity was determined as for the two bodies and
the samples from the degradation analysis.

RNA isolation and integrity

RNA was isolated using the miRNeasy Mini Kit (Qia-
gen) and the Qiagen tissue lyser using 7 mm stainless steel
beads. Tissue samples were disrupted for 5 min 30 Hz (1800

oscillations/min) in Qiazol lysis reagent. Further purifica-
tion was done according to manufacturer’s instructions.
Concentration and purity was measured using NanoDrop
2000 (Thermo Scientific). RNA integrity was measured us-
ing Bioanalyzer RNA Nano Chip (Agilent). As expected for
autopsy samples, the RNA integrity values (RIN) ranged
between 1.8 and 2.7.

miRNA profiling

Microarray analysis was performed using SurePrint 8 x
60K Human V19 miRNA microarrays (Agilent) that con-
tain 2007 miRNAs of miRBase V19 (http://www.mirbase.
org/), according to the manufacturer’s instructions for the
first corpse. For the second corpse, the most recent miR-
BAse v21 has been used and the analysis has been carried
out on 1997 human miRNAs present in both versions. In
brief, a total of 100 ng RNAs were processed using the
miRNA Complete Labeling and Hyb Kit to generate fluo-
rescently labelled miRNA. Microarrays were scanned with
the Agilent Microarray Scanner at 3 wm in double path
mode. Microarray scan data were further processed using
Agilent Feature Extraction software. The raw expression in-
tensity values are available for download at https://ccb-web.
cs.uni-saarland.de/tissueatlas. Since the normalization may
have an impact on the results, we performed all analyses on
the raw data, normalized data by quantile normalization
and by variance stabilizing normalization (6). For train-
ing the Variance Stabilized Normalization (VSN) model all
samples and all miRNAs were used. The detailed results
for the variance stabilizing normalization are provided in
the supplementary material. To account for negative values
(i.e. miRNAs that are not expressed, that may get a nega-
tive value due to background subtraction) a pseudo-count
has been added. All calculations have been carried out in R
version 3.0.2.

Tissue specificity index

To evaluate the variability of expression patterns, we calcu-
lated a tissue specificity index (TSI) for each miRNA anal-
ogously to the TSI ‘tau’ for mRNAs originally developed
by Yanai et al. (7). This specificity index is a quantitative,
graded scalar measure for the specificity of expression of a
miRNA with respect to different organs. The values range
from 0 to 1, with scores close to 0 represent miRNAs ex-
pressed in many or all tissues (i.e. housekeepers) and scores
close to 1 miRNAs expressed in only one specific tissue (i.e.
tissue-specific miR NAs). Specifically, the TSI for a miRNA
jis calculated as

N
Y (I —x50)

N-—1 ’
where N corresponds to the total number of tissues mea-
sured and x;; is the expression intensity of tissue i normal-
ized by the maximal expression of any tissue for miRNA

J-

tSlj =

Hierarchical clustering of tissues

To estimate the proximity of profiles from different tissues,
hierarchical clustering analysis has been applied. To ac-



count for the high dynamic range of miRNAs, clustering
has been performed on log expression intensities and miR-
NAs that are close to the background were removed. To
extend the cluster analysis, the 100 most variable miRNAs
have been selected. In each case, complete linkage hierar-
chical clustering using the Euclidian distance has been per-
formed.

Expression of miRNA families

For estimating the tissue specificity of miRNA families, we
extracted all miRNA families from the most recent miR-
Base version 21. For each miRNA precursor all mature
forms have been considered as family members, duplicated
mature miRNAs (e.g. coming from different precursors in
the same family) have been counted once in order to min-
imize a potential bias introduced by multiple precursors.
For discovering co-expressed miRNAs, Spearman correla-
tion of intensity values between all pairs of miRNAs has
been calculated. Network visualization has been performed
in Cytoscape.

Conservation of tissue specificity

To compare conserved tissue specificity in humans and rats,
we downloaded data from the Gene Expression Omnibus
(GEO) series GSE52754, containing expression profiles for
55 different rat tissues that have been measured using Ag-
ilent microarrays (8). To match miRNAs we extracted all
rat miRNA identifiers from the respective manuscript and
matched them via a 100% sequence match. For matching
miRNAs and matching tissues, we calculated and corre-
lated the tissue specificity indices. To minimize artefacts
introduced by normalization, we carried out all analyses
on raw data. Since this analysis only addresses the ques-
tion whether a miRNA is rather specific or a housekeeping
miRNA, we also correlated the human and rat expression
profiles using Spearman correlation.

Additional data from literature

In addition to the 44 tissue samples from the degradation
and reproducibility analysis, the 16 individual lung cancer
tissues and the 61 tissues from two bodies newly measured
for this study, we searched the literature for other stud-
ies where normal tissues have been profiled. In the GEO
(9), we found 1178 series related to miRNAs. Of these, 722
were from Homo sapiens. Excluding series with low sam-
ple count (below 20 samples), 302 series remained. After
excluding studies from body fluids such as serum, plasma,
blood or urine, we examined the remaining hits for avail-
ability of unaffected tissue measurements. The respective
data tables were downloaded from GEO and all IDs were
matched from the respective platform identifiers to miR-
Base Version 21 IDs. For the respective studies, raw and nor-
malized data (VSN and quantile normalized) were added
to our tissue atlas web repository. These include 43 samples
from 9 tissues and 463 miRNAs from GSE11879, 40 sam-
ples measured for 709 miRNAs from normal gastric tissue
from GSE23739, 48 benign prostate tissues measured for
480 miRNAs from series GSE54516 and 32 benign prostate
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tissues measured for 825 miRNAs from series GSE76260.
The data have been used partially in the present manuscript,
all data are included in the web-based tissue atlas resource.

RESULTS

In this work, we present the draft of a human tissue
miRNome atlas. In the first part of the manuscript, we de-
scribe pre-analytics, investigating the general reproducibil-
ity of the miRNA profile measurements and also the effect
of storage of tissues on miRNA profiles. In the pre-analytics
consideration, we measured 44 tissue miRNomes. It is es-
sential to understand respective variability to understand
the biological variability of different tissue miR Nomes.

In the second part, we describe the screening of all ma-
ture miRNAs from miR Base version 21 across different or-
gans of two male bodies. We investigated miRNA expres-
sion in 24 different tissues from the first body and in 37 dif-
ferent tissues from the second body. To determine the miR-
NAs abundance in the different tissues, we utilized a TSI
score, known from transcriptomics (7). Furthermore, we in-
vestigated the proximity of organs based on miRNA abun-
dances by hierarchical clustering and co-expression anal-
ysis. To estimate inter-individual variations, we measured
16 additional miR Nomes from control lung tissues and ex-
tracted further data sets from the GEO.

To provide researchers access to the first version of the
miRNA tissue atlas, we implemented a web-based repos-
itory that is freely available at www.ccb.uni-saarland.de/
tissueatlas.

Reproducibility of miRNA patterns

An important factor for estimating the biological variabil-
ity is to understand the technical variability of the under-
lying profiling platform. Previously, we compared techni-
cal reproducibility of the two common platforms, microar-
rays (Agilent) and NGS (Illumina HiSeq) (10). In these ex-
periments, we discovered an increased variability of miR-
NAs dependent of the sequencing library preparation. Sim-
ilarly, we observed a strong bias based on the nucleotide
composition of miRNAs (11). Of 10 replicated Agilent mi-
croarray measurements of the same individual, we calcu-
lated 10 * 9/2 pair-wise correlations of technical replicates.
Minimal correlation was 0.998 and mean/median correla-
tion 0.999, highlighting the high degree of technical repro-
ducibility of the array platform. To translate these results
on our tissue atlas and determine technical reproducibility
of the array analysis, technical duplicates from nine ran-
domly selected tissue samples from the second body were
measured. The duplicates were processed at different days
and have been measured on different arrays, each. Hierar-
chical cluster analysis shows that the technical replicates al-
ways clustered together showing that the applied technology
was suited to provide reproducible results (Figure 1 shows
the heat map for quantile-normalized data, Supplementary
Figure S1 for VSN-normalized data). Altogether, we found
high correlations between these technical replicates with the
overall lowest correlations at 0.986 and 0.994 observed for
liver tissue and pleura, respectively. Highest correlation of
0.999 was reached for the brain samples.
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Figure 1. Hierarchical clustering of the 44 samples included in the stability and reproducibility study. Quantile normalized and log, transformed expression
intensity values were used for clustering. The intensity values and distribution are presented in the upper left corner. In the present heat map, heart and
lung tissues cluster together on the right-hand side. Technical replicates (marked by ‘TR’ in the labels below the heat map) of other organs cluster together
in each case in the left-hand side. For VSN-normalized data the same representation is provided in Supplementary Figure S1.

Stability of miRNA patterns in tissues

Measuring tissues of corpses the storage time prior to RNA
extraction and a potential degradation of RNA may have
an influence on the profiles. We exemplarily investigated the
process for heart and lung tissue. Biopsies were taken from
two individuals and have been stored for 1, 2, 3, 7 and 14
days at 4°C. Hierarchical cluster analysis shows that all lung
and all heart samples each cluster together (Figure 1; Sup-
plementary Figure S1). The duration of the storage was,
however, not reflected in the clustering pattern indicating
that a storage time between 1 and 14 days at 4°C has a lim-
ited influence on the overall miRNA tissue pattern.

We also performed the analysis with more dense time in-
tervals within the first 3 days to understand short-term ef-
fects. For a lung tissue from a third individual 16 time points
between 0 and 96 h were profiled. These biopsies clustered
well together with the lung tissues from the second individ-

ual with storage time over 14 days. Again, no time curse
could be recognized in the clustering pattern.

Remarkably, the results presented above describe the
overall miRNA patterns. For single miRNAs still differ-
ences dependent on the storage could be observed. Thus,
we calculated the TSI for all lung tissues and for all tis-
sues in the pre-analytical study. With respect to lung tissues,
large TSI values mean in this case not tissue specific but
rather specific in one of the replicated measurements. We
thus expect that TSI values of miRNAs from the lung tis-
sue are low. Especially for five miRNAs we, however, calcu-
lated TSI values that are increased in lung tissue by at least
20%: hsa-miR-8069, hsa-miR-6821-5p, hsa-miR-4800-5p,
hsa-miR-6775-5p, hsa-miR-5001-5p. For all miRNAs, TSI
values from the pre-analytical step are summarized in Sup-
plementary Table S1.



Frequency of miRINAs per tissue and tissue specificity of miR-
NAs

For each miRNA in each tissue, we determined its pres-
ence and frequency using the so-called present calls as de-
termined by Agilent Feature Extraction software. Out of
the 1997 different mature miRNAs, 633 (31.7%) were not
detected in any of the tested tissues by the applied microar-
ray technology. Out of the remaining 1364 miRNAs, 143
(10.5%) were found in all tissues. To present more compre-
hensive information on the tissue distribution of miRNAs,
we utilized the miRNA TSI analogously to the mRNA TSI
‘tau’ that has successfully been employed by Yanai et al. (7).
This index has a range of 0—1 with the score of 0 correspond-
ing to ubiquitously expressed miRNAs (i.e. ‘housekeepers’)
and a score of 1 for miRNAs that are expressed in a single
tissue (i.e. ‘tissue-specific’ miRNAs). We calculated TSI for
the 1364 miRNAs that have been detected in at least one
tissue sample. For each miRNA, we compared TSI for the
two bodies, for raw, quantile- and VSN-normalized data
(Supplementary Table S2). Using the quantile-normalized
data for the first body, 83.7% of all miRNAs showed an av-
erage abundance throughout the tissues with intermediate
TSI values ranging from 0.15 to 0.85 (Figure 2A, Supple-
mentary Figure S2A for VSN-normalized data). Only one
miRNA (miR-3960) was ubiquitously expressed with a TSI
< 0.15 and 222 miRNAs showed a highly tissue-specific ex-
pression with TSI > 0.85. For the second body, 88.8% of
all miRNAs showed intermediate TSI values; one miRNA
(miR-6089) showed a TSI < 0.15 and 152 miRNAs a TSI
> 0.85 (Figure 2B, Supplementary Figure S2B for VSN-
normalized data). The correlation of the VSN-normalized
TSI values with the quantile-normalized TSI values was
0.88 (P < 10719).

The overall most tissue-specific miR-1-3p is presented
in Figure 3. For all 61 samples raw-, quantile- and VSN-
normalized expression intensities are presented as bar plot.
Respective bar plots for all miRNAs can be generated using
the online repository.

Clustering of tissue patterns and analysis of miRNA families

Beyond the analysis of single miRNAs, we determined the
overall similarity/dissimilarity of the miRNA pattern be-
tween the different tissues. We performed hierarchical clus-
tering of miRNAs and tissues using normalized expression
intensities. We found two major clusters, the first of which
containing mainly nervous system tissues and muscle tis-
sues from both bodies. In the second cluster, the organs
of the two individuals frequently did not cluster together
(Figure 4A). Since the large number of miRNAs used for
this clustering likely caused substantial noise, we restricted
the clustering analysis to the 100 miRNAs with the high-
est data variance (Figure 4B). Here, we found three main
clusters with the first one containing kidney, liver, stomach
and small intestine of both bodies. The second cluster ex-
clusively contained all brain tissue samples of both bodies
and nervous system related tissue, i.e. spinal cord and dura
mater. The third cluster contained thyroid, nerve, muscle,
myocardium and colon each of both bodies. Other organs
were found in different clusters, e.g. the lung samples and
the brain coverings dura mater and arachnoid mater. For
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VSN-normalized data we observed a similar pattern, how-
ever, we found a stronger tendency of clustering of individu-
als in the different sub-clusters (Supplementary Figure S3).

To gain further insights into expression of tissue-specific
miRNAs, we performed clustering with the 25 miRNAs dis-
playing a TSI > 0.85 for both bodies in raw-, quantile- and
VSN-normalized data (Figure 5). We found several groups
of miRNAs with tissue-specific expression. In detail, we de-
tected high expression of miR-133b, miR-133a-3p, miR-1-
3p and miR-206 in both muscle samples and, with the ex-
ception of miR-206 also in both myocardial samples. Addi-
tionally, we found a cluster of four miRNAs specifically ex-
pressed in various brain tissues, i.e. miR-338-3p, miR-219a-
5p, miR-124-3p and miR-9-5p. Another group of miRNAs,
miR-507, miR-514a-3p and miR-509-5p was almost exclu-
sively expressed in the testis samples. Besides these miRNA
clusters, we also found single miRNAs that were expressed
in a highly tissue-specific manner, i.e. miR-122-5p, miR-7-
5p and miR-205-5p were each exclusively expressed in liver,
pituitary gland and skin, respectively.

Tissue specificity of miRNA families

To further determine to what extend miRNA families show
similar abundances in specific organs, we calculated the
TSI not only for single miRNAs but also for mature miR-
NAs inside each miRNA family. Out of 187 miRNA fam-
ilies from the miR Base with at least two family members,
we analysed 25 miRNA families with at least five mature
forms (Figure 6A; Supplementary Table S3). We found sev-
eral miRNA families with high TSI values including the
above-mentioned mir-378 family with most of the fam-
ily members showing a high abundance in muscle tissues
and the myocardium. Similarly, the mir-506 family with
18 family members showed generally a high abundance in
testis tissue while they were less expressed in other tissues.
Other families, such as the mir-449 family with five mem-
bers, did not show a common pattern in the different tis-
sues: MiR-449¢-3p was expressed specifically in spleen tis-
sue, miR-449¢c-5p and -449b-5p in kidney and small intes-
tine, miR-449a in lung, kidney and brain and miR-449b-3p
in spleen. To extend this analysis we searched for miRNAs
co-expression patterns in specific tissues. We used a high
correlation cut-off and considered only miRNA-pairs with
Pearson correlation exceeding 0.95. Altogether, we identi-
fied 73 miRNA pairs with tissue co-expression. In addi-
tion to pair-wise interactions, we also found sub-networks
with at least four participants. The networks have been vi-
sualized using Cyto-Scape (Figure 6B). While we frequently
observed co-expression among mature members of specific
families (e.g. the mir-548 family), we also found correlations
of miRNAs from different miRNA families. For example,
miR-4312 was co-expressed with miRNAs from the let-7
family. Performing the same analysis with raw data, we de-
tected an increased number of co-expressions, but generally
confirmed the observation that has been based on the nor-
malized data.

Tissue specificity of -3p and -5p mature forms

We asked whether -3p and -5p mature forms of miRNAs
have different tissue specificity. To limit the bias of miR-
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Figure 2. Histogram plot for the frequency of TSI of miRNAs in different tissues. Panel A represents TSI of the first, panel B of the second body. The
vertical dotted lines correspond to the threshold originally proposed for defining housekeeping and specifically expressed miRNAs of <0.15 and >0.85.
The same representation for VSN-normalized data is presented in Supplementary Figure S2.

NAs that are annotated with only one mature form, we only
included those miRNAs that have two mature forms an-
notated and carried out the analyses in a paired manner
(41% of the 1364 mature miRNAs were included). First,
we investigated whether -3p or -5p mature forms are overall
higher expressed. For both quantile- and VSN-normalized
data, we calculated significantly higher expression of the -
5p mature forms. The effects in VSN exceeded the quantile-
normalized effects. Mature -5p forms were on average 21%
higher expressed as compared to -3p forms (paired t-test P-
value of 3.6x10719). To estimate whether the two mature
forms are more or less specific for tissues, we calculated and
compared the TSI values for the -3p and -5p forms. For
both, TSI values based on VSN- and quantile-normalized
data, we did not found significant differences between -3p
and -5p forms (P > 0.5 in both cases). Having a detailed
look at single miRNAs, we discovered that in all cases where
-3p and -5p mature forms were tissue specific independent
on the normalization technique the tissue patterns matched.
The best matching profiles were found for hsa-miR-140,
hsa-miR-378a, hsa-miR-509, hsa-miR-122, hsa-miR-124,
hsa-miR-192 and hsa-miR-455. Only for one miRNA, miR-
150, no significant correlation for -5p and -3p mature form
was calculated (Supplementary Figure S4). The -3p form
was specific for pancreas and the -5p form for stomach. All
TSI values for -3p and -5p mature forms of quantile- and
VSN-normalized data are available in Supplementary Ta-
ble S4.

Inter-individual variations

In the previous analyses, we suggested that miRNAs are tis-
sue specific. From two bodies it is impossible to extrapolate

inter-individual variations within specific organs. In a first
approach we searched for miRNAs that are overall higher
or lower in all tissues of one of the two bodies, independent
of the normalization technique. Two miRNAs, hsa-miR-
548n and hsa-miR-548ap-5p, fulfilled these stringent crite-
ria. Although these (and similarly differentially abundant
miRNAs between both individuals) miRNAs had low TSI
values and are not considered tissue specific the differences
emphasize the importance of incorporating inter-individual
variations.

We exemplarily analysed 16 lung tissue biopsies of 16 dif-
ferent individuals. Here, we expect miRNAs to be more ho-
mogenously expressed, leading to overall lower TSI values.
For the quantile- and VSN-normalized data, we calculated
significantly decreased TSI values in the individuals (P <
10719). The respective TSI values for biological replicates
of lung tissue and the two bodies are presented in Supple-
mentary Figure S5A (quantile normalized) and 5B (VSN
normalized). These figures also indicate that few miRNAs
have higher TSI in lung as compared to the overall TSI,
i.e. variations between organs are smaller than variations
between individuals. Inspecting the respective miRNAs, we
found that they usually were specific for other organs than
the lung and expressed to a very moderate limit in the lung.
Here, already small variations lead to artificially high TSI
values.

As the second example we downloaded expression values
from 32 prostate tissues from the GEO (not affected tissues
as part of a case-control cancer study, GSE76260). The TSI
values were calculated for quantile- and VSN-normalized
intensity values. Only the 625 miRNAs that were included
in both studies were considered. In this analysis the varia-
tions between individuals were even lower as compared to
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Figure 3. Bar plots for all 61 samples for miR-1-3p, the miRNA with highest overall TSI in the first and second body. The vertical dashed line separates
the first from the second body. TSI values for both bodies are highlighted in the figure. The miRNA is high expressed in muscle and myocardium. Raw-,
quantile- and VSN-normalized expression intensities for this miRNA match well across all different tissues.

the variations between organs. Again, TSI values were sig-
nificantly lower for prostate tissue (P < 107!%). The scatter
plots are analogously to the lung tissues presented in Sup-
plementary Figure S6. Also for the other tissues extracted
from the GEO, which are also available on the tissue atlas
web resource, lower TSI values were observed. In sum our
results thus indicate that the inter-individual variations are
smaller as compared to inter-organ variability.

Homology of tissue specificity in humans and rats

To addressed the question to what extend a tissue-specific
abundance of the miRNA pattern is conserved between hu-
man and rodents, we matched the data of our study to data

published in a recent study, which used the same miRNA
platform (Agilent) (8). From all miRNAs expressed in our
tissue collection, 230 matched in sequence identically be-
tween human and rat. Of the tissues included in the human
and rat studies, 42 organs could be matched. For all these
miRNAs and organs, we calculated the TSI values in human
and rat, showing an overall correlation of 0.362 (P-value of
9 x 107%). To determine the significance of this finding, we
additionally performed 1 million permutation tests, which
showed an average correlation value of 0. While these results
indicate an overall matching of miRNA abundances in hu-
mans and rats, the TSI does not acknowledge the origin of
the miRNAs, i.e. a value of 1 for a rat miRNA may indicate
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Figure 4. Hierarchical clustering of all tissues in both bodies. Log, transformed quantile normalized intensity values were used for clustering. The intensity

value distribution is shown in the upper right corner of the figures. Panel A shows significantly expressed miR NAs.

while panel B focuses on the 100 miRNAs

>

with overall highest data variance. The respective representation for VSN-normalized data is presented in Supplementary Figure S3.
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specificity for spleen and for the same miRNA specificity for
brain in humans. However, the overall correlation of the ex-
pression values of rat and human miRNAs was 0.361 (P <
10~19), indicative of a significant matching of human and rat
expression profiles. Similar to the results for humans in Fig-
ure 5, we clustered the miRNAs with high TSI values in hu-
man and rat. Altogether, we focused on very specific miR-
NAs: 54 miRNAs with TSI values exceeding 0.9 were con-
sidered. The resulting heat map where maximal rat and hu-
man miRNA expression was set to 100% to make both data
sets comparable to each other is presented in Figure 7. In
this analysis we did not observe a predominant clustering in
humans and rats but a strong tendency of organs to cluster
together. Examples of directly matching pairs include the
spleen, myocardium, muscle, pancreas, kidney, liver, stom-
ach, skin, brain or spinal cord. The miRNAs in this heat
map matched the specific miRNAs in Figure 5 very well
such as miR-133a-3p, and miR-133b for muscle and my-
ocardium or miR-9-5p, miR-219a-5p, miR-7-5p and miR-

124-3p for brain and spinal cord. Bar plots comparing each
miRNA directly for specificity in tissues of rat and human
are provided in the supplementary material.

DISCUSSION

As miRNAs emerge as important regulators of protein ex-
pression during tissue development and homeostasis, there
is an increasing need for a standardized atlas of miRNA ex-
pression in multiple human tissues. Although there is am-
ple evidence for differential miRNA expression in different
human tissues, the majority of studies investigate differen-
tial expression in only one organ/tissue. Due to the differ-
ent identification methods and normalization strategies, the
results of these studies are not easily comparable limiting
their value for comparison of miRNA expression in differ-
ent tissues. The optimal human miRNA tissue atlas would
be based on different fresh tissues each obtained from the
same donor; different donors should be of different age and
gender both of which are known to influence the miRNA
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pattern (12). As this ideal scenario is not possible in human
studies, fresh biopsy material could be used for miRNA iso-
lation with the advantage of yielding high-quality RNA.
There are, however, several disadvantages: (i) biopsies will
be mostly taken from patients with affected organs, (ii) high
inter-individual differences can mask tissue-specific differ-
ences of miRNA abundances, (iii) a bias is likely introduced
by multiple centres that are involved in tissue collections
and (iv) samples of vital organs, e.g. thalamus, spinal cord
or cerebellum, are not available. Alternatively, miRNAs can
be isolated from tissues collected from the same individu-
als upon autopsy. The advantage of the latter approach is
the availability of multiple tissues from the same individu-

als, even from vital organs, with the disadvantage of RNA
degradation in the samples due to the storage duration of
the body and the advanced age or the disease status of the
body donors. In context of our tissue atlas, the main ques-
tion is whether the differences in the abundance of miRNAs
induced by post-mortem RNA degradation, which is dif-
ferent from in-vitro RNA degradation by UV light or heat,
are higher than the differences between the tissues profiled.
There is scant evidence for extended post-mortem stability
of individual miRNAs (13,14). In case of whole miRNA tis-
sue profiles, Ibberson et al. found that RNA degradation
due to prolonged inadequate tissue storage has a random ef-
fect on miRNAs and compromises the reliability of miRINA
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hsa-miR-142-3p / rno-miR-142-3p
hsa-miR-15b-3p / rno-miR-15b*
hsa-miR-150-5p / rno-miR-150
hsa-miR-455-5p / rno-miR-455
hsa-miR-451a / rno-miR-451
hsa-miR-144-3p / mo-miR-144
hsa-miR-18a-5p / rno-miR-18a
hsa-miR-375 / rno-miR-375
hsa-miR-7-5p / rno-miR-7a
hsa-miR-493-5p / rno-miR-493*
hsa-miR-542-3p / rno-miR-542-3p
hsa-miR-34¢-5p / rno-miR-34c
hsa-miR-449a / rno-miR-449a
hsa-miR-133a-3p / rno-miR-133a
hsa-miR-133b / rno-miR-133b
hsa-miR-206 / rno-miR-206
hsa-miR-499a-5p / rno-miR-499
hsa-miR-28-3p / rno-miR-28*
hsa-miR-145-5p / rno-miR-145
hsa-miR-490-3p / rno-miR-490
hsa-miR-216a-5p / mo-miR-216a
hsa-miR-216b-5p / rno-miR-216b-5p
hsa-miR-122-5p / rno-miR-122
hsa-miR-203a-3p / rno-miR-203
hsa-miR-192-5p / rno-miR-192
hsa-miR-194-5p / rno-miR-194
hsa-miR-200a-3p / rno-miR-200a

brain (thalamus)

brain (cerebral cortex. temporal) (I

brain (thalamus) (2)(HU)

brain (pituitary gland)

brain (pituitary gland)
brain (cerebellum)
brain (cerebellu

smallintestine (duodenum)

Figure 7. Conservation of tissue-specific expression of miRNAs in human and rat. Matching miRNAs (100% matching of mature miRNA sequence) from
organ expression in rats and humans were calculated. For each miRNA in rats and humans the TSI was calculated and highly specific miRNAs were
clustered. Since overall expression in humans and rats varied, the maximal intensity of each miRNA in the two organs was set to 100% and all other
miRNAs were linearly scaled. All miRNAs with below 10% expression of maximal intensity are shown in grey to facilitate data interpretation (see also
colour gradient presented in the upper right corner). On the right-hand side the human/rat miRNA identifiers are shown, below the heat map the matched
tissues are presented (HU for human; RA for rat). For rat tissues the average intensity of replicated measurements is presented.

profiles, generating false positive deregulated miRNAs (15).
But they also clearly state that ‘even samples with the most
degraded RNAs still preserve a tissue-specific miRNA sig-
nature’. This finding is in line with our observations in the
present study. For lung and heart tissue we investigated
short- and long-term degradation, highlighting an overall
limited impact on the tissue specificity of miRNA profiles.
Only very few miRNAs were affected at all. Given the data
from two organs, we however cannot exclude the possibil-
ity that some tissue-specific miRNAs might be affected by
degradation of the sample. We are also aware that the au-
topsy samples of the two male individuals provide only a
snapshot of the full variability of miRNA expression. While
we aim at adding more full body profiles we supported the
data in the present study by tissue collections extracted from
the literature (e.g. gastric and prostate tissues) and by own
measurements (lung tissue).

We used a microarray platform for miRNA expression
detection since this platform shows a high reproducibility
as evidenced by the miRQC study (5). In our study, analysis
of technical replicates of nine samples processed in different
batches reached high correlation values above 0.986 for all
samples. In previous studies, we observed a substantial bias
introduced in Next Generation Sequencing (NGS) data by
sample preparation of blood samples (10). However, NGS
analysis would enable to detect presently unknown miR-
NAs as well miRNAs iso-forms that have demonstrated to
target biological pathways in a cooperative manner (16). A
key challenge with microarray data is normalization. Many
techniques that are frequently applied such as variance sta-
bilizing normalization or quantile normalization can have
a substantial influence on the results. Quantile normaliza-
tion e.g. assumes an overall similar distribution of all miR-
NAs. We thus performed the relevant analyses on raw data,
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quantile- and VSN normalization. Irrespective of the nor-
malization technique we found higher TSI values for miR-
NAs as, e.g. known from mRNAs (7). This result suggests
that miRNA expression is more tissue specific as compared
to mRNA expression.

The, as of now, most comprehensive study on tissue-
specific miRNAs in humans was published by Landgraf et
al. in 2007 (3). They sequenced 256 small RNA libraries
from 26 different organ systems and cell types of humans
and rodents, with ~1000 clone each. The human samples in-
cluded normal samples from 16 tissues most of them brain
and reproductive tissues. They identified 340 mature hu-
man miRNAs including 33 novel miRNAs not listed in the
miRBase version 9.1, which was the current version at the
time of the study (17). For canonical miRNAs they found
a high concordance of tissue-specific expression in humans
and rodents. When we compared our data to a data set on
55 different rat tissues available at GEO database (8), we
could confirm conserved tissue-specific expression of sev-
eral miRNAs, including miR-133b, miR-124 and miR-9.
Amongst others, Landgraf et al. detected tissue-specific ex-
pression of miR-122 in liver, of miR-9, miR-124 and miR
128a/b in brain, of miR-7, miR-375, miR-141 and miR-
200a in pituitary gland and of miR-142, miR-144, miR-
150, miR-155 and miR-223 in hematopoietic cells. Over-
all, our results correlated well with this data, confirming
specific expression of miR-122, miR-9, miR-124 and miR-
7 in the respective organs. Consistent with Landgraf's re-
sults, we found miR-122-5p as highest expressed miRNA
in the liver of both bodies. Our study, however, also iden-
tified low expression of miR-122-5p in spleen, gall blad-
der and veins. MiR-124 (miR-124-3p) was identified as the
third most specific miRNA in the nervous system by Land-
graf et al. We observed expression of this miRNA in dif-
ferent areas of the brain but not in other tissues. For miR-
144, we found highest expression in vein and spleen, consis-
tent with the assumption of residual hematopoietic cells in
these samples; additionally, we found high expression of this
miRNA in thyroid. Of note, miR-144 has been found highly
expressed in normal thyroid and downregulated in papil-
lary thyroid carcinoma (18). We also found high expression
of miR-1-3p, miR-133a-3p, miR-133b and miR-206 in my-
ocard and muscle. These miRNAs are known as myomiRs
that regulate key genes in muscle development (19,20). Ad-
ditionally, we detected a highly specific expression of miR-
205-5p, miR-514a-3p and miR-192-5p in skin, testis and
colon samples of one of the bodies, respectively. MiR-205—
Sp that is highly expressed in melanocytes and downregu-
lated in melanoma is inverse correlated with melanoma pro-
gression (21). MiR-514a-3p belongs to the miR-506 fam-
ily; the mouse orthologue of miR-506, mmu-201, has been
shown to be specifically expressed in reproductive tissues
(3). A significant decrease in expression of miR-192-5p in
colorectal cancer compared to normal mucosa has been re-
ported (22).

The knowledge of the expression pattern of miRNAs in
different tissues is essential for understanding normal de-
velopment and disease development of the respective tis-
sue. In addition, knowing the tissues that express specific
miRNAs helps to develop a miRNA found in whole blood
or serum into a biomarker for a specific disease. Elevated

serum levels of liver-specific miR-122 have been detected in
patients with drug induced liver injury, steatosis, hepatitis-B
and -C infections and in patients with hepatocellular carci-
noma (23-26). Elevated levels of circulating myomiRs, i.e.
miR-1, miR-206 and miR-133a/b, have been proposed as
biomarker for heart failure and different forms of muscle
dystrophy, but are also elevated after half-marathon run
(27-29).

In summary, we provide an atlas of miRNA expression
in multiple human tissues. This atlas can be used as starting
point for elucidation of the role of miRNAs in tissue devel-
opment and tissue-specific diseases.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENT

We acknowledge the support of Siemens Healthcare.

FUNDING

Saarland University and Siemens Healthcare. Funding
for open access charge: Saarland University and Siemens
Healthcare; funded in part by FP7 project BestAgeing.
Conflict of interest statement. None declared.

REFERENCES

1. Petryszak,R., Burdett,T., Fiorelli,B., Fonseca,N.A.,
Gonzalez-Porta,M., Hastings,E., Huber,W., Jupp,S., Keays,M.,
Kryvych,N. ez al. (2014) Expression atlas update—a database of gene
and transcript expression from microarray- and sequencing-based
functional genomics experiments. Nucleic Acids Res., 42,1D926-D932.

2. Ponten,F., Jirstrom,K. and Uhlen,M. (2008) The human protein
atlas—a tool for pathology. J. Pathol., 216, 387-393.

3. Landgraf,P.,, Rusu,M., Sheridan,R., Sewer,A., Iovino,N., Aravin,A.,
Pfeffer,S., Rice,A., Kamphorst,A.O., Landthaler,M. ez al. (2007) A
mammalian microRNA expression atlas based on small RNA library
sequencing. Cell, 129, 1401-1414.

4. Leidinger,P.,, Backes,C., Meder,B., Meese,E. and Keller,A. (2014)
The human miRNA repertoire of different blood compounds. BMC
Genomics, 15, 474.

5. Mestdagh,P., Hartmann,N., Baeriswyl,L., Andreasen,D., Bernard,N.,
Chen,C., Cheo,D., D’Andrade,P., DeMayo,M., Dennis,L. et al.
(2014) Evaluation of quantitative miRNA expression platforms in the
microRNA quality control (miRQC) study. Nat. Methods, 11,
809-815.

6. Huber,W., von Heydebreck,A., Sultmann,H., Poustka,A. and
Vingron,M. (2002) Variance stabilization applied to microarray data
calibration and to the quantification of differential
expression. Bioinformatics, 18(Suppl. 1), S96-S104.

7. Yanai,l., Benjamin,H., Shmoish,M., Chalifa-Caspi,V., Shklar,M.,
Ophir,R., Bar-Even,A., Horn-Saban,S., Safran,M., Domany,E. et al.
(2005) Genome-wide midrange transcription profiles reveal
expression level relationships in human tissue specification.
Bioinformatics, 21, 650-659.

8. Minami,K., Uehara,T., Morikawa, Y., Omura,K., Kanki,M.,
Horinouchi,A., Ono,A., Yamada,H., Ohno,Y. and Urushidani,T.
(2014) miRNA expression atlas in male rat. Sci. Data, 1, 140005.

9. Edgar,R., Domrachev,M. and Lash,A.E. (2002) Gene Expression
Omnibus: NCBI gene expression and hybridization array data
repository. Nucleic Acids Res., 30, 207-210.

10. Backes,C., Leidinger,P., Altmann,G., Wuerstle,M., Meder,B.,
Galata, V., Mueller,S.C., Sickert,D., Stahler,C., Meese,E. ef al. (2015)
Influence of next-generation sequencing and storage conditions on
miRNA patterns generated from PAXgene blood. Anal. Chem., 87,
8910-8916.



20.

21

. Backes,C., Sedaghat-Hamedani,F., Frese,K., Hart,M., Ludwig,N.,

Meder,B., Meese,E. and Keller,A. (2016) Bias in high-throughput
analysis of miRNAs and implications for biomarker studies. Anal.
Chem., 88, 2088-2095.

. Meder,B., Backes,C., Haas,J., Leidinger,P,, Stahler,C., Grossmann,T.,

Vogel,B., Frese, K., Giannitsis,E., Katus,H.A. et al. (2014) Influence
of the confounding factors age and sex on microRNA profiles from
peripheral blood. Clin. Chem., 60, 1200—1208.

. Nagy,C., Maheu,M., Lopez,J.P., Vaillancourt,K., Cruceanu,C.,

Gross,J.A., Arnovitz,M., Mechawar,N. and Turecki,G. (2015) Effects
of postmortem interval on biomolecule integrity in the brain. J
Neuropathol. Exp. Neurol., 74, 459-469.

. Lv,Y.H., Ma,K.J., Zhang,H., He,M., Zhang,P., Shen,Y.W., Jiang,N.,

Ma,D. and Chen,L. (2014) A time course study demonstrating
mRNA, microRNA, 18S rRNA, and U6 snRNA changes to estimate
PMI in deceased rat’s spleen. J. Forensic Sci., 59, 1286-1294.

. Ibberson,D., Benes, V., Muckenthaler,M.U. and Castoldi,M. (2009)

RNA degradation compromises the reliability of microRNA
expression profiling. BMC Biotechnol., 9, 102.

. Cloonan,N., Wani,S., Xu,Q., Gu,J., Lea,K., Heater,S., Barbacioru,C.,

Steptoe,A.L., Martin,H.C., Nourbakhsh,E. ez al. (2011) MicroRNAs
and their isomiRs function cooperatively to target common biological
pathways. Genome Biol., 12, R126.

. Griffiths-Jones,S., Grocock,R.J., van Dongen,S., Bateman,A. and

Enright,A.J. (2006) miR Base: microRNA sequences, targets and gene
nomenclature. Nucleic Acids Res., 34, D140-D144.

. Swierniak,M., Wojcicka,A., Czetwertynska,M., Stachlewska,E.,

Maciag,M., Wiechno,W., Gornicka,B., Bogdanska,M., Koperski,L.,
de la Chapelle,A. et al. (2013) In-depth characterization of the
microRNA transcriptome in normal thyroid and papillary thyroid
carcinoma. J. Clin. Endocrinol. Metab., 98, E1401-E1409.

. Callis,T.E., Chen,J.F. and Wang,D.Z. (2007) MicroRNAs in skeletal

and cardiac muscle development. DNA Cell Biol., 26, 219-225.
Thum,T., Catalucci,D. and Bauersachs,J. (2008) MicroRNAs: novel
regulators in cardiac development and disease. Cardiovasc. Res., 79,
562-570.

. Liu,S., Tetzlaff,M.T., Liu,A., Liegl-Atzwanger,B., Guo,J. and Xu,X.

(2012) Loss of microRNA-205 expression is associated with
melanoma progression. Lab. Invest., 92, 1084-1096.

22.

23.

24.

25.

26.

27.

28.

29.

Nucleic Acids Research, 2016, Vol. 44, No. 8 3877

Karaayvaz,M., Pal,T., Song,B., Zhang,C., Georgakopoulos,P.,
Mehmood,S., Burke,S., Shroyer,K. and Ju,J. (2011) Prognostic
significance of miR-215 in colon cancer. Clin. Colorectal Cancer, 10,
340-347.

Akamatsu,S., Hayes,C.N., Tsuge,M., Miki,D., Akiyama,R., Abe,H.,
Ochi,H., Hiraga,N., Imamura,M., Takahashi,S. et al. (2015)
Differences in serum microRNA profiles in hepatitis B and C virus
infection. J. Infect., 70, 273-287.

Krauskopf,J., Caiment,F., Claessen,S.M., Johnson,K.J., Warner,R.L.,
Schomaker,S.J., Burt,D.A., Aubrecht,J. and Kleinjans,J.C. (2015)
Application of high-throughput sequencing to circulating
microRNAs reveals novel biomarkers for drug-induced liver injury.
Toxicol. Sci., 143, 268-276.

Pirola,C.J., Fernandez Gianotti, T., Castano,G.O., Mallardi,P., San
Martino,J., Mora Gonzalez Lopez Ledesma,M., Flichman,D.,
Mirshahi,F., Sanyal,A.J. and Sookoian,S. (2015) Circulating
microRNA signature in non-alcoholic fatty liver disease: from serum
non-coding RNAs to liver histology and disease pathogenesis. Gut,
64, 800-812.

Xu,J., Wu,C., Che,X., Wang,L., Yu,D., Zhang,T., Huang,L., Li,H.,
Tan,W., Wang,C. et al. (2011) Circulating microRNAs, miR-21,
miR-122, and miR-223, in patients with hepatocellular carcinoma or
chronic hepatitis. Mol. Carcinog., 50, 136-142.

Akat,K.M., Moore-McGriff,D., Morozov,P., Brown,M., Gogakos,T.,
Correa Da Rosa,J., Mihailovic,A., Sauer,M., Ji,R., Ramarathnam,A.
et al. (2014) Comparative RNA-sequencing analysis of myocardial
and circulating small RNAs in human heart failure and their utility as
biomarkers. Proc. Natl Acad. Sci. USA, 111, 11151-11156.
Gomes,C.P, Oliveira-Jr,G.P., Madrid,B., Almeida,J.A., Franco,O.L.
and Pereira,R.W. (2014) Circulating miR-1, miR-133a, and miR-206
levels are increased after a half-marathon run. Biomarkers, 19,
585-589.

Cacchiarelli,D., Legnini,I., Martone,J., Cazzella,V., D’Amico,A.,
Bertini,E. and Bozzoni,I. (2011) miRNAs as serum biomarkers for
Duchenne muscular dystrophy. EMBO Mol. Med., 3, 258-265.



Fehlmann et al. Clinical Epigenetics (2016) 8:123
DOI 10.1186/513148-016-0287-1

Clinical Epigenetics

RESEARCH Open Access

cPAS-based sequencing on the BGISEQ-500 ® e
to explore small non-coding RNAs

Tobias Fehlmann', Stefanie Reinheimer®, Chunyu Geng?’, Xiaoshan Su?, Snezana Drmanac’*, Andrei Alexeev?,
Chunyan Zhang? Christina Backes', Nicole Ludwig®, Martin Hart?, Dan An? Zhenzhen Zhu?, Chongjun Xu®*,
Ao Chen?, Ming Ni?, Jian Liu?, Yuxiang Li%, Matthew Poulter?, Yongping Li% Cord Stahler', Radoje Drmanac®”,

Xun Xu?", Eckart Meese® and Andreas Keller'"

Abstract

compared it to other techniques.

Background: We present the first sequencing data using the combinatorial probe-anchor synthesis (cPAS)-based
BGISEQ-500 sequencer. Applying cPAS, we investigated the repertoire of human small non-coding RNAs and

Results: Starting with repeated measurements of different specimens including solid tissues (brain and heart) and
blood, we generated a median of 30.1 million reads per sample. 24.1 million mapped to the human genome and
23.3 million to the miRBase. Among six technical replicates of brain samples, we observed a median correlation of 0.
98. Comparing BGISEQ-500 to HiSeq, we calculated a correlation of 0.75. The comparability to microarrays was
similar for both BGISEQ-500 and HiSeq with the first one showing a correlation of 0.58 and the latter one
correlation of 0.6. As for a potential bias in the detected expression distribution in blood cells, 98.6% of HiSeq reads
versus 93.1% of BGISEQ-500 reads match to the 10 miRNAs with highest read count. After using miRDeep2 and
employing stringent selection criteria for predicting new miRNAs, we detected 74 high-likely candidates in the cPAS
sequencing reads prevalent in solid tissues and 36 candidates prevalent in blood.

Conclusions: While there is apparently no ideal platform for all challenges of miRNome analyses, cPAS shows high
technical reproducibility and supplements the hitherto available platforms.

Keywords: Next-generation sequencing, miRNA, Biomarker discovery, BGISEQ

Background

Currently, high-throughput analytical techniques are
massively applied to further the understanding of the
non-coding transcriptome [1]. Still, the full complexity
of non-coding RNAs is only partially understood. One
class of well-studied non-coding RNAs comprises small
oligonucleotides, so-called miRNAs [2, 3].

Among the techniques most commonly used for
miRNA profiling are microarrays, RT-qPCR, and next-
generation sequencing (NGS), also referred to as high-
throughput sequencing (HTS). An excellent review on
the different platforms and a cross-platform comparison
has been recently published [4]. A detailed examination
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of technologies, however, frequently reveals a bias. One
reason for the respective bias is the ligation step, as, e.g.,
reported by Hafner and co-workers [5]. For example, the
quantification of miRNAs differs between NGS and
microarrays as it is dependent on base composition [6].
Especially, the guanine and uracil content of a miRNA
seems to influence the abundance depending on the
platform used. A substantial strength of NGS is the abil-
ity to support the completion of the non-coding tran-
scriptome. Unlike microarrays and RT-qPCR, NGS
allows the discovery of novel miRNA candidates. To this
end, different algorithms have been implemented, with
miRDeep being one of the most popular ones [7]. A sub-
stantial part of small RNA sequencing data has been
obtained using HiSeq and MiSeq platforms (Illumina)
based on stepwise sequencing by polymerase on DNA
microarrays prepared by bridge PCR [8], as well as the

© The Author(s). 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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IonTorrent systems from Thermo Fisher Scientific using
a different type of polymerase-based stepwise sequencing
on micro-bead arrays generated by emulsion PCR, the
first method proposed for making microarrays for mas-
sively parallel sequencing [9]. Another approach is the
ligase-based stepwise sequencing also using micro-bead
arrays, applied for example by ThermoFisher Scientific’s
SOLiD sequencing platform, and which has also been
used to analyze and present novel miRNAs [10].

In the current study, we applied the new combinatorial
probe-anchor synthesis (cPAS)-based BGISEQ-500 se-
quencing platform that combines DNA nanoball (DNB)
nanoarrays [11] with stepwise sequencing using poly-
merase. An important advantage of this technique com-
pared to the previously mentioned sequencing systems is
in that no PCR is applied in preparing sequencing arrays.
Applying cPAS, we investigated the human non-coding
transcriptome. We first evaluated the reproducibility of
sequencing on standardized brain and heart samples,
then compared the performance to Agilent’s microarray
technique and finally evaluated blood samples. Using the
web-based miRNA analysis pipeline miRmaster and the
tool novoMiRank [12], we finally predicted 135 new
high-likely miRNA candidates specific for tissue and 35
new miRNA candidates specific for blood samples.

Methods

Samples

In this study, we examined the performance of three
sample types using three techniques for high-throughput
miRNA measurements (Illumina’s HiSeq sequencer, Agi-
lent’s miRBase microarrays, and BGI's BGISEQ-500 se-
quencing system, see details below). The three
specimens were standardized HBRR sample ordered
from Ambion (catalog number AM6051) and UHRR
sample ordered from Agilent (catalog number 740000).
UHRR and HBRR samples were measured in two and
six replicates, respectively. As third sample type, we used
PAXGene blood tubes. Here, two healthy volunteers’
blood samples were collected and miRNAs were ex-
tracted using PAXgene Blood RNA Kit (Qiagen) accord-
ing to manufacturer’s protocol. The study has been
approved by the local ethics committee.

Next-generation sequencing using BGISEQ-500

We prepared the libraries starting with 1 pg total RNA
for each sample. Firstly, we isolated the microRNAs
(miRNA) by 15% urea-PAGE gel electrophoresis and cut
the gel from 18 to 30 nt, which corresponds to mature
miRNAs and other regulatory small RNA molecules.
After gel purification, we ligated the adenylated 3’
adapter to the miRNA fragment. Secondly, we used the
RT primer with barcode to anneal the 3’ adenylated
adapter in order to combine the redundant unligated 3’
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adenylated adapter. Then, we ligated the 5 adapter and
did reverse transcript (RT) reaction. After cDNA first
strand synthesis, we amplified the product by 15 cycles.
We then carried out the second size selection operation
and selected 103-115 bp fragments from the gel. This
step was conducted in order to purify the PCR product
and remove any nonspecific products. After gel purifica-
tion, we quantified the PCR yield by Qubit (Invitrogen,
Cat No. Q33216) and pooled samples together to make
a single strand DNA circle (ssDNA circle), which gave
the final miRNA library.

DNA nanoballs (DNBs) were generated with the ssDNA
circle by rolling circle replication (RCR) to enlarge the
fluorescent signals at the sequencing process as previously
described [11]. The DNBs were loaded into the patterned
nanoarrays and single-end read of 50 bp were read
through on the BGISEQ-500 platform for the following
data analysis study. For this step, the BGISEQ-500 plat-
form combines the DNA nanoball-based nanoarrays [11]
and stepwise sequencing using polymerase, as previously
published [13-15]. The new modified sequencing ap-
proach provides several advantages, including among
others high throughput and quality of patterned DNB
nanoarrays prepared by linear DNA amplification (RCR)
instead of random arrays by exponential amplification
(PCR) as, e.g., used by Illumina’s HiSeq and longer reads
of polymerase-based cycle sequencing compared to the
previously described combinatorial probe-anchor ligation
(cPAL) chemistry on DNB nanorrays [11]. The usage of
linear DNA amplification instead of exponential DNA
amplification to make sequencing arrays results in lower
error accumulation and sequencing bias.

Next-generation sequencing using HiSeq

Samples have been sequenced using Illumina HiSeq se-
quencing according to manufacturer’s instructions and
as previously described [16, 17].

Agilent microarray measurements

For detection of known miRNAs, we used the SurePrint
G3 8x60k miRNA microarray (miRBase version 21, Agi-
lent Technologies) containing probes for all miRNAs
from miRBase version 21 in conjunction with the
miRNA Complete Labeling and Hyb Kit (Cat. No. 5190-
0456) according to the manufacturer’s recommenda-
tions. In brief, 100 ng total RNA including miRNAs was
dephosphorylated with calf intestine phosphatase. After
denaturation, Cy3-pCp was ligated to all RNA
fragments. Labeled RNA was then hybridized to an indi-
vidual 8x60k miRNA microarray. After washing, array
slides were scanned using the Agilent Microarray
Scanner G2565BA with 3-um resolution in double-pass
mode. Signals were retrieved using Agilent AGW
Feature Extraction software (version 10.10.11).
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Data availability

The new sequencing data using BGISEQ-500 data are
available in the Additional file of this manuscript (Add-
itional file 1: Table S3).

Bioinformatics analysis

The raw reads were collapsed and used as input for the
web-based tool miRMaster, allowing for integrated ana-
lysis of NGS miRNA data. On the server side, mapping to
the human genome was carried out using Bowtie [18] (one
mismatch allowed). miRNAs were quantified similar to
the popular miRDeep2 [19] algorithm. The prediction of
novel miRNAs was performed using an extended feature
set built up on novoMiRank [12]. For classification, an
AdaBoost model using decision trees was applied. Novel
miRNAs were cross-checked against other RNA re-
sources, including the miRBase [20], NONCODE2016
[21], and Ensembl non-coding RNAs. The assessment of
the quality of new miRNAs was carried out using the
novoMiRank algorithm. A downstream analysis of results
including cluster analysis was performed using R. For tar-
get prediction, we applied TargetScan 7.1 (http://www.tar-
getscan.org/vert_71/) and predicted for all new miRNAs
the targets. With the predictions, we extracted the context
++ scores and used them for prioritizing the targets,
miRNA-target interactions with context++ scores below 1
were considered as high-likelihood targets. Target net-
works were constructed using an offline version of MiR-
TargetLink [22] and visualized in Cytoscape. miRNA
target pathway analysis has been carried out using Gene-
Trai2 [23]. For the GeneTrail2 analysis, all available cat-
egories were analyzed, the minimal category size was set
to 4 and all p values were adjusted using Benjamini-
Hochberg adjustment.

Results

Raw data analysis

We sequenced six brain, two heart, and two blood samples
using the BGISEQ-500 system. The resulting reads were
mapped to the human genome allowing one mismatch per
read. The 10 samples had a median of 30.1 million reads.
Of these, 24.1 million reads mapped to the human genome
and 23.3 million reads to miRNAs annotated in the human
miRBase version 21. The remaining 0.7 million reads per
sample contain potentially new miRNAs.

Technical reproducibility of the BGISEQ-500 and compari-
son to microarrays

To assess the technical reproducibility of the sequencing
platform, we evaluated the six technical replicates of the
human brain sample (see correlation matrix in Fig. 1).
The median correlation between the six replicates was
0.98, and the 25 and 75% quantile were 0.98 and 0.99,
respectively. These data suggest an overall high
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correlation for technical replicates on the BGISEQ-500
platform.

Comparing the BGISEQ-500 data to the measurements
of the brain sample with microarrays (miRBase version
21) that have also been carried out as six technical repli-
cates (median correlation of the microarrays was 0.999),
we observed a log correlation of 0.48. A direct comparison
is presented in the scatter plot in Fig. 2a. This plot high-
lights many miRNAs that can be measured at a compar-
able level on both platforms. However, a subset of the
small non-coding RNAs is shifted towards higher expres-
sion on the array platform. The same behavior can be ob-
served in the cluster heat map in Fig. 2b. This heat map
graphically represents the 50 miRNAs with most different
detection between both techniques. To compare rather
the ranks of miRNAs instead of the absolute read counts,
the replicated brain samples on both platforms were
jointly quantile normalized. Three miRNAs, in particular,
showed highly significant deviations (multiple testing ad-
justed p values below 107%°). Hsa-miR-8069 was almost
not detected in the BGISEQ-500 but had 0.9 million nor-
malized intensity counts on the array platform, hsa-miR-
4454 had 51.6 normalized reads on the BGISEQ-500 ver-
sus 1.9 million normalized counts on the microarrays, and
hsa-miR-7977 had 343.2 normalized reads on the
BGISEQ-500 versus 1.3 million normalized counts on the
microarrays. This means that the three miRNAs were or-
ders of magnitudes more abundant on microarrays as
compared to the sequencing system. The secondary struc-
tures of the three precursors are presented in Additional
file 2: Figure S1. These results match well to previously
published platform comparisons between NGS and micro-
arrays [6]. Here, several miRNAs such as hsa-miR-941
(not detected in any array experiment, not detected in RT-
qPCR, average read count of ~1000 reads using Illumina
HiSeq sequencing) had expression levels differing several
orders of magnitude between the miRBase microarrays
and using HiSeq sequencing.

The full list of miRNAs with raw and adjusted p values
in ¢ test and Wilcoxon-Mann-Whitney test comparing
BGISEQ-500 and microarrays is presented in Additional
file 3: Table S1. Overall, the results are well in-line with
those obtained between HiSeq NGS and the same
microarray platform [6]. Reasons that explain differences
between arrays and NGS include different sensitivity
levels of the platforms, cross-hybridization of miRNAs
with similar sequences on the microarrays or bias in li-
brary preparation. Further, effects of the normalization
can lead to variations in miRNA quantification.

Biological replicates of blood samples and comparison to
other platforms

One of the most promising applications in small RNA
analysis is biomarker profiling in body fluids. We
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previously analyzed over 2000 blood samples on Agilent
microarrays [17, 24, 25] and about 1000 samples using
HiSeq sequencing [26, 27] and compared both platforms
[6]. We correlated two newly sequenced blood samples
using the BGISEQ-500 system to the data generated by
HiSeq and Agilent microarrays. When interpreting the
results, it is important to keep in mind that the microar-
rays and HiSeq data are from the same samples [6] while
the newly sequenced blood drawings are from other in-
dividuals and thus biological but no technical replicates.
To minimize a potential bias between the platforms with
respect to different miRNA sets, we first reduced the
marker set to the 2525 human miRNAs that were pro-
filed on all platforms and next to the subset of 658 miR-
NAs that were discovered in all three platforms. For
each, platform data were normalized using quantile
normalization. Due to the wide dynamic range of miR-
NAs in blood samples, which is approximately 107, we
present the three pairwise comparisons (BGISEQ-500 to
microarrays, BGISEQ-500 to HiSeq, and HiSeq to mi-
croarrays) on a log scale. The scatter plots are presented
in Fig. 3. The highest correlation was observed for
BGISEQ-500 to Illumina (0.75, Fig. 3a). Even the correl-
ation between microarrays and HiSeq was below this

value (0.6, Fig. 3c). Especially since technical replicates
have been measured for these platforms, the increased
correlation of sequencing platforms is remarkable. The
comparison of BGISEQ-500 and microarrays revealed
correlation values in the same range as for the brain
samples (0.58, Fig. 3b). The 3D scatter plot in Fig. 3d
compares the expression of the three platforms directly
to each other. The coloring of the miRNAs has been car-
ried out with respect to the GC content.

Expression distribution of miRNAs

As mentioned, miRNA expression is highly variable and
can scatter across many orders of magnitude. We thus
compared the distribution of the sequencing reads in
blood samples on the HiSeq to the BGISEQ-500. Blood
samples, including blood cells (especially red blood cells)
are known to be enriched for few miRNAs that are
highly expressed. The diagram in Fig. 4 (panel A) high-
lights that 90.8% of all blood sequencing reads from the
HiSeq match to one single miRNA: hsa-miR-486-5p.
The second most abundant miRNA miR-92a-3p takes
further 5.5%, and already the third most abundant
marker miR-451a has below 1% of all reads. In sum,
98.6% of all reads match to the top 10 miRNAs. For the
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BGISEQ-500 (panel B), 45.9% of reads match to miR-
451a, further 20% map to miR-191-5p and 13.3% map to
miR-92a-3p. The most abundant miRNA in HiSeq, miR-
486-5p, is detected in 7.7% of all reads. 93.1% of all
sequenced reads match to the top 10 miRNAs.
Comparison of the distribution and abundance of miR-
NAs on the microarray platform is difficult since micro-
arrays show a saturation effect. This means that for two
miRNAs expressed in a range above the saturation, no
difference can be observed. We nonetheless performed
the same analysis as presented above, assuming that the
sum of all expression counts equals to 100%. In this ana-
lysis, miR-451a which is found in 0.8% of HiSeq reads
and 45.9% of BGISEQ-500 reads is the highest expressed

in microarrays (37.2% of all expression counts), followed
by 17% of miR-486-5p.

Prediction of novel miRNAs

Predicting new miRNAs from NGS data is a challenging
task since many false positive miRNA candidates are ob-
served. We implemented our own prediction tool for
miRNAs from NGS data and filtered the candidates
stringently to reduce the false discovery rate. Without
any filtering steps, our initial predictor trimmed for
maximizing the ROC AUC returned 25,086 candidates
across all samples. The exclusion of the candidates with
low abundance (less than 10 total reads) reduced the
number of candidates to around 10% (2354 candidates).
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Further analysis with novoMiRank (cutoff 1.5) filtered
out more miRNAs, leaving 1553. The miRNAs were
flagged by novoMiRank because of a high deviation from
miRNAs in the first miRBase versions, including deviat-
ing length, free energy, or nucleic acid composition of
miRNAs. Matching the remaining candidates to other
RNA resource in a blacklisting step finally presented 926
miRNA candidates (Additional file 4: Table S2). Still, it is
likely that this set contains many false positives.
Additionally, low-throughput experimental validation of
almost 1000 miRNA candidates, e.g., by Northern Blot is
a very labor-extensive approach. We thus additionally
compared the frequency of reads mapping to the blood
versus tissue samples. As detailed in Fig. 5a, we observe
a substantial variability between blood and tissue for the
926 miRNA candidates (correlation 0.18). Defining a
miRNA as tissue/blood specific if it occurs with a factor
of 100-fold higher in one of both sample types (normal-
ized for the total number of samples) highlighted 74 new
miRNA candidates specific for tissue and 36 new
miRNA candidates specific for blood samples. Figure 5b
shows bar plots for two miRNA precursors, the most tis-
sue specific novel-mir-36616 (blue), only present in the
brain samples, and the blood specific novel-mir-31007.
The first miRNA, which is observed exclusively in the
brain samples and not in the heart, reveals a significantly

less expressed 3' mature form as compared to the 5’
mature form. The second miRNA is exclusively observed
in blood samples. Here, the 5° mature form is lower
expressed compared to the 3’ form. The boxes above
the bar plots show the secondary structures of both
miRNA candidates.

miRNA target analysis

For all 926 miRNAs, we predicted targets using TargetS-
can. To rank miRNA-target interactions, we used the
context++ score (distribution of the context++ score
across all predictions is provided in Additional file 5:
Figure S2). Thereby, we observed an accumulation of
high-likelihood targets for tissue-specific miRNAs. Of
the 926 miRNAs, the tissue specific had an average 42.8
targets, the neither for blood nor for tissue-specific miR-
NAs 40.7 targets while for blood-specific miRNAs, only
34.5 targets were predicted. The complex miRNA-target
network is presented in Additional file 6: Figure S3. It
contains 6014 nodes (5088 genes and 926 miRNAs).
Network characteristics such as degree distribution and
shortest path length are presented in Additional file 7:
Figure S4. The genes with largest numbers of predicted
miRNAs targeting the gene were CYB561D1 (229 miR-
NAs), FBXL12 (174 miRNAs), PML (162 miRNAs), and
VNN3 (154 miRNAs). The distribution of miRNAs in
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the different group is presented as Venn diagram in
Additional file 8: Figure S5). Among the predicted target
genes that were found only for candidate miRNAs being
blood specific was, e.g, HMOX1, heme oxygenase 1,
mediating the first step of the heme catabolism by cleav-
ing heme to build biliverdin or HPX, coding for hemo-
pexin. The complex nature of the in silico calculated
miRNA-target network requires further analyses to

understand whether target genes accumulate in specific
biochemical categories such as KEGG pathways or gene
ontologies. We thus applied GeneTrail2 separately to the
set of genes targeted by blood specific miRNAs, targeted
by tissue specific miRNAs and by all other miRNAs. As
the background sets, all genes predicted to be targeted
by at least a single miRNA were selected and the func-
tionality to compare different enrichment analyses by
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GeneTrail2 has been used. Enriched pathways seem to
be largely relevant for either blood or tissue miRNAs, as
Additional file 9: Figure S6 highlights. Tissue specific
miRNAs had target genes enriched for DNA damage re-
sponse, the apoptosis, or RNA polymerase II regulatory
region DNA binding while blood miRNAs target genes
were, e.g., enriched for TP35 network. Interestingly,
tissue miRNA target genes also clustered on specific
genomic locations (e.g., 19p12 and 19.q13) while blood
miRNA targets did not show such an enrichment. In
contrast, blood miRNA targets were enriched for disease
phenotypes such as carotid artery diseases. In sum, the
enrichment analysis highlights very distinct patterns for
blood and tissue miRNA targets. Of course, not only the
new miRNAs themselves but also the predicted targets
deserve detailed experimental validation.

Discussion

The advent of next-generation sequencing reduced the
costs of sequencing while simultaneously increasing the
speed of throughput [28]. Today, the costs for small
RNA seq are almost equal to and even lower than
miRNA microarrays, although small RNA-seq provides
the additional possibility for detecting novel small RNA
entities.

In the present study, we investigated two current
sequencing approaches supporting massively parallel
sequencing, which is of high relevance in small RNA
research because of the high dynamic range of these
molecules: DNA nanoball [11]-based sequencing by
BGISEQ-500 and PCR cluster [8]-based sequencing by
HiSeq. An important difference between these tech-
niques is in that the first approach uses linear DNA
amplification, and the second uses exponential DNA
amplification to make sequencing arrays. The latter
approach may in turn lead to amplification errors and
some specific biases. Besides this fundamental difference,
both approaches have their additional advantages and dis-
advantages. Specifically for the BGISEQ-500, the library
preparation currently takes around three working days,
the sequencing itself needs one or at maximum two work-
ing days. Each flowcell of the BGISEQ-500 has two lanes.
On each of these lanes, 32 Gb data can be generated using
single-end reads of length 50 bases. The cost of the re-
agent and material is around 200 USD for 20 million reads
ensuring high-quality data at a reasonable cost.

Recently, we published a manuscript about bias in
NGS and microarray analysis for miRNAs [6], highlight-
ing that the expression of miRNAs on different plat-
forms varies by, for example, the nucleic acid
composition. In the validation by RT-qPCR, we focused
on miRNAs discordant between the high-throughput
platforms. Thereby, we observed cases where the RT-
qPCR results were concordant with Illumina HiSeq, with
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microarrays or with none of the techniques. Therefore,
we were especially interested how the BGISEQ-500
platform compares to the HiSeq platform and microar-
rays with the content from the miRBase for small RNA
analysis.

Three miRNAs had high divergence between arrays
and BGISEQ-500, among them hsa-miR-4454, which
was high abundant in arrays but almost not detectable
in BGISEQ-500. According to the miRBase, only 28% of
users believe that this miRNA is real. Although such
votes have only limited value, they at least indicate that
this miRNA may be influenced by technological bias.

For high-throughput sequencing, the library prepar-
ation and the kits used play a crucial role for the quality
of the sequencing results. Others and we noticed an
overly abundance of the miRNA miR-486-5p when using
the TruSeq kit (Illumina, San Diego), which seems to be
independent of the source of the analyzed material
[6, 29, 30]. Using the BGISEQ-500 platform, we ob-
served lower read counts for this miRNA. However, in
some cases, the miRNA abundance of BGISEQ-500
matches to the HiSeq sequencing results while microar-
rays show a different expression level, and in other cases,
the BGISEQ-500 deviates from the other platforms and
in several cases, all three techniques provide substan-
tially divergent results. The more even distribution of
reads of the BGISEQ-500 compared to the HiSeq results
facilitates the discovery of new miRNAs, which are ex-
pected to be significantly less expressed as compared to
the already known miRNAs, especially from early miR-
Base versions.

With respect to many miRNA currently annotated in
miRBase and the rapidly growing number of new miRNAs,
it is essential not only to have tools for filtering likely false-
positives such as the NovoMiRank tool but also to carry
out validation of miRNAs using other molecular biology
approaches such as cloning and Northern blotting.

Focusing on the performance of the BGISEQ-500, we
found a high technical reproducibility of sequencing
results, which was however slightly below the technical
reproducibility of microarrays. This fact can have differ-
ent reasons, e.g., the different limit of detection of
microarrays. In contrast to sequencing, microarrays have
a saturation effect. With respect to the total number of
discovered known miRNAs, performance of the
BGISEQ-500 was comparable both to the Illumina and
the microarray platform.

Conclusions

In sum, none of the mentioned platforms seems to pro-
vide the “ultimate solution” in miRNA analysis. All have
their advantages and disadvantages and show some bias
for the detection of certain sequence types.
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