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An	obvious	way	to	improve	human	healthcare	is	to	develop	new	and	more	effective	drugs.	
Another	opportunity	is	however	to	develop	solutions	that	allow	to	utilize	the	available	
drugs	better.	This	includes	more	accurate	and	early	diagnosis	of	pathologies,	improved	
therapy	selection	as	well	as	digital	and	patient	centric	solutions	 in	healthcare	systems.	
Especially	in	molecular	diagnostics	new	biomarkers	have	been	developed	and	partially	
shown	promising	results	in	terms	of	improving	patient	care.	In	this	work	I	describe	the	
development	of	respective	platform	techniques,	biomarkers	and	computational	solutions	
during	my	PhD	thesis.		
	
First,	I	briefly	introduce	the	concept	of	a	flexible	microarray	platform	and	assays,	such	as	
the	MPEA	assay,	 tailored	 for	 the	 fast	 and	efficient	quantification	of	miRNA	signatures.	
Then,	 I	 describe	 how	we	made	 use	 of	 respective	 platforms	 along	with	 computational	
solutions	 to	 improve	 the	 understanding	 of	 physiological	 and	 pathophysiological	
processes.	Further,	I	present	results	on	my	efforts	to	develop	new	molecular	diagnostic	
biomarkers	 based	 on	 circulating	miRNAs.	Here,	my	 special	 focus	was	 in	 cancer	 (most	
importantly	 lung	 cancer)	 and	 diseases	 affecting	 the	 Central	 Nervous	 System	 (most	
importantly	Multiple	Sclerosis,	Alzheimer’s	Disease	and	Parkinson’s	Disease).	Together	
with	 the	 supervisors	 of	 my	 thesis	 I	 was	 among	 the	 first	 researchers	 worldwide	 to	
recognize	 that	 small	 non-coding	RNAs	 (most	 importantly	microRNAs)	measured	 from	
body	 fluids	have	 a	 great	potential	 as	biomarkers.	An	obvious	 advantage	 to	messenger	
RNAs	 is	 the	 small	 length	 of	 the	 molecules	 of	 only	 17-22	 nucleotides.	 This	 makes	
microRNAs	stable	in	vivo	but	also	in	vitro.		
	
Finally,	I	will	mention	recent	developments	in	patient	care.	The	current	trend	is	clearly	
the	 digitalization	 of	 central	 parts	 of	 healthcare.	 This	 affects	 all	 stakeholders	 in	 the	
healthcare	 system,	 most	 importantly	 medical	 doctors	 and	 patients.	 Especially	 patient	
empowerment	and	self-containment	of	medical	data	is	becoming	more	important.	Again,	
Multiple	Sclerosis	is	used	as	an	example.	But	also	for	physicians,	computational	tools	have	
to	be	implemented	to	support	them	in	making	treatment	decisions	from	highly	complex	
data.	 In	 sum,	 my	 thesis	 describes	 the	 road	 from	 developing	 a	 molecular	 diagnostic	
platform	over	the	research	on	biomarkers	for	detecting	disease	in	time	towards	holistic	
computational	solutions	to	improve	patient	care.		
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Es	ist	offensichtlich,	dass	man	Krankheiten	besser	behandeln	kann,	wenn	man	neue	und	
effektivere	 Medikamente	 und	 Therapien	 entwickelt.	 Eine	 andere	 Möglichkeit	 ist	 es,	
Lösungen	zu	entwickeln,	die	es	erlauben,	vorhandene	Medikamente	besser	einzusetzen.	
Das	 schließt	 die	 frühzeitige	 Diagnose	 von	 Erkrankungen,	 eine	 verbesserte	 Wahl	 der	
richtigen	 Therapie	 und	 die	 Entwicklung	 von	 patienten-zentrischen	 digitalisierten	
Lösungen	 mit	 ein.	 Insbesondere	 in	 der	 Molekulardiagnostik	 wurden	 neue	
vielversprechende	Biomarker	entwickelt.	 In	dieser	Arbeit	 führe	 ich	meine	Beiträge	zur	
Entwicklung	von	Plattform	Technologien	zum	Messen	von	Biomarkern	aus,	erläutere	die	
Erforschung	von	Biomarkern	selbst	und	beschreibe	die	Anwendung	der	dazugehörigen,	
computergestützten	Methoden.		
	
Beginnen	möchte	ich	mit	einer	Beschreibung	der	Entwicklung	einer	flexiblen	Mikroarray	
Plattform	und	Assays,	wie	zum	Beispiel	des	MPEA	Assays,	die	maßgeschneidert	für	die	
schnelle	und	effiziente	Quantifizierung	von	miRNA	Biomarkern	sind.	Dann	gehe	ich	darauf	
ein,	wie	wir	Plattformen,	Assays	und	computergestützte	Lösungen	eingesetzt	haben,	um	
physiologische	und	pathologische	Prozesse	besser	zu	verstehen.	Außerdem	präsentiere	
ich	Resultate	meiner	Bemühung,	neue	molekulardiagnostische	Biomarker	basierend	auf	
zirkulierenden	 miRNA	 Mustern	 zu	 entwickeln.	 Hierbei	 habe	 ich	 mich	 auf	 Krebs	
(vornehmlich	 Lungentumore)	 und	 Erkrankungen,	 die	 das	 Zentrale	 Nervensystem	
betreffen	(Multiple	Sklerose	und	die	Alzheimer	Erkrankung),	konzentriert.	Gemeinsam	
mit	 meinen	 Betreuern	 war	 ich	 unter	 den	 ersten	 Forschern	 weltweit,	 die	 das	 große	
Potenzial	 kleiner	 nicht-kodierender	 RNAs	 (am	wichtigsten	 dabei	microRNAs),	 die	 aus	
Blut	 gemessen	werden	 können,	 erkannt	 haben.	 Ein	 offensichtlicher	 Vorteil	 gegenüber	
mRNA	Biomarkern	ist	die	kurze	Länge	von	nur	17-22	Nukleotiden.	Diese	macht	miRNAs	
sowohl	in-vivo	als	auch	in-vitro	stabil.	
	
Letztlich	 gehe	 ich	 in	 meiner	 Arbeit	 auf	 momentane	 Entwicklungen	 in	 der	
Patientenversorgung	 ein.	 Ein	 klarer	 Trend	 ist	 die	 Digitalisierung	 zentraler	 Teile	 der	
Gesundheitsversorgung.	 Das	 betrifft	 alle	 Personen	 im	 Gesundheitswesen,	 allen	 voran	
Mediziner	 und	 Patienten.	 Selbstbestimmung	 des	 Patienten	 wird	 besonders	 wichtig	
werden.	Hier	dient	mir	wieder	Multiple	Sklerose	als	ein	Beispiel.	Auch	für	Ärzte	müssen,	
angesichts	 der	 immer	 komplexeren	 Daten,	 computergestützte	 Lösungen	 entwickelt	
werden,	 die	 ihnen	 helfen,	 die	 richtige	 Therapieentscheidung	 zu	 treffen.	
Zusammenfassend	halte	ich	fest,	dass	meine	Arbeit	den	Weg	von	der	Entwicklung	einer	
molekulardiagnostischen	 Plattform	 über	 die	 Entwicklung	 von	 Biomarkern	 zur	
Frühdiagnose	 von	 Erkrankungen	 bis	 hin	 zu	 ganzheitlichen	 computergestützten	
Lösungen,	die	die	Patientenversorgung	verbessern,	beschreibt.	
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Einleitung	
	
Seit	 der	 Veröffentlichung	 des	 ersten	 menschlichen	 Genoms	 im	 Jahre	 2002	 durch	 das	
Human	Genome	Project	(HGP)	[1]	und	die	Firma	Celera	werden	stetig	neue	Technologien	
entwickelt,	die	es	uns	ermöglichen,	molekulare	Muster	aus	verschiedensten	Organismen	
zu	lesen.	Entsprechende	DNA	oder	RNA	Muster	werden	in	vielen	verschiedenen	Gebieten	
verwendet,	neben	der	Erforschung	von	Krankheiten	die	Menschen	betreffen	sind	unter	
anderem	 die	 Agrikultur	 und	 die	 Nutztierhaltung	 wichtige	 Anwendungsbeispiele	 für	
molekulare	 Analysen.	 Hier	 werden	 Gene,	 Genexpression,	 Methylierung	 oder	 nicht-
kodierende	RNA	sowie	Protein	Muster	erhoben,	um	Krankheiten	des	Menschen	besser	
erforschen	 beziehungsweise	 besser	 zu	 verstehen,	 wie	 der	 Ertrag	 von	 Tieren	 erhöht	
werden	kann	und	Tiere	unter	Umständen	ohne	den	Einsatz	von	schädlichen	Antibiotika	
gesünder	leben	können.		
	
Die	Technologien,	die	dabei	entwickelt	werden,	sind	zunehmend	komplexer	geworden.	
Während	 in	 den	 Anfängen	 zu	 Beginn	 des	 Jahrtausends	 noch	 sogenannte	 Mikroarrays	
eingesetzt	wurden,	hat	die	Firma	Solexa	im	Jahr	2005	eine	disruptive	neue	Technologie	
für	 den	 Massenmarkt	 vorgestellt,	 Next-Generation	 Sequencing	 oder	 Hochdurchsatz-
Sequenzierung	 (HTS)	 [2].	 Während	 Mikroarrays	 zunächst	 klar	 für	 das	 Auslesen	 des	
Transkriptoms	 (der	 zu	 einem	 bestimmten	 Zeitpunkt	 in	 einem	 bestimmten	 Zelltyp	
vorkommenden	Menge	aller	Gene	eines	Organismus)	verwendet	wurden,	wurde	HTS	vor	
allem	 für	 die	 Sequenzierung	 des	 Erbgutes	 (die	 Gesamtmenge	 der	 DNA,	 also	 Protein	
kodierende	Gene,	regulatorische	Elemente	und	andere	Teile,	deren	Bedeutung	zum	Teil	
noch	nicht	völlig	klar	ist)	eingesetzt.	In	den	vergangenen	Jahren	wurden	jedoch	mehr	und	
mehr	 Assays	 entwickelt,	 die	 es	 auch	 erlauben,	 HTS	 zur	 quantitativen	 oder	 zumindest	
pseudo-quantitativen	Messung	des	Transkriptoms	und	sogar	weiterer	Aspekte	wie	der	
Methylierung	der	DNA	präzise	zu	messen.	Auch	zur	Entschlüsselung	nicht-kodierender	
Elemente	(kleine	nicht	kodierende	RNAs	wie	piRNAs	oder	microRNAs	(miRNAs)	sowie	
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längerer	Elemente	wie	zum	Beispiel	
lincRNAs)	 wird	 immer	 mehr	 HTS	
Technologie	 verwendet.	 Die	
Entwicklung	 neuer	 Sequenzier-
Technologien	 verläuft	 dabei	 nur	
teilweise	 evolutionär,	 oft	 gibt	 es	
Technologiesprünge,	 welche	 einen	
revolutionären	Charakter	haben.	Ein	
Beispiel	war	 der	 Sprung	 der	 ersten	
Generation	 Sequenzierer,	 wie	 sie	
zum	Beispiel	für	das	Humane	Genom	
Projekt	 eingesetzt	 wurden,	 hin	 zur	
HTS	 (zweite	 Generation).	 Dadurch	
konnten	 die	 Kosten	 pro	 Humanes	
Genom	von	mehr	als	einer	Milliarde	
Dollar	auf	wenige	tausend,	oft	sogar	
weniger	 als	 tausend	 Dollar	
verringert	 werden.	 Bereits	 heute	
werden	 Sequenzierer	 der	 Dritten	
Generation	 (sogenannte	Nanoporen	
Sequenzierung)	 erfolgreich	
eingesetzt.	 Die	 technische	 Weiter-

entwicklung	verspricht	dabei,	dass	in	einigen	Jahren	Geräte	der	Größe	eines	USB	Sticks	
ein	 Humanes	 Genom	 für	 weniger	 als	 100	 Dollar	 sequenzieren	 können.	 Die	 Kosten	 je	
Genom,	 der	 Durchsatz	 eines	 Sequenzierers	 je	 Tag	 und	 die	 zeitliche	 Abhängigkeit	 der	
Sequenzierer	 Generationen	 wird	 in	 Abbildung	 1	 und	 Abbildung	 2	 dargestellt.	 Wegen	
dieser	rapiden	technischen	Entwicklung	der	Sequenzierung	werden	Mikroarrays	heute	
sehr	viel	seltener	angewendet.	Hauptsächlich,	wenn	eine	relativ	präzise	Quantifizierung	
von	vielen	Genen	oder	nicht-kodierenden	Elementen	gefragt	ist,	wird	auf	diese	bewährte,	
hochparallele	Technologie	zurückgegriffen.		
	
Eine	 Herausforderung	 entsprechender	 Technologien	 ist	 eine	 stetig	 anwachsende	
Komplexität	 und	 damit	 auch	 eine	 sehr	 viel	 höhere	 Bedeutung	 von	 Algorithmen,	
Datenstrukturen	und	Bioinformatik-Lösungen.	Das	gilt	für	alle	molekularen	Messungen,	
nicht	 nur	 HTS,	 sondern	 auch	 Proteinmuster,	 die	 mit	 Massenspektrometrie	 erhoben	
werden.	 Abbildung	 3	 zeigt	 dabei	 anschaulich,	 um	 wie	 viele	 Größenordnungen	 die	
Gesamtgröße	von	molekularen	Datensätzen	in	den	vergangenen	Jahren	zugenommen	hat.	
Während	 für	Mikroarrays	 noch	wenige	Megabyte	 erreicht	 bzw.	 benötigt	wurden,	 sind	
heutige	HTS	Datensätze	 leicht	 viele	Gigabyte	 oder	 sogar	Terabyte	 groß.	 Entsprechend	

Abbildung 1: Kosten je Genom. 

Der obere Teil der Abbildung zeigt den exponentiell 
wachsenden Durchsatz moderner Sequenzier-Technologien. Im 
unteren Teil wird schematisch dargestellt, dass die Kosten der 
Sequenzierung nicht nur evolutionär innerhalb der Technologie 
Generationen sinken, sondern auch revolutionären Charakter 
zwischen verschiedenen Generationen haben. 
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erreichen	 Computer,	 die	 für	 das	 Speichern	 der	Daten	 verwendet	werden	 (sogenannte	
Fileserver)	 Kapazitäten	 die	 in	 den	 Petabyte	 Bereich	 gehen.	 Eine	 der	 größten	
Herausforderungen	ist	es,	adäquate	computer-gestützte	Lösungen	für	diese	Problematik	
zu	entwickeln	und	die	Ergebnisse	solch	komplexer	Methoden	für	Ärzte	aufzubereiten.		
	
Der	vorangegangene	Absatz	hat	einen	kurzen	Überblick	über	die	technische	Entwicklung	
in	der	Molekularbiologie	und	Genetik	gegeben.	Sicherlich	erhebt	dieser	kurze	Überblick	

Abbildung 3:	Die Komplexität verschiedener molekularer Technologien.  

Hochdurchsatz Methoden (HTS, Massenspektrometrie) haben dazu geführt, dass Datensätze heute oft viele 
Giga- wenn nicht sogar Terabyte groß sind. 	

Abbildung 2: Zeitliche Überlappung und Reife der verschiedenen Sequenzier-Technologien.  
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keinen	 Anspruch	 auf	 Vollständigkeit,	 wie	 es	 tiefgehende	 Übersichtsartikel	 in	 diesem	
Gebiet	tun.	Hierzu	verweise	ich	auf	geeignete	Übersichtsartikel	[3-6].	Der	Überblick	hilft	
jedoch,	die	technischen	Entwicklungen,	die	in	Kapitel	3	und	4	beschrieben	werden,	besser	
einzuordnen	 und	 er	 zeigt	 vor	 allem	 einen	 klaren	 Trend	 hin	 zu	 Hochdurchsatz-
Plattformen.	 Diese	 bisher	 nie	 dagewesene	 Menge	 an	 Daten	 motiviert	 auch	 die	
Entwicklung	 hin	 zu	 computergestützten	 Analyse	 Methoden.	 Die	 technische	
Weiterentwicklung,	zusammen	mit	neuen	Analyseverfahren,	hat	auch	dazu	geführt,	dass	
die	Forschung	in	Lebenswissenschaften	insgesamt	signifikante	Fortschritte	gemacht	hat.	
Über	 diese	 Entwicklung,	 die	 parallel	 zur	 technologischen	 Weiterentwicklung	
stattgefunden	hat,	wird	im	folgenden	Abschnitt	eingegangen.		
	
Während	 in	 den	 letzten	 Jahrzehnten	 des	 vergangenen	 Jahrhunderts	 hauptsächlich	
Methoden	 wie	 PCR	 eingesetzt	 wurden,	 um	 einzelne	 Gene	 zu	 verstehen,	 hat	 es	 die	
Entwicklung	von	DNA	und	RNA	Mikroarrays	in	den	vergangenen	30	Jahren	ermöglicht,	
das	 Verständnis	 von	 Genen	 im	 Menschen	 und	 vielen	 anderen	 Organismen	 auf	 einer	
systematischen	Ebene	intensiv	voranzutreiben	[7-10].	Der	Schritt	von	wenigen	einzelnen	
Genen	 hin	 zum	 Transkriptom,	 der	 Menge	 aller	 zu	 einem	 bestimmten	 Zeitpunkt	
exprimierten	Gene,	war	einer	der	wesentlichen	Fortschritte	in	der	Molekularbiologie	der	
vergangenen	 Jahrzehnte.	 Durch	 die	 oben	 beschriebene	 Entwicklung	 der	
Sequenziertechnologie	wurde	neben	Genen,	die	für	Proteine	kodieren	weitere	Elemente	
identifiziert,	 die	 vom	 Genom	 abgeschrieben	 werden,	 aus	 denen	 aber	 keine	 Proteine	

Abbildung 4: Multi-Skalen in der Biologie und Biomedizin.  

Angefangen vom genetischen Code mit seinen 3.3 Milliarden Basen und 20.000-25.000 Genen, 
hunderttausenden regulatorischen Elementen und Proteinen in abermilliarden Zellen über Organe und 
Organsysteme hin bis zu einem Individuum und einer Gemeinschaft von Individuen. Um die Komplexität 
verstehen zu können sind präzise molekulare Methoden, Medizinische-Bildgebung, aber auch computer-
gestützte Analysen notwendig.  	
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gebildet	 werden.	 Diese	 Elemente	 werden	 nicht-kodierende	 RNA	 (ncRNA)	 genannt.	
Generell	wird	zwischen	langen	[11]	und	kurzen	nicht-kodierenden	RNAs	unterschieden	
[12].	 Kurze	 nicht-kodierende	 RNAs	 sind	 neben	 anderen	 miRNA,	 tRNAs,	 piRNA	 oder	
yRNAs.	Die	Bedeutung	dieser	nicht-kodierenden	Elemente	für	die	Organisation	von	Zellen	
wurde	von	Gomes	bereits	2013	zusammengefasst	[13].	Neben	nicht-kodierenden	RNAs	
wurden	 viele	 andere	 epigenetische	 Mechanismen	 wie	 die	 Methylierung	 der	 DNA	
zunehmend	 erforscht	 und	 durch	 Hochdurchsatz-Methoden	 zwischen	 1993	 und	 2016	
signifikante	 Fortschritte	 erzielt	 [14,	 15].	 Auch	 das	 Verständnis	 der	 Modulation	 des	
Chromatin	Zustandes	durch	Histon-Modifikation	hat	das	Verständnis	über	regulatorische	
Mechanismen	 der	 Genexpression	 verändert	 [16].	 Da	 auch	 massenspektrometrische	
Verfahren	 weiterentwickelt	 wurden	 und	 sogar	 präzise	 quantitative	 Messungen	 von	
Protein	 Mengen	 im	 hohen	 Durchsatz	 möglich	 werden	 [17,	 18]	 ist	 es	 momentaner	
Gegenstand	 vieler	 Forschungsprojekte,	 die	 verschiedenen	 -omics	 Technologien	 an	
Patienten	 integrativ	 zu	 messen.	 Sogenannte	 multi-omics	 Studien	 sind	 einer	 der	
momentanen	 Trends	 in	 der	Molekularbiologie	 und	 der	 Biomedizin	 [19].	 Solche	 hoch-
komplexen	 Studien	 erfordern	 allerdings	 auch	 spezielle	 Analyse-Strategien	 und	 neue	
Algorithmen	[20,	21].	Es	ist	sogar	möglich,	entsprechende	molekulare	Muster	bis	hin	zu	
einzelnen	Zellen	zu	messen	[22].		
	
Die	 Erfahrung	 hat	 jedoch	 gezeigt,	 dass	 multi-omics	 Daten-Analysen	 auch	
Herausforderungen	bergen.	Mehrere	Milliarden	Basen	im	Humanen	Genom,	25.000	Gene,	
hunderttausende	 regulatorische	 Elemente	 und	 mindestens	 ebenso	 viele	 Proteine	
erlauben	 schier	 endlose	 Kombinationsmöglichkeiten.	 Während	 die	 Suche	 nach	 dys-
regulierten	Genen	noch	der	Suche	nach	der	Nadel	im	Heuhaufen	entspricht,	begegnen	wir	
analog	in	multi-omics	Analysen	einer	exponentiell	größeren	Herausforderung.	Noch	dazu	
kommt,	 dass	 es	 extrem	wichtig,	 aber	 auch	 zeitaufwändig	 und	weitaus	 schwieriger	 als	
gedacht	 ist,	 Hochdurchsatz-Datensätze	 manuell	 zu	 kurieren	 [23].	 Nichtsdestotrotz	
werden	 entsprechende	Ansätze	 für	 die	 verschiedensten	Krankheiten	 angewendet,	wie	
zum	Beispiel	Kolon	Karzinome	[24],	Brustkrebs	[25],	Leberkrebs	[26],	Lungenkrebs	[27],	
Kardiomyopathien	[28]	oder	Alzheimer	[29].		
	
Die	im	ersten	Teil	der	Einleitung	beschriebenen	Technologien	dienen	im	weitesten	Sinne	
dazu,	 den	 genetischen	 Code	 zu	 lesen.	 Sie	 werden	 mit	 Hilfe	 von	 Algorithmen	 dazu	
verwendet,	 den	 genetischen	 Code	 und	 was	 aus	 dem	 genetischen	 Code	 gemacht	 wird	
besser	zu	verstehen.	Beides	kann	in	der	Zukunft	noch	besser	angewendet	werden,	um	den	
genetischen	Code	zu	schreiben.	Dabei	spielen	Gen	Editing	wie	TALENs,	ZNFs	[30],	oder	
CRISPR	Cas	[31]	schon	heute	eine	wichtige	Rolle.			
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Im	Folgenden	möchte	ich	kurz	den	Aufbau	der	vorliegenden	Arbeit	zusammenfassen.	Für	
meine	Forschung	spielt	eine	der	oben	genannten	Molekülklassen	eine	besondere	Rolle,	
microRNAs	 (miRNAs).	 Während	 Gene,	 lange	 nicht-kodierende	 RNAs	 oder	 andere	
Moleküle	relativ	empfindlich	gegenüber	äußeren	Einflüssen	sind,	haben	sich	miRNAs	als	
sehr	stabil	–	in	vivo	und	in	vitro	–	gezeigt	[32].	Gleichzeitig	sind	sie	Masterregulatoren	in	
der	 Genexpression	 [33]	 und	 als	 Biomarker	 für	 eine	 Vielzahl	 von	 Erkrankungen	
beschrieben	[34].	Die	Entwicklung	von	blutbasierten	diagnostischen	Tests	basierend	auf	
miRNA	Mustern	steht	im	Fokus	des	zweiten	Teils	meiner	Arbeit.	Da	miRNAs	hier	eine	so	
zentrale	Bedeutung	haben,	möchte	 ich	an	dieser	Stelle	nicht	nur	auf	die	grundlegende	
Primärliteratur	verweisen,	 in	der	die	Entdeckung	und	Entwicklung	von	miRNAs	sowie	
ihre	 biologische	 Funktion	 erklärt	 wird	 [35-38].	 Ich	 habe	 das	 an	 die	 Einleitung	
anschließende	Kapitel	2	den	miRNAs	gewidmet:	Dort	beschreibe	ich	die	Hintergründe	der	
Entdeckung,	die	Biogenese,	die	molekulare	Funktion	und	den	gegenwärtigen	Stand	der	
miRNA	Forschung.		
	
In	 Kapitel	 3	 gehe	 ich	 auf	 einige	 technische	 und	 Bioinformatik-Aspekte	 ein,	 die	 in	 der	
Arbeit	 angewendet	wurden.	 Kapitel	 3	 ist	 entsprechend	 kurz	 gehalten,	 da	 die	 projekt-
spezifischen	Methoden	in	den	einzelnen	Kapiteln	der	Resultate	detaillierter	beschrieben	
sind.					
	
Im	Resultat	Kapitel	4	beschreibe	ich	zunächst	eigene	technologische	Entwicklungen	in	der	
Molekularbiologie	(Kapitel	4.1).	Das	beinhaltet	ein	flexibles	Mikroarray	Instrument,	das	
Geniom,	 das	 dezentral	 im	 Labor	 eingesetzt	 werden	 kann,	 um	mittels	 eines	 Synthese-	
Verfahrens	in	Situ	Mikroarrays	über	Nacht	herzustellen	[39-41].	Diese	Arbeiten	habe	ich	
hauptsächlich	aus	Sicht	eines	Ingenieurs	durchgeführt.	Da	in	dieser	Arbeit	maßgeblich	die	
Entwicklung	der	Biomarker	beschrieben	ist,	dient	Kapitel	4.1.	hauptsächlich	dazu,	eine	
Gesamtübersicht	und	den	Kontext	 zu	bekommen.	 Für	das	Geniom	 Instrument	wurden	
verschiedene	 Assays	 entwickelt,	 wie	 zum	 Beispiel	 eine	 Anreicherung	 für	 sogenanntes	
targeted-next-generation-sequencing	tNGS	oder	der	Microfluidic	Primer	Extension	Assay	
MPEA,	der	es	erlaubt,	miRNAs	besonders	exakt	zu	quantifizieren	 [42].	Darüber	hinaus	
wird	die	Entwicklung	klinischer	Assays	beschrieben,	um	miRNAs	möglichst	kostengünstig	
und	schnell	direkt	im	Krankenhaus	(„point-of-care“)	zu	messen	[43,	44].	Final	befasse	ich	
mich	im	Kapitel	über	Technologie-Entwicklung	mit	einer	neuen	Sequenzier-Technologie,	
die	in	China	entwickelt	wurde	(cPAS)	und	die	besonders	zur	Quantifizierung	kleiner	RNAs	
geeignet	ist	[45].		
	
Die	 Erfahrung	 hat	 gezeigt,	 dass	 obwohl	 ein	 Wert	 in	 der	 Entwicklung	 von	 neuen	
Technologien	 besteht,	 der	 eigentliche	 Schlüssel	 zum	 Erfolg,	 der	 Einsatz	 der	 richtigen	
Technologie	ist,	um	biologisches	oder	medizinisches	Wissen	zu	erlangen.	Der	zweite	Teil	
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der	Arbeit	befasst	sich	genau	damit:	Wie	können	wir	vorhandene	Technologie	einsetzen,	
um	 Krankheiten	 früher	 zu	 erkennen	 und	 besser	 zu	 behandeln?	 Ausgehend	 von	
Ergebnissen	in	der	genetischen	Diagnostik,	dem	Messen	der	DNA	hat	sich	gezeigt,	dass	
RNA	Muster,	vor	allem	miRNA	Muster,	ein	signifikantes	Potenzial	haben,	Krankheiten	früh	
zu	erkennen	[46-49].	Besonders	das	minimal-invasive	Messen	von	miRNA	Signaturen	aus	
Blutproben	 ist	 ein	 vielversprechender	 Ansatz.	 Dabei	 ist	 es	 zunächst	 wichtig,	 die	
technische	 Stabilität	 der	 Marker	 nachzuweisen	 [50],	 aber	 auch	 biologische	
Einflussfaktoren	wie	das	Alter	oder	das	Geschlecht	müssen	verstanden	werden	[51].	Auch	
die	 organspezifische	 Komponente	 der	 zirkulierenden	miRNA	Muster	 ist	 von	 zentraler	
Bedeutung	 für	 die	 Entwicklung	minimal-invasiver	 Biomarker	 [52].	 Alle	 vorgenannten	
Aspekte	bilden	die	Grundlage	für	die	Erforschung	von	miRNA	Mustern	als	Biomarker,	hier	
am	 Beispiel	 von	 Lungenerkrankungen	 [53-55]	 und	 Erkrankungen	 des	 zentralen	
Nervensystems	[56-58].	Der	Vergleich	von	Mustern	in	Erkrankungen,	die	verschiedene	
Organe	betreffen,	hat	zudem	eine	generell	krankheitsspezifische	Komponente	ergeben,	
miRNAs,	 die	 unabhängig	 der	 Erkrankung	 höher	 oder	 tiefer	 exprimiert	 sind	 als	 in	
Kontrollprobanden	[34].	Die	Entwicklung	der	miRNA	Biomarker,	der	zentrale	Bestandteil	
meiner	Arbeit,	ist	in	Kapitel	4.2	beschrieben.		
	
Ab	 Kapitel	 4.3	 werden	 Aspekte	 die	 über	 die	 miRNAs	 als	 Biomarker	 hinausgehen	
behandelt.	Das	 betrifft	 zum	Beispiel	 die	 co-expression	 von	miRNAs,	 also	 verschiedene	
miRNAs	die	gegenseitig	die	Aufgabe	der	jeweilig	anderen	übernehmen	können	[59]	und	
Algorithmen,	die	es	erlauben	den	Einfluss	der	Genregulation	der	Biomarker	zu	verstehen	
[60].	 Final	 werden	 in	 Kapitel	 4.4	 kurz	 Entwicklungen	 in	 der	 synthetischen	 Biologie	
erläutert	[61,	62].	Im	Ausblick	wird	motiviert,	dass	das	Editieren	oder	die	Modifikation	
von	RNA	hervorragende	Therapieoptionen	 sind,	 die	 es	wert	 sind	weiter	beleuchtet	 zu	
werden.	 Außerdem	 wird	 der	 stetig	 voranschreitende	 Trend	 der	 Digitalisierung	 im	
Gesundheitswesen	 am	 Beispiel	 der	 Multiplen	 Sklerose	 skizziert.	 Patientenzentrische	
Lösungen,	 die	 auch	 die	 Selbstbestimmung	 des	 Patienten	 über	 seine	 Daten	 besser	
ermöglichen,	bilden	die	Grundlage,	um	vor	allem	chronische	Krankheiten	in	Zukunft	noch	
effektiver	behandeln	zu	können.		
	
Die	 Resultate,	 die	 in	 dieser	 Arbeit	 zusammengefasst	 sind,	 beruhen	 auf	 21	
Originalarbeiten,	 die	 ich	 in	 den	 folgenden	 Kapiteln	 vorstellen	 möchte.	 Alle	
Originalarbeiten	 finden	 sich	 im	 Anhang	 an	 die	 vorliegende	 Ausarbeitung.	 Wie	 in	
komplexen	 wissenschaftlichen	 Arbeiten	 üblich,	 sind	 diese	 Publikationen	 im	 Team	
entstanden.	Obwohl	ich	mich	in	der	Darstellung	auf	meine	Beiträge	fokussiere	schmälert	
das	nicht	die	Beiträge	der	Koautoren,	die	ich	sehr	zu	schätzen	weiß.	Ihr	Beitrag	ist	in	den	
entsprechenden	Originalarbeiten	gekennzeichnet.			
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microRNAs	
	
Viele	Jahrzehnte	wurde	der	Begriff	„Junk	DNA“	von	Wissenschaftlern	verwendet.	Dieser	
bezeichnete	ursprünglich	die	Teile	der	DNA,	die	scheinbar	keine	Funktion	besitzen	und	
wurde	in	den	1960er	und	1970er	Jahren	durch	Susumu	Ohno	geprägt [63].	Seit	dieser	Zeit	
wurde	„Junk	DNA“	in	der	wissenschaftlichen	Welt	zunehmend	diskutiert [64-71].	Die	in	
der	 Einleitung	 skizzierten	 Technologiesprünge	 haben	 es	 erlaubt,	 immer	 größeren	
Bereichen	des	Humanen	Genoms	Funktionen	zuzuweisen.	Daten	des	ENCODE	Projekts	

Kapitel 2 

Abbildung 5: Die Biogenes von miRNAs. 

Die Abbildung zeigt zusammenfassend wie miRNAs aus dem Genom abgeschrieben und prozessiert werden, bis hin zur reifen 
miRNA. Die Abbildung ist modifiziert von Narayanese übernommen.  
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(Encyclopedia	of	DNA	Elements),	die	in	mehreren	Artikeln	veröffentlicht	wurden	und	in	
einem	 Science	 Editorial	 zusammengefasst	worden	 sind,	 haben	 gezeigt,	 dass	 scheinbar	
80%	des	Humanen	Genoms	eine	Art	der	Funktion	ausüben	und	daher	kein	„Junk“	sind	
[72].	Aber	auch	diese	Arbeit	wurde	kontrovers	diskutiert,	 so	dass	die	Diskussion	über	
Junk	DNA	bis	heute	nicht	abschließend	geklärt	ist [73].		
	
Für	einen	Teil	des	Genoms	ist	klar,	dass	er	eine	Funktion	ausübt,	obwohl	keine	Proteine	
in	 ihm	 kodiert	werden:	 nicht-kodierende	 RNAs.	 Diese	 nicht-kodierenden	 RNAs,	 die	 in	
kurze	und	lange	nicht-kodierende	RNAs	unterteilt	werden,	spielen	eine	essenzielle	Rolle	
in	 der	 Genregulation.	 Eine	 der	 Unterklassen,	 die	 am	 meisten	 untersucht	 wurde,	 sind	
kleine	nicht-kodierende	RNAs,	speziell	miRNAs.	In	einem	Artikel	2015	mit	dem	Titel	„Junk	
DNA	isn’t“	 [74]	hat	Lin	He	die	Rolle	 	der	nur	17-22	Nukleotide	 langen	Moleküle	 in	der	
Genregulation	beschrieben	und	dabei	die	Bedeutung	von	miRNAs	für	die	Biomedizinische	
Forschung	zusammengefasst.		
	
Entdeckt	wurden	miRNAs	bereits	zu	Beginn	der	1990er	durch	Lee,	Feinbaum	und	Ambros 
[35].	 Sie	 zeigten,	 dass	 es	 im	 Genom	 von	 C.	 elegans	 kurze	 „Gene“	 gibt,	 die	 in	 RNA	
umgewandelt	 werden	 und	 die	 Expression	 anderer	 Gene	 unterdrücken.	 Das	
entsprechende	 Gen	 lin-4	 wurde	 von	 den	 Autoren	 allerdings	 noch	 nicht	 mikroRNA	
genannt.	 Was	 Lee	 und	 seine	 Mitarbeiter	 herausgefunden	 haben,	 war	 dass	 es	 zwei	
Transkripte	 von	 lin-4	 gibt,	 eines,	 dass	 60	 Nukleotide	 lang	 ist	 und	 eines,	 dass	 nur	 20	
Nukleotide	lang	ist.	Diese	entsprechen	dem	Precursor	und	reifer	miRNA	(siehe	Abbildung	
5	 und	 Abbildung	 6).	 Als	 Mechanismus	 wurde	 die	 Bindung	 an	 den	 3’	 untranslatierten	
Bereich	 von	 Genen	 (Untranslated	 Region;	 UTR)	 beschrieben.	 Außerdem	 wurde	 die	
typische	Haarnadelstruktur	für	miRNAs	veröffentlicht,	wie	sie	auch	in	Abbildung	6	gezeigt	
ist.	Der	Begriff	miRNA	oder	mikroRNA	wurde	erst	10	Jahre	später	geprägt	[37].	Zu	dieser	
Zeit	war	bereits	viel	über	die	Biogenese	und	Funktion	bekannt.	Aus	dem	Genom	wird	die	
sogenannte	 pri-miRNA	 abgeschrieben.	 Diese	 wird	 durch	 Drosha	 und	 Pasha	 zur	 pre-
miRNA	prozessiert.	Mittels	Exportin-5	wird	diese	aus	dem	Zellkern	ausgeschleust.	Das	
Enzym	Dicer	schneidet	dann	die	zwei	reifen	Formen,	die	als	-3p	und	-5p	Form	bezeichnet	
werden	aus	der	pre-miRNA.	Die	Biogenese	ist	in	der	Übersicht	in	Abbildung	5	gezeigt.	In	
der	 Terminologie	 werden	 die	 Precursor	 mit	 „mir-“	 bezeichnet,	 während	 die	 reifen	
miRNAs	 mit	 „miR-“	 gekennzeichnet	 sind.	 Da	 miRNAs	 sehr	 konserviert	 zwischen	
Organismen	 sind [75]	 werden	 sie	 üblicherweise	 noch	 mit	 drei	 Buchstaben,	 die	 den	
Organismus	 angeben,	 gekennzeichnet.	 Außerdem	 sind	 miRNAs	 in	 Klustern	 oder	 als	
Familien	organisiert.	Dabei	enthält	eine	Familie	mehrere	sehr	ähnliche	Repräsentanten.	
Mitglieder	 einer	 miRNA	 Familie	 werden	 mit	 den	 Buchstaben	 „a“,	 „b“,	 ...	 voneinander	
abgegrenzt.	Abbildung	6	zeigt	ein	Beispiel	für	eine	der	bekanntesten	miRNAs	aus	der	mir-
34	Familie.	Beim	Menschen	wird	diese	miRNA	zum	Beispiel	mit	„hsa-mir-34a“	bezeichnet	
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und	hat	 entsprechend	die	beiden	 reifen	Formen	
„hsa-miR-34a-3p“	 und	 hsa-miR-34a-5p.	 In	
Abbildung	6	ist	die	erste	der	beiden	reifen	Formen	
noch	 als	 (*)	 miRNA	 gekennzeichnet,	 diese	
Bezeichnung	 wird	 heute	 normalerweise	 nicht	
mehr	verwendet.	Abbildung	6	zeigt	außerdem	für	
die	 beiden	 reifen	 Formen	 noch	 ein	 wichtiges	
Detail,	 die	 sogenannte	 Seed	 Region.	 Diese	 Seed	
Region	sind	die	7	Basen,	die	für	die	Regulation	der	
Genexpression	 am	 entscheidendsten	 sind [76].	
Eine	 Übersicht	 über	 die	 Biogenese	 und	 die	
Funktion	von	miRNAs	ist	in	Abbildung	7	gezeigt.		
	
Die	 bekannten	miRNA	werden	 seit	 2003	 in	 der	
miRBase,	 die	 als	 Referenz	 Datenbank	 gilt,		
gespeichert	 [77].	 Zwischen	 2003	 und	 2014	
wurden	 insgesamt	 21	 Versionen	 der	 miRBase	
veröffentlicht	 [78-83].	 In	 diesen	 Versionen	
wurden	 –	 vor	 allem	 durch	 HTS	 Projekte	 –	
zunehmend	 größere	 Zahlen	 an	 miRNAs	
angegeben.	 Beim	 Menschen	 ist	 die	 Anzahl	 an	
reifen	 miRNAs	 zum	 Beispiel	 auf	 2.500	
angewachsen.	 Zusammengenommen	
entsprechen	 diese	 2.500	 miRNAs	 fast	 0.002	
Prozent	des	Humanen	Genoms.	Zusätzlich	haben	
mehrerer	Studien	in	HTS	Experimenten	mehrere	
tausend	neue	Kandidaten	veröffentlicht [84-87],	
die	noch	nicht	in	der	miRBase	annotiert	sind.	Für	
viele	 der	 Kandidaten	 gibt	 es	 jedoch	 kaum	 eine	
oder	 gar	 keine	 Validierung,	 sodass	 Schätzungen	
davon	ausgehen,	dass	bis	zu	60%	der	Kandidaten	
in	 der	 miRBase	 und	 noch	 deutlich	 mehr	 in	
anderen	 Projekten	 auf	 Artefakte,	 zum	 Beispiel	
durch	 die	 Sequenzierung,	 zurückzuführen	 sind 

[88].	Besonders	die	späten	Versionen	der	miRBase	(allen	voran	Version	19,	20	und	21)	
sind	für	miRNAs	angereichert,	die	eher	in	Proben	von	schlechter	Qualität	mit	degradierter	
RNA	gefunden	wurden.	In	den	frühen	Versionen	der	miRBase	(vor	allem	Version	1-12)	

Abbildung 6: Haarnadel-Struktur der mir-34. 

Die Abbildung zeigt die Haarnadel-Struktur 
der mir-34 gekennzeichnet sind die mature und 
die mature (*) Form der miRNA (entsprechend 
der -5p und -3p Form). Zusätzlich ist der Seed 
gekennzeichnet, die Region, die in der reifen 
miRNA maßgeblich für die Bindung an den 
UTR des Zielgenes ist. Die Abbildung wurde 
modifiziert von Paul Gardner übernommen.    
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sind	 entsprechende,	 wahrscheinlich	 fehlerbehaftete,	 miRNAs	 zu	 einem	 deutlich	
geringeren	 Prozentsatz	 vertreten.	 Die	 miRNAs	 in	 diesen	 frühen	 Versionen	 wurden	
außerdem	 zu	 einem	 substanziell	 höheren	 Maß,	 mit	 anderen	 Techniken	 die	 auf	
Hybridisierung	beruhen	(siehe	auch	Kapitel	3),	wie	zum	Beispiel	Northern	Blots,	validiert.			
	
Aufbauend	auf	diesen	Erkenntnissen	wurden	in	verschiedenen	Ansätzen	zum	einen	neue,	
sehr	 spezifische,	 aber	 auch	 sehr	 sensitive	 Datenbanken	 entwickelt.	 Die	 spezifischen	
Datenbanken	zielen	darauf	ab,	die	wahrscheinlichsten	Kandidaten	mit	dem	höchsten	Maß	
an	Validität	zu	speichern.	Das	bekannteste	Beispiel	für	eine	entsprechende	Datenbank	ist	
die	 miRGeneDB	 von	 Fromm	 und	 Mitarbeitern	 [89].	 Die	 sensitiven	 Datenbanken	
beinhalten	 neben	 den	 echt	 positiven	 miRNAs	 noch	 eine	 Vielzahl	 an	 potenziellen	
Kandidaten.	 Von	 diesen	 Kandidaten	 ist	 naturgemäß	 nur	 ein	 Bruchteil	 echt	 positiv,	
dennoch	 sind	natürlich	 auch	mehr	 valide	 Sequenzen	 enthalten	 als	 in	 den	 spezifischen	
Datenbanken.	 Entsprechende	 sensitive	 Lösungen	 sind	 noch	 aus	 einem	 anderen	Grund	
wichtig:	Da	viele	Kandidaten	aus	der	Literatur	nicht	 in	Datenbanken	abgelegt	wurden,	
sind	 etliche	 doppelt	 oder	 dreifach	 publizierte	 Kandidaten	 mit	 verschiedenen	
Bezeichnungen	 bekannt.	 Die	 umfassendste	 Datenbank	 mit	 Sequenzen,	 die	 für	 kleine	
nicht-kodierende	RNAs	stehen,	ist	miRCarta [90].	

Abbildung 7: miRNA Biogenese und Funktion. 

Die Abbildung die die Biogenese und die Funktion der Gen Regulation durch miRNAs übersichtlich darstellt 
wurde von https://upload.wikimedia.org/wikipedia/commons/thumb/a/a7/MiRNA.svg/800px-MiRNA.svg.png 
übernommen.	
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In	den	vergangenen	Jahren	wurden	mehr	und	mehr	Datensätze	veröffentlicht,	die	für	den	
Menschen	 (und	 andere	 Organismen)	 kleine	 nicht-kodierende	 RNAs	 in	 verschiedenen	
Geweben,	 Zelltypen,	 Entwicklungsstadien	 und	 anderen	 Bedingungen	 nachweisen [91-
101].	Ein	Internetbasiertes	Programm	zur	Auswertung	von	entsprechenden	Datensätzen	
wurde	 in	der	AG	von	Prof	Keller	entwickelt,	miRMaster	 [102].	Mit	miRMaster	wurden	
bisher	298	Experimente	ausgewertet,	 insgesamt	haben	dies	27,344	Sequenzier-Proben	
enthalten	 und	 345	Milliarden	 Reads	wurden	 dabei	 prozessiert	 (Stand	 Februar	 2018).	
Diese	 Menge	 an	 Sequenzier-Daten	 von	 kleinen	 nicht-kodierenden	 RNAs	 entspricht	
theoretisch	der	Masse	an	Nukleinsäuren	die	in	4.200	Humanen	Genomen	enthalten	ist.	
Eine	Meta-Analyse	aller	Datensätze	hat	ergeben,	dass	874,123	Regionen	über	das	Genom	
verteilt	sind,	die	mit	entsprechenden	kurzen	Fragmenten	angereichert	sind		[103].	Diese	
Regionen	mit	einer	mittleren	Länge	von	31	Nukleotiden	entsprechen	ungefähr	0.8%	des	
Humanen	Genoms	und	enthalten	wahrscheinlich	den	Großteil	aller	existierenden	miRNAs	
und	weiterer	regulatorischen	Elemente.			
	
In	 meiner	 Arbeit	 ziele	 ich	 auf	 die	 Entwicklung	 von	 Biomarkern	 zum	 Einsatz	 in	 der	
klinischen	Diagnostik	ab.	Daher	ist	es	notwendig	sich	von	Anfang	an	auf	valide	Marker,	
am	 besten	 mit	 bekannter	 Funktion,	 zu	 konzentrieren.	 Wie	 im	 vorherigen	 Abschnitt	
beschrieben	sind	es	vor	allem	die	miRNAs	aus	den	frühen	Versionen	der	miRBase,	die	gut	
charakterisiert	 sind,	wahrscheinlich	 am	wenigsten	 Artefakte	 aufweisen	 und	 daher	 die	
geeignetsten	 Biomarker	 darstellen.	 Diese	 sind	 auch	 in	 Körperflüssigkeiten	 wie	 zum	
Beispiel	Blut	häufig	vertreten [104]	und	bilden	daher	die	bestmögliche	Grundlage	für	die	
Entwicklung	 von	 nicht-	 oder	 minimal	 invasiven	 Markern	 zur	 Früherkennung	 von	
Erkankungen.						 	
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Methoden	
 
In	diesem	Kapitel	gehe	ich	auf	die	grundlegenden	Methoden	ein,	die	in	den	verschiedenen	
Forschungsprojekten	in	meiner	Doktorarbeit	angewendet	wurden.	Zunächst	werden	die	
experimentellen	 Techniken,	 die	 hauptsächlich	 zum	 Einsatz	 kommen,	 beschrieben:	
Mikroarrays	 und	 Hochdurchsatz-Sequenzierung	 (HTS).	 In	 diesem	 Abschnitt	 ist	 es	 vor	
allem	wichtig	die	konzeptionellen	Unterschiede	und	Einsatzgebiete	der	Technologien	zu	
verstehen.	Danach	werden	im	zweiten	Teil	des	Kapitels	die	grundsätzlich	verwendeten	
Methoden	der	Biostatistik	und	Bioinformatik	erwähnt.	
	
In	 den	 einzelnen	 Resultatunterkapiteln	 sind	 spezielle	 Techniken,	 die	 spezifisch	
angewendet	wurden,	erläutert	und	es	sind	sowohl	in	diesem	als	auch	im	Resultatkapitel	
weiterführende	Quellen	mit	Detailinformationen	zu	den	jeweiligen	Techniken	angegeben.	

	

3.1.	Technologie	

Mikroarrays: Mikroarrays sind üblicherweise zweidimensionale Träger aus Glas oder Silikon 
auf der in hoher Dichte Analyten aufgetragen sind. Zunächst wurden sie zum Messen von 
Antikörpern verwendet, die ersten Mikroarrays zu diesem Zweck wurden bereits 1983 
vorgestellt [105]. Daneben gibt es viele verschiedene Arten von Mikroarrays, wie zum Beispiel 
Proteinarrays, Peptidarrays, Gewebearrays oder DNA Mikroarrays. Bei allen gängigen 
Mikroarrays ist der Inhalt, also die Analyten die gemessen werden sollen, vorher fest definiert. 
Im Falle von DNA Mikroarrays zum Messen der Genexpression bedeutet das, dass die Gene 
die nachgewiesen werden sollen bekannt sein müssen und komplementäre Fänger-Sonden zum 
Nachweis der Gene müssen auf dem Glas- oder Silikonträger an fest definierten Positionen 
immobilisiert werden. Üblicherweise werden mehrere zehntausend Transkripte gleichzeitig 
parallel nachgewiesen. Die Sonden können entweder auf der Oberfläche gespottet werden oder 
durch ein Synthese-Verfahren „in-situ“ aufgebracht werden. Das Mikroarray System, das ich 
konzipiert habe beruht auf der zweiten Technik und ist in Kapitel 4.1. im Detail beschrieben. 
Das Grundprinzip der Messung ist dann bei allen Methoden vergleichbar. RNA die mit einer 

Kapitel 3 
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Markierung versehen wurde 
oder mit einer Markierung auf 
dem Mikroarray versehen 
werden kann, wird auf den 
Array aufgebracht. In einem 
normalerweise mehrere 
Stunden dauernden Prozess 
binden die RNAs, die 
nachgewiesen werden sollen, 
an die Fänger Sonden, die 
vorher immobilisiert wurden. 
Dieser Schritt nennt sich 
Hybridisierung. Nach der 
Detektion mit Laser-Scannern 
oder CCD Kameras werden 

die Signale gemessen. Dabei ist eine der Kernherausforderungen, den dynamischen Bereich 
festzulegen. Wenn zu wenig Material gebunden wird, kann keine Intensität und kein Signal 
gemessen werden. Wenn zu viel eines bestimmten Genes vorhanden ist, ist die entsprechende 
Position auf dem Mikroarray gesättigt. Eine typische Aufnahme eines Mikroarrays, hier von 
der Firma Affymetrix, ist im linken Teil von Abbildung 8 gezeigt. Je intensiver ein Punkt, der 
einem bestimmten Gen entspricht, leuchtet, um so mehr des Genes war in der Ausgangsprobe 
vorhanden. Neben den oben beschriebenen technischen Herausforderungen kommen weitere 
hinzu, wie zum Beispiel die Vergleichbarkeit zwischen Experimenten die durch geeignete 
Normalisierungsmethoden sichergestellt werden muss. 
 
Ein detaillierter Überblick über Mikroarray Technologie für verschiedene Analyten wurde 2006 
von Barbulovic-Nad et al. publiziert [106]. Ein umfangreicher Übersichtsartikel zur 
bioinformatischen Auswertung von Mikroarrays wurde von Wang veröffentlicht [107]. 
 
HTS: Im Vergleich zu Mikroarrays ist es bei der Hochdurchsatz-Sequenzierung (HTS) nicht 
notwendig vor Versuchsdurchführung festzulegen, welche Gene gemessen werden sollen. 
Unabhängig ob DNA nachgewiesen wird, um Einzelbasenaustausche oder andere genetische 
Veränderungen zu entdecken oder ob die Expression von Genen gemessen werden sollen. Zur 
HTS gibt es grundlegend verschiedene Ansätze wie die Sequenzierung durch Hybridisierung, 
Sequenzierung durch Ligation, Sequenzierung durch Synthese oder Sequenzierung mittels 
Halbleitertechnologie. Die einzelnen Methoden im Detail zu beschreiben liegt nicht im Fokus 
dieser Arbeit; eine geeignete Übersicht wurde von Liu und Mitarbeitern publiziert [108]. In 
allen Fällen werden Methoden verwendet um parallel eine Vielzahl von Nukleinsäure-Ketten 
zu messen. Im Falle der am häufigsten verwendeten Technologie, der Sequenzierung durch 

Abbildung 8: Mikroarray und HTS Flow Cell. 

Die Abbildung zeigt links schematisch eine Oberfläche eines Mikroarrays 
(der Firma Affymetrix) und rechts eines Trägers (der Firma Illumina) wie 
er für HTS verwendet wird. Obwohl die Unterschiede auf den ersten Blick 
marginal aussehen, sind die Technologien prinzipiell unterschiedlich. Die 
Abbildung wurde modifiziert von Thomas Shafee übernommen.  
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Synthese wie sie von der Firma Solexa entwickelt wurde und von Illumina seit mehr als einem 
Jahrzehnt eingesetzt wird, werden auf einem Glasträger gebundene Moleküle, die sequenziert 
werden sollen, schrittweise von Einzelsträngen in Doppelstränge umgewandelt. 
 

Wann immer eine 
komplementäre Base 
eingebaut wird, wird ein 
Lichtsignal gemessen. 
Grundsätzlich ist die Idee 
den Mikroarrays sogar 
ähnlich, nur dass das 
nachzuweisende Molekül 
und nicht eine Fänger-Sonde 
auf dem Glasträger 
immobilisiert ist. Eine 
sogenannte Flow Cell wie 
sie zum Sequenzieren 
verwendet wird ist im 
Vergleich zum Mikroarray 
auf der rechten Seite von 
Abbildung 8 gezeigt. 
Die Methodik die im Labor 
eingesetzt wird ist 
momentan noch komplexer 
als bei Mikroarrays. Ein 
Protokoll nur zur 
Herstellung der Sequenzier-
Bibliothek, also der 
Nukleinsäuren und Adapter 
die nachgewiesen werden 
sollen, ist schematisch in 
Abbildung 9 gezeigt. 
Detaillierte Anwendungs-
protokolle zur 
Sequenzierung bestehen 
normalerweise aus 
mehreren Dutzend Einzel-

schritten. Eine weitere Herausforderung von HTS ist die wesentlich komplexere 
Datenauswertung. Wie schon in Abbildung 2 in der Einleitung dargestellt sind HTS Datensätze 

Abbildung 9: Schema des Herstellens der Sequenzier Bibliothek.  

Die Abbildung zeigt schematisch, wie eine Sequenzier-Bibliothek für das 
besonders genaue Duplex-Sequenzier-Verfahren hergestellt wird. In 
Wirklichkeit besteht das experimentelle Protokoll von der Probe bis hin zur 
Ausgabedatei (fasta) aus mehreren Dutzend Schritten. Die Abbildung ist von 
https://upload.wikimedia.org/wikipedia/commons/2/23/Duplex_sequencing
_library_preparation_procedure.svg entnommen.  	
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in der Regel drei bis vier Größenordnungen umfangreicher als entsprechende Mikroarray 
Datensätze. Zur Analyse der Datensätze, die mehrere Giga- bzw. je nach Ausmaß der Studie 
etliche terabyte Daten umfassen, wurden sehr viele verschiedene Auswerte-Pipelines 
veröffentlicht [109-117]. Diese haben jedoch teilweise sehr unterschiedliche Resultate gezeigt, 
selbst wenn die selben Eingabedaten verwendet wurden. Die Heterogenität und Variabilität 
dieser Bioinformatik Analyse Pipelines hat die Gesellschaft für Pathologie der USA und die 
Gesellschaft für Medizininformatik in den USA veranlasst, einen „Best Practice Guide“ für 
entsprechende Software Tools zu veröffentlichen [118].  
 
Ein Vergleich von Mikroarrays und HTS, der weit über die Hintergrundinformation in diesem 
Abschnitt hinaus geht, speziell im Umfeld Mikrobiologie, wurde von Roh et al. publiziert [119]. 
Für die in dieser Arbeit zentralen miRNAs haben Willenbrock und Mitarbeiter die beiden 
Methoden verglichen [120]. Neben diesen Reviews hat Mestdagh speziell für die Analyse von 
miRNAs 13 verschiedene Methoden systematisch evaluiert, darunter auch Mikroarrays und 
HTS [121]. Diese Arbeit bietet den momentan vollständigsten Überblick über verfügbare 
Methoden und Techniken zur Quantifizierung von miRNAs.  
 
	
	

3.2.	Bioinformatik	und	Biostatistik	

In	diesem	Abschnitt	stelle	ich	kurz	grundlegende	statistische	Methoden	vor.	Diese	dienen	
dazu	 einen	 Überblick	 zu	 geben	 und	 ersetzen	 keinesfalls	 Fachliteratur.	 Für	 detaillierte	
Beschreibungen	so	wie	Formeln	zu	den	verwendeten	Tests	habe	ich	mich	am	Fachbuch	
„Probability	and	Statistics“	von	DeGroot	und	Schervish	aus	dem	Adison	Wesley	Verlag	
orientiert.	 Alle	 statistischen	 Analysen	 sind	 in	 der	 frei	 verfügbaren	 R	 Entwicklungs-
umgebung	durchgeführt	worden.				
	
Test	auf	Normalverteilung:	In	meiner	Doktorarbeit	wurden	in	mehreren	Teilprojekten	
Daten	 erhoben	 die	 statistisch	 ausgewertet	 werden	 müssen.	 Oft	 sind	 es	 paarweise	
Gruppenvergleiche	die	zum	Einsatz	kommen,	um	beispielsweise	die	Hypothese	zu	testen,	
dass	die	Mittelwerte	zweier	Gruppen	unterschiedlich	sind.	Ein	Test	der	 in	der	Biologie	
und	Medizin	oft	zum	Einsatz	kommt,	ist	der	im	nächsten	Absatz	beschriebene	T-test	[122-
126].	 Dieser	 parametische	 Test	wird	 allerdings	 oft	 falsch	 angewendet	 [127].	 Eine	 der	
grundlegenden	Annahmen	ist,	dass	die	Ausgangsdaten	normalverteilt	sind.	Daher	ist	es	
zunächst	notwendig	einen	Test	auf	Normalverteilung	durchzuführen.	Um	beispielsweise	
bei	 Genexpressionsdaten	 auf	 Normalverteilung	 zu	 testen,	 existieren	 verschiedene	
Möglichkeiten [128].	Wir	haben	in	der	Regel	den	Shapiro-Wilk	Test	angewendet,	der	die	
Hypothese	 überprüft,	 dass	 die	 zugrunde	 liegende	 Grundgesamtheit	 einer	 Stichprobe	
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normalverteilt	 ist.	Wenn	der	 Test	 auf	Normalverteilung	 positiv	war	wurde	 der	 T-Test	
angewendet,	 ansonsten	 wurde	 der	 nicht-parametrische	 Mann-Whitney-U	 Test	
angewendet,	 der	 ebenfalls	 unten	 beschrieben	 ist.	 Es	 wurde	 die	 Implementierung	 des	
Tests	in	R	im	„Stats“	Paket	verwendet	(Funktion	shapiro.test).						
	
T-Test:	Als	grundlegender	Test	auf	Unterschiede	im	Mittelwert	von	zwei	Gruppen	wurde	
der	t-Test	eingesetzt,	der	häufig	in	biomedizinischen	Fragestellungen	angewendet	wird	
[122-126].	Wenn	nicht	explizit	erwähnt,	wurde	der	T-test	als	zweiseitiger	ungepaarter	
Test	 durchgeführt,	 unter	 der	Annahme,	 dass	 die	 Standardabweichung	beider	Gruppen	
identisch	 ist.	 Bei	 ungleicher	 Varianz	 kann	 der	 Welch-Test	 als	 Alternative	 verwendet	
werden.	Die	Nullhypothese	des	t-Tests	ist,	dass	die	Mittelwerte	der	beiden	zu	testenden	
Grundgesamtheiten	identisch	sind.	Die	Alternativ	Hypothese	ist,	dass	die	Mittelwerte	der	
beiden	Grundgesamtheiten	voneinander	abweichen.	Es	wurde	die	Implementierung	des	
Tests	in	R	im	„Stats“	Paket	verwendet	(Funktion	t.test).						
		
Mann-Whitney-U-Test:	 Der	 Mann-Whitney-U-Test	 (Wilcoxon	 Rangsummen-Test,	
Wilcoxon-Mann-Whitney	 Test	 WMW)	 testet	 für	 unabhängige	 Stichproben,	 ob	 zwei	
Verteilungen	 übereinstimmen,	 also	 ob	 die	 beiden	 zugrundeliegenden	 Verteilungen	 zu	
derselben	Grundgesamtheit	gehören.	Der	Mann-Whitney-U-Test	wird	dann	verwendet,	
wenn	 die	 Voraussetzungen	 für	 einen	 t-Test	 für	 unabhängige	 Stichproben	 nicht	 erfüllt	
sind.	Er	wird	ebenfalls	gängig	in	der	Biostatistik	eingesetzt [129].	Im	Fall	von	Daten	mit	
vielen	 „Ties“	wurde	 die	 am	 Lehrstuhl	 von	 Prof.	 Keller	 entwickelte	 exakte	 Lösung	 des	
WMW	Tests	angewendet,	die	auf	dynamischer	Programmierung	beruht [130].	Wenn	nicht	
explizit	 erwähnt,	 wurde	 als	 Standard	 ein	 zweiseitiger	 WMW	 Test	 für	 nicht	 gepaarte	
Analysen	 verwendet.	 Es	 wurde	 die	 Implementierung	 des	 Tests	 in	 R	 im	 „Stats“	 Paket	
verwendet	(Funktion	wilcox.test).						
	
Adjustieren	für	Multiples-Testen:	P-Werte	aus	den	oben	genannten	Tests	basieren	auf	
der	 Annahme,	 dass	 eine	 Hypothese	 getestet	 wurde.	 Der	 p-Wert	 ist	 dabei	 eine	
Wahrscheinlichkeit,	 die	 zwischen	0%	und	100%	(respektive	 zwischen	0	und	1)	 liegen	
kann.	Der	p-Wert	gibt	dabei	an,	wie	wahrscheinlich	es	ist,	ein	Stichprobenergebnis	wie	
das	 vorliegende	 oder	 ein	 noch	 extremeres	 Stichprobenereignis	 zu	 erhalten,	 wenn	 die	
Nullhypothese	wahr	ist.	Im	Falle	von	Hochdurchsatz-Methoden	wird	allerdings	prinzipiell	
eine	wesentlich	höhere	Zahl	an	Hypothesen	getestet,	für	jedes	Gen	/	Protein	/	miRNA	eine	
eigene.	 In	 diesem	 Fall	 ist	 die	Wahrscheinlichkeit,	 dass	 ein	möglicher,	 aber	 tatsächlich	
nicht	vorhandener	Unterschied	erkannt	wird	höher.	Diese	Fehler	werden	als	Fehler	1.	Art	
bezeichnet.	 Je	mehr	Hypothesen	 getestet	werden,	 desto	 geringer	wird	 gleichzeitig	 die	
Wahrscheinlichkeit,	 dass	 ein	 tatsächlicher	 vorhandener	 Unterschied	 erkannt	 wird,	 es	
entstehen	 Fehler	 2.	 Art.	 Um	 Multiples-Testen	 zu	 korrigieren,	 können	 verschiedene	
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Ansätze	gewählt	werden.	Der	wohl	einfachste	 ist	die	Bonferroni	Korrektur.	Dabei	wird	
entweder	 das	 Alpha	 Fehlerniveau	 auf	 (0,05	 /	 Anzahl	 an	 Tests)	 herabgesetzt	 oder	
alternativ	die	erhaltenen	p-Werte	mit	der	Anzahl	an	Tests	multipliziert.	Im	zweiten	Fall	
werden	adjustierte	p-Werte	größer	als	eins	auf	eins	gesetzt.	Wenn	nicht	explizit	erwähnt,	
sind	p-Werte	in	meiner	Arbeit	für	Multiples-Testen	korrigiert.	Allerdings	wurde	nicht	die	
Bonferroni	 Korrektur	 verwendet,	 sondern	 der	 Ansatz	 zum	 Kontrollieren	 der	 False	
Discovery	Rate	(FDR)	von	Benjamini	und	Hochberg.	Es	wurde	die	Implementierung	des	
Tests	in	R	im	„Stats“	Paket	verwendet	(Funktion	p.adjust).						
	
AUC	 /	 ROC	 Analyse:	 Eine	 weitere	 Analyse	 die	 oft	 zur	 Analyse	 der	 Qualität	 von	
Biomarkern	 verwendet	 wird	 (zum	 Beispiel	 in	 [131-136])	 ist	 die	 Interpretation	 der	
Receiver-Operating-Characteristic-Kurve	 (ROC	 Kurve).	 In	 einem	 Diagramm	 wird	 die	
Sensitivität	 (Richtig-Positiv-Rate)	als	Ordinate	und	die	Falsch-Positiv-Rate	als	Abszisse	
aufgetragen.	Das	Gütemaß	ist	dann	die	Fläche	unter	der	ROC-Kurve,	die	Area	Under	Curve	
(AUC).	Der	Wert	der	AUC	kann	wischen	0	und	1	liegen.	Es	ist	wichtig	hervorzuheben,	dass	
0,5	der	schlechteste	mögliche	Wert	ist,	da	dieser	zu	einer	ROC	Kurve	nahe	der	Diagonale	
und	 daher	 nahe	 des	 erwarteten	 Ergebnisses	 eines	 Zufallsprozesses	 liegt.	 Die	
normalerweise	als	optimal	beschriebene	Kurve	hat	eine	Fläche	größer	0,5	und	möglichst	
nahe	 an	 1.	 Eine	 Kurve	 mit	 einer	 Fläche	 kleiner	 0,5	 und	 nahe	 an	 0	 ist	 vom	
Informationsgehalt	 her	 allerdings	 genauso	 gut.	 Ein	 Beispiel	 ist	 die	 Hoch-	 und	
Runterregulation	 von	Genen.	 Ein	 perfekt	 hochreguliertes	Gen	 hat	 eine	AUC	 von	 1,	 ein	
perfekt	runterreguliertes	Gen	einen	AUC	Wert	von	0.	Interessant	ist	ebenfalls,	dass	sich	
der	p-Wert	des	WMW	Tests	aus	dem	AUC	Wert	ableiten	lässt.	In	meiner	Arbeit	wurde	die	
AUC	 nicht	 nur	 verwendet,	 um	 die	 Güte	 von	 einzelnen	miRNAs	 abzuschätzen,	 sondern	
auch,	um	die	Performance	von	maschinellen	Lernverfahren,	speziell	von	den	weiter	unten	
beschriebenen	Support	Vector	Machines,	zu	evaluieren.	Es	wurde	die	Implementierung	
der	ROC	Analyse	in	R	im	„ROC“	Paket	verwendet	(Funktion	AUC).								
	
Varianzanalyse:	Wenn	mehr	als	nur	zwei	Gruppen	miteinander	verglichen	werden,	zum	
Beispiel	 Multiple	 Sklerose,	 Alzheimer,	 Parkinson	 und	 Kontroll-Probanden,	 kann	 eine	
Varianzanalyse	 (Analysis	 of	 Variance,	 ANOVA)	 angewendet	werden.	 	 Auch	die	ANOVA	
wird	 seit	 mehreren	 Jahrzehnten	 in	 der	 Biostatistik	 zur	 Beurteilung	 von	 Biomarkern	
verwendet	 [137]. Generell ist die Varianzanalyse	 eine	 allgemeine	 Methode	 zur	
statistischen	 Bewertung	 von	 Unterschieden	 in	 Mittelwerten	 zwischen	 mehr	 als	 zwei	
Gruppen.	 In	 der	 einfachsten	 Form	 kann	 die	 ANOVA	 als	 Generalisierung	 des	 t-Tests	
angesehen	werden.	Es	gelten	die	drei	Grundannahmen,	dass	die	Stichproben	unabhängig	
sind,	 alle	 Stichproben	 sind	 normalverteilt	 und	 es	 herrscht	 Varianzhomogenität.	 Die	
Nullhypothese	lautet,	dass	kein	Unterschied	zwischen	den	Mittelwerten	der	zu	testenden	
Gruppen	 vorliegt,	 die	 Alternativhypothese	 besagt	 dementsprechend,	 dass	 zwischen	
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mindestens	zwei	Mittelwerten	ein	Unterschied	besteht.	 	 In	meiner	Arbeit	wurden	one-
way	ANOVA	in	R	im	„stats“	Paket	verwendet	(Funktion	aov).								
	
Hierarchisches	 Clustern:	 Clusteranalysen	 werden	 eingesetzt,	 um	 Strukturen	 in	
Datensätzen	 zu	 erkennen.	 Eines	 der	 gängigsten	 Cluster	 Verfahren,	 das	 in	 der	
biomedizinischen	Forschung	eingesetzt	wird	und	sich	seit	etlichen	Jahrzehnten	bewährt	
hat,	ist	hierarchisches	Clustern [138-143].	Im	Grunde	bezeichnet	hierarchisches	Clustern	
eine	Klasse	von	Verfahren	die	distanz-	oder	 ähnlichkeitsbasiert	 sind.	 In	meiner	Arbeit	
habe	ich	hauptsächlich	hierarchische	Cluster	Methoden,	basierend	auf	der	Euklidischen	
Distanz	verwendet.	Der	verwendete	Ansatz	entspricht	einem	Bottom-Up	Clustern.	Jedes	
Objekt	 (als	 zu	 clusternde	Objekte	werden	 sowohl	Gene	/	miRNAs	als	 auch	Probanden	
verwendet)	bildet	initial	einen	eigenen	Cluster	und	ähnlichste	Cluster	werden	in	jedem	
Schritt	 iterativ	 zusammengefügt.	 Um	 die	 Ähnlichkeit	 zwischen	 zwei	 Clustern	 zu	
definieren	wurde	 „complete	 linkage“	 Clustering	 verwendet.	 Als	 grafische	 Ausgabe	 des	
Prozesses	 werden	 sogenannte	 Dendrogramme	 generiert.	 Sie	 verbinden	 in	 einer	
baumartigen	Struktur	die	jeweils	ähnlichsten	Objekte.	Je	näher	an	der	Wurzel	des	Baumes	
zwei	Objekte	zusammenkommen,	um	so	unähnlicher	sind	sie.	Umgekehrt,	je	näher	an	den	
Blättern	 Objekte	 zusammentreffen,	 um	 so	 ähnlicher	 sind	 sie.	 Als	 weitere	 grafische	
Darstellung	werden	Heat	Maps	generiert.	Heat	Maps	sind	Matrizen,	die	beispielsweise	für	
jedes	gemessene	Gen	oder	jede	gemessene	miRNA	eine	eigene	Zeile	besitzen	und	für	jeden	
Probanden	 eine	 eigene	 Spalte.	 Oft	 werden	 Dendrogramme	 für	 Patienten	 und	 Gene	
zusammen	mit	der	Heat	Map	gezeigt.	Durch	das	Clustering	versucht	man,	Strukturen	zu	
finden,	 die	bei	 einer	bestimmten	Gruppe	der	Probanden	 (zum	Beispiel	 den	Patienten)	
anders	sind	als	bei	einer	anderen	Gruppe	(zum	Beispiel	Kontrollen).	Wenn	nicht	explizit	
erwähnt,	wurde	„unsupervised“	Clustering	verwendet.	Die	Strukturen	wurden	gefunden,	
ohne	dass	man	die	Information	verwendet	hat	welches	Individuum	zu	den	Patienten	oder	
den	 Kontrollen	 gehörte.	 Um	 komplexe	 Signaturen	 grafisch	 darzustellen	 wurde	
„supervised“	Clustering	verwendet.	Dies	ist	in	jedem	Fall	explizit	erwähnt	und	dient	wie	
beschrieben	 nur	 der	 grafischen	 Darstellung	 von	 Signaturen	 in	meiner	 Arbeit.	 Um	 die	
Profile	zu	clustern	habe	ich	in	R	das	„stats“	Paket	verwendet	(Funktion	hclust).	Um	die	
grafische	 Darstellung	 als	 Heat	 Map	 zu	 erzeugen	 wurde	 die	 heatmap.2	 Funktion	
verwendet.	
	
Klassifikation:	 Um	 Patienten	 und	 Kontrollen	 basierend	 auf	 miRNA	 Mustern	 zu	
unterscheiden	wurden	 zusätzlich	 „supervised“	 Klassifikations	 Verfahren	 eingesetzt.	 In	
diesem	 Zusammenhang	 ist	 es	 wichtig	 zwei	 Komponenten	 zu	 erwähnen:	 „feature	
selection“	und	„cross	validation“.	Mit	Methoden	des	maschinellen	Lernens	wird	versucht,	
Objekte	basierend	auf	Eigenschaften	 in	Klassen	zuzuordnen.	Wir	haben	uns	mit	einem	
vergleichsweise	einfachen	Fall	beschäftigt,	dem	Aufteilen	von	Probanden	in	zwei	Klassen,	
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basierend	 auf	 miRNA	 Mustern.	 Klassifikatoren	 haben	 zunächst	 basierend	 auf	 einem	
Datensatz	 Muster	 gelernt.	 Anschließend	 wurden	 andere	 Profile	 in	 den	 trainierten	
Klassifikator	gegeben	um	für	diese	vorherzusagen	zu	welcher	Klasse	sie	gehören.	Da	ich	
keinen	eigenen	Trainings-	und	Testdatensatz	zur	Verfügung	hatte,	habe	ich	sogenanntes	
„re-sampling“,	genaugenommen	Kreuzvalidierung	(„cross	validation“),	verwendet.	Dabei	
wird	 der	 gesamte	 Datensatz	 zufällig	 in	 k	 gleichgroße	 disjunkte	 Mengen	 aufgeteilt	 (k	
wurde	auf	10	gesetzt).	K-1	Teile	des	Datensatzes	wurden	verwendet,	um	den	Klassifikator	
zu	trainieren	und	um	den	k-ten	Teil,	der	nicht	verwendet	wurde,	vorherzusagen.	 Jeder	
Proband	wurde	folglich	in	neun	Trainings	Sets	verwendet	und	einmal	selbst	klassifiziert.	
Da	der	Prozess	stochastisch	ist	und	eine	Zufallskomponente	birgt,	wurde	das	Verfahren	
für	 jede	 Klassifikation	 mindestens	 zehnmal	 wiederholt.	 Zusätzlich	 war	 es	 für	 den	
Klassifikator	 wichtig,	 die	 Parameter	 (hier	 die	 miRNAs)	 zu	 erkennen,	 die	 den	
größtmöglichen	 Nutzen	 haben	 und	 die	 beste	 Trennung	 erlauben.	 Dazu	 wurde	 eine	
„stepwise-forward“	 Filter	 Subset	 Selektion	 angewendet.	 In	 jedem	 Schritt	 wurden	
innerhalb	der	Kreuzvalidierung	die	miRNAs	gewählt,	die	die	höchste	Signifikanz	auf	dem	
momentanen	 Trainings-Set	 hatten.	 Beginnend	 mit	 zwei	 miRNAs	 wurde	 die	 Anzahl	
schrittweise	erhöht	und	bis	zu	250	miRNAs	in	die	Klassifikation	eingeschlossen.	Um	für	
potenzielles	 „overfitting“	 zu	 testen	 wurden	 nicht-parametrische	 Permutationstests	
durchgeführt.	Als	Klassifikatoren	wurden	verschiedene	Standard	Lernverfahren	getestet.	
Die	besten	Ergebnisse	wurden	generell	mit	Support	Vector	Machines	mit	Radialer	Basis	
Funktion	als	Kernel	erzielt.	Die	Methodik	der	Klassifikation	ist	in	der	Alzheimer	miRNA	
Publikation	 ausgeführt	 [57]	 und	 ein	 exzellenter	 Hintergrund	 über	 die	 verwendeten	
Verfahren	 des	 maschinellen	 Lernens	 findet	 sich	 im	 Buch	 "The	 Elements	 of	 Statistical	
Learning:	Data	Mining,	Inference,	and	Prediction"	von	Trevor	Hastie,	Robert	Tibshirani	
und	Jerome	Friedman.		
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Resultate:	Von	der	Plattform	zum	Biomarker	
	
	
	
In	diesem	Kapitel	stelle	ich	die	wesentlichen	wissenschaftlichen	Ergebnisse	meiner	Arbeit	
vor.	Wie	in	der	Einleitung	skizziert	befasse	ich	mich	im	ersten	Teil	mit	der	Entwicklung	
von	 Plattformen	 und	 Assays,	 die	 es	 uns	 erlauben	Nukleinsäuren	 in	 hohem	Durchsatz,	
parallel	und	sehr	exakt	zu	messen	(Kapitel	4.1).	Ebenfalls	im	Kapitel	über	technologische	

Kapitel 4 

Abbildung 10: Übersicht über die Forschung.  

Die Entwicklungen, die in dieser Arbeit beschrieben werden sind in obiger Abbildung übersichtlich dargestellt. 
Die technischen und Assay-Entwicklungen in Kapitel 4.1 sind in orange dargestellt, die Biomarker Entwicklung 
in grün. Auf der Assay Seite ist die Entwicklung vom grundlagenwissenschaftlichen Hochdurchsatz-Gerät bis hin 
zur patientennahen (Point-of-Care PoC) Testung fortgeschritten. 
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und	Assay	Entwicklung	beschreibe	ich	meinen	Ansatz	molekulare	Biomarker	Signaturen	
mit	 Standard-Methodik,	 die	 in	 zehntausenden	 Krankenhäusern	 vorhanden	 ist,	 in	 der	
Routine	zu	messen.	Obwohl	die	Techniken,	die	beschrieben	werden,	 für	alle	Arten	von	
Nukleinsäuren	geeignet	sind,	habe	 ich	 in	meiner	Arbeit	einen	starken	Fokus	auf	kleine	
nicht-kodierende	RNAs,	miRNAs	gesetzt	(siehe	auch	Kapitel	2).	Daher	skizziere	ich	im	2.	
Teil	 der	 Resultate,	 wie	 die	 verschiedenen	 Plattformen	 eingesetzt	 werden,	 um	miRNA	
Biomarker	 zu	 finden	 (Kapitel	 4.2).	 Danach	 befasse	 ich	 mich	 mit	 Eigenschaften	 von	
miRNAs,	 die	 über	 die	 rein	 deskriptive	 Korrelation	 der	 Biomarker	 mit	 Erkrankungen	
hinausgehen	 (Kapitel	 4.3).	 Im	 letzten	 Abschnitt	 gehe	 ich	 noch	 auf	 Aspekte	 und	
Anwendungen	in	der	Synthetischen	Biologie	ein	(Kapitel	4.4).	Die	einzelnen	Unterkapitel	
in	der	Abhängigkeit	zueinander	und	in	ihrer	zeitlichen	Entwicklung	sind	in	Abbildung	10	
zusammengefasst.		
	
In	den	einzelnen	Kapiteln	verweise	ich	jeweils	kurz	auf	Publikationen	und	Patente	zu	den	
jeweiligen	Themen.	Wie	in	der	Einleitung	beschrieben	ist	komplexe	und	interdisziplinäre	
Forschung	nicht	ohne	entsprechend	interdisziplinäre	Kooperationspartner	möglich.	Die	
Beiträge	der	einzelnen	Partner,	die	ich	sehr	zu	schätzen	weiß,	sind	in	den	entsprechenden	
Originalarbeiten	gekennzeichnet.		
	
	
	

4.1.	Technsiche	Plattformen	und	Assays	

4.1.1.	Das	Geniom	

Ein	Nachteil	der	frühen	Mikroarray	Technologie,	Ende	der	1990	Jahre,	war	die	geringe	
Flexibilität.	Bevor	ich	die	Idee	zu	einem	flexiblen	Mikroarray	System	hatte,	hatten	andere	
Firmen	 wie	 Affymetrix	 bereits	 kommerzielle	 Mikroarray	 Produkte	 auf	 dem	 Markt.	
Allerdings	war	der	Inhalt	der	Arrays	von	den	Firmen	vorgegeben	und	„custom“	Produkte	
mit	 eigenem	 Inhalt	 waren	 teuer	 und	 haben	 mehrere	 Wochen	 bis	 Monate	 in	 der	
Herstellung	 benötigt.	 Mein	 Ziel	 war	 und	 ist	 es,	 Forschern	 eine	 höhere	 Flexibilität	 zu	
ermöglichen.	Diese	Flexibilität	sollte	es	nicht	nur	erlauben	eigene	Gen	Expressionsarrays	
über	 Nacht	 im	 eigenen	 Labor	 herzustellen,	 sondern	 auch	 viel	 weitreichendere	
Anwendungen	 zu	 ermöglichen.	 Beispiele	 dafür	 sind	 sogenanntes	 targeted	 Next-
Generation-Sequencing,	wie	es	heute	in	der	Rutine	Diagnostik	eingesetzt	wird.	Dabei	wird	
ein	 Set	 von	 Genen	 definiert,	 die	 auf	 einem	 Mikroarray	 oder	 in	 Lösung	 angereichert	
werden,	sodass	gerade	die	Fraktion	der	interessanten	Gene	sequenziert	und	ausgewertet	
werden	kann.	



 

 23 

Eine	 andere	 Anwendung,	 die	 in	 Kapitel	 4.4.	 beschrieben	 wird,	 ist	 die	 Synthetische	
Biologie.	 Forschern	 sollte	 es	 ohne	 Weiteres	 möglich	 sein,	 möglichst	 fehlerfreie	
Oligonukleotide	herzustellen.	Die	Herausforderungen	an	eine	entsprechende	Technologie	
waren	 dementsprechend	 groß.	 Standard	 Technologie	 zu	 verwenden,	 das	 Spotten	 von	
Mikroarrays	 oder	 aufwendige	 photolithografische	 Verfahren,	wie	 es	 zum	Beispiel	 von	
Affymetrix	eingesetzt	wurde,	war	entsprechend	nicht	möglich.		
	
Die	Lösung,	die	ich	konzipiert	habe	basiert	anstatt	dessen	auf	einer	in-situ	Oligonukleotid	
Synthese	die	durch	Licht	aktiviert	wird.	In	ein	Glas-Silikon-Glas	Sandwich	werden	dabei	
zunächst	 bis	 zu	 acht	 Kanäle	 –	 für	maximal	 acht	 parallele	 Experimente	 –	 geätzt.	 Unter	
Verwendung	von	Standard-Synthese	Chemikalien	 (Proligo)	und	3’	Phosporamidite	mit	
einem	 photolabilen	 5’	 Schutz	 wird	 parallel	 in	 allen	 Kanälen	 eine	 Synthese	 von	
vordefinierten	Oligonukleotiden	durchgeführt.	Erwähnenswert	 ist,	 dass	die	Oberfläche	
durch	 einen	 sogenannten	 Spacer	 zugänglich	 gemacht	 werden	 muss.	 Dieser	 Set-up	
ermöglicht	es,	die	Synthesezeit	unabhängig	von	der	Anzahl	von	Sonden	zu	machen.	Jedoch	
wächst	die	Synthesezeit	linear	mit	der	Länge	der	Oligonukleotide	an.	Über	Nacht	ist	es	so	
möglich,	 fast	100,000	verschieden	25-	bis	50-mere	auf	einem	Mikroarray	herzustellen.	
Diese	können	entweder	identisch	oder	völlig	unterschiedlich	sein.		
	
Das	 grundlegende	Verfahren	
ist	 prinzipiell	 ähnlich	 zu	 der	
von	Solexa	entwickelten	und	
von	 Illumina	 vermarkteten	
Sequenzierung	 durch	
Synthese.	 Zur	 Anwendung	
bei	 der	 Messung	 von	 Gen-	
oder	 miRNA	 Expression	
werden	 die	Mikroarrays	mit	
der	entsprechenden	RNA	der	
Probe	hybridisiert.	Dazu	wird	
die	 totale	RNA	mit	oligo(dT)	
Primern	 in	 doppelsträngige	
cDNA	 umgeschrieben.	 Diese	
wird	 mit	 Phenol-Chloroform	
aufgereinigt	und	mit	Ethanol	
gefällt.	 Mit	 T7	 RNA	
Polymerase	 (Ambion)	 wird	
basierend	auf	der	Vorlage	der	
cDNA	 eine	 in-vitro	

Abbildung 11: Reproduzierbarkeit der Geniom Array Technologie.  

Für 4 Mikroarrays werden alle 4*3/2 paarweisen Kombinationen von 
Scatter-Plots gezeigt (A-F). Panel G zeigt eine Dichteverteilung des 
Variationskoeffizienten. Die Abbildung entstammt aus unserem 
Manuskript Baum et al. 

	



 

 24 

Transkription	durchgeführt.	In	der	Lösung	waren	nicht	markierte	ATP,	CTP,	GTP	und	UTP	
sowie	Biotin	markierte	CTP	und	UTP	Moleküle.		
	
Im	 Folgenden	 werden	 die	 eigens	 hergestellten	 Mikroarrays	 mit	 der	 so	 vorbereiteten	
Probe	 hybridisiert.	 Entscheidend	 ist,	 dass	 sowohl	 die	Herstellung	 der	Mikroarrays	 als	
auch	 die	Hybridisierung	 der	 Probe	 im	 selben	Gerät	 erfolgen.	Die	Mikroarrays	werden	
dabei	mit	15	Mikrogramm	fragmentierter	cRNA	in	20	Mikroliter	Lösung	hybridisiert.	Die	
Inkubationszeit	 beträgt	 dabei	 16	 Stunden	 bei	 konstant	 45	 Grad	 Celsius.	 Nach	 20-
minütigem	Waschen	mit	Pufferlösung	wird	für	15	Minuten	ein	Streptavidin	Fluoreszenz-
farbstoff	hinzugegeben.	Die	Signale	werden	mit	einer	CCD	Kamera	ausgelesen	und	mittels	
Bildverarbeitung	 quantifiziert.	 Als	 Signalintensität	 kann	 entweder	 die	 absolute	Menge	
verwendet	werden	oder	das	Verhältnis	von	„perfect	Match“	zu	„miss	Match“	Sonden,	also	
Sonden,	in	die	gezielt	Veränderungen	eingebaut	wurden.			
	
In	einer	ersten	Studie	konnte	gezeigt	werden,	dass	die	Mikroarray	Technologie,	die	ich	
maßgeblich	 entwickelt	 habe,	 sowohl	 sensitiv	 als	 auch	 reproduzierbar	 ist,	 einen	
hinreichend	großen	dynamischen	Bereich	(Dynamik	Range)	bietet	und	sich	mit	anderen	
Methoden	gut	vergleichen	lässt.	Spike	In	Experimente	in	Konzentrationsreihen	beginnend	
bei	23	pikomolarer	Lösung	bis	zu	100	nanomolarer	Konzentration	haben	gezeigt,	dass	die	
gemessene	 Intensität	 mit	 der	 tatsächlichen	 Konzentration	 linear	 korreliert.	 Der	
dynamische	Bereich	war	dabei	drei	Größenordnungen.	Neben	den	Untersuchungen	über	
die	 Sensitivität	 und	 den	 dynamischen	 Bereich	 zeigt	 der	 Mikroarray	 auch	 eine	 hohe	
technische	 Reproduzierbarkeit:	 der	 mittlere	 Korrelationskoeffizient	 bei	 wiederholten	
Messungen	liegt	bei	0.99	und	der	Variationskoeffizient	liebt	bei	9%.	Selbst	im	Vergleich	
zu	Affymetrix	Mikroarrays	wurden	noch	Korrelationswerte	über	0.9	erreicht.	Die	hohe	
Reproduzierbarkeit	und	der	geringe	Variationskoeffizient	sind	in	Abbildung	11	gezeigt.		
	
Die	 Geniom	 Technologie	 ist	 in	 allen	 Kennzahlen	 gleichwertig	 zu	 anderen	 Array	
Technologien,	sowohl	von	Affymetrix	als	auch	von	Agilent	oder	Illumina.	Zur	Messung	von	
Genexpressionsmustern	wird	 heute	 neben	Mikroarrays	 auch	 HTS	 eingesetzt.	 Die	 HTS	
Methode	bietet	den	Vorteil,	dass	Gene	nicht	nur	quantifiziert	werden	können,	sondern	
auch,	 dass	 verschiedene	 Splice	 Formen	 und	 Mutationen	 in	 Genen	 gefunden	 werden	
können.	Daher	wurde	 in	den	vergangenen	Jahren	zunehmend	auf	die	HTS	Technologie	
gesetzt	 und	 für	 das	 klassische	 Gen	 Expression	 Profilierung	 haben	 Mikroarrays	 an	
Bedeutung	verloren.	Exzellente	Übersichtsartikel	und	direkte	Vergleiche	über	die	beiden	
teilweise	konkurrierenden,	teilweise	aber	auch	komplementären	Technologien	wurden	
von	Su	und	Mitarbeitern	sowie	Zhao	und	Mitarbeitern	publiziert	[144,	145].		
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Die	Geniom	Technologie,	die	ich	in	diesem	Abschnitt	beschrieben	habe,	ist	aber	keinesfalls	
überflüssig,	 sondern	 wurde	 für	 drei	 Anwendungen	 weiterentwickelt.	 Ich	 habe	 die	
Technologie	verwendet,	um	kleine	nicht-kodierende	RNAs	zu	untersuchen.	Im	Gegensatz	
zu	Genexpression	ist	es	hier	wesentlich	weniger	wichtig,	Mutationen	zu	finden.	Bei	den	
im	 Mittel	 gerade	 22	 Basen	 langen	 RNAs,	 die	 nicht	 für	 Proteine	 kodieren,	 existieren	
außerdem	 keine	 Splicevarianten.	 Dafür	 ist	 eine	 genaue	Quantifizierung,	wie	 sie	 durch	
Mikroarrays	ermöglicht	wird,	für	die	Diagnostik	notwendig.	Die	entsprechenden	Arbeiten	
werden	im	Kapitel	4.2.1.	beschrieben	und	Ergebnisse	in	Kapitel	4.2.2.	vorgestellt.	Neben	
der	 Anwendung	 im	 Umfeld	 nicht-kodierender	 RNAs	 hat	 die	 Geniom	 Technologie	 eine	
weitere	Anwendung	gefunden.	Sie	wird	eingesetzt,	um	fehlerfreie	Oligonukleotide	schnell	
zu	 synthetisieren,	 vom	 Glasträger	 abzulösen	 und	 in	 der	 Synthetischen	 Biologie	
anzuwenden	 (Kapitel	 4.4).	 Diese	 Anwendungsvariante	 hat	 der	 Genomik-Pionier	 Graig	
Venter	 exklusiv	 für	 seine	 Firma	 SGI	 erworben.	 Zusätzlich	 wurde	 die	 entsprechende	
Technologie	 verwendet,	 um	 Anreicherung	 für	 Gen	 Panels	 und	 anschließende	
Sequenzierung	zu	ermöglichen	[48].	Diese	Methode,	die	heute	in	der	genetischen	Rutine-
Diagnostik	eingesetzt	wird	und	auf	die	ich	in	der	Auswertung	nicht	weiter	eingehe,	nennt	
sich	 targeted	 Next-Generation	 Sequencing.	 Es	 ist	 ebenfalls	 erwähnenswert,	 dass	 die	
Technologie	nicht	nur	von	mir	und	Kooperationen	eingesetzt	wurde,	sondern	auch	von	
anderen	Forschern	weltweit	verwendet	wird.		[146-151].	
	
Publikationen:	Die	Arbeiten,	 die	 in	diesem	Abschnitt	 beschrieben	werden	basieren	

hauptsächlich	 auf	 den	 folgenden	 Publikationen	 [39,	 41].	 Außerdem	 wurde	 die	

Technologie	patentiert	(DE-19940750.9-52).		
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4.1.2.	Microfuidic	Primer	Extension	für	miRNAs	

Im	vorangegangenen	Abschnitt	haben	 ich	das	Konzept	eines	sehr	 flexiblen	Mikroarray	
Systems	 beschrieben,	 dass	 über	 Nacht	 eigene	 Mikroarrays	 mit	 neuem	 Inhalt	
kostengünstig	herstellen	kann.	Insbesondere	für	die	Quantifizierung	von	RNAs	und	hier	
wiederum	von	kleinen	RNA	Stücken	ist	die	Technologie	besonders	geeignet.		

Für	miRNAs	 ist	das	schnelle	Updaten	der	miRBase	 [79,	80]	 (siehe	auch	Kapitel	2),	vor	
allem	in	den	Anfängen	ein	Problem:	Während	große	Hersteller	von	Mikroarrays	mehrere	
Wochen	 bis	Monate	 brauchen	 um	 einen	 entsprechend	 neuen	Mirkroarray	 anzubieten,	
kann	 das	 Geniom	 diesen	 über	 Nacht	 herstellen.	 Die	 Update	 Zyklen	 der	 21	 Versionen	
waren	oft	aber	deutlich	geringer	als	ein	Jahr	(Abbildung	12).	
	
Eine	Herausforderung	bei	der	Quantifizierung	von	miRNAs	ist	die	Sequenz	Homogenität	
–	 besonders	 am	 3’	 Ende	 von	 miRNAs	 innerhalb	 von	 miRNA	 Familien.	 Eines	 der	
grundlegensten	 Beispiele	 ist	 die	 let-7	 Familie.	 Einige	 Mitglieder	 der	 Familie	 sind	 in	
Abbildung	 12	 als	 Multiples	 Sequenz	 Alignement	 gezeigt.	 Nur	 an	 drei	 Basen	 können	
Unterschiede	 festgestellt	 werden.	 Ein	 häufig	 auftretendes	 Problem	 ist	 daher	 die	
Kreuzhybridisierung:	let-7a	miRNAs	hybridisieren	in	konventionellen	Assays	oft	mit	let-
7b	Fänger	Sonden.		

	
Eine	 weitere	 Herausforderung	
ist	 neben	der	 Spezifität	 für	 die	
Familienmitglieder	 auch	 eine	
hinreichende	 analytische	
Sensitivität:	 Geringe	 RNA	
Mengen	 (wenige	 Nanogramm)	

Abbildung 12:	Die Entwicklung der miRBase.  

Gezeigt sind die 21 miRBase Versionen die bisher veröffentlicht wurden und die Anzahl von humanen miRNA 
Precursor in der miRBase. Die Entwicklungs-Zyklen am Anfang der Datenbank waren oft deutlich weniger als ein 
Jahr. Die Abbildung oben ist mit Hilfe der miRCarta Datenbank erstellt worden.  

Abbildung 13: Ausgewählte Beispiele der let-7 Familie beim Menschen.  

Die Basen, die sich unterscheiden sind in fett hervorgehoben. Die 
Grafik ist in Anlehnung an Abbildung 2A aus Kappel et al. entstanden. 
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sollen	 mit	 möglichst	 wenig	 Präprozessierung	 und	 insbesondere	 ohne	 Amplifikation	
akkurat	gemessen	werden.		
	
Das	 Prinzip	 des	 MPEA	 Assays	 ist	 die	
Fänger-Sonde	 die	 auf	 dem	 Mikroarray	
synthetisiert	 wird	 um	 einige	 Basen	 zu	
verlängern.	So	entsteht	ein	Überhang,	die	
zu	 messende	 miRNA	 ist	 kürzer	 als	 die	
synthetisierte	Sonde	auf	dem	Mikroarray.	
DNA	 Polymerase	 kann	 dann	 verwendet	
werden,	 um	mit	Biotin	markierte	Basen	
einzubauen,	die	die	Quantifizierung	ohne	
vorherige	 Markierung	 der	 miRNAs	
erlauben.	 Verschiedene	 Parameter	
müssen	 getestet	 werden,	 um	 die	
optimalen	 Assay	 Bedingungen	 zu	
definieren.	 Das	 beinhaltet	 die	
Syntheserichtung	(3’->5’	oder	5’->3’),	die	
Base	die	für	die	Verlängerung	verwendet	wird	(bio-dATP,	bio-dCTP,	bio-dGTP	oder	bio-
dUT)	und	die	Anzahl	der	Nukleotide,	um	die	die	Fänger-Sonde	verlängert	wird.		
	
Diese	Parameter	sind	systematisch	ausgetestet	worden.	Die	besten	Resultate	werden	mit	
bio-dATP	erzielt.	Dabei	ist	es	entscheidend,	dass	die	Synthese	in	Richtung	von	3’	nach	5’	
durchgeführt	 wird,	 das	 3’	 Ende	 muss	 auf	 dem	 Array	 immobilisiert	 werden.	 Diese	
Syntheserichtung	 ist	wichtig	um	die	 Spezifität	 am	3’	Ende	der	miRNA	zu	 erhöhen.	Als	
letzter	Parameter	ist	die	Anzahl	der	Nukleotide	getestet	worden,	die	ein	optimales	Signal	
ergaben.	 Generell	 gilt,	 dass	 je	 mehr	 markierte	 Nukleotide	 eingebaut	 werden,	 um	 so	
sensitiver	die	Messmethode	wird.	Ab	einer	bestimmten	Anzahl	tritt	aber	eine	steirische	
Hinderung	ein.	Getestet	wurden	alle	Möglichkeiten	von	einer	bis	zu	zwölf	Nukleotiden.	
Die	 besten	 Resultate	werden	 bei	 5	 Nukelotiden	 erzielt.	 Danach	 tritt	 der	 beschriebene	
Effekt	der	steirischen	Hinderung	auf.	Der	hier	beschriebene	Assay	liefert	reproduzierbare	
und	spezifische	Ergebnisse	bis	hin	zu	50	Nanogramm	totale	RNA	als	Eingangsmaterial.	
Sogar	bis	zu	20	Nanogramm	konnten	noch	verwertbare	Ergebnisse	erzielt	werden.		
	
Der	 MPEA	 Assay	 bietet	 in	 Kombination	 mit	 der	 Geniom	 Technologie	 eine	 sehr	 gute	
Möglichkeit,	 flexibel	miRNAs,	 immer	aus	der	jeweils	neuesten	Version	der	miRBase,	zu	
messen.	Besonders	positiv	neben	der	schnellen	Durchführung	von	Experimenten	sind	die	
hohe	Spezifität	und	die	analytische	Sensitivität.	Daher	bildet	der	MPEA	Assay	die	Basis	für	
den	Großteil	der	Arbeiten,	die	im	Kapitel	4.2.	beschrieben	sind.	In	den	vergangenen	drei	

Abbildung 14: Kreuzhybridisierung im MPEA Assay. 

 MPEA im Vergleich zu Standard Mikroarray Assays für die 
let-7 Familie. Für den MPEA Assay wird eine signifikant 
niedrigere Kreuzhybridisierung und damit signifikant 
höhere Spezifität, vor allem am 3‘ Ende, erzielt. Die 
Abbildung entstammt aus Vorwerk et al.  
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Jahren	hat	sich	die	miRBase	kaum	weiterentwickelt,	das	 letzte	Update	datiert	aus	dem	
Juni	 2014.	 Dadurch	 ist	 ein	 Vorteil	 der	 Geniom	 Technologie	 für	 miRNAs	 entfallen.	
Zusätzlich	 ist	eine	eigene	Plattform	für	die	Experimente	die	von	vielen	Technologien	–	
anderen	 Mikroarrays,	 HTS,	 oder	 RT-qPCR	 –	 durchgeführt	 werden	 können	 nicht	
wirtschaftlich	 und	die	Geniom	Technologie,	 die	 kommerziell	 nicht	mehr	 verfügbar	 ist,	
wird	nicht	weiterverwendet.		
	
Daher	werden	momentan	hauptsächlich	die	Agilent	Micro-Array	Technologie	und	cPAS	
basierte	Sequenzierung	(Kapitel	4.1.4)	eingesetzt	um	miRNA	Profile	zu	generieren.	Neben	
solchen	dezentralen	Plattformen	gibt	es	momentan	den	generellen	Trend	in	der	Medizin,	
Messungen	 mindestens	 im	 Zentrallabor	 von	 Krankenhäusern,	 besser	 sogar	 direkt	
patientennah	„Point-of-Care“	durchzuführen.	Der	hier	von	mir	beschriebene	MPEA	Assay	
dient	als	Grundlage	für	den	miRNA	Immunoassay,	der	im	folgenden	Kapitel	beschrieben	
ist.		
		
Publikationen:	Die	Arbeiten,	 die	 in	diesem	Abschnitt	 beschrieben	werden	basieren	

hauptsächlich	auf	[42],	beinhalten	aber	bereits	Aspekte	aus	[43].	Außerdem	ist	die	

Idee	 im	 Kontext	 in	 zwei	 sehr	 umfangreichen	 Patenten	 im	 Detail	 beschrieben	

(EP2109499,	DE102007018833).		
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4.1.3.	Point-of-Care	miRNA	Testung	

Wie	 im	 vorangegangenen	 Abschnitt	 beschrieben	 gibt	 es	 einen	 stetigen	 Trend	 hin	 zur	
Point-of-Care	Testung.	Das	gilt	im	besonderen	Maße	für	Infektionserkrankungen	[152],	
aber	 auch	 für	 andere	 zeitkritische	 Tests	 wie	 die	 Messung	 von	 Troponin	 im	 Umfeld	
kardiologischer	Diagnostik	 [153].	Eine	hervorragende	Übersicht	bietet	der	Artikel	 von	
John	und	Price	[154].	
	
Ein	 erheblicher	 Anteil	 der	 In-Vitro	 Standard-Diagnostik	 in	 klinischen	 Laboren	 sind	
Immunoassays,	sogenannte	ELISA	(Enzyme-linked	Immunosorbent	Assay)	[155].	Diese	
kostengünstige	(ein	ELISA	kostet	oft	weniger	als	ein	Euro	in	der	Herstellung)	und	schnelle	
Technologie	 (Zeit	 vom	Probeneingang	bis	 zum	Testergebnis	 sind	 in	der	Regel	nur	1-2	
Stunden)	wird	zur	Messung	von	Proteinen	eingesetzt	und	ist	aus	der	Routine	Diagnostik	
nicht	wegzudenken.	Für	die	Messung	von	Nukleinsäuren,	also	DNA	oder	RNA,	wurden	
ELISA	bisher	hingegen	nur	wenig	verwendet.	
	
Ich	habe	daher	das	Konzept	eines	Immunoassays	ähnlich	klassischer	ELISA	Tests	aber	zur	
spezifischen	Messung	von	miRNAs	entwickelt.	Dabei	ist	die	grundlegende	Idee	des	Assays	

Abbildung 15: Prinzip des miRNA Immunoassays.  

Die Gesamtzeit für alle Schritte, die vollautomatisch durchgeführt werden, beträgt 49 Minuten. Die Abbildung ist 
modifiziert aus Kappel et al. entnommen.	
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(Spezifität	 für	 miRNA	 Familien	 Mitglieder	 zu	 erreichen)	 und	 die	 Methodik	 der	
Auswertung	 ähnlich	 zum	 vorher	 beschriebenen	 MPEA	 Assay.	 Der	 Ansatz	 ist	 ein	
zweistufiger	Test,	der	für	das	Siemens	Centaur	System	entwickelt	wurde,	aber	mit	jedem	
anderen	 Analyzer	 im	 Zentrallabor	 oder	 Point-of-Care	 Gerät	 kompatibel	 ist.	 Die	
wichtigsten	 Komponenten	 sind	 Streptavidin	 markierte	 Mikropartikel,	 eine	 mit	 Biotin	
markierte	Fänger-Sonde,	die	komplementär	der	nachzuweisenden	miRNA	ist	sowie	ein	
monoklonaler	Antikörper,	der	spezifisch	zur	Detektion	von	DNA	/	RNA	hybriden	ist	und	
der	mit	Acridinium	Ester	markiert	ist.		
	
Im	ersten	Schritt	des	Assays	werden	die	miRNAs	einer	biologischen	Probe,	in	diesem	Fall	
einer	Blutprobe,	mit	der	Fänger-Sonde,	die	mit	Biotin	markiert	ist,	hybridisiert.	Es	bilden	
sich	 dabei	 perfekte	 Heterohybride	 aus	 der	 miRNA	 und	 der	 Fänger-Sonde,	 die	 eine	
einzelsträngige	DNA	ist.	Im	zweiten	Schritt	werden	die	Hybride	mit	der	immobilisierten	
Streptavidin	 Phase	 gebunden.	 Final	wird	 der	 Antikörper	 zur	 Detektion	 der	 DNA/RNA	
Hybride	zugegeben.	Der	Antikörper	ist	sehr	spezifisch,	er	erkennt	nur	perfekte	Paare	aus	
DNA	und	RNA,	ein	Missmatch	wird	nicht	erlaubt.	Daher	 ist	die	Menge	an	gebundenem	
Antikörper	proportional	zu	der	Menge	an	DNA/RNA	Hybriden	die	wiederum	proportional	
zu	der	Menge	der	miRNA,	die	detektiert	werden	soll,	in	der	Blutprobe	ist.		
	

Der	 voll	 automatische	
Assay,	 der	 in	 Abbildung	
15	 übersichtlich	 und	
schematisch	 gezeigt	 ist,	
besteht	im	Detail	aus	den	
folgenden	 Schritten:	
Pipettiere	 75	 μL	
Probenmaterial	 in	 eine	
Küvette.	Pipettiere	75	μL	
20	 mmol/L	 Sodium	
Phosphat,	 pH	 7.2,	 300	
mmol/L	 NaCl,	 0.1%	
Triton	 X-100,	 0.5%	
Bovine	 Serum	 Albumin,	
0.02%	Sodium	Azide	und	
Biotin	 markiertes	
Oligonucleotid	 (10	
nmol/L)	und	inkubiere	es	
mit	 der	 Probe	 für	 6	

Minuten	 bei	 37	 °C.	 Pipettiere	 150	 μL	 der	 Solid	 Phase	 dazu	 und	 inkubiere	 dies	 für	 18	

Abbildung 16: Analytische Sensitivität und Spezifität des Immunoassays. 

 Die Grafik zeigt für verschiedene Konzentrationen von let-7a, let-7b, let-7c 
und let-7f und eine Fänger-Sonde, die spezifisch für let-7a ist, die 
Signalintensität (linke Skala und Kurven) und die prozentuale 
Kreuzhybridisierung (rechte Skala und Balkenhöhe). Die Abbildung ist 
modifiziert aus Kappel et al. entnommen.  
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Minuten	bei	37	°C.	Trenne	die	Solid	Phase	von	der	Lösung.	Wasche	die	Küvette	6.75	min	
at	37	°C.	Pipettiere	95	μL	Antikörper	und	inkubiere	dies	für	18	Minuten	bei	37	°C.	Wasche	
die	Küvette	nach	Separation	der	Solid	Phase.	Pipettiere	300	μL	Säure	und	300	μL	Base,	
um	die	Chemolumineszenz	zu	erzeugen.			
	
Der	 Assay	 wurde	 mit	 einem	 ähnlichen	 2xperimentellen	 Set-Up,	 wie	 im	 vorherigen	
Abschnitt	für	den	MPEA	Assay	beschrieben,	getestet.	Verschiedene	Konzentrationen	(0.1-
30nmol/L)	von	Mitgliedern	der	let-7	Familie	wurden	gemischt.	Im	konkreten	Beispiel,	das	
in	 Abbildung	 16	 gezeigt	 ist,	 wurde	 eine	 Fänger-Sonde,	 die	 spezifisch	 für	 let-7a	 ist,	
zugegeben.	Die	maximale	Kreuzhybridisierung,	die	beobachtet	wurde	liegt	bei	weniger	
als	 0.6%,	 die	 technische	 Spezifität	 dementsprechend	 bei	 99.4%.	 Weitere	
Konzentrationsreihen	haben	gezeigt,	dass	selbst	Konzentrationen	von	1	Pikomol	je	Liter	
stabil	gemessen	werden	können.	Die	gemessene	Konzentration	hat	mit	der	tatsächlichen	
Konzentration	 dabei	 sehr	 exakt	 übereingestimmt	 (Pearson	 Korrelation	 von	 0.998).	
Nachdem	die	technische	Spezifität	und	Sensitivität	bestimmt	worden	ist,	wurde	der	Assay	
auf	 biologische	 Proben	 angewendet.	 Als	 Beispiel	 dient	 das	 später	 in	 Kapitel	 4.2.3	
beschriebene	Set	an	Alzheimer	miRNAs.	Für	alle	getesteten	Marker	(hsa-miR-5010–3p,	
hsa-miR-26a-5p,	 hsa-miR-151a-3p	 und	 hsa-let-7d-3p)	 wurden	 in	 40	 biologischen	
Replikaten	stabile	Signale	nachgewiesen.	Bemerkenswert	war	der	Variationskoeffizient	
von	miR-26a-5p,	der	nur	4%	betragen	hat.	Auch	Unterschiede	zwischen	Patienten	und	
Kontrollen,	 wie	 sie	 sonst	 typisch	 für	 miRNAs	 sind,	 konnten	 detektiert	 werden.	 Final	
wurde	 der	 Immunoassay	 gegen	 RT-qPCR,	 als	 Gold	 Standard,	 getestet.	 In	 diesen	
Experimenten	 war	 die	 Korrelation	 zwischen	 den	 beiden	 Technologien	 enorm	 hoch	
(Pearson	 Korrelation	 0.994)	 und	 zeigen	 dass	 der	 Immunoassay	 kompetitiv	 zur	
klassischen	RT-qPCR	basierten	Detektion	on	miRNAs	ist.	
	
Mit	dem	Immunoassay	habe	ich	einen	entscheidenden	Beitrag	geleistet,	dass	miRNAs	in	
Richtung	 klinische	 Testung	 weiterentwickelt	 werden	 können.	 Die	 Limitation	 liegt	
momentan	in	der	Fähigkeit,	mehrere	miRNAs	parallel	aus	der	selben	Probe	zu	messen.	
Die	einzige	Möglichkeit	die	nicht	nur	konzeptionell	vielversprechend	war,	sondern	auch	
verwirklicht	 werden	 konnte,	 ist	 ein	 serielles	 Multiplexing.	 Das	 bedeutet,	 dass	 der	 in	
Abbildung	 15	 gezeigte	 Ablauf	 für	 jede	 miRNA	 hintereinander	 und	 nicht	 parallel	
durchgeführt	wird.	Begonnen	wird	dabei	mit	der	am	niedrigst-konzentrierten	miRNA	in	
der	 Probe.	 Das	 zusammen	mit	 der	 verfügbaren	Menge	 an	 Ausgangsmaterial	macht	 es	
bisher	 möglich,	 etwa	 4-8	 miRNAs	 von	 einem	 Patienten	 und	 aus	 einer	 Blutprobe	 zu	
messen.	Für	die	meisten	Anwendungen	(siehe	Kapitel	4.2.)	ist	diese	Anzahl	an	Markern	
ausreichend.	
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Erwähnenswert	ist,	dass	der	Assay	und	die	Lizenzen	an	dem	Assay	2015	von	der	Firma	
Biovendor	 gekauft	 worden	 sind	 und	 seit	 Ende	 2017	 kommerziell	 als	 miREIA	 Assay	
angeboten	 werden	 (https://www.biovendor.com/mireia-breakthrough-assays).	 Die	
Weiterentwicklung	 der	 Firma	 Biovendor	 erlaubt	 dabei	 sogar	 Messungen	 bis	 zu	
Konzentrationen	von	0.1	attomol/μl	miRNA	(0.1	Trillionstel	Mol	je	Liter).	
	
Publikationen:	Die	Arbeiten,	 die	 in	diesem	Abschnitt	 beschrieben	werden	basieren	

hauptsächlich	 auf	 [43].	 Außerdem	 wurde	 ein	 ähnliches	 Konzept	 mit	 anderem	

Detektions-Mechanismus	entwickelt	und	publiziert	[44].	Details	zu	diesem	parallelen	
Ansatz	 habe	 ich	 in	 der	 vorliegenden	 Ausarbeitung	 nicht	 beschrieben.	 Der	

Immunoassay	wurde	außerdem	patentiert	(EP20120159196).		

	
	
	

4.1.4.	cPAS	Sequenzierung	

	
Ich	habe	mich	in	meiner	Forschung	damit	befasst,	miRNAs	in	die	klinische	Routine,	oder	
mindestens	näher	an	die	klinische	Routine	zu	bringen.	Dazu	habe	ich	hauptsächlich	die	
Kern-miRNAs	 aus	 den	 frühen	 Versionen	 der	 miRBase	 betrachtet.	 Neben	 diesen	 und	
weiteren	miRNAs	aus	der	miRBase	sind	jedoch	Teile	des	humanen	miRNomes	unbekannt.	
Die	bisher	beschriebenen	Technologien,	Mikroarrays,	RT-qPCR	und	die	klinischen	Assays	
die	ich	entwickelt	habe,	sind	zur	Detektion	neuer	miRNAs,	die	bisher	nicht	beschrieben	
sind,	 ungeeignet.	 Im	 Gegensatz	 dazu	 bietet	 Hochdurchsatz	 Sequenzierung	 (HTS)	 die	
Möglichkeit	 bisher	 noch	 nicht	 identifizierte	miRNAs	 in	 speziellen	 Zelltypen,	 Geweben	
oder	 Körperflüssigkeiten	 zu	 finden.	 Die	 wohl	 am	 meisten	 eingesetzte	 Methode	 ist	
Sequenzierung	durch	Synthese,	wie	sie	von	der	Firma	Illumina	eingesetzt	wird.		
	
Charakteristisch	 für	 diese	 Technologie	 ist	 normalerweise	 eine	 Amplifizierung	 des	
Ausgangsmaterials.	 Das	 führt	 zu	 mehreren	 möglichen	 Fehlerquellen.	 „Bias“	 in	 HTS	
Datensätzen	ist	daher	bekannt	[156,	157]	und	weit	verbreitet,	insbesondere	wenn	es	um	
die	Quantifizierung	von	RNAs	geht	[158].	In	einer	Studie	mit	der	chinesischen	Firma	BGI	
konnte	 jedoch	gezeigt	werden,	dass	eine	Sequenzierung	die	nicht	auf	einer	klassischen	
PCR,	sondern	auf	einer	linearen	Amplifikation	beruht,	deutlich	bessere	Resultate	liefert	
[45].	 Das	 Prinzip	 der	 combinatorial	 probe-anchor	 synthesis	 (cPAS),	 wie	 sie	 auf	 dem	
BGISEQ-500	 Sequenzierer	 etabliert	 wurde,	 funktioniert	 mit	 DNA	 Nanoball	 (DNB)	
Nanoarrays	mit	Hilfe	einer	 schrittweisen	Sequenzierung	durch	eine	Polymerase.	Diese	
Methode	zeigt	vor	allen	Dingen	bei	kurzen	Reads	eine	sehr	hohe	Genauigkeit.	Außerdem	
erlaubt	es	die	Technologie,	Milliarden	von	Molekülen	parallel	zu	messen.	Die	Methode,	die	
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von	Complete	Genomics	/	BGI	hauptsächlich	entwickelt	wurde,	um	DNA	zu	sequenzieren,	
eignet	sich	daher	besonders	für	miRNA	Anwendungen.		
	
In	einer	Proof-of-Concept	Studie	wurden	sechs	Gehirnproben,	zwei	Herzproben	und	zwei	
Blutproben	 sequenziert	 und	 insgesamt	 300	 Millionen	 Reads	 generiert.	 Technische	
Replikate	der	sechs	Gehirnproben	haben	eine	mittlere	Korrelation	von	0.98	ergeben.	Mit	
anderen	 Technologien	 wie	 zum	 Beispiel	 der	 Sequenzierung	 mittels	 Illumina	 hat	 sich	
immer	noch	eine	Korrelation	von	0.75	ergeben.	Da	für	meine	Forschung	die	Anwendung	
als	 blutbasierte	 Biomarker	 besonders	 wichtig	 ist,	 möchte	 ich	 diesen	 Aspekt	 näher	
beleuchten	 und	 identische	 Blutproben	 gemessen	 auf	 Mikroarrays,	 mit	 Illumina	
Sequenzierung	und	cPAS	Sequenzierung	vergleichen.	Abbildung	17	zeigt	den	 relativen	
Anteil	 der	10	 am	häufigsten	 gefundenen	miRNAs	 in	Blutzellen,	 abhängig	 von	den	drei	
Technologien.	Für	Illumina	Sequenzierung	entsprechen	90.8%	aller	Reads	einer	einzigen	
miRNA,	miR-486-5p,	die	als	miRNA	 in	 roten	Blutzellen	bekannt	 ist	 [159].	Die	anderen	
verwendeten	 Technologien	 haben	 ebenfalls	 eine	 Überrepresentation	 dieser	 miRNA	
gezeigt	 (7.7%	aller	Reads	bei	 cPAS	 Sequenzierung	und	17%	der	 totalen	 Intensität	 auf	
Mikroarrays),	 jedoch	 war	 das	 Verhältnis	 in	 keinem	 Fall	 so	 extrem	 wie	 bei	 Illumina	
Sequenzierung.	Validierung	mittels	RT-qPCR	hat	den	Bias	für	diese	miRNA	in	der	Illumina	

Abbildung 17: Verteilung der Signal Intensität von miRNAs.  

Die Abbildung zeigt für die 10 häufigsten miRNAs wie viel % der totalen Signal Intensität je Technologie gemessen 
werden. Die Abbildung ist modifiziert aus Fehlmann et al. entnommen.   
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Technologie	verifiziert.	Im	Umkehrschluss	haben	die	Top-10	der	miRNAs	in	der	Illumina	
Sequenzierung	98.6%	aller	Reads	ausgemacht.	Für	alle	anderen,	mehr	als	2,000	miRNAs	
sowie	 potenziell	 neue	 Kandidaten	 bleiben	 zusammen	 gerade	 1.4%	 der	 gesamten	
Sequenzier-Kapazität.	
	
Der	 Bias	 in	 der	 gängigen	 Illumina	 Technologie	 zusammen	 mit	 den	 komplexen	
Anforderungen	an	Labore	und	den	Zeitaufwand	der	nötig	ist	(immer	noch	mehrere	Tage)	
und	verhältnismäßig	hohe	Kosten	von	mehreren	hundert	Euro,	machen	einen	Einsatz	der	
entsprechenden	 Technik	 in	 der	 Standard-Diagnostik	 unwahrscheinlich.	 Im	 Gegensatz	
dazu	bietet	die	cPAS	basiere	Sequenzierung	einige	Vorteile.	Zumindest	in	Service	Laboren	
ist	ein	Einsatz	zur	Diagnostik	von	Erkrankungen	aus	dem	Blut	möglich.			
	
	Publikationen:	Die	Arbeiten,	die	 in	diesem	Abschnitt	beschrieben	werden	basieren	
hauptsächlich	auf	[45].		
	

	

	

4.1.5.	Zusammenfassung	der	Technologien	

Zusammenfassend	habe	 ich	 in	 diesem	Kapitel	 einen	Überblick	 über	Technologien	und	
Assays	gegeben,	an	deren	Entwicklung	ich	beteiligt	war	und	die	zur	Messung	von	miRNAs	
in	 der	 Diagnostik	 eingesetzt	 werden	 können.	 Die	 verschiedenen	 Technologien	 haben	
dabei	verschiedene	Vor-	und	Nachteile.	Für	die	klinische	Testung	von	kleinen	miRNA	Sets	
in	 der	 Routine-Diagnostik	 ist	 die	 Immunoassay	 Methode	 wahrscheinlich	 am	 besten	
geeignet,	während	 für	 die	Grundlagenforschung	 die	 Sequenzierung	 die	meisten	 neuen	
Erkenntnisse	verspricht.	Mikroarrays	liegen	im	Anwendungsspektrum	zwischen	diesen	
beiden	Extremen.		
	
Insgesamt	hat	die	Forschung	aber	gezeigt,	dass	es	vielversprechender	ist	sich	auf	Inhalte	
wie	 Biomarker	 in	 Krankheiten	 zu	 konzentrieren,	 statt	 auf	 die	 Entwicklung	 von	
Plattformen.	 Um	 miRNAs	 zu	 messen,	 können	 Forscher	 bereits	 heute	 aus	 mehreren	
Dutzend	Technologien	wählen	[160],	die	sie	dazu	einsetzen	können	miRNA	Biomarker	zu	
detektieren	 und	 zu	 validieren.	 Mit	 diesem	 Thema	 beschäftige	 ich	 mich	 daher	 in	 den	
folgenden	Abschnitten.		
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4.2.	miRNAs	als	Biomarker	

Im	vorangehenden	Abschnitt	habe	 ich	 technologische	Entwicklungen	zur	Messung	von	
miRNAs	 beschrieben.	 Im	 Laufe	 meiner	 Forschung	 hat	 sich	 der	 Fokus	 allerdings	
schrittweise	von	der	Technologieentwicklung,	die	ich	als	Ingenieur	begonnen	habe,	über	
Assay	Entwicklung	bis	hin	zur	Anwendung	der	Detektion	von	Biomarkern,	verschoben.	
Grundlegend	basiert	der	Forschungsansatz	dabei	auf	drei	wesentlichen	Paradigmen:		
	

1. Es	 sollen	 leicht	 zugängliche	 Biomarker	 gemessen	 werden.	 Hier	 bieten	 sich	
Körperflüssigkeiten	wie	 zum	Beispiel	Blut	 an.	Dieser	Ansatz	erlaubt	 eine	breite	
Anwendung	 unabhängig	 des	 Organes	 oder	 der	 Erkrankung	 und	 ermöglicht	
gleichzeitig	einfaches	longitudinales	Messen.	
	

2. Da	einzelne	miRNAs	nicht	genügend	Aussagekraft	haben,	sollen	Sets	von	miRNAs	
gemessen	 werden.	 Je	 nach	 Komplexität	 der	 klinischen	 Fragestellung	 sind	
typischerweise	 4-12	 miRNAs	 notwendig,	 um	 hinreichende	 Genauigkeit	 zu	
erlangen.		

	
3. Die	Muster	sollen	nicht	in	einer	einzelnen	Erkrankung	betrachtet	werden,	sondern	

über	 verschiedene	 Erkrankungen	 hinweg.	 Das	 ist	 notwendig,	 um	 die	 Spezifität	
einer	miRNA	Signatur	für	eine	Erkrankung	abschätzen	zu	können.	

	
Im	 Folgenden	 werde	 ich	 in	 vier	 Unterabschnitten	 auf	 die	 Entwicklung	 von	 miRNA	
Biomarkern	eingehen.	Zunächst	ist	es	essenziell,	die	technische	und	biologische	Stabilität	
zu	 verstehen.	 Welche	 miRNAs	 können	 unabhängig	 äußerer	 Einflüsse	 reproduzierbar	
gemessen	werden	und	sind	am	besten	unabhängig	von	„Confoundern“,	wie	zum	Beispiel	
dem	 Alter	 und	 dem	 Geschlecht	 (Abschnitt	 4.2.1)?	 Anschließend	 beschreibe	 ich	 die	
Anwendung	 im	 Umfeld	 der	 Diagnose	 von	 Lungenerkrankungen	 (Lungentumore	 /	
Chronisch	Obstruktive	Pulmonary	Disease	COPD;	Abschnitt	4.2.2)	und	Erkrankungen	des	
Zentralen	Nervensystems	 (Multiple	 Sklerose	 und	Alzheimer;	Kapitel	 4.2.3).	 Im	 vierten	
Teil	 gehe	 ich	 dann	 auf	 den	 Aspekt	 des	 krankheitsübergreifenden	miRNOmes	 ein,	 also	
welche	miRNAs	beispielsweise	bei	allen	untersuchten	Erkrankungen	dysreguliert	sind.		
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4.2.1.	Technische	und	biologische	Stabilität	von	miRNAs	

	
Bevor	 miRNAs	 in	 der	 klinischen	 Diagnostik	 eingesetzt	 werden	 um	 Krankheiten	 zu	
erkennen,	ist	es	notwendig,	Detailwissen	über	die	biologische	und	technische	Stabilität	zu	

erlangen.	 Im	 Bereich	 der	
technischen	 Stabilität	 ist	 es	
besonders	 wichtig,	 den	
Einfluss	 von	 Lagerungs-	 und	
Transportbedingungen	 zu	
kennen [50].	Außerdem	haben	
Studien	 gezeigt,	 dass	
wiederholtes	 Einfrieren	 und	
Auftauen	 die	 Probenqualität	
beeinflusst.	Die	entsprechende	
Analyse	 für	 miRNAs	 aus	
Vollblutproben	 wurde	 in	
Analytical	 Chemistry	
veröffentlicht	 [50].	 Das	
entsprechende	 Studien	 Set-Up	
ist	in	Abbildung	18	gezeigt.		

	
Für	 drei	 Spender	 wurden	 5	 verschiedene	 Bedingungen	 getestet,	 die	 Lagerung	 bei	
Raumtemperatur,	 bei	 -80	Grad	 und	 bis	 zu	 dreimaliges	 Einfrieren	 und	Auftauen.	Diese	
Herangehensweise	hat	es	erlaubt,	abzuschätzen	wie	stark	die	technische	Variabilität	im	
Verhältnis	 zur	 intra-individuellen	Variabilität	 schwank.	 Um	 zu	 verstehen,	wie	 sich	 die	
Muster	insgesamt	zwischen	den	verschiedenen	experimentellen	Bedingungen	verhalten	
haben,	wurden	multivariate	statistische	Methoden	verwendet,	das	sind	Methoden,	die	auf	
mehreren	 sogenannten	 „Features“	basieren.	 Im	vorliegenden	Fall	 ist	 jedes	Feature	die	
Expression	 einer	 miRNA.	 In	 der	 Studie	 wurden	 Signale	 von	 455	 miRNAs	 zugleich	
verwendet.	Die	Methoden,	die	die	am	besten	interpretierbaren	Ergebnisse	gezeigt	haben,	
waren	bottom-up	hierarchisches	Clustern	mit	der	Euklidischen	Distanz	als	Abstandsmaß	
und	die	 vorwiegend	 als	Dimensions-Reduktion	 genutzte	 Principal	 Component	Analyse	
(Hauptkomponenten	Analyse).	Generell	haben	die	Proben,	die	gleichbehandelt	wurden,	
auch	ähnliche	Muster	gezeigt.	Insgesamt	waren	die	Effekte	aber	vergleichsweise	gering.	
Dennoch	 zeigen	die	Resultate	 auch,	 dass	 es	wichtig	 ist,	 Proben	 innerhalb	 einer	 Studie	
absolut	gleich	zu	behandeln.		
	
Neben	den	Effekten	die	auf	eine	Probe	insgesamt	einwirken,	ist	es	fast	noch	wichtiger	zu	
verstehen,	auf	welche	Marker	der	maximale	Einfluss	besteht.	Solche	Marker	können	bei	

Abbildung 18: Stabilitätsanalyse von miRNAs.  

Für drei Spender wurden fünf verschiedene Bedingungen getestet. Die 
Abbildung ist modifiziert aus Backes et al. entnommen.   
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der	Entwicklung	und	der	Translation	von	Biomarkern	zur	Anwendung	hin	zum	Beispiel	
ausgeschlossen	werden.	 Dazu	wurde	 jede	miRNA	 alleine	 in	 Varianzanalysen	 (ANOVA)	
und	bezüglich	des	Variationskoeffizienten	hin	untersucht.	Die	Varianzanalyse	hat	gezeigt,	
dass	fünf	miRNAs	nach	Adjustierung	für	Multiples-Testen	signifikant	waren.	Diese	sind	
hsa-miR-320b	(p	=	0.0002),	hsa-miR-320a	(p	=	0.001),	hsa-miR-16-5p	(0.018),	hsa-miR-
18b-5p	(0.037)	und	hsa-miR-375	(0.0375).	Die	entsprechenden	Biomarker	sollten	bei	der	
klinischen	Testung	genauer	beobachtet	werden,	da	signifikante	Schwankungen	leicht	auf	
technische	 Artefakte	 hindeuten	 können.	 Interessanterweise	waren	 die	 Schwankungen	
zwischen	Individuen	normalerweise	größer	als	die	technischen	Schwankungen.	Beispiele	
–	jeweils	für	technische	Schwankungen	und	Schwankungen	zwischen	Individuen	–	sind	in	
Abbildung	19	gezeigt.	
	

Die	Frage,	die	sich	als	nächste	
stellt,	ist	die	Ursache	nach	der	
Schwankung	 in	 der	
Expression	 zwischen	
verschiedenen	 Personen.	
Hierfür	kann	es	verschiedene	
Gründe	 geben,	 entweder	
schwanken	 die	 miRNAs	
tatsächlich	 so	 stark	 zwischen	
beliebigen	Individuen	oder	es	
gibt	 generelle	 Einfluss-
faktoren	 die	 den	 Level	
einzelner	 miRNAs	
beeinflussen.	 Die	 wohl	
klassischsten	 Beispiele	 dafür	
sind	 das	 Alter	 und	 das	
Geschlecht.	 Um	 ein	
Verständnis	 dafür	 zu	
erlangen,	 ist	 es	 notwendig,	
gesunde	 Probanden	
verschiedener	 Altersgruppen	
und	 sowohl	 Männer	 als	 auch	
Frauen	 zu	 vergleichen [51].	
Die	Analyse	von	167	gesunden	
Probanden	 mittels	

Mikroarray	und	HTS	hat	 einen	deutlicheren	Einfluss	des	Alters	 auf	die	miRNA	Muster	
gezeigt	als	es	das	Geschlecht	gezeigt	hat.	Bezüglich	des	Geschlechts	waren	144	miRNAs	

Abbildung 19: Technische und interindividuelle Variabilität von 
miRNAs.  

Der obere Teil der Abbildung zeigt die Variabilität zwischen den 
verschiedenen Experimenten für eine der variabelsten miRNAs. Hier 
zeigten die Individuen jeweils ähnliche Expressionswerte. Im Vergleich 
dazu ist unten die Schwankung einer miRNA, je nach Individuum 
gezeigt. Hier ist die Expression zwischen den Experimenten etwa 
gleich, aber der dritte Proband hatte signifikant höhere Level der 
miRNA. Die Abbildung ist modifiziert aus Backes et al. entnommen. 
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signifikant	unterschiedlich	reguliert,	nach	der	notwendigen	Adjustierung	für	Multiples-
Testen	war	jedoch	keine	miRNA	mehr	signifikant.	Mit	dem	Alter	der	Probanden	waren	
insgesamt	318	miRNAs	signifikant	verknüpft.	Nach	der	Adjustierung	für	Multiples-Testen	
waren	 davon	 immerhin	 noch	 35	 Marker	 signifikant	 mit	 dem	 Alter	 korreliert.	
Entsprechende	 miRNAs	 müssen	 nicht	 zwangsläufig	 als	 Biomarker	 ausgeschlossen	
werden.	 Es	 kann	 jedoch	 –	 je	 nach	 dem	 Umfang	 der	 Schwankung	 –	 sinnvoll	 sein,	 für	
verschiedene	 Altersgruppen	 verschiedene	 Grenzwerte	 in	 einem	 klinischen	 Test	
einzuführen.	Konkret	könnte	das	heißen,	dass	im	Falle	von	miR-34a	ein	Mann	im	Alter	
von	35	Jahren	bei	12	Nanogramm	je	Milliliter	eine	andere	Diagnose	erhält	als	ein	Mann	
von	65	Jahren	mit	der	gleichen	absoluten	Menge	dieser	miRNA	oder	eine	zwanzigjährige	
Frau,	die	ebenfalls	die	gleiche	Expressionsstärke	der	miRNA	zeigt.		
	
MirNaCon,	 ein	 internetbasiertes	 Software-Tool	 (frei	 verfügbar:	 http://www.ccb.uni-
saarland.de/mirnacon),	 erlaubt	 es	 anderen	 Forschern	 diese	 Betrachtung	 in	 ihrer	
Forschung	und	der	Translation	der	miRNA	Biomarker	zu	berücksichtigen.	Sie	können	eine	
Liste	 von	 miRNAs	 eingeben	 und	 bekommen	 innerhalb	 weniger	 Sekunden	 angezeigt,	
welche	der	miRNAs	weder	vom	Alter	noch	vom	Geschlecht	abhängig	sind.	Diese	haben	
eine	höhere	Chance	in	der	Translation	zur	klinischen	Testung.	
	
Da	die	hier	beschriebenen	Muster	auf	Blut	basieren	stellt	sich	außerdem	die	Frage,	ob	die	
entsprechenden	Marker	auch	im	Gewebe	gefunden	werden.	Gerade	bei	miRNAs	ist	eine	
hohe	 Spezifität	 für	 Gewebe	 bekannt.	 Da	 miRNAs	 aber	 wie	 oben	 aufgeführt	 auch	 von	
Person	zu	Person	schwanken,	ist	es	notwendig,	Organmuster	von	verschiedenen	Organen	
der	selben	Person	zu	messen,	damit	solche	Schwankungen	zwischen	Personen	nicht	zu	
artifiziellen	organspezifischen	Befunden	führen	 [52].	Wie	im	frei	verfügbaren	internet-
basierten	Tool	TissueAtlas	gezeigt	(https://ccb-web.cs.uni-saarland.de/	tissueatlas/),	gilt	
die	Beobachtung,	dass	miRNAs	sehr	gewebsspezifisch	exprimiert	werden,	nur	bedingt.	In	
der	Tat	 ist	 es	 so,	 dass	82.9%	aller	 getesteten	miRNAs	einen	mittleren	Spezifität-Index	
hatten,	also	weder	in	allen	Organen	vorkamen	noch	spezifisch	für	einzelne	Organe	waren.	
Dennoch	waren	insgesamt	143	miRNAs	in	allen	getesteten	Organen	vorhanden.	Das	Blut	
zeigte	 in	 erstaunlich	 vielen	Fällen	Expression	 für	 eher	 spezifische	miRNAs	und	die	 im	
Rahmen	dieser	Arbeit	gemessenen	PAXgene	Muster,	die	auf	Blutzellen	basieren,	scheinen	
generell	 viele	 organtypische	 miRNAs	 zu	 enthalten.	 Der	 wohl	 interessanteste	 Aspekt	
dieser	 Arbeit	war,	 dass	 in	 einem	Vergleich	 zwischen	 Spezies	 nicht	 etwa	Mensch-	 und	
Rattenmuster	zusammen	passten,	sondern	in	fast	allen	Fällen	die	Gewebe	des	Menschen	
mit	den	entsprechenden	Geweben	der	Ratte	am	besten	übereinstimmten.			
			
Zusammenfassend	haben	die	Ergebnisse	in	der	grundlegenden	Forschung	über	miRNAs	
ergeben,	dass	die	kleinen	nicht	kodierenden	RNAs	eher	stabil	sind	und	nur	teilweise	von	
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äußeren	technischen	und	biologischen	Faktoren	beeinflusst	werden.	Diese	zu	kennen	ist	
jedoch	für	die	Entwicklung	von	Biomarkern	wie	sie	in	Kapitel	4.2.2	und	4.2.3	beschrieben	
sind,	unerlässlich.					
	
Publikationen:	Die	Arbeiten,	 die	 in	diesem	Abschnitt	 beschrieben	werden	basieren	

hauptsächlich	auf	[50-52].	Zusätzlich	wurde	ein	Patent	angemeldet,	um	miRNAs	aus	
dem	Blut	besser	quantifizieren	zu	können	(US2015184223).		

		
	
	
	

4.2.2.	Anwendungen	im	Bereich	Lungentumore	

Parallel	zu	den	Untersuchungen	der	Stabilität,	die	in	Kapitel	4.2.1	beschrieben	sind,	habe	
ich	mit	Prof.	Keller	und	Prof.	Meese	an	Lungentumormarkern,	basierend	auf	miRNAs	als	
Anwendungsbeispiel	 für	 die	 Technologien	 und	 Assays,	 die	 in	 Kapitel	 4.1.	 beschrieben	
sind,	 gearbeitet.	 Lungentumore	 bzw.	 Lungenerkrankungen	 sind	 eines	 der	
Hauptforschungsfelder	 in	 den	 AGs	 „Klinische	 Bioinformatik“	 und	 „Humangenetik“	 in	
Saarbrücken	und	Homburg	[53-55,	104,	161-166].		Aus	dieser	Vielzahl	an	Studien	war	ich	
an	zwei	Arbeiten,	auf	die	ich	mich	im	Folgenden	konzentrieren	werde,	beteiligt	[54,	55].	
	
Ziel	der	Untersuchungen	war	es	sowohl	neue	blutbasierte	Frühdiagnosemarker	als	auch	
prognostische	Marker	für	nicht	kleinzellige	Lungentumore	(NSCLC)	zu	detektieren	und	
zu	 validieren.	 Zu	 Beginn	 der	 Studien	 waren	 deutlich	 weniger	 miRNAs	 bekannt	 als	
momentan.	Die	rapide	Entwicklung	und	die	Entdeckung	neuer	miRNAs	ist	in	Kapitel	2	und	
Kapitel	4.1.	erläutert	und	in	Abbildung	12	grafisch	dargestellt.	Zur	Zeit	der	ersten	Studien	
über	 Lungentumore	 waren	 etwa	 1,000	 reife	 miRNAs	 beim	 Menschen	 bekannt	 –	 zum	
Vergleich:	heute	sind	es	bereits	2,500	die	in	der	miRBase	stehen	und	etwa	weitere	10,000	
Kandidaten	in	miRCarta.	Wie	in	Abschnitt	4.2.1.	beschrieben,	ist	Blut	ein	ausgezeichnetes	
Ausgansmaterial	um	miRNAs	zu	messen	[104].	Nicht	nur,	dass	das	Probenmaterial	leicht	
zugänglich	 ist,	 außerdem	 enthält	 das	 hier	 verwendete	 Vollblut	 viele	 verschiedene	
Blutzelltypen,	jeder	mit	einem	eigenen	komplexen	miRNome	[167-170].	Daher	erlaubt	es	
Blut,	 nicht	 nur	 Unterschiede	 zwischen	 gesunden	 und	 erkrankten	 Probanden	 zu	
identifizieren,	sondern	auch	neue	miRNAs	zu	entdecken.		
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Tabelle 1: 30 neue miRNAs in Lungentumorpatienten und gesunden Kontrollen 
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Wenn	 diese	 miRNAs	 noch	 unterschiedlich	 zwischen	 zwei	 Gruppen	 von	 Probanden	
exprimiert	sind,	ist	die	Wahrscheinlichkeit	einer	biologischen	Funktion	und	der	Validität	
von	 entsprechenden	 miRNAs	 höher.	 In	 der	 vorliegenden	 Studie	 wurde	 Blut	 von	
Lungentumorpatienten	 (Adeno	 Karzinome	 und	 Plattenepithel	 Karzinome,	 Stage	 IA	 bis	
IIIA,	alle	nicht	therapiert)	und	Kontrollen	verglichen.	Aus	dem	PAXgene	Blut	wurden	1.5	
Mikrogramm	totale	RNA	für	kleine	RNAs	angereichert	(Ambion's	flashPAGE	Fractionator)	
und	gefällt.		
	

Die	 Sequenzier	 Library	 wurde	 aus	
100	 Nanogramm	 angereicherter	
RNA	 erstellt.	 Nachdem	 die	
Sequenzier	 Adapter	 angefügt	
wurden,	 wurde	 die	 RNA	 in	 cDNA	
umgeschrieben.	 Die	 Fragmente	
waren	 dabei	 60-80	 Basen	 lang,	
bestehend	aus	den	miRNAs	und	den	
Sequenzier	 Adaptern.	 Nach	 15	 PCR	
Zyklen	zur	Amplifikation	wurde	das	
Standard	 -	 Sequenzierprotokoll	
angewendet.	 Die	Daten	wurden	mit	
RNA2MAP	und	eigenen	Skripten	in	R	
prozessiert	 und	 neue	 Marker	
wurden	 gezielt	 mit	 RT-qPCR	
validiert.	 Insgesamt	 wurden	 in	 der	
Sequenzierung	530	Millionen	kleine	
RNAs	 sequenziert.	 Von	 diesen	
konnten	 352	 Millionen	 auf	 das	
Humane	 Genom	 gemappt	 werden.	
Nur	 38	 Millionen	 dieser	 Reads	
mappten	auf	zu	dieser	Zeit	bekannte	
miRNAs.	 Immerhin	 konnten	 damit	
64%	 der	 miRBase	 abgedeckt	
werden.		

	
Die	hohe	Zahl	von	Reads,	die	auf	das	Humane	Genom	aber	nicht	auf	die	miRBase	mappen,	
erlaubt	 den	 Schluss,	 dass	 eine	 signifikante	 Anzahl	 neuer	 miRNAs	 in	 den	 Proben	
vorhanden	sein	muss.	Diese	Vorhersage	mit	dem	Tool	miRDeep	[85,	86]	hat	 insgesamt	
210	 neue	 miRNA	 Kandidaten	 ergeben.	 Da	 solche	 neuen	 miRNAs	 oft	 falschpositive	
Kandidaten	 enthalten,	 die	 auf	 Artefakte	 zurückgeführt	 werden	 können,	 [87,	 171]	 ist	

Abbildung 20: Clustering in Tumorpatienten und Kontrollen. 

 Die Heat Map zeigt die Expression der sieben neuen miRNAs 
in Kontrollprobanden und Lungentumorpatienten. Rot 
bedeutet hohe Expression und Grün niedrige Expression. Die 
vertikale blaue Linie trennt das Dendrogram in zwei Gruppen. 
Nur ein Tumorpatient passt von seinem Profil her zu den 
Kontrollen. Die Abbildung ist modifiziert aus Keller et al. 
entnommen.  
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weitere	 Prozessierung	 notwendig.	 Eigenes	 Filtern	 der	 Sequenzen	 hat	 über	 80	 %	 der	
Kandidaten	als	niedrig	exprimiert	und	wahrscheinlich	falsch	Positive	markiert.	Insgesamt	
sind	30	neue	miRNA	Kandidaten	nach	der	 Filterung	 als	wahrscheinlich	 echte	miRNAs	
verblieben.	 Diese	 sind	 in	 Tabelle	 1	 gezeigt,	 zusammen	 mit	 der	 Anzahl	 an	 Reads	 in	
Kontrollen	und	Patienten	und	der	-3p	und	der	-5p	reifen	Form.	Von	den	30	miRNAs,	die	
in	Tabelle	1	gezeigt	sind,	wurden	5	zufällig	ausgewählt	und	mittels	RT-qPCR	in	Blut-	und	
Gewebeproben	 validiert.	 In	 allen	 Fällen	 konnten	 die	 ursprünglichen	 Befunde	 validiert	
werden.	
	
Die	 Hauptfragestellung	 war	 jedoch,	 ob	 miRNAs	 zwischen	 Patienten	 und	 Kontrollen	
unterschiedlich	 exprimiert	 bzw.	 reguliert	 sind.	 Dazu	 wurden	 nicht	 nur	 die	 oben	
beschriebenen	neuen,	sondern	auch	die	bekannten	miRNAs	analysiert.	Da	die	miRNAs	an	
sich	nicht	normalverteilt	waren,	sind	die	Ergebnisse	des	gängig	verwendeten	t-Tests	in	
diesem	 Fall	 möglicherweise	 irreführend.	 Daher	 wurde	 der	 nicht-parametrische	
Wilcoxon-Mann-Whitney	 Test	 verwendet.	 Nach	 der	 Adjustierung	 für	 Multiples-Testen	
waren	70	miRNAs	signifikant	unterschiedlich	zwischen	den	beiden	Gruppen	exprimiert.	
71.4	%	davon	waren	höher	in	Lungentumorpatienten.	Interessanterweise	waren	auch	7	
neue	 miRNAs	 aus	 Tabelle	 1	 signifikant	 unterschiedlich	 zwischen	 den	 Kontrollen	 und	
Patienten.	Die	Expressionswerte	dieser	7	miRNAs	 in	Kontrollen	und	Patienten	 sind	 in	
Abbildung	15	gezeigt.	Diese	Abbildung	zeigt	auch,	dass	nur	ein	Patient	von	seinem	Profil	
her	zu	den	Kontrollen	passt.	Die	Genauigkeit	der	Zuordnung	war	 folglich	95	%.	Nicht-
parametrische	Permutationstests	haben	gezeigt,	dass	man	mittels	weiterer	statistischer	
Lernverfahren	die	Genauigkeit	sogar	noch	weiter	erhöhen	kann.		
	
Die	 Studie	 hat	 den	Nachweis	 erbracht,	 dass	miRNAs	 aus	 dem	Blut	 von	 Patienten	 und	
Kontrollen	ein	enormes	Potenzial	besitzen,	eine	Diagnose	von	Tumoren	sogar	in	frühen	
Stadien	zu	erlauben.	 Selbst	die	niedrigen	Grade	 (T1bN0)	wurden	korrekt	 erkannt.	Die	
vielversprechenden	Ergebnisse	wurden	 inzwischen	 in	den	AGs	Keller	und	Meese	ohne	
meine	Mitarbeit	verifiziert	[165].	Interessant	ist	auch,	dass	70	%	der	30	neu	entdeckten	
miRNAs	in	den	folgenden	Versionen	der	miRBase	annotiert	wurden.	In	allen	Fällen	haben	
unabhängige	Forscher	und	Arbeitsgruppen	entsprechende	miRNAs	gefunden	und	in	die	
Datenbank	 übernommen.	 In	 miRCarta	 sind	 bis	 auf	 wenige	 reife	 miRNAs	 alle	
Repräsentanten	 aus	 Tabelle	 1	 enthalten.	 Daher	 hatte	 die	 Studie,	 eine	 der	 ersten	
überhaupt,	die	miRNAs	aus	Blut	bei	Lungentumoren	untersucht	hat,	doppelte	Bedeutung	
für	das	Erkennen	neuer	miRNAs	generell	und	für	die	Erkenntnis,	dass	miRNAs	zwischen	
Probanden	 und	 Kontrollen	 unterschiedlich	 reguliert	 und	 damit	 gute	 Biomarker	 zur	
Früherkennung	von	Tumorerkrankungen	sind.	
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Neben	 der	 Früh-Diagnostik	 haben	 miRNAs	 allerdings	 auch	 erhebliches	 Potenzial	 zur	
Prognostik	bei	Lungentumorpatienten	gezeigt	[172-177].	Hier	waren	es	jedoch	weniger	
Profile	 von	Blutzellen,	 sondern	vielmehr	 Serum	und	Plasma	Profile	 von	miRNAs	 [178,	
179].	Im	Gegensatz	zu	den	Blutzellprofilen	spiegeln	Serum	und	Plasma	Profile	die	Tumore	
direkter	wieder,	da	auch	vom	Tumor	sekrierte	miRNAs	gemessen	werden	können.	Dabei	
ist	 zu	 beachten,	 dass	 das	 Messen	 von	 miRNAs	 aus	 Serum	 und	 Plasma	 kontrovers	
diskutiert	 wird	 [180,	 181].	 Entsprechend	 ist	 es	 wichtig	 die	 möglichen	 vorhandenen	
Quellen	für	Fehler	und	Artefakte	zu	kennen,	um	ihnen	bestmöglich	vorzubeugen.		
	
Um	zu	untersuchen,	inwieweit	miRNAs	prognostische	Information	untersuchen	und	ob	
sie	 parallel	 und	 longitudinal	 zu	 einer	 Therapie	 gemessen	werden	 können,	wurden	 26	
Patienten	 über	 einen	 Zeitraum	 von	 bis	 zu	 18	 Monaten	 nach	 Tumordiagnose	 und	
Resektion	untersucht	[55].	Insgesamt	wurde	den	Probanden	zu	8	Zeitpunkten	innerhalb	
dieser	18	Monate	Blut	abgenommen.	Als	Kontrolle	wurden	Patienten	selektiert,	die	an	
anderen	Erkrankungen	der	Lunge	leiden.	Zunächst	wurde	die	Komplexität	des	miRNomes	
untersucht,	also	die	Anzahl	an	detektierten	miRNAs	in	Kontrollen	und	Tumorpatienten	zu	
den	 jeweiligen	 Zeitpunkten.	 Insgesamt	 hat	 sich	 gezeigt,	 dass	 Tumorpatienten	 ein	
reduziertes	 miRNome	 im	 Vergleich	 zu	 Patienten	 mit	 anderen	 Lungenerkrankungen	
haben.	Die	Zahl	der	miRNAs	hat	dabei	im	Verlauf	der	Therapie	stark	geschwankt.	
	
Das	miRNA	Repertoire	wurde	auch	mit	der	Entwicklung	von	Metastasen	korreliert,	um	
prognostische	 Information	 zu	 erhalten.	 Hier	 hat	 sich	 gezeigt,	 dass	 Patienten	 die	
Metastasen	 entwickeln	 ein	 deutlich	 komplexeres	 miRNome	 hatten,	 im	 Vergleich	 zu	
Personen	die	keine	Metastasen	entwickelt	haben.	Die	Unterschiede	 in	der	Komplexität	
des	miRNomes	waren	statistisch	signifikant,	ein	ungepaarter	t-Test	hat	einen	p-Wert	von	
0.0096	 ergeben.	Neben	dieser	 eher	 qualitativen	Analyse	wurde	 eine	 eher	 quantitative	
Analyse	der	miRNA	Expressionswerte	durchgeführt.	Zunächst	wurden	paarweise	t-Tests	
zwischen	 Kontrollen	 und	 Tumorpatienten	 zu	 jedem	 der	 8	 Zeitpunkte	 durchgeführt.	
Anschließend	 wurden	 die	 p-Werte	 logarithmiert	 mit	 dem	 Rang	 der	 8	 Zeitpunkte	
verglichen.	
	
Eine	negative	Korrelation	bedeutet	 dabei,	 dass	 eine	miRNA	 im	Verlauf	 der	18	Monate	
kontinuierlich	 stärker	 dysreguliert	wird.	 Eine	 positive	 Korrelation	 bedeutet	 hingegen,	
dass	die	miRNA	sich	analog	kontinuierlich	in	der	Expression	den	Kontrollen	angleicht.	Die	
Analyse	hat	insgesamt	6	negativ	korrelierte	und	28	positiv	korrelierte	miRNAs	ergeben.	
Folglich	hat	sich	die	Mehrzahl	der	Marker	im	Verlauf	der	Therapie	an	das	Kontrollniveau	
angeglichen.	 Die	 miRNAs,	 die	 im	 Verlauf	 der	 18	 Monate	 zunehmend	 stärker	 vom	
Kontrolllevel	 abgewichen	 sind,	 sind	 hsa-miR-181d,	 hsa-miR-670,	 hsa-miR-196b,	 hsa-
miR-3148,	 hsa-miR-762	 und	 hsa-miR-539.	 Die	 miRNAs,	 die	 sich	 im	 Verlauf	 der	
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longitudinalen	Analyse	am	stärksten	dem	Level	der	Kontrollen	angepasst	haben,	waren	
hsa-miR-184,	hsa-miR-141,	hsa-miR-4281,	hsa-miR-454	und	hsa-miR-301a.			

	
Der	primäre	Endpunkt	in	der	Studie	war	das	Entwickeln	einer	Metastase.	Daher	wurden	
die	 Profile	 der	 8	 Probanden	 die	 eine	 Metastase	 entwickelt	 haben	 zu	 jedem	 der	 8	
Zeitpunkte	zu	den	18	Patienten	verglichen,	die	keine	Metastase	entwickelt	haben.	Um	die	
Vergleiche	 besser	 durchführen	 zu	 können	 wurden	 dabei	 die	 unadjustierten	 p-Werte	
verwendet.	Zum	Ausganszeitpunkt	(vor	der	Resektion	der	Tumore)	waren	insgesamt	25	
miRNAs	signifikant	unterschiedlich	exprimiert.	Direkt	nach	der	Operation	ist	die	Anzahl	
auf	 18	 miRNAs	 gesunken	 (davon	 4	 überlappend).	 Zum	 Zeitpunkt	 drei	 waren	 die	
Unterschiede	 am	 deutlichsten,	 40	 miRNAs	 waren	 signifikant	 unterschiedlich.	 Im	

Abbildung 21: Zeit / Metastasendiagramme für 4 ausgewählte miRNAs.  

Die Abbildungen enthalten im inneren Kreis die Information wie signifikant die miRNA zum jeweiligen Zeitpunkt 
war (je größer der blaue Teil desto signifikanter, alles außerhalb der rot gestrichelten Linie war signifikanter als 
der Alpha Level von 0.05). Der äußere Kreis zeigt die Richtung der Regulation (grün bedeutet weniger exprimiert 
im Vergleich zu Kontrollen, rot bedeutet höher exprimiert). Der rechte Teil der Kreise entspricht den 8 Zeitpunkten 
bei Patienten die keine Metastasen entwickelt haben, der linke Teil den 8 Zeitpunkten bei Patienten die Metastasen 
entwickelt haben. Die Abbildungen wurden modifiziert aus Leidinger et al. übernommen.  
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Folgenden	hat	sich	das	Niveau	zwischen	Patienten	die	Metastasen	entwickeln	und	solchen	
die	keine	Metastasen	entwickeln	wieder	angeglichen.	Insgesamt	waren	unabhängig	der	
Zeitpunkte	131	miRNAs	signifikant	unterschiedlich	zwischen	den	beiden	Gruppen,	nach	
Adjustierung	für	Multiples-Testen	waren	noch	38	davon	signifikant.	Der	geringste	p-Wert	
wurde	für	hsa-miR-197	berechnet	(p	=	3×10−7).	Diese	miRNA	war	zu	drei	der	Zeitpunkte	
signifikant	 (TP2,	 TP3,	 TP5).	 Eine	 weitere	 miRNA,	 hsa-miR-630	 war	 sogar	 zu	 vier	
Zeitpunkten	 signifikant	 (TP1,	 TP2,	 TP4	 und	 TP6),	 zu	 den	 jeweiligen	 Zeitpunkten	
allerdings	etwas	schwächer	als	miR-197.		
	
Das	verhältnismäßig	komplexe	Studien	Set-Up	das	viele	Analysen	ermöglicht,	macht	es	
schwer,	Abbildungen	zu	generieren	die	intuitiv	und	gleichzeitig	interpretierbar	sind	ohne	
relevante	Information	zu	verlieren.	Konkret	werden	Patienten	die	Metastasen	entwickeln	
zu	 solchen	 verglichen	 die	 keine	 Metastasen	 entwickeln	 und	 zu	 Kontrollen	 die	 keine	
Tumore	 haben.	 Die	 Vergleiche	 wurden	 zu	 acht	 Zeitpunkten	 durchgeführt;	 miRNAs	
können	 also	 in	 bis	 zu	 acht	 Zeitpunkten	 in	 Patienten	mit	 und	 ohne	Metastasen	 jeweils	
signifikant	 hoch-	 oder	 runterreguliert	 sein.	 Um	 diese	 Information	 übersichtlich	
darzustellen	wurden	spezielle	Abbildungen	basierend	auf	Kreisdiagrammen	entwickelt.	
Der	 innere	Teil	des	Kreises	repräsentiert	den	negativen	Logarithmus	des	p-Wertes	 für	
jeden	Vergleich.	Die	 farbliche	Darstellung	 im	äußeren	Kreis	repräsentiert	die	Richtung	
der	 Regulation	 (grün	 bedeutet	 runterreguliert	 und	 rot	 bedeutet	 hochreguliert).	 Der	
jeweils	 rechte	 Teil	 der	 Kreise	 entspricht	 den	 8	 Zeitpunkten	 bei	 Patienten	 die	 keine	
Metastasen	entwickelt	haben	und	der	linkte	Teil,	den	jeweiligen	Zeitpunkt	der	Patienten,	
die	Metastasen	entwickelt	haben.	Durch	diese	Darstellung	kann	für	jeweils	eine	miRNA	
der	fast	komplette	Informationsgehalt	grafisch	dargestellt	werden.		
	
Abbildung	21	zeigt	für	vier	miRNAs	die	entsprechenden	Diagramme.	Die	vorher	erwähnte	
miR-197	 ist	 in	 Patienten	 ohne	Metastasen	 fast	 zu	 allen	 Zeitpunkten	 signifikant	 höher	
vorhanden,	im	Vergleich	zu	Probanden	ohne	Tumorerkrankungen.	Im	Falle	von	Patienten	
mit	Metastasen	schwankt	die	Richtung	der	Regulation,	ist	allerdings	zu	keinem	Zeitpunkt	
signifikant.	Ähnliches	gilt	für	miR-1227,	hier	schwankt	die	Regulationsrichtung	nicht	bei	
Patienten	mit	Metastasen,	 ansonsten	verhält	die	miRNA	sich	aber	gleich	wie	miR-197.	
Analog	ist	miR-4294	bei	Patienten	die	Metastasen	entwickeln	oft	weniger	exprimiert.	Eine	
weitere	Beobachtung	ist,	dass	miR-432,	unabhängig	ob	Patienten	Metastasen	entwickeln	
oder	nicht,	in	Tumoren	immer	niedriger	exprimiert	als	in	Kontrollen.		
	
Auch	 die	 Ergebnisse	 dieser	 Studie	 wurden	 mittels	 RT-qPCR	 validiert.	 Obwohl	 die	
Ergebnisse	 an	 verhältnismäßig	 kleinen	 Kohorten	 durchgeführt	 wurden,	 scheinen	 die	
Resultate	vielversprechend.	Insbesondere	das	longitudinale	Studien	Set-Up,	welches	auch	
gepaarte	 statistische	 Analysen	 erlaubt,	 trägt	 dazu	 bei,	 dass	 überzeugende	 Ergebnisse	
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erzielt	wurden.	Natürlich	bedarf	es	hier,	wie	auch	in	der	diagnostischen	Studie,	weiterer	
unabhängiger	Validierung,	bis	ein	entsprechender	Test	im	klinischen	Kontext	eingesetzt	
werden	kann.		
	
Vor	allem	die	Ergebnisse	 im	Umfeld	der	 frühen	Diagnostik	von	Lungentumoren	waren	
bisher	so	positiv,	dass	eine	weitere	Validierung	in	den	AGs	Humangenetik	und	Klinische	
Bioinformatik	durchgeführt	wurde.	Diese	Validierung	der	ursprünglichen	Ergebnisse,	die	
ohne	meine	direkte	Mitarbeit	erfolgte,	hat	gezeigt,	dass	die	Ergebnisse	selbst	an	einem	
Kollektiv	 von	 3,000	 Probanden	 (Lungentumorpatienten,	 gesunde	 Kontrollen	 und	
Patienten	 mit	 anderen	 Erkrankungen	 wie	 COPD)	 Bestand	 haben.	 Ein	 entsprechendes	
Manuskript	wird	zur	Publikation	vorbereitet.	
	
	
Publikationen:	Die	Arbeiten,	 die	 in	diesem	Abschnitt	 beschrieben	werden	basieren	

hauptsächlich	 auf	 [54,	 55].	Daneben	wurde	basierend	auf	 der	Methodik	 im	 ersten	

Manuskript	 ein	 Patent	 angemeldet,	 das	 zeigt	 wie	 neue	 miRNAs	 im	 Vergleich	 von	

Probanden	 und	 Kontrollen	 besser	 gefunden	 werden	 können	 (US201314442858	

20131104).		

	

			

	

4.2.3.	Diagnose	von	Multipler	Sklerose	&	Alzheimer	

Wie	im	einleitenden	Absatz	zu	Kapitel	4.2	beschrieben	und	später	im	Abschnitt	4.2.4.	im	
Detail	diskutiert	wird,	 ist	 es	wichtig,	 nicht	nur	 zu	verstehen,	 ob	eine	miRNA	zwischen	
Patienten	einer	Erkrankung	und	Kontrollen	unterschiedlich	exprimiert	ist,	sondern	es	ist	
gleichermaßen	 wichtig	 zu	 verstehen,	 wie	 spezifisch	 einzelne	 miRNAs	 oder	 miRNA	
Signaturen	 für	 eine	 bestimmte	 Erkrankung	 sind.	 Dabei	 ist	 es	 sinnvoll,	 die	 richtigen	
Kontrollen	zu	wählen.	Bei	Lungentumorpatienten	macht	es	zum	Beispiel	Sinn,	nicht	nur	
gesunde	Probanden	als	Kontrollen	zu	betrachten,	sondern	auch	Patienten	mit	anderen	
Lungenerkrankungen	wie	COPD.		Darüber	hinaus	kann	es	außerdem	nützlich	sein,	andere	
Erkrankungen	mit	in	die	Betrachtung	einzubeziehen.	Neben	dem	Punkt	der	Spezifität	der	
Signaturen	dient	dies	auch	dem	Verständnis,	ob	und	wie	weit	miRNA	Signaturen	aus	dem	
Blut	über	ein	bestimmtes	Krankheitsbild	hinaus	generalisiert	werden	können.	
	
Neben	Lungentumoren	habe	 ich	mich	mit	Erkrankungen	des	Zentralen	Nervensystems	
befasst	 und	 sowohl	 Multiple	 Sklerose	 als	 auch	 Alzheimer	 in	 meine	 Forschung	
eingeschlossen	[56-58].		
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Multiple	Sklerose:	Bei	der	Multiplen	Sklerose	(MS)	wurden	sowohl	Kontrollen	(n=50)	
als	auch	Patienten	mit	klinisch	isoliertem	Syndrom	(CIS,	N=25)	und	Relapsing-Remitting	
Multiple	 Sclerosis	 (RRMS,	 n=25)	 Patienten	 eingeschlossen.	 Ziel	 der	 Studie	 war	 es,	
molekulare	 Marker	 zu	 finden,	 die	 gängige	 und	 etablierte	 Kriterien	 [182,	 183]	 in	 der	
Diagnose	von	MS	verbessern.	Vor	allem	bei	CIS	und	bei	atypischen	Formen	der	MS	kann	
ein	entsprechender	Marker	von	entscheidendem	Vorteil	sein	[184].	Da	wie	in	Absatz	4.1.	
beschrieben,	 verschiedene	Plattformen	 ihre	 jeweiligen	 Stärken	und	 Schwächen	haben,	
wurde	 sowohl	 Mikroarray	 Technologie	 als	 auch	 HTS	 verwendet,	 um	 ein	 möglichst	
umfangreiches	 Bild	 zu	 erhalten.	 Die	 Signaturen	 wurden	 außerdem	 mittels	 RT-qPCR	
validiert.	 Als	 Ausgangsmaterial	 wurden	 PAXgene	 Blutproben	 von	 den	 100	 Individuen	
verwendet.	 Die	 experimentellen	 Methoden	 sind	 analog	 zu	 den	 vorher	 beschriebenen	
Studien	durchgeführt	worden.		
	
In	den	HTS	Experimenten	wurden	insgesamt	835	miRNAs	detektiert.	38	dieser	miRNAs	
waren	 signifikant	 unterschiedlich	 zwischen	 MS	 Patienten	 und	 Kontrollen	 exprimiert.	
Darunter	waren	16	mit	geringeren	Levels	in	MS	Patienten	und	22	mit	höheren	Levels.	Die	
acht	 am	 stärksten	 dysregulierten	 miRNAs	 hatten	 besonders	 hohe	 Effektgrößen.	 Sie	
enthalten	 die	 fünf	 geringer	 exprimierten	 hsa-miR-361-5p,	 hsa-miR-7-1-3p,	 hsa-miR-
548o-3p,	hsa-miR-151a-3p,	und	hsa-miR-548am-3p	sowie	die	drei	höher	exprimierten	
hsa-miR-22-5p,	 hsa-miR-27a-5p	 und	 hsa-miR-4677-3p.	 In	 der	 mikroarraybasierten	
Analyse	wurden	deutlich	weniger	miRNAs	gefunden:	nur	etwa	jede	zweite	miRNA	aus	den	
HTS	Experimenten	konnte	gemessen	werden.	Insgesamt	waren	im	Gruppenvergleich	acht	
miRNAs	signifikant.	Fünf	miRNAs	die	schwächer	in	MS	Patienten	waren	(hsa-miR-146b-
5p,	hsa-miR-7-1-3p,	hsa-miR-20a-5p,	hsa-miR-3653,	hsa-miR-20b)	und	drei,	die	stärker	
waren	(hsa-miR-16-2-3p,	hsa-miR-574-5p,	hsa-miR-1202).		
	
Wenn	man	davon	ausgeht,	dass	im	HTS	Experiment	1.9	%	der	miRNAs	signifikant	waren	
und	im	Mikroarray	Experiment	0.7	%,	ist	eine	zufällige	Überlappung	der	beiden	Sets	an	
miRNAs	relativ	unwahrscheinlich.	Trotzdem	stimmten	drei	miRNAs	zwischen	beiden	Sets	
überein	 (hsa-miR-16-2-3p,	 hsa-miR-20a-5p	 und	 hsa-miR-7-1-3p;	 p-Wert	 für	 die	
Überlappung	entspricht	0.004).	Keine	der	miRNAs	zeigte	eine	Korrelation	mit	der	Form	
der	 MS,	 die	 Level	 zwischen	 CIS	 und	 RRMS	 Patienten	 waren	 nicht	 signifikant	
unterschiedlich.	Um	Informationen	über	die	Spezifität	der	miRNAs	für	Erkrankungen	zu	
erlangen,	 haben	 wir	 eine	 öffentliche	 Datenbank,	 die	 HMDD	 (Human	 miRNA	 Disease	
Database),	 abgefragt.	 Diese	Analyse	 hat	 gezeigt,	 dass	 die	 oben	 beschriebenen	miRNAs	
tatsächlich	gehäuft	 in	anderen	Erkrankungen	vorkommen.	Für	alle	bis	auf	eine	miRNA	
konnte	 eine	 Korrelation	 zu	 mehr	 als	 acht	 verschiedenen	 Erkrankungen	 hergestellt	
werden.	Die	miRNA,	die	daher	am	spezifischsten	für	MS	ist,	ist	miR-16-2.			
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Zusammenfassend	wurden	 Signaturen	 für	MS	 gefunden,	 die	 es	 erlauben	 die	 bisherige	
Diagnose	 nach	 jetzigem	 Kenntnisstand	 mit	 Hilfe	 von	 miRNAs	 zu	 verbessern.	
Erstaunlicherweise	waren	die	Unterschiede	zwischen	der	CIS	und	der	RRMS	Form	der	MS	
relativ	 gering	 und	 statistisch	 nicht	 signifikant.	 Das	 kann	 allerdings	 an	 den	
verhältnismäßig	 kleinen	 Gruppen	 je	 untersuchter	 MS	 Art	 liegen.	 Während	 für	 MS	
insgesamt	50	Fälle	untersucht	wurden,	waren	es	je	Subgruppe	nur	25	Fälle.	Ein	weiterer	
Punkt,	der	genauer	untersucht	werden	muss,	ist	die	Spezifität	der	Signatur	für	Multiple	
Sklerose.	 Viele	 der	 gefundenen	 miRNA	 Marker	 wurden	 auch	 in	 anderen	 Krankheiten	
entdeckt.	Alleine	miR-16-2	war	sehr	spezifisch	und	die	Signatur	die	identifiziert	wurde,	
wurde	als	solche	in	keiner	anderen	Erkrankung	in	ähnlicher	Form	gefunden.	
	
	
Alzheimer	 (AD):	 Als	 zweite	 Erkrankung	 des	 Zentralen	 Nervensystems	 habe	 ich	 die	
Alzheimer	Erkrankung	näher	betrachtet.	Alzheimer	ist	eine	Volkskrankheit,	die	uns	in	den	
nächsten	 Jahren	 und	 Jahrzehnten	 noch	 deutlich	 stärker	 betreffen	 wird.	 Bereits	 2015	
lebten	weltweit	etwa	47	Millionen	Menschen	mit	Alzheimer.	Bis	2050	wird	sich	diese	Zahl	
laut	 aktueller	 Progonsen	 etwa	 verdreifachen.	 Die	 Entwicklung	 der	 Therapien	 für	
Alzheimer	 ist	 in	 den	 vergangenen	 Jahren	 fast	 stagniert	 [185-188].	 Führende	
Pharmafirmen	 ziehen	 sich	 teilweise	 sogar	 aus	 der	 Forschung	 an	 Medikamenten	 für	
Alzheimer	 oder	 sogar	 Neurodegeneration	 insgesamt	 zurück.	 Ein	 Beispiel	 ist	 das	
Pharmaunternehmen	Eli	Lilly,	das	im	Januar	2017	verkündet	hat,	seine	Bemühungen	in	
diesem	 Umfeld	 weitestgehend	 einzustellen.	 Eine	 der	 Hauptherausforderungen	 ist	 es	
dabei,	dass	die	Patienten	oft	zu	spät	erkannt	werden	und	mittels	bildgebender	Verfahren	
wie	MRT	diagnostiziert	werden.	Ein	Überblick	über	die	momentanen	Diagnoseverfahren	
mit	Schwerpunkt	auf	molekulare	Diagnostik	und	zirkulierende	Biomarker	Panels	ist	von	
Zafari	publiziert	worden	[189].	Auch	bei	der	Alzheimer	Erkrankung	wurde	das	Potenzial	
zirkulierender	miRNA	Muster,	analog	der	Verfahren	bei	Lungentumoren	und	Multipler	
Sklerose,	getestet	[56,	57].		
	
In	einer	ersten	Studie	wurden	Alzheimer	Samples	und	Kontrollen,	die	in	Bezug	auf	Alter	
und	 Geschlecht	 zugeordnet	 waren,	 auf	 ihr	 Repertoire	 an	 miRNAs	 im	 Blut	 mit	 HTS	
charakterisiert.	Die	experimentellen	Methoden	waren	dabei	wieder	identisch	zu	der	oben	
beschriebenen	MS	Studie.	Die	Patientenproben	wurden	von	der	SAMPLE	Studie	(Serial	
Alzheimer	Disease	and	MCI	Prospective	Longitudinal	Evaluation)	von	PrecisionMed	(San	
Diego,	CA,	USA)	 erhalten	und	einer	 ausführlichen	Standard	Diagnostik	 (inklusive	MRT	
und	 Mini-Mental	 State	 Exam	 MMSE)	 unterzogen.	 In	 dieser	 Studie	 wurden	 416	 reife	
miRNAs	detektiert.	Da	die	Read	Zahlen	wieder	nicht	normalverteilt	waren,	wurde	der	
nicht-parametrische	Wilcoxon-Mann-Whitney	(WMW)	Test	angewendet	und	die	p-Werte	
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wurden	mittels	der	Benjamini-Hochberg	 (BH)	Methode	adjustiert.	Die	Analysen	haben	
180	dysregulierte	miRNAs	zwischen	Patienten	und	Kontrollen	ergeben,	davon	waren	90	
jeweils	 höher	 bzw.	 tiefer	 bei	 Alzheimer	 Patienten	 im	 Vergleich	 zu	 Kontrollen.	 Eine	
netzwerkbasierte	 Analyse	 hat	 ergeben,	 dass	 unter	 den	 180	 miRNAs	 auch	 die	
Krankheitskategorie	 „Alzheimer	 miRNAs“	 stark	 überrepräsentiert	 war	 (p=0.01).	 Die	
sechs	miRNAs	 hsa-miR-21,	 hsa-miR-17,	 hsa-miR-29a,	 hsa-miR-29b,	 hsa-miR-106b	und	
hsa-miR-107	gehörten	alle	dieser	Kategorie	an.		Neben	den	p-Werten	wurde	auch	die	AUC,	
die	 Area	 Under	 The	 Curve,	 als	 weiteres	 Kriterium	 für	 die	 diagnostische	 Qualität	 der	
Biomarker	berechnet.	Bereits	einzelne	miRNAs	hatten	ausgezeichnete	Werte	mit	AUC’s	
über	0.91	und	daher	nahe	dem	Optimum	von	1.	Die	am	meisten	überexprimierte	miRNA	
war	miR-30d-5p,	die	am	meisten	nach	unten	regulierte	miRNA	war	miR-144-5p.	Die	p-
Werte	waren	dabei	jeweils	8x10-6.	Auch	diese	beiden	miRNAs	sind	nicht	spezifisch,	neben	
AD	wurden	sie	in	vielen	anderen	Erkrankungen	(auch	in	MS,	siehe	oben)	beschrieben.		
	
Diese	Resultate	werfen	zwei	Fragen	auf:	Kann	die	Genauigkeit	der	Vorhersage	durch	die	
Kombination	von	miRNAs	 in	 Signaturen	verbessert	werden	und	 sind	diese	 Signaturen	

dann	 auch	 spezifisch	 für	
AD.	 Um	 diese	 Frage	 zu	
beantworten	 wurden	
zunächst	 maschinelle	
Lernverfahren	 (ML)	
verwendet.	 Die	 besten	
Ergebnisse	 haben	 Support	
Vector	Machines	(SVM)	mit	
Radialer	Basis	Funktion	als	
Kernel	 gezeigt.	 Die	
Ergebnisse	 der	
Klassifikation	 mittels	 SVM	
ist	 in	 Abhängigkeit	 der	
Anzahl	 an	 miRNAs	 in	 der	

Signatur	in	Abbildung	22	gezeigt.	Mit	steigender	Anzahl	erhöht	sich	auch	die	Genauigkeit	
der	Vorhersage.	Mit	250	miRNAs	werden	90	%	aller	Proben	korrekt	zugeordnet.		
	
Viele	der	miRNAs	in	der	250	Marker-Signatur	haben	jedoch	eine	hohe	Redundanz	gezeigt.	
Daher	war	es	möglich	mit	substanziell	kleineren	Sets	bereits	ähnlich	gute	Resultate	zu	
erzielen	und	dabei	gleichzeitig	die	Gefahr	des	Overfittings	zu	reduzieren.	Bereits	mit	12	
Markern	war	es	möglich,	eine	Spezifität	und	Sensitivität	von	85	%	zu	erzielen.	Diese	12-
Marker-Signatur	 besteht	 aus	 brain-miR-112,	 brain-miR-161,	 hsa-let-7d-3p,	 hsa-miR-
5010-3p,	hsa-miR-26a-5p,	hsa-miR-1285-5p	und	hsa-miR-151a-3p	(höher	exprimiert	bei	

Abbildung 22: Genauigkeit in Abhängigkeit der Anzahl an miRNAs in der AD 
Signatur.  

Die Abbildung zeigt die Spezifität, Sensitivität und die Testgenauigkeit des 
AD Tests in Abhängigkeit der Anzahl an miRNAs in der Signatur. Die 
Abbildung ist modifiziert aus Leidinger et al. entnommen. 
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AD	 Patienten)	 und	 hsa-miR-103a-3p,	 hsa-miR-107,	 hsa-miR-532-5p,	 hsa-miR-26b-5p,	
und	hsa-let-7f-5p	(niedriger	exprimiert	in	AD	Patienten).	Neben	10	bekannten	miRNAs	
waren	auch	zwei	bisher	nicht	bekannte	miRNAs	in	der	Signatur,	die	anstatt	des	typischen	
Vorsatzes	„hsa-miR“	mit	„brain-miR“	gekennzeichnet	sind.		
	

Um	 zu	 verstehen,	wie	 spezifisch	 die	 Signatur	 für	AD	 ist,	wurde	 eine	Kohorte	 von	 202	
Patienten	 verschiedener	 Erkrankungen	 mittels	 RT-qPCR	 auf	 diese	 Signatur	 hin	
untersucht.	 Die	 Erkrankungen	 die	 dabei	 betrachtet	 wurden,	 waren	 neben	 AD	 auch	
Parkinson	(PD)	Schizophrenie	(Shiz),	Bipolare	Störung	(BD),	Mild	Cognitive	Impairment	
(MCI)	und	MS.	Für	Patienten	aller	Erkrankungen	wurden	die	miRNA-Signaturen	der	12	
oben	 genannten	 miRNAs	 erhoben.	 Diese	 sind	 in	 Abbildung	 23	 gezeigt.	 Hier	 ist	
anzumerken,	 dass	 die	 Werte	 für	 gesunde	 Probanden	 verwendet	 wurden,	 um	 eine	
Normalisierung	auf	ein	Ausgangsniveau	zu	ermöglichen.	Wie	in	Abbildung	23	gezeigt	ist,	
haben	alle	Erkrankungen	spezifische	Muster	der	12-Marker	miRNA-Signatur.	Speziell	in	
MS	und	Depression	wurden	signifikant	andere	Muster	nachgewiesen,	entweder	waren	
alle	miRNAs	deutlich	höher	oder	deutlich	niedriger	exprimiert.	Besonders	bei	Patienten	
die	unter	Depression	leiden	wurden	deutlich	niedrigere	Werte	der	miRNAs	aus	der	12-er	
Signatur	nachgewiesen.	Erstaunlich	war	auch,	dass	die	AD	Patienten	fast	genauso	gut	von	
MCI	 Patienten	 getrennt	 werden	 konnten	 wie	 von	 gesunden	 Kontrollen.	 Zwischen	
verschiedenen	Graden	der	AD	Erkrankung	(Patienten	mit	MMSE	>19	wurden	als	milde	
Form	und	Patienten	mit	MMSE	12-19	wurden	als	moderate	Form	betrachtet)	zeigten	sich	

Abbildung 23: AD Signatur in anderen Erkrankungen.  

Die Abbildung zeigt die 12-miRNA Signatur die bei AD Patienten gefunden wurde im Verhältnis zu anderen 
Erkrankungen. Die Balkenhöhe entspricht dabei der Expression der miRNAs. Jede Erkrankung hat dabei deutlich 
sichtbar ihre eigene Signatur. Die Abbildung ist modifiziert aus Leidinger et al. entnommen. 
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hingegen	keine	unterschiedlichen	Signaturen.		
	
Insgesamt	 wurde	 mit	 der	 12-Marker-Signatur	 eine	 relativ	 genaue	 Diagnostik	 von	
Alzheimer	in	frühen	Stadien	ermöglicht.	Da	die	Signatur	es	erlaubt	MCI	von	AD	Patienten	
abzugrenzen,	scheint	sie	sehr	spezifisch	für	AD	zu	sein.		

	
Natürlich	 ist	 es	 wichtig,	
entsprechende	 komplexe	
Signaturen	 auch	 in	 einer	
weiteren	 Kohorte	 zu	
validieren.	Da	die	Patienten	
in	 der	 ursprünglich	
verwendeten	 Kohorte	 aus	
den	USA	 stammen,	war	 es	
sinnvoll,	 eine	 nicht	 aus	
Amerika	 stammende	
Validierungskohorte	 zu	
wählen.	Als	zweite	Kohorte	
wurden	 Patienten	 und	
Kontrollen	 die	 in	
Deutschland	 gesammelt	
wurden	gemessen	und	mit	
den	 ursprünglichen	
Signaturen	 verglichen.	
Insgesamt	 wurden	 290	
HTS	miRNA-Profile	in	diese	
Analyse	 einbezogen.	 Die	
Methodik	 war	 dabei	
wieder	 identisch	 zu	 der	
vorher	 beschriebenen	 MS	
und	initialen	AD-Studie.		
	

Zusammengenommen	wurden	3.85	Milliarden	Reads	in	der	Studie	analysiert	und	dabei	
580	 miRNAs	 detektiert.	 Die	 gemeinsame	 Analyse	 der	 Daten	 hat	 ergeben,	 dass	 in	 der	
ersten	Kohorte	(USA)	203	dysregulierte	miRNAs	vor	und	127	dysregulierte	miRNAs	nach	
Adjustierung	 für	 Multiples-Testen	 gefunden	 wurden.	 In	 der	 Kohorte	 aus	 Deutschland	
waren	146	miRNAs	dysreguliert	bevor	adjustiert	wurde,	49	nach	der	Adjustierung.	Von	
den	 203	 und	 respektive	 146	 miRNAs	 stimmten	 68	 überein.	 Die	 Gesamtzahl	 an	
exprimierten	miRNAs	 betrug	 580.	 Ein	 hypergeometrischer	 Test	 hat	 ergeben,	 dass	 die	

Abbildung 24: AD miRNAs in den USA und Deutschland.  

Die Abbildung zeigt die AUC Werte der miRNAs in den USA (X-Achse) und 
Deutschland (Y-Achse). Die AUC Werte sind so gewählt dass AUC > 0.5 
Hochregulation und AUC < 0.5 nach unten Regulation entspricht. AUC 
Werte von genau 0.5 bedeuten, dass die miRNAs nicht unterschiedlich 
zwischen Patienten und Kontrollen sind (horizontale und vertikale 
gestrichelte Linie). Alle 68 miRNAs waren konkordant, entweder hoch-
exprimiert sowohl in AD Patienten in den USA und Deutschland (oberer 
rechter Quadrant) oder niedrig-exprimiert sowohl in AD Patienten in den 
USA und Deutschland (unterer linker Quadrant). Diskordante miRNAs (die 
in beiden Kohorten in jeweils die entgegengesetzte Richtung exprimiert 
wären) wären in den oberen linken bzw. unteren rechten Quadranten zu 
finden. Die Abbildung ist modifiziert aus Keller et al. entnommen. 
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Überlappung	statistisch	sehr	signifikant	war	(p=0.0003).	Noch	entscheidender	war,	dass	
wie	in	Abbildung	24	gezeigt	alle	miRNAs	konkordant	waren.	Sie	waren	sowohl	in	den	USA	
als	 auch	 in	 Deutschland	 entweder	 niedriger	 oder	 höher	 exprimiert,	 bei	 AD	 Patienten	
verglichen	zu	Kontrollen.		
	
Insgesamt	konnten	die	miRNA	
Muster	verwendet	werden,	um	
AD	 Patienten	 von	 Kontrollen	
mit	 einer	 Genauigkeit	 von	
etwa	90	%	zu	trennen.	Grafisch	
ist	 diese	 Trennung	 in	
Abbildung	 25	 gezeigt.	 Für	 die	
signifikanten	 miRNAs	 in	
beiden	 Studien	 wurde	 eine	
sogenannte	Heat	Map	erzeugt.	
Sie	 ist	 das	 Ergebnis	 eines	
hierarchischen	 Clusterings	
unter	 Verwendung	 der	
Euklidischen	 Distanz.	 Analog	
zur	 ersten	 Studie	 über	
Alzheimer	 miRNAs	 war	 auch	
hier	 die	 Genauigkeit	 deutlich	
besser,	 wenn	 Signaturen	
anstatt	von	einzelnen	miRNAs	
verwendet	 wurden.	 Während	
einzelne	Marker	eine	AUC	von	
0.75	 gezeigt	 haben,	 war	 es	
möglich	 unter	 Verwendung	
von	 SVM	 Klassifikation	 eine	
AUC	von	0.842	zu	erreichen.	Mit	verbesserter	statistischer	Analyse	war	es	sogar	möglich,	
die	Klassifikatoren	an	Hand	von	Daten	aus	den	USA	zu	trainieren	und	AD	an	deutschen	
Patienten	vorherzusagen.	Hier	lag	die	Genauigkeit	bei	immerhin	noch	73	%	(Daten	nicht	
gezeigt).	Dieser	erste	größere	Datensatz	hat	es	außerdem	ermöglicht,	Effekte	der	miRNAs	
auf	ihre	Zielgene	und	Zielnetzwerke	abzuschätzen.	Siehe	auch	nachfolgendes	Kapitel	4.3.		
	
Zusammenfassend	 kann	man	 sagen,	 dass	 es	 gelungen	 ist	 eine	miRNA	 Signatur	 die	 für	
Alzheimer	spezifisch	ist	zu	detektieren	und	an	Hand	von	zwei	diversen	Kollektiven	auf	
zwei	verschiedenen	Kontinenten	zu	validieren.				
	

Abbildung 25: Clustering der 69 AD miRNAs.  

Blaue Werte entsprechen hoher Expression, orangene Werte 
entsprechend niedriger Expression. Über der Matrix und auf der 
linken Seite der Matrix ist jeweils ein Dendrogram gezeichnet, das 
zeigt, wie gut miRNAs (Zeilen) und Patienten (Spalten) zusammen 
clustern. Die Abbildung ist modifiziert aus Keller et al. entnommen. 
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Publikationen:	Die	Arbeiten,	 die	 in	diesem	Abschnitt	 beschrieben	werden	basieren	

hauptsächlich	auf	den	beiden	Publikationen	[56,	57].	Zusätzlich	wurden	zwei	Patente	

angemeldet,	 um	 miRNA	 basierte	 Diagnostik	 aus	 dem	 Blut	 bei	 AD	 Patienten	

durchzuführen	(WO2017108535,	US2016273040).		

 
 
 
 

4.2.4.	Das	„Disease	miRNome“	

	
Zentraler	 Aspekt	 in	 allen	 vorherigen	 Abschnitten	 war	 die	 Spezifität	 von	 miRNAs	 für	
Erkrankungen.	 In	 Kapitel	 4.2.2	 habe	 ich	 Signaturen	 in	 Lungentumoren	 und	 COPD	
beschrieben	und	in	Kapitel	4.2.3	von	Erkrankungen	des	Zentralen	Nervensystems.	Schon	
dabei	 wurden	 Überlappungen	 in	 der	 miRNA-Expression	 gefunden,	 obwohl	 die	
betrachteten	Pathologien	deutlich	unterschiedlich	voneinander	sind.	Das	 lässt	auf	eine	
gemeinsame,	unspezifische	Komponente	von	miRNAs	im	Blut	von	Patienten	im	Vergleich	
zu	 Kontrollen	 schließen.	 Direkte	 Vergleiche	 basierend	 auf	 Daten	 aus	 der	 Literatur	 in	
sogenannten	Metaanalysen	 sind	 schwierig.	 Oft	 werden	 unterschiedliche	 Systeme	 zum	
Sammeln	des	Blutes	verwendet	(EDTA	/	PAXgene	/	...),	verschiedene	RNA	Aufreinigungs-
methoden	werden	 eingesetzt,	 andere	 analytische	Methoden	 (HTS	 /	 Mikroarray	 /	 RT-
qPCT	/	...)	werden	angewendet	und	die	erhobenen	Daten	mit	unterschiedlichen	Methoden	
ausgewertet.	Um	einen	besseren	Vergleich	zu	ermöglichen	ist	die	beste	Alternative	eine	
Studie	aufzusetzen,	die	auf	exakten	„Standard	Operating	Procedures	(SOPs)“	basiert.	Ich	
war	Teilnehmer	eines	großen	Konsortiums	von	über	50	Wissenschaftlern,	das	SOPs	zum	
Sammeln,	Messen	und	Auswerten	von	Blut	basierten	miRNA-Signaturen	entwickelt	und	
an	über	30	Erkrankungen	getestet	hat [34].	
	
Insgesamt	 wurden	 in	 der	 entsprechenden	 Studie	 454	 Blutproben	 aus	 fünf	 Zentren	
eingeschlossen.	 Die	 Kohorten	 beinhalten	 Lungentumore,	 Prostatatumore,	
Pankreastumore,	 Melanom,	 Eierstockkrebs,	 Magentumore,	 Wilmstumore,	
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Pankreaskrebs,	 Multiple	 Sklerose,	 COPD,	 Sarkoidose,	 Periodontitis,	 Pankreatitis	 und	
Herzinfarktpatienten.	Jedes	der	teilnehmenden	Zentren	musste	neben	den	Patienten	auch	
Kontrollen	ohne	bekannte	Erkrankung	zur	Verfügung	stellen.		
	
Für	alle	Patienten	und	Kontrollen	wurden	863	miRNAs	aus	Vollblut	mittels	Mikroarrays	
gemessen.	 Die	 vergleichende	 Analyse	 der	 Erkrankungen	 hat	 ergeben,	 dass	 im	
Durchschnitt	 103	 miRNAs	 je	 Erkrankung	 nach	 Adjustierung	 für	 Multiples-Testen	
signifikant	 waren.	 62	 miRNAs	 waren	 dabei	 in	 mindestens	 sechs	 verschiedenen	
Erkrankungen	signifikant.	Drei	miRNAs	wurden	in	neun	Vergleichen	gefunden	(hsa-miR-
423-5p,	 hsa-miR-146b-3p	 und	 hsa-miR-532-3p),	 eine	 miRNA	 sogar	 in	 11	 (hsa-miR-
320d).	 Gerade	 einmal	 121	miRNAs	waren	mit	 keiner	 einzigen	 Erkrankung	 signifikant	
assoziiert.	 Erstaunlich	 war	 außerdem,	 dass	 die	 Regulationsrichtung	 oft	 konkordant	
zwischen	den	verschiedenen	Erkrankungen	war,	miRNAs	waren	entweder	generell	höher	
bei	 Patienten	 als	 in	 Kontrollen	 vorhanden	 oder	 generell	 niedriger	 bei	 Patienten	 im	
Verhältnis	zu	Kontrollen.	Das	„Disease	miRNome“,	das	diesen	generellen	Bezug	darstellt,	
ist	in	Abbildung	26	gezeigt.		

Abbildung 26	: Das Disease miRNome.  

Die Abbildung zeigt für jede mögliche Kombination von höher zu niedriger exprimierten miRNAs in wie vielen 
Erkrankungen die miRNAs entsprechend reguliert waren. Die Größe der Bubbles entspricht dabei der Anzahl der 
miRNAs. Die Abbildung ist modifiziert aus Keller et al. entnommen.  	
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Um	die	notwendige	Spezifität	für	die	Diagnose	von	Erkrankungen	zu	bekommen	wurden	
Maschine-Learning-Verfahren	 analog	 zu	 den	 in	 der	 Alzheimer	 und	Multiplen	 Sklerose	
Studie	 vorgestellten	 Methoden	 verwendet:	 Klassifizierung	 mittels	 Support	 Vektor	
Machines.	 Für	 die	 14	 Erkrankungen	 wurde	 eine	 diagnostische	 Genauigkeit	 von	
mindestens	81	%	erlangt,	teilweise	bis	zu	100	%,	zum	Beispiel	für	bösartigen	Hautkrebs.	
Die	mittlere	Genauigkeit	über	alle	Erkrankungen	die	getestet	wurden	hinweg,	lag	bei	89	
%.	Schon	Subsets	von	nur	10	miRNAs	haben	ausgereicht,	um	eine	mittlere	Genauigkeit	
von	 81	%	 zu	 erzielen.	 Eine	 unabhängige,	 gezielte	 Validierung	mittels	 RT-qPCR,	 unter	
Verwendung	des	WaferGen	Systems,	hat	die	Ergebnisse	in	dieser	Studie	am	Beispiel	von	
Lungentumoren	und	COPD	verifiziert.	Insgesamt	bestätigen	die	Ergebnisse	die	Resultate	
aus	 den	 vorangegangenen	 Abschnitten.	 Während	 einzelne	 miRNAs	 diagnostisches	
Potenzial	besitzen	aber	nicht	spezifisch	sind,	erlaubt	es	die	Kombination	von	miRNAs	zu	
kleineren	Sets	von	etwa	10	Markern,	sowohl	die	Genauigkeit	zu	verbessern	als	auch	die	
Spezifität	zu	erhöhen.				
	
Publikationen:	Die	Arbeiten,	 die	 in	diesem	Abschnitt	 beschrieben	werden	basieren	

hauptsächlich	auf [34]	und	wurden	in	einer	weiteren	Publikation	verifiziert	[190].		
	
	

4.2.5.	Zusammenfassung	Biomarker	Entwicklung	

Die	 in	 vielen	 Originalarbeiten	 beschriebenen	 und	 in	 dieser	 Ausarbeitung	
zusammengefassten	 miRNA-Signaturen	 sind	 vielversprechende	 Biomarker	 für	
Erkrankungen.	Nach	der	Charakterisierung	der	Signaturen	in	der	Grundlagenforschung	
und	 dem	 Gewährleisten	 der	 Stabilität	 sind	 jetzt	 zwei	 weitere	 maßgebliche	 Schritte	
notwendig.	Der	erste	ist	es,	die	biologische	Funktion	und	Wirkungsweise	der	miRNAs	und	
miRNA-Signaturen	 besser	 zu	 verstehen.	 Erste	 kleine	 Schritte	 dazu	 sind	 im	 nächsten	
Abschnitt	gezeigt.	Daneben	muss	eine	größere	multizentrische	Validierung	durchgeführt	
werden.	Im	Falle	von	Alzheimer	wurde	die	Kohorte	auf	500	Patienten	erhöht,	im	Umfeld	
Lungenerkrankungen	sogar	auf	fast	3,000	Patienten	und	Kontrollen.	Bisher	scheinen	sich	
die	 Ergebnisse	 der	 kleinen	 Kohorten	 zu	 bestätigen,	 sodass	 die	 berechtigte	 Hoffnung	
besteht,	dass	entsprechende	miRNA	Signaturen	ihren	Weg	in	die	klinische	Praxis	finden.	
Wichtig	 ist	 herauszustellen,	 dass	 für	 den	 klinischen	 Einsatz	 die	 Marker	 selbst	
entscheidend	 sind	 und	 nicht	 so	 sehr	 die	 Technologie	 mit	 der	 sie	 gemessen	 werden.	
Sowohl	für	Immunoassays	als	auch	Mikroarrays,	HTS	und	RT-qPCR	gibt	es	bereits	klinisch	
zugelassene	 Tests.	 Die	 Erkenntnisse,	 die	 aus	 diesen	 und	 anderen	 Studien	 gezogen	
wurden,	 sind	von	Fehlmann	et	al.	kürzlich	 in	einer	umfassenden	Arbeit	zum	humanen	
nichtkodierenden	Transkriptom	zusammengefasst	worden [103].		
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4.3.	Die	Komplexität	und	wechselseitige	Wirkung	von	miRNAs	

Stetig	 wachsende	 Datensätze	 ermöglichen	 es,	 auch	 die	 Effekte	 von	 miRNAs	 auf	 ihre	
Zielgene	besser	abzuschätzen.	Wie	in	der	Einleitung	und	in	Kapitel	2	beschrieben	ist	es	
eine	der	Hauptfunktionen	von	miRNAs	die	Expression	von	Genen	zu	unterdrücken	oder	
entsprechend	 die	 mRNAs	 der	 Gene	 abzubauen.	 Eine	 Vielzahl	 von	 experimentell	
validierten	 oder	 vorhergesagten	 Zielgenen	 von	 miRNAs	 ist	 in	 Datenbanken	 wie	 der	
miRTarBase	 [191-194]	 oder	 der	 StarBase	 [195,	 196]	 hinterlegt.	 	 Darüber	 hinaus	 sind	
miRNAs	Teil	eines	komplexen	Netzwerkes,	zu	dem	auch	andere	Transkriptionsfaktoren	
beitragen.	 Bereits	 in	 den	 Arbeiten	 über	 Alzheimer	 (Kapitel	 4.2)	 hat	 sich	 gezeigt,	 dass	
miRNAs	 gezielt	 Netzwerke	 modulieren	 und	 so	 wahrscheinlich	 einen	 substanziellen	
Einfluss	auf	die	Entstehung	oder	das	Voranschreiten	der	Erkrankung	haben	können.			

Abbildung 27: Genregulationsnetz der 68 Alzheimer miRNAs.  

Das Netzwerk zeigt die signifikanten miRNAs aus beiden Alzheimer Studien die mindestens 5 Gene regulieren. 
Dieses Genset, welches in der Mitte dargestellt ist, beinhaltet viele Schlüsselgene für Alzheimer, zum Beispiel APP. 
Die Abbildung ist modifiziert aus Keller et al. entnommen.   
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In	den	Studien	über	Alzheimer	wurden	insgesamt	68	miRNAs	als	dysreguliert	erkannt.	
Für	33	dieser	miRNAs	sind	in	der	miRTarBase	sowohl	vorhergesagte	als	auch	validierte	
Zielgene	enthalten.	Insgesamt	wurden	563	Interaktionen	zwischen	den	33	miRNAs	und	
349	Genen	detektiert.	Das	Kernnetzwerk,	das	aus	den	Genen	besteht	die	von	mindestens	
fünf	 miRNAs	 reguliert	 werden	 und	 den	 entsprechenden	 miRNAs	 ist	 in	 Abbildung	 27	
gezeigt.	Viele	der	14	Gene,	die	in	Abbildung	27	enthalten	sind,	sind	für	ihre	Bedeutung	in	
Alzheimer	bekannt.	Das	wahrscheinlich	bekannteste	davon	ist	APP,	das	für	das	Amyloid	
Precursor	 Protein	 codiert	 und	 eine	 Schlüsselrolle	 in	 der	 Entstehung	 von	
Neurodegeneration	inne	hat	[197,	198].		

	
Es	ist	wichtig	zu	erwähnen,	dass	die	Interaktionen	in	Abbildung	27	aus	der	miRTarBase	
entnommen	wurden	und	alle	Paare	von	miRNAs	und	Zielgenen	experimentell	gefunden	
worden	sind.	Das	ist	in	der	Mehrzahl	der	Fälle	aber	wiederum	nur	eine	indirekte	Evidenz	
die	 auf	 Korrelationen	 beruht	 und	 aus	 Hochdurchsatzexperimenten	 abgeleitet	 wurde.	
Prinzipiell	sollte	für	jede	einzelne	dieser	Interaktionen	ein	spezifisches	Experiment,	wie	
zum	Beispiel	ein	Luciferase	Reporter	Assay,	durchgeführt	werden	[163].	Dies	bedeutet	
jedoch	 einen	 enormen	 experimentellen	 Aufwand,	 der	 nicht	 im	 Rahmen	 einer	
theoretischen	Arbeit	möglich	ist,	sondern	dedizierte	Expertise	im	Labor	erfordert.	
	

Abbildung 28: Kern-Co-Expressions Netzwerk.  

Die Abbildung zeigt zwei Cluster von miRNAs. Die auf der linken Seite stehenden miRNAs sind differenziell co-
exprimiert, die auf der rechten Seite stehenden miRNAs sind co-exprimiert. Da die Sequenzähnlichkeit einen 
Einfluss hat, ist die Kantendicke proportional zur Ähnlichkeit der Sequenzen gewählt. Blaue Kanten entsprechen 
positiver Korrelation, rote Kanten negativer. Gepunktete Kanten zeigen zudem die Paare an, die differenziell co-
exprimiert sind. Die Abbildung ist modifiziert aus Stähler et al. entnommen. 
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Die	 Mechanismen	 der	 Regulation	 von	 Genen	 durch	 miRNAs	 scheinen	 insgesamt	
wesentlich	komplexer	als	ursprünglich	angenommen.	Oft	ist	es	nicht	eine	einzelne	miRNA	
die	 ein	 isoliertes	 Gen	 reguliert.	 Vielmehr	 arbeiten	 miRNAs,	 teilweise	 sogar	 miRNA	
Familien	kooperativ	um	komplette	biochemische	Pfade	gezielt	zu	steuern [162,	163,	199-
201].	 	Dabei	hat	sich	auch	die	co-Expression	von	miRNAs	entwickelt.	Um	zu	verstehen,	
welche	 generelle	 Rolle	 miRNAs	 in	 Krankheiten	 einnehmen	 und	 wie	 sie	 gemeinsam	
agieren,	 habe	 ich	 mir	 gezielt	 miRNA	 co-Expression	 und	 differenzielle	 miRNA	 co-
Expression	angeschaut	[59].	Basierend	auf	dem	in	Abschnitt	3.2.4.	eingeführten	Datensatz	
über	 mehrere	 hundert	 Patienten	 und	 863	 miRNAs	 wurden	 alle	 paarweisen	
Kombinationen	von	miRNAs	untersucht	(863*862/2	=	371.953	Kombinationen).	Durch	
stringentes	Filtern	nach	der	absoluten	Korrelation	und	dem	p-Wert	wurden	184	Paare	
von	miRNAs,	 die	 entweder	korreliert	 (118)	oder	 antikorreliert	waren	 (66),	 abgeleitet.	
Eine	 Detailanalyse	 hat	 dabei	 ergeben,	 dass	 diese	 Paare	 zum	 Teil	 differenziell	 co-
exprimiert	waren.		
	
Konkret	bedeutet	das,	dass	die	Korrelation	entweder	nur	bei	Kontrollprobanden	oder	nur	
bei	Patienten	vorhanden	war.	Das	auffälligste	Beispiel	war	das	Paar	hsa-miR-23a/hsa-
miR-23b.	 Sowohl	 bei	 Tumorpatienten	 als	 auch	 bei	 Patienten	 die	 nicht	 an	
Krebserkrankungen	 litten,	waren	 diese	 beiden	miRNAs	 stark	 korreliert.	 Bei	 gesunden	
Probanden	war	die	Korrelation	hingegen	fast	nicht	mehr	sichtbar.	Detaillierte	Analysen	
haben	ein	Netzwerk	ergeben,	das	aus	zwei	Komponenten	besteht	und	in	Abbildung	28	
gezeigt	 ist.	 Auf	 der	 linken	 Seite	 des	Netzwerkes	 in	Abbildung	28	 sind	differenziell	 co-
exprimierte	miRNA	Paare	gezeigt,	also	solche	die	bei	Erkrankungen	ihre	co-Expression	
gewinnen	oder	verlieren,	während	der	rechte	Teil	die	co-exprimierten	miRNAs	zeigt.		
	
Auf	 der	 Suche	 nach	 Gründen	 für	 die	 co-Expression	wurden	 verschiedene	Hypothesen	
aufgestellt	 und	 getestet.	 Eine	mögliche	 Erklärung	 ist	 Sequenzähnlichkeit.	 miRNAs	mit	
ähnlicher	 Sequenz	 können	 beispielsweise	 evolutionär	 konserviert	 sein	 und	 die	 selbe	
Funktion	ausüben.	Tatsächlich	hat	die	Sequenzähnlichkeit	eine	signifikante	Rolle	gespielt.	
Oft	waren	miRNAs	mit	ähnlicher	Sequenz	auch	co-exprimiert.	Allerdings	gab	es	viele	Fälle,	
bei	denen	sehr	hohe	co-Expression	bestand	(p	<	10-16)	aber	keinerlei	Ähnlichkeit	in	der	
Sequenz	festgestellt	werden	konnte.	Ein	weiterer	Faktor,	der	signifikant	dazu	beigetragen	
hat,	dass	miRNAs	co-exprimiert	waren,	war	die	chromosomale	Lokalisation.	Oft	waren	
solche	miRNA-Paare,	die	auf	dem	selben	Chromosom	teilweise	direkt	in	miRNA	Clustern	
co-lokalisiert	waren,	auch	sehr	stark	miteinander	korreliert.	 Insbesondere	miRNAs	der	
selben	 miRNA-Familien	 haben	 eine	 starke	 Tendenz	 zur	 co-Expression	 gezeigt.	 Eine	
Cluster	Analyse	hat	ergeben,	dass	es	co-exprimierte	miRNA-Cluster	gibt,	deren	Ursache	
weder	 auf	 Sequenzähnlichkeit	 noch	 auf	 Familienzugehörigkeit	 oder	 chromosomale	
Lokalisation	beruhen.		
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Meine	Ergebnisse	deuten	darauf	hin,	dass	miRNAs	generell	ein	kooperatives	Verhalten	
zeigen,	das	weit	über	das	bekannte	Maß	hinausgeht.	Sie	können	teilweise	ihre	Funktion	
gegenseitig	übernehmen	und	im	Fall	von	Erkrankungen	scheinen	gezielt	Teile	des	eher	
homöostatischen	miRNA	Regulationsnetzwerkes	zusammenbrechen.			
	
	
Publikationen:	Die	Arbeiten,	 die	 in	diesem	Abschnitt	 beschrieben	werden	basieren	

hauptsächlich	auf [59].		
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4.4.	Anwendungen	in	der	„Synthetischen	Biologie“	

	
In	meiner	Doktorarbeit	habe	ich	Plattformen	und	Assays	entwickelt	die	zum	Einsatz	in	
der	 Molekulardiagnostik	 geeignet	 sind.	 In	 Kapitel	 2.1	 habe	 ich	 ausgeführt,	 dass	 die	
Technologien	 und	 Erkenntnisse	 aber	 auch	 darüber	 hinaus	 eingesetzt	werden	 können.	
Eine	Entwicklung,	die	in	den	vergangenen	Jahren	rasant	Fahrt	aufgenommen	hat,	ist	die	
Synthetische	 Biologie.	 Im	 diesem	 Fachgebiet	 arbeiten	Wissenschaftler	 interdisziplinär	
zusammen	 (Biologen,	Chemiker,	 Ingenieure,	 Informatiker),	 um	biologische	Systeme	zu	
erzeugen,	die	es	so	in	der	Natur	nicht	gibt.	Angefangen	mit	neuen	DANN-Oligonukleotid-
ketten	können	so	biologische	Systeme	mit	neuen	Eigenschaften	erschaffen	werden	[202,	
203].	Der	Begriff	der	Synthetischen	Biologie	ist	bereits	seit	mehreren	Jahrzehnten	geprägt	
und	seit	den	1980er	Jahren	werden	entsprechende	Systeme	entwickelt	[204-206].	Bereits	
seit	 fast	einem	Jahrzehnt	 ist	es	möglich,	komplette	Bakteriengenome	zu	synthetisieren	
und	 in	 lebende	Bakterien	 einzubringen	 [207].	Die	 Forschung	 insgesamt	 hat	 sehr	 viele	
verschiedene	 Anwendungsfelder [208-217],	 von	 denen	 die	 meisten	 eines	 gemeinsam	
haben:	 sie	 benötigen	 synthetische	 Oligonukleotide	 als	 grundlegende	 Bausteine.	 Diese	
können	erzeugt	werden,	indem	gezielt	in	vorhandene	DNA	neue	Mutationen	eingebracht	
werden,	vorhandene	natürliche	Code	Stücke	ohne	Veränderung	neu	kombiniert	werden	
oder	man	durch	Syntheseverfahren	beliebige	Sequenzen	herstellt.		
	

Abbildung 29: Grundkonzept des „Megakloners“. 

Die Abbildung zeigt, wie wir die Geniom-Plattform verwendet haben um hoch präzise Oligonukleotide herzustellen. HTS wurde 
im Workflow eingesetzt, um die bereits zu größeren Stücken zusammengesetzten Fragmente Korrektur zu lesen. Die Abbildung 
entstammt aus Matzas et al.   
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Das	in	Kapitel	2.1.	vorgestellte	Geniom	System	besitzt	genau	diese	Fähigkeit.	 In	kurzer	
Zeit	 –	 innerhalb	 eines	Arbeitstages	 –	 kann	eine	Anzahl	 von	mehreren	hunderttausend	
verschiedenen	Oligonukleotiden	der	Länge	von	bis	zu	50	Basen	hergestellt	werden.	Diese	
können	vom	Glasträger	gelöst	und	in	der	Synthetischen	Biologie	eingesetzt	werden.	Eine	
der	 Hauptherausforderungen	 ist	 dabei	 das	 möglichst	 fehlerfreie	 Herstellen	 von	
künstlicher	DNA.	Bereits	 das	 erste	 vollständige	Bakteriengenom	das	 künstlich	 erzeugt	
wurde	hat	aus	mehr	als	einer	Million	Basen	bestanden.	Wenn	man	darüber	nachdenkt	
höhere	 Organismen	 komplett	 oder	 zu	 sehr	 großen	 Teilen	 aus	 synthetischer	 DNA	
„herzustellen“,	müssen	viele	Millionen	oder	Milliarden	Basen	mit	sehr	geringer	Fehlerrate	
erzeugt	werden.		
	
Die	HTS	Technologie	bietet	sich	dabei	an,	um	die	erzeugten	DNA	Fragmente	Korrektur	zu	
lesen,	bevor	sie	zu	größeren	DNA	Stücken	-	wie	zum	Beispiel	Genen	-	zusammengesetzt	
werden.	Der	entsprechende	Ansatz	wird	Megacloning	genannt	[61]	und	ist	in	Abbildung	
29	dargestellt.	
	
Zunächst	 wird	 eine	 der	 oben	 genannten	 Quellen	 verwendet,	 um	 den	 benötigten	
grundlegenden	Bausatz	an	DNA	zu	erhalten.	Von	jedem	dieser	grundlegenden	Bausteine	
werden	 mehrere	 Instanzen	 erzeugt.	 Jede	 mögliche	 Variante	 der	 DNA-Bausteine	 kann	
Fehler	 enthalten.	 Daher	 werden	 sie	 mit	 einer	 sehr	 akkuraten	 Technologie,	 im	
vorliegenden	Fall	mit	der	454	Sequenzier-Technologie	der	Firma	Roche,	sequenziert.	Der	
Träger,	der	verwendet	wurde	um	die	Sequenzierung	der	DNA-Klone	durchzuführen,	wird	
im	 Anschluss	 an	 die	 Sequenzierung	 in	 den	 eigentlichen	 Megacloner	 gegeben.	 Ein	
Computerprogramm	 extrahiert	 die	 Positionen	 der	 korrekt	 gelesenen	 Reads	 auf	 dem	
Sequenzierträger.	 Ein	 Roboter	 steuert	 gezielt	 die	 Position	mit	 dem	 korrekt	 gelesenen	
Fragment	an	und	extrahiert	den	DNA-Klon	vom	Objektträger.	Dadurch	können	gezielt	die	
richtigen	Fragmente	ausgewählt	werden.	Diese	werden	anschließend	Stück	für	Stück	zu	
längeren	Abschnitten	zusammengesetzt.		
	
Um	die	hohe	Genauigkeit	des	Megacloners	zu	demonstrieren	wurden	3.918	verschiedene	
Sequenzen	auf	einem	Geniom-Mikroarray	hergestellt.	Daraus	wurden	319	DNA-Klone	die	
eine	 100	 %-ige	 Übereinstimmung	 zu	 den	 gewünschten	 Fragmenten	 zeigten	 mit	 dem	
Megacloner	vollautomatisch	ausgewählt.	Während	von	den	ursprünglich	ausgewählten	
Sequenzen	nur	3.1	%	absolut	korrekt	waren,	zeigten	die	vom	Megacloner	vorselektierten	
Fragmente	 eine	 27,2-fach	 höhere	 Genauigkeit.	 Die	 Fehlerverteilung	 des	 nicht	
korrekturgelesenen	Pools	und	des	Pools	vom	Megacloner	sind	im	Vergleich	zueinander	in	
Abbildung	 30	 dargestellt.	 Um	 zu	 demonstrieren,	 dass	 die	 entsprechenden	 Fragmente	
auch	zusammengesetzt	werden	können,	wurden	jeweils	neun	und	zehn	DNA-Stücke	nach	
dem	 Megacloning	 zu	 zwei	 Genen	 ligiert.	 Die	 Gene	 wurden	 dann	 durch	 Sanger-
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Sequenzierung	überprüft	und	es	hat	sich	eine	Erfolgsrate	von	87,5	%	gezeigt.		

	
Um	die	Leistungsfähigkeit	des	Megacloners	noch	besser	abzuschätzen	wurden	 längere	
Fragmente	basierend	auf	fast	400	Basen	langen	Oligonukleotiden	zusammengesetzt.	Aus	
29	korrekt	vorselektierten	DNA-Klonen	konnte	ein	7,195	Basen	 langes	DNA-Fragment	
ohne	Fehler	erzeugt	werden.	Da	kein	Fehler	in	dem	Fragment	gefunden	wurde,	wurde	ein	
statistisches	 Modell	 gebildet,	 das	 die	 verschiedenen	 Fehlerraten	 kombiniert.	 Dadurch	
wurde	gezeigt,	dass	der	Megacloner	eine	Genauigkeit	von	5	Fehlern	auf	100,000	Basen	
erreicht.	 Im	 Vergleich	 zu	 der	 ursprünglich	 nicht	 korrekturgelesenen	 Fraktion	 ist	 die	
Genauigkeit	 um	 einen	 Faktor	 von	 500-mal	 verbessert	worden.	 Durch	 den	Megacloner	
können	 außerdem	 die	 Kosten	 der	 Gensynthese	 um	 einen	 Faktor	 von	 10	 verringert	
werden.	
Gerade	 in	 immer	 komplexer	werdenden	 Synthese	Projekten	 bis	 hin	 zur	 synthetischen	
Herstellung	von	größeren	Teilen	höherer	Organismen	ist	die	Megacloner-Technologie	ein	
wichtiger	 Baustein,	 um	 die	 benötigte	 hohe	 Qualität	 in	 der	 Synthetischen	 Biologie	 zu	
erlangen.	 Die	 Methode	 zum	 Herstellen	 von	 Oligonukleotiden	 und	 zum	 gezielten	
Korrekturlesen	und	Extrahieren	der	 richtigen	DNA-Fragmente	wurde	 inzwischen	 vom	
Genomik-Pionier	Graig	Venter	und	seiner	Firma	Synthetic	Genomics	Incorporated	gekauft	
und	werden	dort	eingesetzt,	um	die	DNA-Synthese	substanziell	zu	verbessern.			
	
Publikationen:	Die	Arbeiten,	 die	 in	diesem	Abschnitt	 beschrieben	werden	basieren	

hauptsächlich	auf	 [61].	 Im	Bezug	zum	Megacloner	wurden	außerdem	vier	Patente	

angemeldet	(US2017267999,	US2010256012,	EP2109499,	DE102007018833).	 	

Abbildung 30: Performance des „Megakloners“. 

Der obere Teil der Abbildung zeigt für ausgewählte Reads den korrekten Anteil in grün und Fehler in rot. Im 
unteren Teil wird das Ergebnis nach dem Einsatz des „Megacloners“ gezeigt. Die Abbildung entstammt aus 
Matzas et al.    
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Momentane	Arbeit	und	Ausblick	
	
Meine	wissenschaftliche	Tätigkeit	habe	ich	als	Ingenieur	begonnen	und	Plattformen	für	
den	 Einsatz	 in	 der	 Molekulardiagnostik	 entwickelt.	 Später	 habe	 ich	 mich	 mehr	 in	
biologische	Aspekte	eingearbeitet	und	Assays	konzipiert	und	Biomarker	erforscht.	Dabei	
haben	miRNAs	eine	essenzielle	Rolle	gespielt.	Meine	Arbeit	ist	dabei	immer	theoretischer	
und	 computerlastiger	 geworden	 und	 ich	 bin	 zu	 den	 Grundlagen	 meines	 Studdiums	
zurückgekehrt.	Während	ich	am	Anfang	Auswertungen	in	Excel	auf	einem	PC	durchführen	
konnte,	 bedarf	 es	 heute	 spezieller	 Software	 wie	 R	 oder	 höheren	 und	 effizienteren	
Programmiersprachen	wie	C++	und	großen	Rechenclustern,	um	die	Daten	in	alltäglichen	
Projekten	 zu	 verarbeiten.	 Neben	 dem	 klassischen	 maschinellen	 Lernen	 werden	 Deep	
Learning	Aspekte	und	Künstliche	Intelligenz	quasi	täglich	wichtiger.	Diese	Entwicklung	
wird	meine	zukünftige	Tätigkeit	weiter	mitbestimmen.			
	
Die	 grundlegende	 Erforschung	 von	 miRNAs	 als	 Biomarker	 betrachte	 ich	 als	
wissenschaftlich	weitestgehend	abgeschlossen.	Die	nächsten	Schritte	bestehen	hier	 im	
Messen	 größerer	 Kohorten	 und	 in	 der	 experimentellen	 Aufklärung	 der	 biologischen	
Wirkungsweise	der	miRNAs	 in	Erkrankungen.	Den	ersten	Teil	der	Arbeit,	die	klinische	
Validierung,	gehen	der	Lehrstuhl	für	Klinische	Bioinformatik	und	die	Arbeitsgruppe	für	
Humangenetik	gemeinsam	mit	der	Firma	Hummingbird	Diagnostic	GmbH	in	Heidelberg	
an.	Den	zweiten	Teil,	die	Erforschung	biologischer	Mechanismen,	bearbeitet	maßgeblich	
die	Arbeitsgruppe	Humangenetik.		
	
Ich	 bin	 während	 meiner	 Doktorarbeit	 von	 meiner	 Position	 als	 CTO	 von	 Siemens	
Healthcare	zu	der	Pharma	Firma	Merck	KGaA	in	Darmstadt	gewechselt.	Dort	leite	ich	das	
globale	Medical	Device	&	Service	Geschäft.	Dennoch	spielt	Forschung	in	meinem	Alltag	
eine	 wichtige	 Rolle.	 Zwei	 natürliche	 Entwicklungen,	 die	 sich	 in	 meiner	 vorliegenden	
Ausarbeitung	 erkennen	 lassen,	 werden	 dabei	 weiter	 fortgeführt:	 Die	 Verlagerung	 der	
Medizin	hin	zum	Patienten	und	die	Digitalisierung	im	Gesundheitswesen.	Der	wichtigste	
Anwendungsfall	ist	dabei	für	mich	nach	wie	vor	die	Multiple	Sklerose.		
	
Mit	 meinem	 Team	 bei	 Merck	 entwickele	 ich	 Software,	 die	 es	 Patienten	 erlaubt	 ihre	
medizinischen	Daten	 –	 soweit	möglich	 und	 sinnvoll	 –	 selbst	 zu	 verwalten	 und	Ärzten	
gezielt	mit	geringem	Aufwand	Zugriff	darauf	zu	geben.	Dazu	entwickeln	wir	bei	Merck	ein	
gesamtes	 IT	 Ökosystem,	 Software	 für	 Patienten	 und	 Ärzte,	 die	 sowohl	 auf	 mobilen	
Endgeräten	 wie	 auch	 auf	 klassischen	 PCs	 eingesetzt	 werden	 kann	 und	 die	 es	 erlaubt	
chronische	 Erkrankungen	 besser	 zu	 kontrollieren.	 Wir	 planen	 außerdem	 molekulare	

Kapitel 5 
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Tests,	wie	die	in	dieser	Arbeit	beschriebenen	miRNA-Signaturen	für	Multiple	Sklerose,	zu	
verwenden,	um	den	Patienten	gezielter	die	richtige	Behandlung	zum	richtigen	Zeitpunkt	
zukommen	 zu	 lassen.	 Dabei	 wird	 eine	 weitere	 Entwicklung	 in	 der	 Doktorarbeit	
fortgesetzt:	 Unsere	 Biomarker	 waren	 zunächst	 für	 die	 Anwendung	 in	 Speziallaboren	
gedacht,	 später	 für	die	Anwendung	 in	Zentrallaboren	von	Krankenhäusern	oder	 sogar	
Point-of-Care	 in	 den	 entsprechenden	 Fachabteilungen	 des	 Krankenhauses.	 Momentan	
etablieren	wir	diese	Bluttests	in	einer	Art	und	Weise,	dass	Patienten	sich	die	Probe	selbst	
zu	Hause	entnehmen	können.	Ein	Stich	mit	einer	kleinen	Lanzette	und	ein	Tropfen	Blut	
aus	dem	Finger	sind	dazu	ausreichend.				
	
Durch	unsere	Lösungen	zielen	wir	darauf	ab,	Ärzte	in	der	Behandlung	von	MS	Patienten	
besser	zu	unterstützen.	Diese	Forschung	wollen	wir	gemeinsam	mit	dem	Uniklinikum	des	
Saarlandes	 und	 der	 Klinischen	 Bioinformatik	 an	 einem	 großen	 Patientenkollektiv	 im	
Saarland	 testen.	 Im	Falle	eines	Erfolges	kann	die	Lösung	wegen	 ihrer	Modularität	und	
Flexibilität	 dann	 auch	 ohne	Weiteres	 auf	 andere	Anwendungsfelder,	wie	 zum	Beispiel	
Rheumatoide	 Arthritis	 oder	 neurodegenerative	 Erkrankungen,	 wie	 Alzheimer	 oder	
Parkinson,	übertragen	werden.		
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MMSE	 Mini	Mental	State	Exam	
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ncRNA	 Non-Coding	RNA	
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NGS		 Next	Generation	Sequencing	(siehe	auch	HTS)		
NSCLC	 Non	Small-Cell	Lung	Carcinoma	
PD	 Parkinson's	Disease	
PoC	 Point-of-Care	
PCR	 Polymerase	Kettenreaktion	
RNA	 ribonucleic	acid	
ROC	 Receiver-Operating-Characteristic	
RRMSE	 Relapsing-Remitting	Multiple	Sclerosis		
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tRNA	 Transfer	RNA	
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8$%,+ 8&"$( :=H-+$(> 7%$ +&#) %7 .)+ .)$++ 8$%M&$'%."# 3+/+(<
&1.)%23) .)+ 3+/"%- &881"#&."%/ (%7.C&$+ 0%+( /%. /+#+((&$"1'
$+K2"$+ !! 8$%,+( 7%$ 3+/+ +68$+(("%/ &/&1'("(5 R)+ &$$&'(
)&0 ,++/ 8$+.+(.+0 7%$ #$%((L)',$"0"4&."%/5 j+&(. 8$%,+(
#$%((L)',$"0"4"/3 .% .)+ (8"M+0L"/ .$&/(#$"8.( &( C+11 &( 8$%,+(
0+("3/+0 7%$ .)+(+ .$&/(#$"8.( #$%((L)',$"0"4"/3 .% .)+ '+&(.
,&#M3$%2/0 )&0 ,++/ $+-%*+05

G( "/0"#&.+0 "/ Z"32$+ ;< .)+ )',$"0"4&."%/ "/.+/(".' "(
1"/+&$1' #%$$+1&.+0 .% .)+ #QJG .&$3+. #%/#+/.$&."%/ "/ .)+
$&/3+ %7 ;W;FF FFFA;W;FFF5 N/ .)+ $&/3+ %7 ;W;FFFA;W;FF< .)+
("3/&1 "/#$+&(+( ,' & 7&#.%$ %7 &88$%6"-&.+1' ("6 $&.)+$ .)&/ ;F
,+#&2(+ .)+ 8$%,+( "--%,"1"4+0 %/ .)+ &$$&' &$+ ,+3"//"/3 .%
(&.2$&.+5 p+.C++/ ;W;FF &/0 ;W;F< (&.2$&."%/ 8$%#++0( &/0 .)+
)',$"0"4&."%/ ("3/&1 %/1' "/#$+&(+( ,' & 7&#.%$ %7 ;5H5 G. &
-%1&$ $&."% %7 &88$%6"-&.+1' ;W;FF FFF< .)+ #$"."#&1 1+*+1 7%$
.)+ 0"(#$"-"/&."%/ 8%C+$ %7 .)+ ('(.+- "( $+&#)+05 c)"1+ .)+
8$+(+/#+ %7 .)+ 8$%M&$'%."# .$&/(#$"8.( C&( 0+.+#.+0 &,%*+ .)+
,&#M3$%2/0 "/ ;@ %2. %7 ;E +68+$"-+/.( &. .)"( 1+*+1 :("6
$+81"#&.+ )',$"0"4&."%/( 7%$ +&#) %7 .)+ .)$++ 3+/+(>< .)+
$+-&"/"/3 7%2$ +68+$"-+/.( :.)$++ ."-+( M&/$ &/0 %/#+ &-8$>
"/0"#&.+ .)&. & $&."% %7 ;W;FF FFF "( .)+ .)$+()%10 1+*+1 7%$ &.
1+&(. (%-+ 8$%,+ (+.(5 N/ +68+$"-+/.( 1&#M"/3 .)+ #%-81+6
#QJG ,&#M3$%2/0< .)+ .$&/(#$"8.( #%210 ,+ 0+.+#.+0 &.
#%/#+/.$&."%/( #%$$+(8%/0"/3 .% & $&."% %7 ;W; FFF FFF :0&.&

aG_[ ? bZ ;? &%'()!' *'!+# ,)#)-.'/0 12230 45(6 370 &56 13 !"#"



/%. ()%C/>5 R)+ 0'/&-"# $&/3+ %7 .C% .% .)$++ %$0+$( %7
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&$$&'( :]2881+-+/.&$' !&.+$"&1 R&,1+ =p>5 R)+ &#.2&1 7%10L
#)&/3+ *&12+(< )%C+*+$< 0"77+$ ("3/"9#&/.1' ,+.C++/ .)+
#IJG &$$&'( &/0 .)+ %1"3%/2#1+%."0+ &$$&'(5 R)"( "( "/ 3%%0
&3$++-+/. C".) (.20"+( .)&. $+*+&1+0 (2,(.&/."&1 0"77+$+/#+( "/
.)+ %*+$&11 8+$7%$-&/#+ %7 #IJG &$$&'( &/0 %1"3%/2#1+%."0+
&$$&'(5 _+/+$&11'< (8%..+0 #IJG &$$&'( ()%C & )"3)+$
(+/("."*".' .)&/ ()%$. %1"3%/2#1+%."0+ &$$&'( :;T<@;>5
`%/*+$(+1'< (8%..+0 #IJG &$$&'( &$+ M/%C/ .% +6)",".
1%C+$ (8+#"9#".' .)&/ ()%$. %1"3%/2#1+%."0+ &$$&'(< 8$"-&$"1'
,+#&2(+ %7 #$%((L)',$"0"4&."%/ %7 )"3)1' )%-%1%3%2( .$&/L
(#$"8.( &/0 /%/L#%3/&.+ #IJG 8$%,+( &/0 02+ .% *&$'"/3
)',$"0"4&."%/ +79#"+/#"+( %7 1%/3 #IJG 8$%,+( :@=A@H>5 G/
&00"."%/&1 7&#.%$ .)&. -"3). #%/.$",2.+ .% .)+ *&$"&/#+ "/ .)+
7%10L#)&/3+ *&12+( %,(+$*+0 "/ %2$ (.20' "( .)+ ,"%1%3"#&1
(&-81+ ".(+175 R)+ #IJG 0&.& C+$+ .&M+/ 7$%- .)+ 1".+$&.2$+5
R)+$+7%$+< .)+ .%.&1 QJG (%2$#+ 2(+0 7%$ .)+ +68+$"-+/.( %/

.)+ #IJG &$$&'( C&( /%. "0+/."#&1 .% .)&. 2(+0 7%$ .)+ 3+/"%-
&/0 .)+ G77'-+.$"6 %1"3%/2#1+%."0+ &$$&'(5 G $+#+/.1' 82,L
1"()+0< +6.+/("*+ (.20' 0+("3/+0 &( &/ "/.+$1&,%$&.%$' #%-L
8&$"(%/ $+*+&1+0 .)&. *&$"&."%/( "/.$%02#+0 ,' !" C!$.5
)&/01"/3 (.+8( &/0 *&$"&."%/( ,+.C++/ $+81"#&.+ #21.2$+( "/
8&$."#21&$ #&/ ("3/"9#&/.1' "/P2+/#+ .)+ $+(21. %7 & 3+/+
+68$+(("%/ +68+$"-+/. :@B>5 N/ &00"."%/< .)+ 1&,+1"/3 8$%#+0L
2$+( 0"77+$ ("3/"9#&/.1'W .)+ %1"3%/2#1+%."0+ &$$&'( 2(+0 "/ .)"(
(.20' C+$+ )',$"0"4+0 .% &/ &-81"9+0 ,"%."/'1&.+0 #QJG
(&-81+ :('/.)+("4+0 (.&$."/3 7$%- .)+ .%.&1 QJG< &( 0+(#$",+0
"/ !&.+$"&1( &/0 !+.)%0(> C)"1+ .)+ #IJG &$$&'( 2(+0 ,' Q+8
)$ -(6 :=H> C+$+ )',$"0"4+0 C".) & /%/ &-81"9+0< n??ao`RaL
1&,+1+0 #IJG (&-81+ :('/.)+("4+0 7$%- .)+ .%.&1 QJG *"&
$+*+$(+ .$&/(#$"8."%/>5 R&M+/ .%3+.)+$< .)+ 9$(. 8&$. %7 %2$
(.20' 7%#2("/3 %/ .)+ =F? 3+/+( M/%C/ .% ,+ $+321&.+0 "/ .)+
#+1121&$ $+(8%/(+ %7 '+&(. .% %(-%."# ()%#M (233+(.( & )"3)
#%/7%$-".' %7 ,"%1%3"#&1 0&.& %,.&"/+0 %/ 3+/"%- &$$&'( &/0
0&.& &K2"$+0 %/ G77'-+.$"6 _+/+`)"8(5 c+ &1(% 7%2/0 .)&. .)+
3$+&. -&S%$".' %7 .)+ =F? 3+/+( :EBk C)+/ &881'"/3 .)+
#&.+3%$"4&."%/ #$".+$"& 0+(#$",+0 &,%*+> ()%C+0 .)+ (&-+
.+/0+/#' %/ 3+/"%- &$$&'( &/0 (8%..+0 #IJG &$$&'(5 R)+
("3/"9#&/. *&$"&."%/ %7 .)+ &#.2&1 7%10L#)&/3+ *&12+( 7%2/0 "/
.)+ 1&..+$ #%-8&$"(%/ "( 1"M+1' .% ,+ #&2(+0 ,' 0"77+$+/#+( "/

C#$'-) KE d%3A1%3 81%.( #%-8&$"/3 7%10L#)&/3+ 0&.& 7$%- .)$++ 0"77+$+/. &$$&' 7%$-&.(5 R)+ .$&/(#$"8."%/&1 $+(8%/(+ %7 =F? '+&(. 3+/+( .% %(-%."# ()%#M C&(
&/&1'4+0 %/ .)+ 3+/"%- 81&.7%$- "/ ;F $+81"#&.+(5 R)+ &*+$&3+ 7%10L#)&/3+ *&12+( C+$+ #%-8&$+0 C".) 0&.& 7$%- G77'-+.$"6 _+/+`)"8( &/0 .% #IJG &$$&'
0&.& 7$%- .)+ 1".+$&.2$+ :=H> :]2881+-+/.&$' !&.+$"&1 R&,1+ =p>5 _+/+( .)&. 7&11 "/.% .)+ (&-+ #&.+3%$' %7 $+321&."%/ %/ .)+ $+(8+#."*+ 81&.7%$-( &$+ ()%C/ "/
3$&' :#2.L%77( 7%$ #&.+3%$"4&."%/W 7%10L#)&/3+ #AF5HE< 0%C/$+321&.+0Y 7%10L#)&/3+ wAF5HE ,2. vF5HE< 2/#)&/3+0Y 7%10L#)&/3+ "F5HE< 28$+321&.+0>5 _+/+( .)&.
C+$+ 7%2/0 .% ,+ 28L %$ 0%C/$+321&.+0 %/ %/+ 81&.7%$- ,2. 2/#)&/3+0 %/ .)+ %.)+$ &$+ ()%C/ "/ '+11%C5 _+/+( .)&. ,+)&*+ .)+ %88%(".+ C&' &$+ ()%C/ "/
$+05 :5> `%-8&$"(%/ %7 3+/"%- 0&.& &/0 !G]@ #&1#21&.+0 7%10L#)&/3+ *&12+( 7$%- .)+ G77'-+.$"6 _+/+`)"8(5 :I> `%-8&$"(%/ %7 3+/"%- 0&.& &/0 aQbaL
#&1#21&.+0 7%10L#)&/3+ *&12+( 7$%- .)+ G77'-+.$"6 _+/+`)"8(5 :>> `%-8&$"(%/ %7 3+/"%- 0&.& &/0 .)+ #IJG &$$&' 0&.& 7$%- .)+ 1".+$&.2$+ :=H>5
:B> `%-8&$"(%/ %7 G77'-+.$"6 _+/+`)"8 0&.& &/0 #IJG &$$&' 0&.& 7$%- .)+ 1".+$&.2$+ :=H>5

!"#" &%'()!' *'!+# ,)#)-.'/0 12230 45(6 370 &56 13 aG_[ E bZ ;?



.)+ 3+/+$&1 8+$7%$-&/#+ %7 .)+ .C% &$$&' 7%$-&.( &/0 ,'
0"77+$+/#+( "/ .)+ (&-81+( 2(+0 7%$ .)+ +68+$"-+/.( %/ .)+
$+(8+#."*+ 81&.7%$-(5

]% 7&$< C+ )&*+ $+(.$"#.+0 %2$ &/&1'("( .% .)+ =F? 3+/+(
M/%C/ .% ,+ "/*%1*+0 "/ .)+ #+1121&$ $+(8%/(+ %7 '+&(. .%
%(-%."# ()%#M5 !%(. %7 .)+(+ 3+/+( &$+ )"3)1' $+321&.+0 &/0
.+/0 .% ,+ +68$+((+0 &. )"3)+$ 1+*+1(5 R)+' &$+ .)+$+7%$+ -2#)
-%$+ 1"M+1' .% ()%C .)+ (&-+ .$+/0( %/ 0"77+$+/. 81&.7%$-(
.)&/ $&/0%-1' (+1+#.+0 3+/+(5 N/ %$0+$ .% "/*+(."3&.+ "7 .)+
)"3) #%/#%$0&/#+ %7 3+/"%- &/0 _+/+`)"8 0&.& "( #%/9$-+0
"/ +68+$"-+/.( C".) & #%-81+.+1' 2/,"&(+0 (+1+#."%/ %7 3+/+(<
C+ +6.+/0+0 .)+ &/&1'("( .% &11 @EHD 3+/+( "/#120+0 "/ %2$
(.20'5 c+ #%-8&$+0 .)+ &*+$&3+ 7%10L#)&/3+ *&12+( #&1#2L
1&.+0 %/ .)+ .C% $+81"#&.+ +68+$"-+/.( 8+$7%$-+0 %/ .)+
3+/"%- "/(.$2-+/. .% .)+ 7%10L#)&/3+ *&12+( %,.&"/+0 7$%-
.)+ G77'-+.$"6 _+/+`)"8(5 ?=DB :BEk> %2. %7 @EHD 3+/+( 7+11
"/.% .)+ (&-+ #&.+3%$'Y ;FDB 3+/+( :==k> C+$+ 2/#)&/3+0 %/
.)+ 7+,". &$$&'( ,2. 0%C/$+321&.+0 %$ 28$+321&.+0 %/ .)+
_+/+`)"8(Y @?B 3+/+( :Tk> C+$+ 2/#)&/3+0 %/ .)+
G77'-+.$"6 _+/+`)"8( ,2. $+321&.+0 %/ .)+ 3+/"%- &$$&'(
&/0 BT 3+/+( :;k> C+$+ 7%2/0 .% ,+ $+321&.+0 "/ .)+ %88%(".+
(+/(+ %/ ,%.) 81&.7%$-( :]2881+-+/.&$' !&.+$"&1 R&,1+ =`>5
b*+$&11< & -+&/ a+&$(%/ #%$$+1&."%/ #%+79#"+/. %7 F5D@= &/0
&/ &*+$&3+ ]8+&$-&/ $&/M #%$$+1&."%/ #%+79#"+/. %7 F5DHT
C+$+ #&1#21&.+0 %/ .)+ 7%10L#)&/3+ 1+*+15 R&M+/ .%3+.)+$<
.)+(+ 0&.& "/0"#&.+ & #%/("0+$&,1' 1%C+$ &3$++-+/. %7 .)+

7%10L#)&/3+ *&12+( 7%$ .)+ @EHD $&/0%-1' (+1+#.+0 3+/+( .)&/
7%$ .)+ =F? 3+/+( 7$%- & ,"&(+0 (+1+#."%/5 R% &00$+(( .)+
K2+(."%/ %7 C)+.)+$ .)+ 8%%$ #%/7%$-".' &881"+( .% &11 @EHD
3+/+( &/&1'4+0 %$ "7 ". "( $+(.$"#.+0 .% & #+$.&"/ (2,3$%28 %7
3+/+(< C+ $+9/+0 %2$ &/&1'("( .&M"/3 .)+ +68$+(("%/ 1+*+1( "/.%
&##%2/.5 !"11( &/0 _%$0%/ :?T> "/*+(."3&.+0 7&1(+L8%("."*+
$&.+( 2("/3 G77'-+.$"6 !2;;m(2,G &/0 !2;;m(2,p
_+/+`)"8(5 G11 3+/+( $+#%3/"4+0 &( "/#$+&(+0 %$ 0+#$+&(+0
"/ (&-+L.%L(&-+ #%-8&$"(%/( C+$+ 0+9/+0 &( /%"(+5 !%(. %7
.)+(+ 3+/+( C+$+ #12(.+$+0 &. +68$+(("%/ 1+*+1( ,+1%C =HF
:-+&(2$+0 ,' .)+ &*+$&3+ 0"77+$+/#+ ,+.C++/ a! &/0 !! %7
&11 a!h!!8$%,+ 8&"$( 7%$ %/+ .$&/(#$"8.>5 _$2/0(#)%,+$ )$ -(5
:@F> 2(+0 _+/+`)"8 e?@ &/0 +(."-&.+0 `l( %7 .$"81"#&.+
)',$"0"4&."%/( .% 0+.+$-"/+ ("3/"9#&/. 7%10L#)&/3+( .)$+()L
%10(5 R)+' 7%2/0 .)+ 7%10L#)&/3+ *&12+ .% ,+ $+1"&,1+ &,%*+ &
#2.L%77 +68$+(("%/ 1+*+1 %7 ;FF5 c+ &881"+0 .)"( ;FF #2.L%77 &(
C+11 &( & 1+(( (.$"/3+/. #2.L%77 &. HF .% %2$ &/&1'("(5 c+
#1&(("9+0 .)+ @EHD 3+/+( &##%$0"/3 .% .)+"$ &*+$&3+ 0"77+$+/#+
:+68$+(("%/ 1+*+1> %/ .)+ _+/+`)"8 &$$&' :,&(+ &$$&'> "/.%
t+68$+((+0 &. 1%C 1+*+1U :,+1%C .)+ $+(8+#."*+ #2.%77> &/0
t+68$+((+0 &. & )"3)+$ 1+*+1U :&,%*+ .)+ $+(8+#."*+ #2.L%77>5
R)+/< C+ &/&1'4+0 .)+ &3$++-+/. %7 .)+ 7%10L#)&/3+ *&12+(
%,.&"/+0 C".) .)+ _+/+`)"8( &/0 .)+ 7%10L#)&/3+ *&12+(
&#K2"$+0 7$%- 3+/"%- &$$&'( C".)"/ .)+(+ 3$%28(5 G( ()%C/ "/
Z"32$+ HG &/0 p< C+ 7%2/0 & (2,(.&/."&1 #%$$+1&."%/ ,+.C++/
_+/+`)"8 0&.& &/0 3+/"%- 0&.& 7%$ 3+/+( +68$+((+0 &. &/

C#$'-) LE d%3A1%3 81%.( #%-8&$"/3 7%10L#)&/3+ 0&.& 7$%- 3+/"%- &$$&'( &/0 G77'-+.$"6 _+/+`)"8(5 R)+ .$&/(#$"8."%/&1 $+(8%/(+ %7 @EHD $&/0%-1' #)%(+/
'+&(. 3+/+( .% %(-%."# ()%#M C&( &/&1'4+0 %/ 3+/"%- &$$&'( "/ .C% $+81"#&.+( &/0 .)+ &*+$&3+ 7%10L#)&/3+ *&12+( C+$+ #%-8&$+0 C".) 0&.& 7$%- G77'-+.$"6
_+/+`)"8( :]2881+-+/.&$' !&.+$"&1 R&,1+ =`>5 Z%$ .)"( #%-8&$"(%/< .)+ 3+/+( C+$+ 3$%28+0 "/.% t+68$+((+0 &. 1%C 1+*+1U &/0 t+68$+((+0 &. & )"3)+$ 1+*+1U
&##%$0"/3 .% .)+"$ +68$+(("%/ 1+*+1 :&*+$&3+ 0"77+$+/#+> %/ .)+ _+/+`)"8 ,&(+ &$$&'5 `2.L%77( &. +".)+$ ;FF %$ HF C+$+ 2(+0 7%$ .)+ #&.+3%$"4&."%/5 :5> d%3A
1%3 81%. %7 .)+ ;BEE 3+/+( C".) &/ &*+$&3+ 0"77+$+/#+ &,%*+ & #2.L%77 &. ;FF5 :I> d%3A1%3 81%. %7 .)+ =HTB 3+/+( C".) &/ &*+$&3+ 0"77+$+/#+ &,%*+ & #2.L%77
&. HF5 :>> d%3A1%3 81%. %7 .)+ ?;BT 3+/+( C".) &/ &*+$&3+ 0"77+$+/#+ ,+1%C ;FF5 :B> d%3A1%3 81%. %7 .)+ ==B; 3+/+( C".) &/ &*+$&3+ 0"77+$+/#+ ,+1%C HF5

aG_[ T bZ ;? &%'()!' *'!+# ,)#)-.'/0 12230 45(6 370 &56 13 !"#"



+1+*&.+0 1+*+1W 7%$ 3+/+( C".) &/ +68$+(("%/ 1+*+1 &,%*+ ;FF< &
a+&$(%/ #%$$+1&."%/ #%+79#"+/. %7 F5T;H C&( #&1#21&.+0 &/0<
&881'"/3 .)+ (&-+ #&.+3%$"4&."%/ #$".+$"& &( 2(+0 7%$ .)+ =F?
3+/+(< E?k %7 &11 3+/+( :;@F; %2. %7 ;BEE> ()%C+0 .)+ (&-+
.+/0+/#' %/ ,%.) 81&.7%$-( :Z"35 HG>5 G (1"3).1' 1%C+$ ,2. (."11
("3/"9#&/. #%/7%$-".' C&( 7%2/0 7%$ 3+/+( C".) &/ +68$+(("%/
1+*+1 &,%*+ .)+ 1+(( (.$"/3+/. #2.L%77 &. HFW 7%$ .)+(+ 3+/+(< .)+
a+&$(%/ #%$$+1&."%/ #%+79#"+/. C&( F5ETF< &/0 EFk %7 &11
3+/+( :=FBD %2. %7 =HTB> ()%C+0 .)+ (&-+ .+/0+/#' %7
$+321&."%/ :Z"35 Hp>5 N/ #%/.$&(.< C+ 7%2/0 %/1' 8%%$
#%$$+1&."%/( %7 7%10L#)&/3+ *&12+( 7%$ .)+ 3+/+( C".) &/
+68$+(("%/ 1+*+1 1%C+$ .)&/ .)+ $+(8+#."*+ #2.L%77(W 7%$ 3+/+(
C".) &/ +68$+(("%/ 1+*+1 1%C+$ .)&/ ;FF :?;BT 3+/+(> %$ 1%C+$
.)&/ HF :==B; 3+/+(> C+ %,(+$*+0 & a+&$(%/ #%$$+1&."%/
#%+79#"+/. %7 F5BDT &/0 F5B?@< $+(8+#."*+1' :Z"35 H` &/0 I>5

Z$%- .)+(+ 0&.& C+ #%/#120+ .)&.u&. 1+&(. 7%$ '+&(.u
7%10L#)&/3+ *&12+( %,.&"/+0 7$%- 3+/"%- &$$&'( &$+ "/
3%%0 #%/#%$0&/#+ C".) 7%10L#)&/3+ *&12+( &#K2"$+0 C".)
G77'-+.$"6 _+/+`)"8( :C".) .)+ +6#+8."%/ %7 3+/+( +68$+((+0
&. *+$' 1%C 1+*+1(>5 R)"( "( & $+-&$M&,1+ 9/0"/3 "7 .)+ #%/.+6.
%7 .)+ +68+$"-+/.&1 0+("3/ "( #%/("0+$+05 R)+ %/1' 8&$&-+.+$
M+8. #%/(.&/. ,+.C++/ .)+ .C% 81&.7%$-( C&( .)+ ,"%1%3"#&1
(&-81+5 G11 %.)+$ 8&$&-+.+$(< "/#120"/3 .)+ 8$%,+ 0+("3/ &/0
.)+ &13%$".)- 2(+0 7%$ 0&.& &/&1'("(< C+$+ 0"77+$+/. 7%$ ,%.)
81&.7%$-(5 I+(8".+ .)"( )"3) #%$$+1&."%/ 7%2/0 7%$ 3+/+(
+68$+((+0 &. +1+*&.+0 1+*+1(< %2$ #%-8&$"(%/ &1(% $+*+&1+0
(2,(.&/."&1 0"77+$+/#+( "/ .)+ 7%10L#)&/3+ *&12+( %,.&"/+0 C".)
,%.) 81&.7%$-( C".) $+3&$0 .% 3+/+( +68$+((+0 &. 1%C 1+*+1(5
R)"( 9/0"/3 C&( /%. 2/+68+#.+0 &/0 "( 1"M+1' .% ,+ #&2(+0 ,' &
)"3)+$ *&$"&."%/ %7 7%10L#)&/3+ *&12+( #&1#21&.+0 %/ 1%C
("3/&1 "/.+/("."+(5 R)+ 7&#. .)&. #&1#21&."%/( ,&(+0 %/ (2#) 1%C
("3/&1 "/.+/("."+( &$+ 8$%/+ .% "/#$+&(+0 *&$"&."%/ "( M/%C/ 7%$
-%(. "7 /%. &11 &$$&' 7%$-&.(< "/#120"/3 (8%..+0 ?H-+$ &$$&'(
:;?>< !" #!$% ('/.)+("4+0 =@-+$ &$$&'( :?E> &/0 _+/+`)"8(
:?T<@F>u&/0 C&( &1(% 7%2/0 7%$ .)+ 3+/"%- 81&.7%$- "/ .)"(
(.20'5

c+ 72$.)+$ 0+-%/(.$&.+0 .)&. 3+/"%- 0&.& /%. %/1' -&.#)
0&.& &#K2"$+0 C".) %.)+$ &$$&' 7%$-&.( ,2. &1(% $+P+#. .)+ .$2+
3+/+ +68$+(("%/ 8&..+$/ %7 .)+ ,"%1%3"#&1 ('(.+- &/&1'4+05 c+
2(+0 & /%/L&$$&' $+7+$+/#+ ('(.+- &/0 #%-8&$+0 .)+ 3+/+
+68$+(("%/ 0&.& 7$%- .)+ 3+/"%- 81&.7%$- C".) .)%(+ %,.&"/+0
,' K2&/.".&."*+ QRAa`Q :]jpQ _$++/ &((&'>5 Z%$ .)"(
+68+$"-+/.< & (2,(+. %7 HB 3+/+( 7$%- .)+ =F? 3+/+( ()%C/
"/ Z"32$+ @ C&( (+1+#.+05 R)+ #)%"#+ C&( ,&(+0 %/ .)+ 7%10L
#)&/3+ 0"(.$",2."%/ "/ .)+ &$$&' +68+$"-+/.(< (2#) .)&. .)+
*&1"0&.+0 0&.& (+. (8&/( .)+ +/."$+ $&/3+ %7 7%10L#)&/3+ *&12+(
%,(+$*+05 R)+ (+1+#."%/ C&( %.)+$C"(+ 2/,"&(+0 &/0 $&/0%-5
R)+ K2&/.".&."*+ QRAa`Q &/&1'("( C&( 8+$7%$-+0 C".) .)+
(&-+ QJG (&-81+( 2(+0 7%$ .)+ &$$&' +68+$"-+/.(5 ]+*+/ %2.
%7 .)+ HB 3+/+( C+$+ +6#120+0 7$%- .)+ &/&1'("( 02+ .% a`Q
+79#"+/#"+( ,+1%C ;5DF5 R&,1+ ? #%-8&$+( .)+ 7%10L#)&/3+
*&12+( %7 .)+ +*&12&,1+ 3+/+( .% .)+ &*+$&3+ 7%10L#)&/3+
*&12+( 7$%- .)+ ;F $+81"#&.+ +68+$"-+/.( %/ .)+ 3+/"%-
81&.7%$- 0+(#$",+0 &,%*+ :Z"35 @>5 G( "/0"#&.+0 ,' .)+ a+&$(%/
#%$$+1&."%/ #%+79#"+/. %7 F5TBB &/0 .)+ ]8+&$-&/ $&/M
#%$$+1&."%/ #%+79#"+/. %7 F5TD=< & *+$' )"3) #%/7%$-".' C&(
7%2/0 ,+.C++/ .)+ .C% 0&.& (+.(5 I2+ .% .)+ 1%C+$ 0'/&-"#
$&/3+ %7 %1"3%/2#1+%."0+ &$$&'( &( #%-8&$+0 C".) K2&/.".&."*+
QRAa`Q< .)+ 7%10L#)&/3+ *&12+( 7%$ )"3)1' $+321&.+0 3+/+(
&$+ #%-8$+((+0 %/ .)+ 3+/"%- 81&.7%$-5 R)"( 8)+/%-+/%/ )&(
,++/ 0+(#$",+0 ,+7%$+ 7%$ %.)+$ (8%..+0 :;?> %$ !" #!$%

('/.)+("4+0 :?E> %1"3%/2#1+%."0+ &$$&'(5 I+(8".+ .)%(+ 0"77+$L
+/#+( "/ .)+ 7%10L#)&/3+ *&12+( %7 )"3)1' $+321&.+0 3+/+(< %2$
(.20' 8$%*"0+0 +*"0+/#+ .)&. 3+/"%- &$$&'( 3+/+$&.+ &##2$&.+
&/0 $+1"&,1+ $+(21.( &/0 .)2( +/&,1+ (#"+/."(.( .% &00$+((
#%-81+6 ,"%1%3"#&1 K2+(."%/(5

B^=Ib==^O>

R)"( (.20' C&( 0+("3/+0 .% *&1"0&.+ .)+ 3+/"%- .+#)/%1%3'< &
/%*+1 &/0 7211' "/.+3$&.+0 %1"3%/2#1+%."0+ &$$&' 81&.7%$- 7%$
3+/+ +68$+(("%/ 8$%91"/3 &881"#&."%/(5 c+ 9$(. 7%#2(+0 %/ .)+
.+#)/"#&1 &(8+#.( &/0 +*&12&.+0 .)+ 0"(#$"-"/&."%/ 8%C+$< .)+
0'/&-"# $&/3+< &/0 .)+ $+8$%02#","1".' %7 .)+ ('(.+-5 R)+
('(.+- "( &,1+ .% 0+.+#. QJG( 8$+(+/. &. & 7$+K2+/#' %7
;W;FF FFF5 N/ 3%%0 &3$++-+/. C".) 0&.& 82,1"()+0 7%$ %.)+$
%1"3%/2#1+%."0+ &$$&' 81&.7%$-( :;?<?H<?B>< 0+.+#."%/ "( K2&/L
.".&."*+ %*+$ -%$+ .)&/ .C% %$0+$( %7 -&3/".20+5 R)+ 3+/"%-
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Methods

Microarray-based multicycle-enrichment of genomic
subsets for targeted next-generation sequencing
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The lack of efficient high-throughput methods for enrichment of specific sequences from genomic DNA represents a key
bottleneck in exploiting the enormous potential of next-generation sequencers. Such methods would allow for a systematic
and targeted analysis of relevant genomic regions. Recent studies reported sequence enrichment using a hybridization step
to specific DNA capture probes as a possible solution to the problem. However, so far no method has provided sufficient
depths of coverage for reliable base calling over the entire target regions. We report a strategy to multiply the enrichment
performance and consequently improve depth and breadth of coverage for desired target sequences by applying two
iterative cycles of hybridization with microfluidic Geniom biochips. Using this strategy, we enriched and then sequenced
the cancer-related genes BRCA1 and TP53 and a set of 1000 individual dbSNP regions of 500 bp using Illumina technology. We
achieved overall enrichment factors of up to 1062-fold and average coverage depths of 470-fold. Combined with high
coverage uniformity, this resulted in nearly complete consensus coverages with >86% of target region covered at 20-fold or
higher. Analysis of SNP calling accuracies after enrichment revealed excellent concordance, with the reference sequence
closely mirroring the previously reported performance of Illumina sequencing conducted without sequence enrichment.

[Supplemental material is available online at http://www.genome.org. The sequence data from this study have been sub-
mitted to the NCBI Short Read Archive (http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi) under accession no. SRA009002.]

Next-generation sequencing (NGS) platforms have transformed
genetic variation studies by a massive reduction of cost and se-
quencing effort (Shendure et al. 2004, 2005; Margulies et al. 2005;
Bentley 2006; Johnson et al. 2007; Harris et al. 2008). However, this
technology advance has not yet been matched by an equal im-
provement at the front end: the isolation of target DNA sequences
for analysis (Garber 2008). Although untargeted sequencing of
even whole human genomes has been shown to be feasible, such
large projects exceed the current capacity of NGS instruments and
are cost prohibitive for the majority of research laboratories
(Bentley et al. 2008; Wang et al. 2008). Many future applications
would greatly benefit from focusing on specific genomic subsets.
This can be the targeted sequencing of components of a single
genome such as the whole exome but also fractions of more
complex samples, for example, when applied to microbial com-
munities, host–pathogen mixtures, or somatic variants.

Technologies are thus urgently required to selectively isolate
genomic sequences at a scale and specificity that cannot easily be
met by traditional enrichment approaches like PCR. An ideal en-
richment technology for NGS would allow highly multiplexed
access to any desired genomic loci. Enrichment thereby has to be
uniform and efficient to enable maximal consensus coverage of
the target region with sufficient depth for accurate base calling and
with minimal sequencing effort. Furthermore, the method should
not interfere with accuracy of base calling by causing allelic bias or
dropout.

Several recent studies have started to address this bottleneck
by using solution- or microarray-based sequence capture relying

on hybridization. Two studies using solution-phase sequence
capture with padlock or molecular inversion probes have been
published that targeted large numbers of small genomic regions in
a single reaction. Although the multiplexing level of one of these
methods was high, low uniformity of coverage was reported as
a serious drawback of both of these approaches (Dahl et al. 2007;
Porreca et al. 2007). Still another approach made use of long, bio-
tinylated RNA probes for solution-phase hybridization. However,
the overall workflow depended on multistep enzymatic processing
of DNA capture probes including PCR and in vitro transcription,
possibly introducing bias and errors into the probe library. More-
over, very long hybridization times of several days were applied
(Gnirke et al. 2009), which is rather time-consuming even com-
pared with approaches relying on solid-phase hybridization.

Recently, sequence enrichment using solid-phase hybridiza-
tion to DNA microarrays with flexible content has been described
(Albert et al. 2007; Hodges et al. 2007; Okou et al. 2007; Bau et al.
2009). For several projects targeting different regions, enrichment
factors of several hundred- to a 1000-fold have been reported,
resulting in good depth of coverage for at least a fraction of the
target region. However, covering the full target region with the
depth sufficient for reliable base calling has emerged as a key
challenge (Garber 2008).

In fact, no method has so far been able to reach an enrich-
ment performance that allows for full consensus coverage of
a target with satisfactory depth, and before now, it was not clear
whether optimization of the most obvious experimental variables
such as hybridization stringency, probe design, or blocking con-
ditions would overcome this problem. Given that reported target
sizes are typically in the range of kilobases to megabases, the
fraction of target sequence in a human DNA sample relative
to background is only 3.1310!5% to 3.1310!2% for 1 kb and
1 Mb, respectively. This range of concentration presents a serious

4Corresponding author.
E-mail daniel.summerer@febit.de; fax +49-6221-6510-390.
Article published online before print. Article and publication date are at http://
www.genome.org/cgi/doi/10.1101/gr.091942.109. Freely available online
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purification challenge, e.g., similar to the most demanding protein
purifications. Although the specificity of protein–protein inter-
actions employed in protein purifications (e.g., antibody–antigen
interactions or affinity tag binding) can be much higher than the
specificity of Watson-Crick base pairing, the application of multi-
ple rounds of chromatography is a standard procedure to obtain
target protein of sufficient purity (Coligan et al. 2008).

We transferred this purification strategy to DNA sequence
isolation by performing two instead of one cycles of enrichment
using microfluidic Geniom biochips before Illumina NGS. We
show that for different target sequences enrichment performance
dramatically increases from the first to the second cycle, indicating
a multiplicative effect. This effect on enrichment performance is
accompanied by a significant increase of the percentage of target
region being covered. This results in higher enrichment factors than
previously reported for sequence capture methods prior to Illumina
NGS (Hodges et al. 2007; Gnirke et al. 2009). A comprehensive
analysis of SNP calling performance after enrichment shows that
the method does not interfere with base-calling accuracy.

Using a microfluidic array platform with integrated hardware
thereby results in several advantages. The hybridization steps em-
ployed are four times shorter than in other methods, which results
in shorter overall process times. Furthermore, the process can be
highly automated, which supports improved handling effort,
reduces contamination risk, and increases reproducibility.

Results and Discussion
The sequence enrichment technology reported here, called
HybSelect, is conducted in three main steps: hybridization, washing,
and elution. First, a genomic DNA library is hybridized to a Geniom
biochip containing target-specific DNA capture probes. After wash-
ing and elution, the sample is subjected to a second cycle of en-
richment and analyzed by an NGS platform. Though the process
should be applicable to any NGS platform, experiments for this
study were analyzed using the Illumina Genome Analyzer II (GAII).

Capture of cancer-related genes

We chose the human genes BRCA1 and TP53 as our first targets for
enrichment, because of their well-known role in the development
of certain cancers.

We designed an array of 50mer DNA oligonucleotide probes
with a tiling density of 8 bp. A Geniom biochip is composed of
eight individual microfluidic channels, each having a capacity for
>15,000 capture probes; we used part of one channel for synthesis

of the tiling array. To prevent the enrichment of repetitive ele-
ments, we excluded low-complexity probes from the array design,
which reduces the region of interest (ROI) of 100 kb to a core
region of 54 kb actually covered by capture probes (hybselected
region [HR]). This corresponds to a capacity of >1.8 Mb ROI or >1
Mb HR per biochip. Next, we subjected a human Illumina paired-
end library to a first round of hybridization on the biochip for 16 h
with active mixing of the sample.

Two independent experiments, A and B, were conducted in
parallel to test the reproducibility of the process. After four con-
secutive washing steps, we eluted the samples and amplified them
using the Illumina paired-end primers, which afforded sufficient
amounts for a second hybridization step. Processing of the en-
riched samples on an Illumina GAII instrument yielded 8,217,673
and 7,624,181 paired-end reads of 2 3 36 bp for the individual
samples. The reads were used for further analysis after homopol-
ymeric and ambiguous sequences were filtered out.

After this first cycle of enrichment, mapping of the reads to
the ROI revealed that 61.8% to 88.8% of the HR was covered at
least once, exhibiting a similar range to what was previously
reported for one cycle of microarray-based sequence enrichment
and Illumina sequencing (Table 1). In this study, between 12% and
91% of target sequence were reported to be covered at least once,
depending on sequence context and library fragment size (Hodges
et al. 2007). The average depth of coverage was between 2.9- and
5.0-fold for all target regions for both experiments (Table 1).
Overall, the data suggest similar or better reproducibility than
previously reported for microarray-based sequence capture (Albert
et al. 2007; Hodges et al. 2007; Okou et al. 2007; Bau et al. 2009).
Importantly, analysis of the uniqueness of obtained read pairs
revealed that more than 98% for both runs, were unique, which is
higher than previously reported for standard Illumina GAII se-
quencing without any enrichment method (Quail et al. 2008). This
clearly shows that no detectable library representation bias has
been introduced during the HybSelect process that would com-
promise the information value of obtained reads.

Impact of a second enrichment cycle on capture performance

We next subjected the enriched sample from experiment A to
a hybridization process under the same conditions applied in the
first enrichment cycle. Sequencing yielded 7,433,555 paired end
reads of 2 3 36 bp that were filtered as described above.

Figure 1 shows a graphic view of the ROI with HR regions and
coverage depth distribution of mapped reads from the first and

Table 1. Mapping data of reads obtained from one or two cycles of array-based sequence enrichment of human genomic DNA samples for
different target regions and Illumina GAII paired-end sequencing

Experimenta Target ROI HR
Reads
on HR

Average depth of
coverage

(fold/base)
Enrichment

(fold)

13
consensus

(%)

53
consensus

(%)

103
consensus

(%)

203
consensus

(%)

A (cycle 1) BRCA1 81,155 45,498 5265 3.8 22.9 77.3 22.8 5.2 1.5
TP53 19,179 8178 1131 5.0 27.3 88.8 47.9 8.7 0.9

B (cycle 1) BRCA1 81,155 45,498 4426 2.9 20.5 61.8 8.2 2.2 1.1
TP53 19,179 8178 737 3.3 19.0 83.3 19.8 2.6 0.8

A (cycle 2) BRCA1 81,155 45,498 74,269 58.1 356.4 96.5 87.3 79.5 68.8
TP53 19,179 8178 23,109 101.3 616.9 98.5 92.9 89.6 86.2

NA18558 1000 loci 1,498,000 498,000 4,300,087 315.6 713.3 96.9 92.1 87.5 80.4
NA18561 1000 loci 1,498,000 498,000 6,281,911 469.1 1061.9 97.5 93.7 90.5 85.5

aFirst cycle of enrichment for BRCA1 and TP53 was conducted in duplicate (Experiments A and B).
(ROI) Region of interest; (HR) hybselected region (see text).
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second cycle for a representative region of TP53. Reads were
obtained almost exclusively in the HR that is covered by capture
probes with some overlap to adjacent regions. Moreover, the sec-
ond cycle experiment strongly increased depth of coverage and
apparently also uniformity over the whole region compared with
the first cycle of enrichment. Overall, 96.5% and 98.5% of BRCA1
and TP53 were covered at least once after this second enrichment
cycle (Table 1). The individual enrichment factors (representation
of HR sequence in the obtained sequence reads divided by their
representation in the human genome) for the two genes obtained
from the second cycle were 15.6- and 22.6-fold, respectively, sim-
ilar to the enrichment factors for the first cycle (22.9- and 27.3-
fold), which indicates a multiplicative enrichment effect. This
resulted in final enrichment factors for the overall process of 356.4-
and 616.9-fold. Interestingly, quantitative analyses suggest that
biochips that are reused for the second enrichment cycle result in
comparable enrichment factors as observed for the standard pro-
cess (Supplemental Fig. 1).

Further analysis revealed that the average depth of coverage
was also higher for both regions after the second enrichment cycle,
being 58.1- and 101.3-fold for BRCA1 and TP53, respectively.

However, the most striking effect was observed for consensus
coverages of the HR (percent of HR covered with reads) at increased
minimum coverage depths. These numbers are especially impor-
tant, since a certain minimal depth of coverage is generally re-
quired for base calling. This makes a consensus coverage with the
minimal depth for reliable base calling the most relevant param-
eter of an experiment in terms of analytical value for the targeted
region. Recent whole human genome sequencing projects using
Illumina technology revealed that >95% of both homo- and het-
erozygous single nucleotide polymorphisms (SNPs) can be accu-
rately called at a coverage depth of 20-fold or higher when paired-
end reads are used (Bentley et al. 2008; Wang et al. 2008). The
consensus coverage of the HR (i.e., target region) at more than 20-
fold depth of coverage can therefore be considered a key parameter
for targeted NGS using Illumina instruments.

Strikingly, the consensus coverage with at least 20-fold cov-
erage depth increased between 46- and 96-fold for the two genes
from the first to the second cycle of enrichment (Table 1). In total,
68.8%–86.2% of the target regions were covered at $20-fold, ex-
ceeding previously reported data for targeted sequencing using
microarray-based enrichment and Illumina NGS (Hodges et al.
2007).

Capture of 1000 SNP loci

A crucial performance criterion of an enrichment method is its
accuracy of base calling. In principle, several steps of the overall

process could lead to allelic bias or dropout, which would prevent
the practical use of the method for resequencing studies.

To evaluate our method in this direction, we aimed at the
enrichment of 1000 nonoverlapping loci of 500-bp size through-
out the human genome, each harboring a central dbSNP position.
Capture probes with a tiling density of 8 bp were synthesized
on four channels of a Geniom biochip, and genomic DNA of two
CHB individuals (Chinese individuals from Beijing, HapMap IDs
NA18558 and NA18561) was subjected to the two-cycle HybSelect
process as described above.

A total of 19,762,440 and 19,405,469 paired end reads of
2 3 36 bp were obtained that were mapped to the ROI after fil-
tering. For the two samples, enrichment factors of 713.3- and
1061.9-fold were obtained. This resulted in average depths of cov-
erage of 315.6- and 469.1-fold over the whole HR (Table 1). Im-
portantly, 80.4% or 85.5% of the HR for all 1000 regions was
covered with a depth of at least 20-fold, corresponding well to the
obtained consensus coverages for BRCA1 and TP53. This should
allow for reliable analysis of most nucleotide positions within the
targeted sequence regions.

We performed detailed analysis of consensus coverages and
read distributions on the level of the individual loci (a list con-
taining the locus-wise analysis of obtained reads, consensus cov-
erages at one-, five-, 10-, and 20-fold depth of coverage, en-
richment factors, and average coverage depths can be found in
Supplemental Table 1). Figure 2 shows a histogram of the average
depths of coverage for all loci. Remarkably, most regions were
covered at a depth of between 250- to 500-fold, with decreasing
numbers for higher and lower coverage depths. On average, 90%
and 94% of the regions were covered at $20-fold, respectively.

Next, we analyzed the uniformity of coverage depth for the
whole set of loci. For the most cost-effective sequence capture,
uniformity should be maximal since this avoids redundant reads in
overcaptured regions. We found that across all regions a fraction of
27%–30% exhibited the average depth of coverage or more. Fifty-
one percent to 53% had a normalized coverage depth of 0.5-fold,
the average depth of coverage (Supplemental Fig. 2). These data
match a uniformity recently reported for a solution-phase capture
experiment combined with Illumina NGS technology for a com-
parable, discontiguous exon target (Gnirke et al. 2009). The
availability of long-read platforms like the Roche/454 instrument
and the continuing increase of read lengths of the Illumina Ge-
nome Analyzer and the ABI SOLiD system raise the question how
this might impact the coverage characteristics of the method
when applied to these systems. We anticipate that longer read
lengths might further improve uniformity and consensus cover-
ages, since regions with lower coverage could be rescued by reads
from fragments captured at more distant sites.

Figure 1. Graphic overview of mapping analysis of an Illumina paired-end sequencing run with a human genomic DNA sample enriched for the genes
BRCA1 and TP53. Shown is the capture probe region used for array-based enrichment (black line at top), coverage depth distribution obtained from the
first enrichment cycle (middle), and coverage depth distribution from the second enrichment cycle (bottom) to a representative part of the TP53 gene
(nucleotides ;9500–14,000). The obtained consensus sequences are shown as black lines. X-axis, the nucleotide position of the gene; y-axis, the fold
coverage depth. Note that the scale of the y-axis varies between the two mappings.
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We next questioned how individual sequence contexts im-
pact the capture performance for the specific regions. Analysis
of the correlation between average depth of coverage and GC-
content of the 1000 regions for NA18561 revealed that 99.9% of all
regions with a moderate GC-content of 40%–60% were covered
>20-fold and 98.8% even >50-fold (Supplemental Fig. 3). This
suggests considerable potential to even improve the observed
capture performance by simple alterations in probe design.

Regional coverage distribution

The design of the dbSNP loci capture experiment with non-
overlapping regions of identical size and targeted with identical
numbers of capture probes allows a facile statistical analysis of the
average spatial distribution of coverage depth over all 1000 ROIs.

It is important to evaluate which fraction of coverage falls
into the HR. Since library molecules can extend into the adjacent
region within range of the fragment size distribution of the library,
sequencing reads can be generated for
this noninformative part of the ROI. This
effectively decreases the achievable frac-
tion of desired data in the NGS instru-
ments sequence output. Previous micro-
array studies indicate that the fraction
of reads falling into a probe region fol-
lows a binomial pattern and depends on
the sizes of these regions and the length
of the library fragments. The larger the
probe region and the shorter the frag-
ment size are, the lower the overlap and
the lower the content of noninformative
sequence tend to be (Hodges et al. 2007).

In a recent publication, there is fur-
ther supporting evidence for the notion
that longer capture probes could also
increase the fraction of noninformative
reads. In this study (Gnirke et al. 2009),
170mer probes were used, exceeding the
120-bp median length of human exons.
Since library fragments preferentially hy-

bridize with a maximal part of the probe
sequence, this leads to considerable over-
lap into surrounding regions and only
a small fraction of 47% in the informa-
tive regions. This diminishes the practi-
cal use of this enrichment approach for
Illumina end sequencing with standard
read length.

Analysis of spatial coverage depth
distribution for our experiment (NA18561)
revealed a binomial pattern with maxi-
mal coverage depths in the middle of
the HR and relatively low representation
of reads falling into noninformative re-
gions (Fig. 3). Coverage depth was thereby
highly uniform with only approximately
twofold higher depth for the center com-
pared with the edges of the probe regions.
Overall, 81% of total coverage was ob-
tained for the targeted HR.

SNP calling accuracy

To assess the applicability of the approach for SNP detection, we
analyzed the nucleotide representations of the 1000 captured
dbSNP positions. Six hundred of these SNPs were chosen from
chromosome 1 and have previously been genotyped in the Hap-
Map project; 400 additional HapMap SNPs were chosen from
ENCODE regions on several different chromosomes (dbSNP IDs can
be found in Supplemental Table 1). SNPs were thereby selected to
have an increased content of 50% heterozygous genotypes within
the HapMap CHB population. This allows a balanced analysis of
homo- and heterozygous positions and imposes a higher challenge
to the process owing to higher coverage requirements and poten-
tial bias in nucleotide representation for heterozygous positions.
We first filtered the regions for SNP coverage depths of 20-fold or
higher as a stringent and pre-established criterion for reliable
base calling (Bentley et al. 2008; Wang et al. 2008). Of 1000 SNPs,
913 SNPs fullfilled this criterion, with 449 being homozygous and
464 being heterozygous in the reference data (sample NA18561,

Figure 2. Statistical analysis of average coverage depths and consensus coverages of 1000 human
500-bp loci obtained from mapping analysis after sequence enrichment from the two HapMap refer-
ence samples NA18558 and NA18561 and Illumina GAII sequencing. Shown is a histogram of average
coverage depths for the HR of individual 500-bp loci for both samples as depicted in the figure.

Figure 3. Average spatial distribution of coverage depths for ROI of 1000 human 500-bp dbSNP loci
obtained from mapping analysis after sequence enrichment from a human genomic DNA sample and
Illumina GAII sequencing. The x-axis shows the nucleotide positions of the ROI, consisting of the core
region covered by capture probes for array-based sequence enrichment (HR, nucleotide positions 501–
1000) with flanking regions of 6500 nucleotides. The y-axis shows the coverage depth for all 1000 loci of
sample NA18561 averaged for each 50-bp segment and normalized to the maximal depth of coverage.
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Supplemental Table 2). Nucleotide analysis and comparison with
HapMap reference data (data from HapMap project phases 1 and 2)
revealed an overall concordance of 98.6% for all SNPs. Notably,
concordance was significantly higher for homozygous positions
(99.1%) than for heterozygous positions (98.1%), which suggests
that combined call rates for both allele types would be higher for
regions that are not enriched for heterozygous occurrences. Anal-
ysis of all 464 heterozygous SNP positions revealed an allelic ratio
of 0.49, indicating a well-balanced enrichment of both alleles.

Interestingly, very similar concordance (98.8–99.1%, de-
pending on mapping algorithm) was previously reported for
nontargeted whole-genome sequencing using Illumina technol-
ogy and comparison to HapMap reference data of the same proj-
ect phases (Bentley et al. 2008; Wang et al. 2008). This indicates
that the HybSelect process does not interfere with the accuracy of
SNP calling and provides a useful tool for resequencing studies.

Conclusion

Sequence enrichment performance

Although several approaches for enrichment of genomic sequen-
ces have been reported, no method so far has shown an enrich-
ment performance allowing for reliable SNP calling over the full
target region. This has previously been highlighted as the main
challenge for hybridization-based sequence enrichment and se-
verely impairs the actual power of NGS technologies (Garber 2008).

Our data show that enrichment factors, consensus coverage,
and average depth of coverage for target regions can be multiplied
by applying two instead of one enrichment cycle. Compared with
two recent studies reporting targeted enrichment using Illumina
NGS technology, this resulted in superior enrichment performance
and excellent consensus coverages for all targeted regions. Im-
portantly, our calculation of enrichment factors does not include
a prefiltering of raw reads for reads uniquely mapping to the hu-
man genome. This can reduce the fraction of usable raw reads by
a factor of ;0.4–0.5 (Gnirke et al. 2009), whereas the number of
unique reads mapping to the target should not be altered. Since
this affects the ratio of on-target reads vs. total reads and thus the
calculation of enrichment factors and the fraction of on-target
reads, we believe that our actual process performance is even better
in terms of these parameters than reported here.

Furthermore, this performance was achieved with standard
short-read end-sequencing and should further improve with in-
creasing read lengths. Average coverage depths in our experiments
exceed those in other studies using this sequencing mode by up to
more than one order of magnitude. Uniformity of coverage
thereby matches comparable experiments as reported previously.

Uniqueness of NGS reads received after sequence enrichment
has not been analyzed in previous studies and consequently the
actual value of published coverage depths remains unclear. In
contrast, our data show that no significant representation bias is
observed in libraries after the HybSelect process, which indicates
that no PCR duplicates account for the observed performance. We
further showed that the process does not interfere with SNP calling
and allows for efficient resequencing of large fractions of the tar-
geted regions with accuracies typically observed for Illumina NGS
technology with nonenriched samples.

Advantages of microfluidic biochip architecture

Previous approaches for sequence enrichment employed hybrid-
ization steps of >60 h and multiple manual washing and elution

steps resulting in long processing times (Albert et al. 2007; Hodges
et al. 2007; Okou et al. 2007; Gnirke et al. 2009).

Microfluidic array architecture with associated short hybrid-
ization times and a high level of automation throughout the
HybSelect procedure enables fast processing and easy handling,
despite the use of two enrichment cycles. The total process time
starting with a sequencing library and resulting in an enriched,
purified, and quantified library ready for Illumina sequencing is
less than 60 h, shorter than the hybridization step of any pre-
viously reported approach alone.

The used biochips are scalable between one and eight sam-
ples and/or 230 kb and >1.8 Mb ROI (125 kb–1 Mb HR) with only
1.5 mg of Illumina library needed per array. This scalability facili-
tates adjustment of an experiment to different target sizes and can
significantly reduce per sample cost for small targets. Further
quantitative analyses suggest that biochips can be reused within
the two-cycle protocol with typical enrichment performances,
which would reduce cost of the approach.

We believe that further improvements in probe design and
process optimization will allow us to reach depths of coverage that
will enable efficient multiplexing of pooled samples. The general
strategy to apply iterative cycles of sequence enrichment might
thereby not only facilitate efficient targeted NGS for human geno-
mic subsets. It might also enable analysis of much more complex
samples that demand enrichment factors far beyond the possible
limit of a single-cycle experiment, e.g., for environmental samples,
low abundance cancer cells, or pathogens in a human background.
We are therefore convinced that the HybSelect enrichment method
will find wide application for large-scale, targeted genomics studies.

Methods

Microarray design and synthesis
Light-activated in situ oligonucleotide synthesis on Geniom bio-
chips (febit biomed gmbh, Heidelberg, Germany) was performed as
described previously (Baum et al. 2003). One biochip contains
eight individual, microfluidic channels each containing an array
of >15,000 individual DNA probe features.

For the enrichment of the two human genes BRCA1 and TP53,
50mer probes were tiled across the target regions with a density of 8
bp, corresponding to a total ROI of 100 kb or a capacity of >1.8 Mb
per biochip. Probes were allowed to have a maximal content of 25
low-complexity bases in a row and a maximal total content of low-
complexity bases of 80% according to the Hg18 annotation. This
resulted in 6700 probes and a reduction of the ROI to the actual
probe region (Hybselected region [HR]) of 54 kb, corresponding to
a total capacity per biochip of >1 Mb HR.

For enrichment of the 500-bp dbSNP loci, 1000 nonover-
lapping regions from high-complexity sequence context through-
out the human genome were chosen containing a central dbSNP
position. A total of 57,000 50mer probes were designed with a til-
ing density of 8 bp and synthesized on four array channels again
resulting in a capacity of >1 Mb HR per biochip. For all experi-
ments, array designs for the two enrichment cycles were identical.

DNA sample preparation
Human genomic DNA samples NA18558 and NA18561 were
obtained from Coriell Repositories. DNA samples for enrichment of
BRCA1 and TP53 were purchased from Promega. Five micrograms
of human genomic DNA were dissolved in 190 mL of water and
fragmented for 30 min by sonication at high intensity (Bioruptor,
Diagenode). Preparation of the paired-end adaptor-ligated gDNA
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library ready for sequencing on an Illumina Genome Analyzer II
(Illumina) was performed according to the manufacturer’s standard
protocol including excision of the size fraction of 300–400 bp from
an agarose gel. The sample was analyzed by a Bioanalyzer experi-
ment (Agilent), quantified by UV measurement (Nanodrop 1000,
Thermo Scientific), and stored in water at !20°C until use.

Hybridization and elution
For each array, 1.5 mg of an adaptor-ligated gDNA library were
dissolved in febit Hybmix-4 or -5, heated to 95°C for 5 min, and
placed on ice. The sample mixture was injected into the micro-
fluidic arrays of the biochip and hybridization was performed for
16 h at 45°C or 50°C with active movement of the sample using
a febit active mixing device. After hybridization, each array was
automatically washed with 63 SSPE at room temperature and
0.53 SSPE at 45°C within the Geniom One instrument (febit
biomed gmbh). Each array was subsequently washed with SSPE-
based febit stringent wash buffers 1 and 2 at room temperature. For
elution of the enriched samples, arrays were each filled with 10 mL
of febit elution reagent in a febit hybridization holder and in-
cubated at 70°C for 30 min. Solution was manually transferred
into an Eppendorf tube and dried by vacuum centrifugation in
a Speed-Vac at 65°C. After an amplification step according to the
Illumina library preparation procedure using paired-end primers
for 18–35 cycles, the sample was treated like the original library
and subjected to a second round of enrichment under the same
conditions as before. After enrichment, hundreds of picograms of
DNA library are typically recovered from each array depending on
the array template as judged by qPCR using the Illumina adaptor
primers and SYBRgreen quantitation (data not shown).

NGS using Illumina technology
Eluted samples were subjected to 10 cycles of PCR according to
Illumina paired-end library preparation kit and purified by a
MinElute PCR purification column (Qiagen). Quantification of
samples was done by the Quant-It Picogreen assay (Invitrogen)
using the Nanodrop 3300 instrument. Sequencing was performed
using an Illumina GAII system using the paired-end mode and read
lengths of 36 bp according to the manufacturer’s protocol.

Data analysis
Paired-end sequencing reads were first filtered by removing reads
with ambiguous nucleotide calls (three or more N) and reads with
34 or more A (or Tor C or G). Reads from File 1 and File 2 of the two
paired-end sequencing runs were aligned to target genes by using
RazerS (Weese et al. 2009), which is part of SeqAn, an open-source
C++ library of efficient algorithms and data structures for the
analysis of biological sequences (Doring et al. 2008). The parame-
ters used were ‘‘-gn 1 -f -r -i 94 -rr 100 -m 10,’’ which allows up to
two mismatches. The output alignment files were matched for
each pair of reads: The two reads were mapped to opposite strands
and in correct orientation and the length between the two reads
(inclusive) was within 100–500 bp. The paired reads were matched
to the ROI to obtain the reads for analysis of coverage depth. For
the 1000 SNP loci experiment, the HR (being all loci of 500 bp)
with extensions of 6500 bp for each locus was defined as ROI. The
fold coverage for each base within the probe regions was calcu-
lated. For unique amplicon analysis, each pair of read sequences
was counted only once, and duplicates were ignored. For visuali-
zation, reads on the HR obtained by paired-end mapping were
mapped with the CLC genomics workbench using single-end mode
and default conditions. For SNP analyses, base representations for
each target position were calculated in percent. For positions with

one base represented >90%, position was called homozygous. If no
position was represented >90%, but two bases were represented
>10%, position was called heterozygous for these two bases.
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Sequence capture methods for targeted next generation sequencing promise to massively reduce cost of
genomics projects compared to untargeted sequencing. However, evaluated capture methods specifically
dedicated to biologically relevant genomic regions are rare. Whole exome capture has been shown to be a
powerful tool to discover the genetic origin of disease and provides a reduction in target size and thus
calculative sequencing capacity of N90-fold compared to untargeted whole genome sequencing. For further
cost reduction, a valuable complementing approach is the analysis of smaller, relevant gene subsets but
involving large cohorts of samples. However, effective adjustment of target sizes and sample numbers is
hampered by the limited scalability of enrichment systems. We report a highly scalable and automated
method to capture a 480 Kb exome subset of 115 cancer-related genes using microfluidic DNA arrays. The
arrays are adaptable from 125 Kb to 1 Mb target size and/or one to eight samples without barcoding
strategies, representing a further 26 – 270-fold reduction of calculative sequencing capacity compared to
whole exome sequencing. Illumina GAII analysis of a HapMap genome enriched for this exome subset
revealed a completeness of N96%. Uniformity was such that N68% of exons had at least half the median depth
of coverage. An analysis of reference SNPs revealed a sensitivity of up to 93% and a specificity of 98.2% or
higher.

© 2010 Elsevier Inc. All rights reserved.

Introduction

The enormous capacity of Next Generation Sequencing (NGS)
instruments has dramatically changed the scope and comprehensive-
ness of genomics studies [1–8]. Beside current large scale studies like
the 1000 genomes project that are mainly addressed by a limited
number of genome centers, the possibility of sequencing relevant
subsets of a genome with high sample throughput and at low cost has
become a major interest of numerous researchers.

Several new concepts for sequence enrichment have been
reported recently that have started to provide a means for efficient,
targeted NGS projects. However, these methods still suffer from
various drawbacks like limited scalability in terms of sample numbers,
poor uniformity resulting in partial dropout of target coverage and
time-consuming and complicated workflows [9–11]. Three basic
principles of solution phase sequence capture have been reported so
far, with each having its own advantages and drawbacks. Molecular
inversion probes (MIP) or Selector probes have been used for
enrichment of multiple discontinuous target regions with partially

high grade of multiplexing and completeness, i.e. percent of target
covered [12,13]. However, relatively low uniformity of coverage was
also reported and part of the sequencing information was attributed
to artifical probe sequence introduced during the enrichment work-
flow [12–14].

Solution phase enrichment with very long, biotinylated RNA
probes has been reported recently [15,16]. However, a drawback of
themethodwas amulti-step capture probe library construction with
the potential to introduce bias. Moreover, the length of probes
resulted in overrepresentation of off-target reads for short end
sequencing that could only be overcome by complicated construction
of shotgun libraries or more expensive long read sequencing [15].
Finally, PCR in microdroplets has been demonstrated for sequence
enrichment [17], but flexibility of this approach is limited by the
requirement of individually synthesized primers and suffers from
the fact that primer binding sites have to be designed outside of
the actual target regions to avoid nonsense reads from primers
incorporated into enriched amplicons. This reduces the amount
of relevant informationwithin the sequencers base output andmight
complicate amplification of regions surrounded by repetitive
sequence.

The majority of sequence enrichment methods reported so far was
based on solid phase capture using in situ synthesized DNA
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microarrays with flexible content [18–27]. Overall, these methods
have relatively short and simple workflows compared to solution
phase capturing. A reported drawbackwas the need for relatively long
hybridization times compared to solution phase capture. Three array
formats have been used for targeted NGS to date, all allowing for in
situ synthesis of capture probes and thus providing high flexibility of
targeted sequences.

However, for all enrichment approaches, setups dedicated to
selected subsets of biologically meaningful genomic loci have been
rare. Two very recent studies described the enrichment of the whole
human exome with a target size of 26.6 - 34 Mb using microarray
capture with two different formats [25,27]. This approach has proven
to be a powerful discovery tool, i.e. to reveal the genetic origin of
disease by comprehensive exome sequencing of a limited number of
individuals [24]. However, owing to the comprehensiveness of the
method, significant capacity of not scalable microarrays had to be
used for enrichment per sample and multiple sequencing instrument
compartments were needed to achieve good coverage depths and
completenesses [25,27].

A valuable complementing approach would be the analysis of a
smaller subset of relevant genes but involving large cohorts of
samples. This would for example allow for an efficient follow-up of
genome wide association studies involving whole genome or whole
exome sequencing or for other focused studies involving gene sets
known to be involved in e.g. cancer development, cardiovascular
diseases or drug response. From an economic point of view, such
projects would greatly benefit from enrichment systems that are
highly scalable to achieve effective further downsizing of targets and
increase of sample numbers. Compared to untargeted sequencing,
whole exome enrichment approaches represent a drastic reduction in
calculative sequencing capacity of 94 – 120-fold. Consequently,
focused analysis of relevant genomic subsets with target sizes in the
range of several hundred Kb to 1 Mb represent a further reduction in
the same order of magnitude.

We report a scalable approach termed HybSelect for selective
capturing of focused exome subsets using compartmentalized,
microfluidic biochips. The biochips can be processed with up to
eight samples in parallel without barcoding strategies and are
applicable to target sizes between 125 Kb and 1 Mb. This represents
a reduction of calculative sequencing effort of 26 – 270-fold compared
to current whole exome approaches. We demonstrate selective
capture and sequencing of 115 cancer-related genes with a target
size of 0.48 Mb resulting in a capacity of 2 samples per biochip
without barcoding strategies. Moreover, the method uses a very
simple workflow and is highly automated with potential benefits for
cost, reproducibility and contamination risk.

Materials and Methods

Microarray Design and Synthesis

Light-activated in situ oligonucleotide synthesis on Geniom
Biochips was performed as described previously [28]. One Biochip
holds eight individual, microfluidic channels each containing an array
of 15.624 individual DNA probe features of which ∼120.000 are
available for custom probes.

Exon sequences of 115 cancer-related genes from the cancer
genome project were downloaded from NCBI and 55.589 50mer
probes were tiled across the exon targets of the full region with an
average probe density of 9 bp targeting sense and antisense strand in
an alternating manner. Each exon was covered by at least 17 probes,
i.e. small exons were extended to fit the tiling scheme. The full region
of interest (ROI) was 9.2 Mb, corresponding to a core target actually
containing exonic sequence of 0.48 Mb. Calculated for the whole
biochip, this corresponds to a total capacity of ∼20 Mb ROI or N1 Mb
target size.

DNA sample preparation

The human genomic DNA sample NA18507 was obtained from
Coriell repositories. 5 µg were dissolved in 80 µl of water and
fragmented 2 times for 15 min by sonication at medium intensity
(Bioruptor, Diagenode, Liége, Belgium). An end repair was performed
using T4 DNA polymerase, Klenow Fragment of E. coli DNA
polymerase I and T4 PNK in T4 DNA ligase buffer for 30 min at 20 °C
(all NEB, Ipswich, USA). After purification using the MinElute PCR
purification protocol (Qiagen, Hilden, Germany), A deoxynucleotides
were added to polished doublestrands using the Klenow fragment (3´-
5´- exo-, Qiagen) in presence of 200 µM dATP in Klenow fragment
reaction buffer for 30 min at 37 °C. After another MinElute PCR
purification, Illumina paired end sequencing adaptors were ligated
according to the manufactures protocol. After a Qiaquick PCR
purification (Qiagen), ligation mixture was loaded onto a 2% agarose
TBE gel and a library band of 200 - 400 bp was excised. Gel slice was
purified with the Qiaquick gel extraction kit and 1 of 30 µL eluate was
used for a 50 µL amplification reaction using Phusion HF Mastermix
(Finnzymes, Espoo, Finland) and 0.2 µM of each primer of pairs pairs
AAT GAT ACG GCG ACC ACC GAG ATC TAC ACT CTT TCC CTA CAC GAC
GCT CTT CCG ATC and CAA GCA GAA GAC GGC ATA CGA GAT CGG TCT
CGG CAT TCC TGC TGA ACC GCT CTT CCG ATC or ACA CTC TTT CCC TAC
ACGACG CTC TTC CGA TC and CTC GGC ATT CCT GCT GAA CCG CTC TTC
CGA TC. Cycling conditions were: 30 s, 98 °C, then 18 times 10 s, 98 °C;
30 s, 65 °C; 30 s, 72 °C; then 300 s, 72 °C. Purification was performed
using the Qiaquick PCR purification protocol. Libraries were analyzed
by Bioanalyzer analysis (Agilent, Santa Clara, USA), quantified by
Nanodrop 1000 UV measurement (Thermo Scientific, Waltham, USA)
and stored in water at -20 °C until use.

Sequence capture protocol

For four arrays, 6 µg adaptor-ligated gDNA library were dissolved
in febit Hybmix-4, heated to 95 °C for 5 min and placed on ice. Sample
mixture was placed into the sample loading station of the Geniom RT
Analyzer and automatically injected into the microfluidic channels of
the biochip. Sample was denatured within the chip at 80 °C for 10 min
and hybridized for 16 h at 42 °C with active movement of the sample.
After hybridization, each array was automatically washed with 6x
SSPE at room temperature and 0.5x SSPE at 45 °C. Each array was
subsequently washed with SSPE-based febit stringent wash buffers 1
and 2 at room temperature. All protocol steps were carried out in a
completely automated fashion by the Geniom RT Analyzer instrument
without manual interference. For elution of the enriched samples,
arrays were filled with 10 µL of 90% formamide in water each using an
elution holder and incubated at 70 °C for 30 min in an oven. Solution
was manually transfered into an Eppendorf tube and dried by vacuum
centrifugation in a Speed-Vac at 65 °C. After an amplification step as
described under DNA sample preparation for 35 cycles, the sample
was treated like the original library and subjected to a second round of
enrichment under the same conditions as before.

Eluted samples were subjected to 10 cycles of PCR according to the
conditions described under DNA sample preparation and purified by
Qiagen MinElute PCR purification (Qiagen, Hilden, Germany). Quan-
tification of samples was done by the Quant-It Picogreen assay
(Invitrogen, Carlsbad, USA) using the Nanodrop 3300 instrument
(Thermo Scientific).

Data analysis

Paired-end Solexa reads (32.878.698 reads with 36 bp length for
replicate 1 or 20.700.622 reads with 50 bp in length for replicate
2) were first filtered by removing reads with ambiguous nucleotide
calls (3 or more N) and reads with 34 or more A (or T or C or G). This
resulted in 15.816.258 or 10.954.170 reads usable for mapping for the
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two replicates, respectively. Reads from File 1 and File 2 of the two
paired end sequences were aligned with target genes by using razerS,
which is part of SeqAn, an open source C++ library of efficient
algorithms and data structures for the analysis of biological sequences
[29]. The parameters used were “-gn 1 -f -r -i 94 -rr 100 -m 10”which
allows up to 2 (36 bp reads) or 3 (50 bp reads) mismatches. The
output alignment files were matched for each pair of reads: the two
reads were mapped to opposite strands and in correct orientation and
the length between the two reads (inclusive) was within 100-500 bp.
The paired reads were further matched to extended regions covered
by probes (consensus) to get the reads on target. The fold coverage for
each base within the probe regions was calculated for unique reads.
For SNP calling, individual base fractions for each position having a
coverage of 5-fold or higher were calculated and positions were called
homozygous if one base accounted for at least 80% and all other bases
accounted for less than 10%. If two bases accounted for at least 20%
each, the position was called heterozygous. Each called base was
compared with UCSC genome hg18 (dbSNP130 masked version). If a
difference was found, this position was identified as SNP. SNPs existed
in dbSNP were separated from those new ones to calculate the
percentages of known vs. novel SNPs.

Results and Discussion

General Workflow for Exome Subset Capture and Sequencing

The overall HybSelect workflow makes use of two key hardware
components. The microfluidic Geniom Biochip containing eight
individual channels each harboring an array of 15624 freely
programmable DNA capture probes is used as sequence enrichment
matrix (Fig. 1A). This biochip is processed by the Geniom RT Analyzer
which allows for automated sample injection, hybridization with
temperature control and active mixing, washing protocols and
imaging (Fig. 1B). The HybSelect workflow consists of three basic
steps: preparation of a standard genomic DNA library for sequencing,
capturing of desired library fragments on the microfluidic arrays
including stringent washing to remove unwanted fragments and

elution followed by next-generation-sequencing (Fig. 1C). Application
of the capture step after library preparation thereby allows facile
adaption to different NGS platforms, since all current platforms use
adaptor ligated libraries. Thus, no changes to suppliers linker
mediated PCR protocols are necessary to adjust library amounts
when needed.

We designed an exome subset capture array for enrichment of 115
genes identified in the Cancer Genome project of the Wellcome Trust
Sanger Institute as a set highly relevant to the onset of various cancer
types. Genes from thecancer gene census list excluding genes known for
translocation mutations were used. The final array design contained
genes ranging in size from 2.8 to 73.0 Kb with 1819 exons having a
minimal, maximal and median size of 2 bp, 8686 bp and 134 bp,
respectively. The design covered a total genomic region of interest (ROI)
of 9.2 Mbwhich corresponds to a core exonic region of 0.48 Mb covered
by probes. ∼56.000 50-mer tiling probes targeting sense and antisense
strands in an alternating manner were synthesized with the Geniom
One instrument using ∼44% of the capacity of a biochip.

Two individual human DNA libraries of the well-characterized
Yoruban HapMap sample NA18507 [7,25,30] with length distributions
of 200-400 bp and adaptors for Illumina paired-end sequencing were
prepared, hybridized for 16 h on two different biochips, and the arrays
were washed to remove weakly bound library fragments. The
enriched, single stranded samples were eluted, amplified using
Illumina paired end primers and subjected to a second cycle of
hybridization and washing. After elution, samples were made double
stranded by a limited number of PCR cycles.

Sequencing on one lane of aflowcell of an IlluminaGA II instrument
for each sample using the paired-end mode yielded a total of 15.8 and
11.0 million individual paired end reads after filtering for homopol-
ymeric or ambiguous reads and removal of reads not mapping
uniquely to the human genome.

Completeness and Uniformity of Target Coverage

Paired end reads were mapped against the genomic region
covered with capture probes and coverage was analyzed. For the

Fig. 1. Hardware and workflow used in the HybSelect process. A: Top view of the microfluidic Geniom Biochip with 8 individual channels each containing an array of 15624 DNA
oligonucleotide probes. B: Front view of the Geniom RT Analyzer, a fully integrated microarray processing station allowing for automated sample injection, hybridization with
mixing, temperature control, fluidic control and fluorescence detection. C: Workflow of the HybSelect process. Genomic DNA (1) is fragmented and a next generation sequencing
library is constructed (2). Library is hybridized to a biochip containing capture probes for the desired target sequences (3) and washed to remove unwanted fragments (4). Desired
library fragments are eluted (5) and used for next generation sequencing (6).
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two independent replicate experiments, completenesses, i.e. percen-
tages of the target covered at least once, were N96% for both samples
(Table 1). For percentages of exon- and gene-wise median coverages,
numbers increased to N97% and 100%, respectively. This completeness
is in line with previous studies and shows only negligible dropout of
target sequence (For a detailed, gene-wise analysis of on-target reads,
average target coverages, and percentages of target covered ≥1-, 5-
and 10-fold, see Supplementary Table 1).

Beside completeness of coverage, the uniformity of coverage depth
is an important parameter of a sequence capture method, since even
coverage avoids redundant reads in over-captured regions.

Analysis for all 115 genes revealed that 96% of all genes were in a
range of coverage depth of b1 log. This indicates a low dependence of
capture efficiency on individual genes and suggests wide applicability
of the method to various sequence contexts. A more detailed analysis
of coverage uniformity is shown in Fig. 2. The individual median target
coverages of all 1819 exons for both replicates were normalized by
dividing them by the median target coverage of all exons. By plotting
the fraction of total exons exhibiting a specific normalized target
coverage, it is possible to analyze and compare coverage uniformity of
experiments independently of e.g. platform-dependent effects or
overall sequence yield [15,22]. Of all exons, 46.9% and 48.8% exhibited
the median target coverage or more, respectively. 69.7% and 68.1%
had a normalized target coverage of 0.5 and 84.3% and 85.0% of 0.2.
This data indicates similar or better uniformity compared to recently
reported studies for solution-phase exonic capture experiments
combined with Illumina NGS technology [15–17].

For further improvements, we sought to elucidate the origin of
target coverage variability for individual exons. Fig. 3 shows the actual
median target coverages of replicate 1 either for all exons (A) or in
dependence of GC content of exons (B). A clear trend is visible that
comparably low target coverage is obtained for GC contents outside of
an optimum range with a lower limit of ∼40% and a higher limit of
∼60%. This trend is more dominant for exons with low GC contents
compared to high GC contents. Overall, 58.5% of all exons fell into the
optimum range of 40-60%. For these exons, an excellent completeness
of 99.2% was obtained with 98.5% of exons having a target coverage of
5-fold or higher. These data suggest that applying more stringent GC-
content criteria during probe design might substantially improve
performance of the approach.

Another aspect for further improvement is the dependence of
target coverage and exon size. Since sizes of targeted exons span a
large range between 2 – 8686 bp, we were interested in dependence
of exon-wise median target coverage and exon size. A histogram
analysis revealed low variation of target coverage between exons of
middle and larger sizes (Supplementary Fig. 1). However, it also

pointed at a possibility for a facile further improvement of the
method. Very small exons (1-30 bp) exhibited relatively low median
target coverage of only 9.5-fold whereas exons 31-60 bp in size were
covered at a median of 73-fold with a trend for even higher target
coverages for larger exons. Hence, overall performance could also be
increased by using denser tiling schemes for extended regions around
very small exons.

Detection of Single Nucleotide Polymorphisms (SNP)

Since resequencing for variant discovery is currently the most
important application of NGS platforms, a crucial parameter of any
sequence enrichment method for NGS is its potential to detect and
correctly call novel SNPs. For such an analysis, we included all exon
bases of Yoruban HapMap sample NA18507 with coverages of 5-
fold or higher which has been used as quality criterion for SNP
calling previously [16]. This corresponds to a SNP calling sensitivity
(percent of target sufficiently covered for SNP detection) of 88.6 –
93% (Table 1). In these regions, 4998 and 4702 coding SNPs
(cSNPs) were detected in the two samples, respectively. A
comparison with dbSNP revealed that 89.2% and 91.0% of these
SNPs were matching previous database entries. This compares to
74% matches recently obtained for a genome-wide comparison of

Table 1
Statistics of mapping of sequencing reads obtained from Illumina paired end sequencing of two replicate samples enriched for exons of 115 cancer genes. Shown are the sizes of the
ROI (region of interest), the target (exonic region covered by capture probes), the number of on-target reads obtained by the two individual sequencing runs of one lane each,
average target coverages (fold) and percentages of target covered at a depth of at least 1-fold, 5-fold, 10-fold and 20-fold. Percentages are shown base-wise, exon-wise and gene-
wise.

General Metrics: ROI Target On Target Reads Average Target Coverage

Replicate 1 9345045 482093 2663643 183.82
Replicate 2 9345045 482093 817614 74.05
Percent of Bases covered: @ ≥1-fold @ ≥5-fold @ ≥10-fold @ ≥20-fold

Replicate 1 97.2 93 89.4 83.3
Replicate 2 96.5 88.6 80.5 68.9
Percent of Exons covered: @ ≥1-fold @ ≥5-fold @ ≥10-fold @ ≥20-fold

Replicate 1 98.5 95.8 93.2 86.4
Replicate 2 97.8 93.4 84.3 71.2
Percent of Genes covered: @ ≥1-fold @ ≥5-fold @ ≥10-fold @ ≥20-fold

Replicate 1 100 100 100 100
Replicate 2 100 100 100 93.9

Fig. 2.Uniformity of per base coverage visualized by a normalized coverage distribution
plot. Graph shows fraction of targeted exons exhibiting a target coverage equal or
higher than the normalized target coverage shown on the x-axis. Normalized target
coverage was calculated by dividing individual median target coverages of exons by the
median target coverage for all exons. For 0.5- and 0.2-fold of normalized target
coverage, exon fractions are indicated as dotted lines.
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Illumina sequencing data of the identical HapMap sample [7].
However, in a recent whole exome sequencing project of this
sample using Illumina technology, 89.1% concordance was obtained
for cSNPs only, which closely mirrors the concordance obtained for
our solely exonic target [25].

This indicates a low potential of the approach for false positive calls
that could originate from e.g. suboptimal conditions of enrichment,
sequencing or mapping methods and would cause an excess of newly
identified SNPs vs. previously known database entries.

We next analyzed the percental nucleotide representations of all
HapMap reference SNP positions contained in the targeted exons. 836
SNPs with reference data were present in the captured regions that
were used for further analysis. Of 836 SNPs, 790 (94.5%) and 754
(90.2%) SNPs were thereby covered 5-fold or higher for the two
replicates. Nucleotide analysis and comparison to HapMap reference
data (HM-All, data from all HapMap project phases) revealed an
overall concordance of 98.2% and 99.1% for all SNPs, similar to
specificities reported previously for array based sequence capture
[14,22,27] and other enrichment methods [15–17]. Generally,
specificity could be further enhanced by increasing the minimum
depths of coverage used for filtering of callable positions, however, for
the cost of decreasing sensitivities [7,8].

To further understand the origin of SNP calling discrepancies
between targeted Illumina sequencing and HapMap genotyping
results, we made a follow-up analysis for all non-concordant SNP
positions. Different types of discrepancies thereby may hint at
different error sources. For example, heterozygous sequencing calls
for homozygous HapMap genotypes may hint at accidental base
substitutions generated by PCR during library preparation or the
HybSelect process when present in one replicate. Presence in both
replicates may rather hint at a systematic error e.g. in sequencing,
read mapping or HapMap genotyping, since random PCR artifacts in
both samples seem unlikely. However, a systematic error that could
be associated with a hybridization-based sequence capture method
may be loss of heterozygousity due to preferential binding of capture
probes to the complementary allele. In our study, there were 21 non-
concordant calls found at 14 different positions within the total 1544
calls for SNPs with coverage at 5-fold or higher for both replicates (see
Supplementary Table 2). Of these, only 6 (5 positions) were missed
heterozygote alleles of which only two occurred in both replicates. In
contrast, the majority of discrepancies (12 at 6 positions) were called
in both replicates of the sample with almost identical base fractions,
suggesting systematic errors that are independent of the sequence

capture process. Three positions had relatively low coverage of ≤8-
fold and one position had coverage of ≥5-fold in only one of the
replicates.

These data suggest that the majority of non-concordant calls are
due to systematic errors in process steps aside from the actual
HybSelect procedure and that the actual calling specificity is
substantially higher than stated above. Additionally, specificity
might increase even further with higher coverage depth of SNPs
that were covered poorly.

Conclusion

Taken together, we present a highly scalable method to enrich
focused, biologically relevant exome subsets with increased sample
numbers. The method provides excellent completeness of coverage
with similar or better coverage uniformity than previously reported
for exonic targets. This is reflected by high sensitivity and specificity of
SNP calling. Our data further suggest that this performance could be
even further increased by relatively simple alterations of protocol
parameters, i.e. probe design algorithms in terms of GC content and
tiling density for very small exons. Microfluidic array architecture
with associated short hybridization times and a high level of
automation throughout the procedure thereby enables fast processing
and easy handling with potential benefits for cost, reproducibility and
contamination.

The method efficiently amends technologies involved in large-
scale discovery studies such as whole genome or whole exome
sequencing. For efficient follow-up projects involving massive sample
numbers, scalability of enrichment methods becomes crucial to
reduce needed capacities of enrichment and sequencing instrumen-
tation. The architecture of the presented biochip features eight
individual array channels with free scalability between 0.125 and
1 Mb and/or one and eight samples. Depending on target size, a
throughput of eight samples per two days is the current throughput
without barcoding strategies. However, since coverage of most target
bases obtained is significantly higher than the threshold of ≥5-fold
used for SNP calling, it is reasonable to assume that a severalfold
increase in throughput could be achieved by barcoding with limited
loss in sensitivity.We envision that current efforts for improvement of
probe design along the parameters identified in this study as well as
further increase in read lengths and numbers of NGS instruments will
again strongly increase the potential for massive multiplexing with
high numbers of barcoded samples.

Fig. 3. Exon-wise analysis of median target coverages obtained frommapping of paired end reads of an Illumina GAII sequencing run with sample replicate 1 enriched for 115 cancer
related genes. A: Shown is the median fold target coverage for the 1819 individual exons. X-axis shows the individual exon number, y-axis shows the median target coverage for
individual exons. B: Median per base coverage for 1819 exons in dependence on exons GC content. X-axis shows the individual median target coverage for exons, y-axis shows the
GC content of individual exons in percent.
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Beside the cancer-related biochip presented here, we currently
design further pre-evaluated sub-exome biochips for various fields
such as neurodegenerative or cardiovascular disease, drug response or
human aging.
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A strategy allowing for amplification, detection and genotyping of different genomic DNA targets in a
single reaction container is described. The method makes use of primer-directed solution-phase
amplification with integrated labeling in a closed, microfluidic oligonucleotide array. Selective array
probes allow for subsequent detection and genotyping of generated amplicons by hybridization. The
array contains up to 15,624 programmable features that can be designed, de novo synthesized and tested
within 24 hours using an automated benchtop microarray synthesizer. This enables rapid prototyping
and adaptation of the system to newly emerging targets such as pathogenic bacterial or viral subtypes.
The system was evaluated by amplifying and detecting different loci of viral (HPV), bacterial (Bacillus
sp.) and eukaryotic (human) genomes. Multiplex PCR and semi-quantitative detection with excellent
detection limits of <100 target copies is hereby demonstrated. The high automation grade of the system
reduces contamination risk and workload and should enhance safety and reproducibility.

Introduction
The ever increasing understanding of organism complex nucleic

acid repertoire such as genome structure and stability, microbial

diversity or transcriptional dynamics has called for highly parallel

detection, identification and quantification of nucleic acids.

Owing to its excellent sensitivity and accuracy, PCR has hereby

been a central target for the development of highly multiplexed

assay technologies.

To increase throughput of PCR assays, several strategies have

been followed. One strategy is the combination of multiple homo-

genous PCR systems using several specific or degenerate primer

pairs within one reaction vessel. Target detection is then often

achieved by using fluorescent signaling probes, such as labeled

oligonucleotides that undergo changes in fluorescence behavior

owing to nucleolytic cleavage or conformational changes during

PCR product formation [1–5]. Many of these methods are very

mature, allow for quantitative real-time analysis of samples for

multiple targets and have found widespread application in

research and molecular diagnostics. However, a limitation of

homogenous multiplex PCR systems with fluorescent signaling

has so far been the relatively low multiplexing grade owing to

spectral overlap and resulting cross-talk of fluorophores.

A second strategy for increased throughput that circumvents

cross-talk by spatial separation is the parallelization of individual,

homogenous PCR setups with limited or no primer-pair multi-

plexing within single reactions. However, scaling PCR to analyze

larger numbers of targets and samples simultaneously is limited by

the logistics and cost of the assay when performed in traditional

multiwell-plate formats. Consequently, recent developments have

focused on the miniaturization of individual PCR reactions lead-

ing to parallel methods with high to very high throughput [6–14].

Although multiplexing grade in terms of amplification targets

within a given sample can be increased by higher parallelization
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of individual reactions, this approach is limited. Partitioning of a

sample has to be compensated by increased sensitivity of indivi-

dual assays. Moreover, this strategy is inapplicable in cases where

the required assay numbers for a sample exceed copy numbers of

individual targets due to overdilution. However, assays in mole-

cular diagnostics may often require the detection of low abun-

dance nucleic acids in the range of <100 copies per sample, which

imposes an intrinsic limit to the approach. Hence, there is increas-

ing demand for methods that combine high multiplexing grade of

targets without sample partitioning during PCR. One attractive

option is to apply heterogenous detection systems to multiplex

PCRs conducted in single vessels. This allows for spatial separation

of detection events and individual readout without signal cross-

talk as in homogenous detection systems. This strategy has, for

example, been used in a method that applies beads with indivi-

dual, target-specific receptors such as oligonucleotide probes that

are simultaneously added to an amplicon mixture for binding. Up

to 100 different bead types can thereby be optically identified by

fluidic separation and color coding and bound PCR products

quantified by fluorescence [15,16].

Even higher multiplexing grades can be achieved by the use of

oligonucleotide arrays that can simultaneously detect hundreds of

thousands or millions of different nucleic acid sequences in par-

allel [17]. Numerous microarray-based assays have been described

for the detection of different target types such as viruses, bacterial

pathogens or human genetic variants [18–23]. However, work-

flows of such methods have been rather labor- and time-intensive

with partially separated amplification, labeling, microarray hybri-

dization, washing and detection, often involving purification and

individual hardware for the various processing steps.

Here, we describe a method using only one processing station

and a single, microfluidic oligonucleotide array that serves as a low

volume compartment for all steps of a nucleic acid detection and

typing process. This includes amplification and labeling of nucleic

acid targets, array hybridization, washing, fluorescent staining and

detection of individual PCR products. The method is evaluated

with viral, bacterial and human nucleic acid targets in multiplex-

ing mode and a detection limit of<100 copies is demonstrated. By

using a fully automated platform for de novo array synthesis, probe

content is highly flexible with a prototyping iteration cycle of

probe design, microarray synthesis, experimental testing and

microarray redesign of less than 24 hours. This allows the rapid

development of novel assay formats to adapt the system to novel

target sequences such as emerging viral or bacterial pathogenic

subtypes.

Materials and methods
DNA samples and oligonucleotides
Plasmid containing the entire genome of HPV 6b (ATCC-45150D)

was obtained from LGC Promochem. Bacterial genomic DNA was

obtained from ATCC. Used species were B. cereus (ATCC 14579), B.

subtilis str. 168 (ATCC 23857) and B. thuringiensis ser. israelensis

(ATCC 35646). Oligonucleotides were purchased from Sigma

Genosys.

Amplification protocols
For HPV PCR experiments, varying copy numbers of pHPV6b were

amplified using Absolute Mastermix (ABgene) in the presence of

100 mM Biotin-16-dUTP and 0.5 mM primer pool MY09

(CGTCCMARRGGAWACTGATC), 0.5 mM primer pool MY11

(GCMCAGGGWCATAAYAATGG), varying amounts of human

genomic DNA (Promega) and/or 0.25 mM primer b-Glob_fwd

(CAACTTCATCCACGTTCACC) and 0.25 mM primer b-Glob_rev

(GAAGAGCCAAGGACAGGTA). PCRs from a single mastermix

were conducted as control in parallel in tubes using a Mastercycler

(Eppendorf) and in a microfluidic Geniom Biochip using an

Amplispeed microarray slide thermocycler (Advalytix) or a Gen-

iom RT Analyzer instrument. Cycling conditions were as follows:

15 min 958C, then 10 times: (1 min 958C, 1.5 min 578C, 1 min

728C), then 25 times: (1 min 958C, 1 min 558C, 1 min 728C), then

5 min 728C. Product mixtures were either analyzed by agarose gel

electrophoresis or immediately hybridized in microfluidic chan-

nels for reactions carried out in a Geniom biochip (see below).

After PCR establishment, identities of all PCR products were con-

firmed by Sanger sequencing.

6-Plex PCRs targeting four Bacillus strains, HPV 6b and human

b-globin contained the same concentrations of primers MY09,

MY11, b-Glob_fwd and b-Glob_rev as well as 0.5 mM of each of

the primers B.cereus_446_F (CCTACTATAATCCATGCA), B.cer-

eus_446_R (GGAGAAGATAGAATTGCT), B.Sub_395_F (CCTTCT-

ATTTCTAACGCA), B.Sub_395_R (CGATAATCATTGATCCGT),

B.Thu.Isr_407_F (CCATTCATGATAACTGCT), B.Thu.Isr_407_R

(GGTACCGTAATTATTGGA). Reactions further contained 1" Ther-

moStart buffer (Abgene), 500 mM of each dATP, dGTP and dCTP,

125 mM TTP, 18.75 mM Biotin-16-dUTP, 0.03125 U/mL ThermoStart

DNA polymerase (Abgene) and varying amounts of different tem-

platesas specified in the ‘Results’ section.Cycling conditions were as

described above. Product mixtures were either analyzed by agarose

gel electrophoresis or immediately hybridized in microfluidic chan-

nels for reactions carried out in a Geniom biochip (see below).

Microarray design and synthesis
Light-activated in situ oligonucleotide synthesis was performed

essentially as described [24] using a digital micromirror device

(DMD, Texas Instruments). This allows for light-directed activa-

tion on a microfluidic array consisting of a glass–silicon–glass

sandwich within the Geniom instrument (febit biomed). Depend-

ing on the number of DMD micromirrors used for one feature and

for the spacing between features, each chip consists of eight arrays

with 6776 (2 " 2 mirrors for each feature with 1 mirror spacing) or

15,624 (1 mirror for each feature with 1 mirror spacing) individual

features.

For selective detection, 21mer tiling probes for the targeted PCR

products of b-globin (248 probes), HPV 6b (880 probes, including

surrounding region of target sequence) were designed with a 1 bp

resolution to analyze the complete sequences for the specific

regions. For further array designs after initial experimental valida-

tion of sensitivity and selectivity of probes, a 6776-feature setup

was used.

Bacillus detection probes were designed against forward and

reverse strands of amplicon regions with a target size of 25 bp using

a 5 bp tiling offset. Probes were further selected to eliminate

ambiguous bases, runs of four or more identical bases (polyN)

and to maximize 50-terminal uniqueness across the target gen-

omes. Each experimental amplicon generated 60–70 probes per

strand and PCR product target.
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Microarray hybridization, detection and data analysis
For experiments using purified, labeled PCR products, samples

were dissolved in febit hybridization mix-1, including febit control

oligo mix, heated to 958C for 5 min and placed on ice. Geniom

biochip was denatured by washing with water at 808C and incu-

bated with febit prehybridization buffer for 15 min at room tem-

perature. Buffer was removed and sample was injected into

microfluidic arrays and incubated for four hours at 458C. Samples

were removed and the biochip was automatically washed conse-

cutively with 6" SSPE at room temperature and 0.5" SSPE at 458C
within the Geniom device. Streptavidin–(R)-phycoerythrin (SAPE,

Invitrogen) in 6" SSPE was injected and the biochip was incubated

for 15 min at room temperature and then washed with 6" SSPE.

Fluorescence image was acquired using the integrated detection

system of the Geniom device.

For experiments using integrated hybridization of PCR product

mixes, the biochip was directly used for PCR without denaturation

or incubation with febit prehybridization buffer. PCRs were con-

ducted using the Amplispeed microarray slide thermocycler (Adva-

lytix) or a Geniom RT analyzer instrument. PCR mastermix as

described above was injected into microfluidic channels and bio-

chip was subjected to the PCR program. Chip was denatured for

5 min at 958C immediately after the PCR reaction, cooled to 458C
and incubated for 16 h. Afterwards the target solution was

removed from arrays and analyzed by electrophoresis on a 2.5%

agarose gel. Biochip was washed and stained as described above.

After the first wash step after SAPE-incubation, a protocol for signal

amplification was performed. For 6-plex PCRs, incubation with an

antibody-solution (1"MES, 0.925 M NaCl, 0.05% Tween-20, 1 mg/

ml BSA) containing multi-biotinylated anti-streptavidin antibody

(Vector Laboratories; BA-0500, 1:167 diluted) and goat IgG (Sigma;

I5256, 1:100 diluted) as second antibody was conducted. After a

second incubation with SAPE and washing, amplified fluorescence

was detected. For PCRs targeting HPV 6b and human b-globin

only, signal amplification was conducted using the Anti-Biotin

Oyster 550 (900) signal amplifier antibody (Genisphere) at 10 ng/

mL under the conditions described above. For the analysis of fully

integrated microarray experiments, raw fluorescence intensities

were recorded, medians of probe replicates were calculated and

medians of background features (consisting of a single T residue)

were subtracted.

Results and discussion
We aimed at developing an integrated system for multiplex detec-

tion and subtyping of various DNA targets using a single reaction

vessel with a simple and automatable workflow. The established

approach makes use of the closed, microfluidic Geniom biochip

that contains eight individual microchannels with a volume of

#3 mL each presenting an array of 6776 or 15,624 DNA capture

probe features on its inner surface. The overall workflow is out-

lined in Fig. 1. A purified genomic DNA sample is mixed with a PCR

mastermix containing all components necessary for efficient

amplification of targeted loci including biotin-16-dUTP for inte-

grated random labeling. The mixture is injected into the chip and

New Biotechnology !Volume 27, Number 2 !May 2010 RESEARCH PAPER

FIGURE 1

Overview of fully integrated amplification, detection and typing of genomic DNA targets. (a) General workflow. Purified nucleic acid sample containing target
nucleic acid is combined with PCRmastermix. Mixture is injected into a microchannel of a Geniom biochip containing selective DNA probes for binding of formed
PCR products. Amplification protocol including integrated labeling, hybridization, washing, fluorescent staining and detection is automatically conducted in the
employed processing platform. (b) Scheme of in-chip process. Sample DNA molecules are amplified in the presence of biotin-16-dUTP (1) leading to randomly
biotinylated PCR products (2). Products are hybridized to selective DNA capture probes and non- or weakly bound DNA is washed away (3). Chip is incubated with
Streptavidin–(R)-phycoerythrin, washed and fluorescence is recorded (4).
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amplification is performed within the chip followed by a thermal

denaturation and a hybridization step at 458C for selective binding

of the probes. After stringent washing, the chip is incubated with a

fluorescent streptavidin conjugate (Streptavidin–(R)-phycoery-

thrin, SAPE), washed and an antibody-based signal amplification

process is conducted. Fluorescence is recorded and analysis reveals

the presence of individual amplicons.

For the detection of viral genomes, a generic PCR for the

amplification of an L1 region fragment of various human papillo-

mavirus (HPV) subtypes based on the known degenerate primer

system MY09/11 was established [25]. The MY09/11 primer set is

especially well suited for subtyping using high density DNA micro-

arrays, because PCR products have sufficient size to allow for the

design of probes against multiple L1 loci, thereby enhancing

reliability of subtype discrimination. Other generic primer systems

like the GP5+/GP6+ or SPF mixes yield much smaller products and

therefore do not sufficiently match the potential of microarray

probe content [26–28]. To verify the presence of human genomic

DNA within a sample, PCRs were performed as duplex PCRs

containing a second primer pair targeting the human b-globin

gene, which is widely used as positive control marker in human

detection assays. Additionally, a multiplex PCR represents a more

challenging test-case for the microchannel environment.

For subtyping of PCR products, capture probes were designed for

the b-globin control product and the L1 PCR product of primer

pair MY09/11. 21mer tiling probes with a resolution of 1 bp were

designed to cover the whole region of all PCR products and a

prototype array with a 15,624 feature density was synthesized. In

that way, a maximal number of probes per sequence can be

experimentally validated by the hybridization of individual PCR

products from which a fraction with desired sensitivities and

selectivities can be chosen for the design of an optimized subtyp-

ing array. Purified, biotinylated PCR products of HPV 6b and b-

globin were individually hybridized to two arrays containing all

designed probes and relative binding efficiencies as well as cross-

hybridization tendencies were determined. All probes exhibiting a

median discrimination of the noncognate PCR product of>6 were

used for the design of a second generation subtyping array. This

resulted in 168 and 78 probes specific for b-globin and HPV 6b,

respectively.

This selection was further evaluated in a second round of cross-

hybridization experiments for the selection of a minimal number

of highly specific probes with a 6776 probe array. Overall, 8 probes

for HPV 6b and 3 probes for b-globin were used for the final array

design. Using 8 probes per target thereby results in a theoretical

multiplexing level of>260 or>600 targets when array densities of

6776 or 15,624 features/array are used and each probe is included

in 3 replicates.

PCRs targeting HPV and the human b-globin gene were con-

ducted in the microchannels of a Geniom biochip with a volume

of #3 mL per channel using the Geniom RT Analyzer as processing

station. This platform facilitates the workflow of the in chip PCR

by featuring integrated PCR temperature cycling, hybridization,

washing routines, fluorescence staining and detection. Plasmids

containing genomes of HPV subtype 6b were spiked in varying

concentrations into a background of human genomic DNA. This

allows for controlled titration of virus copies in a typical complex-

ity of a patient sample.

As a first test, PCR product formation was analyzed by agarose

gel analysis after the removal of the PCR mixture from the chan-

nels to assess product purity and detection limit with a standard

technique. In singleplex mode, of HPV L1 PCR product was clearly

visible with a detection limit of#620 copies per 3 mL PCR reaction

within a background of 0.5 ng human genomic DNA per reaction

with good reproducibility (Fig. 2).

When targeting b-globin in a singleplex PCR, product forma-

tion was visible when starting with 0.25 ng (#75 genome copies) of

human genomic DNA. Moreover, both the b-globin and HPV L1

products could be detected by agarose gel electrophoresis when

using 310 copies of HPV 6b and 0.25 ng human genomic DNA as

starting amounts in multiplex PCR mode (Fig. 2). This demon-

strates that the employed microchannels can be used as PCR

reaction containers that allow for excellent sensitivity. Impor-

tantly, these results were obtained using previously known stan-

dard PCR primer systems and standard reaction conditions

without special adaptation of the applied conditions to the micro-

channels.

Next, PCR product typing performance of the microarray was

tested in the fully integrated workflow with PCR conducted in the

microchannels. Chips used for multiplex PCRs containing differ-

ent starting amounts of human gDNA and HPV 6b with a non-

template control PCR were conducted with integrated hybridiza-

tion, washing, staining and detection. Fluorescence data of probe

features are shown in Fig. 3. No significant fluorescence was

observed in negative controls for HPV 6b-specific probes, whereas

RESEARCH PAPER New Biotechnology ! Volume 27, Number 2 !May 2010

FIGURE 2

Multiplex PCR for generic amplification of HPV and specific control
amplification of b-globin from samples containing human genomic DNA and
HPV genomic DNA. PCR was conducted using the primer pool MY09/11 for
generic amplification of the HPV L1 region, specific primers for human b-
globin and biotin-16-dUTP for integrated labeling. All PCRs were performed
in the microfluidic channels of a Geniom biochip. L: Ladder. 1: PCR conducted
with 620 copies HPV 6b and 0.5 ng human gDNA as template with primers
targeting HPV only. 2: Replicate PCR of lane 1. 3: PCR conducted with 310
copies HPV 6b and 0.25 ng human gDNA as template with primers targeting
HPV and human b-globin. 4: PCR conducted with 310 copies HPV 6b and
0.25 ng human gDNA as template with primers targeting human b-globin
only. 5: negative control.
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some background fluorescence was visible for the b-globin probes

in the absence of template. However, observed fluorescence for all

tested probes clearly exhibited dependence on starting amount of

template for both targets. This allows a semi-quantitative analysis

of target nucleic acids and could be employed for the determina-

tion of viral load and amount of host cell material within a patient

sample. Importantly, the detection limit using fluorescence of

probe-bound amplicons is lower than the limit obtained for agar-

ose gel electrophoresis and allows the detection of #100 copies of

HPV 6b,#75 human genome copies and a viral load of 1.3 HPV 6b

copies per human genome copy.

To test further targets and more demanding PCR complexities, a

6-plex PCR system was next established. Four primer pairs target-

ing individual loci on three different Bacillus strains (Bacillus

cereus, Bacillus subtilis and Bacillus thuringiensis ser. israelensis) were

designed for maximal specificity between these strains. Primer

pairs were individually tested in PCR tubes against their respective

target genomic DNA (data not shown). For a 6-plex PCR, the three

primer pairs were used in combination with primers specific for

HPV 6b and b-globin. PCRs targeting B. cereus (3000 genome

copies/array), B. subtilis (3000 copies) and B. thuringiensis ser.

israelensis (2300 copies) in the presence or absence of human

genomic DNA (1 ng/array) were conducted in parallel using a

regular PCR tube or the microchannels of a biochip as reaction

container. All microchannels contained identical sets of capture

probes specific for the targeted amplicons. PCR products were

formed in both the presence and absence of human genomic

DNA with no clear resolution of Bacillus-related products, presum-

ably owing to similar amplicon lengths (Fig. 4a). No significant

formation of byproducts was observed and no product was present

in negative control PCR without genomic DNA. PCRs carried out

in microchannels with integrated hybridization and fluorescence

imaging afforded a collection of capture probes with sufficient

intensity for further analysis (Fig. 4b). In contrast to agarose gel

electrophoresis, the presence of all three Bacillus-related products

was indicated by fluorescence signals in positive reactions (Fig. 4b,

1–2), whereas no significant fluorescence was observed for most

probes in the negative control PCR (Fig. 4b, 3). PCR reactions in the

absence of human genomic DNA were carried out in duplicate

using two arrays and individual capture probes within the two

New Biotechnology !Volume 27, Number 2 !May 2010 RESEARCH PAPER

FIGURE 3

Fluorescence data of hybridization of PCR products from integrated amplification, labeling and selective detection of HPV subtype 6b and human b-globin. All PCRs
wereperformed in themicrofluidic channels of a Geniombiochipwithprimerpairs targetingHPV6bandhumanb-globinwith starting template amounts as depicted
in the diagram. (a) Fluorescence data of probes specific for human b-globin. (b) Fluorescence data of probes specific for HPV 6b. NTC = Non-template control PCR.
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replicates exhibited similar fluorescence intensities (Fig. 4b, 1a,b).

No fluorescence was observed for probes specific for human b-

globin. For PCR in the presence of human genomic DNA (Fig. 4b,

2), fluorescence intensities seemed to differ slightly from PCRs in

the absence of human gDNA. This might reflect an impact of the

additional product formation on efficiency of PCRs targeting

Bacillus species. However, probes correctly indicated the presence

of individual Bacillus-related products. Additionally, the presence

of the human b-globin PCR product was clearly indicated by the

respective probes. These data show that PCRs involving multiple

genomes and up to six primer pairs can be conducted within the

microchannels and products can be selectively detected with

excellent sensitivity.

In summary, we have developed a fully integrated system to

combine all steps of a typical protocol for detection and typing of

genomic targets from non-amplified samples. The method allows

for semi-quantitative detection and typing of viral, pro- and

eukaryotic targets covering different complexities with high

sensitivity and selectivity. Owing to the fast cycles of microarray

design and testing, the system can be quickly adapted to new

genetic variants and provides a theoretical capacity for selective

detection of >600 target nucleic acids when prototyping is

employed in the way presented here. In contrast to previous

studies that employ separated amplification and subtyping

methods, often involving several further steps for labeling

and purification, the highly automated workflow results in low

hands-on-time and should be beneficial for reproducibility and

contamination risk.

We are currently developing increasingly multiplexed detection

arrays for both RNA and DNA targets and evaluate probe collec-

tions for detection and subtyping of various viral, as well as pro-

and eukaryotic pathogens that should enable high throughput

screening approaches for multiple disease types.
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The construction of synthetic biological systems involving 
millions of nucleotides is limited by the lack of high-quality 
synthetic DNA. Consequently, the field requires advances in 
the accuracy and scale of chemical DNA synthesis and in the 
processing of longer DNA assembled from short fragments. 
Here we describe a highly parallel and miniaturized method, 
called megacloning, for obtaining high-quality DNA by using 
next-generation sequencing (NGS) technology as a preparative 
tool. We demonstrate our method by processing both chemically 
synthesized and microarray-derived DNA oligonucleotides with  
a robotic system for imaging and picking beads directly off of  
a high-throughput pyrosequencing platform. The method can  
reduce error rates by a factor of 500 compared to the starting 
oligonucleotide pool generated by microarray. We use DNA 
obtained by megacloning to assemble synthetic genes. In 
principle, millions of DNA fragments can be sequenced, 
characterized and sorted in a single megacloner run, enabling 
constructive biology up to the megabase scale.

Current de novo gene construction1–4 rests on 1990’s technology for 
chemical oligonucleotide synthesis, which is costly and has error rates 
of 1 in 300 base pairs (bp). Errors are typically avoided by manually 
selecting the best Sanger sequences using electrophoretic automation. 
Recent innovations in programmable array technology5–8 offer the 
possibility to synthesize pools of thousands to millions of sequences 
per array with lengths comparable to conventional synthesis. The 
technology thus provides an extremely rich source of DNA oligo-
nucleotides with great flexibility and superior efficiency regarding 
throughput and cost per bp. However, the error rate of microarray-
derived oligonucleotides is typically higher compared to conven-
tional synthesis, making error avoidance or correction necessary. 
Furthermore it is challenging to divide the derived oligonucleotide 
pools, containing vast amounts of species, into subpools—necessary, 
for example, to guide the assembly of synthetic genes, chromosomal 
regions or whole pathways in synthetic biology.

Megacloning turns NGS from a previously purely analytical 
method into a preparative tool, and represents a tremendous source 

of sequence-verified DNA where the yield from one NGS run is 
equivalent to that from hundreds to thousands of Sanger-sequence 
runs. It therefore addresses the challenge of error reduction for both 
conventional and microarray-derived DNA oligonucleotides. The 
method yields high-quality DNA libraries containing perfect parts 
with desired and correct sequences in adjustable ratios useful for a 
wide range of (bio-)technological applications.

Here we present a proof-of-concept study aimed at the retrieval 
of clonal DNA with known sequence from an NGS platform after 
sequencing (Fig. 1). The workflow comprises the input of DNA of 
short length, an NGS run to generate sequence-verified DNA clones, 
the identification of DNA with desired sequence on the sequencer’s 
substrate and the retrieval of the clones of choice. The sources for 
the input DNA are for the most part independent of the megacloning 
step. For the present work, input DNA was derived from conven-
tional oligonucleotide synthesis and from DNA microarrays. We used 
the NGS platform GS FLX from Roche 454 Life Sciences9,10. Owing 
to its open-top architecture, accessibility of the beads and the bead 
size, this platform is well suited for a pick-and-place approach using 
micropipettes to retrieve specific beads from the 454-Picotiterplate 
(PTP) and transfer them into conventional multi-well plates for fur-
ther processing.

First, we established a technical setup for the controlled extrac-
tion of beads. The PTP at this stage contained a natural sample from 
human DNA, and extraction was done using a micropipette controlled 
by a microactuator device (Supplementary Data). To assess the fidel-
ity of our setup, we compared the reads coming from the GS FLX 
platform with Sanger-derived sequences of DNA amplified from 
extracted beads. The alignment of Sanger sequences to the NGS reads 
matched 99.9%. Only two mismatches were obtained in 2,410 bp.  
Both were putative insertions in the GS FLX reads occurring at 
 homopolymer stretches and therefore have a high likelihood of being 
platform-specific, base-calling artifacts9 (Supplementary Data).

Next we collected a set of 319 beads with DNA clones from a micro-
array-derived pool initially containing 3,918 sequences. The beads for 
extraction were selected to ensure that their GS FLX reads perfectly 
matched sequences in our starting pool. The obtained DNA and the 
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untreated pool were compared after being sequenced independently 
on a Genome Analyzer II (Illumina GAII). We mapped 3.1% of reads 
from the initial (nonenriched) DNA pool without errors to the set 
of 319 selected sequences. In the enriched pool the fraction of reads 
mapping perfectly to the target sequences was 84.3%. The increase 
by a factor of 27.2 shows clearly a successful enrichment of selected 
and correct sequences (Fig. 2a,b). Also the analysis of reads on the 
level of single-target sequences shows that for 94% of the sequences 
in the selected pool, 50% or more of the reads were correct (Fig. 2c). 
Error-prone sequences contained a high number of different species 
likely to be caused by known sequence variations on the GAII, as 
reported previously11.

To test the assembly of gene fragments based on megacloned 
oligonucleotides stemming from a microarray, we assembled two 
gene fragments, each ~220 bp in length, combining either nine 
or ten megacloned, bead-derived amplicons in a PCR-based gene 
assembly reaction12,13. The obtained assemblies were cloned and 
Sanger sequenced. Seven out of eight clones matched the target 
sequence perfectly. Interestingly, one clone showed insertions and 
deletions all located within a region 23 bp wide. Errors in assem-
blies originating from inaccuracies in the starting material could 
be expected to be distributed evenly over the entire construct. As 
this sequence was otherwise free of errors, these defects were likely 
caused by misassembly rather than errors in the building blocks used 
(Supplementary Data).

To further evaluate the capabilities of the megacloning approach to 
generate biologically functional genes, we applied the method to DNA 
fragments 274–394 bp in length and extracted 32 beads from the PTP 
carrying putatively correct sequences. These DNA fragments were 
the product of gene assembly reactions12 using overlapping 40-mer 
oligonucleotides synthesized using conventional phosphoramidite 
chemistry and could be assembled into a model gene encoding -d-
glucuronidase (uidA)14 (2,080 bp).

Three Sanger sequences obtained from the bead DNA were totally 
unrelated to the expected sequence and were probably caused by 
wrong bead extraction or contamination. The remaining 29 sequences 

covered 7,195 bp and matched without 
errors to the expected target sequences 
(Supplementary Data).

We then assembled the model gene out of 
nine DNA fragments from the set of 29 match-
ing beads. The full-length gene construct 
was again checked by Sanger sequencing for 
absence of errors, and the biological func-
tionality of the gene was tested in an enzy-
matic assay based on the conversion of X-Glc  
(5-bromo-4-chloro-3-indolyl- -glucoside) 
substrate into blue dye15 (Supplementary 
Data). Besides the proof of feasibility of 
generating biological functional genes, this 
experiment further mimics other applications 
of our technology, such as the use of sheared 
natural DNA and its subsequent sorting  
and reordering.

The absence of errors in 7,195 bp of DNA 
obtained from 29 extracted beads raised the 
question of achievable error rates from the 
megacloner process. Therefore we explored 
the potential of megacloning using a statistical 
model. This model considers two main sources 
of error—namely, wrong sequencing calls and 

polymerase errors during DNA amplification16. The calculations esti-
mated the chance of finding one error in our extracted sequence space 
of ~7,200 bp to be 29%, which is in line with our experimental findings. 
The theoretical error rate of bead amplicons after megacloning using 
the setup employed in this study was estimated to be 1 error in 21 kbp 
(Supplementary Data). Compared with the error rate in the starting 
material of 1 error in 40 bp (determined from GAII data of the initial 
microarray pool), this equals a 500-fold error reduction.

We further calculated the expected amount of reads from NGS 
that match the target sequences of a given pool without errors. These 
numbers are crucial to estimate the complexity of pools that can be 
processed in one megacloner run. The resulting efficiency and cost 
structure are influenced mainly by three parameters: the error rate of 
the starting pool, the sequencing accuracy and the length of the vari-
able sequence (Supplementary Data). With an error rate of 1 error 
in 40 bp and an average sequencing accuracy of 99.9% in the GS FLX, 
we expect a five- to tenfold cost reduction in producing DNA frag-
ments (compared to conventional oligonucleotide synthesis) that can 
be achieved now with the prototype device (Supplementary Data). 
Because these fragments are largely free of errors, further savings can 
be expected in gene synthesis because the cost of subsequent sequenc-
ing for final quality control will be lower.

In this work we demonstrated the targeted retrieval of bead-bound 
DNA from a high-throughput sequencer without major modifications 
to the sequencing process. Previous methods for error correction in 
DNA pools7,17–21 do not adequately handle collections of closely related 
oligonucleotide sequences that occur during assembly of repetitive 
sequences or multi-gene family libraries. They also do not enable hier-
archical assembly strategies, which are made possible by the ordered 
selection and physical separation of clonal DNA described here.

The megacloner process has been proven to be useful for retrieval 
and sorting of correct and functional sequences and to increase the 
portion of error-free sequences in a sample substantially. This tech-
nology allows the processing of DNA from microarrays but also from 
a variety of other sources, such as conventional oligonucleotide syn-
thesis or natural DNA fragments.
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Figure 1 Coalescence of DNA reading and writing. The general approach begins with DNA from 
a variety of sources. Here we used oligonucleotides synthesized from microarrays as well as from 
conventional sources. Then, next-generation sequencing is used to read and identify oligonucleotides 
with desired sequences. Here we used the GS FLX platform (454/Roche). Finally, the DNA is sorted 
and retrieved selectively, in this case with a microactuator-controlled micropipette guided by two 
microscope cameras. The technologies used for retrieval depend on the sequencing platform.
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Megacloning could be optimized beyond the estimates in this work 
of one error in 21 kbp from input DNA having an error rate of 1 in  
40 bp. Although such raw material can be obtained by state-of-the-art 
microarray technologies, the quality of input DNA could be increased 
further by addressing the amplification step of bead-bound DNA—for 
example, with higher fidelity polymerases, as the predicted contribu-
tion of the polymerase to the error rate is 4.7-fold higher than the 
expected error rate of the megacloner itself (Supplementary Data). 
Another accessible parameter for optimizing the overall process in 
terms of error rates is improvement in the quality of the DNA starting 
material. Also, optimization of sequencing accuracy could be a way to 
improve the ability to select correct parts after NGS. This is, however, 
the subject of ongoing optimization in the scope of NGS development, 
including ligase-based methods with improved accuracy22.

The pool used in our conceptual study contained ~4,000 
sequences. According to our results and extrapolations, this can be 
increased to ~30,000 sequences per pool with the described setup. 
As the bead extraction is generally independent of the pool com-
plexity, it is mainly limited by the NGS platform and the quality of 
the starting material (Supplementary Data). More advanced micro-
array formats are able to deliver libraries with even higher complex-
ity and of sufficient quality to fit into a gene assembly process23. 
Therefore, with an appropriate degree of automation that reaches 
an extraction frequency of two or three beads per minute, which is 
achievable with state-of-the-art robotics, the work-up of one PTP 
becomes possible within days, resulting in > 106 bp per plate. Hence, 
the downstream process (amplification, cleanup, assembly) will  
represent the next bottleneck.
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Figure 2 NGS-based comparison of untreated and megacloned oligonucleotide pools from microarray. (a) Comparison of the initial microarray 
oligonucleotide pool (blue) and the pool enriched with the megacloner technology (red) based on the results of the Illumina GAII runs. The bars in 
set 1 represent the fraction of reads that could be mapped allowing up to three errors. Bars in set 2 show the fractions of perfectly matching reads to 
the sequence set of the initial pool (3,918 sequences). The difference between the blue and the red bar in set 2 represents the enrichment of correct 
sequences by megacloning. The bars in set 3 and set 4 show the fractions of reads mapping to sequences from the selected pool of 319 sequences. 
The difference between blue and red bars in set 3 shows the enrichment of a selected 319 sequences before megacloning compared with after. Blue 
and red bars in set 4 represent the enrichment of sequences that are in the set of 319 selected sequences and that are correct. (b) Histogram of read 
counts in the Illumina GAII data of the initial pool (blue) and the enriched megacloned sample (red). Only reads mapping without errors to one of the 
319 selected target sequences have been taken into account. To compare the two NGS runs on the basis of read counts, we converted the numbers 
into parts-per-million (p.p.m.) from the total number of filtered reads. (c) Composition of reads from the Illumina GAII data including 319 selected 
sequences in the initial pool (top) and the enriched pool (bottom). The oligonucleotides are sorted by the fraction of correct reads. Green, correct reads; 
red, error-prone reads (compartments in the red bars represent single sequences with a read count of 0.1% or more of total reads for the particular 
sequence); light blue, sum of nonunique error-prone reads where each sequence represents less than 0.1% of total reads for the particular sequence; 
blue, unique reads. In the Illumina GAII data set from the enriched sample, just 315 out of 319 selected sequences could be detected.
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Our next focus in the present context is improvement and 
 automation of physical bead extraction. The workflow used in this 
study still involved a considerable number of manual steps and some 
human intervention, which was identified as the most important 
source of error in terms of extraction of unwanted beads. Therefore, 
the success rate of ~90% (29 beads out of 32) has to be increased for 
the bead localization and retrieval process.

The method described here holds the potential to decrease produc-
tion cost for synthetic DNA by one or more orders of magnitude. This 
source of high-quality DNA could aid the field of synthetic biology, as 
well as the production of libraries for antibodies or enzyme variants. 
In addition to synthetic sources, the sorting of natural DNA could 
enable the quick reconstruction or combination of DNA fragments 
to assemble genes, chromosomes or genomes, while simultaneously 
including synthetic parts of DNA.

The principle that we applied here using the GS FLX technology 
should also be generally applicable to other available NGS platforms 
such as Illumina’s GAII, SOLiD, the Polonator or others. In the 
present context, the advantage of the GS FLX platform is the robot-
accessible platform architecture and the comparably large size of the 
beads. Owing to different architectures of the other platforms, such 
as partially closed systems and substantially smaller DNA carriers, 
harvesting DNA from those will require a different mechanism, such 
as optical approaches including photosensitive and cleavable linker-
molecules. The advantage of these platforms is a considerably higher 
number of DNA clones, which potentially could increase the capacity 
and throughput of the technology up to the gigabase level.

METHODS
Methods and any associated references are available in the online version 
of the paper at http://www.nature.com/naturebiotechnology/.

Note: Supplementary information is available on the Nature Biotechnology website.
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Oligo synthesis, sequence design, adaptors. Oligonucleotides used for this 
work were synthesized on programmable microarray synthesizers using light-
directed synthesis methods5. Conventional oligonucleotides used for gene 
assembly were obtained from Sigma Aldrich. Harvesting of oligonucleotides 
from microarray surfaces was performed by chemical cleavage of succinate-
ester bonds using ammonia hydrochloride solution.

Amplification of microarray-derived oligonucleotide pools by emulsion 
PCR. Microarray-derived oligonucleotide pools were amplified before NGS 
using emulsion PCR24. Therefore universal terminal sequences were attached 
during synthesis and served as primer regions. Amplification primers con-
tained adaptors for sequencing on the Illumina GAII platform and/or the 454 
GS FLX (Supplementary Data).

Sequencing on the 454 GS FLX. The sample preparation for the PCR-
 amplified oligonucleotides was done according to the manufacturer’s proto-
cols (Roche/454). To keep the DNA intact after sequencing, we exchanged the 
bleaching cleaning buffer with TE buffer before the sequencing run to avoid 
degradation of DNA during the final cleaning steps of the Roche sequencer.

Data analysis of 454 data and image conversion. NGS reads obtained from 
the GS FLX sequencer were aligned to the target sequences in the oligonucleo-
tide pool to find the best matching sequence for every read and to perform 
further analysis, such as error rate estimation. Perfect matching sequences 
were selected and localized in the sequencer image by using the coordinates 
attached to every read sequence. For sequence data analysis, we used various 
Python scripts using the BioPython package. The images from the GS FLX 
sequencer were converted into the TIFF standard format using the Python 
Imaging Library.

Bead localization and extraction. After aligning the GS FLX reads to the 
set of target sequences, we selected reads that perfectly matched one of the 
desired oligonucleotide sequences in the pool. For localization of beads we 
located the corresponding chemiluminescent signals in the converted raw 
image from the GS FLX platform using the x- and y-coordinates that were 
included in the NGS raw data. To locate beads in the PTP, we identified refer-
ence points in the raw image and their corresponding positions in the PTP 
using suitable patterns of light signals. Based on these reference points the 
bead positions on the PTP were calculated using an algorithm for scaling and 
rotation. The extraction was performed with a micropipette with an outer 
diameter of 28 m. For pipette handling we used a three-axis microactuator 
(Supplementary Data). Before extraction of beads the PTP was stored under 
a water layer to prevent desiccation and shrinking of beads. After picking, the 
beads were transferred immediately into a PCR vial and stored under water 
until further processing.

Amplification of DNA from beads. Amplification of bead-bound DNA 
was performed with the primers 454-A and 454-B, targeting the Roche/454 
adaptors, or ‘slx-fw-long’ and ‘slx-rev-long’ for Illumina adaptors. For ampli-
fication of fragments with 40-mer variable regions, primers were 5 -bioti-
nylated to facilitate subsequent removal of primer regions on a streptavidin 
matrix. PCR conditions: 20 mM Tris-HCl (pH 8.8), 10 mM ammonium-
sulfate, 10 mM potassium chloride, 2 mM magnesium-sulfate, 0.1% 
Triton X-100, 200 M each dNTP, 2% (vol/vol) DMSO, 1 M each primer,  
50 U/ml native pfu polymerase (Fermentas). Cycling: initial denaturation 
96 °C (2 min); then 30 cycles of 96 °C (30 s), 63 °C (30 s), 72 °C (30 s) and 
final elongation 72 °C (3 min). After amplification, all PCR products were 
analyzed on PAGE (Supplementary Data) to check specificity and yield. 

For generation of the subpool containing 319 sequences, we estimated the 
concentration on the basis of the gel analysis and mixed the amplicons in 
equimolar concentrations.

Illumina sequencing and data analysis. As the sample contained suitable 
adaptors all steps regarding adaptor ligation have been omitted. All other steps 
were done according to the protocols from Illumina.

The NGS raw data obtained from Illumina GAII were processed by the 
following steps.

1. Truncation of reads to the length of the variable regions (40 bp).
2. Filtering out reads containing ambiguities (filtered reads).
3. Group reads with similar sequences (bins).

Subsequently for each read we identified the best matching target sequence 
from the oligonucleotide pool by mapping all reads to a pseudo-genome using 
rapid alignment of small RNA reads (razerS) (http://www.seqan.de/projects). 
The pseudo-genome was generated by concatenation of the variable parts 
of pool sequences separated by 40-mer poly-T stretches. The corresponding 
target sequence could then be determined by the matching position in the 
pseudo-genome. Alignments from the razerS output were used to determine 
insertions, deletions and substitutions. To compare the two GAII runs based 
on the number of correct reads, we converted the read counts into parts-per-
million units (p.p.m.), taking the number of filtered reads before the matching 
procedure (after step 2) as a basis.

Assembly of gene fragments from conventional oligonucleotides. Gene frag-
ments > 200 bp were assembled from conventionally synthesized 40-mer oligo-
nucleotides having a constant overlap region of 20 nucleotides to the adjacent 
oligomer. Primer regions for 454 sequencing and restriction sites for primer 
removal were included during assembly. The assembly reaction contained  
5 nM of each construction oligonucleotide and 200 nM of terminal primers. 
PCR conditions: 1× KOD polymerase buffer (Novagen), 1.25 mM MgSO4,  
40 M each dNTP, 5 U/ml KOD Hot Start Polymerase (Novagen). Cycling 
for gene assembly: initial denaturation 96 °C (4 min); then 30 cycles of 96 °C  
(10 s), 55–40 °C touchdown (30 s), 72 °C (10 s). For subsequent amplification: 
96 °C (10 s), 55 °C (30 s), 72° (30 s), final elongation 72 °C (3 min).

Assembly of genes from >200 bp fragments. Gene assembly up to 2 kbp 
were performed according to the protocol used for assembly of > 200 bp from 
oligonucleotides.

Primer removal and cleanup of bead amplicons before gene assembly. For 
removal of primer regions amplicons were incubated with LguI restriction endo-
nuclease in 1× Tango buffer (Fermentas) for 3 h at 37 °C. For > 200 bp fragments, 
small restriction fragments containing primer regions were removed by PCR 
purification columns (GenElute PCR Clean-Up, Sigma Aldrich). For cleanup 
of microarray-derived fragments, we used 40-mer variable region biotinylated 
primers during bead DNA amplification and removed restriction products con-
taining biotin residues using streptavidin matrix. The 40-mer fragments were 
ethanol precipitated and dissolved in water before further processing.

Assembly of genes from 40-mer double-stranded DNA fragments. For the 
assembly of genes from 40-mer dsDNA we used a two-stage assembly pro-
tocol including a primerless PCR followed by a PCR for amplification of the 
 resulting products described previously13.

24. Williams, R. et al. Amplification of complex gene libraries by emulsion PCR.  
Nat. Methods 3, 545–550 (2006).
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only in physiological but also in pathological processes1. Although 
most reported miRNA expression profiles have been generated from 
solid tissues, there is growing evidence that miRNA profiles are readily 
accessible from body fluids, such as blood2,3. The aim of our multi-
center study was to elucidate and compare blood expression profiles 
of 863 miRNAs for different human diseases to test for disease-specific 
alterations. The generated blood-based ‘miRNome’ data have been 
deposited in the Gene Expression Omnibus and updated versions are 
available at http://genetrail.bioinf.uni-sb.de/wholemirnomeproject/. 
We applied identical standardized experimental and biostatistical pro-
cedures to the 454 analyzed blood samples from individuals with lung 
cancer, prostate cancer, pancreatic ductal adenocarcinoma, melanoma, 
ovarian cancer, gastric tumors, Wilms tumor, pancreatic tumors, 
multiple sclerosis, chronic obstructive pulmonary disease (COPD),  
sarcoidosis, periodontitis, pancreatitis or acute myocardial infarction 
and from unaffected individuals (controls). All participating cent-
ers had to contribute samples to the control group (Supplementary 
Table 1). The different control cohorts had a high degree of 
 reproducibility between the centers (Supplementary Fig. 1).

The platform we used is a highly specific primer extension– 
based microarray that shows a very small degree of cross-
 hybridization and can be used to distinguish between members 
of the let-7 family4. To test for technical variance, we repeated the 
measurements on four samples (two blood samples and two tissue 
samples) and found a median correlation of 0.97. The correla-
tion between different samples was significantly lower as shown 
by two-tailed unpaired Wilcoxon Mann-Whitney test (P < 0.05) 
(Supplementary Fig. 2). To estimate the biological variance, we 
analyzed blood samples taken from a healthy individual at three 
different time points during the day (9 a.m., 12 noon and 3 p.m.), 
with duplicate measurements at each time. Median correlation 
between the time points was 0.98 and between duplicates it was 
0.99 (Supplementary Fig. 3).

On average, we found for each disease 103 deregulated miRNAs 
(P < 0.05; t-test after Benjamini-Hochberg adjustment). A total 
of 62 miRNAs (7.18% of all 863) were deregulated in at least six 
diseases in comparison to controls (Supplementary Table 2), and 
24 miRNAs (2.78%) were deregulated in >50% of the 14 analyzed 
diseases. One miRNA (hsa-miR-320d) was deregulated in  
11 diseases and three miRNAs (hsa-miR-423-5p, hsa-miR-146b-3p  
and hsa-miR-532-3p) were deregulated in nine of the tested 

Toward the blood-borne 
miRNome of human 
diseases
Andreas Keller1,2,21, Petra Leidinger2,21,  
Andrea Bauer3, Abdou ElSharawy4, Jan Haas5, 
Christina Backes2, Anke Wendschlag6, Nathalia Giese7,  
Christine Tjaden7, Katja Ott7, Jens Werner7,  
Thilo Hackert7, Klemens Ruprecht8, Hanno Huwer9, 
Junko Huebers10, Gunnar Jacobs4, Philip Rosenstiel4, 
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In a multicenter study, we determined the expression profiles 
of 863 microRNAs by array analysis of 454 blood samples from 
human individuals with different cancers or noncancer diseases, 
and validated this ‘miRNome’ by quantitative real-time PCR. 
We detected consistently deregulated profiles for all tested 
diseases; pathway analysis confirmed disease association of the 
respective microRNAs. We observed significant correlations  
(P = 0.004) between the genomic location of disease-
associated genetic variants and deregulated microRNAs.

MicroRNAs (miRNAs) can regulate hundreds of genes post-
 transcriptionally and appear to regulate virtually all cellular pro-
cesses. Owing to these properties, miRNAs have a critical role not 
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diseases. Known properties of these miRNAs are listed in 
Supplementary Table 2. Most miRNAs were consistently deregu-
lated, that is, they were either up- or downregulated in the major-
ity of diseases (Fig. 1). Analysis of the human microRNA disease 
database5 revealed that only a few of the miRNAs deregulated in 
blood were also previously reported as deregulated in solid tissues 
derived from individuals with the same diseases (Supplementary 
Table 3). A total of 121 miRNAs (14%) were not deregulated in 
any of the 14 analyzed diseases.

We carried out pathway analysis of putative target genes for 
miRNAs that were deregulated in at least six of 14 diseases (n = 62)  
and for miRNAs that were not deregulated in any disease (n = 121).  
We extracted the targets with P < 0.001 for both miRNA sets 
using GeneTrail6,7. We found a total of 7,598 target genes for both 
miRNA sets. Of these genes, 27% were targets of miRNAs in both 
sets, 21% were targets of miRNAs that were frequently deregu-
lated and 52% were targets of miRNAs that were not deregulated 
in our study. We applied an over-representation analysis relying  
on the hypergeometric distribution using GeneTrail to find signi-
ficantly enriched (P < 0.05) biochemical pathways. For the set of fre-
quently deregulated miRNAs, we found several disease-associated  
pathways (Supplementary Table 4) including ‘pathways in cancer’.  
We did not detect any enriched pathway for the target genes of 
the 121 miRNAs that were not significantly deregulated in any 
disease. Pathways with significantly fewer (P < 0.05) targets than 
expected are indicated in Supplementary Table 4.

To explore whether the significantly deregulated miRNAs are in 
close genomic physical proximity to known susceptibility variants, 
we extracted 3,495 published single-nucleotide polymorphisms 
(SNPs) from the US National Institutes of Health genome-wide 
association study catalog (accessed 28 July 2010) and searched 
for the coding sequence of miRNAs in a genomic window of  
250 kilobases (kb) around these SNPs. We detected 241 cases of 
physical proximity between SNPs and miRNAs. Of these, seven 
were related to diseases included in our study, representing 
interesting candidates for testing the hypothesis that miRNA 
deregulation depends on nearby genetic variants. Of the seven 

SNPs, four are associated with heart diseases, including cardiac 
structure and function (rs7910620) and mean platelet volume 
(rs2393967, rs10914144 and rs10506328), two with multiple scle-
rosis (rs703842 and rs17445836) and one with melanoma. Notably, 
the relevant miRNA was significantly deregulated (P < 0.05) in 
the same disease, in six of the seven cases. To test whether these 
results could occur by chance, we carried out 106 non-parametric 
permutation tests. The proximity of genetic variants and deregu-
lated miRNAs was significant (P = 0.004). All pairs of SNPs and 
adjacent miRNAs are summarized in Supplementary Table 5 and 
one representative example is presented in Figure 2.

To distinguish individuals with disease from controls or from 
individuals with other diseases by miRNA profiling, we applied 
machine-learning techniques. Each of the 14 diseases was separated 
from controls with an average accuracy of 88.5%, ranging from at 
least 81.3% to up to 100% (Supplementary Table 6). By using only 
two miRNAs, we obtained an average accuracy of 72.5%, whereas 
the use of ten miRNAs resulted in an average accuracy of 80.6% 
(P = 0.0002, two-tailed unpaired Wilcoxon Mann-Whitney test) 
(Supplementary Fig. 4). Next, we performed pair-wise classifica-
tion analyses between different diseases using samples collected at 
the same site to exclude between-institution bias. For the separa-
tion between pancreatic cancer and other pancreatic diseases, the 
accuracy was not significant (P > 0.05). However, this result does 
not necessarily imply a general similarity between miRNA profiles 
of malignant and nonmalignant diseases of the same organ. For 
example, we could distinguish lung cancer from COPD with an 
accuracy of 91.7%, corresponding to a highly significant classifica-
tion (P < 10−6). COPD is a common co-morbidity of lung cancer 
and also precedes tumors in 50–90% of cases8. Thus, a biomarker 
separating individuals with lung cancer from those with COPD 
but without cancer may prove useful.

We performed an independent validation of the miRNA profiles 
using different technologies and cohorts of individuals. In previous 
studies, we had confirmed 474 deregulated miRNAs in different 
diseases by performing quantitative real-time PCR (qRT-PCR) 
on samples from several individuals with lung cancer, melanoma,  
glioma and acute myocardial infarction8–11. Here we addition-
ally performed a large-scale validation for a larger dataset includ-
ing data for 44 individuals with lung cancer and 41 with COPD.  
We selected 18 significantly deregulated (P < 0.05) miRNAs that sepa-
rate both diseases in quadruplicate by  qRT-PCR using the SmartChip  
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Figure 1 | Bubble plot of miRNAs that are up- or downregulated in several 
diseases. Bubble sizes correspond to the number of deregulated miRNAs. Orange 
bubbles denote miRNAs that are more often significantly down-regulated  
(P < 0.05) than upregulated. Blue bubbles denote miRNAs that are either more 
often upregulated or equally frequent up- and downregulated. Homo sapiens 
(hsa)-miR-320d was significantly deregulated (P < 0.05) in 11 diseases.

Figure 2 | Representative example for the physical proximity of a significantly 
deregulated miRNA and a known SNP. A schematic of the human chromosome 
10q21 with hsa-miR-1296 (magenta) and four SNPs (arrows) including SNP 
rs2393967 (SNP database (dbSNP) accession number) that is associated 
with heart diseases. The plot shows expression and s.d. of hsa-miR-1296 
in the blood of individuals with acute myocardial infarction (AMI, n = 20) 
compared to that in healthy controls (n = 70). P = 0.006.

Chromosome 10
(q21.3)

Position: 64802800 64803400
600 bases

rs2393967

miRNAs: miR-1296

SNPs: E
xp

re
ss

io
n 

in
te

ns
ity

 o
f m

iR
-1

29
6

Con
tro

l
AMI

200

150

100

50

0



©
20

11
 N

at
ur

e 
A

m
er

ic
a,

 In
c.

  A
ll 

ri
gh

ts
 r

es
er

ve
d.

NATURE METHODS | ADVANCE ONLINE PUBLICATION | 3

BRIEF COMMUNICATIONS

Real-Time PCR System (WaferGen Biosystems). Of those 18 miRNAs,  
we validated 14, that is, these miRNAs were deregulated in a 
comparable manner in array and qRT-PCR experiments. The 
 remaining four miRNAs were only rarely expressed as indicated by 
mean threshold cycle (Ct) values >28.5. In Supplementary Table 7  
we list raw qRT-PCR data and the variance for the replicates. 
The overall correlation of the quantile normalized qRT-PCR and 
array results for the 45 analyzed miRNAs (27 miRNAs of previous 
studies and 18 miRNAs in the present study) was as high as 0.86 
(Supplementary Fig. 5). We provide scatter plots and fold changes 
for all tested miRNAs (Supplementary Table 8).

We developed the concept of disease probability plots (DPPs) 
to determine the probability that a miRNA expression profile 
correctly indicates that an individual has one or several of the 
analyzed diseases. We computed the probabilities via a regression 
approach for each individual sample. Analyzing all DPPs, we pre-
dicted the correct disease in 67.45% of all individuals (exemplary 
DPPs are available in Supplementary Fig. 6). Assuming that all 
diseases are almost equally frequent in our dataset, this translates 
into an over eightfold increased accuracy of disease prediction by 
miRNA profiling as compared to random guessing.

Although our study supports the idea that blood cells have an 
miRNA pattern that varies between different diseases, there are 
several points to be considered when blood miRNA patterns are 
associated with diseases. Any association between a miRNA pat-
tern and a disease can be confounded by co-morbidity for another 
disease. Furthermore, blood cells may not contribute equally to 
an miRNA pattern, with expression variation in a few cell types 
accounting for most of the pattern. Indeed, as recently shown for  
27 different cell populations isolated from normal mouse hemato-
poietic tissues, different blood cell types have specific miNA  
expression patterns12. Distribution of the complete blood count 
(CBC) is known to vary in disease, for instance owing to cancers 
or diseases of the blood13 or bone marrow, cancers that spread to 
the bone marrow, autoimmune disease or side effects of medica-
tions. There are also variations in CBC in healthy individuals. It is 
possible that changes in miRNA profile in disease reflect shifts in 
the distribution of different blood-cell types. We tested this pos-
sibility using principal-component analysis; specifically, we car-
ried out standard principal-component analysis on the expression 
matrix (http://genetrail.bioinf.uni-sb.de/wholemirnomeproject/) 
and computed for each principal component the fraction of the 
overall data variance. Although it is likely that shifts in cell popu-
lations affect the overall miRNA profiles, we observed that even 
27 different cell populations, represented by the first 27 principal 
components with highest variance, can account for only about 60% 
of the total variance in the miRNA profiles. Taken together, the 
ability to recognize systematic features in human blood cells and 
the relatively small normal CBC variation in healthy individuals 

provides support for the feasibility of using miRNA expression pat-
terns in peripheral blood as the basis for detection of disease13.

Identifying the complex relationships between disease and 
changes in miRNA expression patterns in blood cells could con-
tribute not only to an understanding of the mechanism behind 
the pattern and of disease associations but provide insight into 
the pathological processes because miRNAs in turn influence the 
expression of thousands of genes.

METHODS
Methods and any associated references are available in the online 
version of the paper at http://www.nature.com/naturemethods/.

Accession codes. Gene Expression Omnibus: GSE31568.
Note: Supplementary information is available on the Nature Methods website.
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Blood samples. The blood samples were collected and proc-
essed from five different institutions working closely together 
with the Heidelberg Biomarker Discovery Center (http://www.
bdc-heidelberg.com/biomarker-discovery/index.cfm). The par-
ticipating centers were the German Cancer Research Center 
(Deutsches Krebsforschungszentrum), Saarland University, 
Heidelberg University, Kiel University and Wuerzburg 
University. Groups at each of these centers provided samples 
from individuals with disease and from healthy individuals. 
Blood was extracted using PAXgene Blood RNA tubes (BD).

All blood donors participating in this study gave their informed 
consent. A complete list of screened samples is provided in 
Supplementary Table 1.

miRNA extraction and microarray screening. A total of 2.5 ml 
to 5 ml of blood were extracted in PAXgene Blood RNA tubes. 
The PAXgene Blood RNA tubes ensure stabilization of RNA and 
hence stabilization of the expression profiles. Blood cells were 
obtained by centrifugation at 5,000g for 10 min at room tempera-
ture (18–25 °C). The miRNeasy kit (Qiagen) was used to isolate 
total RNA including miRNA from the resuspended blood cell 
pellet according to the manufacturer’s instructions. The eluted 
RNA was stored at −70 °C.

All samples were shipped overnight on dry ice and analyzed 
with the fully automated Geniom RT Analyzer (febit biomed) at 
febit’s in-house genomic service department using the Geniom 
Biochip miRNA Homo sapiens version v12 to v14. Geniom bio-
chips consist of a meandering microchannel that forms the so-
called ‘biochip’. Each biochip can be used to analyze eight different 
samples independently. The flexible oligomer synthesis is done  
in situ inside the microchannels using a light-directed process. The 
probes were designed as the reverse complements of the mature 
miRNA sequences as published in miRBase plus nucleotides at the 
5 -end of the capture oligonucleotide as needed for the enzymatic 
extension (microfluidic primer extension assay; MPEA). For con-
ventional miRNA hybridization assays the reverse complement of 
the miRNA sequences as published in the miRBase releases version 
12.0 to 14.0 (ref. 14) (in total 863 mature miRNAs and miRNA star 
sequences) were synthesized with seven intraarray replicates4.

We mixed 250 ng of total RNA with 1 l of 5 pM miRNA spike-in 
mix and dried it in a tabletop speedvac (Univapo 100H). Each RNA 
pellet was fully resuspended in 25 l of hybridization buffer and 
denatured for 3 min at 95 °C. Until the hybridization, the denatured 
samples were kept on ice. Microarray hybridization was performed 
using the Geniom RT Analyzer and Geniom miRNA biochips 
Homo sapiens. The samples were loaded automatically and hybridi-
zation of unlabeled sample has been carried out for 16 h. On-chip 
sample labeling with biotin was carried out by MPEA4. Therefore, 
streptavidin R-phycoerythrin conjugate (SAPE) solution, antibody 
solution, equilibration buffer (1× NEB 2; New England Biolabs), 
stop buffer (6× SSPE; Applied Biosystems) and enzyme solution 
were placed into the RT Analyzer. The array equilibration was fol-
lowed by incubation with enzyme solution. Enzyme incubation 
was stopped with stop buffer. SAPE staining, signal amplification 
and detection proceeded fully automated within the Geniom RT 
Analyzer. All steps from sample loading to miRNA detection were 
processed fully automatic inside the machine. As internal control 
standards five different probes labeled with Cy3 or biotin (bio) 

were included: 5 -[Cy3]TCACTCATGGTTATGGCAGCACT 
GC-3  (80 nM), 5 -[bio]GTAGTTCGCCAGTTAATAGTTTGCG-3   
(12 nM), 5 -[bio]TCTTACCGCTGTTGAGATCCAGTTC-3  (4 nM),  
5 -[bio]CCCACTCGTGCACCCAACTGATCTT-3  (0.4 nM) and 
5 -[bio]CCATCCAGTCTATTAATTGTTGCCG-3  (0.04 nM).

The enzymatic MPEA together with the fully automated han-
dling ensured a high degree of specificity as well as excellent 
reproducibility.

The detection pictures were evaluated using the Geniom Wizard 
Software. For each feature, the median signal intensity was calcu-
lated. Following a background correction step, the median of the 
seven replicates of each miRNA was computed. To normalize the 
data across different arrays, quantile normalization15 was applied 
and all subsequent analyses were carried out using the normalized 
and background subtracted intensity values. Since the miRBase has 
been upgraded twice in the past year from version 12.0 to version 
14, we used for the final data analysis the 863 miRNAs that were 
consistently present in all three versions. The whole miRNome 
data are available for download from the project homepage (http://
genetrail.bioinf.uni-sb.de/wholemirnomeproject/) and in the Gene 
Expression Omnibus16.

Statistical analysis. Single miRNA analyses were carried out using 
t-tests (unpaired, two-tailed) after verifying approximate normal 
distribution using Shapiro-Wilk test. The resulting P values were 
adjusted for multiple testing using Benjamini-Hochberg’s adjust-
ment17. In addition, the area under the receiver characteristic 
curve was computed.

Supervised classification of samples was carried out using sup-
port vector machines (SVM)18 as implemented in the R e1071 
package19. As parameters of the SVM, we evaluated different ker-
nel methods including linear, polynomial (degree 2 to 5), sigmoid 
and radial basis function kernels.

To detect miRNAs that contribute most diagnostic information 
and thus lead to accurate classifications, a subset selection tech-
nique has been applied. Specifically, an iterative filter approach 
based on the t-test was carried out. In each iteration, the s miRNAs 
with lowest P values were computed on the training set in each 
fold of a standard tenfold cross-validation, where s was sampled in 
regular intervals between 2 and 500 miRNAs. The respective subset 
was used to train the SVM and to carry out the prediction of the 
test samples in the cross validation. To compute probabilities for 
classes, a regression approach based on the output of the support 
vectors has been applied. To test for overtraining, nonparametric 
permutation tests were applied. All computations were carried out 
using the publicly available R statistical language19.

To evaluate the classification, we computed accuracy, specificity 
and sensitivity.

Pathway analysis. To detect biochemical networks that are puta-
tively regulated by disease miRNAs, we carried out a so-called 
overrepresentation analysis. For a set of miRNAs, we extracted 
the targets using Genetrail (http://genetrail.bioinf.uni-sb.de/) via 
MicroCosm V5 (http://www.ebi.ac.uk/enright-srv/microcosm/
htdocs/targets/v5/) that uses the miRanda algorithm. To reduce 
the number of false positive miRNA targets, we applied a signifi-
cance value threshold of 0.001 (ref. 6). The set of putative mRNA 
targets of disease relevant miRNAs was used as input for the web-
based gene set analysis tool GeneTrail to find Kyoto Encyclopedia 
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of Genes and Genomes (KEGG) pathways that are significantly 
enriched with targets of disease relevant miRNAs20. All signifi-
cance values were corrected for multiple testing by Benjamini-
Hochberg adjustment.
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Next-generation sequencing identifies novel microRNAs in peripheral
blood of lung cancer patientsw
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MicroRNAs (miRNAs) are increasingly envisaged as biomarkers for various tumor and

non-tumor diseases. MiRNA biomarker identification is, as of now, mostly performed in a

candidate approach, limiting discovery to annotated miRNAs and ignoring unknown ones with

potential diagnostic value. Here, we applied high-throughput SOLiD transcriptome sequencing of

miRNAs expressed in human peripheral blood of patients with lung cancer. We developed a

bioinformatics pipeline to generate profiles of miRNA markers and to detect novel miRNAs with

diagnostic information. Applying our approach, we detected 76 previously unknown miRNAs and

41 novel mature forms of known precursors. In addition, we identified 32 annotated and seven

unknown miRNAs that were significantly altered in cancer patients. These results demonstrate that

deep sequencing of small RNAs bears high potential to quantify miRNAs in peripheral blood and

to identify previously unknown miRNAs serving as biomarker for lung cancer.

Introduction

For many human diseases there is still a lack of peripheral
biomarkers for efficient disease detection, therapy monitoring,
and estimation of prognosis. Especially in patients with lung
cancer, timely diagnosis and early specific treatment is crucial
to improve patients’ individual outcome. This is often difficult
since today’s diagnostic procedures only allow comparatively
late diagnosis and hence treatment. Novel biomarkers for lung
cancers, regardless of the underlying histological differences,
that allow specific discrimination between patients from
healthy individuals could markedly improve clinical care.

MiRNAs regulate a manifold of biological processes
through negative regulation of gene expression. This reveals
their high potential to influence almost every—physiological
or pathophysiological—molecular pathway. Recent evidence
also suggests that miRNAs impact on the development of

human diseases including cancer. Most recently, miRNAs were
furthermore recognized as promising non-invasive biomarkers
for diverse human disorders.1–6

While array-based technologies or quantitative real-time
PCR (qRT-PCR) have commonly been used to characterize
the annotated human miRNome known at the time of these
studies, next-generation sequencing (NGS) approaches now
offer the option of getting an even deeper understanding of
miRNA profiles in human diseases. However, only a few
studies examined miRNA profiles in human blood or other
body fluids including serum and plasma by NGS. Most of the
published NGS studies focus on the analysis of already known
miRNAs but less on the identification of novel miRNAs. For
example, for non-small cell lung cancer (NSCLC) a four-miRNA
serum signature was identified using Solexa sequencing.7 In
addition, miRNA signatures derived from serum of patients
with esophageal squamous cell carcinoma and gastric cancer
were identified by high-throughput sequencing.8,9 Further-
more, a 13-miRNA-based biomarker was identified that
discriminates between HBV cases from controls and HCV
cases, and also HBV-positive hepatocellular carcinoma cases
from controls and HBV cases.10 Ge et al.11 revealed the
potential of NGS of miRNAs circulating in maternal plasma
for non-invasive prenatal diagnostics and Luo et al.12 already
identified placenta-specific miRNAs in pregnant women. One
study that provides novel miRNA was from Vacz et al. who
predicted 370 novel miRNAs in PBMC of healthy
individuals.13
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Here, we performed NGS of small RNAs in human peripheral
blood of patients with lung cancer and of healthy control
individuals. By using SOLiD sequencing technology and DNA
barcoding we generated over 25 million sequencing reads per
sample and identified numerous known and novel miRNAs
specific for lung cancer. The results of this study are integrated
in the ‘‘Whole Disease miRNome’’ project,6 which aims to
improve our understanding of the human miRNome in a wide
range of human pathogenic processes.

Materials and methods

Study population

For the NGS approach, we obtained whole blood samples
from ten patients with non-small cell lung cancer (NSCLC)
and ten healthy individuals (Table 1). We collected 2.5–5 ml
whole blood in PAXgenet Blood RNA tubes (PreAnalytiX)
and stored the samples at !20 1C until extraction of total
RNA. Lung cancer patients and healthy individuals showed a
non-significant difference in gender distribution (Fishers Exact
test p-value of 0.36).

For quantitative real time PCR (qRT-PCR) we obtained
lung cancer tissue from 16 different patients. Lung cancer
tissue samples were stored at!80 1C after resection until RNA
isolation. We combined the isolated RNA from those tissues
to four pools, i.e., one squamous cell lung cancer pool, one
adenocarcinoma pool, one large cell lung cancer pool, and one
small cell lung cancer pool.

Considering the ethnic groups, all individuals were Caucasians
with except of one Persian among the healthy blood donors.
The enclosed lung cancer patients did not undergo any radio-
or chemotherapy before blood drawing and tumor resection.
All tumor patients were smokers or former smokers with 7 to
80 pack years.

Local ethics committee has approved the analysis of blood
and tissue from patients and controls and participants have
given their informed consent.

Isolation of total RNA from blood cells and tissue

The RNA isolation of the PAXgenet Blood RNA Tubes was
performed as previously described.4 The RNA was stored at
!70 1C until use. For the isolation of RNA from tissue, samples
were homogenized in 2 ml QIAzol lysis reagent and incubated
for 5 min at RT. Then 200 ml chloroform were added, vortexed
for 15 s, and incubated for 2–3 min at RT. Subsequently, we
followed the same protocol as applied for blood.

Library preparation

1.5 mg of total RNA was enriched for the fraction of small
RNAs (10–40 nt) using Ambion’s flashPAGE Fractionator,
followed by sodium acetate precipitation. SOLiD internal
adapters were ligated using 100 ng enriched fraction. After
ligation, smallRNAs were transcribed into cDNA with
Reverse Transcriptase. cDNA fragments between 60 and 80 nt
(small RNAs + adaptors) were isolated from a 10% TBE
Urea Gel (Novex-System, Invitrogen). RNA from gel slices
was amplified with 15 PCR cycles using the same 50-Primer for
each sample and ten different 30-Primers including the barcode
sequences (SOLiD Multiplexing Barcoding Kit 01-16). A total
of ten purified and barcoded DNA libraries was analyzed with
a HS-DNA Chip in the Agilent Bioanalyzer 2100 and subse-
quently pooled in equimolar amounts.

Next generation sequencing

The pooled libraries were diluted to a concentration of 41 pg ml!1.
DNA was amplified monoclonally on magnetic beads in an
emulsion PCR. Emulsions were broken with butanol and the
remaining oil was washed off the templated double-stranded
beads. DNA on the bead surface was denatured to allow
hybridization of the enrichment beads to the single stranded
DNA. Using a glycerol cushion the null beads can be separated
from the templated beads. After centrifugation, the enriched
magnetic beads were in the supernatant. The enrichment-beads
were separated from the magnetic beads by denaturation.
The 30-end was enzymatically modified for deposition on the

Table 1 Characteristics of blood donors

Sample Age Gender Tumor classification TNM classification Clinical staging Therapy Ethnicity

Lung cancer 715 76 Male Squamous cell lung cancer T2bN1 IIB No Caucasian
Lung cancer 721 57 Male Squamous cell lung cancer T3N0 IIB No Caucasian
Lung cancer 731 71 Male Lung adenocarcinoma T1bN0 IA No Caucasian
Lung cancer 735 65 Female Squamous cell lung cancer T2bN1 IIB No Caucasian
Lung cancer 739 59 Female Lung adenocarcinoma T3N0 IIB No Caucasian
Lung cancer 742 67 Male Squamous cell lung cancer T2aN1 IIA No Caucasian
Lung cancer 744 56 Male Lung adenocarcinoma T2aN2 IIIA No Caucasian
Lung cancer 746 72 Male Lung adenocarcinoma T2aN1 IIA No Caucasian
Lung cancer 747 61 Male Lung adenocarcinoma T3N1 IIIA No Caucasian
Lung cancer 748 69 Female Squamous cell lung cancer T2aN0 IB No Caucasian
Control 1 30 Female Healthy — — — Caucasian
Control 2 53 Male Healthy — — — Caucasian
Control 3 25 Female Healthy — — — Caucasian
Control 4 29 Male Healthy — — — Caucasian
Control 5 29 Female Healthy — — — Caucasian
Control 6 60 Male Healthy — — — Caucasian
Control 7 43 Female Healthy — — — Caucasian
Control 8 36 Male Healthy — — — Caucasian
Control 9 51 Female Healthy — — — Caucasian
Control 10 29 Female Healthy — — — Persian
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sequencing slide. 700 Million Beads were loaded onto a Full
Slide and sequenced on a SOLiD 4 analyzer.

Mapping of reads

Mapping of SOLiD sequencing reads against known miRNAs
and the genome was done using the RNA2MAP tool (version 0.5)
from Applied Biosystems (http://solidsoftwaretools.com/gf/
project/rna2map/). To use the default parameters of this
mapping pipeline, we first trimmed the reads to a size of
35 nt. To reduce the overhead of computation, we reduced
the amount of reads per sample to those being unique in the
sample. The RNA2MAP pipeline included three steps:
(1) reads are filtered against tRNAs, rRNAs, and other repetitive
elements; (2) the remaining reads are mapped against the
predicted precursor sequences of miRNAs from miRBase
(version 1614–16); (3) the remaining reads are mapped against
the human genome (hg19). The mapped genome reads served
as input for the prediction of novel miRNAs with miRDeep.17

The predicted novel miRNA precursor sequences were added
to the precursor sequences of miRBase and step 2 of the
RNA2MAP pipeline was repeated to retrieve the counts for
both the known and novel predicted precursor sequences.

Prediction of novel miRNAs

For the prediction of novel miRNAs, we used a probabilistic
model of miRNA biogenesis in combination with the
frequency of RNA reads along the secondary structure of
the miRNA precursor as implemented in miRDeep.17

Previously, we transformed the output of the alignments of
RNA2MAP to the so-called ‘blastparsed’ format of miRDeep.
To this end, we removed the sequencing adaptor, converted
the colorspace mapping into bases, re-counted the
mismatches, adjusted the alignment length, and computed a
bit score and an E-value as described previously.18 The
miRDeep pipeline itself was run with default parameters using
Randfold (v 2.0,19) and a fasta file containing the mature
miRNA sequences from miRBase v16 (without human
sequences) to improve accuracy and sensitivity. To reduce the
number of false positive predictions, we ran 100 permutation
tests and excluded a predicted novel miRNA if found in any of
the permutation runs. The remaining putative novel miRNAs
(p-value o 0.01) were mapped with BLAST (v 2.2.2420), against
known ncRNA and miRNA sequences from diverse sources
(miRBase v16, snoRNA-LBME-db21), ncRNAs from Ensembl
‘‘Homo_sapiens.GRCh37.59.ncrna.fa’’ ((ftp://ftp.ensembl.org/
pub/release-59/fasta/homo_sapiens/ncrna/) NONCODE v 2.022).
We excluded sequences that aligned with more than 90% of their
length (allowing 1 mismatch) to any of the ncRNA sequences.

Distribution of miRNA reads across the miRNA precursors

Since we performed a size selection we do not intent to
measure the expression level of the miRNA-precursor but of
the mature miRNAs. The mapping of mature miRNA reads to
the respective precursor sequence, however, offers the option
to understand how the mature miRNA reads distribute along
the precursor. To consider the distribution of reads mapping
to a miRNA precursor, we computed for each precursor
separately the coverage of each base position for lung cancer

samples and controls. Likewise, we also computed for each
base position of each precursor a significance value using the
Wilcoxon Mann–Whitney (WMW) test.

Downstream analysis

To further evaluate the NGS miRNA profiles, we carried out
statistical computations using R.23 The Shapiro–Wilk test has
been applied to determine whether miRNA counts across all
samples are normally distributed. To normalize samples standard
quantile normalization has been applied to make the different
sequencing runs comparable to each other. Expression of a
miRNA i in a sample j has been measured as the normalized
read count of this miRNA in the respective sample. The
Grubbs test has been carried out for detecting outliers. The non-
parametric WMW test has been performed for detecting
differentially regulated miRNAs. To further assess the validity
of the signature we carried out non-parametric permutation
tests. Here, the class labels have been randomly shuffled 100
times and the same analyses as for the original class labels have
been carried out. A p-value was computed as the fraction of
random runs with a likewise significant result as the original
computations.
In addition to WMW analysis, we performed an analysis

considering the total length of a miRNA precursor to identify
possible novel miRNAs that derive from this precursor. In
detail, we computed for each precursor m and each base i the
WMW significance value for the respective position in the
precursor at position i, testing the hypothesis that read counts
of miRNA m at position i are significantly higher for lung
cancer samples as compared for normal controls. For each
miRNA precursor, we then counted the number of bases with
WMW significance values o0.05. Furthermore, the area
under the receiver operator characteristics (AUC) curve has
been computed for each miRNA. Cluster analysis has been
done using the ‘hclust’ package.
For computing targets of deregulated miRNAs, the

miRANDA algorithm has been applied and only miRNA–mRNA
relations with p-values o 0.0001 have been considered.24 To
carry out gene set enrichment of target genes, we used
GeneTrail and carried out a so-called over representation
analysis.25,26

Validation of miRNA expression by qRT-PCR

To verify the accuracy of NGS-based miRNA quantification,
expression levels of the newly identified miRNAs hsa-can-
miR-49, hsa-can-miR-1040, hsa-can-miR-675, hsa-can-miR-
213, hsa-can-miR-915, and hsa-miR-98_new were assessed
using qRT-PCR (measured in duplicates) according to manufac-
turer’s instructions (ABI, USA). We performed qRT-PCR with
the RNA of the 20 blood samples from ten lung cancer patients
and ten healthy individuals and with the RNA of the four lung
cancer tissue pools.
qRT-PCR was done as follows: custom miRNA primers

were synthesized by Qiagen (Hilden, Germany). The small
nuclear RNARNU6B-2 served as endogenous control. Hsa-miR-
577 served as negative control and hsa-let-7g served as positive
control. These two control miRNAs have been selected from our
array-based study including 454 blood samples.6 While hsa-let-7g
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was highly expressed in most samples in this study, hsa-miR-577
was one of the lowest expressed miRNAs across this compre-
hensive cohort.

miRNA target prediction and functional analysis

For the prediction of targets of the newly identified miRNAs,
we applied the miRanda algorithm (version 3.3a)27 with
default parameters to 30 UTR sequences downloaded from
the UCSC Table Browser.28 The predicted mRNA targets
were tested for functional enrichments using GeneTrail.26

Specificity of uniquely mapping reads and comparison to miRBase

Although the first step of RNA2MAP is a filtering step to
remove reads that map against tRNAs, rRNAs, and other
repetitive elements, we wanted to verify that potential reads that
can be mapped to the mature forms of our novel miRNAs do
not map to other noncoding RNAs. Therefore, we downloaded
noncoding RNA sequences from Ensembl (http://www.ensembl.
org/info/data/ftp/index.html), as well as mRNA exon sequences
and intergenic sequences from the UCSC Table Browser.28 To
compare the results to those of already annotated miRNAs, we
carried out the same analysis for all known miRNAs from the
miRBase (v17). The mature forms of our novel miRNAs and
the known miRNAs were used in a BLAST analysis against the
downloaded fasta sequences. We extracted the novel/miRBase
miRNAs, where at least one mature form matched without a
mismatch with at least 90% of its length.

Results

High-throughput transcriptome sequencing results in high
coverage of the human miRNome

We sequenced the small RNA fraction of 20 blood samples
including ten samples of lung cancer patients and ten samples
of healthy individuals. Details on the samples including tumor

type and clinical staging are provided in Table 1. In total, we
obtained 530 million reads including 185 million unique reads
for the 20 samples. Of all reads, 352 millions were mappable to
the human genome including 38 millions that were mappable to
human miRNAs known at the time of this study (miRBase v16)
without any mismatch. The prediction of novel miRNAs was
based on the 352 million reads. All read counts of the 20 blood
samples are summarized in Table 2 and presented as a bar-chart
in Fig. 1. By using the uniquely mapped reads we detected 770
known miRNAs and known miRNA precursors representing
64% of the known human miRNome (miRBase v16).

Detection of novel miRNAs expressed in peripheral blood

For the prediction of novel miRNAs, we applied a probabilistic
model of miRNA biogenesis that considers the frequency of

Table 2 Sequencing reads

Sample Total reads Unique reads Mappable reads Uniquely mapped reads
Uniquely mapped reads without
mismatches to miRNAs

Control 1 21 546 906 6 483 422 15 622 637 8 702 194 2 983 422
Control 2 25 780 926 9 347 407 16 942 190 13 006 925 1 777 253
Control 3 27 351 543 8 199 034 19 697 784 12 352 288 1 626 120
Control 4 26 575 164 8 512 058 18 039 852 12 548 571 1 572 865
Control 5 25 621 021 9 831 745 16 609 732 15 823 914 1 256 992
Control 6 21 508 347 7 430 551 14 738 961 11 323 006 1 399 058
Control 7 21 667 199 6 770 030 15 103 061 11 940 299 1 097 079
Control 8 26 375 514 10 592 366 16 959 721 17 492 668 1 198 169
Control 9 26 510 814 9 508 500 16 289 720 6 923 836 1 803 276
Control 10 19 342 152 4 736 279 14 178 971 4 909 246 2 863 519
Lung cancer 715 39 838 662 12 057 004 28 320 865 18 976 323 2 219 591
Lung cancer 721 20 553 924 7 382 608 13 931 434 10 072 355 1 982 624
Lung cancer 731 29 427 176 10 086 103 20 025 354 16 223 858 1 837 469
Lung cancer 735 25 970 295 9 902 069 16 703 580 13 628 112 1 938 176
Lung cancer 739 17 517 290 5 864 764 12 274 764 8 527 749 1 693 297
Lung cancer 742 41 063 105 16 480 873 24 454 710 24 251 687 1 259 950
Lung cancer 744 16 378 241 6 369 296 10 235 069 8 255 511 1 645 217
Lung cancer 746 42 718 688 14 847 395 27 930 159 19 550 059 3 062 906
Lung cancer 747 18 571 825 6 795 712 12 133 853 9 606 735 1 432 632
Lung cancer 748 34 928 862 13 648 517 22 178 040 16 980 397 3 099 004
SUM 529 247 654 18 4845 733 352 370 457 261 095 733 37 748 619
Average 25 875 610 8 929 732 16 656 656 12 450 429 1 735 275
Std Dev 7 691 588 3 001 406 4 935 673 4 897 476 586 987

Fig. 1 Mapping statistics. The blue bars show the average of the

mappable read counts of all 20 analyzed blood samples together with

the respective standard deviations. The grey bars indicate the average

of the mappable read counts of the 20 single blood samples.
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RNA reads along the secondary structure of putative miRNA
precursors. Initially, we detected 1081 putative novel miRNA
precursor sequences. Next, we carried out two filter steps to
reduce the number of false positives. First, we performed 100
permutation tests, eliminating 520 (48.1%) of the initially
identified putative miRNA sequences. We blasted the remaining
sequences against different data collections of small non-
coding RNAs and found 351 (32.5%) sequences with at least
one hit with already annotated small RNAs under the condi-
tion that one mismatch was allowed. After eliminating those
351 miRNAs, we obtained 210 putative novel miRNA
sequences (unknown at the time of the study according to
miRBase v16). To verify the specificity of putative reads
mapping to the mature forms of the 210 novel miRNAs, we
performed a BLAST analysis with the sequences of the mature
forms against other non-coding RNA sequences (rRNA,
tRNA, miRNA, snRNA, snoRNA, lincRNA), as well as
mRNA and intergenic sequences. The same analysis was done
for all known miRNAs from miRBase v17. As presented in
Fig. 2, our newly identified miRNAs and the known miRNAs
from miRBase showed a very similar distribution. Most of the
miRNAs (55% of known miRNAs and 53% of newly identified
miRNAs) did not map against any of the other RNA resources
or intergenic regions. We found hits in intergenic regions for
38% of known and 43% of novel miRNAs. In both groups, 4%
of miRNAs matched against mRNAs, while mapping against
other non-coding RNA regions was insignificant.

Out of the 210 putative novel miRNA sequences, 30 miRNAs
were identified with at least 25 reads that mapped uniquely to a
precursor. As summarized in Table 3, each of these 30 miRNA
sequences was detected in at least two blood samples, and two
sequences were found in all 20 blood samples. On average,
putative new miRNA sequences were detected in 16 out of
20 samples. Of the 30 putative novel miRNAs, four miRNAs
have now been included in the recent miRBase release v17 and
are highlighted in Table 3.

For all novel miRNAs as well as known miRNAs we
computed a histogram plot (Fig. 3). While the median read
count for miRNAs annotated in miRBase v16 was 24 reads,
the median read count of novel miRNAs was still 18 reads per
miRNA. For both, known and novel miRNAs the highest
proportion of miRNAs lies in the range of up to 50 reads per
miRNA. Considering all miRNAs covered by up to 150 reads
the novel miRNAs were more frequent than the known
miRNAs, providing evidence that the identified miRNA
candidates are detected at a substantial level. The histogram
plots for all single samples that essentially validate the general
picture are provided in Fig. 1 (ESIw).
Next, we randomly selected five miRNA sequences from the

newly identified 30 miRNAs that were identified with at least
25 reads that mapped uniquely to a precursor and carried out
a qRT-PCR analysis. The qRT-PCR was performed with the
ten different blood samples of healthy controls, the ten blood
samples of lung cancer patients, and four pools of different
types of lung cancer tumor tissues to compare the abundance
of the respective miRNAs in blood and tumor tissue of lung
cancer patients. In addition to these five miRNAs we also
tested one miRNA as positive control and one miRNA as
negative control. Based on previous array-based experi-
ments6,29 we selected miRNA hsa-let-7g that has usually been
highly expressed in our previous experiments as positive
control and miRNA hsa-miR-577 that has usually not been
expressed as negative control. The DCt-values of all novel
miRNAs measured in blood samples fall in between the
positive and negative control DCt-values as shown in Fig. 4.
The comparison between tissue samples and blood samples of
lung cancer patients showed higher expression of all five
miRNAs in the cancer blood samples as indicated by lower
DCt-values. In detail, the expression of three miRNAs (hsa-
can-miR-1040, hsa-can-miR-675, and hsa-can-miR-915) was
significantly lower in lung cancer tissue as compared to
patients’ blood and in two cases (hsa-can-miR-49 and hsa-
can-miR-213) almost not detectable in lung cancer tissue as
indicated by DCt-values of 20 and 25. Notably, the latter
miRNAs are more than one million less abundant in tissue
than in blood of the tumor patients. The comparison between
blood of lung cancer patients and blood of controls revealed
higher expression of all five miRNAs in blood of cancer
patients providing further evidence for an increase of specific
miRNAs in blood of lung cancer patients. In summary, our
qRT-PCR experiments validated the high-throughput sequen-
cing experiments very well.

Functional target analysis of putative miRNAs

For known miRNAs validated and putative targets are known
in the literature. These also show an enrichment in functional
categories, e.g., KEGG pathways.30 As described in the
‘‘dictionary on microRNAs and their putative target pathways’’31

common targets of miRNAs are mRNAs involved in regula-
tory pathways as the ‘‘p53 signaling pathway’’ or the ‘‘TGF-
beta signaling pathways’’ and disease related categories as
‘‘Pathways in cancer’’. As described in the Materials and
methods section we carried out a search for putative targets
of the novel putative miRNAs. The respective target gene set

Fig. 2 Results of the BLAST analysis. We mapped the mature forms

of miRBase v17 and our novel miRNAs to different groups of

noncoding RNAs, mRNA, and intergenic sequences. The pie chart

indicates the numbers of miRNAs mapping to the respective nucleic

acid groups.
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has then been used as input for the gene set analysis tool
GeneTrail26 and compared with all human genes. We detected
a total of 59 KEGG pathways being significantly enriched for
targets of our miRNA candidates following multiple testing
adjustment by the Benjamini Hochberg approach. The most
significant pathways include ‘‘Metabolic pathways’’ (p-value of
7.88 " 10!9) and ‘‘Pathways in cancer’’ (p-value of 1.1 " 10!6)
being already described as target pathways of known miRNAs.31

Besides these functional categories we also tried to identify
known miRNAs that show a significant overlap in their target
genes as compared to the novel miRNAs. Here, we found
39 known miRNAs that showed an enriched overlap in their
targets and the targets of our novel miRNAs. These most
prominent known miRNAs were hsa-miR-29c and hsa-miR-30c
with significance values of 3.07" 10!3 in both cases. The complete
results are provided in Table S1 (ESIw).

miRNA biomarker signatures predict lung cancer

To identify possible disease discriminating miRNA signatures,
we first performed unsupervised hierarchical clustering of

miRNAs derived from all samples. Therefore, we excluded
noisy and extremely abundant features and two clear outliers
(Grubbs test p-value o 0.01). Using the Euclidian distance
measure we identified separate clustering of lung cancer blood
samples and control samples (p = 0.00025). Only one control
blood sample clustered together with the ten lung cancer
samples. This result was confirmed by a principle component
analysis. The convex hulls of the first and second principle
component of lung cancer samples and controls do not show
any overlap (Fig. 2, ESIw).
Next, we determined and quantified differentially regulated

single miRNAs. Here, we focused on the mature miRNAs but
also tested whether the miRNA was significantly deregulated
at all. To this end, we considered the expression of the
precursor to be the sum of reads mapping to the precursor.

The most abundant miRNA was hsa-miR-223 with a total of
8.6 million uniquely mapped reads in all 20 blood samples.
The second most abundant miRNA was hsa-miR-425 with
0.7 million reads. The tenth most abundant miRNA, hsa-miR-
339-5p, shows only 87 000 reads which are two orders of

Table 3 miRNA sequences with at least 25 reads that mapped uniquely to precursors. All analyses were performed using miRBase release v16.
During the publication process miRBase v17 was released. Overlaps of previously unknown novel miRNAs (according to miRBase v16) with the
recent miRBase v17 are indicated in bold and the official names and sequences are given in brackets

miRNA

Number
of blood
samples

Counts in
blood of
controls

Counts in
blood of
patients Major sequence Minor sequence

hsa-can-miR-163 20 4370 3189 TCGCATTGAACCTGAGAGGCA CCTCCGGTATTCAAGCGATT
hsa-can-miR-277
(hsa-miR-4707)

18 514 493 GCCCGCCCCAGCCGAGGTT
(hsa-miR-4707-3p:
AGCCCGCCCCAGCCGAGGUUCU)

CCCCGGCGCGGGCGGGTTC
(hsa-miR-4707-5p:
GCCCCGGCGCGGGCGGGUUCUGG)

hsa-can-miR-811 20 688 262 GGGCCGTGGAGGTGGACTG GTGCACAACTGCAGGGGTGTG
hsa-can-miR-915 19 64 86 CTCTTCATCTACCCCCCAG GGAGGGTGTGGAAGACAT
hsa-can-miR-49
(hsa-miR-4659a)

18 53 91 CGTTGCCATGTCTAAGAAGAA
(hsa-miR-4659a-5p:
CUGCCAUGUCUAAGAAGAAAAC)

CTTCTTAGACATGGCAGCTTC
(hsa-miR-4659a-3p:
UUUCUUCUUAGACAUGGCAACG)

hsa-can-miR-473 19 49 60 GTCAGTTTGTCAAACTCTTT GGAGTTGTGATCCTTTGGAGA
hsa-can-miR-571 17 27 74 CGCAACCCACACACGGTCTCA AGACCGTGTGTGGGTTGCTGAG
hsa-can-miR-346 18 25 70 TTGGAATCCTCGCTAGAGCGT GCTCTAGCGGGGATTCCAATA
hsa-can-miR-675 18 49 27 CCACAAACCTGCCAGCCCTG GGGCGGCTATTGTGGGG
hsa-can-miR-275 16 46 30 TGGGTGTGGGCAGTGGGCGGGC

CAAGGACA
GCAGTTGGCACCGTCCCCTGCG
CCTACCCACT

hsa-can-miR-385 11 60 5 GGCGGGCAGCGGGTGAGGGGGTGG GCGGGGCCCCGGACAAGGGT
CCGCAGA

hsa-can-miR-213 17 28 33 TGCTCTTACATCTCAAACGAT CGGTTGAGATGCAAGGGCTGC
hsa-can-miR-881 8 48 10 GCCCCTTTCTCAGACCCCCA GGCCCTGGAAAGGGTCAG
hsa-can-miR-358 17 19 32 GCCCAGAGGATCACGGAGCCA GCTCCTTGCACCTGTGGCTGC
hsa-can-miR-480 2 1 47 CTAGCAGTCTCAGGACACA TGCCCTGAGACTGCTAAGT
hsa-can-miR-56 16 20 25 ATCACCACCAAACCTGTTCTTC AGAACAGGTTTGGTGGGGATTC
hsa-can-miR-1040 17 20 19 GATTTCAGCGCTCTGCCCCT GGGCAGAGCACTGTGTGTGG
hsa-can-miR-288
(hsa-miR-4688)

15 13 20 GGGGCAGCAGAGGACCTGGGC
(hsa-miR-
4688:UAGGGGCAGCAGAGGACCUGGG)

CCTGATCCTCAGCTGCCCTCTC

hsa-can-miR-1011 17 17 15 GTCTTTTGCCCTTTCAGCT CTGGAAGGGCAAAAGACTG
hsa-can-miR-839 16 14 16 GTGCCTGTGCAGAGGGAGCT CCCCCTCCGAGCAGGCACTG
hsa-can-miR-1065
(hsa-miR-4701-5p)

14 10 19 TTGGCCACCACACCTACCCCTT
(hsa-miR-4701-5p:
UUGGCCACCACACCUACCCCUU)

GGGTGATGGGTGTGGTGTCCACAGG
(hsa-miR-4701-3p:
AUGGGUGAUGGGUGUGGUGU)

hsa-can-miR-454 14 4 24 CCACCTTCAAAGGCACTCCG GAGGCCTCTGCTGGTGCTG
hsa-can-miR-390 14 17 11 TCCTCTCCTCCCTGTGCCGAC AAGCGCGGGGAGGGAGGATA
hsa-can-miR-23 11 14 14 ACCCACCTGATGCCCCGTCCCA GGGAGGGGCAGGAGGGGTGGAATG
hsa-can-miR-152 3 25 2 CCTCTTCCCAGCACTCCCCT GAGGGTTGCGGGAAGGGGGA
hsa-can-miR-555 16 15 11 AAAACAGGATAGGCACTAAA TAGAGCCTATCCTGTTTTGC
hsa-can-miR-678 15 7 19 CGGTCCCTAACCCCCTCCGGA CAGGGGAGGGAAGGGGAGCCGAG
hsa-can-miR-963 11 19 7 AGAAATTGGTTAAATTGGAGGG GACCAATTTAACCAATTACTAT
hsa-can-miR-942 11 18 7 CTCTCCCCGCTTTTAACCCTA GGGTTAAGAGTGGGGAGAAGA
hsa-can-miR-308 9 17 8 ACACCAAAACAATGAAAAC TATCATTGTTTTAGTGTTT
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magnitude less reads than the most abundant miRNA
hsa-miR-223. The uniquely mapped read counts for the ten
most abundant miRNAs are listed in Table 4. These numbers
indicate that the total read counts of miRNAs are not
normally distributed. This is also shown by the Shapiro–Wilk
test with a significance value o0.05. Since many single
miRNAs were not normally distributed we applied the non-
parametric WMW test that detected 70 significantly deregulated
miRNAs after adjustment for multiple testing including
50 miRNAs (71.4%) that were up-regulated in blood of lung
cancer patients and 20 miRNAs (28.6%) that were down-
regulated. After exclusion of precursor sequences, we still
found 39 deregulated miRNAs, including 28 (71.8%) that were

up-regulated in blood of lung cancer patients and 11 (28.2%)
that were down-regulated. Out of these 39 miRNAs, hsa-miR-
140-3p, hsa-miR-130b*, and hsa-miR-181a* showed the lowest
calculated AUC value of 0.03 (i.e. more abundant in control
samples), and miR-99b, and miR-590-3p showed the highest
AUC value of 1 (i.e. more abundant in lung cancer samples),
demonstrating a high diagnostic potential of these miRNAs.
Bar-plots of two representative miRNAs with maximal
(hsa-miR-590-3p) and minimal (hsa-miR-140-3p) AUC values
are given in Fig. 5. Interestingly, out of the 39 miRNAs,
32 have previously been annotated in miRBase including six
miRNAs that have been associated with lung cancer, namely
hsa-miR-140, hsa-miR-145, hsa-miR-30e, hsa-let-7d, hsa-let-7g,
and hsa-miR-98. Out of the 32 miRNAs found in miRBase v16,
25 miRNAs were found to be differentially expressed in our
previous study based on miRNA screening on microarrays.4

Importantly, the direction of deregulation was identical for 21
of 25 miRNAs (84%) in the previous and in the present study.
Besides the 32 known miRNAs we also found seven putative
miRNAs being significantly deregulated. A cluster heatmap of
these seven miRNAs and all 20 samples is provided in Fig. 6. As
presented in the cluster dendrogram we found two clear clusters

Fig. 3 Read frequencies for the known and the novel miRNAs. The

histogram plot shows for each known and putative novel miRNA the

frequency of unique read counts without mismatch. The rose shaded

boxes indicate the putative novel miRNAs, the blue shaded boxes

indicate the known miRNAs, and the green boxes indicate the overlap

between both. In both cases, i.e., novel and known miRNAs, highest

proportion of miRNAs can be found in the area between 1 and

50 reads. In an intermediate range between 51 and 150 reads per

miRNA the novel miRNAs are more frequent while in higher ranges

the known miRNAs are more frequent.

Fig. 4 qRT-PCR validation of novel miRNAs. The dashed lines denote the DCt-values of the positive control hsa-let-7 and the negative control

hsa-miR-577. The DCt-values of the indicted five novel miRNAs are given for blood of controls, blood of patients and lung cancer tissues. High

DCt-values indicate low abundancy of miRNAs.

Table 4 miRNAs with highest unique read count

miRNA Unique read count

hsa-miR-223 8 646 130
hsa-miR-425 684 517
hsa-miR-185 509 690
hsa-miR-17 367 360
hsa-miR-25 297 148
hsa-miR-130a 267 587
hsa-miR-150 159 224
hsa-miR-93 149 657
hsa-miR-20a 112 031
hsa-miR-339-5p 86 571
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separating lung cancer from controls. Again, only one control
clustered together with the lung cancer samples. For this
clustering we achieved a highly significant p-value of 0.0001
using Fisher’s exact test. We repeated the clustering 100 times
with randomly distributed class labels by carrying out 100
non-parametric permutation tests but did not find any result

with a likewise significance. To check the stability and validity
specifically of the novel miRNAs we performed further permuta-
tion tests. Here, the class labels of all samples have been
randomly shuffled at the beginning of the statistical analysis
before WMW tests have been carried out. Again, we performed
100 non-parametric permutation tests and again we did not find
a single one with a similarly high number of significant miRNAs.
Table 5 provides detailed information on all 39 significantly

deregulated miRNAs.

Identification of novel mature miRNAs derived from known
precursors

Considering the distribution of mature miRNA reads across
known and novel miRNA precursors, we usually detected two
clear peaks, representing the two mature forms of the respective
miRNA precursor (Fig. 7). For hsa-miR-339, we found 3-fold
up-regulation of hsa-miR-339-3p and 2-fold up-regulation of
hsa-miR-339-5p in lung cancer, matching exactly the two known
mature forms. Likewise, hsa-miR-98 showed two clear peaks.
While the major form of hsa-miR-98 that was up-regulated in
blood of controls was deposited in miRBase, a minor miRNA
has not yet been annotated. qRT-PCR with the respective primer
confirmed that this new minor miRNA, denoted as miR-98_new,
was detectable and significantly over-expressed (2.3-fold) in
blood of lung cancer patients (Fig. 8).
To identify further novel minor forms of known miRNA

precursors, we aligned all reads against known precursor
sequences and searched for hits that are not already known
major miRNAs. Altogether, we detected 41 novel forms of
validated miRNA precursors (Table 6). Out of those, 25 (61%)
were even more abundant than the already known form
considering all reads combined from the 20 blood samples.
Comparing the blood samples of lung cancer patients and
controls, we found that the abundance of 30 of the 41 newly
identified forms (73%) was at least as high in blood of lung
cancer patients as in blood of normal controls.

Fig. 5 Normalized read counts for two representative miRNAs with maximal and minimal AUC values. The barplots show the read counts of the

two miRNAs hsa-miR-590-3p (AUC = 1) that is up-regulated in lung cancer samples and hsa-miR-140-3p (AUC = 0.03) that is down-regulated

in lung cancer samples. Lung cancer patients are indicated as blue bars and controls are indicated as red bars. The horizontal solid black lines

denote the respective group medians and the horizontal dashed black lines denote the optimized separation threshold. Based on this threshold for

hsa-miR-590-3p no sample is wrongly classified, for hsa-miR-140-3p one cancer sample highlighted with a blue circle is considered to be normal

(false negative, FN) while one control sample highlighted with a red circle is considered to be a cancer sample (false positive, FP).

Fig. 6 Hierarchical clustering heatmap. The heatmap with dendro-

gram at the top and on the left side shows the clustering of the 7 novel

miRNAs that were significantly deregulated in lung cancer samples

compared to the control samples. The cluster on the left contains nine

of ten controls, the cluster on the right contains all ten lung cancer

samples and one control sample.
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Discussion

miRNAs are believed to change future diagnostics of many
human diseases. In this study we identified miRNA profiles
with diagnostic information for lung cancers by next-generation
sequencing. We identified 32 known miRNAs and seven novel
miRNAs that were significantly altered in cancer patients,
providing a tool to detect manifest lung cancer of different
histological grading in peripheral blood.

While most miRNA sequencing studies have been performed
on cell lines and solid tissues, only a minority was done on
human blood. Since miRNA profiles are known to be tissue
specific,32,33 it can be expected that blood also contains a
specific profile with so-far unknown miRNAs. We were able
to identify completely novel miRNAs and previously unknown
mature miRNAs of already known miRNA precursors. These
results together with previously published studies suggest that
miRNA profiling from blood bears high potential to serve as a
novel biomarker class for human diseases.

As for any biomarker approach, standardization is essential to
make miRNA profiles derived from human blood comparable
between different clinical centers, studies, cohorts, and disease
entities. Hence, we employed a standardized workflow, starting
from blood collection to molecular barcoding and miRNA
profiling using SOLiD next-generation sequencing technology
and ending with a sophisticated bioinformatic evaluation. We
found by this approach an extremely high dynamic range of
quantification of specific miRNAs. Over 8 million reads have
been sequenced for hsa-miR-223 that was the most abundant
miRNA. Recently, Fehniger et al. showed that this miRNA is
present in resting NK cells where it may contribute to control
Granzyme B translation.34 An other recent sequencing study
on PBMCs also reported a wide range of expression levels
spanning five orders of magnitude.13 In this study the let-7
family accounted for almost 80% of all reads. In agreement
with these results, we found 0.5 million reads for all let-7
family members. Hence, although only few NGS studies on
miRNAs have been published so far, the methodology seems

Table 5 Differentially expressed miRNAs in peripheral blood

miRNA

Median read
counts in
controls

Median read
counts in
patients

Fold
change

WMW
rawp

WMW
adjp AUC HMDD

Micro-array4

(fold change)
Concor- dance
microarray and NGS

hsa-miR-140-3p 1421.0 3593.2 0.4 0.0004 0.0161 0.03 Down — —
hsa-miR-130b* 181.0 313.8 0.6 0.0004 0.0161 0.03 — Up (0.05) YES
hsa-miR-181a* 10.1 40.0 0.3 0.0001 0.0150 0.03 — Up (0.8) YES
hsa-miR-25 9798.5 19948.3 0.5 0.0007 0.0172 0.05 — Up (0.85) YES
hsa-miR-551a 2.8 9.6 0.3 0.0005 0.0161 0.07 — Up (0.77) YES
hsa-miR-22 785.5 1917.5 0.4 0.0005 0.0161 0.07 — Up (0.92) YES
hsa-miR-326 27.9 53.4 0.5 0.0005 0.0161 0.07 — Up (0.82) YES
hsa-miR-151-3p 54.5 96.5 0.6 0.0005 0.0161 0.07 — Up (0.85) YES
hsa-miR-501-5p 53.1 72.5 0.7 0.0013 0.0222 0.07 — Up (0.7) YES
hsa-miR-186 2181.4 4476.8 0.5 0.0014 0.0231 0.08 — Up (0.34) YES
hsa-miR-93* 649.3 2242.3 0.3 0.0007 0.0172 0.08 — Up (0.67) YES
hsa-can-miR-948 4.8 15.6 0.3 0.0007 0.0172 0.08 — — —
hsa-miR-1248 3.8 15.4 0.2 0.0017 0.0246 0.08 — Up (0.92) YES
hsa-miR-188-3p 2.8 7.8 0.4 0.0017 0.0246 0.08 — — —
hsa-miR-21* 3.5 11.9 0.3 0.0017 0.0246 0.08 — Down (1.3) NO
hsa-miR-339-5p 1839.4 5461.0 0.3 0.0019 0.0253 0.09 — Up (0.78) YES
hsa-miR-362-3p 63.8 149.0 0.4 0.0022 0.0256 0.09 — Up (0.63) YES
hsa-miR-145 376.5 1287.2 0.3 0.0028 0.0316 0.10 Tumor suppressor Up (0.49) YES
hsa-can-miR-445 3.5 16.8 0.2 0.0032 0.0332 0.11 — — —
hsa-can-miR-885 2.5 6.6 0.4 0.0032 0.0332 0.11 — — —
hsa-can-miR-189 13.4 40.2 0.3 0.0021 0.0253 0.11 — — —
hsa-can-miR-719 5.1 11.1 0.5 0.0045 0.0405 0.12 — — —
hsa-miR-378* 342.9 708.8 0.5 0.0046 0.0405 0.12 — Up (0.42) YES
hsa-miR-26b* 119.6 232.9 0.5 0.0046 0.0405 0.12 — — —
hsa-miR-505 32.6 42.4 0.8 0.0046 0.0405 0.12 — Up (0.62) YES
hsa-miR-339-3p 103.5 214.3 0.5 0.0039 0.0372 0.13 — Up (0.98) YES
hsa-miR-425 20779.8 40304.7 0.5 0.0053 0.0454 0.13 — Up (0.92) YES
hsa-miR-30e 234.8 414.0 0.6 0.0052 0.0447 0.14 Down Up (0.83) YES
hsa-can-miR-536 21.4 11.9 1.8 0.0028 0.0316 0.90 — — —
hsa-let-7d 1570.8 650.4 2.4 0.0017 0.0246 0.92 Down Down (1.11) YES
hsa-can-miR-574 5.9 1.4 4.2 0.0010 0.0186 0.94 — — —
hsa-miR-574-3p 3806.2 1344.6 2.8 0.0010 0.0186 0.94 — Up (0.71) NO
hsa-let-7g 1433.1 367.2 3.9 0.0010 0.0186 0.94 Down Up (0.73) NO
hsa-miR-98 48.8 11.3 4.3 0.0001 0.0161 0.96 Up NSCLC vs. SCLC — —
hsa-miR-144* 2643.0 788.8 3.4 0.0004 0.0161 0.97 — Down (1.6) YES
hsa-miR-3200-3p 30.1 1.2 24.6 0.0003 0.0161 0.98 — — —
hsa-miR-126* 574.1 155.0 3.7 0.0003 0.0161 0.98 — — —
hsa-miR-99b 38.4 1.1 36.5 0.0002 0.0161 1.00 — Up (0.87) NO
hsa-miR-590-3p 17.0 1.9 9.2 0.0002 0.0161 1.00 — — —

WMW = Wilcoxon Mann–Whitney test, rawp = raw p-value, adjp = adjusted p-value, AUC = area under the receiver operator characteristics
curve. HMDD = human miRNA and disease database. Up-regulation in lung cancer patients is indicated in bold type and down-regulation in
lung cancer patients is indicated in normal type.
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to be already very powerful.7–13 To further underline this
hypothesis, we related our NGS data to findings that we
previously obtained by microarray-based technologies.4 For
this former study we also analyzed the miRNA expression
profiles of blood from lung cancer patients. The blood samples
were collected under the same conditions and the RNA
isolation was performed using the same protocol as for the
present study. Of the 32 known miRNAs deregulated in the
present study, 25 miRNAs were also differentially expressed in
our former study, including 21 miRNAs (84%) that were
regulated in the same direction, e.g., they were either up- or
down-regulated in both studies. These findings confirm the
high reproducibility of both approaches even on different
biological replicates and across different platforms, and
demonstrate the feasibility to perform biomarker discovery
by these techniques.

In another recent study, we investigated 13 different human
pathologies for deregulated miRNAs in patients’ blood using
the same microarray-based technology as mentioned above
and the same protocol for the collection of blood and the
isolation of RNA.6 We found a high overlap between the
32 known miRNAs significantly deregulated in the present
NGS study and the miRNAs significantly deregulated in the
former microarray study. Nearly all of the 32 miRNAs were
deregulated in at least one of the 13 diseases (see Table S2,
ESIw). Only the two miRNAs hsa-miR-98 and hsa-miR-181a*
were not deregulated in our former study and hsa-miR-3200-3p
was not included in our former study as it was based on older

miRBase versions (v12–14). The highest overlap was found for
melanoma (15 miRNAs of 32 miRNAs, 46.86%), multiple
sclerosis (12 miRNAs of 32 miRNAs, 37.5%), sarcoidosis
(18 miRNAs of 32 miRNAs, 56.25%) and acute myocardial
infarction (12 miRNAs of 32 miRNAs, 37.5%).
The comparison of our present study and a former sequencing

study fromChen and co-workers from 2008 revealed less overlap.35

In this study, that was based on miRBase v10, the miRNome
of serum and PBMCs of lung cancer patients and healthy
individuals was analyzed by SOLEXA sequencing. They only
detected 12 of the 32 miRNAs in PMBCs of lung cancer
patients and/or healthy individuals. But interestingly, eight of
those 12 miRNAs were deregulated in the same direction. As
one example, hsa-miR-25 that was twice as much expressed in
blood of lung cancer patients compared to controls in our
present study was also higher expressed in lung cancer PBMCs
and identified as lung cancer specific serum miRNA in the
study of Chen and co-workers.
Biomarker studies are often confounded by variables as

gender, age or therapy status. While the lung cancer patients
included in our study did not get any radio- or chemotherapy
before blood drawing or cancer resection and there was no
significant difference in the gender distribution, the age
between control and case cohort varies. The study by Hooten
et al.36 addressed aging related changes of miRNAs. From
their study, we extracted 165 miRNAs that may be influenced
by the age. Of these, only three (1.8%) overlap with the
32 known miRNAs that were significantly deregulated in lung

Fig. 7 Distribution of reads across miRNA precursor sequences. Red samples correspond to controls and blue samples correspond to lung cancer

patients. For both miRNAs, two peaks can be detected, representing two mature forms. The barplots show the outcome of the WMW test at each

position. The bar height corresponds to 1 minus the respective p-value. Green bars mean a significant up-regulation while red bars represent

significantly down-regulated positions.
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cancer samples in our study. These include hsa-miR-181a*, hsa-
miR-26b*, and hsa-let-7d. This analysis considers just the
significance, without considering the direction of regulation.
While all three miRNAs were down-regulated in older patients
in the study of Hooten et al., hsa-miR-181a* and hsa-miR-26b*
were up-regulated in the lung cancer samples, representing in our
case the older cohort as compared to the controls. In summary
we can conclude that the aging effect seems to play a minor role
as compared to the pathogenic processes in lung cancer.
Another putative confounding variable could be the smoking

status of individuals. To check whether our miRNAs are related
to smoking induced changes we extracted the miRNAs with
known smoking association from a review by Tomankova et al.37

We did not found a single miRNA out of the 32 significantly
deregulated miRNAs to be related to smoking induced changes.
Likewise, we extracted 24 miRNAs from the study of Schembri
et al.38 and again did not found any overlapping miRNAs.
We also evaluated the biological relevance of the 32 signifi-

cantly differentially expressed miRNAs by carrying out a
statistical pathway analysis. Using the miRanda algorithm24

we predicted targets for different miRNA sets. Using
GeneTrail25,26 we computed significantly enriched biological
categories, i.e., categories with more target genes of miRNAs
in a given set as compared to a reference set containing all
miRNAs detected in our sequencing study. For example, we
found the JNK and stress associated pathways being signifi-
cantly enriched in the set of the 32 differentially expressed
miRNAs. We performed the same analysis for the novel
miRNAs and identified 59 KEGG pathways being signifi-
cantly enriched for targets of our miRNA candidates with
‘‘Metabolic pathways’’ (p-value of 7.88 " 10!9) and ‘‘Path-
ways in cancer’’ (p-value of 1.1 " 10!6) being already
described as target pathways of known miRNAs.31 It is however,
important to realize that the predictions of functional annotations

Fig. 8 qRT-PCR validation of the novel mature form of hsa-miR-98.

The dashed lines denote the DCt-values of the positive and negative

controls as shown in Fig. 1. The DCt-values of hsa-miR-98 are given

for blood of controls, blood of patients and lung cancer tissues on the

left side. The NGS results are shown on the right side; the Y-axis of the

NGS data shows the read counts and is scaled to make the NGS data

comparable to the qRT-PCR data, i.e., the low NGS read count value

of blood of tumor patients indicates a high expression compared to

blood of controls.

Table 6 41 novel mature forms (according to miRBase v16) of known miRNA precursors identified in blood: all reads from the 20 blood samples
combined identified 25 novel miRNAs that were higher abundant than the known mature form (indicated in bold). Bold italic and italic values
represent at least two-fold up- and down-regulated miRNAs, respectively

Known miRNA
precursor

Total reads
for known
pre-miRNAs

Median for
known
pre-miRNAs
in controls

Median for
known
pre-miRNAs
in patients

Novel mature form miRBase v16
(known forms now included in
miRBase release v17)

Total
reads novel
miRNAs

Median for
novel
miRNAs in
controls

Median for
novel miRNAs
in patients

hsa-miR-1306 12 0.5 0.5 CACCUCCCCUGCAAACGUCCAG 16 507 427.5 490
hsa-miR-3194 6 0 0 GCUCUGCUGCUCACUGGCA

(hsa-miR-3194-3p)
28 0.5 1

hsa-miR-597 7 0 0 GUGGUUCUCUUGUGGCUCA 35 1.5 1.5
hsa-miR-1303 28 1 1 GGGCAACAUAGCGAGACC 51 1.5 1.5
hsa-miR-3173 12 0.5 0 GCCCUGCCUGUUUUCUCCUUUGU

(hsa-miR-3173-5p)
1042 45.5 34

hsa-miR-1273c 1721 35.5 72 AGAGUCUCGUUCUGUUGCCCAA 417 9 34
hsa-miR-1273d 9 0 0 CUGCACUUCAGCCUGGGUGA 39 1.5 2
hsa-miR-939 199 11.5 6 CCUGGGCCUCUGCUCCCCAGU 63 2.5 3
hsa-miR-153-1 — — — UCAUUUUUGUGAUCUGCAGCU 27 0.5 1
hsa-miR-3153 1 0 0 GUCCCUGUCCCCUUCCCCC 25 1 0.5
hsa-miR-1307 862 41 33.5 CGACCGGACCUCGACCGGCU 410 11.5 17.5
hsa-miR-3155 1 0 0 CUCCCACUGCAGAGCCUGG 74 3 1.5
hsa-miR-107 4562 221 136 GCUUCUUUACAGUGUUGCCUUG 403 13 26.5
hsa-miR-579 278 16.5 12 CGCGGUUUGUGCCAGAUG 22 0 1
hsa-miR-2110 340 12 10 CACCGCGGUCUUUUCCUCCCACU 899 32.5 42.5
hsa-miR-1255b-2 — — — CACUUUCUUUGCUCAUCCA 26 0.5 1.5
hsa-miR-3138 8 0 0 CUUCCCCCACCUCACUGCC 64 3.5 3
hsa-miR-1278 — — — AUGAUAUGCAUAGUACUCCCA 26 1 1
hsa-miR-874 588 23.5 26 GGCCCCACGCACCAGGGUAAG 56 1 3.5
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are based on in silico approaches and each target awaits
experimental confirmation.

The Sanger miRBase shows a rapidly increasing content,
mainly driven by increased sequencing capacity at significantly
decreased cost. Since the first release in 2008, a total of 32
versions have been released. Most recently, a new release (v17)
was announced. Mapping the miRNAs detected in this study to
this latest release we found an overlap of about 9% between
our newly identified miRNAs and the miRNAs recently
included in the new miRBase release v17, representing an
independent validation. These miRNAs include hsa-can-miR-
243, hsa-can-miR-277, hsa-can-miR-929, hsa-can-miR-586,
hsa-can-miR-637, hsa-can-miR-912, hsa-can-miR-9, hsa-can-
miR-288, hsa-can-miR-674, hsa-can-miR-49, hsa-can-miR-
180, hsa-can-miR-1003, hsa-can-miR-74, hsa-can-miR-430,
hsa-can-miR-782, hsa-can-miR-865, hsa-can-miR-670, hsa-can-
miR-1065, and hsa-can-miR-814.

In summary, our study shows for the first time the potential
of NGS to identify and quantify in a single step known and
completely novel miRNAs with diagnostic potential for lung
cancer. In the foreseeable future as many as 100 samples can
be sequenced per run, making NGS of blood borne miRNAs
an attractive alternative to other approaches. In addition, a
standardized NGS approach as applied in this study will help
to reveal specific expression patterns of miRNAs for a larger
variety of diseases and patient cohorts.
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Abstract

Background: Expression profiling provides new insights into regulatory and metabolic processes and in particular
into pathogenic mechanisms associated with diseases. Besides genes, non-coding transcripts as microRNAs
(miRNAs) gained increasing relevance in the last decade. To understand the regulatory processes of miRNAs on
genes, integrative computer-aided approaches are essential, especially in the light of complex human diseases as
cancer.

Results: Here, we present miRTrail, an integrative tool that allows for performing comprehensive analyses of
interactions of genes and miRNAs based on expression profiles. The integrated analysis of mRNA and miRNA data
should generate more robust and reliable results on deregulated pathogenic processes and may also offer novel
insights into the regulatory interactions between miRNAs and genes. Our web-server excels in carrying out gene
sets analysis, analysis of miRNA sets as well as the combination of both in a systems biology approach. To this end,
miRTrail integrates information on 20.000 genes, almost 1.000 miRNAs, and roughly 280.000 putative interactions,
for Homo sapiens and accordingly for Mus musculus and Danio rerio. The well-established, classical Chi-squared
test is one of the central techniques of our tool for the joint consideration of miRNAs and their targets. For
interactively visualizing obtained results, it relies on the network analyzers and viewers BiNA or Cytoscape-web, also
enabling direct access to relevant literature. We demonstrated the potential of miRTrail by applying our tool to
mRNA and miRNA data of malignant melanoma. MiRTrail identified several deregulated miRNAs that target
deregulated mRNAs including miRNAs hsa-miR-23b and hsa-miR-223, which target the highest numbers of
deregulated mRNAs and regulate the pathway “basal cell carcinoma”. In addition, both miRNAs target genes like
PTCH1 and RASA1 that are involved in many oncogenic processes.

Conclusions: The application on melanoma samples demonstrates that the miRTrail platform may open avenues
for investigating the regulatory interactions between genes and miRNAs for a wide range of human diseases.
Moreover, miRTrail cannot only be applied to microarray based expression profiles, but also to NGS-based
transcriptomic data. The program is freely available as web-server at mirtrail.bioinf.uni-sb.de.
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Background
Gene expression profiles have gained increasing rele-
vance over the last three decades and have become
essential in modern biomedical sciences. About two dec-
ades ago, a further class of RNAs has been discovered:
these non-coding oligonucleotides are indeed tran-
scribed from the human genome, but no proteins are
assembled according to their blueprints. MicroRNAs are
a subgroup of these non-coding RNAs, currently attract-
ing more and more attention. They have first been
reported in a work by Ruvkun [1] and their first appear-
ance in experiments has been associated with Lee et al
[2].
MicroRNAs usually consist of 17 to 23 nucleotides

and are detectable in the majority of human tissues and
almost all bodily fluids [3-5]. It is known today that
microRNAs influence the expression of target genes by
binding to the corresponding mRNA, leading to its inac-
tivation. Over 50% of all human coding genes seem to
be targets of these short non-coding RNAs. MicroRNAs
hereby help to control and fine-tune physiological cellu-
lar processes like differentiation, proliferation, or apop-
tosis. Nowadays, it also became apparent that
microRNAs have a strong impact on pathological pro-
cesses as well: Various microRNAs show altered expres-
sion patterns in human disorders including malignant
[6-10], neurological [11], cardiovascular [12,13], or rheu-
matic diseases [14,15]. In order to get new insights into
the molecular mechanisms leading to a specific disease,
increasing attention is paid to the interaction of micro-
RNAs and mRNAs of target genes.
The technologies that are most commonly applied to

measure miRNA expression profiles are closely related
to the methods for measuring gene expression profiles,
namely quantitative real-time polymerase chain reaction
(qRT-PCR) [16,17], oligonucleotide microarrays [18,19],
and high-throughput sequencing [20,21]. These three
technologies allow measuring the expression of sets of
miRNA very efficiently. While qRT-PCR is mostly
applied to rather small subsets of miRNAs, microarrays
enable to profile the whole human miRNome and high-
throughput sequencing is additionally applied to detect
novel mature forms of miRNAs. Remarkably, with the
still growing number of miRNAs, and the likewise grow-
ing number of biological experiments carried out with
the above-mentioned high-throughput methods, and the
manifold of possible interactions between miRNAs and
mRNAs, computer aided analyses are essential to grasp
the information hidden in the large data sets. Therefore,
much ongoing work focuses on the combined analysis
of miRNAs and their targets. Two classes of bioinfor-
matics approaches related to this topic are 1) tools that
aim at discovering the targets of miRNAs and 2) tools

that aim at an integrative analysis of miRNA and mRNA
sets. Algorithms belonging to the first class usually rely
on sequence-complementarity and often also include
thermodynamical aspects [22], machine learning [23-25],
or experimental validation steps [26]. An overview of
respective programs, including a comparison, can be
found in [27]. Additionally, approaches primarily based
on experiments are becoming prominent in recent years
[28,29]. Naturally, these approaches are more likely to
reveal significant miRNA - mRNA interaction pairs than
computational approaches. However, they usually
require not unimportant amounts of time and resources
and, e.g. by design, might also miss relevant interactions.
While not strictly being a tool for the discovery of tar-
gets or for an integrated analysis of miRNA and mRNA
sets, TAM [30] offers enrichment analyses on miRNA
sets, thus potentially paving the way to link common
functions with related miRNAs. Tools for the second
purpose, an integrative analysis of genes and their
miRNA regulators, include MMIA [31], DIANA-mirEx-
Tra [32], or miRGator [33]. MMIA, allows to combine
expression profiles of miRNA and mRNA experiments
and then performs a pathway analysis on the intersec-
tion of the predicted target mRNAs and the according
inversely correlated mRNAs. Additional analyses include
Transcription Factor Binding Sites enrichment and dis-
eases that are found to be associated with the inversely
deregulated miRNAs. DIANA-mirExTra web-server
integrates the potentially novel prediction of miRNAs
having one or more of the submitted genes as their tar-
gets. This, likewise, allows shedding light on the func-
tion of the miRNAs. In detail, the algorithm investigates
the 3’ UTR sequences of deregulated genes and searches
for over-represented six nucleotide long motifs, thus,
enabling the identification of matching miRNAs. Finally,
miRGator uses public expression data to analyze expres-
sion correlation between miRNA and target mRNA/pro-
teins. The miRNA - target interactions are based on
miRanda [22], PicTar [34], and TargetScanS [35] and
the function of miRNAs is inferred from the related tar-
get mRNAs. To this end, a statistical enrichment analy-
sis is performed for the established GO-terms, pathways,
and also disease associations. Moreover, it integrates a
first approach towards a manual inspection of the
underlying network, offering vertex- or edge-filtering
but, to-date, no ways to further cope with this informa-
tion. Here, we present miRTrail (freely available to non-
commercial users at mirtrail.bioinf.uni-sb.de), a knowl-
edge-based tool for integrative network analysis that
allows for studying the interactions between microRNAs
and their target genes, and especially in the case of dis-
eases, the implications of expression changes on patho-
genic processes. Our tool excels by its broad
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functionality, as (1) it can be applied to a single disease
or a group of diseases, (2) it covers a wide variety of
biochemical categories, and it can be used to evaluate
(3) qRT-PCR, microarray, as well as NGS-based tran-
scriptome data. In its current stage, the organisms of
Homo sapiens, Mus musculus, and Danio rerio are sup-
ported and further extension is continuing. While many
solutions exist that provide either analyses of miRNAs,
or mRNAs, or a combination of both, miRTrail allows
for the simultaneous, combined statistical analysis of all
of these three. A schematic description of its workflow
is presented in Figure 1, depicting the integration of the
provided data about miRNA and mRNA deregulation
and the offered statistical analyses intended to facilitate
the work with such complex information, especially
when used in combination. As such, our tool is able to
not only give initial but also thorough insights, even for
a very detailed inspection of the given input based on
the network analysis.
One of the original goals of our research was to

improve the understanding on the molecular level of
melanoma. Thus, as a first application, we investigated
miRNA and mRNA expression profiles of this cancer
entity, integrating information from 1) the gene expres-
sion omnibus GEO [36], 2) the PhenomiR 2.0 human
miRNA and diseases database [37], 3) target prediction
algorithms [38], and 4) biochemical pathway information
of different resources integrated via the BNDB and

GeneTrail [39]. By applying miRTrail to these data, we
found highly significant coherences between dysregu-
lated miRNAs and matching dysregulated targets of
these miRNAs. An additional network analysis high-
lighted the potential implications of eight miRNAs via
their target mRNAs on pathogenic processes in
melanomas.

Implementation
In this section, we start by describing the general idea
behind miRTrail, followed by the data, techniques and
tools that are used to provide the rich functionality, as
well as information on the exemplary input data.
Here, the input is originating from publicly available
services like NCBI GEO and PhenomiR. Our tool is
not restricted to these services, as they are intended
for demonstration purposes. Especially, all of miR-
Trail’s functionality is available for the organisms of
Homo sapiens, Mus musculus, and Danio rerio, and
can easily be extended to support other organisms in
the future.

Methodoloy - Multipartite graph
Our webservice miRTrail allows for the joint/integrated
analysis of miRNA and mRNA entities, in respect to
given diseases - since the latter protein-coding RNAs
are targets of the former non-coding RNAs. We decided
to realize the integration of data by constructing a graph

Figure 1 Workflow. Workflow of miRTrail. User submits two RNA sets (one is the set of deregulated miRNAs, the other is the set of deregulated
mRNAs, both for the same disease). Orange color represents information flow of miRNA-related information: For each provided miRNA, the
target mRNAs are determined (based on microCosm predictions or custom, uploaded interactions). This information then is used by miRTrail,
indicated by the red arrow. In general, red color represents flow of mRNA-related information: The uploaded mRNA set as well as the miRNA
targets are used in GeneTrail to perform ORAs as described in the “Methods"-section. Blue color represents information flow of results-related
information, e.g. for the overlap of pathway sets. Finally in the results, the network analysis allows for targeted inspection of the provided
information, based e.g. on miRNA families-related subnetworks. The modular design of miRTrail becomes visible here, also allowing for
convenient extension of future analyses and usage for a diversity of different organisms.
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or network. To be exact, an r-partite or multipartite
graph G:

G = (V, E)

with:

• V = VmiR ∪ VmR ∪ Vdi

• VX ∩ VY = ∅ for X ≠ Y and X, Y Î {miR, mR, di}
• E = EmR-di ∪ EmiR-di ∪ EmiR-mR

• EX − Y = {(u, v)| u Î VX , v Î VY , X ≠ Y} for X, Y
Î {miR, mR, di}

where the vertex-set V is the union of disjoint vertex-
subsets, the edge-set E is the union of disjoint edge-sub-
sets, and an edge only connects vertices of different ver-
tex-subsets.
For each user and the according uploads, individual

networks are created. An efficient and open-source
interface for the creation of graphs is offered by the C+
+ Boost Graph Library and the associated adjacen-
cy_list-construct.

MicroRNA - Target mRNA Interactions
The actually known 20,000 genes and 1,000 miRNAs
allow for 20 million possible interaction pairs, where a
miRNA may regulate a gene. To find the most reliable
candidates, prediction algorithms have been developed.
One of the most prominent algorithms for miRNA - tar-
get mRNA interactions is the miRanda algorithm and
the respective web-resource microCosm [38]. The miR-
anda algorithm is sequence-complementarity based and
includes a thermodynamic analysis of the miRNA - tar-
get mRNA complex. The results are then post-processed
by a filtering on conservation of the target site. Micro-
Cosm offers miRNA - target mRNA interactions in
combination with a p-value threshold. In the beginning,
we decided to perform analyses for three thresholds
(0.01, 0.001, 0.0001), and extracted all interactions hav-
ing a value smaller than the respective alpha level, yield-
ing 279,225, 85,050, and 26,984 interactions,
respectively. Because of the heterogenity of the expres-
sion data, we finally chose to use a threshold of 0.01, in
turn leading to approximately 400 target mRNAs per
miRNA in human. The appropriate predictions for the
other supported organisms are automatically selected by
miRTrail according to the organism in the identifiers of
the uploaded miRNA deregulation information.
Alternatively, custom pairwise miRNA - target mRNA

interactions can be uploaded in a tab-delimited format,
thus allowing e.g. for the use of experimentally validated
interactions. Details on the exact format for this input
can be found on the homepage of miRTrail, especially
regarding gene and miRNA identifiers.

Analysis of independance
Based on the pairwise miRNA - target mRNA interac-
tions (for a custom prediction-threshold (default of 0.01)
or from a custom list provided as upload), the miRNA
and (target) mRNA of each pair is compared to the
input in order to see if it is up-, down- or not deregu-
lated. This information is tabulated in a contingency
table to provide an overview to the user. An according
p-value is calculated, based on a Chisq-distribution with
4 (6 - 2) degrees of freedom. Given that the uploaded
information about dysregulated genes/mRNAs only con-
tains entries with the same direction of deregulation, the
computation of an according p-value is not allowed by
miRTrail and no p-value will be displayed, but instead a
note for the user. However, the table will nevertheless
be displayed as an overview.
To help the researcher get an impression about the

influence of the used miRNA - target mRNA interac-
tions in this step, especially when using data from pre-
diction algorithms, we offer an option to randomize
upon the provided data of miRNA and mRNA deregula-
tion. The deregulation pattern (genes/miRs being up- or
downregulated) is kept as-is while the identifiers are
sampled at random. This functionality is available via
the “Randomize"-button.

MicroRNAs from PhenomiR
For integrating dysregulated miRNAs, we used Pheno-
miR 2.0 (last update: 2011-02-15). This service offers
manually curated data about differential regulation for a
variety of diseases.
Specifically, we used the data for entry/ID: 639, con-

cluding the results of a published melanoma study
based on microRNA low density arrays, including 666
microRNAs. Selection of the statistically significantly
dysregulated miRNAs in the miRNA extracts of adult
melanoma patients and benign nevi controls was done
with univariate Two-sample T-test and a significance
level of 0.05. The size of the patient samples is 10 and 4
for the control, respectively. An overview of the num-
bers of up- and downregulated miRNAs can be found in
Table 1.

MessengerRNAs from NCBI’s GEO
The NCBI Gene Expression Omnibus (GEO) is a public
repository providing data from microarray experiments,

Table 1 Summary of deregulated genes and miRNAs
# up-reg # down-reg sum of up and down

genes 2550 2218 4768

miRNAs 16 17 33

Deregulated genes (from NCBI GEO) (a = 0.05) and deregulated miRNAs
(Phenomir 2.0).
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next-generation sequencing, and other high-throughput
functional genomic data. The microarray experiments,
in particular, must comply with MIAME guidelines in
order to be accepted by NCBI’s GEO.
We extracted the microarray expression profiles from

data set GDS1375 (series published: 2005-08-25), includ-
ing 63 arrays for 45 melanoma and 18 benign nevi sam-
ples. Due to possible variations between the
experiments, we carried out a quantile-normalization of
the expression values for all genes present on the
respective data set. Selection of differentially expressed
genes was performed on the normalized data using the
univariate Two-sample T-test and a significance level of
0.05. An overview of the numbers of up- and downregu-
lated genes can be found in Table 1.

GeneTrail
The gene set analysis tool GeneTrail has been developed
to help in the analysis of readily available or newly cre-
ated high-throughput data. It allows for a comprehen-
sive and efficient statistical evaluation of large genomic
or proteomic datasets and covers a plethora of biological
categories and pathways, e.g. KEGG, TRANSPATH,
TRANSFAC, and GO. Analyses can be either performed
via an ‘Over-Representation Analysis’ (ORA) comparing
a reference set of genes to a test set or a ‘Gene Set
Enrichment Analysis’ (GSEA) based on a sorted list of
genes. While the calculation of ORA p-values relies on
Hypergeometric distribution, many existing tools offer
the calculation of GSEA p-values based on permutation
tests, usually limited to a fixed number of permutations
for performance reasons. GeneTrail integrates an exact
calculation [40] corresponding to a commonly used
non-parametric unweighted permutation test. This cal-
culation is based on dynamic programming and thus
allows, especially for large sets, a higher accuracy than
by using a fixed number of permutations.
Recently, GeneTrail has been extended to directly

allow the analysis of expression data originating from
the NCBI GEO, resulting in GeneTrail Express [41].
This integration greatly facilitates the selection of differ-
entially regulated genes and allows for a fast evaluation
of the expression profiles in respect to biological cate-
gories and pathways.

Visualization: BiNA and Cytoscape-web
While computational approaches are very important in
contemporary research, manual inspection is often
desireable to support the automatic analyses or to iden-
tify new aspects. To this end, we decided to include the
visualization of the resulting interaction network of
miRNAs and their (putative) targets. Due to the large
amount of integrated data, efficient means for focusing
are crucial. Therefore, we provide respective

subnetworks, depending either on the choice of indivi-
dual miRNAs or on members of miRNA-families con-
tained in the input. Furthermore, only deregulated
miRNAs are respected that are connected to deregulated
target mRNAs, either by the prediction algorithm or the
provided custom interactions, as we envision these enti-
ties and relations as the most relevant. For the actual
visualisation, two selections are available for the user:
BiNA and Cytoscape-web.
BiNA is a visualization and analysis tool for various

biological networks. We developed a plug-in for the Java
Webstart version of BiNA, which takes the miRTrail
results and uses the visualization capabilities of BiNA
for presenting the network. The user can choose
between different graph layouts (organic, hierarchic, and
orthogonal) and can modify the visualization in many
ways. By default, the target-mRNA nodes are sized
according to their degree for easier retrieval of high-
degree nodes. It is also possible to save the network in
different file formats for reusing the data in other tools
or BiNA again. For larger graphs, this visualization-
option is probably beneficial.
Cytoscape-web is modeled after the Cytoscape Java

network visualization and analysis software [42]. Its
JavaScript API allows for an integration into HTML-
pages and convenient display of networks. We offer the
user a choice of three different graph layouts (Circular,
Radial, Tree) and the possibility to select the first neigh-
bors of a selected node. Zoom and pan functionality is
available and target-nodes are also sized according to
their degree. As the graph is directly displayed in the
browser-window, this visualization is especially suitable
for a quick inspection of the network. Finally, we imple-
mented context-menu items that greatly facilitate the
search for related publications by performing NCBI
PubMed queries ("inclusive” or “exclusive”) for a custom
selection of miRNA and mRNA nodes, given a disease
was specified in the input.

Results and Discussion
In the following, we will describe the range of different
functions offered by miRTrail. Subsequently, an analysis
of cutaneous malignant melanoma versus benign nevi is
performed to illustrate the potential of our tool.

Functionality of miRTrail
The miRTrail webserver recieves two dysregulation sets
in separate text-files as input, one is the set of dysregu-
lated miRNAs and the other is the set of dysregulated
genes. For each uploaded identifier (for miRNAs, the
standard annotation of miRBase is used, for genes the
HGNC GeneSymbol annotation, respectively), the infor-
mation whether the respective gene/miRNA is upregu-
lated (’1’) or down-regulated (’−1’) has to be provided in
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the files by the user. Optionally, the disease of interest
can be specified to allow for convenient NCBI PubMed
queries for related information.
As the next step, the user can either choose a target-

prediction threshold for microCosm targets predictions
or can provide a list of custom pairwise miRNA - target
mRNA interactions, potentially originating from pro-
prietary experiments or other prediction algorithms.
The default threshold for microCosm targets predictions
is 0.01, amounting to around 280,000 miRNA - target
mRNA interactions. Here, the user can also opt-in for a
thorough GeneTrail analysis. Based on this information,
the analyses are then carried out and, finally, the user is
directed to the results. These will be stored uniquely for
each analysis performed and can be shared with others
by simply providing them with the link of the results
page. The results presented herein can be reproduced
using the example files provided by miRTrail.
The first provided analysis computes a contingency

table relating the dysregulation of miRNAs and the dys-
regulation of target mRNAs and calculates the according
p-value, based on a c2 distribution. This analysis allows
for estimating whether there is an independance in the
deregulation of the miRNAs and the target mRNAs.
Second, a Venn diagram is computed, providing the

dysregulated genes that are targets of dysregulated miR-
NAs (overlap of the diagram), the not-dysregulated tar-
gets of dysregulated miRNAs (left part of the diagram)
and the dysregulated genes that are not targets of the
dysregulated miRNAs (right part of the diagram). For
this Venn diagram, a p-value using the Hypergeometric
distribution is calculated to show whether there exists a
significant overlap between dysregulated genes and tar-
gets of dysregulated miRNAs. Third, gene set enrich-
ment analyses for three gene sets are carried out using
the comprehensive functionality of GeneTrail. Indepen-
dently of each other, a so-called Over-Representation
Analysis (ORA) - based on the Hypergeometric distribu-
tion - is carried out for the dysregulated genes, targets
of dysregulated miRNAs and dysregulated targets of dys-
regulated miRNAs. In all cases, the gene sets are tested
for significant enrichments/depletions in KEGG path-
ways. If the user previously decided to perform all
GeneTrail analyses, the results will also include informa-
tion about GO terms, TransPath pathways, transcription
factors from Transfac, SNPs, and chromosomal location,
among many others. By clicking on the ‘details’ button,
the complete list of results is provided. Moreover, an
overview showing the biological categories being signifi-
cant in at least two of the three analyses is created. The
“code” represents in which of the pairwise overlaps the
respective category was found, similar to the file-permis-
sion scheme in Linux. So, a code of “2” e.g. shows that a
category was found in the enrichment analysis of the

dysregulated targets of dysregulated miRNAs as well as
in the results of the dysregulated genes. A code of “3”
would hence mean that this category was additionally
found in the results of the targets of dysregulated miR-
NAs. Accordingly in Table 2, e.g. the “DNA replication”
pathway was found to be enriched for dysregulated tar-
gets of dysregulated miRNAs as well as for the dysregu-
lated genes/mRNAs.
Finally, we carry out an integrative network-analysis

approach on the comprehensive network containing
dysregulated genes, dysregulated miRNAs, and the target
interactions between them. A subset of interesting miR-
NAs and their according targets is selected as well as a
custom degree constraint. The subset can be con-
structed either by selecting individual miRNAs, s. Figure
2, or miRNA families based on an Over-Representation
Analysis of miRNA-family data from miRBase (miFam.
dat) [43], s. Figure 3. The custom degree constraint
allows the selection of the genes being the target of at
least as many miRNAs as specified by the parameter.
Based on this selection, using the Java Webstart-based
viewer BiNA [44] or the web-based viewer Cytoscape-
web [45], we show the resulting network, allowing for a
manual inspection of the inherent interactions. In the
network visualizations, nodes with rectangular shapes
belong to miRNAs, nodes with round shapes to genes,
red color means up-regulation, green color means
down-regulation, and genes and miRNAs are connected
by edges if a putative miRNA - target interaction exists.
Additionally, a more fine-grained ORA is available,
being performed only on the genes that are contained in
the custom selection, which is also separately available
as a list. These genes are assumed to be the most dis-
ease-relevant as they are found to be deregulated and
simultaneously putative targets of deregulated miRNAs
while, at the same time, being central to the network,
according to their degree. This list is analysed for
enrichments/depletions in KEGG pathways, Gene

Table 2 Overlapping pathways
Pathway Related mRNA set Code

Olfactory transduction 04740 a, b, c 7

DNA replication 03030 b, c 2

Lysosome 04142 b, c 2

Prostate cancer 05215 b, c 2

Small cell lung cancer 05222 b, c 2

Systemic lupus erythematosus 05322 b, c 2

a: Pathways related to targets of dereg. miRNAs
b: Pathways related to dereg. targets of dereg. miRNAs
c: Pathways related to dereg. mRNAs
Code: Arithmetic sum of the following:
1: Found for a and b
2: Found for b and c
4: Found for a and c
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Ontology terms, OMIM disease relations, and NIA
human disease gene sets. A thorough GeneTrail analysis
can also be chosen here.

Melanoma case study
We compared the expression profiles of cutaneous
malignant melanoma to those of benign skin nevi sam-
ples from adult patients. While the proportion of mela-
noma cases among skin cancer patients is rather low

(4%), it accounts for almost 75% of all skin cancer-
related deaths. Even more, the prognosis for advanced
melanoma is very poor (5-year survival-rate is only 5%)
[46]. Hence, we decided to validate our tool based on
melanoma data and to identify new aspects of this dis-
ease, potentially helping in the creation of promising
new therapies for advanced melanoma patients.
An illustration of the the results page for the miRTrail

analysis on the melanoma miRNA and mRNA samples,

Figure 2 MiRNA selection (individual). Demonstrates the selection of miRNAs of interest. Link next to the each miRNA shows the respective
dysregulated target mRNAs.
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as mentioned in the previous section, can be seen in
Figure 4.
Analysis of independance
Using our tool, for the melanoma samples and a predic-
tion threshold of 0.01 for the human miRNA - target
mRNA interactions from MicroCosm targets, we were

able to find statistical evidence about the dependance of
deregulation of miRNAs and target mRNAs. The contin-
gency table yielded a p-value of 0.025 (a = 0.05). Inter-
estingly, independant of the miRNA being up- or
downregulated, similar amounts of interactions were
found for targets, then, being up (450 and 480), down

Figure 3 MiRNA selection (families). Demonstrates the selection of miRNAs based on enriched miRNA families. All significant families (p(adj)
<0.05) are preselected.
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(394 and 355), or not deregulated (3193 and 3385),
respectively. In turn, more targets were found to be up-
regulated for dysregulated miRNAs as well as for not
dysregulated miRNAs. Surprisingly, 805 (450 + 355)
interactions were found with both miRNA and predicted
target, being deregulated in the same direction. Finally,
as expected, a large number of interactions was found
were both, the miRNA and the predicted target, were
not deregulated (212782).
ORA of the three mRNA sets
Inspecting the ORA results, showed one KEGG path-
way (GPI-anchor biosynthesis) to be significantly
enriched for the set of targets of dysregulated miRNAs.

In turn, the over-representation analysis of dysregu-
lated targets of dysregulated miRNAs revealed nine
significant pathways, including cancer related cate-
gories, like Non-small cell lung cancer, Prostate cancer,
Small cell lung cancer, Endometrial cancer, and
Glioma as well as enrichments in the Lysosome path-
way and DNA replication. The analysis of the dysregu-
lated mRNAs revealed the highest number of
statistically signifi cant KEGG categories with a total of
24. Here again, several cancer-related pathways were
found to be enriched as well as pathways like Cell
cycle, Focal adhesion, or even signaling pathways (e.g.
TGF-beta signaling pathway).

Figure 4 Results Page. This illustrates the results page of a miRTrail analysis. The network visualization and subsequent analyses are available in
the subpanel at the bottom.

Laczny et al. BMC Bioinformatics 2012, 13:36
http://www.biomedcentral.com/1471-2105/13/36

Page 9 of 13



The result of the pairwise overlaps of the resulting
pathway sets is described in Table 2. Among those, the
DNA replication pathway [47] as well as the Lysosome
pathway [48,49] have already been attributed to
melanoma.
Network analysis
From the 33 input miRNAs, 21 were found to have dysre-
gulated targets for a prediction threshold of 0.01. The
miRNA with the least dysregulated targets was hsa-miR-
211 (52 targets) while hsa-miR-23b was the miRNA with
the most dysregulated targets (115). For this analysis, we
decided to use the eight miRNAs having more than 80
dysregulated targets (miR-23b [50], miR-223, miR-193b
[51], miR-424, miR-20a [52], miR-98, miR-891a, and miR-
566), see Figure 2. We left the custom degree constraint at
the default of 1 for the subsequent ORA. The resulting
mRNA set comprises the dysregulated mRNAs that were
predicted targets of at least one of the eight earlier miR-
NAs. Specifying a higher constraint would lead to a smal-
ler network with only the mRNA nodes being targets of at
least as many miRNAs as specified by this parameter and
the according miRNA nodes, respectively.
ORA of subnetwork The analysis of KEGG pathways
showed significant enrichments for the three cancer-
related categories: Prostate cancer, Non-small cell lung
cancer, and Endometrial cancer. These categories were

found to be enriched for genes that were deregulated
while being targets of deregulated miRNAs, hence, the
genes that are assumed to be the most disease-relevant
due to their joint deregulation.
A total of 274 GO terms were found to be enriched or

depleted for all of the three GO-trees, with enrichments
in anti-apoptosis, cell proliferation, cell cycle, transcript
initiation, RNA elongation, and regulation of transla-
tional initiation among others in the biological subtree.
Furthermore, an enrichment (RASA1 and PTCH1) for

“Susceptibility to basal cell carcinoma” was found in the
OMIM categories.
Visualization For this step, we decided to focus on
smaller miRNA and mRNA sets to increase the visibility.
However, also large selections can be efficiently handled
and used for detailed manual inspections. Exemplary
visualization can be found in Figure 5 and 6, for BiNA
and for Cytoscape-web, respectively.

Conclusions
The constantly increasing availability of data from differ-
ent origins and of different nature allows for more com-
plex and comprehensive analyses. To this end, we
developed miRTrail to integrate information about RNA
deregulation in diseases and putative interactions of
miRNAs and mRNAs. Our tool provides a large

Figure 5 Visualization: BiNA. Subnetwork of top-8 miRNAs and a degree constraint for the target mRNAs of 3, thus, only seven miRNA nodes
are displayed. Round shape represents mRNAs, rectangular miRNAs, respectively. Red color indicates upregulation, green color downregulation,
respectively. Size of the mRNAs is according to their degree.
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collection of different analyses and performs in a trans-
parent way, requiring only minor activity by the user,
while offering versatile results. This greatly facilitates the
adaption of this tool as it does not require complicated
initial learning. Via the visualisation component, miR-
Trail enables the user to easily inspect the interactions
and, thus, also to further process upon the selection.
MiRTrail - results will also be of great help in any

scheme that aims in experimental confirmation of
miRNA-targets. The final proof, here, requires extended
experiments including the identification of the specific
targeted region of a gene by in vitro binding and the
analysis of in vivo effects by altered miRNA expression.
The melanoma case study shows that we were able to
detect highly significant results, despite the fact that we
did not use autologous samples. This sets the ground
for specific experimental assays that focus on significant
miRNA - mRNA interactions in this tumor type. Hence,
miRTrail is of great interest for the life sciences commu-
nity as it can use data from next-generation sequencing,
qRT-PCR, or microarray experiments.

Availability and requirements
Project name: miRTrail
Project home page: http://mirtrail.bioinf.uni-sb.de
Operating system(s): Platform independent
Programming languages: C++, php
Other requirements: JavaWS version 1.6 or higher
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Abstract

Co-regulation of genes has been extensively analyzed, however, rather limited knowledge is available on co-regulations within the
miRNome. We investigated differential co-expression of microRNAs (miRNAs) based on miRNome profiles of whole blood from
540 individuals. These include patients suffering from different cancer and non-cancer diseases, and unaffected controls. Using hierarchi-
cal clustering, we found 9 significant clusters of co-expressed miRNAs containing 2–36 individual miRNAs. Through analyzing multiple
sequencing alignments in the clusters, we found that co-expression of miRNAs is associated with both sequence similarity and genomic
co-localization. We calculated correlations for all 371,953 pairs of miRNAs for all 540 individuals and identified 184 pairs of miRNAs
with high correlation values. Out of these 184 pairs of miRNAs, 16 pairs (8.7%) were differentially co-expressed in unaffected controls,
cancer patients and patients with non-cancer diseases. By computing correlated and anti-correlated miRNA pairs, we constructed a net-
work with 184 putative co-regulations as edges and 100 miRNAs as nodes. Thereby, we detected specific clusters of miRNAs with high
and low correlation values. Our approach represents the most comprehensive co-regulation analysis based on whole miRNome-wide
expression profiling. Our findings further decrypt the interactions of miRNAs in normal and human pathological processes.

Keywords: Co-expression; Microarray; MicroRNA; Network analysis

Introduction

Microarray experiments have been applied for almost three
decades in the detection of disease-relevant changes in gene
expression patterns. While in early ages genes have mostly
been considered independently from each other, cluster
[1,2] and classification [3–5] technologies have more
recently been applied to find patterns of differentially
expressed genes. Finally, gene set analysis approaches
[6,7] and methods integrating pathway topology [8,9] have
been developed to understand the interplay of genes. These

approaches have been successfully applied to studies in
small non-coding RNAs, e.g., microRNAs (miRNAs).

With the increasing availability of expression profiles for
various diseases, differential co-expression of genes moved
into the focus of attention. The term “differential co-
expression” was firstly coined by Bennets in 1986 [10]
studying the co-expression of alpha-actins within the
human heart. In 1992, Swiderski reported differential co-
expression of long and short form type IX collagen tran-
scripts during avian limb chondrogenesis [11]. Co-expres-
sion analysis of genes using microarray technology has
also been applied to other human pathologies, including
cancer [12]. In 2009, Mo and co-workers presented a
stochastic model to identify co-expression patterns of
differential gene pairs in prostate cancer progression [13].
Comprehensive methods to detect differential co-
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expression have been developed by Lai who reported an
efficient pattern recognition algorithm [14]. This algorithm
used Expected Conditional F-statistic that incorporates
statistical information of location and correlation or other
scores as proposed by Koska and Spang [15]. Subse-
quently, several tools and software packages with respec-
tive functionality have been developed including
CoXpress [16], DiffCoEx [17], dCoxS [18] and differential
co-expression framework [19].

Only a few studies have been reported for analysis of dif-
ferential co-expression for miRNAs. An example is the
construction of an miRNA–miRNA synergistic network
via co-regulating functional modules and disease miRNA
topological features [20]. One reason for the lack of
miRNA co-expression studies is certainly the paucity of
miRNA expression profiling data. Gene expression profiles
have been measured for almost three decades in numerous
microarray experiments, of which hundreds of thousands
are currently available through the Gene Expression Omni-
bus [21,22], however, only a fraction of array data sets are
available for miRNAs. The most frequently applied micro-
array platform is the Agilent miRNA microarray 2.0.
Another technology which is frequently applied is the
MPEA assay (Febit Biomed, Heidelberg) that has been
used to measure several hundred blood-based miRNA
profiles which are the source for our meta-analysis.

Previously, Riveros and co-workers reported a compre-
hensive study for differential co-expression of miRNA that
was derived from whole blood of patients with multiple
sclerosis [23], providing evidence that differential co-expres-
sion from body fluids can be accessed. miRNA expression

patterns from human blood cells are increasingly discussed
for their potential as a minimal invasive diagnostic tool.
Most recently, we reported blood-based miRNA expres-
sion patterns for 14 different human pathologies [24]
including lung cancer [25], COPD [26], multiple sclerosis
[27], ovarian cancer [28], glioblastoma [29], and acute
myocardial infarction [30]. Since the various cohorts are
relatively small as compared to the large number of poten-
tial pair-wise co-expressions, we combined the different
data sets into a meta-analysis. Here, we investigate the dif-
ferential co-expression patterns using the data of a total of
540 blood-based miRNA expression profiles.

Results and discussion

Co-localization and co-expression of miRNAs

As a first approach towards understanding the interplay of
miRNAs, we applied hierarchical clustering to the data set
containing 540 samples measured for the expression of 863
miRNAs. To reduce the noise, we excluded miRNAs with
low expression values (detailed in Material and methods).
An average linkage bottom up clustering detected a total
of nine significant clusters (P < 0.05). These clusters each
contain 2–36 miRNAs (Figure 1). Notably, many clusters
contained miRNAs with similar sequences. Good example
for co-expression related to similar sequences is Cluster 8
that contains hsa-miR-23a and hsa-miR-23b or Cluster 5
that contains hsa-miR-19a and hsa-miR-19b. The biologi-
cal mechanism underlying co-expression of miRNAs with
similar sequence remains to be elucidated. It is possible that

Figure 1 Cluster dendrogram of miRNAs
Red boxes denote significant clusters as computed by bootstrap re-sampling. The red values were calculated by bootstrap re-sampling and those >95%,
corresponding to significance level of 0.05, are considered as significant. Values in green and gray indicate bootstrap probability (BP) and the edge number
in the dendrogram, respectively. The significant clusters with approximately unbiased (AU) value greater than 95% (P < 0.05) are labeled with numbers in
circle in increasing order from left to right.
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co-expressed miRNAs of similar sequence share similar
targets. Other than that, reduced specificity of hybridiza-
tion-based approaches could partially explain this
co-expression. On the other hand, as expected, we also
found many miRNAs that clustered together but had dif-
ferent sequences, such as hsa-miR-1260 and hsa-miR-30c
in Cluster 3. Respective pair-wise sequence alignments
(hsa-miR-19a/hsa-miR-19b, hsa-miR23a/hsa-miR23b,
hsa-miR-1260/hsa-miR-30c) are shown in Figure 2.

To test the hypothesis that miRNAs belonging to the
same polycistronic miRNA cluster or the same miRNA
family are co-expressed, we additionally performed enrich-
ment analyses. For each significant set containing more
than 5 miRNAs (Clusters 4, 6 and 7 in Figure 1), we per-
formed the enrichment analysis separately to see whether
the selected miRNA clusters or families are over-
represented. In line with our expectations, the let-7a,
miR-106a, miR-106b, miR-15a and miR-17 clusters were
significantly enriched (all P 6 0.005) in our Cluster 6,
whereas members of the miR-192 polycistronic miRNA
cluster were mostly found in Cluster 7 (P = 0.001). Like-
wise, we also found a strong enrichment of miRNA fami-
lies in our clusters, such as the let-7 family (P = 0.002),
the miR-15 family (P = 0.001), the miR-320 family
(P = 0.00002) and the miR-17 family (P = 3E-8) in Cluster
6 and the miR-103 family (P = 0.001) in Cluster 7. Interest-
ingly, no significant enrichment for a known miRNA clus-
ter or family was found in Cluster 4, indicating that our
clustering approach groups not only polycistronic (and
thus co-transcribed) miRNA clusters or known miRNA
families, but also miRNAs that are co-expressed for differ-
ent reasons. In addition, divergent behavior of individual

Figure 2 Alignments of co-expression miRNA clusters with similar or
different sequences
Pairwise sequence alignment indicated that hsa-miR-23a and hsa-miR-23b
in Cluster 8 (upper panel) and hsa-miR-19a and hsa-miR-19b in Cluster 5
(middle panel) show high sequence similarity, while there is lower sequence
similarity for hsa-miR-1260 and hsa-miR-30c in Cluster 3 (lower panel).

Table 1 Co-localization of correlated miRNAs

miRNA Position Strand Correlation

Figure 3 Representative expression profiles of correlated miRNA pairs
A. Positive correlation. Expression of two positively-correlated miRNAs, hsa-miR-17 and hsa-miR-20a, was measured for 540 individuals including
controls (n = 72, black circle), cancer patients (n = 276, red circle) and non-cancer patients (n = 192, blue circle). B. Negative correlation. Expression of
two negatively-correlated miRNAs, hsa-miR-423-5p and hsa-miR-144, was measured for 540 individuals including controls (black circle), cancer patients
(red circle) and non-cancer patients (blue circle). A complete list of the disease types and the respective numbers of patients is shown in Table 4.
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miRNAs belonging to the same polycistronic cluster or
family provides evidence for a significant post-transcrip-
tional component in miRNA expression.

An additional reason for putative co-regulation of miR-
NAs might be their co-localization in the genome. To this
end, we searched for miRNAs that have been clustered

together based on the expression data and are located on
the same chromosome. Subsequently candidate pairs were
mapped to the exact chromosomal position. We found five
pairs of miRNAs that showed a high absolute correlation
(6!0.5 or P0.5) and are located on the same chromosome,
as presented in Table 1. Three of those five miRNA pairs

Table 2 Differential co-expression in diseases

miRNA 1 miRNA 2 Overall correlation Control correlation Cancer correlation Non cancer correlation Variance

hsa-miR-377* hsa-miR-548l 0.756 !0.129 0.522 0.842 0.245
hsa-miR-196b hsa-miR-548l 0.73 !0.028 0.416 0.864 0.199
hsa-miR-548l hsa-miR-135b 0.72 !0.023 0.373 0.863 0.197
hsa-miR-423-5p hsa-miR-144 !0.556 0.052 !0.651 !0.462 0.132
hsa-miR-595 hsa-miR-574-5p 0.743 0.121 0.78 0.62 0.118
hsa-miR-363 hsa-miR-320d !0.507 0.019 !0.481 !0.624 0.114
hsa-miR-320c hsa-miR-363 !0.519 !0.022 !0.539 !0.56 0.093
hsa-miR-320b hsa-miR-144 !0.575 !0.078 !0.619 !0.582 0.091
hsa-miR-106a hsa-miR-720 !0.577 !0.128 !0.626 !0.582 0.076
hsa-miR-106a hsa-miR-320c !0.504 !0.068 !0.499 !0.568 0.073
hsa-miR-144 hsa-miR-320a !0.571 !0.143 !0.642 !0.542 0.07
hsa-miR-126 hsa-miR-720 !0.513 !0.079 !0.537 !0.534 0.069
hsa-miR-144 hsa-miR-720 !0.552 !0.144 !0.584 !0.56 0.061
hsa-miR-720 hsa-miR-20b !0.58 !0.187 !0.599 !0.602 0.057
hsa-miR-23b hsa-miR-23a 0.708 0.323 0.751 0.709 0.056
hsa-miR-17 hsa-miR-151-3p !0.512 !0.205 !0.378 !0.657 0.052

Figure 4 Correlations of 16 miRNA pairs with variance > 0.05
Differential co-expression of these miRNA pairs is shown separately for cancer patients (red), non-cancer patients (green) and healthy controls (blue).
Co-expression of the miRNA pairs was more frequently detected in cancer and non-cancer patients than in healthy controls.
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showed positive correlation while the remaining two pairs
showed negative correlation. The three pairs with positive
correlation are located within a distance of 500 base pairs
of each other and were each on the same strand. On the
other hand, larger genomic distances were found for the
two negatively-correlated miRNA pairs. For example,
the distance between hsa-miR-423-5p and hsa-miR-144

was about 10 million base pairs (Mb). Moreover,
hsa-miR-423-5p was located on the plus strand whereas
hsa-miR-144 was located on the minus strand. Figure 3
shows expression values of one pair of positively-correlated
miRNAs, namely hsa-miR-20a/hsa-miR-17 (Figure 3A)
and one pair of negatively-correlated miRNAs, namely
hsa-miR-423-5p/hsa-miR-144 (Figure 3B) for 540 analyzed

Table 3 Non-differential co-expression in diseases

miRNA 1 miRNA 2 Overall correlation Control correlation Cancer correlation Non-cancer correlation Variance

hsa-miR-593* hsa-miR-646 0.791 0.813 0.803 0.77 <0.001
hsa-miR-93 hsa-miR-20b 0.737 0.758 0.751 0.721 <0.001
hsa-miR-593* hsa-miR-214 0.834 0.815 0.824 0.852 <0.001
hsa-miR-330-3p hsa-miR-621 0.858 0.887 0.859 0.851 <0.001
hsa-miR-593* hsa-miR-331-3p !0.503 !0.5 !0.488 !0.523 <0.001
hsa-miR-374b hsa-miR-374a 0.722 0.729 0.734 0.702 <0.001
hsa-miR-621 hsa-miR-593* 0.838 0.852 0.849 0.822 <0.001
hsa-miR-330-3p hsa-miR-214 0.801 0.825 0.793 0.815 <0.001
hsa-miR-452* hsa-miR-593* 0.748 0.754 0.756 0.727 <0.001
hsa-miR-500 hsa-miR-195 !0.532 !0.509 !0.54 !0.52 <0.001
hsa-miR-1228* hsa-miR-149* 0.719 0.755 0.731 0.73 <0.001
hsa-miR-107 hsa-miR-331-3p !0.67 !0.685 !0.658 !0.675 <0.001
hsa-miR-330-3p hsa-miR-452* 0.793 0.809 0.793 0.792 <0.001
hsa-miR-509-5p hsa-miR-933 0.842 0.854 0.841 0.848 <0.001
hsa-miR-584 hsa-miR-362-5p 0.713 0.709 0.703 0.715 <0.001
hsa-miR-1184 hsa-let-7i* 0.792 0.786 0.788 0.792 <0.001

Figure 5 Correlations of 16 miRNA pairs with variance 6 0.00053
Differential co-expression of these miRNA pairs is shown separately for cancer patients (red), non-cancer patients (green) and healthy controls (blue). Co-
expression of the miRNA pairs was comparable in the three groups.
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blood samples. The results showed that the cohorts
behaved similarly for each of the pairs.

Differential co-expression of miRNAs

The 540 individuals participating in this study can be
grouped in three different cohorts, including unaffected
healthy individuals (control), cancer patients (cancer) and
non-cancer patients (non cancer). For these three cohorts
we asked whether the correlation is equally high in all three
groups or whether certain cohorts deviate from the others.
To this end, we computed for each pair of miRNAs the
correlation values for the three cohorts separately. As a

result of the calculation for all
863

2

! "
¼ 863 # 862

2
¼ 371; 953 pairs, the values of correla-

tion range from !0.67 to 0.89 with average correlation of
0.013. As the slight positive average correlation already
indicates, we obtained slightly more positive correlations
than negative ones. Thus, we applied different thresholds
for positive and negative correlations to acknowledge this
non-symmetric distribution. We only considered posi-
tively-correlated miRNA pairs with correlation values
higher than 0.7 and negatively-correlated miRNA pairs
with values lower than !0.5. Using these thresholds we
obtained 184 miRNA pairs out of 371,953 pairs in total

Figure 6 Correlation network
Network was constructed with all positive correlations between pairs of miRNAs with a correlation of at least 0.7 (blue edges) and all negative correlations
of at least !0.5 (red edges). The thickness of the edges corresponds to the alignment score. The pair-wise sequence alignment was computed using edit
distance. Dashed edges indicate correlations that were different in controls and in patients.
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(0.05%). Of these 184 miRNA pairs, 118 were positively
correlated and 66 were negatively correlated. To estimate
the extent of differential expression in the 3 cohorts, we
computed the variance of the correlation values, ranging
from 10!5 to 0.24 with an average of 0.02. The 16 miRNA
pairs with the highest variance, corresponding to the most
differentially-regulated miRNAs (variance >0.05), are sum-
marized in Table 2 and Figure 4 and the 16 miRNA pairs
with the lowest variance (variance 60.00053) are indicated
in Table 3 and Figure 5.

By examining the differential co-expression of the 16
miRNA pairs with variance >0.05, we found that both
the cancer patients and the non-cancer patients deviate
from the healthy controls. As compared to the healthy con-
trols, co-expression of these 16 miRNA pairs was detected
significantly more frequently in both cancer and non-can-
cer disease groups. Overall the correlation between cancer
and non-cancer diseases was 0.95 while decreased correla-
tion was revealed between control and cancer and between
control and non-cancer diseases, which is 0.59 and 0.49,
respectively. Further analysis identified five miRNA pairs
that were positively correlated in patients but not in
healthy controls. For example, the pair hsa-miR-23a/hsa-
miR-23b showed correlation of 0.71 in non-cancer patients
(P < 10!10) and 0.75 in cancer patients (P < 10!10) but only
0.32 in healthy controls (P < 0.01) with the respective 95%
confidence intervals as 0.69–0.80, 0.63–0.79 and 0.07–0.54.
Moreover, we found 11 miRNAs that were highly anti-
correlated, i.e., negatively correlated both in cancer and
in non-cancer patients but again not correlated in healthy
controls.

These results indicate that the observed overall high var-
iance for the 16 miRNA pairs is mostly due to the healthy
controls. While the 16 pairs were only weakly correlated in
healthy controls they were correlated or anti-correlated in
the patients. The results that may be biased due to slightly
different cohort sizes may give first and certainly only pre-
liminary evidence that miRNA expression may be more

homogenously coordinated in patients, possibly indicating
a change in expression regulation that is common to differ-
ent types of diseases.

Interestingly, all miRNAs of the miRNA pairs that are
negatively correlated in cancer or non-cancer patients but
not in healthy controls have been previously related to
human diseases according to the Human miRNA and
Disease Database (HMDD) [31]. For examples, the known
disease-associated miRNAs that were identified as nega-
tively correlated in our study included hsa-miR-17 that
was according to the HMDD associated with 33 different
diseases, hsa-miR-128 with 18 diseases, hsa-miR-20b with
9 diseases, hsa-miR-423 with 4 diseases and hsa-miR-363
with 3 diseases. This finding is even more profound, since
only about one third of all known miRNAs in the HMDD
are related to one or more diseases [31]. Obviously, the
analysis of co-expression can contribute to the identifica-
tion of disease-associated miRNAs.

Anti-correlation of expression and co-localization of
miRNAs

Besides pairs of miRNAs that were correlated in patients
and that were co-localized, we also identified co-localiza-
tion of miRNA pairs for miRNAs which are anti-
correlated in patients. For example, hsa-miR-423-5p and
hsa-miR-144 are co-localized on chromosome 17 and are
negatively correlated (!0.56). Specifically, the correlation
value for this miRNA pair was!0.65 in non-cancer patients
and !0.46 in cancer patients, respectively. However, we did
not find a negative correlation for this miRNA pair in
healthy controls (correlation of 0.05) (Tables 1 and 2).

Putative co-regulation network

Based on the analysis of co-regulated miRNAs, we con-
structed a network with 184 correlations (correlation value
>0.7 or <!0.5). As shown in Figure 6, the derived network

Figure 7 Differential co-expression sub-network
Sub-network of miRNAs was constructed with correlations that were different between controls and patients (left side) and correlations that were similar
between controls and patients (right side). The indication of edges was same as that used in Fig. 6.
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encompasses 100 different miRNAs. Roughly, the network
can be divided into one large connected component and
several small components consisting of 2 to 4 miRNAs
each. The large connected component can again be subdi-
vided into two clusters. The upper cluster shown in Figure 6
contains mostly positively correlated miRNA pairs as indi-
cated by blue edges while the cluster shown at the bottom
of Figure 6 contains both positive correlations and negative
correlations (indicated by red edges). While the miRNAs in
the upper cluster do not show obvious sequence similarity
as indicated by thin edges, positively correlated miRNAs of
the lower cluster show high sequence similarity as indicated
by thick edges. The small components with two to four
miRNAs are mostly positively correlated. For most of
these pairs, the positive correlation is associated with
sequence similarities, as for example for the pair of
hsa-miR-23a and hsa-miR-23b and the pair of hsa-miR-
1247a and hsa-miR-1247b.

Additionally, many of the positive and negative correla-
tions shown in the bottom cluster are different between
healthy controls and patients. The differences are visualized
as a sub-network in Figure 7. The sub-network separates
miRNAs with different correlation between healthy con-
trols and patients (on the left) and miRNAs with similar
correlations in healthy controls and patients (on the right).
Among the miRNAs with similar correlations are four
miRNAs of the let-7 family that have previously been asso-
ciated with many human malignancies [31]. In addition,
each of the remaining miRNAs of the sub-network has
previously been associated with at least one human disease
according to the HMDD [31].

Conclusion

Over almost three decades it has been shown that co-
expression and specifically differential co-expression of

genes play an important role in human pathogenic pro-
cesses. However, differential co-expression has not been
thoroughly analyzed for the miRNome. This is in part
due to the lack of respective high-throughput data sets
allowing the analysis of miRNA-miRNA interactions.
We enlarged a recently published set of 454 whole miR-
Nome profiles [24] to a total of 540 profiles. Analysis of
the miRNA co-expression from these profiles provides sup-
porting evidence that genomic localization and sequence
similarity are associated with co-expression. In addition,
we report a significantly enriched clustering for miRNAs
that belong to the same miRNA families or polycistronic
miRNA clusters. Moreover, our findings also support that
the co-expression may be more pronounced in patients,
compared to the healthy controls. Network based analysis
allows us to detect specific clusters of miRNAs with high
and low correlation. Interestingly, many of the identified
differentially co-expressed miRNAs have previously been
associated with human pathogenic processes. Notably,
the reported data have not been measured from tissues
but from blood cells. Since different tissues have specific
miRNA profiles, a co-expression analysis would make
sense only for one tissue type but not enabling a meta-anal-
ysis of different diseases. However, different blood cell com-
positions in different diseases might influence the overall
result of our meta-analysis. Another limitation of our study
is certainly the applied microarray technology. Novel
approaches such as next-generation small RNA sequencing
will likely improve the specificity of respective analyses in
the future.

In summary, in human diseases, co-expression and
differential co-expression of miRNAs seems to be of similar
importance to co-expression of protein-coding genes.

Materials and methods

Patients

The screened cohort contains a total of 540 subjects includ-
ing healthy controls (n = 72), cancer patients (n = 276) and
patients with non-cancer diseases (n = 192). The detailed
characteristics of the cohort are listed in Table 4. All blood
donors participating in this study signed the informed con-
sent form and the local ethics committee approved the
analysis of miRNA expression in blood. Blood samples
were collected using PAXgene Blood RNA tubes (BD,
Franklin Lakes, New Jersey, USA).

miRNA extraction and microarray screening

Total RNA isolation was performed using miRNeasy Mini
Kit (Qiagen) as described previously [25].

Microarray analyses were done on the Geniom RT Ana-
lyzer using Geniom miRNA Biochips (Febit Biomed
GmbH). Each of the 863 human miRNAs (Sanger miR-
Base v12.0 to v15.0) was present in at least seven replicates

Table 4 Cohort characteristics

Class Disease No. of samples

Control Healthy 72

Cancer Lung tumor 35
Ductal adenocarcinoma 45
Melanoma 35
Ovarian cancer 15
Prostate carcinoma 35
Wilms tumor 50
Other pancreatic tumors 48
Tumor of stomach 13

Non cancer Multiple sclerosis 23
Sarcoidosis 45
Periodontitis 18
COPD 27
Myocardial infarction 20
Pancreatitis 37
Benign prostate hyperplasia 22

Sum 540

Note: COPD, chronic obstructive pulmonary disease.
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on each of the 540 arrays. The screening was done using
micro-fluidics primer extension assay (MPEA) [32]. This
assay differs from a standard hybridization assay in that
it includes an additional primer extension step. The MPEA
assay is verified to be very sequence-specific at the end of
miRNAs and thus minimizes the cross-hybridization
effect, which is of especially high importance for our cross-
hybridization study.

Data processing and bioinformatics analysis

At the first preprocessing step, all arrays were locally back-
ground corrected. Then, the replicates of each miRNA on
each microarray were merged by computing the median
intensity value. To account for between-array effects, stan-
dard quantile normalization was performed [33], which
showed superior performance as compared to normaliza-
tion via spike-in or housekeeping miRNAs in previous
experiments. All computations then were carried out on
the expression matrix containing 863 rows representing
863 miRNAs and 540 columns representing the 540 indi-
viduals. The statistical analyses were carried out using R
[34] if not mentioned otherwise. To reduce the noise, we
excluded miRNAs with low expression values, i.e., the
median signal intensity of a miRNA must be great than
500 for a specific miRNA to be considered in our study.

For hierarchical clustering, the pvclust package has been
used. The package computes P values for hierarchical clus-
tering based on a multiscale bootstrap resampling, helping
to interpret clusters. Specifically, clusters that are highly
supported by the data will have low P values while weaker
clusters end up with non-significant P values. Significant
clusters are enclosed with red boxes in the respective
dendrogram. We used 1-abs(cor(x,y)) as a distance mea-
sure for the clustering, where cor(x,y) corresponds to the
Pearson correlation coefficient of all 540 observations for
two miRNAs x and y. By using this distance function, we
detect miRNAs that are highly correlated and anti-corre-
lated. In more detail, an average linkage bottom up cluster-
ing was carried out.

To compute differential expression and differential co-
expression, we again used the pair-wise Pearson correlation
of all 863 miRNAs, for all 540 samples together but also
for the different groups of controls, cancers and non-cancer
diseases, separately. As a result of this analysis, we calcu-

lated for
863

2

! "
¼ 863 # 862

2
¼ 371; 953 miRNA pairs

four different correlation values, the overall value and the
single values for the three groups. To find the miRNA pairs
with different behavior in different groups, we computed

the variance of the 371,953 pairs as 1
2 ððcorcontrol;i ! coriÞ2þ

ðcorcancer;i ! coriÞ2ðcornon!cancer;i ! cor2
i ÞÞ, where corcontrol,i

corresponds to the correlation of control samples for a
miRNA pair i, corcancer,i corresponds to the correlation of
cancer samples for a miRNA pair i, cornon-cancer,i corre-
sponds to the correlation of control samples for a miRNA

pair i, and cori corresponds to the average of the three
correlation values for miRNA pair i.

Empirically, we considered miRNA pairs with correla-
tions above 0.7 as highly co-expressed and with correla-
tions below -0.5 as anti-correlated. Using Cytoscape [35]
we visualized the network of these miRNA pairs and visu-
alized the results using Cytoscapes mapping functionality
with an organic layout.
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Abstract
Background: MicroRNAs (miRNAs) are short, noncoding RNAs with gene regulatory functions whose expression 
profiles may serve as disease biomarkers.
Objective: The objective of this study was to perform a comprehensive analysis of miRNA expression profiles in blood 
of patients with a clinically isolated syndrome (CIS) or relapsing–remitting multiple sclerosis (RRMS) including next-
generation sequencing (NGS).
Methods: miRNA expression was analyzed in whole blood samples from treatment-naïve patients with CIS (n = 25) or 
RRMS (n = 25) and 50 healthy controls by NGS, microarray analysis, and quantitative real-time polymerase chain reac-
tion (qRT-PCR).
Results: In patients with CIS/RRMS, NGS and microarray analysis identified 38 and eight significantly deregulated miR-
NAs, respectively. Three of these miRNAs were found to be significantly up- (hsa-miR-16-2-3p) or downregulated (hsa-
miR-20a-5p, hsa-miR-7-1-3p) by both methods. Another five of the miRNAs significantly deregulated in the NGS screen 
showed the same direction of regulation in the microarray analysis. qRT-PCR confirmed the direction of regulation for 
all eight and was significant for three miRNAs.
Conclusions: This study identifies a set of miRNAs deregulated in CIS/RRMS and reconfirms the previously reported 
underexpression of hsa-miR-20a-5p in MS. hsa-miR-20a-5p and the other validated miRNAs may represent promising 
candidates for future evaluation as biomarkers for MS and could be of relevance in the pathophysiology of this disease.
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Multiple sclerosis, clinically isolated syndrome, microRNAs, biomarker, next-generation sequencing, microarray, real-time 
polymerase chain reaction
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Introduction
According to current diagnostic criteria, diagnosis of multi-
ple sclerosis (MS) relies on a combination of clinical, 

radiological, and cerebrospinal fluid findings.1-3 While 
establishing a diagnosis of MS is usually straightforward in 
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patients with typical clinical and paraclinical presentations, it 
can be challenging in patients with atypical features.4 
Furthermore, differentiation of MS from alternative diagno-
ses, such as other inflammatory central nervous system 
(CNS) diseases, can be difficult, especially in patients with a 
clinically isolated syndrome (CIS). Identification of bio-
markers, defined as parameters that can be objectively meas-
ured and evaluated as indicators of pathogenic processes,5 
therefore appears desirable to further facilitate the diagnosis 
of MS. In addition, biomarkers could aid in monitoring dis-
ease activity and in the evaluation of treatment responses.

MicroRNAs (miRNAs) are short (about 20–24 nucleo-
tides in length), single-stranded regulatory RNAs that modu-
late gene expression at the posttranscriptional level by 
repressing translation or degradation of specific messenger 
RNA (mRNA) targets. About 1500 miRNAs have been 
described in humans so far, and more than one-third of all 
human genes may be controlled by miRNAs.6,7 miRNAs 
thus represent an important gene regulatory mechanism, 
increasingly recognized to be involved in physiologic and 
pathologic processes both in the CNS and the immune sys-
tem.8,9 Of note, miRNAs are present in a stable form in 
human blood,10 and previous studies performed by others 
and ourselves suggest that miRNA expression profiles deter-
mined in serum or whole blood samples hold promise as 
diagnostic biomarkers in various human diseases, including 
cancer and autoimmunity.11,12 Others, and our group, have 
consequently investigated miRNA profiles in whole blood, 
peripheral blood mononuclear cells, purified leukocyte sub-
sets, or plasma of patients with MS in comparison to healthy 
controls.13-25 While all those studies identified some differ-
ences in the expression levels of certain miRNAs, they were 
limited by either the number of miRNAs studied, the number 
of patients included, or possible confounding effects of con-
comitant immunomodulatory therapy.26 Moreover, while 
former studies were based on microarray technology or 
quantitative real-time polymerase chain reaction (qRT-PCR), 
next-generation sequencing (NGS) has meanwhile emerged 
as a novel, powerful, and unbiased methodological approach 
to miRNA expression profiling.27,28

Here, we performed a comprehensive analysis of miRNA 
expression patterns in whole blood samples from 50 treatment-
naïve patients with a CIS or relapsing–remitting MS (RRMS) 
as well as 50 matched healthy controls using NGS, microarray 
analysis of 1205 human miRNAs, and qRT-PCR. Our analysis 
identified several miRNAs deregulated in patients with CIS/
RRMS, which may represent promising candidates for future 
evaluation as biomarkers for MS and could provide insights 
into the pathophysiology of this disease.

Patients and methods
Sample collection
From November 2009 to February 2011 about 2.5 ml of 
blood was collected in PAXgene Blood RNA tubes (Becton 

Dickinson, Heidelberg, Germany) from 50 patients (36 
female, 14 male) followed at the Department of Neurology 
and NeuroCure Clinical Research Center, Charité – 
Universitätsmedizin Berlin, with a diagnosis of a CIS (n = 
25) or RRMS (n = 25) according to the McDonald 2005 
criteria.2 Fifty age- (± 4 years) and gender-matched healthy 
adults were included as controls. Patients were categorized 
into those with stable disease (no relapse within a period of 
at least two months before blood withdrawal, n = 31) and 
patients with active disease (relapse at the time of or within 
two months before blood withdrawal, n = 19). Data on the 
use of oral contraceptives were available from 19 of the 36 
female patients included in the study. Seven of these 19 
women took oral contraceptives. None of the patients took 
any long-term immunomodulatory or immunosuppressive 
therapy at the time of or prior to inclusion into the study. 
Patients had not been treated with glucocorticosteroids for 
at least two months before blood withdrawal. Pregnancy or 
intercurrent diseases at the time of blood withdrawal were 
exclusion criteria. The study was approved by the institu-
tional review board of Charité – Universitätsmedizin Berlin 
(EA1/131/09) and all participants provided written 
informed consent. Coded samples were stored at –20°C and 
shipped on dry ice to the Department of Human Genetics, 
Saarland University, for further blinded processing.

RNA isolation
Total RNA including miRNA was isolated using the 
PAXgene Blood miRNA Kit (Qiagen) following the manu-
facturer’s recommendations. Isolated RNA was stored at 
–80°C. RNA integrity was analyzed using Bioanalyzer 
2100 (Agilent) and concentration and purity were measured 
using NanoDrop 2000 (Thermo Scientific). A total of four 
samples (three controls and one patient with RRMS) failed 
the quality criteria and were excluded from the study.

NGS
The total RNA concentration required for NGS was ≥ 1 µg 
per sample. A total of 37 of the 100 samples collected in our 
study met this requirement and were included in the NGS 
analysis. Isolated RNA was shipped on dry ice to the 
Institute of Clinical Molecular Biology (IKMB), Christian-
Albrechts Universität, Kiel, Germany, where NGS was per-
formed. Individual samples were tagged with molecular 
barcodes and then sequenced together in multiplexed pools. 
The TruSeq Small RNA sample preparation Kit (Illumina) 
was used to generate multiplexed sequencing libraries, 
which were afterwards sequenced on a HiSeq2000 System 
(Illumina) using the 50 bp fragment sequencing protocol. 
Resulting sequencing reads were demultiplexed using the 
CASAVA 1.8 software package (Illumina) and quality 
checked using FastQC tools (Babraham Institute). A primary 
mapping analysis using the miRDeep2-pipeline29 was con-
ducted to ensure that a significant proportion of miRNAs 
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were sequenced. In total, 37 samples from 16 patients (five 
RRMS, 11 CIS) and 21 controls were analyzed in two mul-
tiplexed pools. On average, 1.5 million–2 million high-
quality sequencing reads per sample were obtained (at a 
total of 92.28 million reads), of which up to 70% contained 
miRNA information. The raw illumina reads were first 
preprocessed by cutting the 3’ adapter sequence. This was 
performed by the program fastx_clipper from the FASTX-
Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/). Reads 
shorter than 18 nucleotides after clipping were removed. 
The remaining reads were collapsed, i.e. after this step we 
had only unique reads and their frequency per sample. For 
the remaining steps, we used the miRDeep2 pipeline. These 
steps consist of mapping the reads against the genome 
(hg19), mapping the reads against miRNA precursor 
sequences from miRBase release v18 (http://www.mirbase.
org/), and summarizing the counts for the samples.

Microarray measurement
Microarray analysis was performed as previously described 
using SurePrint 8x60K Human v16 miRNA microarrays 
(Agilent, CatNo G4870A) that contain 40 replicates of each 
of the 1205 miRNAs of miRBase v16 (http://www.mirbase.
org/).30 Except for the four samples that failed the quality 
control criteria, all remaining 96 samples were included in 
the microarray study. All samples were analyzed as indi-
vidual samples and not pooled.

qRT-PCR
We composed a set of 40 age- and gender-matched patient 
and control samples that were also used for microarray and 
NGS analyses. Samples included in the qRT-PCR study 
were analyzed as individual and not as pooled samples. The 
group of patients included 10 CIS and 10 RRMS patients. 

qRT-PCR was performed at the Comprehensive Biomarker 
Center GmbH, Heidelberg, Germany, using the Taqman 
qRT-PCR system (Applied Biosystems). The small RNAs 
RNU6B and RNU48 were used as endogenous controls. 
However, as RNU6B yielded very high Ct values, we used 
only RNU48 for normalization with the deltaCT method.31 
The mean ± standard deviation Ct value of RNU48 of the 
40 samples analyzed was 25.45 ± 0.82.

Bioinformatic analysis
The same analyses were performed for NGS as well as 
microarray results. Following quantile normalization, we 
computed for each miRNA the area under the receiver 
operator characteristic curve (AUC), the fold-change, and 
the significance value (p value) using t tests. Because of the 
exploratory nature of this study, no adjustments for multiple 
testing were made. P values < 0.05 were considered statisti-
cally significant. Based on this analysis, we computed a 
Venn diagram for the significant NGS and microarray results. 
Concordant candidate miRNAs were validated using qRT-
PCR and further analyzed. For each concordant miRNA 
we extracted relevant disease interactions from the human 
microRNA disease database (HMDD, http://202.38.126.151/
hmdd/mirna/md/).

Results
Demographics of patients with CIS/RRMS and healthy 
controls studied in this work are summarized in 
Supplemental Table 1. We applied three experimental 
approaches to comprehensively analyze miRNA profiles in 
patients with CIS/RRMS (Figure 1). Using NGS, we first 
carried out a screening in a cohort of 16 cases and 21 con-
trols. Secondly, we performed a microarray analysis on an 
enlarged cohort encompassing 49 cases and 47 age- and 

Table 1. miRNAs deregulated in NGS and microarray analysis and validated using qRT-PCR. For the NGS analyses the average read 
counts are given, for the microarray analyses the mean signal intensity values are given, and for the qRT-PCR the mean ∆CT values 
are given. Bold font indicates upregulation of the respective miRNA in CIS/RRMS, normal font indicates downregulation in CIS/RRMS 
compared to controls. Note that higher ∆CT values indicate lower expression.

miRNA NGS Microarray qRT-PCR

 Control CIS/RRMS p value Control CIS/RRMS p value Control CIS/RRMS p value

hsa-miR-22-5p 6 9.681 0.004 1034.25 1075.84 0.594 7.17 7.12 0.88
hsa-miR-125b-5p 4.806 14.444 0.018 22.979 42.036 0.156 5.02 3.66 0.0006
hsa-miR-629-5p 4.847 8.958 0.024 8.385 9.988 0.224 7.45 7.21 0.46
hsa-miR-16-2-3p 418.792 793.625 0.05 26.77 50.538 0.001 7.62 6.55 0.014
hsa-miR-100-5p 3.993 44.25 0.04 12.678 26.817 0.355 6.06 4.46 0.005
hsa-miR-20a-5p 7.194 6.847 0.049 255.718 96.802 0.018 1.93 2.62 0.2
hsa-miR-151a-3p 580.403 455.056 0.009 51.266 43.992 0.61 2.23 2.33 0.7
hsa-miR-7-1-3p 2.681 0.563 0.001 3.106 0.1 0.02 6.02 6.46 0.16

miRNA: microRNA; NGS: next-generation sequencing; qRT-PCR: quantitative real-time polymerase chain reaction; CIS: clinically isolated syndrome; 
RRMS: relapsing–remitting multiple sclerosis.
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gender-matched controls. Both high-throughput analyses 
yielded eight miRNA candidates that were, thirdly, ana-
lyzed by qRT-PCR in 20 cases and 20 controls.

NGS screening
We initially performed a high-throughput screening in 
blood samples from 16 patients with CIS/RRMS and 21 
controls. Altogether, we found a total of 835 miRNAs 
being expressed in at least one of the samples. Figure 2 
shows the number of miRNAs and the frequency of sam-
ples in which these miRNAs were detected; 353 miRNAs 

were detectable in at least half of the investigated sam-
ples. Following normalization, t tests demonstrated that 
expression of a total of 38 miRNAs significantly differed 
between patients and controls. Out of the 38 deregulated 
miRNAs 16 were downregulated and 22 were upregulated 
in CIS/RRMS. The eight strongest deregulated miRNAs 
are shown in Figure 3. These eight miRNAs included five 
downregulated miRNAs, namely hsa-miR-361-5p, hsa-
miR-7-1-3p, hsa-miR-548o-3p, hsa-miR-151a-3p, and 
hsa-miR-548am-3p and three upregulated miRNAs, 
namely hsa-miR-22-5p, hsa-miR-27a-5p, and hsa-miR-
4677-3p.

8 significant 
miRNAs

Microarray screening

n = 96

Data analysis

3 overlapping
+ 5 candidates

8 of 8 miRNAs 
confirmed

qRT-PCR valida!on

n = 40

NGS Screening

n = 37

38 significant 
miRNAs

0.00
2.00
4.00
6.00
8.00

10.00

Figure 1. Project overview. Three experimental methods including NGS, microarray, and qRT-PCR were applied to comprehensively 
analyse miRNA expression profiles in patients with CIS/RRMS and healthy controls.
NGS: next-generation sequencing; qRT-PCR: quantitative real-time polymerase chain reaction; CIS: clinically isolated syndrome; RRMS: relapsing–
remitting multiple sclerosis.

Figure 2. Number of miRNAs and frequency of samples in which these miRNAs were detected. The upper curve indicates the results 
of NGS, the lower curve indicates the results of microarray screening. By NGS 353 miRNAs were detectable in at least half of all 
investigated samples, by microarray analysis 228 miRNAs were detectable in at least half of all investigated samples (see dashed lines).
miRNA: microRNA; NGS: next-generation sequencing.
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Microarray screening
We next screened an enlarged cohort of 49 patients with 
CIS/RRMS and 47 matched healthy controls by microar-
rays. We detected significantly fewer (p = 6.5 × 10–7) miR-
NAs in the microarray compared to the NGS study (Figure 
2). In detail, microarray analysis detected 382 miRNAs that 
were expressed in at least one sample. These were only 
46% of the 835 miRNAs that were detected by NGS in at 
least one of the samples. Furthermore, microarray analysis 
detected only 228 miRNAs that were expressed in at least 
50% of all samples. In the microarray experiments we 
detected a total of eight significantly deregulated miRNAs 
(Figure 4). Out of the eight deregulated miRNAs, five miR-
NAs were downregulated (hsa-miR-146b-5p, hsa-miR-7-
1-3p, hsa-miR-20a-5p, hsa-miR-3653, hsa-miR-20b) and 
three were upregulated (hsa-miR-16-2-3p, hsa-miR-
574-5p, hsa-miR-1202) in patients with CIS/RRMS.

Overlap in significantly deregulated miRNAs 
between NGS and microarray analyses and 
correlation with clinical parameters
As described above, we detected 38 significantly deregu-
lated miRNAs by NGS and eight significantly deregulated 
miRNAs by microarray analysis. These numbers corre-
spond to 1.9% of all known miRNAs for the NGS experi-
ment and 0.7% of the miRNAs on the biochip for 
microarray analysis, respectively. This makes a random 

overlap between the two data sets unlikely. However, three 
miRNAs, namely hsa-miR-16-2-3p, hsa-miR-20a-5p, and 
hsa-miR-7-1-3p, were identified by both NGS and micro-
array analysis (Figure 5). We performed one million per-
mutation tests to confirm that this overlap is highly 
significant (p = 0.004). In addition, five of the 38 miRNAs 
identified by NGS (miRNAs hsa-miR-22-5p, hsa-miR-
125b-5p, hsa-miR-629-5p, hsa-miR-100-5p, and hsa-miR-
151a-3p) showed the same direction of regulation in the 
microarray analysis, i.e. each of these miRNAs was either 
up- or downregulated in both approaches, although the 
deregulation of these five miRNAs in the microarray 
experiments was not statistically significant. Table 1 sum-
marizes the expression and significance values of the eight 
miRNAs identified as deregulated by both methods. We 
also compared the expression levels, as measured by 
microarray, of those eight miRNAs with the clinical dis-
ease activity (active vs stable disease) and diagnosis (CIS 
vs RRMS) of the patients included in this work. When 
assessed by unpaired t tests, none of the comparisons 
revealed significant differences, suggesting that within our 
patient group the analyzed miRNAs were not influenced 
by clinical disease activity or a diagnosis of CIS vs RRMS. 
Finally, as an estimate of the individual ability of each of 
the eight differentially expressed miRNAs to discriminate 
patients with CIS/RRMS and controls, we also calculated 
receiver operating characteristic (ROC) curves for each of 
these miRNAs using microarray and NGS data 
(Supplemental Figure 1).
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Figure 3. The eight most deregulated miRNAs identified by 
NGS. The median read counts of the control samples (dark gray) 
and the median read counts of the MS samples (light gray) of the 
eight most deregulated miRNAs identified by NGS are indicated 
together with the standard deviation. Expression in healthy 
controls is set to 100.
miRNA: microRNA; NGS: next-generation sequencing; MS: multiple 
sclerosis.
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Figure 4. The eight most deregulated miRNAs identified 
by microarray analysis. The median signal intensities of the 
control samples (dark gray) and the median signal intensities 
of the MS samples (light gray) of the eight most deregulated 
miRNAs identified by microarray analysis are indicated 
together with the standard deviation. Values of healthy 
controls are set to 100.
miRNA: microRNA; MS: multiple sclerosis.
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sequencing microarray

miR-22-5p
miR-125b-5p
miR-4677-3p
miR-629-5p
miR-181b-5p
miR-148a-3p
miR-335-5p
miR-27a-5p
miR-190b
miR-23b-3p
miR-181d
miR-3688-3p
miR-4326
miR-99a-5p
miR-100-5p
miR-23a-3p
miR-330-5p

miR-4714-3p
miR-424-5p
miR-545-5p
miR-181b-3p
miR-1285-5p
miR-1260a
miR-4435
miR-30d-5p
miR-30e-5p
miR-548s
miR-548p
miR-548o-3p
miR-548am-3p
miR-548ah-3p
miR-361-5p
miR-30a-5p
miR-151a-3p
miR-548av-3p

miR-146b-5p
miR-574-5p
miR-1202-5p
miR-3653-5p
miR-20b-5p

Figure 5. Venn diagram showing the significantly deregulated 
miRNAs identified by NGS and microarray screening. NGS 
identified 38 miRNAs and microarray analysis eight miRNAs 
significantly deregulated in CIS/RRMS. Three miRNAs were 
identified by both approaches.
miRNA: microRNA; NGS: next-generation sequencing; CIS: clinically 
isolated syndrome; RRMS: relapsing–remitting multiple sclerosis.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

∆C
T

qRT-PCR

Figure 6. qRT-PCR validation of the eight miRNAs. The bar 
diagram shows the mean ∆CT values and standard deviations for 
the eight tested candidate MS markers. Note that higher ∆CT 
values indicate lower expression. Controls: dark gray bars; MS: 
light gray bars. qRT-PCR: quantitative real-time polymerase chain 
reaction; miRNA: microRNA; MS: multiple sclerosis.

qRT-PCR validation
The eight miRNAs listed in Table 1 were further analyzed 
using qRT-PCR in a set of 20 patients with CIS/RRMS and 
20 healthy controls. All eight miRNAs showed the same 
direction of regulation in the qRT-PCR analysis as in the 
NGS or microarray experiments. Three miRNAs, including 
hsa-miR-125b-5p, hsa-miR-16-2-3p, and hsa-miR-100-5p, 
were significantly deregulated according to the qRT-PCR 
results (Table 1). Figure 6 shows the mean ∆CT values and 
standard deviations for the qRT-PCR validation. Figure 7 
summarizes the comparison of the expression analysis of 
the eight miRNAs using NGS, microarray, and qRT-PCR.

Disease specificity of the identified miRNAs
We extracted the known disease associations for all human 
miRNAs deposited in the HMDD and calculated the num-
ber of miRNAs in relation to the number of disease associa-
tions (Figure 8). We then focused on the disease associations 
of the eight concordant miRNAs identified by our NGS and 
microarray analyses. On average, each human miRNA 
deposited in the HMDD is associated with eight diseases. 
Computing the number of disease interactions for each of 
the eight miRNAs identified in this work, we found that all 
but one (hsa-miR-16-2-3p) of the eight miRNAs have pre-
viously been associated with more than eight diseases, indi-
cating that they have a higher than average number of 
disease interactions.

Discussion
The present study is the first to apply NGS as a novel meth-
odological approach to miRNA profiling in patients with 
MS. Using NGS and subsequent verification by microarray 
analyses, we identified a set of eight miRNAs, including 
five miRNAs that were found to be upregulated and three 
miRNAs that were found to be downregulated by both 
methods in patients with CIS/RRMS as compared to con-
trols. qRT-PCR experiments corroborated regulation of all 
of these miRNAs.

One advantage of NGS is that it permits the unbiased 
detection of theoretically all miRNAs in a given sample, 
regardless of whether they have previously been described.27 
Besides not being restricted to the annotated human  
miRNome, the sensitivity of NGS is also higher than that of 
microarray technologies. Thus, out of the 38 differentially 
expressed miRNAs identified by NGS, seven miRNAs 
(18.4%) were not included on the SurePrint 8x60K Human 
v16 miRNA microarray, which is restricted to the content of 
miRBase v16, and 14 miRNAs (36.8%) were included but 
not detected by the array approach. In line with the higher 
sensitivity of NGS, the maximum number of miRNAs 
detected in a single blood sample was more than two times 
higher (835 vs 382) in the NGS as compared to the microar-
ray screen. Nevertheless, the overlap of three significantly 
deregulated miRNAs identified by NGS and microarray 
technology indicates that converging results can be obtained 
by these two approaches, in keeping with recent data from 
a study of lung cancer patients.28

Concerning possible functions of the identified miRNAs 
in MS, a potential role in the regulation of immune response 
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Figure 7. Comparison of the expression analysis of the eight 
miRNAs using NGS, microarray, and qRT-PCR. The height of 
the bars represents the logarithmized fold changes of each 
miRNA and each used analysis method (NGS: dark gray 
bars, microarray: light gray bars, qRT-PCR: middle gray bars). 
Significant differences as compared to controls (p < 0.05) are 
indicated by asterisks.
miRNA: microRNA; NGS: next-generation sequencing; qRT-PCR: 
quantitative real-time polymerase chain reaction.

Figure 8. Frequency of disease associations. The figure shows 
the frequency of relations to diseases for all miRNAs according 
to the HMDD. The eight miRNAs identified by NGS and 
microarray analysis as deregulated in CIS/RRMS are indicated. 
Black bars represent the top 5% of all miRNAs with the most 
disease associations.
miRNA: microRNA; HMDD: human microRNA disease database; NGS: 
next-generation sequencing; CIS: clinically isolated syndrome; RRMS: 
relapsing–remitting multiple sclerosis.

pathways has been previously described for three of the 
eight miRNAs, namely hsa-miR-20a-5p, hsa-miR-100-5p, 
and hsa-miR-125b-5p.19,32,33 Nevertheless, whether and 
how the identified miRNAs may play a pathogenically rel-
evant role in MS await further clarification. A database 
search of human miRNA disease interactions showed that 
all but one of the eight identified miRNA were previously 
associated with at least 10 different human diseases. 
Although this suggests that each single miRNA is not 
highly specific for CIS/RRMS, future analyses should 
explore whether combinations of certain miRNAs may dis-
play an increased specificity.

Factors influencing miRNA expression profiles in blood 
under physiological conditions have not been studied in 
detail. As a possible limitation of this study, we cannot 
exclude that, for instance, hormonal changes during the 
menstrual cycle or use of oral contraceptives might influ-
ence miRNA expression levels in blood. However, since 
patients and controls were very well matched for gender 
and age, and assuming that a similar percentage of female 
patients and controls took oral contraceptives, we consider 
it unlikely that hormonal changes during the menstrual 
cycle or use of oral contraceptives might have severely 
biased our results.

The overall number of miRNAs identified as signifi-
cantly deregulated tended to be lower in the present as 
compared to previous miRNA expression studies in MS.13-

25 This is most likely explained by the more stringent exper-
imental strategy applied in the present work, consisting of 

an initial screen with two independent methods (NGS and 
microarray) and further concentration on those miRNAs 
that were found to be deregulated by both methods. 
Interestingly, miRNAs identified herein partially over-
lapped with miRNAs formerly shown to be deregulated in 
MS. hsa-miR-22-5p, one of the five miRNA found to be 
upregulated in the present screen, has previously been 
reported as upregulated in plasma,13 active brain lesions,34 
and CD4+CD25+ regulatory T cells18 of patients with MS. 
Furthermore, in accordance with our present findings, hsa-
miR-20a-5p was found to be underexpressed in patients 
with MS by microarray analysis (Illumina Sentrix Array 
Matrix) and qRT-PCR.19 Comparing the present results 
with our own initial study,17 we also detected significant 
overlaps. In detail, we previously identified hsa-miR-
629-5p (p = 0.0009) and hsa-miR-100-5p (p = 0.04) as 
significantly upregulated in MS, while we found hsa-
miR-20a-5p to be downregulated (p = 0.0009). Likewise, 
hsa-miR-125b-5p was upregulated in our former work, 
although barely missing the significance threshold (p = 
0.06). Importantly, together with the present study, hsa-
miR-20a-5p has now been shown to be downregulated in 
whole blood of patients with MS in three independent 
cohorts of patients with MS and controls by various meth-
odological approaches (different microarray platforms, 
qRT-PCR, NGS). Facing the rapidly growing number of 
miRNAs being associated with MS, reproduction of results 
in independent cohorts appears essential for identification 
of meaningful candidates, and hsa-miR-20a-5p may be 
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one of those. Indeed, in a recent in silico analysis of 
miRNA-mRNA interaction networks in MS hsa-miR-
20a-5p emerged as one of the central hubs, regulating about 
500 genes, as identified by miRNA-mRNA predictions 
algorithms.35 Furthermore, many of the 19 currently known 
experimentally verified genes being targeted by hsa-miR-
20a-5p are involved in the regulation of T cells.35 For 
instance, the hsa-miR-20a-5p target gene CDKN1A (cod-
ing for cyclin kinase inhibitor p21) plays a role in T cell 
activation and has been associated with systemic autoim-
munity.36

Altogether, we herein show that application of NGS to 
miRNA profiling in MS is feasible and can identify novel 
as well as previously described miRNAs that are deregu-
lated in patients with MS as compared to healthy controls. 
The identified miRNAs may be regarded as a set of inter-
esting candidates for future evaluation as biomarkers for 
MS. Further experimental analyses of functional aspects of 
those miRNAs may help to improve our understanding of 
the pathophysiology of this multifactorial disease.
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Abstract

Background: Alzheimer disease (AD) is the most common form of dementia but the identification of reliable, early
and non-invasive biomarkers remains a major challenge. We present a novel miRNA-based signature for detecting
AD from blood samples.

Results: We apply next-generation sequencing to miRNAs from blood samples of 48 AD patients and 22
unaffected controls, yielding a total of 140 unique mature miRNAs with significantly changed expression levels.
Of these, 82 have higher and 58 have lower abundance in AD patient samples. We selected a panel of 12 miRNAs
for an RT-qPCR analysis on a larger cohort of 202 samples, comprising not only AD patients and healthy controls
but also patients with other CNS illnesses. These included mild cognitive impairment, which is assumed to
represent a transitional period before the development of AD, as well as multiple sclerosis, Parkinson disease, major
depression, bipolar disorder and schizophrenia. miRNA target enrichment analysis of the selected 12 miRNAs
indicates an involvement of miRNAs in nervous system development, neuron projection, neuron projection
development and neuron projection morphogenesis. Using this 12-miRNA signature, we differentiate between AD
and controls with an accuracy of 93%, a specificity of 95% and a sensitivity of 92%. The differentiation of AD from
other neurological diseases is possible with accuracies between 74% and 78%. The differentiation of the other CNS
disorders from controls yields even higher accuracies.

Conclusions: The data indicate that deregulated miRNAs in blood might be used as biomarkers in the diagnosis of
AD or other neurological diseases.

Keywords: Alzheimer disease, miRNA, biomarker, next-generation sequencing, quantitative Real Time PCR

Background
Alzheimer disease(AD) is the most common form of
neurodegenerative illness leading to dementia which is
predicted to affect as much as 1 in 85 people globally by
2050 [1]. While early-onset (familiar) AD has been
reported in younger people, the majority of (sporadic)
AD cases is diagnosed in people aged over 65 years [2].
As of today, final diagnosis of AD can only be achieved
by autopsy making the identification of reliable, early, and
non-invasive biomarkers a major challenge. Finding such
non-invasive, reliable diagnostic tools is of paramount

importance as it appears that early intervention in the pro-
dromal stage of AD or the identification and therapy of
those patients with mild cognitive impairment who will
transform to AD rapidly might be a possibility to delay the
onset of AD substantially [3].
A prominent example of recently developed AD bio-

marker assays is the combinatorial analysis of the con-
centration of peptides and proteins: beta-amyloid-1-42
(Aß 42), tau, and/or p-tau in the cerebrospinal fluid
(CSF). According to the S3 guidelines, an increased level
of tau protein together with a decreased level of beta-
amyloid-1-42 provides strong evidence for the presence
of AD [4]. The combinatorial analysis of all three factors
yields even higher diagnostic accuracy than the combi-
nation of only two of the above-mentioned proteins [5].
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Furthermore, combinatorial analysis of Aß levels and tau
levels can discriminate between patients with stable mild
cognitive impairment (MCI) and patients with progres-
sive MCI into AD or other types of dementia with a suf-
ficient diagnostic accuracy [6]. Nevertheless, according
to the S3 guidelines, the analysis of CSF biomarker is
only indicated to confirm the diagnosis if other clinical
symptoms give evidence for the presence of neurode-
generative dementia or for the differential diagnostics of
other forms of diseases that can cause symptoms like
dementia (encephalitis, neuroborreliosis, multiple sclero-
sis, Lues, brain abscess, metastases).
The use of peripheral markers, like Aß and tau in

easily accessible peripheral cells (in particular platelets
and skin fibroblasts), as a diagnostic tool has been
under investigation for more than 10 years [7,8]. Mole-
cular genetics analyses of common single nucleotide
polymorphisms (SNPs) in genes such as presenilin or
ApoE4 did not significantly improve risk estimation for
the susceptibility of AD [9]. Likewise, there is no consis-
tent evidence for an association between AD and genetic
variation of mitochondrial DNA (mtDNA) [10].
There is increasing effort to develop molecular diagnos-

tic markers that meet requirements like easy accessibility,
for example, from blood, sufficiently high specificity and
sensitivity, low costs and applicability by laboratories with
standard equipment. Several blood, plasma, or serum born
AD biomarkers have been proposed to meet these criteria.
Doecke et al. recently presented a panel of protein biomar-
kers to reliably detect AD with an accuracy of 85% [11].
Moreover, Tan et al. provided evidence that the proteins
p53 and p21 can be used to detect AD using blood sam-
ples. A receiver operating characteristic curve analysis
revealed a specificity of 76% and a sensitivity of 84% for
p53, 88% and 82% for p53(ser15), 80% and 75% for p21,
and 84% and 68% for p21(thr145) [12].
Besides proteins microRNAs (miRNAs) have also

demonstrated their potential as non-invasive biomarkers
from blood and serum for a wide variety of human
pathologies [13]. A deregulation of miRNA expression
might be involved in neurological dysfunction or neuro-
degenerative processes. Interestingly, Liang et al. [14]
showed that the expression pattern of brain and blood
PBMC cluster together which might be an indication that
a specific blood based expression signature might prove
to be useful as biomarker for AD and other neurological
diseases. MiRNA expression analyses can be readily
applied for in vitro diagnostic testing by molecular diag-
nostics and CLIA (Clinical Laboratory Improvement
Amendments) laboratories.
While altered miRNA patterns have been exhaustively

investigated in AD patients’ tissue samples or cell cultures
[15-18], less information on circulating miRNAs in AD is
known. A recent serum profiling of AD patients provided

first evidence that expression changes of circulating miR-
NAs may be valuable biomarkers for AD [19].
We describe our results obtained by applying the next-

generation sequencing (NGS) approach to screen the
expression of all human miRNAs in blood from exten-
sively characterized AD patients and healthy controls.
Patient blood was obtained from the SAMPLE (Serial
Alzheimer diseaseand MCI Prospective Longitudinal Eva-
luation) Registry of PrecisionMed (San Diego, CA, USA)
and blood from age-matched healthy donors from the
ACE (Aging Cognition Evaluation) Registry, a Preci-
sionMed- UBC (The University of British Columbia) col-
laboration. We identified 140 unique differentially
expressed miRNAs between AD patients and controls.
Validation of a 12-miRNA signature was carried out by
RT-qPCR in a cohort of 202 samples encompassing
patients suffering from other neurological disorders
including mild cognitive impairment as a potential preli-
minary stage of AD, and other neurodegenerative dis-
eases like Parkinson disease and multiple sclerosis as well
as mental diseases like schizophrenia (SCHIZ), major
depression (DEP), and bipolar disorder (BD).
A combination of AD-specific miRNA expression signa-

tures with the rapidly developing and expanding amyloid
load imaging techniques may be useful as non-invasive
diagnostic tools in AD diagnosis in the future [20].

Results
Initial biomarker screening using next-generation
sequencing
To detect potential AD biomarkers we examined blood
from well-characterized patients and controls. We
obtained blood from the SAMPLE (Serial Alzheimer disea-
seand MCI Prospective Longitudinal Evaluation) Registry
of PrecisionMed (San Diego, CA, USA). SAMPLE is a
sample depository resulting from a longitudinal study that
evaluates cognition in women and men, who are recruited,
evaluated, cognitively studied, and sampled from 12 to 15
experienced investigative sites in USA. All participants
underwent several tests (that is, Alzheimer Disease Assess-
ment Scale-cognitive subscale (ADAS-Cog), Clinical
Dementia Rating (CDR), Wechsler Memory Scale, and
Mini-Mental State Exam (MMSE)) to evaluate cognition.
Blood from age-matched healthy donors was obtained
from the Ace Registry, which is a biological sample bank
of serial patient samples with linked serial cognition data,
based on a cognition battery selected from UBC’s proprie-
tary computerized testing platform.
We carried out high-throughput NGS of 22 healthy

control samples (C) and 48 AD patient samples using Illu-
minaHiSeq 2000 sequencing with eight multiplexed sam-
ples on each sequencing lane. We detected not only
known human miRNAs, but also novel miRNA candidates
that have previously not been included in the miRBase
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v18 [21,22]. These miRNA candidates are, however, much
less abundant compared to the known human miRNAs.
After removing the least abundant miRNAs (that is, all
miRNAs with <50 read counts summed up across all sam-
ples of each group) we detected a total of 383 different
miRNA precursors resulting in 416 unique mature
miRNA forms.
To compare the NGS results of the AD patient sam-

ples with the samples from healthy donors we first com-
puted Wilcoxon-Mann-Whitney (WMW) test and
adjusted the significance values for multiple testing
using Benjamini-Hochberg adjustment. All miRNAs
with adjusted significance values <0.05 were considered
statistically significant. We also computed the area
under the receiver operator characteristics curve (AUC).
In total, we detected 180 significantly dys-regulated
miRNAs (140 unique mature miRNAs) including 90
miRNAs (58 unique mature miRNAs) that were down-
regulated and 90 miRNAs (82 unique mature miRNAs)
that were upregulated in AD samples compared to
healthy control samples (see Additional file 1-Table S1).
Additional file 2-Figure S1 shows a heatmap for 180 sig-
nificantly dys-regulated miRNAs. The most upregulated
miRNA was hsa-miR-30d-5p (AUC of 0.0819) with a P
value of 8.35*10-6and the most downregulated miRNA
was hsa-miR-144-5p (AUC of 0.9138) with P value of
8.35*10-6. While the high AUC value indicates that each
of these miRNAs has sufficient power to differentiate
between AD and healthy controls, they are not specific
for AD since both miRNAs have already been described
for many other human pathologies, including different
neoplasms [13]. Among the significantly dys-regulated
miRNAs are also 15 novel miRNA candidates (called
brain-miR) that were all upregulated in AD compared to
controls. A list of all novel mature miRNAs is provided
in Additional file 3-Table S2. To gain first insight into
the biological function of the mature miRNAs that were
dys-regulated between AD patients and healthy control
individuals, we applied a miRNA over-representation
analysis for these miRNAs using the TAM (tool for
annotations of human miRNAs) database [23,24]. The
TAM database classifies over- or under-represented
miRNAs according to the categories miRNA family,
miRNA cluster, miRNA function, miRNA associated
diseases, and tissue specificity. We detected for all
dys-regulated miRNAs 56 significant categories (P value
<0.05 after adjustment for multiple testing), with the
interesting categories miR-30 family with five miRNAs
being upregulated (P value 6.64*10-4), the let-7 family
with nine downregulated miRNAs (P value 5.65*10-7),
and the disease category Alzheimer disease for which six
dys-regulated miRNAs were relevant, including hsa-miR-
21, hsa-miR-17, hsa-miR-29a, hsa-miR-29b, hsa-miR-106b,
and hsa-miR-107 (P value 0.0139).

To determine whether the 140 unique differentially
expressed miRNAs between AD patients and healthy
controls cluster together within a same genomic region,
which would suggest presence of common regulatory
mechanisms for their expression, we sorted all miRNAs
according to their position on each chromosome. Then,
we assigned the miRNAs to one of the following three
classes: not dys-regulated; upregulated in AD; and
downregulated in AD. Finally, we searched for regions
that contain at least three different dys-regulated mature
miRNAs by applying window sizes varying between
1,000 and 100,000 base pairs. Within regions encom-
passing <1,000 base pairs we detected two clusters
including one on chromosome 19 with the upregulated
miRNAs hsa-miR-99b-5p and hsa-miR-125a-5p and the
downregulated miRNA hsa-let-7e-5p and a second clus-
ter on chromosome 22 with the downregulated miRNAs
hsa-let-7a-5p and hsa-let-7b-5p and the upregulated
miRNA hsa-let-7b-3p. Analyzing regions of up to 5,000
base pairs, we found on chromosome 9 a dense cluster
with a total of five dys-regulated miRNAs including the
downregulated miRNAs hsa-let-7a-5p, hsa-let-7f-5p, and
hsa-let-7d-5p and the upregulated miRNAs hsa-let-7f-1-
3p and hsa-let-7d-3p. For regions up to 30,000 base
pairs, we discovered one region on chromosome 6 with
three co-located miRNAs including hsa-miR-30c-5p,
hsa-miR-30a-3p, and hsa-miR-30a-5p, all of which were
upregulated. To understand whether the miRNAs are
regulated by specific transcription factors (TF), we
extracted potential TF binding sites from the UCSC gen-
ome browser but found no evidence for a significant
enrichment for specific TF binding sites.
In the next step, we performed classification of AD and

control samples using a standard machine learning
approach. In a cross-validation loop, we stepwise added
the miRNAs with lowest significance values and repeat-
edly carried out radial basis function support vector
machines (SVM). As shown in Figure 1, a signature of
250 miRNAs yields an accuracy, specificity, and sensitiv-
ity of 90%. Since this set of miRNAs contains a significant
amount of redundant miRNAs with largely identical
information and high correlation among many miRNAs,
a significantly smaller set of miRNAs is likely to yield
comparably accurate distinction between AD samples
and samples from healthy controls. We selected 12 miR-
NAs with limited cross-correlation, including strongly
dys-regulated miRNAs that show a potential to separate
AD from controls. We furthermore compared our NGS
results with previous studies on different types of cancer
and non-cancer diseases [13] in order to ensure that the
selected miRNAs are not dys-regulated in several other
diseases. Besides known miRNAs we also included two
unknown miRNAs, namely brain-miR-112 and brain-
miR-161. Finally, the selected 12-miRNA signature
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contains the miRNAs brain-miR-112, brain-miR-161,
hsa-let-7d-3p, hsa-miR-5010-3p, hsa-miR-26a-5p, hsa-
miR-1285-5p, and hsa-miR-151a-3p, all of which are
upregulated in AD and the downregulated miRNAs hsa-
miR-103a-3p, hsa-miR-107, hsa-miR-532-5p, hsa-miR-
26b-5p, and hsa-let-7f-5p.

Validation of a 12-miRNA signature by RT-qPCR
To validate the 12-miRNA signature we employed RT-
qPCR and included not only additional patients with
AD, but also patients with other diseases including neu-
rological disorders. In total, we analyzed 12 miRNAs in
202 samples as detailed in Table 1.
We first considered the miRNA fold quotients that

were obtained for AD samples and controls. We com-
pared the fold quotients of each of the 12 miRNAs
between initial NGS screening cohort and the RT-qPCR
validation cohort. All but two of the 12 miRNAs, namely
hsa-miR-1285-5p and hsa-miR-26a-5p, have been dys-
regulated in the same direction in both approaches, indi-
cating a high degree of concordance between screening
and validation study. Both hsa-miR-1285-5p and hsa-
miR-26a-5p have been significantly upregulated in AD in
the NGS screening experiment while downregulated in
the RT-qPCR validation (see Figure 2). This discrepancy

might be due to the duplication of the AD sample cohort.
However, SVM classification on the RT-qPCR data to
separate AD and controls using linear kernels in 10-fold
cross-validations with 100 repetitions reached on average
an accuracy of 93.3%, a specificity of 95.1%, and a sensi-
tivity of 91.5%. The computed means, standard devia-
tions, and confidence intervals for the repetitions
concerning specificity, sensitivity, and accuracy are pre-
sented in Table 2, as well as the results for the control
classifications with the randomly permuted class labels.
To evaluate whether the selected miRNAs are stage-

dependent we further grouped the AD patients accord-
ing to their MMSE score into mild AD (MMSE >19,
n = 39) and moderate AD (MMSE 12-19, n = 46). The
MMSE is a short test of 30 questions used to screen for
cognitive impairment. Each question to be answered is
scored with points, with a maximum possible score of
30 points. This questionnaire can be used to estimate
the severity of cognitive impairment and to follow the
course of cognitive changes in an individual over time.
Normally, patients reaching 27 to 30 points do not suf-
fer from dementia, 10 to 26 points are indicative for
mild-to-moderate dementia, and less than 9 points indi-
cates severe dementia. We found no significant expres-
sion differences of the 12-miRNA signature between the
mild AD group and the moderate AD group.
As patients with other neurological disorders can show

similar symptoms as AD patients, we decided to validate
our AD NGS results also with samples from patients
with several neurological diseases. Specifically, we asked
whether other neurological disorders show significant
deviations in the expression of the 12 miRNAs. The
results of this validation help to determine whether the
investigated miRNAs have the potential for clinical appli-
cations. We analyzed patients with neurodegenerative
diseases (MCI, Parkinson disease (PD), multiple sclerosis
(clinically isolated syndrome, CIS)) and patients with psy-
chiatric disorders (SCHIZ, BD, and DEP) for the signa-
ture of 12 miRNAs. The pattern, which was closest to

Figure 1 Classification performance dependent on miRNA
combinations. With increasing number of miRNAs the accuracy,
specificity, and sensitivity increases towards convergence at 90%.

Table 1 Overview of the blood samples analyzed using NGS and RT-qPCR
Sample group N Age (mean ± SD) Sex (female/male) MMSE (mean ± SD) Cohort size

NGS
Cohort size
RT-qPCR

AD 106 72.7(10.4) 53/53 18.9 (3.4) 48 94

Healthy control 22 67.1 (7.5) 11/11 29.3 (1.2) 22 21

Mild cognitive impairment 18 73.9 (6.2) 9/9 25.3 (1.4) - 18

Multiple sclerosis 16 32.3 (10.7) 12/4 NA - 16

PD 9 69.7 (9.0) 1/8 25.2 (4.2) - 9

DEP 15 45.2 (9.1) 0/15 NA - 15

BD 15 41.9 (13.7) 14/1 29.5 (1.6) - 15

SCHIZ 14 41.7 (7.9) 1/13 26.1 (4.3) - 14

AD: Alzheimer disease; BD: bipolar disorder; DEP: major depression; MMSE: Mini-Mental State Exam; NA: not available; NGS: next-generation sequencing; PD:
Parkinson’s disease; RT-qPCR: quantitative real-time PCR; SCHIZ: schizophrenia.
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Figure 2 Comparison of the expression analysis results of AD patients versus healthy controls (fold changes) obtained by NGS and RT-
qPCR for the 12-miRNA signature.

Table 2 Summary of the SVM classifications containing the means, standard deviations, and 95% confidence intervals
(CI) of the accuracy (acc), specificity (spec), sensitivity (sens) running 100 repetitions of 10-fold cross-validations with
linear kernel.
Comparison Classification Permutation test

Acc Spec Sens Acc Spec Sens

AD vs. control 93.3% ± 4.6
CI:92.4-94.2%

95.1% ± 5.4
CI:94.1-96.2%

91.5% ± 5.8
CI:90.4-92.7%

50.7% ± 12.5
CI:48.2-53.1%

50.7% ± 13.3
CI:48.1-53.3%

50.7% ± 14.1
CI:47.9-53.4%

MCI vs. control 84.2% ± 3.7
CI:83.4-84.9%

81.1% ± 5.6
CI:80.0-82.2%

87.7% ± 3.7
CI:87.0-88.5%

51.3% ± 11.4
CI:49.0-53.5%

52.0% ± 12.2
CI:50.0-54.4%

50.4% ± 13.5
CI:47.8-53.1%

PSY vs. control 97.1% ± 1.6
CI:96.8-97.4%

95.3% ± 1.7
CI:95.0-95.6%

99.0% ± 2.4
CI:98.5-99.4%

48.7% ± 10.6
CI:46.7-50.8%

48.5% ± 12.4
CI:46.0-50.9%

49.0% ± 12.1
CI:46.6-50.8%

Other ND vs. control 82.8% ± 5.0
CI:81.8-83.7%

84.0% ± 5.8
CI:83.0-85.2%

81.4% ± 6.7
CI:80.1-82.7%

50.3% ± 10.3
CI:48.3-52.3%

50.7% ± 11.7
CI:48.4-53.0%

50.0% ± 12.0
CI:47.6-52.3%

NEURO vs. control 86.1% ± 5.7
CI:85.0-87.2%

88.7% ± 6.8
CI:87.3-90.0%

83.6% ± 6.6
CI:82.3-84.9%

49.9% ± 10.8
CI:47.8-52.1%

50.1% ± 11.5
CI:47.9-52.3%

49.8% ± 13.3
CI:47.2-52.3%

AD vs. MCI 75.6% ± 7.8
CI:74.1-77.2%

76.7% ± 8.3
CI:75.1-78.4%

74.6% ± 9.7
CI:72.7-76.5%

50.6% ± 9.4
CI:48.7-52.4%

51.2% ± 10.4
CI:49.1-53.2%

49.9% ± 11.7
CI:47.7-52.2%

AD vs. PSY 77.8% ± 4.0
CI:77.0-78.5%

76.3% ± 4.8
CI:75.4-77.3%

79.2% ± 5.4
CI:78.1-80.2%

50.0% ± 8.0
CI:48.5-51.6%

49.1% ± 9.3
CI:47.3-50.9%

51.1% ± 10.3
CI:49.1-53.1

AD vs. other ND 73.8% ± 4.4
CI:72.9-74.7%

75.2% ± 4.7
CI:74.2-76.1%

72.4% ± 6.4
CI:71.2-73.7%

50.1% ± 7.3
CI:48.7-51.5%

49.2% ± 9.4
CI:47.4-51.1%

51.0% ± 8.5
CI:49.3-52.7%

The right part of the table contains the results for the permuted class labels. PSY = psychological disorders (DEP, BD, SCHIZ), other ND = other
neurodegenerative disorders (PD, MS, MCI), NEURO = PSY + other ND
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AD was SCHIZ, where we found six up- and six downre-
gulated miRNAs. We found a strong overall downregula-
tion for most of the selected 12 miRNAs for patients
with DEP and PD and a strong overall upregulation for
patients with MCI, CIS, and BD (Figure 3).
In addition, we also applied machine learning proce-

dures using SVM to estimate the accuracy, sensitivity,
and specificity of the 12-miRNA signature regarding the
other neurological diseases in comparison to the control
group and to AD. The results of these classifications are
also listed in Table 2. Interestingly, while the 12 miRNAs
were chosen for their potential to separate AD and con-
trols, this signature also separates the group of the psy-
chological disorders (DEP, BD, SCHIZ) from controls
with an accuracy of 97.1%, a specificity of 95.3%, and a
sensitivity of 99.0% whereas other neurodegenerative dis-
eases (PD, multiple sclerosis, mild cognitive impairment)
were separated from controls with a worse accuracy of
82.8%, a specificity of 84.0%, and a sensitivity of 81.4%.
The average accuracy for the other classifications against
controls (that is, MCI versus control and neurodegenera-
tive and psychological disorders versus control) reached
values of 84.2% and 86.1%, respectively. Furthermore,
we tested how well the 12-miRNA signature separates
AD from MCI, AD from psychological disorders, and
AD from other neurodegenerative diseases, respectively.

The average accuracy for these comparisons was between
73.8% and 77.8%. Since the 12-miRNA signature has
been tailored to differentiate between AD and controls,
other miRNAs may likely contribute to a signature that
permits also a better differentiation between the other
tested diseases and AD.

Prediction of miRNA targets and over-representation
analysis
Target gene prediction of the 10 known miRNAs from the
12-miRNA signature revealed 2,354 genes that may be
regulated by those miRNAs. These target genes were used
to perform an over-representation analysis and identified
73 computed Gene Ontology (GO) categories with P
values <0.05 and FDR adjustment. Interestingly, we found
a significant enrichment of miRNA targets in the GO cate-
gories nervous system development, neuron projection,
neuron projection development, and neuron projection
morphogenesis. These GO categories are listed in Table 3
together with the predicted miRNA target genes involved
in these categories. Furthermore, target genes that have
already been related to AD or other neurological diseases
are also listed in the table in separate columns.
Target gene prediction for the two unknown target

genes brain-miR-112 and brain-miR-161 revealed 234
target genes for brain-miR-112, but only six target genes

Figure 3 Results of the RT-qPCR analysis of the 12 miRNAs in each of the analyzed diseases. ∆∆CT values of the patients groups as
compared to controls are shown on the y-axis. A lower expression in the patients than in controls is indicated by the bars <0 and higher
expression in the patients as compared to controls is indicated by the bars >0. (C = healthy control, AD = Alzheimer disease, MCI = mild
cognitive impairment, PD = Parkinson disease, DEP = major depression, CIS = multiple sclerosis (clinically isolated syndrome), SCH =
schizophrenia, BD = bipolar disorder).
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Table 3 Results of the over-representation analysis of the predicted target genes of the 10 known miRNAs.
Subcategory Subcategory

alternative
name

Expected Observed Pvalue
(FDR)

Target genes AD BD DEP PD SCHIZ Multiple
sclerosis

Nervous
system
development

GO:0007399 159,555 215 0,000921692 ARSB ATM GJA1 JAG1 LEP NDP PTEN PAFAH1B1
TWIST1 DRD1 IGF1R GDF6 SMPD1 KCNMA1
NTRK2 CTNS NF1 INSC SLC6A3 FBXO45 IGF1
ADM APC DLG4 GRIN2A PAX7 PPT1 GPSM1
FEZF1 TSC1 DISC1 GLRB BMPR1B CDK6 CX3CR1
CELSR2 ID4 ERBB3 FGF2 AFF2 GLRA2 GSK3B
HOXB3 LAMC1 LRP6 LSAMP NGF NPAS2 OPHN1
P2RY1 PEX13 POU3F1 PTPRZ1 SALL1 SMARCC1
STRN T TFAP2A TGFB2 TIAM1 NR2C2 YWHAH
ZIC1 ULK1 ENC1 IRS2 ADAM23 KALRN SEMA5A
EDNRB DMD AQP4 GMFB SDHA SLC1A2 GDA
VCAN DVL1 EPHA4 EPHA7 KIF5C LRP2 POU4F2
RPS6KA3 SPOCK1 TGFBR1 AXIN2 DCLK1 MED1
ONECUT2 SIM1 CNTN2 ATF1 DLX6 ERBB4
SMAD4 SIX3 NHLH1 POU3F2 REST ABI2 PURA
SMAD1 NAB1 SIX1 PPARD PRKCQ CHERP
MAB21L2 TBR1 CHL1 FRS2 FKTN BTG2 SHOX2
SLC5A3 ZNF24 WWP1 STMN2 RAPGEF5 PIP5K1C
ATXN10 RACGAP1 GREM1 NRG1 CNTNAP2
RPS6KA6 CYFIP1 ULK2 NLGN1 RUFY3 ARHGAP26
NFASC CLASP2 NIPBL SUFU PDGFC HPCAL4
RAPGEFL1 SHC3 FZD3 SIX4 BAIAP2 CSGALNACT1
PCDHB10 NMUR2 VANGL2 SEMA6A CNTN3
LRRC4C RET GNAO1 SCN2A FGF12 XRCC5 NTN4
BCR ADAM22 ACSL4 FGFR1 HTR5A NOTCH2
TTLL7 PGAP1 JHDM1D ATXN3 ZEB1 NDEL1
MAP2 B3GNT5 CHD6 SLITRK6 ELAVL3 HOOK3
ATOH8 WNT3A ZIC5 FGF1 SOX6 PDE5A SNAP25
GRIN3A CREB1 NRXN1 NRXN3 TPM3 FYN
SEMA6D HOXA1 BDNF ALDH5A1 UNC5B DMBX1
IL6ST UHMK1 DCX CUX1 ATL1 GLDN RNF6
FAM5C CCNG1 NRP2 GAS7 ACSL3 RCAN1 SYNJ1
PCDH9 MOG RTN1 QKI LIG4 MBNL1 CCDC64
WNK1

DRD1
IGF1R
GSK3B
FGF1
FYN
BDNF

DRD1
DISC1
GSK3B BCR
HTR5A
BDNF
SYNJ1

BCR
SNAP25
CREB1
BDNF

BDNF LEP DRD1 SLC6A3
GRIN2A DISC1 YWHAH
SLC1A2 CHL1 NRG1
FZD3 HTR5A SNAP25
BDNF SYNJ1

JAG1

Neuron
projection

GO:0043005 49,9516 79 0,00411039 ADRB2 CA2 PAFAH1B1 ATP1A2 DRD1 GABRA6
GAD1 GRM3 IGF1R KCNJ2 NPY1R PGR AR
KCNMA1 NF1 TACR1 MYO5B ACTN2 GRM1 APC
GRIN2A ATXN1L MYO5A PPT1 OPRM1 TSC1
HTR2A CALCR OPHN1 STRN TGFB2 ULK1 PRSS12
KALRN BNIP3 SLC1A2 DVL1 EPHA7 KIF5C NCAM2
KIF5A CNTN2 ABI2 PURA CAPRIN1 IGF2BP1
SCN1A STMN2 SNCA STAT1 EPB41L3 ATXN10
CNTNAP2 RUFY3 NFASC ERC2 KIAA1598 SEMA6A
SCN2A GAN TTLL7 CPEB1 NDEL1 MAP2 PSD2
CALD1 SNAP25 GRIN3A TPM3 AQP11 UHMK1
EXOC8 DICER1 ATL1 ANKS1B RNF6 CCNG1
CACNA1C NRP2

DRD1
IGF1R
HTR2A
SNCA

DRD1
HTR2A

HTR2A SNCA DRD1 GAD1 GRM3
GRIN2A HTR2A SLC1A2
SNAP25

ADRB2
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Table 3 Results of the over-representation analysis of the predicted target genes of the 10 known miRNAs. (Continued)

Neuron
projection
development

GO:0031175 43,1466 67 0,0162232 GJA1 PTEN PAFAH1B1 IGF1R ADM APC FEZF1
DISC1 BMPR1B CELSR2 ERBB3 LAMC1 NGF
OPHN1 PTPRZ1 STRN TIAM1 YWHAH ULK1
KALRN DMD VCAN DVL1 EPHA4 EPHA7 KIF5C
POU4F2 DCLK1 CNTN2 ATF1 POU3F2 ABI2
SMAD1 TBR1 STMN2 PIP5K1C ATXN10 CYFIP1
ULK2 RUFY3 NFASC FZD3 BAIAP2 SEMA6A
LRRC4C GNAO1 ACSL4 FGFR1 NDEL1 MAP2
SLITRK6 WNT3A SNAP25 GRIN3A CREB1 NRXN1
NRXN3 HOXA1 BDNF UNC5B UHMK1 DCX ATL1
RNF6 NRP2 GAS7 CCDC64

IGF1R
BDNF

DISC1
BDNF

SNAP25
CREB1
BDNF

BDNF DISC1 YWHAH FZD3
SNAP25 BDNF

–

Neuron
projection
morphogenesis

GO:0048812 33,5906 52 0,0462928 GJA1 PAFAH1B1 IGF1R ADM APC FEZF1 BMPR1B
CELSR2 ERBB3 NGF OPHN1 PTPRZ1 TIAM1
YWHAH ULK1 KALRN DMD VCAN DVL1 EPHA4
EPHA7 KIF5C POU4F2 DCLK1 CNTN2 POU3F2
SMAD1 TBR1 PIP5K1C CYFIP1 ULK2 RUFY3
NFASC FZD3 BAIAP2 SEMA6A LRRC4C NDEL1
SLITRK6 WNT3A SNAP25 CREB1 NRXN1 NRXN3
HOXA1 BDNF UNC5B DCX ATL1 RNF6 NRP2
GAS7

BDNF
IGF1R

BDNF SNAP25
CREB1
BDNF

BDNF FZD3 SNAP25 BDNF
YWHAH

–

This table lists interesting Gene Ontology (GO) subcategories and over-represented target genes with Pvalues <0.05 and FDR adjustment related to nervous system development. Target genes associated with AD and
other neurological diseases are listed separately.
AD: Alzheimer disease; BP: bipolar disorder; DEP: major depression; PD, Parkinson’s disease; SCHIZ: schizophrenia
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for brain-miR-161. Over-representation analysis was
done for both brain-miRNAs separately. Here, we identi-
fied 126 GO categories with P value <0.05 for brain-miR-
112, with significant enrichment of miRNA targets in GO
categories associated with nervous system and neuron
function (see Table 4). For brain-miR-161 no significant
GO categories were found.

Discussion
At present, there is no single molecular test that is suitable
to reliably diagnose AD with adequate specificity and sen-
sitivity. Tests for the analysis of CSF proteins like Aß42 or
tau have high specificity and sensitivity, but are only indi-
cated as confirmation of AD diagnosis based on clinical
symptoms or as differential diagnosis to differentiate
between AD and other forms of diseases that can cause
symptoms like dementia. The analysis of SNPs in certain
genes (for example, ApoE) yields too low diagnostic accu-
racy and is therefore not recommended as diagnostic test
for AD. Furthermore, Ray et al. yielded promising results
by the identification of 18 proteins in blood plasma that
could differentiate AD patients from controls with 90%
accuracy [25].
Here, we investigate whether blood-borne miRNA

expression signatures might contribute to AD diagnosis.
Until now, many efforts have been made to understand
the role of miRNAs in neurodegenerative disorders, as
summarized by Eacker et al. [26]. However, there are only
two publications dealing with the miRNA expression in
peripheral blood mononuclear cells (PBMC) of AD
patients. The study by Villa et al. analyzed the expression
of heterogeneous nuclear ribonucleoprotein (hnRNP)-A1,
that is involved in the maturation of APP mRNA, and
showed that the decreased expression of hsa-miR-590-3p
is negatively correlated with the increased hnRNP-A1
mRNA levels [27]. The study by Schipper et al. [28] inves-
tigated the expression of 462 different miRNAs in PBMCs
of 16 AD patients and 16 healthy controls to identify miR-
NAs that are responsible for the regulation of transcrip-
tion of mRNA species that were previously reported to be
downregulated in PBMCs of AD patients [29]. Only a
modest relative increase of miRNA expression in AD
PBMC in the range of 1.1- to 1.4-fold was found for nine
miRNAs, namely hsa-miR-34a, hsa-miR-579, hsa-miR-
181b, hsa-miR-520h, hsa-miR-155, hsa-miR-517*, hsa-let-
7f, hsa-miR-200a, and hsa-miR-371. These data link the
development of AD pathology to systemic dysfunction in
the cellular stress/antioxidant response and genomic
maintenance [28].
Using high throughput sequencing, we identified 140

unique miRNAs from 180 precursors that were differen-
tially expressed between whole blood obtained from AD
patients and healthy controls. It is incumbent upon the
investigator, who proposes a set of miRNAs as done here

to examine whether there is any known connection of
these miRNAs and their target genes to neurodegenera-
tion. Below we discuss this aspect in respect to our find-
ings of dys-regulated miRNAs in blood of AD patients
compared to healthy controls.
According to our TAM analysis out of the downregu-

lated miRNAs, six were associated with the disease cate-
gory Alzheimer disease including hsa-miR-21, hsa-miR-17,
hsa-miR-29a, hsa-miR-29b, hsa-miR-106b, and hsa-miR-
107. In a mouse model, Wang et al. investigated the invol-
vement of hsa-miR-106b in the TGF-b signaling pathway
that plays a key role in the pathogenesis of AD and found
an inverse correlation between the expression of hsa-miR-
106b and TGF-b type II receptor (TbR II) protein level
[30]. In addition, Hebert et al. showed that hsa-miR-106b
affects the expression of Amyloid precursor protein (APP)
in vitro. Furthermore, they found a statistically significant
decrease in hsa-miR-106b expression in sporadic AD
patients, but the correlation between miR-106b and APP
expression in AD brain was not significant [31]. The same
group showed an inverse correlation between increased
BACE1 levels and decreased miR-29a/b-1 expression [15].
Shioya et al. also observed a decreased expression of hsa-
miR-29a in brain tissue of AD patients [32]. They also
identified neuron navigator 3 (NAV3), a regulator of axon
guidance, as a target of hsa-miR-29a and found elevated
NAV3 mRNA levels in AD brains [32]. Hsa-miR-17 was
shown to regulate APP expression in vitro and under phy-
siological conditions in cells [31,33]. MiR-21 was shown to
be downregulated in time-course assays of mature murine
primary hippocampal cell cultures after neuronal Ab treat-
ments [34].
We further performed over-representation analysis with

the 2,354 predicted targets of the 10 known miRNAs of
our 12-miRNA signature. Here, several GO categories,
with significant enrichment of miRNA targets in the GO
categories linked to the nervous system, were found. Most
interestingly, some of these target genes have already been
related to AD or other of the investigated neurological dis-
eases. One of the most prominent examples is DRD1 that
encodes the Dopamine receptor D1, which is the most
abundant dopamine receptor in the central nervous sys-
tem. DRD1 is associated with AD, BD, and SCHIZ.
Another example, DISC1 (disrupted in SCHIZ), associated
with BD and SCHIZ, encodes a protein involved in neurite
outgrowth and cortical development. BDNF (brain-derived
neurotrophic factor) important for survival of striatal neu-
rons in the brain is known to be downregulated in AD
patients and also associated with BD, DEP, PD, and
SCHIZ. IGF1R is the only target gene that was exclusively
found to be associated with AD. The protein encoded by
this gene is increased in temporal cortex surrounding and
within Aß-containing plaques, but a significantly lower
number of neurons of AD patients express IGF1R [35].
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Table 4 Results of the over-representation analysis of the predicted target genes of brain-miR-112.
Subcategory Subcategory

alternative
name

Expected Observed Pvalue
(FDR)

Target genes AD BD DEP PD SCHIZ Multiple
sclerosis

Neurogenesis GO:0022008 119.612 31 0.000284421 ONECUT2 ANK3 CACNB3 CDK6 CELSR3 FGFR2 MEF2A NFIB PICALM PLAG1
PLXNA1 PSD4 PTPRR RAB11A RPS6KA4 SIX4 COL4A4 DFNB31 DISC1 SRF
STX3 ADCY1 CDKN1C CNP ENAH HOXC10 LIF LRP6 ROCK1 RPS6KA3
TFAP2A

– DISC1 – – DISC1 –

Neuron
differentiation

GO:0030182 103.937 27 0.000801251 ONECUT2 ANK3 CACNB3 CELSR3 FGFR2 MEF2A NFIB PICALM PLXNA1
PSD4 PTPRR RAB11A RPS6KA4 COL4A4 DFNB31 SRF STX3 ADCY1 CDKN1C
CNP ENAH HOXC10 LIF LRP6 ROCK1 RPS6KA3 TFAP2A

– – – – – –

Neuron
development

GO:0048666 845.125 23 0.00159317 ONECUT2 ANK3 CACNB3 CELSR3 FGFR2 MEF2A NFIB PICALM PLXNA1
RAB11A RPS6KA4 COL4A4 DFNB31 SRF STX3 ADCY1 CDKN1C CNP ENAH
LIF ROCK1 RPS6KA3 TFAP2A

– – – – – –

Nervous system
development

GO:0007399 184.019 37 0.00268227 ONECUT2 ANK3 CACNB3 CDK6 CELSR3 FGFR2 MEF2A NFIB PICALM PLAG1
PLXNA1 PSD4 PTPRR RAB11A RPS6KA4 SEMA5B SIX4 COL4A4 DFNB31
DISC1 FGF1 SRF STX3 SULF1 ADCY1 ARHGEF15 CDKN1C CNP ENAH
HOXC10 LIF LPHN1 LRP6 MEN1 ROCK1 RPS6KA3 TFAP2A

FGF1 DISC1 – – DISC1 –

Neuron projection
development

GO:0031175 736.077 19 0.00946322 ANK3 CACNB3 CELSR3 FGFR2 MEF2A NFIB PICALM PLXNA1 RAB11A
RPS6KA4 COL4A4 SRF STX3 ADCY1 CNP ENAH LIF ROCK1 RPS6KA3

– – – – – –

Neuron projection GO:0043005 633.844 16 0.0262424 ALOX5 ANK3 MYLK2 NFIB SLC38A7 DFNB31 DISC1 FRMPD4 GRIA4 SLC6A1
STX3 AAK1 ALDOC ARHGEF15 BACE1 LPHN1

BACE1 DISC1 – – DISC1
GRIA4

–

Neurotransmitter:
sodium symporter
activity

GO:0005328 0.215825 3 0.0330004 SLC6A20 SLC6A1 SLC6A6 – – – – – –

Neuron projection
morphogenesis

GO:0048812 624.756 15 0.0391162 ANK3 CACNB3 CELSR3 FGFR2 MEF2A NFIB PICALM PLXNA1 RPS6KA4
COL4A4 ADCY1 CNP ENAH ROCK1 RPS6KA3

– – – – – –

Neurotransmitter
transporter activity

GO:0005326 0.272621 3 0.0412241 SLC6A20 SLC6A1 SLC6A6 – – – – – –

Neuroblast division GO:0055057 0.0795144 2 0.0412241 FGFR2 LRP6 – – – – – –

Forebrain neuroblast
division

GO:0021873 0.0795144 2 0.0412241 FGFR2 LRP6 – – – – – –

Generation of
neurons

GO:0048699 112.797 31 0.000188727 ONECUT2 ANK3 CACNB3 CDK6 CELSR3 FGFR2 MEF2A NFIB PICALM PLAG1
PLXNA1 PSD4 PTPRR RAB11A RPS6KA4 SIX4 COL4A4 DFNB31 DISC1 SRF
STX3 ADCY1 CDKN1C CNP ENAH HOXC10 LIF LRP6 ROCK1 RPS6KA3
TFAP2A

– DISC1 – – DISC1 –

Cell morphogenesis
involved in neuron
differentiation

GO:0048667 616.805 15 0.0366659 ANK3 CACNB3 CELSR3 FGFR2 MEF2A NFIB PICALM PLXNA1 RPS6KA4
COL4A4 ADCY1 CNP ENAH ROCK1 RPS6KA3

– – – – – –

This table lists interesting Gene Ontology (GO) subcategories with Pvalues <0.05 and FDR adjustment related to nervous system development.
AD: Alzheimer disease; BP: bipolar disorder; DEP: major depression; PD, Parkinson’s disease; SCHIZ: schizophrenia
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This suggests that IGF1R signaling normally controlling
vital growth, survival, and metabolic functions in the brain
is disturbed in AD brains. The two unknown miRNAs
revealed 234 target genes for brain-miR-112, but only six
target genes for brain-miR-161. In the over-representation
analysis for brain-miR-112 we also identified GO cate-
gories linked to the nervous system, including targets like
DISC1 as discussed above. For brain-miR-161 we found
no significant GO categories. However, a literature review
of the six target genes of brain-miR-161 revealed some
interesting findings. GRID1 (glutamate receptor, ionotro-
pic, delta 1), predicted to be a target gene of brain-miR-
161, encodes a gene product that is a subunit of glutamate
receptor channels which mediate most of the fast excita-
tory synaptic transmission in the central nervous system
and play key roles in synaptic plasticity. Interestingly,
GRID1 has previously been associated with SCHIZ and
BD [36-38]. Another predicted target gene CCDN2
(Cyclin D2) plays a role in corticogenesis [39].
However, we have to point out that our analysis is

based on whole blood. Previous findings on cancer sug-
gest that the miRNA expression pattern between blood
cells and cancer tissue do not necessarily show the same
expression pattern but some overlaps can be found
[40-42]. Unfortunately, tissue and blood samples of the
same patients were not available for the present study.
Nevertheless, we performed database analysis and
extracted all miRNAs deregulated in AD and the corre-
sponding literature out of the Human MiRNA& Disease
Database [43]. In total, we found 18 different publica-
tions, with 15 publications on AD brain tissue and/or cell
culture models. Out of those studies, 29 different miR-
NAs deregulated in AD are listed in the HMDD. Com-
paring these miRNAs with our data revealed eight of the
29 miRNAs that were significantly dys-regulated in blood
cells in our study. There is, however, no evidence
whether these overlaps were found by chance or not. Any
link between deregulated miRNAs in blood of patients
with neurological diseases and the disease itself has to be
considered with caution.
Since a large set of miRNAs often contains a significant

amount of redundant miRNAs with largely identical infor-
mation content the differentiation between AD samples
and healthy controls using a reduced set of miRNAs may
likely yield comparably accurate results. Therefore, a panel
of 12 miRNAs with limited cross-correlation, including
most strongly dys-regulated miRNAs that show a potential
to separate AD from controls, was selected. Some of these
12 miRNAs have already been related to AD. For example,
Wang et al. showed in a computational analysis that the
3’-untranslated region (UTR) of beta-site amyloid precur-
sor protein-cleaving enzyme 1 (BACE1) mRNA is targeted
by hsa-miR-107 and that BACE1 mRNA levels tended to
increase as miR-107 levels decreased in the progression

for AD. An increased BACE1 expression is an important
risk factor for sporadic AD [15]. Nelson et al. also showed
a negative correlation between the expression of hsa-miR-
107 and BACE1 [44]. Interestingly, hsa-miR-107 that was
also part of our 12-miRNA signature investigated in the
presented study was also downregulated in blood of AD
patients compared to healthy controls. Augustin et al. [45]
recently investigated miRNAs that are predicted to target
another AD-related gene, namely ADAM10, which con-
trols the proteolytic processing of APP and the formation
of the amyloid plaques. Database analyses prompted them
to further investigate two miRNAs that were also included
in our 12-miRNA signature, namely hsa-miR-107 and hsa-
miR-103. They found that predicted target genes of hsa-
miR-107 and hsa-miR-103 showed significant overlap with
the AlzGene database. In a reporter assay ADAM10
expression was reduced by both miRNAs. These two miR-
NAs were also investigated in relation to the expression of
cofilin protein in a transgenic mouse model [46]. Cofilin
binds to actin resulting in the formation of Hirano bodies,
which may play an essential role in AD pathogenesis. In
APP transgenic mouse brains hsa-miR-107 and hsa-miR-
103 levels were decreased while cofilin levels were
increased and in a luciferase assay it was demonstrated
that hsa-miR-107 and hsa-miR-103 were able to reduce
the expression of cofilin. In our RT-qPCR approach both
miRNAs hsa-miR-107 and hsa-miR-103 showed the same
expression pattern, that is, both were downregulated in
blood of AD, PD, DEP, and SCHIZ patients and upregu-
lated in mild cognitive impairment, multiple sclerosis, and
BD patients. All other miRNAs of our 12-miRNA signa-
ture have not been identified or investigated so far in rela-
tionship to AD.
While we showed the 12-miRNA signature’s potential to

separate AD patients from controls with an accuracy of
93.3%, we also tested its applicability as differential diag-
nostic biomarker to separate AD from other neurological
diseases. As we expected, the accuracy decreased when
trying to use this signature for separating other neurode-
generative diseases from controls or separating AD from
other neurological disorders. Remarkably, the classification
of psychiatric disorders versus controls yielded an even
better accuracy than for AD versus controls. These find-
ings suggest a relevance of the considered 12 miRNAs also
for psychological disorders. The association of the 12-
miRNA signature with neurological diseases in general is
further underlined by the results of our over-representa-
tion analysis using GeneTrail. Here, we found four signifi-
cant GO categories related to nervous system and neurons
with an over-representation of target genes of the 10
known miRNAs from our 12-miRNA signature. In addi-
tion, out of the 10 known miRNAs nine miRNAs are
already included in the HMDD and five of those miRNAs
that were previously associated with neurological diseases
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including AD, PD, and SCHIZ. As mentioned above, Yao
et al. [46] showed that reduced levels of hsa-miR-103 or
hsa-miR-107 are associated with elevated cofilin protein
levels and formation of rod-like structures in a transgenic
mouse model of AD. Both miRNAs were also downregu-
lated in our study. Martins et al. [47] showed that hsa-
miR-151a-3p and hsa-miR-26a-5p are differentially
expressed in PBMCs (peripheral blood mononuclear cells)
of PD patients and controls. In prefrontal cortex tissue of
individuals with SCHIZ hsa-miR-26b was downregulated
[48]. Target analysis of the miRNA that was not included
in HMDD, hsa-miR-5010-3p, revealed target genes
involved in nervous system processes. For example, pre-
dicted targets of hsa-miR-5010-3p include the NFASC
(neurofascin), that functions in neurite outgrowth, and
organization of nodes of Ranvier on axons, NPY (Neuro-
peptide Y), that is one of the most abundant neuropep-
tides in the mammalian central nervous system [49],
NLGN1 (neuroligin 1), that may be involved in the forma-
tion and remodeling of central nervous system synapses,
NRXN3 (neurexin3), that functions in the nervous system
as receptors and cell adhesion molecule, and NCAN (neu-
rocan), that seems to be a genetic risk factor for BD.
Finally, one has to take into account that AD is a com-

plex progressive neurodegenerative disease causing cogni-
tive, behavioral, and functional problems that are also
found in other neurological diseases. Furthermore, demen-
tia is not only caused by AD but can result from other
neurological disorders. Dementia patients often suffer
from other additional mental and behavioral problems like
depression, anxiety, psychosis, agitation, and aggression
further complicating correct classification. As AD shares
common neuropsychiatric symptoms with other neurolo-
gical diseases there might be an overlap with the asso-
ciated medication.
Most importantly one needs to point out that as the

patients included in our study are not treatment-naïve,
we cannot exclude the influence of administered drugs on
the miRNA signature. As an example, Bocchio-Chiavetto
et al. showed that chronic anti-depressant treatment has
effects on the blood miRNA profile [50]. Furthermore, we
have to point out that we do not have a birth cohort.
Nevertheless, the age distribution between the AD samples
and the control samples used for NGS is not significantly
different (P value 0.1147). The age distribution of AD
patients, MCI patients, PD patients, and controls is quite
similar. Patients suffering from multiple sclerosis, DEP,
BD, or SCHIZ are about 20 to 30 years younger. The dif-
ferences in the age distribution are due to the differences
between the onsets of the diseases. In previous studies [51]
we already investigated the influence of age and gender on
the miRNA expression profile of whole blood. We did not
find any statistically significant deregulated miRNAs
between men and women. The miRNA with the lowest

P value was hsa-miR-423 (P value 0.78). To test for the
influence of age we compared the profiles obtained from
old versus young patients by splitting the total group in
half based on the age. Here, the miRNA with the lowest P
value was hsa-miR-890 (P value 0.87). Again, we did not
find any deregulated miRNAs. In summary, we found no
evidence that age and gender have a substantial influence
on the miRNA profiles. Both miRNAs mentioned above
were not significant in the present study on AD.

Conclusion
Here we identified 140 unique differentially expressed
miRNAs between AD patients and healthy controls. Using
a signature of 12 miRNAs differentially expressed between
AD patients and healthy controls we were not only able to
distinguish with high diagnostic accuracies between AD
patients and healthy controls, but also between AD
patients and patients suffering from other neurological dis-
orders including mild cognitive impairment as a potential
preliminary stage of AD, and other neurodegenerative dis-
eases like PD and multiple sclerosis as well as mental dis-
eases like SCHIZ, DEP, and BD. However, additional work
will be needed to elucidate the applicability of this 12-
miRNA signature as a potential diagnostic test for AD and
the above-mentioned effects of the drug treatments com-
monly used in the treatment of the disease. Hopefully,
tests of this non-invasive and relatively cheap kind will be
applicable to prodromal AD cases and to MCI patients
with the aim to recognize early AD to initiate treatment.

Materials and methods
Patient details
We analyzed the expression of miRNAs in peripheral
blood of a total of 215 patients and healthy controls,
either by NGS or by RT-qPCR or by both methods (see
Table 1). In detail, we obtained 2.5 mL blood collected in
PAXgene Blood RNA tubes (PreAnalytiX) from patients
with AD (n = 106), patients with mild cognitive impair-
ment (MCI) (n = 18), patients with multiple sclerosis
(clinically isolated syndrome, CIS) (n = 16), patients with
PD (n = 9), patients with DEP (n = 15), patients with BD
(n = 15), patients with SCHIZ (n = 14), and from healthy
controls (C) (n = 22). Samples from patients with AD
stem from the Biorepository and Tissue Bank Preci-
sionMed (San Diego, CA, USA) (n = 97) and the Univer-
sity Clinic of Erlangen (Germany) (n = 9), samples from
healthy controls and from patients with MCI, PD, DEP,
BD, and SCHIZ stem from PrecisionMed (San Diego,
CA, USA) and samples from patients with CIS stem from
Charité Berlin (Germany). Detailed patient characteristics
are listed in Additional file 4-Table S3. AD and MCI
patients were diagnosed by using state of the art criteria.
In detail, in order to be included in the ‘probable AD’
group, patients fulfilled the following criteria of the
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NINCDS-ADRDA (National Institute of Neurological
and Communicative Disorders and Stroke and the Alz-
heimer disease and Related Disorders Association) [52]:
MMSE >14 and <26, deficit in two or more areas of cog-
nition, progressive worsening of memory and other cog-
nitive functions, no disturbance of consciousness, onset
between the ages of 40 and 90 years, most often after 65
years, and absence of systemic disorders or other brain
diseases that could account for the progressive deteriora-
tion in cognition. Furthermore, MRI or CT reports that
were compatible with AD are available. The median
MMSE score for the AD patients was 18.9 (3.4).
Samples included in the MCI group fulfilled the follow-

ing criteria: MMSE >22 and <28, not demented, memory
complaint, preserved general cognitive function, intact
activities of daily living: (allowed problems with 2 or less
of the following: phone calls, meal preparation, handling
money, completing chores), abnormal memory function
documented by scoring below the education adjusted
cutoff on the Logical Memory II subscale (delayed para-
graph recall) from the Wechsler Memory Scale-Revised
(maximum score = 25) with (a) <8 for 16 years or more
of education, (b) <4 for 8-15 years of education, (c) <2
for 0-7 years of education. The median MMSE score for
the MCI patients was 25.3 (±1.4).
The study was approved by the institutional review

boards of Charité - Universitätsmedizin Berlin (EA1/182/
10) and the study was performed in accordance with the
Helsinki declaration. Written informed consent was
obtained from all patients participating in the study.
Samples and clinical data supplied by PrecisionMed are

handled in strictest compliance with all applicable rules
and regulations including the recommendations of the
Council of the Human Genome Organization (HUGO)
Ethical, Legal, and Social Issues Committee (HUGO-ELSI,
1998); with the United Nations Educational, Scientific, and
Cultural Organization’s (UNESCO) Universal Declaration
on the Human Genome and Human Rights (1997); and
with recommendations guiding physicians in biomedical
research involving human subjects adopted by the 18th
World Medical Assembly, Helsinki, Finland, 1964 and
later revisions.

RNA isolation
Total RNA including miRNA was isolated using the PAX-
gene Blood miRNA Kit (Qiagen) following the manufac-
turer’s recommendations. Isolated RNA was stored at -80°
C until use. RNA integrity was analyzed using Bioanalyzer
2100 (Agilent) and concentration and purity were mea-
sured using NanoDrop 2000 (Thermo Scientific).

Library preparation and next-generation sequencing
We first analyzed samples from AD patients (n = 48)
and healthy controls (n = 22) by NGS.

For the library preparation, 200 ng of total RNA was
used per sample, as determined with a RNA 6000 Nano
Chip on the Bioanalyzer 2100 (Agilent). Preparation was
performed following the protocol of the TruSeq Small
RNA Sample Prep Kit (Illumina). Concentration of the
ready prepped libraries was measured on the Bioanalyzer
using the DNA 1000 Chip. Libraries were then pooled in
batches of six samples in equal amounts and clustered
with a concentration of 9 pmol in one lane each of a single
read flowcell using the cBot (Illumina). Sequencing of 50
cycles was performed on a HiSeq 2000 (Illumina). Demul-
tiplexing of the raw sequencing data and generation of the
fastq files was done using CASAVA v.1.8.2.

NGS data analysis
The raw Illumina reads were first preprocessed by cutting
the 3’ adapter sequence using the program fastx_clipper
from the FASTX-Toolkit [53]. Reads shorter than 18 nts
after clipping were removed. The remaining reads are
reduced to unique reads and their frequency per sample to
make the mapping steps more time efficient. For the
remaining steps, we used the miRDeep2 pipeline [54].
These steps consist of mapping the reads against the gen-
ome (hg19), mapping the reads against miRNA precursor
sequences from miRBase release v18, summarizing the
counts for the samples, and the prediction of novel miR-
NAs. Since the miRDeep2 pipeline predicts in our case the
novel miRNAs per sample, we merged the miRNAs after-
wards as follows: first, we extract the novel miRNAs per
sample that have a signal-to-noise ratio >10. Subsequently,
we merge only those novel miRNAs that are located on
the same chromosome, and both their mature forms share
an overlap of at least 11 nucleotides. The remaining puta-
tive novel miRNAs were mapped with BLAST (v 2.2.24,
[55]) against known ncRNA and miRNA sequences from
diverse sources (miRBase v18 [56], snoRNA-LBME-db
[57], ncRNAs from Ensembl ‘Homo_sapiens.GRCh37.67.
ncrna.fa’[58], NONCODE v3.0[59]). We excluded
sequences that aligned with >90% of their length (allowing
1 mismatch) to any of the ncRNA sequences. All NGS
data are publicly available in GEO database (GSE46579
[60]).

Bioinformatics analysis
For the NGS analysis, we excluded miRNAs with <50
read counts summed up across all samples of each group
(AD or control), since these were considered lowly abun-
dant. We normalized the read counts using standard
quantile normalization. Next, we calculated for each
miRNA the area under the receiver operator characteris-
tic curve (AUC), the fold-change, and the significance
value (P value) using Wilcoxon-Mann-Whitney (WMW)
test. All significance values were adjusted for multiple
testing using the Benjamini-Hochberg approach [61,62].
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The bioinformatics analyses have been carried out using
the freely available tool R [63]. For classification pur-
poses, we used support vector machines (SVM) from the
R package e1071. If not stated otherwise, we computed
the group-wise classifications using linear kernels in
10-fold cross-validations with 100 repetitions. In addi-
tion, we computed the classification of permuted class
labels with the same parameters as control. If group sizes
were unbalanced, we randomly selected samples from the
bigger group to match the sample sizes in the smaller
group in each repetition.

Database analysis
MiRNA enrichment analysis was performed using the
TAM tool [23,24]. The miRNA targets of the known
miRNAs were predicted using miRDB [64-66]. Targets
for the unknown brain-miRs were predicted using Tar-
getScan [67,68]. TargetScan is able to predict targets of
miRBase miRNAs as well as targets of other sequences
by using the heptamer seed sequence (nucleotides 2-8)
of a potential miRNA. For brain-miR-161 we used the
heptamer UUCGAAA, for brain-mir-112 GCUCUGU.
With the predicted miRNA target genes we performed
an over-representation analysis using the gene set analy-
sis tool GeneTrail [69,70] with default settings. The
P values for the biological categories were adjusted by
False Discovery Rate (FDR) [71] and were considered
significant if <0.05. Furthermore, we searched for
miRNA-disease interactions using the Human MiRNA&
Disease Database (HMDD [43,72]).

Quantitative real time-PCR (RT-qPCR)
For validation purposes we analyzed the expression of
single miRNAs using quantitative real time-polymerase
chain reaction (RT-qPCR) in the same samples as used
for NGS, if sufficient amounts of RNA were available.
We used the miScript PCR System (Qiagen) for reverse
transcription and RT-qPCR. A total of 200 ng RNA was
converted into cDNA using the miScript Reverse Tran-
scription Kit according to the manufacturer’s protocol.
The RT-qPCR was performed with the miScript SYBR®

Green PCR Kit in a total volume of 20 μL per reaction
containing 1 μL cDNA according to the manufacturer’s
protocol. For each miScript Primer Assay we addition-
ally prepared a PCR negative-control with water instead
of cDNA (non-template control).
We further expanded the number of samples by further

samples from patients with AD, MCI, CIS, PD, DEP, BD,
and SCHIZ, resulting in a total of 202 samples analyzed by
RT-qPCR (see Table 1). In detail, we analyzed with RT-
qPCR a total of 94 samples from AD patients, 18 samples
from MCI patients, 16 samples from CIS patients, nine
samples from PD patients, 15 samples from DEP patients,

15 samples from BD patients, 14 samples from SCHIZ
patients, and 21 samples from healthy controls.
Out of the NGS results we selected 12 miRNAs

deregulated between patients with AD and healthy indi-
viduals. The set contained the following miRNAs: The
upregulated miRNAs brain-miR-112, brain-miR-161,
hsa-let-7d-3p, hsa-miR-5010-3p, hsa-miR-26a-5p, hsa-
miR-1285-5p, and hsa-miR-151a-3p as well as the down-
regulated miRNAs hsa-miR-103a-3p, hsa-miR-107, hsa-
miR-532-5p, hsa-miR-26b-5p, and hsa-let-7f-5p,
respectively.
While 10 of the 12 miRNAs have already been anno-

tated in the miRBase, two miRNAs, namely brain-miR-
112 and brain-miR-161, were newly identified and not
yet included in miRBase [21,22]. As endogenous control
we used the small nuclear RNA RNU48.

Additional material

Additional file 1: Table S1. Table listing the 180 significantly dys-
regulated miRNAs (140 unique mature miRNAs).

Additional file 2: Figure S1. Heatmap for the 180 miRNAs significantly
dys-regulated in AD patients compared to control individuals.

Additional file 3: Table S2. Table listing all novel mature miRNAs.

Additional file 4: Table S3. Table listing patient characteristics and
indicates which samples are included in NGS analysis and/or in the RT-
qPCR.
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Influence of the Confounding Factors Age and Sex on
MicroRNA Profiles from Peripheral Blood
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BACKGROUND: MicroRNAs (miRNAs) measured from
blood samples are promising minimally invasive bio-
marker candidates that have been extensively studied
in several case-control studies. However, the influence
of age and sex as confounding variables remains largely
unknown.

METHODS: We systematically explored the impact of
age and sex on miRNAs in a cohort of 109 physio-
logically unaffected individuals whose blood was
characterized by microarray technology (stage 1).
We also investigated an independent cohort from a
different institution consisting of 58 physiologically
unaffected individuals having a similar mean age but
with a smaller age distribution. These samples were
measured by use of high-throughput sequencing
(stage 2).

RESULTS: We detected 318 miRNAs that were signifi-
cantly correlated with age in stage 1 and, after adjust-
ment for multiple testing of 35 miRNAs, remained sta-
tistically significant. Regarding sex, 144 miRNAs
showed significant dysregulation. Here, no miRNA re-
mained significant after adjustment for multiple test-
ing. In the high-throughput datasets of stage 2, we
generally observed a smaller number of significant
associations, mainly as an effect of the smaller cohort
size and age distribution. Nevertheless, we found 7
miRNAs that were correlated with age, of which 5 were
concordant with stage 1.

CONCLUSIONS: The age distribution of individuals re-
cruited for case-control studies needs to be carefully
considered, whereas sex may be less confounding. To
support the translation of miRNAs into clinical appli-
cation, we offer a web-based application (http://www.
ccb.uni-saarland.de/mirnacon) to test individual

miRNAs or miRNA signatures for their likelihood of
being influenced.
© 2014 American Association for Clinical Chemistry

The potential of microRNAs (miRNAs)7 as biomarkers
on the basis of tissue or body fluids is increasingly rec-
ognized. Since their discovery, miRNA profiles from
serum, plasma, or blood cells have been generated and
statistically evaluated for a multitude of human patho-
genic processes, including almost all cancer entities but
also many noncancer diseases, such as multiple sclero-
sis, acute myocardial infarction, Alzheimer disease,
and chronic obstructive pulmonary disease (1–11 ).

The majority of the existing biomarker studies
have been carried out by use of case-control designs.
One would expect that matching of both groups for
confounding factors in these studies was a prerequisite.
However, biomaterials from existing retrospective co-
horts often do not meet the high requirements for
RNA-based molecular analysis, and the buildup of ad-
equately large matched disease and control cohorts can
be problematic. Especially in diseases effecting elderly
persons, it can be highly challenging to recruit suitable
healthy control cohorts of the same age distribution.
Consequently, many published studies fail to match
the 2 most basic confounders, age and sex.

The influence of these fundamental confounding
variables, age and sex, on miRNA profiles from bodily
fluids has not been fully explored. However, various
miRNAs are known to exert key roles in aging, and
other miRNAs are encoded on sex chromosomes (12 ),
which already suggests that a relevant portion of hu-
man miRNA profiles will depend on the age and sex
distribution of samples. In our analysis, we systemati-
cally investigated the influence of age and sex on
miRNA profiles in a large cohort of physiologically un-
affected individuals. We detected a statistically signifi-
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cant number of miRNAs that were influenced by age or
sex of the respective individuals. We validated our ini-
tial findings using an independent cohort of 58 samples
from physiologically unaffected controls by applying
high-throughput sequencing.

Materials and Methods

STUDY DESIGN AND BLOOD SAMPLE COLLECTION

In this study, we included 109 physiologically unaf-
fected individuals (stage 1), whose blood has been par-
tially measured as part of the human bloodborne
miRNome project (1 ). This collection contains whole
miRNome-wide measurements according to Sanger
miRBase (13, 14 ) version 14, for 454 samples. The re-
maining control samples have been included in the sec-
ond version of the human bloodborne miRNome proj-
ect, containing a total of 1050 samples measured by the
same microarray technology. In a second cohort (stage
2), we measured an additional 58 physiologically unaf-
fected controls using an independent technology, high-
throughput sequencing on Illumina HiSeq 2000.

All blood samples were collected by use of a stan-
dard operating procedure in PAXgene Blood RNA
tubes (Becton Dickinson). All blood donors participat-
ing in this study provided written informed consent,
and the local ethics committee approved the study.

miRNA EXTRACTION AND MICROARRAY SCREENING (STAGE 1)

We carried out miRNA extraction and microarray
measurement as previously described (1 ). In brief,
2.5–5 mL of venous blood was collected in PAXgene
Blood RNA tubes. Total RNA, including small RNAs,
was extracted and stored at "70 °C. All samples of
stage 1 were screened by use of the Geniom RT Ana-
lyzer system (Febit Biomed) with the Geniom Biochip
miRNA Homo sapiens covering 848 common miRNAs
in versions 12–14 of the Sanger miRBase. Each miRNA
was represented by at least 7 replicated features on the
microarray; for each miRNA, the median signal inten-
sity was calculated.

HIGH-THROUGHPUT SEQUENCING (STAGE 2)

For library preparation, we used 70 ng total RNA per
sample, as determined with a RNA 6000 Pico Chip on
the Bioanalyzer 2100 (Agilent). For preparation, we
used the TruSeq Small RNA Sample Prep Kit (Illu-
mina). Ready prepped libraries were measured with the
Bioanalyzer by use of the DNA 1000 Chip and subse-
quently pooled in batches of 6 samples in equal
amounts. Sequencing libraries were then clustered with
a final concentration of 9 pmol in 1 lane each of a
single-read flow cell by use of the cBot instrument (Il-
lumina). Sequencing of 50 cycles was performed on a
HiSeq 2000 (Illumina). Demultiplexing of the raw se-

quencing data and generation of the fastq files was
done with CASAVA version 1.8.2.

BIOSTATISTICAL ANALYSIS

To account for variations between different microar-
rays, we applied standard quantile normalization to the
raw expression intensities. All downstream analyses
were carried out on the normalized intensity values.
We performed all bioinformatics calculations using the
free and publicly available statistical language R (http://
www.r-project.org/), if not mentioned otherwise.

For next-generation sequencing (NGS) data anal-
ysis, we preprocessed the raw Illumina reads by cutting
the 3# adapter sequence by use of the program fastx_
clipper from the FASTX-Toolkit. After that, we used
the miRDeep2 pipeline using the standard parameters
for retrieving the miRBase counts for release version 20
and prediction of novel miRNAs. We applied HG20 as
the reference genome for this analysis. Because the mi-
croarray experiments were measured by use of previ-
ous miRBase versions, whereas high-throughput se-
quencing results relied on the most recent version of
the miRBase, we used the sequence of miRNAs as
unique identifiers to match between the different
miRBase versions.

To assess significance values for quantifying differ-
ences between males and females, we applied the para-
metric unpaired two-tailed t-test after verifying that
data were approximately normally distributed by use of
the Shapiro–Wilk test. To compute significance values
for correlation coefficients, we applied test statistics on
the basis of Pearson’s product–moment correlation co-
efficient. Cluster analysis was carried out by use of R.
Hierarchical clustering on the basis of the Bioconduc-
tor package Heatplus was applied to calculate heat
maps and dendrograms. The hclust and cuttree func-
tions were used to extract clusters out of the dendro-
gram. By use of this clustering information, contin-
gency tables were generated, and Fisher test was applied
to calculate significance values.

WEB SERVICE

To make the calculations available for other research-
ers, we implemented a web-based tool that is freely
available for noncommercial usage (http://www.
ccb.uni-saarland.de/mirnacon). Our tool receives as
input either the IDs of a set of miRNAs along with the
respective miRBase version or a set of miRNA se-
quences. These sequences are then matched to the most
recent version 20 of miRBase and mapped to our ex-
perimental data. For further input parameters, the user
can select the significance threshold (standard value
0.05) and a lower boundary for significance values
(standard value 0.001). This boundary is just applied
for the graphical representation of the results, i.e.,
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miRNAs with significance below this value are pre-
sented at the cutoff. Because the analysis itself may be
biased by different age distributions in the test set, users
can input the mean age and SD of the study population
used for their study. Our tool then automatically ex-
tracts a subcohort of our samples that best matches the
user’s age distribution.

For output, our tool generates a scatterplot show-
ing the background distribution of miRNAs in our
study (gray dots); the miRNAs uploaded by the user
(red dots); and whether the miRNAs are not influenced
by age and sex (green area of the scatter plot), influ-
enced by either age or sex (gray area of the scatter plot),
or influenced by age and sex (red area of the scatter
plot). Furthermore, we generate a tabular output con-
taining the uploaded ID, the respective sequence, the
ID in the most recent version 20 of the Sanger miRBase,
and whether this miRNA is influenced by age and/or
sex.

Results

We included a total of 109 controls in the microarray-
based miRNA assessment of stage 1. The miRNA bio-
markers were profiled by use of miRNA microarrays
covering 848 miRNAs across versions 12–14 of the
Sanger miRBase. The cohort contained samples from
65 women and 44 men with a mean age of 57.3 (SD
25.5) years, range 19 –105 years.

Likewise, 58 independently collected and mea-
sured controls were processed by use of high-
throughput sequencing and mapped to miRBase ver-
sion 20. The cohort contained 12 women and 46 men.
Considering age, the individuals in the second cohort
had a similar mean age as the stage 1 cohort (58.3
years); however, this cohort had a much smaller age
variance (SD 8.6 years, range 44 –75 years). Age distri-
bution metrics for both cohorts are provided in Sup-
plemental Table 1, which accompanies the online ver-
sion of this article at http://www.clinchem.org/content/
vol60/issue9.

IMPACT OF AGE ON miRNA PROFILES

First, we calculated the correlation of each miRNA to
the age of the individuals, providing us with 848 differ-
ent correlation coefficients. Additionally, we calculated
significance values for the respective correlations and
considered unadjusted as well as adjusted P values
(Bonferroni adjustment). Of the 848 miRNAs, 318
were significantly correlated with age (raw P value of
$0.05). Notably, around one-third (107) were nega-
tively correlated with age, whereas two-thirds (211)
were positively correlated with age. This shift in the
distribution toward positive correlation can be seen in
Fig. 1 (right side of the histogram). In this figure, all

miRNAs with a correlation coefficient %0.5 are given.
Notably, even after adjustment for multiple testing by
use of the conservative Bonferroni approach, 35
miRNAs remained significant (adjusted P value
$0.05). The 35 miRNAs along with the raw signifi-
cance values and the correlation coefficients are de-
tailed in Table 1.

Regarding the stage 2 cohort with a more narrow
age distribution but comparable mean age, we calcu-
lated a substantially smaller amount of significantly as-
sociated miRNAs. Whereas the stage 1 cohort quartiles
are 34, 57.5, and 71 years, the validation cohort quar-
tiles are 53, 56, and 65 years. Despite these differences,
we observed 7 of the originally detected miRNAs that
were expressed and significantly correlated with age in
the second cohort. Of these 7 miRNAs, 5 showed the
same direction of dysregulation as in stage 1. The
miRNAs significantly influenced by age in both stages
include hsa-miR-1284, hsa-miR-93–3p, hsa-miR-
1262, hsa-miR-34a-5p, and hsa-miR-145–5p, meaning
that these miRNAs may be most strongly affected by
aging. The markers are summarized in Table 2 together
with the respective correlation values. Fig. 2 shows
scatter plots for the most significantly downregulated
miRNA, namely hsa-miR-106a, and the miRNA with
the best fit between microarrays and NGS, hsa-miR-
93–3p. Each image shows a significant positive or neg-
ative correlation of miRNA expression with age of in-
dividuals, respectively.

Next, we investigated the dependency of age–
miRNA correlations on the age distribution. To this
end, for the 23 most significant correlations from Table
1, we calculated the correlation for subcohorts with
approximated mean age of 40, 50, 60, and 70 years. As
the spider diagram in Fig. 3 shows, the significance for
these miRNAs substantially changed with different
subcohorts. The most significant results were detected
for the subcohort with a mean age of 60 years, where 10
miRNAs were significantly correlated (inside of the
gray-shaded area of the spider diagram). By contrast,
for the 40- and 70-year subcohorts, just 2 of the
miRNAs remained significant.

IMPACT OF SEX ON miRNA PROFILES

We also calculated significance values for the sex of all
individuals. In this analysis, we detected much lower
numbers of significantly associated miRNAs. Although
318 significant markers were found in stage 1 for age,
we found only 144 miRNAs significant before adjust-
ment for multiple testing in case of sex. Although this
number is much higher than the expected number of
significant miRNAs at an ! level of 0.05, no miRNA
remained significant after Bonferroni adjustment
(P value $0.05 after adjustment; smallest P value after
adjustment: 0.09).

Influence of Age and Sex on miRNAs

Clinical Chemistry 60:9 (2014) 3



For stage 2, we calculated significantly different
expression levels depending on sex for 6 of the differ-
entially expressed miRNAs, with only 3 miRNAs (hsa-
miR-219a-1-3p, hsa-miR-548c-3p, and hsa-miR-130a-
3p) being concordant in both cohorts, demonstrating
that differences in miRNA were mainly due to the con-
founding factor age, but less to sex.

miRNA PATTERNS CLUSTER INDIVIDUALS REGARDING

AGE AND SEX

In addition to the above correlation analysis, we carried
out unsupervised and supervised cluster approaches.
First, we extracted the 10 most variable miRNAs and
calculated whether these miRNAs separate the individ-
uals with respect to sex (male vs female) or age (young
vs old, cutoff mean age). With respect to sex, we
reached a significance value of 0.01 after separating the
data into 2 clusters. With respect to age, we found an
even more significant clustering with a P value of
0.0067, confirming our initial findings that the age of
individuals has a larger impact on miRNA than their
sex (see online Supplemental Fig. 1).

Additionally, we applied a supervised clustering
approach. Here, we included the most significantly

correlated miRNAs (raw P value $0.05) for the clus-
tering, limiting the analysis, however, to the 50
miRNAs with highest data variance. As expected, the
significance of the clustering substantially improved.
With respect to age, the significance value went down
to 0.0004; for sex, down to 0.0006 (see online Supple-
mental Figs. 2 and 3).

REPRESENTATION OF RESULTS AND WEB-BASED ANALYSIS

Because our results indicated a moderate influence of
sex and a substantial influence of age on bloodborne
miRNA profiles, we implemented a web-based solu-
tion for providing other researchers with easy access to
the respective data and the ability to visualize the de-
gree of influence of age and sex on candidate miRNA
biomarkers of their studies. As input, users can choose
between the miRNA sequence or miRBase miRNA IDs.
For the latter, all versions starting from miRBase 16 are
implemented. Furthermore, the user can specify a sig-
nificance threshold as well as parameters for improved
graphical representation. As demonstrated above, the
overall age distribution has the highest impact on
miRNAs. Thus, users can also specify the average age
and SD of their cohort. Our algorithm, which relies on

Fig. 1. Histogram of positive and negative correlated miRNA.
The histogram shows the left and right tail of the correlation of miRNAs versus the age of patients and reveals a clear shift for
positive correlation.
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the results of stage 1, then searches dynamically for a
subcohort that matches the requested parameters of
the user.

In the tabular output, the miRNA-ID is shown, as
well as its mapping to the most recent ID in miRBase
version 20 and the sequence of the miRNA. In the
fourth and fifth column of the output table, the poten-

tial influence of age and sex are documented. We tested
our tool on a hypothetical disease signature with 9
markers (chosen from studies on different diseases). Of
these, 2 (miR-144 and miR-20b) are potentially influ-
enced by age, whereas 7 (miR-1, miR-127–5p, miR-
1270, miR-1271, miR-1272, miR-144*, and miR-20a*)
are not influenced significantly. Fig. 4 presents the
graphical output of the tool. The miRNAs in the upper
right quadrant (green) are not significantly influenced.
The miRNAs in the lower right quadrant are poten-
tially influenced by age and thus highlighted by red
points. The red-shaded lower right quadrant would
contain miRNAs that are influenced by age and sex. All
miRNAs uploaded by the user are shown as colored
dots, and the distribution of the miRNAs from stage 1
of this study are represented by gray dots. The tool is
freely available for noncommercial applications at
http://www.ccb.uni-saarland.de/mirnacon/.

Discussion

miRNAs are increasingly recognized as biomarkers for
various diseases, including almost all cancer entities
and metabolic, neurological, and cardiovascular disor-
ders. We investigated here the role of the confounding
variables age and sex on the miRNA profiles observed
in whole peripheral blood.

Despite the euphoria about the potential clinical
application of miRNAs in disease detection and esti-
mation of prognosis, many miRNA biomarkers show
discrepant results in independent investigations of the
same disease. In addition to technical challenges such
as sample handling, RNA processing, and storage, as
well as differences in the underlying measurement
technology such as microarrays or high-throughput se-
quencing, many obstacles remain that could addition-
ally affect this observation. In recent publications,
some confounding factors for miRNAs from serum or

Table 1.
Significantly age-correlated miRNAs (stage 1,

adjusted P value <0.05).

miRNA Correlation Raw P value

hsa-miR-106a "0.680 4.54E"14

hsa-miR-20b "0.657 6.43E"13

hsa-miR-151-3p 0.628 1.21E"11

hsa-miR-103 "0.592 3.41E"10

hsa-miR-320d 0.578 1.06E"09

hsa-miR-20a "0.569 2.19E"09

hsa-miR-93 "0.557 5.56E"09

hsa-miR-720 0.548 1.07E"08

hsa-miR-126 "0.533 3.13E"08

hsa-miR-301a "0.530 4.00E"08

hsa-miR-1260 0.526 5.14E"08

hsa-miR-17 "0.524 5.83E"08

hsa-miR-331-3p 0.505 2.12E"07

hsa-miR-30c 0.491 5.18E"07

hsa-miR-590-5p "0.486 6.97E"07

hsa-miR-320c 0.485 7.22E"07

hsa-miR-30d 0.477 1.16E"06

hsa-miR-107 "0.471 1.68E"06

hsa-miR-24 "0.470 1.79E"06

hsa-miR-1262 0.470 1.81E"06

hsa-miR-526b* 0.456 3.94E"06

hsa-miR-664 0.452 4.75E"06

hsa-miR-548i 0.444 7.40E"06

hsa-miR-197 0.433 1.28E"05

hsa-miR-892a 0.433 1.29E"05

hsa-miR-30a 0.429 1.58E"05

hsa-miR-20a* "0.427 1.79E"05

hsa-miR-374a "0.425 1.94E"05

hsa-miR-29c* 0.425 1.95E"05

hsa-miR-15b "0.423 2.15E"05

hsa-miR-144 "0.421 2.44E"05

hsa-miR-520c-3p 0.420 2.50E"05

hsa-miR-96 "0.413 3.45E"05

hsa-miR-339-5p 0.404 5.38E"05

hsa-miR-106b "0.403 5.71E"05

Table 2. Overlap between stage 1 and stage 2 with
respect to age.

miRNA
Array

correlation
NGS

correlation P value

hsa-miR-1284 0.258594528 0.386691307 0.002713735

hsa-miR-23a-5pa 0.238861262 "0.370263342 0.004224409

hsa-miR-652-3pa "0.204746216 0.367868659 0.004497567

hsa-miR-93-3p 0.390291436 0.320291239 0.014241407

hsa-miR-1262 0.469537126 0.301844226 0.021293944

hsa-miR-34a-5p 0.269430053 0.279969853 0.033292267

hsa-miR-145-5p 0.284076368 0.272182316 0.038738333

a Discordant between microarray and NGS experiments.

Influence of Age and Sex on miRNAs
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Fig. 2. Example scatter plots for positive and negative correlation of 2 miRNAs with age.
Distribution of miRNA and age are presented above and on the right of the plots, respectively.

Fig. 3. Spider diagram showing the variance of significance depending on mean age.
On a logarithmic scale, the diagram presents the significance of correlation with the age for 4 age groups. The highest
significance (closest proximity to the center) was detected for the age cohort of 60-year-old individuals.
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plasma were found to include patient treatment (15 )
and comorbidities. However, the role of the funda-
mental confounders age and sex are only partially un-
derstood. We show here that age potentially has a
higher influence on the expression of miRNAs than
sex.

Knowledge about the confounding factors and
their influence on certain miRNAs has considerable
consequences. First, a well-designed study with ade-
quately sized case and control cohorts should be a pre-
requisite. However, often it is very challenging to have

suitable control cohorts of healthy individuals match-
ing the age distribution of cases. This is obviously most
important when studying diseases of the elderly, such
as neurodegenerative diseases or chronic heart failure.
Another way to circumvent potential bias due to non–
equally distributed variables would be the implemen-
tation of the findings presented here in statistical ap-
proaches to select appropriate subcohorts in silico, to
use, e.g., the ages as additional input variables for
machine-learning methods or to dynamically build
models. A more straightforward approach would be to

Fig. 4. Graphical output of miRNACon, the web service for dynamic calculation of potential confounding variables.
x axis, P value for sex; y axis, P value for age. Gray dots belong to background miRNAs, green dots to user-specified miRNAs
that seem to be not affected by sex and age, and red dots to affected miRNAs.
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verify miRNAs by use of the provided online applica-
tion and exclude strongly influenced candidates from
the respective signatures.

Although we found age to be a strong confounder,
all analyses revealed only a limited influence of sex on
miRNA patterns. Nevertheless, we investigated the
most differentially expressed miRNAs between males
and females in more detail to support the hypothesis of
sex-dependent miRNA regulation by comparing them
to those experimentally affected by estrogen. We inves-
tigated blood cells, and the study by Maillot et al. (16 )
relied on breast cell cultures exposed to estrogen. They
found 23 miRNAs that are significantly downregulated
after estrogen signaling has been induced and thus de-
pend indirectly on sex. Of these 23 miRNAs, 18 are
expressed higher in males (78.3%) in our cohorts. Al-
though these miRNAs were not significantly differen-
tially expressed after adjustment for multiple testing,
these results hint at a limited sex-dependent miRNA
signature in blood cells. Here, larger cohorts may reveal
whether the differences are actually significant.

A challenge in generalizing our findings is techni-
cal variation between different platforms. Most fre-
quently, array technology and NGS are applied to
screen for mRNA or miRNA biomarkers, and quanti-
tative reverse-transcription PCR is applied to validate
the results. In 2010, Git et al. presented a technological
evaluation (17 ), concluding that the actual overlap be-
tween the platforms was low. As a consequence, our
web service currently incorporates only the microarray
data of the larger cohort with the higher age variation.
The extension to NGS is planned for one of the suc-
ceeding versions, as well as to provide similar function-
ality for serum and plasma.

Another interesting observation of our study is
that age-related miRNAs may also have biological
meaning. For several miRNAs, animal studies could
provide evidence for their role in senescence or anti-
aging. For instance, hsa-miRNA-34a was recently rec-
ognized as positively correlating with age, suppressing
important downstream targets and leading to telomere
shortening and cardiomyocyte dysfunction/apoptosis
(12 ). In line with these results, Li et al. describe miR-
34a as being upregulated in tissue and blood of older
mice (18 ). This makes miR-34a a good positive control
for our study. Indeed, miR-34a is significantly corre-
lated with age in our results (raw P value 0.0086). In
contrast, Li et al. (18 ) describe miR-196a to be inde-
pendent of age. Concordant with these results, this
miRNA is not significantly regulated with age in our
study (raw P value 0.08). Thus, miR-196a represents a
valuable negative control for our study. The miRNAs

correlating to age identified here might also harbor
functional properties that are important for age re-
search and represent potential pharmaceutical targets.
Hence, our repertoire of miRNAs includes appealing
targets for further functional workup.

In summary, our study provides evidence that es-
pecially age is an important confounding variable for
miRNA biomarker profiles in human blood samples,
whereas sex shows just a limited effect on bloodborne
miRNA patterns. We make the results of this study
available to researchers through an easy-to-use web-
based tool. Clearly, there should be a focus on addi-
tional common confounders, such as smoking, kidney
and liver function, and others, to systematically dissect
their influence on miRNAs from body fluids and tis-
sues. With these precautions, miRNAs have the poten-
tial to proceed into clinical application for many dis-
eases that are currently difficult to diagnose.
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BACKGROUND: The implementation of new biomarkers
into clinical practice is one of the most important areas in
medical research. Besides their clinical impact, novel in
vitro diagnostic markers promise to have a substantial
effect on healthcare costs. Although numerous publica-
tions report the discovery of biomarkers, only a fraction
of those markers are routinely used. One key challenge is
a measurement system that is compatible with clinical
workflows.

METHODS: We designed a new immunoassay for
microRNA (miRNA) quantification. The assay com-
bines streptavidin-linked microparticles, a biotinylated
catcher oligonucleotide complementary to a single
miRNA species, and finally, a monoclonal antibody to
DNA/RNA heterohybrids labeled with acridinium ester.
Importantly, our assay runs on standard immunoassay
analyzers. After a technical validation of the assay, we
evaluated the clinical performance on 4 Alzheimer dis-
ease miRNAs.

RESULTS: Our assay has an analytical specificity of 99.4%
and is at the same time sensitive (concentrations in the
range of 1 pmol/L miRNA can be reliably profiled). Be-
cause the novel approach did not require amplification
steps, we obtained high reproducibility for up to 40 bio-
logical replicates. Importantly, our assay prototype ex-
hibited a time to result of !3 h. With human blood
samples, the assay was able to measure 4 miRNAs that
can detect Alzheimer disease with a diagnostic accuracy
of 82% and showed a Pearson correlation "0.994 with
the gold standard qRT-PCR.

CONCLUSIONS: Our miRNA immunoassay allowed the
measurement of miRNA signatures with sufficient ana-
lytical sensitivity and high specificity on commonly avail-
able laboratory equipment.
© 2014 American Association for Clinical Chemistry

A substantial number of molecules, including DNA,
RNA, microRNAs (miRNAs),7 proteins, and methylated
sites in the genome or metabolites, are reported as disease
markers for various human pathologies, but only a small
fraction will be translated to clinical routine use. One
challenge is often poor diagnostic specificity or sensitiv-
ity, which can be overcome in some instances by com-
bining biomarkers. The second major challenge is the
reliable measurement of novel markers on platforms that
are commonly used in clinical laboratories. Although
current molecular methods used to measure DNA or
miRNA biomarkers, such as quantitative RT-PCR
(qRT-PCR) and next-generation sequencing (NGS), are
available in selected clinical laboratories, they are rather
expensive. Moreover, compatibility with clinical high-
throughput workflows is challenging. The adaption of
miRNA assays to platforms and technologies that would
overcome those issues may foster their use.

Small noncoding RNAs such as miRNAs have im-
portant functions in nearly all cellular processes owing to
their ability to regulate the expression of many protein-
coding genes (1 ). Associations have been described for a
large fraction of the "2000 known miRNA diseases,
which have been collected in databases such as the Hu-
man miRNA and Diseases Database (2 ). Because of their
ability to regulate target gene translation through either
silencing or degradation of the target mRNA, miRNAs
are involved in pathological processes such as cancer,
neurological disorders, and heart disease (3–5 ). Further-
more, complex miRNA signatures have been increasingly
recognized as stable and powerful biomarkers for hu-
man pathologies (6 –14 ), making them ideal bio-
marker candidates. For the application of biomarkers in
routine clinical settings, body fluids such as serum, urine,
and cerebrospinal fluid represent preferable sources for
biomarkers. Notably, blood cells contain a rich repertoire
of disease-related markers.

Specific miRNA expression signatures for many hu-
man cancer and noncancer diseases have been identified
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(6, 15–18). Following biomarker discovery studies with
limited sample cohorts, the suitability of blood-based
miRNA expression signatures as early disease detection
biomarkers is increasingly being investigated in larger val-
idation studies, either in comparison to or in combina-
tion with known serum protein biomarkers (18 ). In par-
ticular, the first tissue-based tests for measurement of
specific miRNA expression signatures are already com-
mercially available on qRT-PCR platforms (Rosetta
Genomics). However, such tissue-based qRT-PCR tests
have important downsides. First, they require substantial
hands-on time. Second, qRT-PCR platforms are not used
in many clinical laboratories, and tests performed on these
platforms are usually less integrated into workflows than
immunoassays. The lesser penetration of qRT-PCR and
other molecular methods in the clinical laboratory com-
pared with immunoassays is also reflected by the fact that
molecular methods other than blood bank tests made up
only 5% of all in vitro diagnostic sales in 2011, compared
with a 25% market share of immunoassays (excluding blood
bank tests) (19). Third, tissue-based miRNA expression sig-
natures require invasive sampling and are therefore more
complicated to implement than blood-based tests in routine
diagnostic applications. Given these downsides to tissue-
based tests, blood-based miRNA diagnostics by use of im-
munoassay represents an interesting opportunity to intro-
duce miRNA testing into clinical laboratories.

To promote the translation of miRNA tests further
into routine use, and to address the challenges mentioned
above, we developed a new miRNA measurement principle
on the basis of an immunoassay format. Immunoassay plat-
forms are already routinely used in clinical laboratories
worldwide, and many immunological tests such as cardiac
troponin are carried out on these commercial systems. After
successfully setting up the assay format, we evaluated the
assay performance on an Alzheimer disease (AD) miRNA
panel (11).

Methods

SAMPLE COLLECTION

We carried out miRNA measurements with PAXgene
Blood RNA tubes (Preanalytix, Becton Dickinson).
These tubes can be used to collect 2.5 mL blood from
donors, according to the manufacturer’s recommenda-
tions. We collected blood samples from 40 healthy vol-
unteers. The Institutional Ethics Committee of the Uni-
versity Erlangen-Nuremberg approved the study. All
donors met the relevant guidelines (20, 21 ) and tested
negative for human immunodeficiency virus, hepatitis B
virus, and hepatitis C virus.

miRNA EXTRACTION

The pellets from 2.5 mL blood collected in PAXGene
tubes were obtained by 10-min centrifugation at 4500g

according to the manufacturer’s instructions, and the su-
pernatant was removed immediately. The pellets were
then resuspended in 4 mL RNase-free water by vortex-
mixing and collected by 10-min centrifugation at 4500g.
We then isolated total RNA including miRNA from the
pellets with the miRNeasy Mini Kit (Qiagen) according
to the manufacturer’s recommendations. Isolated RNA
was pooled, divided into aliquots, and stored at #80 °C
until use.

miRNA qRT-PCR MEASUREMENT

We analyzed the miRNAs using stem-loop primers for
qRT-PCR with TaqMan® probes on a Stratagene MX-
3005P real-time cycler, essentially as previously described
(22 ). The master mix for real-time PCR, M-MuLV H
Plus Reverse Transcriptase, dNTPs, and RNase inhibitor
were obtained from Peqlab and stored at #20 °C. The
synthetic miRNAs were obtained from Biomers.net. The
sequences of primers are described in Supplemental Ta-
ble 1, which accompanies the online version of this article
at http://www.clinchem.org/content/vol61/issue4. We
dissolved the synthetic miRNAs in Rnase-free water with
30 mU/!L RNase inhibitor to a concentration of 100
!mol/L and divided the miRNA solution to 5 !L/tube
to be stored at #80 °C until use. The calibration curve
was determined by qRT-PCR with the synthetic miRNA
from 0.1 pmol/L to 1 nmol/L. The primer sets for qRT-
PCR were obtained from Biomer.net. The sequences of
primers for measuring the synthetic miRNAs are de-
scribed in online Supplemental Table 2.

miRNA IMMUNOASSAY

The miRNA immunoassay presented in this study is a
2-step nucleic acid capture immunoassay adapted to the
Advia Centaur® Immunoassay System (Siemens Health-
care Diagnostics). This immunoassay analyzer platform
can be used to measure protein and small molecule ana-
lytes by respective assays with acridinium ester technol-
ogy (23 ). The components of our assay prototype con-
sisted of the solid phase (containing streptavidin-linked
microparticles), a biotinylated catcher oligonucleotide
complementary to a single miRNA species (the biotinyl-
ated catchers are described in online Supplemental Table
3), and finally a monoclonal antibody to DNA/RNA
heterohybrids (24 ) labeled with acridinium ester. The
antibody, which was developed in the 1980s, specifically
binds to DNA/RNA hybrids without any obvious bias
toward a specific sequence (24, 25 ).

In the assay, the purified miRNA from a blood sam-
ple is first hybridized to the biotinylated catcher oligonu-
cleotide, generating perfectly matched DNA/RNA het-
erohybrids. In a second step, these biotinylated DNA/
RNA heterohybrids are then incubated with and bound
to the streptavidin-labeled solid phase. In the next step,
the acridinium ester–labeled antibody to DNA/RNA
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heterohybrids is added. This antibody can bind only to
perfectly matched heterohybrids and does not bind to
mismatched heterohybrids. The amount of antibody
bound will therefore be proportional to the amount of
perfectly matched heterohybrids present in the reaction,
which again is proportional to the amount of that specific
miRNA species present in the blood sample. Chemilu-
minescence is then triggered by addition of acid and base
reagent (26 ).

The following 9 automated steps were carried out
with the Advia Centaur system. (a) Pipetting 75 !L sam-
ples in a cuvette. (b) Pipetting 75 !L reagent (20 mmol/L
sodium phosphate, pH 7.2, 300 mmol/L NaCl, 0.1%
Triton X-100, 0.5% bovine serum albumin, 0.02% so-
dium azide) containing biotinylated oligonucleotides (10
nmol/L) and incubating for 6 min at 37 °C. (c) Pipetting
150 !L solid phase and incubating for 18 min at 37 °C.
(d) Separating solid phase from the mixture and remov-
ing the liquid phase. (e) Washing the cuvette with wash-
ing solution 1 and incubating for 6.75 min at 37 °C. (f)
Pipetting 95 !L antibody reagent and incubating for 18
min at 37 °C. (g) Separating solid phase from the mixture
and removing the liquid phase. (h) Washing the cuvette
with wash solution 1. (i) Pipetting 300 !L reagent A
(acid) and 300 !L reagent B (base) to generate a chemi-
luminescence signal. The workflow is presented schemat-
ically in Fig. 1. The concepts and information presented
in this article represent research and are not commercially
available.

CALIBRATION CURVES AND CALCULATION OF

CONCENTRATIONS

We measured the calibration curve with synthetic
miRNAs from a concentration of 1 pmol/L to 1 nmol/L
on an the Advia Centaur system, carrying out a second-
degree polynomial analysis to determine the equation of
the relationship between relative light unit (RLU) counts
and miRNA concentration. We then measured the bio-
logical samples on the same Advia Centaur system. The
concentration of a certain miRNA of biological samples
was calculated from the RLU counts on the basis of the
equation of the calibration curve.

STATISTICS

We carried out all statistical calculations with the
freely available R programming language (version
3.0.2). Hypothesis tests were carried out, if not men-
tioned explicitly, as 2-tailed unpaired tests. In cases where
the parametric t-test was applied (evaluating the null
hypothesis that the means of 2 normally distributed
populations are equal), approximate normal distribu-
tion was verified by Shapiro–Wilk test (evaluating the
null hypothesis that measurements come from a nor-
mally distributed population).

To show the distribution of miRNA measurements,
we generated box-whisker plots, and to provide a per-
measurement representation, we provided bee swarm
plots as included in the beeswarm R package.

Fig. 1. The 4 fully automated main steps carried out on the immunoassay analyzer. AE, acridinium ester.

miRNA In Vitro Diagnostics with Immunoassay Analyzers
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Results

miRNA IMMUNOASSAY

As shown in Fig. 1, our assay works as follows. Total
RNA isolated from PAXgene blood is used for the
hybridization assay. The total RNA is hybridized with
a biotinylated DNA catcher and forms a DNA-
miRNA duplex. Streptavidin-coupled magnetic beads
are added to the solution, and the DNA catcher binds to
the beads through biotin–streptavidin interaction. Un-
bound miRNAs and other RNAs are washed away so
that just the DNA-miRNA duplex remains. A mono-
clonal antibody specific to DNA-miRNA hybrids la-
beled with acridinium ester is added to the solution,
binding to the DNA-miRNA hybrids. A light signal pro-
portional to the number of DNA-miRNA hybrids is
monitored and reported. Altogether, the entire experi-
mental setup, including RNA purification and miRNA
profiling, requires !3 h.

SPECIFICITY OF THE IMMUNOASSAY

To evaluate the analytical specificity of the immunoassay,
we distinguished members of the let-7 family that dif-
fered by just a single base. The miRNA to be quantified
was selected to be hsa-let-7a. Synthetic molecules of this
miRNA were added in 6 concentrations from 0.1 to 30
nmol/L to the respective catcher, leading to background-
corrected results between 1201 counts (0.1 nmol/L) and
4.6 million counts (30 nmol/L). Next, we carried out the

same measurement with the 3 miRNAs hsa-let-7b, hsa-
let-7c, and hsa-let-7f. For the lowest concentrations,
signals were beyond the detection limit; for the higher
concentrations, we measured up to 21222 counts (hsa-
let-7c, 30 nmol/L). The results are shown in Fig. 2A. In
this figure, the lines represent log10 values of raw counts
and the bars correspond to the percentage of crosstalk
(false-positive light signals) with hsa-let-7a. Whereas the
signals for hsa-let-7b and hsa-let-7f remained in the
range of the background even for the highest concen-
trations, for hsa-let-7c, low signals at very high concen-
trations could be measured. The crosstalk never exceeded
0.6%, demonstrating a specificity of 99.4% for the
miRNA immunoassay.

SENSITIVITY AND LOWER LIMIT OF DETECTION OF THE

IMMUNOASSAY

Next, we systematically evaluated the limit of detection
of the immunoassay. We selected 1 of the miRNAs in-
cluded in our AD panel (11 ), namely hsa-miR-5010–3p.
With a catcher probe, we performed 20 replicates for
different concentrations between 1 and 10 pmol/L. Ad-
ditionally, we performed 20 replicates of blank controls
representing the background signal. As shown in Fig. 2B,
we were able to measure signals substantially exceeding
the background noise even for miRNAs at concentra-
tions of 1 pmol/L. Whereas the blank controls (shown in
red) had a median intensity of 1411 RLU counts (SD
211) (horizontal red dashed line), 1 pmol/L hsa-miR-

Fig. 2. Technical specificity and analytical sensitivity.
(A), Technical specificity of the assay for miRNA let-7a. The red line shows the response for let-7a. The detected false-positive signals for 3
miRNAs with a single base difference (let-7b, let-7c, and let-7f) are also shown. The bar charts represent the respective percentages of
false-positive signals (scale to the right of the plot). (B), Analytical sensitivity of the miRNA assay derived from dilution series of synthetic
miR-5010 –3p miRNAs. At a concentration of 1 pmol/L, the signal intensity is above the background (red). The blue dashed line indicates linear
quantification up to a concentration of 10 pmol/L.
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5010–3p resulted in 1904 RLU counts (SD 863) (P $
0.001, 2-tailed unpaired t-test). For 2 pmol/L hsa-miR-
5010–3p, 3270 RLU counts (SD 314) were reported; for
3 pmol/L 3666 RLU (SD 493), and for 10 pmol/L
10226 RLU (SD 1208). Altogether, the concentration of
hsa-miR-5010–3p correlated significantly with the
counts measured by our assay (Pearson correlation 0.998,
P $ 0.0001). In all measurements carried out with our
immunoassay, we recorded just a single outlier (Fig. 2B,
concentration of 1 pmol/L, Grubbs test P ! 0.001).

ABILITY TO MEASURE MODERATE CHANGES IN miRNA

ABUNDANCE

The variation in blood-based miRNA concentrations in
diseases is frequently limited. We have found that varia-
tions in circulating miRNA patterns are usually moderate
(2-fold expression changes). We thus explored the poten-
tial of the miRNA immunoassay to measure changes in
concentrations typical for miRNAs found in previous
studies. Specifically, we carried out 2 experiments on dif-
ferent concentration scales. First, we started at a concen-
tration of 3 pmol/L and increased the concentration by
0.3 pmol/L in each step until we reached an absolute
concentration of 4.8 pmol/L after 7 dilution steps. The
R2 between the concentration and RLU counts reached
0.91 (see online Supplemental Fig. 1). For all measured
data points, we found deviation between the expected
measurement given the linear regression line and the ac-
tual measurement to be !5%. For the 3.6 pmol/L data
point, a slightly higher difference was observed (expected
according to regression line, 3760 RLU; actually mea-
sured, 3995 RLU). Nevertheless, our assay was able to
measure even 10% changes reliably in the lower concen-
tration range. To demonstrate that this could also be
achieved for the higher-abundance miRNAs, we per-
formed similar experiments, increasing abundance by an
order of magnitude. Specifically, we started at 30 pmol/L
concentration and increased it by 3 pmol/L up to 60
pmol/L in the 11th step. The R2 value was even higher
and reached 0.98 (Fig. 3). These results demonstrate the
linearity of measurements for concentrations of "3 or-
ders of magnitude and also provide evidence that even
small changes in miRNA abundance can be quantified by
our prototype assay.

MULTIPLEX IMMUNOASSAY

Originally, the assay format was designed as single-plex
assay. Although this setup does not prevent routine ap-
plication, an automated measurement of several miRNAs
from the same sample would be beneficial. Therefore, we
explored the potential of serial multiplexing. We mixed 8
synthetic miRNAs (miR-5010–3p, miR-151a-3p, let-
7d-3p, miR-107, miR-26b-5p, miR-103a, miR-26a-5p,
and let-7f-5p) in increasing concentrations. Starting
from the miRNA with lowest concentration, we per-

formed measurement of the single-plex assay. The super-
natant, however, was not discharged but reentered the
measurement cycle with the next miRNA. The same ex-
periments were also done for aliquots of the single-plex
assay. The results of single-plex vs multiplex are shown in
online Supplemental Fig. 2. Generally, we observed a
good correlation; however, those miRNAs with just a
single mismatch, such as miR-26a and miR-26b, showed
slight variations. Additionally, the experiments revealed a
lower performance for let-7f-5p. These preliminary re-
sults demonstrate that 8-plex measurements are possible
but that increasing the degree of multiplexing decreases
the analytical specificity and sensitivity of the assay.

TRANSFER TO BIOLOGICAL MEASUREMENTS

After exploring the limit of detection, analytical sensitiv-
ity, and specificity of our miRNA immunoassay with
synthetic miRNAs, we tested 4 miRNAs of our AD
miRNA panel, hsa-miR-5010–3p, hsa-miR-26a-5p,
hsa-miR-151a-3p, and hsa-let-7d-3p, with 40 replicates
of biological samples to evaluate their potential for clin-
ical application beyond the measurement of the synthetic
miRNAs presented above. The miRNAs were selected so
that most informative markers of the signature were com-
bined while ensuring that lower-abundance markers were
also included. Thus, we purposely selected the three -3p
mature and the higher-abundance -5p mature form of
miR-26a. We generated calibration curves for all 4
miRNAs, as described in Methods, to enable quantifica-
tion with our novel assay.

These previously published miRNAs allow for de-
tecting patients with AD with diagnostic accuracy, spec-
ificity, and sensitivity of 82%, 85%, and 80%, respec-
tively (area under the curve 0.91) (11 ). On the
immunoassay analyzer system, we measured 40 replicates
for the 4 miRNAs and controlled the process with 20

Fig. 3. Increased resolution of quantification in the range
between 30 and 60 pmol/L derived from synthetic miR-
5010 –3p miRNAs.

miRNA In Vitro Diagnostics with Immunoassay Analyzers

Clinical Chemistry 61:4 (2015) 5



pmol/L spike-in controls (Fig. 4). The measurements
were carried out with aliquots of the pooled samples by
use of the single-plex assay. Again, even for the lowest-
abundance miRNAs hsa-miR-5010–3p and hsa-miR-
151a-3p, stable signals above the background were ob-
served. For the background, we calculated 1391 RLU
(SD 222). For miR-5010–3p, RLU counts were already
2835 (SD 516) (2-tailed unpaired t-test between back-
ground and miR-5010–3p, P ! 10#20). For miR-151a-
3p, 2738 RLU (SD 604) was found, with 2-tailed un-
paired t-test significance of !10#20, indicating that the
difference between this miRNA and the background was
highly significant.

In all 240 measurements, 2 outliers (0.8%) were
observed. For miR-26a-5p, the mean concentration was
561.3 pmol/L (SD 19.9), let-7d-3p had a mean concen-
tration of 38.3 pmol/L (SD 9), miR-151a-3p had a mean
concentration of 5 pmol/L (SD 0.8), and miR-5010–3p
had a mean concentration of 3.5 pmol/L (SD 0.5). Given
these mean values and SDs, we calculated CV values of
0.04 (miR-26a-5p), 0.24 (let-7d-3p), 0.16 (miR-151a-
3p), and 0.13 (miR-5010–3p). Although the CV values
were generally low (miR-26a-5p showed a CV of 0.04),
let-7d-3p showed an increased CV. The CV values of the
blood samples were in the same range as the technical
evaluation CV values.

In developing a new test, it is important to bench-
mark it against the gold standard, in this case qRT-PCR.
We quantified the same samples by qRT-PCR as de-
scribed in Methods. We found a high correlation be-
tween qRT-PCR and the Advia Centaur system (Pearson
correlation "0.994, P $ 0.006) (Fig. 5). For hsa-miR-
5010–3p, hsa-miR-151a-3p, let-7d, and hsa-miR-26a-

5p, the concentrations on the immunoanalyzer system
were 3.5, 5, 38.3, and 561.3 pmol/L, respectively, and on
qRT-PCR the concentrations were 11.7, 12.5, 58.7, and
335.6 pmol/L. Although these results indicated differ-
ences between the technologies, the results showed a gen-
eral concordance.

Discussion

Our novel method involves hybridization of miRNA
from a patient sample to complementary biotinylated
DNA oligonucleotides, followed by detection of the
DNA-miRNA hybrids by a monoclonal antibody that
specifically binds to DNA-miRNA hybrids. Using this
setup, we were able to obtain a prototype assay that can
measure miRNAs from biological samples without any
preamplification step. Our assay has an analytical speci-
ficity of 99.4%, a limit of detection in the range of 1
pmol/L, and a time to result of !3 h, including RNA
purification and miRNA profiling. We obtained stable
results over a dynamic range of 4 orders of magnitude.
Additionally, the amplification-free detection allows for
less biased miRNA measurements. This advantage, how-
ever, results in a current lower limit of detection of 1
pmol/L. Although many blood-based miRNAs can be
profiled with the proposed assay, the sensitivity has to be
further improved to measure other samples with lower
miRNA concentrations, such as serum. Another draw-
back of our assay is the currently limited multiplexing
capability. We demonstrate first results on a multiplexing
concept here, but more work is required to obtain the
same specificity as for the single-plex assay. Another
point that has to be taken into account is that the used

Fig. 4. Signal intensity of 4 AD miRNAs (green dots), nega-
tive controls (red dots), and spike-in miRNAs (blue dots) from
pooled blood samples.
The signal intensity is presented for 40 samples. Background is
shown by the red dashed line.

Fig. 5. Correlation with qRT-PCR for 4 Alzheimer miRNAs in
blood samples.
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antibody can react with different DNA-RNA hybrids
with different affinity (24 ), influencing the sensitivity of
the assay for this miRNA and requiring additional
calibration.

In a test on clinical samples, we found an outstand-
ing correlation with qRT-PCR data (Pearson correlation
"0.994), which as of now represents the gold standard
for miRNA expression analysis. Our assay is currently a
research assay that aims to lay the basis for further devel-
opment, with the challenging goal to promote the usage
of miRNAs as clinical IVD tests.

Besides its application to measure miRNAs, our
assay design bears the potential to be extended to other
nucleic acid test formats, in particular to those that
still require preamplification of the target nucleic acid.
For example, the method described by Yehle et al.
(25 ), which allows bacterial typing by hybridization of
16s rRNA to strain-specific oligonucleotides, could be
adapted to our automated assay format. Moreover, high-
abundance mRNAs or rRNAs could be quantified by
hybridization to complementary DNA oligonucleotides
in the assay format described in this article.

Our miRNA immunoassay has a low time-to-result,
comparable to that of qRT PCR, and is still faster than
NGS, for which typically at least 1 day (and frequently
several days) is required. At the same time, our assay is
inexpensive, with costs in the same range as established
and marketed immunoassays, which are below those of
qRT-PCR or even NGS, and microarrays, which are still
in the range of several hundred dollars. In turn, NGS has
a much higher multiplexing capability and allows for
integrative screening of all miRNAs, even those that are
not annotated in databases. NGS is thus a perfect bio-

marker discovery tool, whereas our assay is tailored for
much higher throughput in terms of samples at a de-
creased degree of multiplexing. Among the most impor-
tant points with respect to our miRNA immunoassay is
that the required hardware is installed in many central
laboratories of hospitals worldwide.

In summary, we developed a method that has the
potential to change the current practice to measure
miRNAs, by providing a means to analyze miRNAs on
commonly used immunoassay analyzers, thus providing
substantial advantages over existing methodologies.
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ABSTRACT
There is an urgent need of comprehensive longitudinal analyses of circulating 

miRNA patterns to identify dynamic changes of miRNAs in cancer patients after 
surgery. Here we provide longitudinal analysis of 1,205 miRNAs in plasma samples 
of 26 patients after lung cancer resection at 8 time points over a period of 18 months 
and compare them to 12 control patients. First, we report longitudinal changes with 
respect to the number of detected miRNAs over time and identified a significantly 
increased number of miRNAs in patients developing metastases (p = 0.0096). A 
quantitative analysis with respect to the expression level of the detected miRNAs 
revealed more significant changes in the miRNA levels in samples from patients 
without metastases compared to the non-cancer control patients. This analysis 
provided further evidence of miRNA plasma levels that are changing over time after 
tumor resection and correlate to patient outcome. Especially hsa-miR-197 could be 
validated by qRT-PCR as prognostic marker. Also for this miRNA, patients developing 
metastases had levels close to that of controls while patients that did not develop 
metastases showed a significant up-regulation. 

In conclusion, our data indicate that the overall miRNome of a patient that later 
develops metastases is less affected by surgery than the miRNome of a patient who 
does not show metastases. The relationship between altered plasma levels of specific 
miRNAs with the development of metastases would partially have gone undetected 
by an analysis at a single time point only.

INTRODUCTION

The fact that most non-small cell lung cancer 
(NSCLC) patients are diagnosed in late stages with locally 
advanced or metastatic disease, makes NSCLC to one of 
the most deadly cancers with a 5-year overall survival 
rate of around 17% [1]. The detection and resection of 
NSCLC in early stages is of profound relevance as it 
is normally correlated with a substantially improved 
prognosis [2]. Nevertheless, the rate of recurrences and 
metastases is high, even in early stage lung cancers. In 

a study on more than 900 patients who underwent early 
NSCLC curative-intend resection about 13% of patients 
developed lung cancer recurrence and 78% of the 
recurrences occurred within two years after operation. 
[3]. Disseminated tumor cells can already be present 
in early tumor stages before resection but they are not 
detected by conventional histopathology analysis and 
tumor staging and are often staged as N0 tumors [4]. 
The overall incidence of recurrence lies around 30% to 
70% depending on lung cancer stage [5-7]. To improve 
the overall survival rate there is an urgent need for the 



Oncotarget16675www.impactjournals.com/oncotarget

identification of new prognostic factors. Second, intensive 
follow-up is important to reduce lung cancer mortality by 
the detection of recurrences after surgery [8].

MicroRNAs (miRNAs) found in body fluids indicate 
a high impact as diagnostic and prognostic biomarker 
as they play a crucial role in many cellular processes 
by regulating an extended number of target genes due 
to mRNA degradation or inhibition of the translation of 
the target mRNA [9, 10]. Until now, substantial effort 
has been undertaken to identify disease-specific miRNA 
profiles suitable for early diagnosis of diseases and to 
predict disease outcome [11, 12]. While many case-
control studies have revealed a plentitude of miRNAs as 
biomarker candidates, dynamic changes over extended 
time periods have not been explored for the majority of 
them. Most respective studies are either limited in the 
number of time-points, patients, or considered miRNAs. 

An analysis of the physiological fluctuation of 
serum miRNA profiles of samples taken from 12 healthy 
individuals over varying time periods up to 17 months 
revealed miRNA profiles that showed a high correlation 
and no significantly differentially expressed miRNAs 
were found. This suggests that circulating miRNAs are 
stable over extended time periods in healthy individuals 
[13]. Thus, changes in the overall abundance of circulating 
miRNAs due to a certain disease make them to good 
biomarker candidates. Changes of few miRNAs have 
for example already been monitored in a kinetic study 
over months in serum of 15 colorectal cancer patients 
[14]. However, just few studies investigate circulating 
miRNA profiles for changes between lung cancer 
samples collected before and after cancer resection [15, 
16]. We recently performed a first follow-up study on 
lung cancer patients over a period of 18 months after 
lung cancer resection to identify miRNA signatures that 
possibly contribute to disease monitoring [17]. Although 
we analyzed 8 different time points and profiled a large 
number of miRNAs, a major limitation of this study 
was the small cohort size of only 5 patients. We now 
screened 26 patients for up to 8 time points – prior 
to surgery, following surgery and subsequently in 3 
months intervals. Additionally, we compare the miRNAs 
identified in plasma of the lung cancer patients to those 
measured in samples obtained from12 control patients 
that suffered from other non-cancer lung diseases. 
Altogether, 215 single complex miRNA profiles have 
been generated using a microarray approach. Since one 
key criterion for a potential application in clinics beyond 
technical sensitivity and specificity is the reproducibility 
of measurements we applied a microarray technology 
that has been described to be most reproducible among 
12 commonly used commercial systems [18]. Following 
background correction, adjustment for batch effects and 
normalization, bioinformatics analysis was applied in 
order to identify and validate the most relevant regulated 
miRNAs towards their usefulness as potential prognostic 

lung cancer biomarker. 

RESULTS

The main aim of our study was to provide a 
comprehensive longitudinal analysis of circulating 
miRNAs in plasma of lung cancer patients following 
surgery to identify miRNAs with prognostic relevance. In 
detail, we analyzed 1,205 different miRNAs in 26 lung 
cancer patients over a period of 18 months measured at 8 
time points including one time point prior and up to seven 
time points after cancer resection. The expression profiles 
of the lung cancer samples were compared to 12 patients 
suffering from other non-cancer lung diseases that served 
as control. 

miRNA repertoire in lung cancer patients over 
time and in non-cancer controls

We determined for all lung cancer patients and each 
time point (TP) and for all controls the average number of 
miRNAs detected in each sample (Figure 1). The samples 
obtained from lung cancer patients contained independent 
of the time point a lower number of miRNAs compared 
to the non-cancer controls (on average 295 miRNAs 
were detected in lung cancer samples and 331 in control 
samples). However, only for TP5 the difference between 
the average number of miRNAs detected in the lung cancer 
plasma samples compared to controls was significant 
(adjusted p-value 0.025). Lung cancer samples collected 
at TP2 showed with an average number of 321 detected 
miRNAs the lowest difference compared to controls 
(adjusted p-value of 0.67). Since the analysis of plasma 
samples obtained from the same individuals at different 
time points also enables paired testing of consecutive 
time-points we investigated whether significant changes 
of miRNA levels can be observed over time. Here, we 
found the most significant differences average number 
of detected miRNAs between TP1 and TP2 (raw p-value 
0.019) and between TP5 and TP6 (raw p-value 0.016). 

We also asked whether the miRNA repertoire differs 
in its quantity between lung cancer patients developing a 
metastases compared to those not developing metastases. 
The results are presented in Figure 1B, where for both 
groups and all time points the average number of miRNAs 
are shown. For patients not developing metastases we 
observed significant increase of miRNA repertoire from 
TP1 to TP2 and TP5 to TP6. For the other patients 
no significant alterations in the miRNA number were 
discovered, although the differences between different 
time points seems to be higher. But, as the standard 
deviation for the number of detected miRNAs is higher 
in the samples obtained from patients that developed 
metastases, the differences were not significant. But 
generally, we observed larger miRNA repertoire of 
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Figure 1: Comparisons of the overall numbers of detected miRNAs. A. Box plot showing the overall number of detected 
miRNAs for all non-cancer control samples and all lung cancer samples for each time point separately. B. Bubble plot indicating the overall 
number of detected miRNAs for the non-cancer control patients as well as for the lung cancer patients that developed metastases and the 
lung cancer patients that did not develop metastases for each time point, separately.



Oncotarget16677www.impactjournals.com/oncotarget

patients that develop metastases. Independent of the 
time point we observed 286 miRNAs for patients not 
developing metastases while the remaining patients 
revealed 316 miRNAs (two-tailed unpaired t-test p-value 
of 0.0096). Interstingly, the analysis of the 12 non-cancer 
control samples revealed 331 detected miRNAs.

For the following quantitative analysis we only 

focused on the 485 miRNAs that were expressed in at least 
5% of all tested 215 individual samples. 

Table 1: Correlation analysis of miRNA pattern over time for all lung cancer patients 
combined and the non-cancer control patients

miRNA Correlation p-Value Lower CI Upper CI
hsa-miR-181d -0.95 0.0003 -0.99 -0.80
hsa-miR-670 -0.81 0.0139 -0.95 -0.38
hsa-miR-196b -0.80 0.0179 -0.95 -0.34
hsa-miR-3148 -0.78 0.0219 -0.95 -0.30
hsa-miR-762 -0.76 0.0290 -0.94 -0.25
hsa-miR-539 -0.74 0.0342 -0.93 -0.22
hsa-let-7d* 0.71 0.0467 0.16 0.93

hsa-miR-484 0.72 0.0432 0.17 0.93
hsa-miR-3663-5p 0.72 0.0429 0.18 0.93

hsa-miR-183 0.73 0.0385 0.20 0.93
hsa-miR-17* 0.74 0.0362 0.21 0.93

hsa-let-7c 0.74 0.0345 0.22 0.93
hsa-miR-548c-5p 0.75 0.0326 0.23 0.94

hsa-miR-3189 0.75 0.0325 0.23 0.94
hsa-miR-20b 0.75 0.0322 0.23 0.94
hsa-miR-29b 0.75 0.0321 0.23 0.94
hsa-miR-224 0.75 0.0317 0.24 0.94

hsa-miR-501-5p 0.76 0.0301 0.25 0.94
hsa-miR-20a 0.76 0.0280 0.26 0.94
hsa-miR-370 0.76 0.0272 0.26 0.94
hsa-miR-18a 0.78 0.0226 0.30 0.94

hsa-miR-532-5p 0.78 0.0220 0.30 0.95
hsa-miR-1915 0.78 0.0217 0.31 0.95

hsa-miR-146b-5p 0.78 0.0212 0.31 0.95
hsa-miR-3654 0.80 0.0177 0.34 0.95
hsa-miR-451 0.80 0.0161 0.36 0.95
hsa-miR-374a 0.81 0.0145 0.38 0.95

hsa-miR-3180-3p 0.84 0.0093 0.45 0.96
hsa-miR-10b* 0.84 0.0087 0.46 0.96
hsa-miR-184 0.85 0.0075 0.48 0.96
hsa-miR-141 0.85 0.0071 0.49 0.96
hsa-miR-4281 0.86 0.0061 0.51 0.97
hsa-miR-454 0.88 0.0038 0.57 0.97
hsa-miR-301a 0.88 0.0037 0.57 0.97

CI = confidence interval
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Correlation analysis of miRNA pattern over time 
for all lung cancer patients combined and the non-
cancer control patients

To identify miRNAs that show an overall increase 
or decrease from the first to the last measurement we 
first calculated pair-wise significance values between the 
miRNA profiles of the 12 non-cancer controls and the 
profiles of the 26 lung cancer patients for each of the time 
points using two-tailed unpaired t-test. Next, we correlated 
the logarithm of the significance values obtained by the 
two-tailed unpaired t-test with the rank of the time points. 
We discovered 6 negatively and 28 positively correlated 
miRNAs (raw p-value of correlation below 0.05). These 
34 miRNAs with correlation values, p-values and upper 
and lower confidence interval are provided in Table 1. 
Notably, a strong negative correlation indicates that the 
respective miRNA is not de-regulated in samples from 
lung cancer patients at the beginning of the time course 
(high p-values at early time points) but shows increasing 
difference in miRNA plasma levels from non-cancer 
controls over time (low p-values at the end). In contrast, 
strong positive correlation indicates that the respective 
miRNA is de-regulated at the beginning (low p-values at 
early time points) but shows decreasing difference to the 
non-cancer control miRNA level over time (high p-values 
at the end). The miRNAs with correlation values around 
zero do not show increasing or decreasing significance 
over time but are rather constantly expressed. Although no 
miRNA was significant following adjustment, we observed 
a substantial increased number of miRNAs significant 
prior to adjustment as compared to the expected number 
of 24 random miRNAs. Figure 2 presents exemplarily 
the miRNA plasma levels of hsa-miR-370 (representative 

for positive correlated miRNAs) and hsa-miR-181d 
(representative for negative correlated miRNAs). 

Correlation analysis of miRNA pattern over time 
for single lung cancer patients

Beside the analysis of the miRNA changes for 
all patients combined, our study set-up also allows the 
analysis of the miRNA time courses for single patients. 
We calculated for each patient and each miRNA separately 
correlation values between miRNA expression and time-
points and estimated the significance values for the 
respective correlation. We excluded miRNAs that did 
not revealed significant correlation for at least 10% of 
all patients. For the remaining miRNAs we calculated 
in how many patients a miRNA was positive or negative 
correlated over time and calculated the difference of 
positive and negative correlated patients for each of these 
miRNAs. We excluded miRNAs for which the number of 
patients with a positive correlation largely corresponded 
to the number of patients with a negative correlation. As 
threshold we considered only miRNAs with a difference of 
at least 30% between positively and negatively correlated 
patients. We thereby identified 16 miRNAs including 10 
positively and 6 negatively correlated miRNA. Although 
the overall tendency of certain miRNA levels to either 
increase or decrease over time is in agreement with the 
results obtained with the expression levels for all patients 
combined, the data for the single patients show strong 
variability. These miRNAs indicate that although a 
general trend exists single patients substantially deviate 
from the general trend (see Supplemental Figure 1 and 
Supplemental Table 1). 

Figure 2: Examples of the correlation analysis of miRNA pattern over time for single miRNAs shown for each patient 
separately. hsa-miR-370 is an example for a positive correlated miRNA and has-miR-181d is an example for a negative correlated 
miRNA. In both figure panels the y-axis shows the normalized expression values (in log scale) and the x-axis indicates the time points 1 
to 8.
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Identification of plasma miRNAs influenced by 
the development of metastases

To understand the changes of miRNA levels over 
time we related the changes to a clinical endpoint. This 
was also in keeping with the goal to discover prognostic 
miRNAs. Thus, we choose the development of metastases 
as endpoint and asked whether patients with metastases 
show different plasma miRNA levels as compared to 
patients without clinically identified metastases. To 
this end we calculated significance values for each time 
point with respect to the two groups of patients, i.e., 
patients developing metastases (n = 8) versus patients 
not developing metastases (n = 18). At the time point 
directly before cancer resection (TP1) we found 25 
plasma miRNAs that showed significantly different 
plasma levels between patients with and those without 
metastases (non-adjusted p-value < 0.05). At TP2, i.e., 
shortly after resection four of the 25 miRNAs were still 
significant, but in total 18 miRNAs showed significantly 
different abundance (non-adjusted p-value < 0.05). The 
highest number of 40 miRNAs with significantly different 
plasma levels between patients that developed lung cancer 
metastases and patients that did not develop metastases 
was obtained at TP3 around three moths after resection. 
At TP4 9 miRNAs were significant, at TP5 33 miRNAs, 
at TP6 13 miRNAs, at TP7 18 miRNAs, and at TP8 23 
miRNAs. However, for the comparisons of the single time 
points no miRNAs remained significant after multiple 
testing. This fact is not necessarily due to decreased effect 
sizes for single time points but may reflect the comparably 
small cohort size. 

We also performed a more general comparison of 
all expression values independent of the time point and 
compared all lung cancer samples to the non-cancer 
controls. To evaluate the patterns we considered both, raw 
and adjusted p-values. Of the 485 analyzed miRNAs, 139 
were significantly altered between cancer patients and 
non-cancer controls, of which 56 remained significant 
following adjustment. Lowest p-values of below 10-10 
were found for hsa-miR-3647-5p and hsa-miR-144. In 
the comparison of non-cancer controls versus lung cancer 
patients that did not develop metastases 138 miRNAs were 
significant (55 following adjustment) and 125 miRNAs for 
the comparison of controls versus metastases developing 
patients (41 following adjustment). Importantly, we also 
discovered 131 miRNAs that were significantly altered 
between patients that developed metastases and those 
that did not (38 following adjustment). Here, the highest 
significance was reached for hsa-miR-197 (p = 3x10-

7). This miRNA was also significant in the previously 
mentioned comparison of controls compared to lung 
cancer patients that did not develop metastases (p = 0.004) 
while it was not significantly differentially regulated for 
controls versus patients that developed metastases (p = 1). 
The most significant changes (p < 0.05) for this miRNA 

were found at TP2, TP3, and TP5. Another miRNA, hsa-
miR-630 was even significant in four time points, i.e., 
TP1, TP2, TP4, and TP6. Hsa-miR-130b was the most 
significant miRNA that showed larger deviation of lung 
cancer patients that developed metastases from controls 
(p = 0.0004) than patients that did not develop metastases 
(p = 0.083). 

The full list of the 485 miRNAs with the expression 
data and the non-adjusted p-values is provided in 
Supplemental Table 2. 

To compare the metastases and non-metastases 
group directly to non-cancer controls, we calculated 
for each miRNA the p-values for the comparison of its 
expression value in plasma samples collected from lung 
cancer patients that developed metastases and those that 
did not at each time point versus its expression value 
in plasma samples from non-cancer controls. In total, 
139 miRNAs were significant in the comparison of the 
samples obtained before resection (TP1) from lung cancer 
patients that did not develop metastases with the non-
cancer controls, but only 98 miRNAs in the comparison 
of the samples obtained before resection (TP1) from 
lung cancer patients that developed metastases with the 
non-cancer controls. We observed the same trend in the 
comparison of the non-cancer controls and the lung cancer 
samples obtained shortly after resection (TP2). Here 92 
miRNAs were significant in the group of patients that 
did not develop metastases and only 72 in the group of 
patients that developed metastases. Figure 3 shows the 
above mentioned comparions for selected miRNAs as pie 
charts and all data are provided in Supplemental Table 3. 
The miRNA hsa-miR-197 was significantly up-regulated 
at 7 time points (non-adjusted p-values) for the group of 
patients that did not develop metastases while not in the 
group of patients that developed metastases. Similarly, 
hsa-miR-1227 was constantly up-regulated, however, 
again just the patients without metastases were significant. 
In contrast, hsa-miR-4292 was more significantly 
down-regulated in the group of patients that developed 
metastases as compared to the group of patients that did 
not develop metastases. 

We next focused only on the samples obtained 
from lung cancer patients and compared the samples 
collected before surgery at TP1 with samples from each 
other time point after surgery (TP2 to TP8) resulting 
in 7 comparison. The calculated t-test p-values for the 
respective comparisons are listed in Supplemental Table 
4. This analysis was done separately for patients with and 
without metastases. For the patients without metastases the 
comparison of the sample drawn before cancer resection 
(TP1) and the sample obtained shortly after resection 
(TP2) revealed 103 significant miRNAs, while we found 
for the same comparison only 44 significant miRNAs in 
samples obtained from patients that developed metastases 
during follow-up and this trend was observed for all of the 
7 comparisons. This indicates a trend to a more profound 
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change in the miRNA pattern for samples of patients that 
did not develop lung cancer metastases. 

We found 2 miRNAs including hsa-miR-454 
and hsa-miR-3152 that were significantly deregulated 
in all seven comparisons, and 2 miRNAs including 
hsa-miR-181b and hsa-miR-98 that were significantly 
deregulated in 6 out of the 7 comparisons. Of those 
miRNAs deregulated in patients without metastases 
hsa-miR-454 was also significantly deregulated in two 
comparisons of patients with metastases and hsa-miR-98 
in only one. In contrast, hsa-miR-3152 and hsa-miR-181b 
that were significantly deregulated in patients without 
metastases were not significantly deregulated in patients 
with metastases. Hsa-miR-454, hsa-miR-181b, and hsa-
miR-98 were down-regulated at TP 2-8 compared to TP 1 
in patients without metastases and hsa-miR-3152 showed 
significantly increased plasma levels at TP 2-8 compared 
to TP 1.

We also found one miRNA, namely hsa-miR-101, 
that showed significantly decreased plasma abundance in 
all seven comparisons of patients with metastases but was 
not significantly deregulated in the comparisons of patients 
without metastases. Has-miR-186 was still significant 
in 6 of 7 comparisons of patients without metastases, 
but also in two comparisons of patients with metastases. 
Both miRNAs were down-regulated at time points 2-8 
compared to time point 1 in patients with metastases.

In sum, the data demonstrate that miRNA changes 
over time can be related to clinical end points like the 
development of metastases and that effects are largest 3 
months following surgery. 

qRT-PCR validation of selected miRNAs

In the previous section we described miRNAs 
identified by microarray that are correlated to lung cancer 
and that have a potential prognostic impact. Using qRT-
PCR we exemplarily measured the time courses consisting 
of the up to 8 time points for 4 patients, including 2 
patients did not develop metastases (patients J and P) 
and two patients that that later on developed metastases 
(patients V and Z) and three miRNAs (hsa-miR-197, hsa-
miR-130b, hsa-miR-762). Additionally, the 12 samples 
from non-cancer control patients were analyzed using 
qRT-PCR. One very interesting and potentially prognostic 
miRNA was hsa-miR-197 as this miRNA was significantly 
up-regulated in 7 of 8 time points (TP1 to TP7) in plasma 
of patients that did not develop metastases compared to 
plasma of non-cancer control patients but it was similarly 
abundant in plasma from lung cancer patients that 
developed metastases and in plasma of non-cancer control 
patients. Investigating the miRNA abundance using qRT-
PCR at the different time points for the four patients 
and 12 controls we were able to reproduce these results. 
Although the considered cohorts were comparably small, 
the difference between cases and controls was significant 

(0.004). While considering all measurements without 
respect to the time points slightly missed the alpha level 
of 0.05 (p = 0.059), the paired analysis of the time course 
for both lung cancer patient groups (with metastases and 
without metastases) was significant (p = 0.025). In detail, 
the time course of all patients matched in general well 
between microarray and qRT-PCR. The most significant 
miRNA where the mean expression value of all samples 
from patients of the metastases group was lower than the 
mean expression value of all samples from patients of the 
non-metastases group and all samples from non-cancer 
controls showed the highest mean value was hsa-miR-
130b. Although the time courses of the analyzed patients 
generally showed a high concordance with a median 
correlation value of 0.75 for all patients and the controls 
we were not able to reproduce the lower expression of this 
miRNA in patients that developed metastases. Especially 
the time course of patient Z for hsa-miR-130b plasma 
levels that was measured by microarray could not be 
validated completely by qRT-PCR. However, the higher 
plasma levels in non-cancer control samples were indeed 
validated. As third candidate we picked hsa-miR-762, 
which shows a similar behavior in the mean expression 
values according to microarray as hsa-miR-130b. Here, 
we observed for two patients deviations in the time course 
as compared to array measurements (patients P and V). 

In sum, for patient J all three miRNAs were 
validated, while for the other patients two of three 
miRNAs were reproduced. For patients P and V hsa-
miR-762 diverged and for patient Z hsa-miR-130b.

In Supplemental Figure 2A-2L a comparison of 
the microarray data and the qRT-PCR data for the up to 8 
samples for the four different lung cancer patients and the 
three miRNAs is shown.

As there is no endogenous smallRNA or miRNA 
that can reliably serve as “housekeeping gene” that is 
stably detected/abundant in serum or plasma [19] we used 
as normalizer the miRNA mimic syn-cel-miR-39, that 
was spiked into the plasma sample before RNA isolation. 
Interestingly, this synthetic miRNA cannot only serve as 
normalizer but can also be used to control the extraction 
process. In the present study the mean Ct value was 
21±3.13. 

DISCUSSION

There is an undisputable requirement for molecular 
tests to assist in the diagnosis, prognosis and prediction 
of cancers including lung cancer. Although histological 
evaluation of tumor tissues from biopsies will at least for 
the near future remain the ‘gold standard’ of diagnosis, 
these samples necessarily represent only a single time 
point in the overall tumor development. Blood based 
tests open the possibility to monitor the course of tumor 
development. Currently, there are, however, only few 
blood based markers in clinical use including CA125 
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for ovarian cancer, CA19-9 for pancreatic cancer, CEA 
for colon cancer, and PSA for prostate cancer [20]. 
These established markers have, however, rather limited 
accuracy, which can be improved by longitudinal 
measurements as shown for PSA where continuously 
increasing levels strongly indicate a carcinoma [21]. As of 
now, there is no biomarker established for lung cancer in 
a screening setting.

Beside the need to have measuring from different 
time points of tumor development, there is a need to 
have biomarkers that do not rely on the measuring of a 
single kind of molecule like the aforementioned markers. 

Since combinations of different molecules can be more 
accurate and are likely to be more robust than single-
molecule markers, an increasing number of studies 
aimed at identifying marker signatures. Notably miRNA 
signatures appear of especial interest due to their rather 
high stability in body fluids. Since the first description 
of miRNAs in serum of patients with diffuse large B cell 
lymphoma, blood born miRNAs have been related to 
tumor diagnosis and prognosis [19, 22]. The majority of 
these studies, however, analyzes miRNA pattern at one 
time point only. In addition, the analysis of circulating 
miRNAs has some methodological challenges. As these 

Figure 3: The pie charts for miRNAs significant in the comparison of non-cancer controls and the lung cancer samples 
collected at the different time points and for patients with and without metastases separately. MiRNAs were measured at 
eight different time points. The time points are numbered TP1 to TP8 and each time point TP1 to TP8 is compared to the non-cancer controls. 
The right part of each pie chart represents the comparison between non-cancer controls and lung cancer patients without metastases and 
the left part of the pie chart represents the comparison between non-cancer controls and lung cancer patients with metastases. Each sector 
represents one comparison with the color of the outer ring indicating down-regulation (green) or up-regulation (red) at the respective time 
point compared to non-cancer controls. The inner part of the circle indicates the significance values with blue shaded sectors representing 
significant differences and the grey sectors not significant differences.
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challenges are exhaustively summarized in a recent 
review article by Moldovan et al. [23] we do not want 
to further discuss them here in more detail. Nevertheless, 
Moldovan et al. [23] found out that there are many 
studies comparing different biological fluids side-by-side 
and find little or no difference in extracellular miRNA 
quantification. Interestingly, higher concentrations were 
consistently found in sera and a possible explanation for 
that might be that platelets, that contain a wide spectrum 
of miRNAs, may release their content into the serum 
during coagulation. This is one argument for the use of 
plasma samples. But, we are aware of the disadvantages 
of heparinized plasma samples in terms of the effect of 
heparin on downstream applications. However, as for the 
current study only heparinized plasma was available we 
established a protocol that includes a heparin digestion 
step to isolate RNA that could be used for downstream 
analyses like microarray and qRT-PCR. We also checked 
for RNA extraction efficiency by using a synthetic miRNA 
mimic (syn-cel-miR-39). 

Our study on 1,205 different miRNAs in 26 lung 
cancer patients over a period of 18 months measured at up 
to 8 time points is the most comprehensive longitudinal 
analysis of miRNA signatures in cancer patients. This 
is the follow-up of a proof-of-principle study that we 
published previously [17]. However, our previous study 
focused only on the changes of the plasma miRNA profile 
over time after surgery without the comparison with 
non-cancer control samples. In addition, we compared 
our microarray data with circulating miRNAs that were 
previously described in literature as deregulated in lung 
cancer and found 11 of 35 published miRNAs detected 
in all samples prior to surgery. In the present study these 
11 miRNAs were also detected in all analyzed plasma 
samples obtained from lung cancer patients at TP1, i.e., 
prior to surgery. However, these 11 miRNAs were also 
detectable in all of the analyzed samples from non-cancer 
controls and there was no difference in expression level 
after adjustment between both groups. These findings 
indicate that the respective miRNAs are not well suited as 
reliable diagnostic biomarkers for lung cancer. 

For the correlation analysis of the single patients and 
time points, we identified in the present study 6 negative 
correlated miRNAs and 10 positive correlated miRNAs. 
The comparison of the correlated miRNAs for each lung 
cancer patient between our former study and the present 
study is complicated by the different analysis methods. In 
the former study, we considered the miRNAs with positive 
or negative correlation for each patient, respectively. In 
the present study, we also calculated the correlation of 
each miRNA for each patient but excluded those miRNAs 
that do not show a general trend to positive or negative 
correlation. Thus the list of miRNAs is smaller and we 
find only an overlap of two miRNAs. The miRNA hsa-
miR-24 was negatively correlated in patient B in the 
former study and is also negatively correlated in most 

of the 26 patients, including patient B analyzed in the 
present study. The miRNA hsa-miR-1202 was negatively 
correlated in patient D in the former study but in the 
present study it is positively correlated in the majority of 
patients. Interestingly, when only considering patient D it 
shows a negative correlation. 

A correlation analysis of the plasma miRNAs 
identified in samples of all lung cancer patients combined 
and the non-cancer control patients revealed 6 negative 
correlated miRNAs that showed no deregulation of the 
lung cancer samples at the beginning but increasing 
difference from the non-cancer control samples in 
expression over time and 28 positive correlated miRNAs 
that were deregulated in lung cancer samples at the 
beginning but levels to the non-cancer control expression 
level over time. As control samples were not included in 
our former study, a comparison for this analysis was not 
possible.

Overall, our data show that miRNA levels are 
changing over time after tumor surgery and that these 
changes are not necessarily fluctuating around a median 
value but can have a clear tendency to either increase or 
decrease. Since circulating miRNA profiles in healthy 
individuals seem to be rather stable over time, the 
observed changes in our study are likely to be disease 
related [13]. This idea of miRNA pattern changing in 
the course of a disease under treatment is consistent 
with previous reports on changes in the abundance of 
circulating miRNAs between samples collected prior and 
after radiochemotherapy of head and neck cancer patients 
[24]. A study on 4 miRNAs in 82 lung carcinoma patients 
identified altered serum levels in samples obtained before 
surgery and samples obtained 10 days after surgery [16]. 
Likewise, 90 miRNAs were analyzed in plasma obtained 
before and after tumor removal in 32 squamous cell lung 
cancer patients [15]. 

It remains the question of the biological meaning 
of the increasing or decreasing miRNA levels. In a 
longitudinal expression analysis of 3 miRNAs on serum 
samples of 15 patients with colorectal cancer over a 
period of three years post surgery or after chemotherapy, 
the authors found that serum levels of miRNAs returned 
to normal levels after cancer resection or chemotherapy 
in the samples from patients with good prognosis [14]. 
However, our data for single patients show a strong 
fluctuation between the different time points making a 
biological interpretation difficult. The specific variations 
of miRNA levels over time in single patients may be 
due to a combination of factors that are related to the 
physiological state and the specific treatment response 
of each patient and it will be highly demanding to define 
the specific influence of any of these factors on a specific 
miRNA plasma level. 

Nevertheless, variations of miRNA levels over 
time might be related to clinical endpoints such as the 
development of metastases. For example, we found a 
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higher number of miRNAs that were significantly changed 
in plasma levels between the time point TP1 before and 
the time points TP2 to TP8 after surgery in patients 
that did not develop metastases during the follow-up 
compared to the patients that developed metastases. These 
relationships between miRNA plasma levels would have 
gone undetected by an analysis at a single time point only. 
Besides a potential diagnostic value of altered miRNA 
levels, the changes observed in the present study might 
help to contribute to the understanding of systemic aspects 
associated with metastases. Overall, our data indicate 
more changes of miRNA levels in patients without 
metastases as compared to patients with metastases. This 
is not only true for the comparisons between the time point 
before surgery with all seven time points after surgery but 
also for the comparison between the time point before 
surgery with the first time point directly after surgery and 
also for the comparison of TP1 samples with the non-
cancer control samples. As described above, the latter 
comparison identified more significantly altered miRNAs 
in patients without metastases as compared to patients 
with metastases, possibly indicating that the miRNome of 
patients that developed metastases is more similar to the 
miRNome of non-cancer controls than the miRNome of 
patients that do not develop metastases during the follow-
up.

Nevertheless, we are aware of the limitations of the 
present study and thus do not intend to over-interprete 
our findings. For example we want to point out that we 
analyzed groups of different sizes, i.e., the group of 
patients that did not develop metastases encompassed 18 
patients while we obtained only blood of eight patients that 
later on developed metastases. In addition, as discussed 
above, the choice of the right blood collections system 
is very crucial for downstream analyses. Furthermore, 
the here presented results have to be confirmed in larger 
patient cohorts in future studies. 

Although highly hypothetical, our data may indicate 
that the overall miRNome of a patient that later develops 
metastases is less affected by surgery than the miRNome 
of a patient that is not prone to develop metastases. An 
overall stability of the miRNome has previously been 
reported for healthy adults by MacLellan et al. [13]. 
Possibly, such an overall stability can also be found for 
a pathological status and changes of the miRNA pattern 
would indicate either a treatment success or a significant 
deterioration of the patients’ health. 

MATERIALS AND METHODS

Study population

We obtained blood from 26 different NSCLC 
patients. Blood of lung cancer patients was drawn directly 

before tumor resection (TP1), around two weeks after 
tumor resection (TP2) and then around three months 
(TP3), six months (TP4), nine months (TP5), 12 months 
(TP6), 15 months (TP7) and 18 months (TP8) after tumor 
resection. From 3 patients we obtained only blood from 7 
time points and from one patient we obtained blood only 
from 6 time points. In a follow-up of 4 years, 18 patients 
were free of metastases or recurrences. In addition, we 
obtained blood from 12 patients from the same clinic that 
did not suffered from lung cancer but from other non-
tumor lung diseases. Blood of all patients was drawn 
in Lithium-Heparin monovettes (Sarstedt). Plasma was 
isolated by centrifugation at 3000 rpm for 10 min and 
stored at -80°C until use. Samples were collected with 
patient informed consent. The local Ethics Committee 
approved the study (Ärztekammer des Saarlandes, 01/08). 
Patient details are provided in Supplemental Table 5. 

Isolation of total RNA including miRNA

As it is well known that heparin is co-purified with 
RNA and can interfere with downstream applications 
the RNA was isolated using an optimized protocol for 
Lithium-Heparin plasma samples as previously described 
[17]. We first treated 100µl plasma with 10µg Heparinase I 
(Sigma) and 100U RNaseOUTTM (Life Technologies) and 
incubated the mixture at 25°C for 1 hour. Nuclease free 
water (Life Technologies) was added to a final volume of 
250µl. A total of 750µl TRIzol®LS (Life Technologies) 
was added and incubated at RT for 5 min. Then, 20µg 
glycogen, 5µl spike-in miRNA (miRNA mimic syn-cel-
miR-39, 5nM, Qiagen) and 200µl chloroform were added, 
vigorously vortexed, and incubated for 3 min at RT. After 
centrifugation at 14000rpm and 4°C, the aquaeous phase 
was transferred into a new tube and RNA was precipitated 
with 1,5 volumes of 100% ethanol. RNA was then isolated 
using the miRNeasy Mini Kit (Qiagen) according to 
manufacturers instructions but with the use of the RNeasy 
Mini Elute column to allow for a reduced elution volume 
of 15µl. RNA concentration was measured using the 
Nanodrop2000 (ThermoScientific) and RNA quality was 
checked using the Bioanalyzer2100 and the Small RNA 
Kit (Agilent). 

Quantitative real time PCR (qRT PCR)

Using quantitative Real Time-Polymerase Chain 
Reaction (qRT-PCR) with the miScript PCR System 
(Qiagen) we validated the microarray data for three 
exemplarily chosen miRNAs (hsa-miR-130b, hsa-
miR-762, hsa-miR-197) and the follow-up samples from 
two patients that developed metastases and two patients 
that did not. In brief, 2 µl RNA was converted into cDNA 
using the miScript II Reverse Transcription Kit and the 
HiSpec Buffer according to the manufacturers´ protocol. 
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The PCR was performed with the miScript SYBR® Green 
PCR Kit in a total volume of 20µl per reaction containing 
2µl (1:5 diluted) cDNA according to the manufacturers´ 
protocol on a StepOne Plus Real Time Analyzer (Life 
Technologies). Data were normalized using the spike-in 
miRNA mimic syn-cel-miR-39 (Qiagen). 

miRNA microarray

Microarray analysis has been performed according 
to manufacturer’s instructions and as previously described 
using SurePrint G3 8x60K miRNA microarrays (Agilent) 
[20]. In brief, a total of 100 ng total RNA was processed 
using the miRNA Complete Labeling and Hyb Kit 
(Agilent) to generate fluorescently (cyanine-3) labeled 
miRNA. The microarrays, that contain 40 replicates 
of each of the 1,205 miRNAs of miRBase v16 (http://
www.mirbase.org/ [26]) were hybridized with the labeled 
miRNA for 20 hours at 55°C and 20rpm. Microarray scan 
data were further processed using Feature Extraction 
software (Agilent). The Feature Extraction software 
removes outlier pixels, does statistics on inlier pixels 
of features and backgrounds. It further flags outlier 
features and backgrounds and subtracts the background 
from features. The output of the Feature Extraction 
Software provides the raw background corrected 
miRNA data (gTotalGeneSignal) and the present calls 
(IsGeneDetected). The results of the microarray analyses 
are freely available in the GEO database under accession 
number GSE68951 (http://www.ncbi.nlm.nih.gov/geo/).

Biostatistics

All downstream biostatistics calculations have 
been carried out using the freely available statistical 
programming environment R. Two analysis strategies were 
carried out. First, we focused on the present calls, i.e. the 
information whether a miRNA m in patient p is expressed 
significantly above the background. This information was 
obtained from the Agilent feature extraction software 
according to manufacturers instruction and as sketched 
above. For all samples and miRNAs a binary matrix was 
build, where entries (m,p) equaled 1 if miRNA m was 
present in patient p and 0 otherwise. To minimize the 
noise contributed by low expressed markers we focused 
for all analyses on the miRNAs that were expressed above 
background in at least 5% of all tested samples. Using this 
definition, we performed all further analyses using 485 
miRNAs.

In addition to the present call analysis, we likewise 
carried out a quantitative analysis of the expression level 
for the detected miRNAs. Since microarrays frequently 
show batch effects we tested and corrected for such 
technological bias. In detail, the identification and 
visualization of the batch effects was performed using the 

R-package “pvca”. The ComBat function of the R-package 
“sva” was then applied in order to account for the found 
batch effects in the data. Quantil normalization has been 
carried out using the Bioconductor “preprocessCore” 
package. Pairwise two-tailed t-tests have been carried 
out. Here, each time point following resection has been 
compared to the time point prior to resection. The results 
have been displayed as circular diagrams, specifically, 
time points are ordered clockwise such that each time 
point has an own sector. The shading of the sector 
denotes the significance, the further the shading, the more 
significant the respective time point is for this miRNA. 
Moreover, correlation between time-points and expression 
or significance values have been calculated using Pearson 
Correlation coefficient and a significance value for each 
correlation has been calculated using the “cor.test” 
function. For assessing the significance of correlations we 
calculated a statistic based on Pearson’s product moment 
correlation coefficient, which follows a t-distribution. 
Additionally, 90% Confidence Intervals for the correlation 
are provided, which are calculated based on Fishers Z 
Transform. If not mentioned explicitly, p-values have 
been adjusted for multiple testing using the Benjamini-
Hochberg approach.
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ABSTRACT: Whole blood derived miRNA signatures deter-
mined by Next-Generation Sequencing (NGS) offer themselves as
future minimally invasive biomarkers for various human diseases.
The PAXgene system is a commonly used blood storage system
for miRNA analysis. Central to all miRNA analyses that aim to
identify disease specific miRNA signatures, is the question of
stability and variability of the miRNA profiles that are generated by
NGS. We characterized the influence of five different conditions
on the genome wide miRNA expression pattern of human blood
isolated in PAXgene RNA tubes. In detail, we analyzed 15
miRNomes from three individuals. The blood was subjected to
different numbers of freeze/thaw cycles and analyzed for the
influence of storage at −80 or 8 °C. We also determined the
influence of blood collection and NGS preparations on the miRNA pattern isolated from a single individual, which has been
sequenced 10 times. Here, five PAXGene tubes were consecutively collected that have been split in two replicates, representing
two experimental batches. All samples were analyzed by Illumina NGS. For each sample, approximately 20 million NGS reads
have been generated. Hierarchical clustering and Principal Component Analysis (PCA) showed an influence of the different
conditions on the miRNA patterns. The effects of the different conditions on miRNA abundance are, however, smaller than the
differences that are due to interindividual variability. We also found evidence for an influence of the NGS measurement on the
miRNA pattern. Specifically, hsa-miR-1271-5p and hsa-miR-182-5p showed coefficients of variation above 100% indicating a
strong influence of the NGS protocol on the abundance of these miRNAs.

For the identification of biomarkers and even more for the
translation from basic research to clinical routine, it is

crucial to understand how markers vary depending on different
storage conditions and technical analysis. Especially for
complex marker profiles like miRNA signatures, a systematic
bias will compromise their diagnostic and prognostic values.
While tissue based miRNA profiles have first been in the focus
of research, there are increasing efforts to identify miRNA
signatures as non- or minimally invasive markers in body fluids,
such as blood, serum, or urine. Besides Heparin and EDTA
blood tubes, PAXgene blood RNA tubes have frequently been
used to collect patients’ blood. Examples of PAXgene blood
RNA pattern include biomarkers for myocardial infarction,1

lung cancer,2,3 multiple sclerosis,4,5 melanoma,6 ovarian
cancer,7 chronic obstructive pulmonary disease,8 glioblastoma,9

and Alzheimerś disease.10 More recently, miRNA profiles of
single blood cell types or exosomes have been accom-
plished.11,12

To obtain profiles of miRNAs, different technologies have
been applied. In the early stages of miRNA profiling,
microarrays have been widely used to generate miRNA
patterns. High-throughput qRT-PCR platforms also enable
the parallel measurement of hundreds of miRNAs. As the most
recent technology, Next-Generation Sequencing (NGS)
generates millions of short reads that can be aligned to
known miRNAs annotated in the miRBase.13 Likewise, new
miRNA candidates can be predicted by aligning the fragments
to the target genome. To facilitate clinical applications, other
methods such as immunoassays are currently developed.14

Technical stability of the profiles for reliable biomarker
discovery is of high impact, independent of the applied
screening technique. Since NGS is increasingly applied to
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generate patient based miRNA signatures we investigated NGS-
related variability and stability of miRNA pattern that are
derived from PAXgene samples. In detail, we investigate three
main question: First, markers are frequently discovered in
retroperspective studies. Often, samples that are stored in
biobanks are thawed and a part of the sample is used for
measurement. We asked whether additional freeze/thaw cylces
have a significant influence of miRNAs. Second, we asked how
storage at 8 °C relates to the samples stored at −80 °C. The
time was thereby restricted to 4 days. Third, we also
investigated the influence of NGS on the variability/stability
of miRNA patterns by performing two NGS batches echa
containing technical replicates of five PAXgene blood tubes,
which were all taken from the same individual.

■ MATERIALS AND METHODS
Study Setup and miRNA Profiling. In this study, we

focused on the influence of freeze/thaw cycles and short time
storage of PAXGene blood samples. We performed 25 miRNA
measurements from 4 individuals. To minimize the influence of
pathogenic processes healthy individuals without known

diseases affection were investigated. All blood donors
participating in this study gave their informed consent. For
each of the first three individuals we collected 5 PAXgene
Blood RNA tubes. The first tube has been stored at −80 °C for
4 days, while the second tube has been frozen at −80 °C and
was subsequently subjected to one additional freeze/thaw cycle
on the first day and finally stored again at −80 °C for the
remaining days. The third tube has been subjected to an
additional freeze/thaw cycle on the first day, frozen again at
−80 °C, subjected to a second additional freeze/thaw cycle on
the second day and stored at −80 °C for the remaining days.
The fourth tube has been subjected to one freeze/thaw cycle on
the first day, a second freeze/thaw cycle on the second day, a
third additional freeze/thaw cycle on the third day and stored at
−80 °C for the fourth day. The fifth tube has been stored at 8
°C for 4 days. The study setup is sketched in Figure 1A. For all
samples independent miRNA isolation using the PAXgene
Blood miRNA Kit and individual library preps using the
Illumina TruSeq small RNA Library Prep Kit have been
generated according to manufacturer’s instruction.
To determine the influence of NGS on the miRNA pattern,

NGS was performed on miRNAs isolated from a single

Figure 1. Study set up: 4 donors without known disease affection were included. For the first three donors, 5 blood tubes were extracted and
processed over the next 4 days (panel A). For the fourth donor, 5 blood tubes were extracted and handled in duplicates (panel B). All patients are
labeled by X-Y, where X is the patient number and Y the condition.
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individual. We have taken five PAXgene tubes from this donor
(storage at −80 °C), isolated the RNA and performed two
batches of library preps and NGS runs on these five RNA
eluates (10 miRNomes). An overview of the study setup is
illustrated in Figure 1B.
For each of the 25 libraries, Illumina HiSeq2500 runs have

been carried out according to manufacturer’s instruction. For all
samples around 20 Million raw sequencing reads have been
generated. All miRNA extractions and sequencing runs have
been carried out by CeGaT GmbH (Tübingen, Germany).
Bioinformatics Analysis. We preprocessed the raw

sequencing data as described previously.10 In brief, the reads
were mapped against the current miRBase v21 sequences by
using the miRDeep2 pipeline.15 The raw miRBase counts for all
samples were summarized in an expression matrix.

In order to carry out hierarchical clustering and calculate heat
maps source code from the heat map.2 function, provided as
part of the “gplots” CRAN package (version 2.12.1) has been
used. In more detail, hierarchical clustering relying on the
Euclidian distance has been carried out on quantile normalized
data (normalization has been done by the “preprocessCore”
package using standard parameters). As alpha level, 0.05 has
been used through the manuscript. If not stated explicitly, p-
values have been adjusted for multiple testing using the
Benjamini−Hochberg approach.16 Analysis of variance has been
calculated by using the “anova” package.

■ RESULTS AND DISCUSSION
In total, we generated 25 miRNomes from four individuals by
NGS. Fifteen miRNomes have been derived from three

Figure 2. Cluster heat map with dendrogram on top and left. Color scale for the clustering heat map is provided in the upper left corner. The
samples are colored as follows: The three different cycles are shown in three different blue shadings above the heat map, orange samples have been
directly handled and the four-day refrigerator samples are colored in green. The three different cycles that are shown in three different blue shadings
above the heat map mix between the orange samples that have been directly handled (clustering on the left side) and the four-day fridge control
samples that are colored in green (clustering on the right side). This left cluster also contains the samples that have been frozen and thawed once
while the right cluster contains the samples with three freeze/thaw cycles. PCA, which has been used to generate a 2-dimensional mapping of the
high-dimensional miRNA profiles, confirmed these clustering results.
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individuals to determine the influence of different storage
conditions and freeze/thaw cycles (see Figure 1A) and from the
fourth individual 10 NGS runs have been performed (5
consecutive blood drawings, two technical replicates that have
been processed in batches, see Figure 1B).
The expression values of blood miRNAs showed a high

dynamic range of approximately 7 orders of magnitude. Out of
2588 human miRNAs annotated in miRBase 21, we found 1252
different miRNAs in at least one of the 25 samples analyzed.
1060 miRNAs remained after markers covered by just a single
read were removed. Regarding the distribution of NGS reads to
miRNAs we observed significant variations. 90.3% of all reads
matched to hsa-miR-486-5p and 5% to hsa-miR-92a-3p. The
remaining 4.7% reads (approximately 20 million reads),
matched to 1250 miRNAs. To minimize a potential bias
introduced by very low abundant miRNAs, we empirically
determined a threshold of 50 counts and continued the analysis
with a remaining set of 455 miRNAs. All miRNAs with absolute
read count and percentage of all reads mapping to this miRNA
are summarized in Supporting Table 1.
Influence of Storage Conditions and Additional

Freeze/Thaw Cycles on miRNA Patterns from Human
Blood. To determine the effect of different storage conditions
and additional freeze/thaw cycles on the miRNA pattern, we
first employed cluster analysis and Principal Component
Analysis (PCA) as two commonly applied statistical ap-

proaches, on the set of 455 miRNAs. In detail, we performed
a complete linkage hierarchical clustering using the Euclidian
distance as distance measure. The results for all miRNAs
measured under five different conditions for three individuals,
are summarized in Figure 2 as heat map with dendrograms on
top for the storage conditions and on the left side for the
miRNAs. The heat map indicates clustering of samples that
have been stored throughout the experiment at −80 °C without
additional freeze/thaw cycles (indicated by an orange color in
the heat map). Likewise, the samples that have been stored at 8
°C for 4 days without changing the storage condition (indicated
with green color in the heat map), cluster together as well. In
addition, samples that have been stored at −80 °C without
thawing cluster together with samples that have been stored at
−80 °C with only one additional freeze/thaw cycle (indicated
by an light blue color in the heat map). We also observed a
clustering of samples that are stored at −80 °C with three
additional freeze/thaw cycles (indicated by a dark blue color in
the heat map) with samples that have been stored solely at 8
°C. The results may be indicative of an overall influence of the
time period during which a sample is stored either at −80 °C or
at 8 °C. The PCA, which has been used to generate a 2-
dimensional mapping of the high-dimensional miRNA profiles,
largely confirmed the clustering results.
After having investigated the systematic effects on the

miRNA patterns, we analyzed whether single miRNAs show

Figure 3. (A) Boxplot resulting from the ANOVA for conditions 1−5 and donors 1−3. For miR-375 signals increase for samples stored for 4 days at
the refrigerator. The color scheme corresponds to Figure 2. (B) log of normalized read counts for conditions 1−5 and donors 1−3 for miR-99a-5p.
The overall high variability is due to the overall higher expression of that miRNA in donor 3 as compared to the first two donors.
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differences under the tested storage conditions. Therefor an
analysis of variance (ANOVA) as well as the coefficient of
variation (CV) have been applied. ANOVA identified 41
markers that were significant according to raw ANOVA p-
values and an alpha level of 0.05. Since multiple markers were
measured, the p-values had to be adjusted for multiple testing,
resulting in 5 miRNAs being still significant, including hsa-miR-
320b (p = 0.0002), hsa-miR-320a (p = 0.001), hsa-miR-16-5p
(0.018), hsa-miR-18b-5p (0.037), and hsa-miR-375 (0.0375).
As one example of a significant miRNA, has-miR-375 is
presented as boxplot in Figure 3A. For miRNA-375, we found a
significant difference between samples that have been stored at
8 °C for 4 days and samples that have been stored at −80 °C.
We did not find a significant influence of the freeze/thaw
cycles. All miRNAs along with the raw and adjusted p-values
are presented in Supporting Table 2.
Finally, we addressed the question of the importance of the

miRNA changes observed under the different storage
conditions. To this end, we compared the differences between
the three donors to the differences between the different
storage conditions. An analysis of the coefficient of variation
highlighted 37 miRNAs with the standard deviations exceeding
the mean value (CV > 1). The mean value, standard deviation
and CV for all miRNAs are presented in Supporting Table 3.
Largest CV was calculated for miR-1291 (mean of 24.6,
standard deviation of 40.7, CV of 1.7). One example is
provided in Figure 3B, where the log of normalized read counts
of the five different conditions for the three individuals is
presented for miR-99a-5p. For this miRNA, the mean value is
508, the standard deviation 624 and the CV 1.23. The variation
of the five measurements for each of the individuals is
substantially smaller than the deviation between individuals 1
and 2 compared to individual 3, which had high read counts for
this miRNA. In general, we observed that the variability of
miRNA abundance between different donors was higher than
the miRNA variability under different storage conditions.
We conclude that there is a general systematic influence of

the storage conditions on miRNA patterns. Largest variability
was observed between storage at 8 °C and samples stored at
−80 °C without additional freeze/thaw cycles. The specific
effect of the storage conditions has to be verified for each single
miRNAs separately. Importantly, the effects of storage
conditions on miRNA abundance are generally smaller than
the differences due to inter donor variability.
While we investigated a short time period, the long time

storage of samples has also been investigated. Seelenfreund and
co-workers reported that miRNA from PAXGene tubes can be
recovered even after periods of up to 4 years, if samples are
frozen at −80 °C.17 In this study, a subset of all known
miRNAs analyzed by qRT-PCR has been included. Viprey et al.
considered even longer time periods of up to 5 years.18 In detail
they evaluated the reliability of expression for a subset of 377
miRNAs by qRT-PCR. The authors did not observe a
correlation of miRNA abundance with storage time. As most
stable reference miRNAs, miR-26a, miR-28−5p, and miR-24
were identified. These miRNAs were also not affected
significantly in our study with respect to freeze/thaw cycles,
indeed rendering them as reasonable and stable reference
markers.
Influence of NGS Preparation on miRNA Patterns

from Human Blood. As mentioned above, two NGS runs
with different library prep were performed with each on
miRNAs isolated from five PAXgene tubes from a single

individual and thus resulting in 10 miRNomes. The five
samples of the first NGS run have been processed together, and
likewise the samples of the second NGS run with a slightly
changed preprocessing step as mentioned in material and
methods. The results of the analysis are summarized as heat
map in Figure 4. The dendrogram on top of the heat map show

the clustering of different blood tubes and sequencing
procedures, while the dendrogram on the left side for the
miRNAs. The heat map indicates no clustering between the five
different blood sample tubes (indicated by five shadings of red).
However, a strong clustering between the two different NGS
preparations is shown (indicated by an orange color for the first
NGS run and a blue color for the second NGS run). These
results show a significant influence of the NGS preparation on
the miRNA pattern identified in human blood. The findings
from this cluster analysis were confirmed by a PCA.
We next addressed the question of importance miRNA

changes observed for the NGS preparations by analyzing the
coefficient of variation. The analysis showed lower CV values
for the 10 miRNomes measured by two NGS preparations than
for the miRNome obtained under different storage conditions.
The standard deviation exceeded the mean for only 21 miRNAs
the majority of which were low abundant. Only two miRNAs
with expression levels (normalized read counts >5) showed
average CV values >1 including hsa-miR-182−5p with average
value of 2,824 and standard deviation of 2,960 resulting in a CV
of 1.05 and hsa-miR-1271−5p with average read count of 5.7
and standard deviation of 6.2 resulting in a CV of 1.07. As

Figure 4. Cluster heat map with dendrogram on top. The samples are
colored with respect to the blood drawing (first row on top of the heat
map) and according to the analytical NGS batch (second row on top
of the heat map).
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indicated by the barplot of logarithmized normalized read
counts in Figure 5A, the second batch of NGS library

preparation (indicated in blue) showed for hsa-miR-182−5p
significantly higher expression level as the first NGS library
preparation (indicated in orange). Notably, an analysis of raw
read counts revealed the same behavior indicating that the
differences between the two NGS batches are not due to the
normalization process (Figure 5B). The same values are
presented in Figure 5C and 5D for miR-1271−5p. This
miRNAs was almost not present in the second NGS batch
while substantially expressed in the first batch. The CV values,
mean and standard deviations for all miRNAs are presented in
Supporting Table 4.

In summary, we found evidence for an influence of the NGS
measurement on specific miRNAs’ profiles including the library
preparation.

■ CONCLUSION
In this study, we systematically explored the influence of
different conditions and freeze/thaw cycles on miRNA profiles
generated by using NGS. Furthermore, we investigated the
stability and reproducibility of the respective miRNA patterns
by carrying out 10 replicated measurements of the same
individual.
For selected miRNAs, we found an influence with respect to

up to three additional freeze thaw cycles. Directly processed
samples showed overall closest proximity to samples under-
going one freeze/thaw cycle. Interpreting the replicated
measurements of the same donor also revealed a certain degree
of variability. Specifically, we observed that the influence of the
NGS procedure of miRNAs seems to be partially exceed the
variability of the blood drawing and miRNA extraction. These
results were determined by considering all miRNAs for the
analysis, with techniques such as clustering and PCA as well as
considering the coefficient of variation. However, the variability
was only observed for a subset of all miRNAs. It is therefore
essential to be aware of the potential pitfalls of sample storage
and NGS preparation that can contribute to the variability of
miRNAs. If specific case control studies present these miRNAs
as candidates to detect a disease, further in-depth validation is
required.
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ABSTRACT: MicroRNAs are auspicious candidates for a new
generation of biomarkers. The detection of microRNA panels in
body fluids promises early diagnosis of many diseases, including
cancer or acute coronary syndrome. For a fast, sensitive, and
specific detection of microRNA panels on the bedside, medical
point-of-care systems that measure those biomarkers are required.
As microchips are promising technical tools for a robust signal
measurement at biochemical interfaces, we developed an assay for
the electrochemical multiplex quantification of microRNAs on a
CMOS chip with interdigitated gold electrode sensor positions.
The method is based on the formation of a tripartite hybridization
complex and subsequent both-sided ligation of the target nucleic
acid to a reporter and capture strand. With a time to results of 30 min, the reported assay achieves a limit of detection below 1
pM, at a specificity down to single mismatch discrimination. It also offers very good signal dynamics between 1 pM and 1 nM,
thus, allowing reliable quantification of the detected microRNAs and easy implementation into automated devices due to a
simple workflow.

MicroRNAs (miRNAs) are short, noncoding transcripts of
18−24 bases that play an important role in the

regulation of gene expression.1,2 Especially the utilization of
blood-borne miRNAs as noninvasive biomarkers is a promising
field for new medical applications.3−5 As miRNA levels within
the body fluids of patients can be used to diagnose diseases like
different types of cancer or heart disease,6−9 diagnostic
techniques for fast, cheap and unbiased quantification of
miRNAs need to be developed.
Current detection technologies fail to meet all of the criteria

needed for the broad application of miRNA-based diagnostic
assays in medicine. In particular, most methods that are able to
deliver valuable data about clinically relevant miRNAs, like
next-generation sequencing, quantitative real-time PCR (qRT-
PCR) or microarray, are time-consuming, require amplification
or are costly.10

Electrochemical detection approaches promise a robust and
cost-effective alternative to optical techniques and are therefore
designated to be used in integrated medical devices for point-
of-care (POC) diagnostics.11 Microchip modules offering an
array of sensor spots with interdigitated gold electrodes have
been combined with gold−thiol coupled capture probes and an
electrochemically active reporter enzyme product, to form a
powerful measurement system for the detection of viral DNA,

bacterial RNA and PCR products, as reported previously.12−14

In this article we present a new miRNA quantification assay
format, which leverages this detection mechanism. The assay
format is based on hybridization and subsequent ligation of the
target miRNA to an immobilized capture-component and a
label enzyme-reporter conjugate. The reported method is well
suited for application in POC diagnostics, as it is very fast and
free of target amplification or prelabeling.

■ MATERIALS AND METHODS
Chip Module. The CMOS microchips used in this study

were supplied by Siemens Corporate Technology (CT),
Erlangen, Germany. These monolithically integrated silicon
chips presented an array of 16 × 8 sensor positions (spots) on
the surface (Figure 1A), with each spot encircled by a
polymeric ring structure (Figure 1B). The microchips were
implemented into a sealing compound forming a cavity to serve
as an interface between the sensor array and the reaction
solutions. The sensors comprised two interdigitated gold
electrodes for the generation and detection of a p-aminophenol
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(pAP) redox cycling process as has been described
previously.15,16

Experimental Setup for CMOS Chip Measurements. A
fully integrated reader device prototype and suitable cartridges
with fluidic channels and reagent reservoirs were provided by
Siemens CT, Erlangen. The cavity of the chip module was
covered with a polydimethylsiloxane (PDMS; SYLGARD 184)
gasket to form a reaction chamber which was connected to the
fluidic channels of the cartridge after assembly. Following the
introduction of the sample the cartridge was inserted into the
reader device, which included a pump and valves to control the
cartridge fluidics, a Peltier element for thermal regulation of the
reaction chamber, contacts for communication with the
microchip, corresponding electronics and a personal digital
assistant with control software offering a graphical user interface
and measurement data storage (Figure 1C). Additionally, a
mechanism was embedded that could press the PDMS gasket
onto the chip surface with a defined pressure in order to lock
the spots of the sensor array during signal acquisition
(“LockSpot”). This procedure increases the measurement
signal by reducing the volume of the redox cycling reaction
chamber above the interdigitated electrodes and prevents cross-
talk between the sensor spots.17,18

Nucleic Acids. All synthetic oligonucleotides used in this
study are listed in Tables 1−4. Capital letters represent DNA-,
lowercased letters RNA-bases. The Esterase 2 reporter
conjugate was synthesized as described by Wang et al.19 The

spike-in miRNA has an artificial alien sequence, which has no
BLAST match in the Homo sapiens RefSeq RNA database,20 to
be applicable in measurements of endogenous RNA samples.
Endogenous total RNA including miRNAs was extracted

from blood donor samples collected in PAXgene tubes as
described by Keller et al.21 The collection and use of human
samples was approved by the Institutional Ethics Committee of
the University Erlangen-Nuremberg, Germany.

Figure 1. CMOS chip module and schematic overview of experimental
setup. (A) Picture of a chip module in size comparison with a fingertip.
The red frame marks the sensor array with 16 × 8 positions, which is
encircled by the black sealing compound to form a reaction chamber
when the module is covered by a flat gasket. (B) Detailed view of a
single sensor position showing the interdigitated electrodes
surrounded by a polymeric ring. (C) Schematic drawing of the
experimental setup with the cartridge and the reader device as the
main components comprising several functional units. Blue arrows
represent fluidic connections, red arrows mechanical and thermal
effects, yellow arrows indicate data transfer and electrical control.
PDA: personal digital assistant.

Table 1. Synthetic miRNA Targets (RNA)

name sequence (5′ → 3′)
miR-191 phosphate-caa cgg aau ccc aaa agc agc ug
miR-145 phosphate-guc cag uuu ucc cag gaa ucc cu
miR-181a phosphate-aac auu caa cgc ugu cgg uga gu
miR-425 phosphate-aau gac acg auc acu ccc guu ga
miR-636 phosphate-ugu gcu ugc ucg ucc cgc ccg ca
miR-15a phosphate-uag cag cac aua aug guu ugu g
miR-30c phosphate-ugu aaa cau ccu aca cuc uca gc
miR-362 phosphate-aau ccu ugg aac cua ggu gug agu
spike-in phosphate-aga ucg cca uac ccu gga gau a
let-7a phosphate-uga ggu agu agg uug uau agu u
let-7b phosphate-uga ggu agu agg uug ugu ggu u
let-7c phosphate-uga ggu agu agg uug uau ggu u
let-7f phosphate-uga ggu agu aga uug uau agu u

Table 2. Immobilization Strands (DNA/RNA Chimeras)

name sequence (5′ → 3′)a

IS 1 thiol-T6-CAG GAC GAT GAT GGc acg
IS 2 thiol-T6-GAC CCA GCT CGT AGa ccg
IS 3 thiol-T6-CGA CGA TAG CTT GGu acg
IS 4 thiol-T6-TCA ACT TGT GCA GCc agc
IS 5 thiol-T6-CAC GTC AGA CAG CTc cag
IS 6 thiol-T6-CTT CTC GGT GTC CAc agg
IS 7 thiol-T6-ACG TGT CTT CCG ctc g
IS 8 thiol-T6-TAG GCT GAT GCC gca a
IS 9 thiol-T6-GAG TCA CCT GCG CTg aac
IS 10 thiol-T6-GCT AGA GCT GCG guc g

aT6: T base spacer.

Table 3. Specific Capture Strands (DNA)

name sequence (5′ → 3′) complement

SCS-miR-191 GGA TTC CGT TGC GTG CCA TCA
TCG TCC TG

IS 1

SCS-miR-181a GCG TTG AAT GTT CGG TCT ACG
AGC TGG GTC

IS 2

SCS-miR-15a ATG TGC TGC TAC GTA CCA AGC
TAT CGT CG

IS 3

SCS-miR-425 GAT CGT GTC ATT GCT GGC TGC
ACA AGT TGA

IS 4

SCS-miR-145 GGA AAA CTG GAC CTG GAG CTG
TCT GAC GTG

IS 5

SCS-miR-30c AGG ATG TTT ACA CCT GTG GAC
ACC GAG AAG

IS 6

SCS-miR-636 GAC GAG CAA GCA CAC GAG CGG
AAG ACA CGT

IS 7

SCS-miR-362 GTT CCA AGG ATT TTG CGG CAT
CAG CCT A

IS 8

SCS-spike-in TAT GGC GAT CTG TTC AGC GCA
GGT GAC TC

IS 9

SCS-negative GTA CCG ATC CTA CGA CCG CAG
CTC TAG C

IS 10

SCS-let-7a TAC TAC CTC AGC TGG CTG CAC
AAG TTG A

IS 4
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Oligonucleotide Annealing. For the capture units, 20 μM
each of the immobilization strand (IS) and the complement
specific capture strand (SCS) were added to 300 mM NaCl, 10
mM MgCl2, and 0.02% Tween 20 in 50 mM Tris/HCl at pH
7.6, incubated at 60 °C for 2 min and slowly cooled down to
room temperature.
In case of the reporter units, for each nucleic acid target 0.7

μM of the Esterase 2 reporter conjugate (RC-Est2) and 1 μM
of the target specific reporter strand (SRS) were annealed using
the same procedure.

Chip Spotting. Immobilization of the capture units on the
chip surface was done with a SciFlexArrayer S5 (Scienion)
spotting system. Spotting solutions were made of 10 μM
capture double-strand diluted in 3× SSC buffer pH 8.0, 1.5 M
betaine, and 100 μM TCEP. The cleaned gold electrodes of
each sensor position were covered with 1.2 nL of the respective
spotting solution, with each of the 16 columns of the sensor
array forming an eight spot detection cluster for one miRNA
target. The capture units for let-7a, spike-in, and negative
control covered three clusters each that were distributed on the
chip surface. After an incubation time of 2 h at room
temperature and 50% humidity the chip modules were washed
with ultrapure water, blocked with The Blocking Solution
(Candor Bioscience) for 15 min in a humidity chamber, dried
and stored in a N2 atmosphere until further use.

MiRNA Detection Assay. A quick ligation buffer was
prepared for the ligation reaction containing 50 mM NaCl, 10
mM MgCl2, 1 mM DTT, 1 mM ATP, and 7.5% PEG-6000 in
66 mM Tris/HCl buffer at pH 7.6.22 The esterase 2 substrate p-
aminophenyl butyrate (pAPB) was synthesized as described by
Wang et al.19 The utilized cartridge offered reagent reservoirs of
70 (ligation solution), 60 (low salt buffer), and 240 μL
(substrate reagent), respectively. Unless otherwise stated, 1×
SSC buffer was used as system fluid, which was also utilized to
rinse the reaction chamber between assay steps. The applied
volume of sample solution was 60 μL (exception: 10 ng/μL
measurement in Figure 7A: 48 μL). The assay protocol is
described in Figure 2 and the corresponding figure legend.

Data Recording and Analysis. During measurement, the
reader device digitally recorded a single data point per sensor
spot every 0.5 s. For that purpose the electrical currents
received from both interdigitated electrodes were automatically
summarized by addition of the absolute values. We analyzed
these raw data using Labview 2011 software (National
Instruments). The slope (ΔI) was calculated as described in

Table 4. Reporter Conjugate and Specific Reporter Strands
(DNA)

name sequence (5′ → 3′)a complement

RC-Est2 phosphate-GCA ACG AGC GC-T4-
Esterase2

SRS-miR-191 GGT TGC GCT CGT TGC CAG CTG
CTT TTG

RC-Est2

SRS-miR-181a GGT TGC GCT CGT TGC ACT CAC
CGA CA

RC-Est2

SRS-miR-15a GGT TGC GCT CGT TGC CAC AAA
CCA TT

RC-Est2

SRS-miR-425 GGT TGC GCT CGT TGC AGG GAT
TCC TG

RC-Est2

SRS-miR-145 GGT TGC GCT CGT TGC AGG GAT
TCC TG

RC-Est2

SRS-miR-30c GGT TGC GCT CGT TGC GCT GAG
AGT GT

RC-Est2

SRS-miR-636 GGT TGC GCT CGT TGC TGC GGG
CGG

RC-Est2

SRS-miR-362 GGT TGC GCT CGT TGC ACT CAC
ACC TAG

RC-Est2

SRS-spike-in GGT TGC GCT CGT TGC TAT CTC
CAG GG

RC-Est2

SRS-let-7a GGT TGC GCT CGT TGC AAC TAT
ACA ACC

RC-Est2

aT4: T-base spacer.

Figure 2. Schematic assay principle and protocol. Hybridization (A): The sample solution containing the target nucleic acids, 5.8 nM of each
Esterase 2 reporter unit and 0.05% Tween 20 in 5x SSC buffer was drawn over the chip surface in three portions and incubated for 5 min each to
form a tripartite complex with the immobilized capture units. The reaction chamber was washed with system fluid to remove any excess of reporter.
Ligation (B): T4 DNA Ligase (100 u/ml, Thermo Scientific) was applied to the array in quick ligation buffer for 5 min. Then the reaction chamber
was washed with low salt buffer (2 mM NaCl in 2 mM Tris/HCl pH 7.6) for 5 min to get rid of all assay components not covalently bound by
ligation. Measurement (C): 1 mM pAPB enzyme substrate in 20 mM NaCl, 20 mM Tris/HCl pH 7.6 was pumped on the array surface and the
sensor spots were locked for data acquisition. pAPB was converted to pAP by surface bound Esterase 2 enzymes and subsequent redox cycling at the
interdigitated gold electrodes was measured. All assay steps were executed at 37 °C: L, label enzyme (esterase 2); pAP, p-aminophenol; QI,
quinoneimine.
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the General Principle. For each target, the ΔI values gained
from all corresponding spots in three consecutive measure-
ments at the end of one assay run (technical replicates) were
used to calculate the median and the median absolute deviation
(MAD). The median was preferred over the arithmetic mean to
eliminate outliers caused by irregularities in the employed
materials (sensor electrodes, surface of PDMS gasket).
Correction of calculated values by negative control was done
by subtraction of the median of the negative signals from the
respective median and addition of the MAD of the negative
signals to the corresponding MAD value.
miRNA qRT-PCR Measurement. qRT-PCR quantification

of miRNA was performed using assays and accompanying
reagents from Life Technologies. Life Technologies reagents:
Taqman microRNA RT kit (Cat. No. 4366597), Taqman
universal MMIX II with UNG (Cat. No. 4440045), Taqman
microRNA assays INV (Cat. No. 4427975, INV 002299 for
miR-191-5p, INV000480 for miR-181a-5p, INV 000389 for
miR-15a-5p, INV001516 for miR-425-5p, and INV 000419 for
miR-30c-5p). Measurements were performed on the Stratagene
MX-3005p Real-Time PCR System (Agilent Technologies)
according to the manufacturers’ instructions. Standard curves
with concentrations from 1 pM to 10 nM were generated for
each target miRNA to calculate the molar concentrations of the
endogenous miRNAs in the analyzed total RNA sample.
Calculation of Endogenous miRNA Concentrations.

Standard curves for the CMOS chip assay were measured with
synthetic miRNAs from 1 to 100 pM total concentration in the
sample solution. The equation of the relationship between the
signal ΔI and the target concentration was calculated using a
linear trend line. The endogenous miRNA was measured
employing chip modules from the same immobilization batch.
The target concentrations in the total sample solution were
calculated using the respective equation. The volume fraction of
the total RNA sample in the sample solution was incorporated
in the calculation to obtain the original target concentration.

■ RESULTS AND DISCUSSION
General Principle. The presented method makes use of a

generic esterase 2-coupled reporter oligonucleotide (reporter
conjugate, RC-Est2)19 and a set of thiol-modified chimeric
capture immobilization strands (IS). Additionally complemen-
tary counter-strands with overhangs specific for the target
miRNAs (specific reporter/capture strands, SRS/SCS) are
required to form preannealed double-stranded reporter and
capture units. The sequences of all assay components used in
this study can be found in Tables 2−4. Prior to the assay
procedure, the capture double-strands had been immobilized
on the interdigitated electrodes of their respective sensor
positions by gold−thiol coupling.
In the first step of the assay run, the reporter double-strands

and the miRNA targets were incubated with the surface-bound
capture units to form a tripartite hybridization complex, which
is stabilized by base-stacking effects at the three emerging nick-
sites (Figure 2A).23−26 After a short washing step performed to
remove the excess of reporter units, ligase was added to
covalently connect the two ends of the target miRNA to the
adjacent reporter and capture strand (Figure 2B). As
phosphorylated 5′-RNA-ends cannot be efficiently ligated to
3′-OH-DNA ends by T4 Ligases,27 a chimeric 5′-thiol-modified
oligonucleotide strand with a major DNA part and four RNA-
bases at the 3′-end was used. After the ligation step, the
reaction chamber was washed with a low salt buffer to remove

all assay components that were not covalently bound to the
immobilized capture strands (Figure 2C). To read out the
esterase 2 reporter signal, p-APB substrate was added and the
electrical current caused by pAP redox cycling at the
interdigitated gold electrodes was measured. The whole process
was fully automized with a time to results (TTR) of only 30
min.
Figure 3 shows an example of raw electrical current data

collected during a measurement at the end of a 100 pM target

miRNA and a 0 pM control assay. The current shows an
increase over time only when the sensor target was present in
the hybridization sample, proving a successful practical
execution of the described procedure. In downstream analysis
the raw data of the experiments were processed by using three
time points (0.5 to 1.5 s) to calculate the slope of the current
for each sensor position with the least-squares linear fit
technique.

Multiplex. To investigate the ability of the here proposed
quantification method to measure several miRNAs in parallel in
a multiplex setup, a panel of measurement components for
eight miRNAs related to cardiovascular disease3,28−33 (cardiac
panel), a spike-in, and a negative control were designed,
respectively (see Tables 1−4). Using this set of assay
components, four members of the cardiac panel, miR-191,
-15a, -145, and -636, were multiplex measured at a
concentration of 100 pM each. In a second assay run, the
same concentrations of the other four target nucleic acids of the
panel, miR-181a, -425, -30c, and -362, were detected in the
same manner. The spike-in control was used in both runs to
secure comparability of the results. As the data confirms, the
reported method provides a very good multiplexing capacity
being insensitive to cross-talk effects (Figure 4).

Sensitivity. Calibration curves for all miRNA members of
the cardiac panel were determined by repeating the assays
described in Multiplex and applying several different concen-
tration levels of the target miRNAs. A double logarithmic
overlay of the acquired data points illustrates very good signal
dynamics between 1 pM and 1 nM target concentration. This
demonstrates the suitability of the presented method for
miRNA quantification at low concentration levels (Figure 5A).

Figure 3. Electrochemical signal course. The digitally recorded raw
data of the electrical currents (I) acquired from a miR-30c specific
sensor position and a negative control sensor during assay runs with
miR-30c target concentrations of 100 (A) and 0 pM (B) are plotted
over measurement time. Reporter units for nine different miRNAs
(cardiac panel) and at least one additional miRNA target (showing
positive signals) were present in the sample solution of both assay
runs. The sensor positions were locked at time point 0 s. Points 0.5,
1.0, and 1.5 were used to calculate the slope of the electrical current
(ΔI) in downstream data analysis.
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Figure 5B illustrates a sigmoidal calibration curve obtained from
the normalized measurement data for miR-191. The corre-

sponding zero line representing the median plus three median
absolute deviations (MADs) was gained from a zero
concentration control assay. The shown data indicate a high
analytical sensitivity considering the absence of any target or
reporter amplification in the applied method.

Specificity. The biggest challenge for the specificity of
nucleic acid detection assays is the differentiation of targets that
differ only in a single or few nucleotides. When working with
miRNAs the let-7 family is often used as a benchmark for
specificity testing, as several of its members exhibit only one or
two nucleotide differences. Four candidates of this family (let-
7a, let-7b, let-7c, and let-7f) were selected to evaluate the
specificity of the assay format (Figure 6A). The assay

components were designed for the quantification of let-7a.
One nM of each target was measured separately in the presence
of the spike-in control. The acquired data point out that let-7b
with two mismatches and let-7f with a single mismatch near the
central nick site of the tripartite hybridization construct can be
distinguished from let-7a very well, leading to no false-positive
signal at the let-7a specific sensor positions (Figure 6B). Let-7c
shows a cross hybridization of 8% caused by an unfavorable
position of the single mismatch. Presumably an optimized
oligonucleotide design and fine-tuning of the hybridization
conditions could improve this result if required. Overall the
presented miRNA quantification method exhibits high
specificity, which is comparable to the performance of
commercially available miRNA detection assays (Affymetrix
QuantiGene 2.0 miRNA Assay; Exiqon miRCURY LNA
microRNA Array).

Endogenous miRNA. The reported miRNA detection
method was used to quantify endogenous miRNAs of the
cardiac panel in purified total RNA samples from donor blood.

Figure 4. Multiplex measurements with an eight miRNA target panel.
The results of two assay runs with reporter units for miR-191, miR-
181a, miR-15a, miR-425, miR-145, miR-30c, miR-636, miR-362
(cardiac panel), and spike-in are shown. The sample solutions also
contained 200 pM spike-in and 100 pM of each panel miRNA divided
on the two assays. Medians and median absolute deviations (MAD)
were plotted after correction by negative control.

Figure 5. Standard curves and analytical sensitivity. (A) The multiplex
assays from Figure 4 were repeated with different target concentrations
ranging from 100 fM to 10 nM. Medians and MADs were plotted to
obtain standard curves for all miRNAs of the cardiac panel. (B) Data
of miR-191 were corrected by negative control and normalized to the
spike-in signal. The 3MAD-line (median+3*MAD) was gained from a
control experiment with only spike-in control as target nucleic acid.

Figure 6. Discrimination of let-7 family members. (A) Let-7b, -7c, and
-7f sequences differ from the assay target let-7a only by one or two
mismatches (shaded dark gray). (B) 1 nM of each synthetic miRNA
target was measured in separate assay runs. The sample solutions
contained reporter units for let-7a and spike-in as well as 1 nM spike-in
target in 2× SSC buffer with 0.05% Tween 20. A 0.5× SSC buffer was
used as system fluid. Medians and MADs were plotted after correction
by negative control. The table shows the relative signal for each
miRNA after normalization to the spike-in control in percent.
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Different amounts of total RNA were taken from a single
sample and were multiplex measured utilizing the validated
assay components for the eight miRNAs. For miR-191, miR-
181a, miR-15a, miR-425, and miR-30c the detected signal
corresponded with the concentration of total RNA in the
hybridization solution (Figure 7A). Two miRNAs (miR-636,

miR-362) did not show this correlation due to very low
abundance in the measured sample. The miR-145 signal levels
gained from the measurements of the two lower RNA amounts
were inverted hinting to a miRNA concentration near the limit
of the analytical sensitivity in the investigated range of sample
material. The measured signal for the spike-in control was
reciprocal to the applied relative sample volume suggesting a
sensitivity of the synthetic miRNA to remaining impurities in
the endogenous RNA fraction, whereas the detection system
was not affected. This has to be taken into account when
comparing the spike-in signals acquired from measurements of
samples from different purification runs.
Figure 7B shows the normalized signals for miR-191, miR-

181a, miR-15a, miR-425, and miR-30c determined from three

equal assay runs. The same amount of material was taken from
a single total RNA sample for all three experiments. The results
reveal a good reproducibility (CV values 0.04−0.16) of the
reported quantification method for the multiplex measurement
of endogenous miRNAs.
Finally, we compared the measured quantities for the five

higher abundant miRNAs of the cardiac panel with values
obtained by qRT-PCR. For this purpose, a pool of extracted
total RNA from several purifications was analyzed applying
both quantification methods. The molar concentration of each
target miRNA in the total RNA sample was calculated from the
measurement data using corresponding standard curves. The
resulting concentration values reveal a weak correlation
between the two quantification methods. Details are provided
in the respective scatter plot (Figure 8). This is, however, in-

line with known results. Intraplatform comparability of different
miRNA detection systems is known as consisting challenge.34

Specifically, several studies have already demonstrated limited
correlations between hybridization-based methods and qPCR
when analyzing miRNA expression profiles.35−37 Stated reasons
include lack of standardized normalization, differences in
miRNA processing, and difficulties with the distinction of
precursors and mature miRNAs.34 The efficiency of the
detection of frequently occurring variants of miRNA targets,
so-called isomiRs, has even been shown to vary considerably
between different qPCR platforms.38 Therefore, a case-related
validation of the suitability of a detection system for the analysis
of a specific miRNA expression pattern will be necessary prior
to clinical application.

■ CONCLUSIONS
The miRNA detection method reported in this paper is
sensitive, specific and very fast. The presented data show an
analytical sensitivity below 1 pM target concentration, and
though amplification-based methods like qRT-PCR might be
more sensitive, they are additionally prone to errors caused by
contaminations and amplification bias.39 Furthermore, the
specificity of this hybridization-based measurement technique
was demonstrated by successful discrimination of down to
single nucleotide mismatch candidates of the let-7 family.

Figure 7. Quantification of endogenous miRNAs in total RNA
samples from donor whole blood. (A) Different amounts of total RNA
from a single purification sample were measured with the reported
detection method applying the cardiac panel assay components and
200 pM spike-in. Medians and MADs were plotted after correction by
negative control. (B) Three assay runs with 1 μg total RNA from a
second sample and 200 pM spike-in target were performed using the
cardiac assay panel to investigate reproducibility. Medians and MADs
of the five higher abundant miRNAs were plotted after negative
control correction and normalization to the spike-in control. The table
shows calculated CV values for the diagramed miRNA candidates.

Figure 8. Comparison with qRT-PCR results. A pool of extracted total
RNA was measured with the reported detection method as described
in Figure 7 (2 μg total RNA per run) and with qRT-PCR. The
concentrations of the five higher abundant miRNAs of the cardiac
panel were calculated for two ligation assay runs and three qRT-PCR
experiments, as described in Materials and Methods. The mean values
were plotted in a scattergraph.
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An extraordinary characteristic of the reported assay is the
excellent quantifiable range over 3 orders of magnitude with a
TTR of only 30 min. Therefore, a high resolution for the
quantification of target nucleic acids is ensured. The keys to this
feature are the use of a huge excess of reporter compounds and
its effective removal prior to the signal measurement through a
harsh washing step. Thus, both fast formation of the
hybridization construct and low background signal are
combined. The covalent attachment of the label enzyme to
the immobilized capture molecule via ligation and the
utilization of a very stable label enzyme are crucial to maintain
the positively labeled capture sites during the low salt washing
conditions.
A combination of the reported approach with a CMOS array

microchip for electrochemical redox cycling signal acquisition
allowed for an 8-plex (plus controls) measurement of a
predefined miRNA panel. As the microchip provides 128 sensor
positions there is still room for extension of the number of
simultaneously quantified miRNAs. The assay procedure itself
is simple and thus was easily integrated into a portable reader
device prototype offering a fluidic system and an electronic
signal read-out (Siemens CT), whereby fully automated assay
runs were enabled.
This portable quantification system can be a great tool to

evaluate or utilize diagnostically relevant miRNA biomarker
panels that are currently investigated for a multitude of different
diseases by numerous research groups.
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Abstract Introduction: Molecular biomarkers for Alzheimer’s disease (AD) can support detection and
improved care for patients, but novel candidates require verification. We previously reported a 12-
micro RNA (miRNA) blood-based signature using next-generation sequencing (NGS) of 54 AD cases
and 22 controls.
Methods: We performed validation of 49 AD cases and 55 controls using NGS and also included 20
mild cognitive impairment and 90 multiple sclerosis samples to identify nonspecific markers. Thus,
103 AD cases, 77 unaffected controls, and 110 diseased controls were sequenced. Although the initial
cohort came predominantly from theUnited States, the validation samples were collected in Germany.
Results: Five hundred eighty miRNAs were detected in the blood. In the initial cohort, we observed
203, in the validation cohort, 146 dysregulated miRNAs at a significance level of 0.05. With 68
miRNAs, the overlap was significant (P 5 .0003). Likewise, the area under the receiver operator
characteristic curve values of the miRNAs correlated (correlation of 0.93; 95% confidence interval
0.89–0.96; P ,10216).
Discussion: MiRNAs have the potential to support AD diagnosis and patient care.
! 2016 Alzheimer’s Association. Published by Elsevier Inc. All rights reserved.
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1. Introduction

Alzheimer’s disease (AD) care represents one of the
grand challenges in health care systems worldwide. It is
the most common form of dementia affecting already in

2009 more than 27 million individuals. Given demographic
changes, it is expected that by 2050, the worldwide number
of AD patients continuously will rise to 86 million [1]. The
identification of peripheral biomarkers for an early, at best
presymptomatic, detection of AD has the potential to
improve AD patient care. Currently, b-amyloid (Ab) and
tau protein levels in the cerebrospinal fluid (CSF) are applied
to distinguish between patients with AD and elderly individ-
uals without AD [2]. In addition to these tests and imaging-
based approaches that are applied in clinical routine
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(e.g., positron emission tomography, structural magnetic
resonance imaging [MRI] or functional-connectivity MRI),
many molecular biomarker panels have been proposed for
improved diagnosis. An overview of respective novel early
test candidates is provided here [3]. Such tests are frequently
not validated or just to a limited amount. Among the most
promising candidates are multiplexed protein panels, as
described by Doecke et al. [4], or lipidomic panels as
described by Mapstone et al. [5]. Another class of markers
are small non-coding micro RNAs (miRNAs). These have
been described as circulating markers in many human pa-
thologies [6]. Like other biomarker panels, blood-borne
miRNAs were usually validated just to a restricted degree.
Few studies reveal the full potential of respective test on
large cohorts. Among the most promising studies are vali-
dated biomarker signatures in pancreatic cancer, as recently
described by Schultz et al. [7].

For AD, over a dozen studies in blood cells, plasma, and
serum have been carried out. The heterogeneity in study set-
up, underlying technology, number of miRNAs profiled,
cohort sizes, and biostatistics impedes a comparison or
meta-analysis of the studies. Among the studies, we pre-
sented a case-control study on a US cohort of AD patients
and controls that indicated a certain potential of miRNAs
as AD markers [8]. After an initial screening using next-
generation sequencing (NGS) of 54 AD cases and 22
unaffected controls, we performed technical and biological
validation of 12 markers, including 10 known miRNAs
and two novel miRNA candidates, using real-time
quantitative reverse transcription PCR (RT-qPCR). Toward
a clinical application, we recently established a novel assay
that allows for quantifying respective miRNA on immuno-
assay analyzers that are used for routine diagnosis in central
laboratories worldwide [9]. This assay allows for quanti-
fying miRNAs with performance metrics comparable with
standard enzyme-linked immunosorbent assay tests.

Whether the initially proposed signature measured pre-
dominantly from US samples can be replicated in an inde-
pendent cohort remained, however, unclear. To facilitate
clinical application, respective independent validation is,
however, urgently required. Thereby, it is essential to use
the same technologies (miRNA extraction, miRNA
profiling, and biostatistics) to prevent falsified results intro-
duced by bias. We, thus, set out to understand whether the
miRNAs that have been discovered in the screening can be
replicated in a German cohort by NGS. Although one alter-
native would have been to measure only the 12 miRNAs
evaluated by RT-PCR in the initial study, we profiled the
full portfolio of miRNAs by NGS again to understand how
well the miRNAs overall can be replicated in a group of pa-
tients with different ethnical background.

Altogether, we screened 290 individuals by NGS,
including the initial 54 AD cases and 22 unaffected controls
that have been previously published, a replication cohort
consisting of individuals collected in Germany of 49 AD
cases and 55 controls. Beyond these samples, we also

included 20 mild cognitive impairment (MCI) patients and
90 multiple sclerosis (MS) patients to understand whether
the discovered miRNAs are specific for AD. Thereby, we
generated almost 4 billion small RNA reads that were eval-
uated by computer-aided approaches.

2. Methods

2.1. Patients and miRNA profiling

We collected 2.5-mL blood from AD patients, controls,
and MCI and MS patients in PAXgene Blood RNA tubes
(PreAnalytiX) tubes. Patient characteristics (age, gender,
age of onset, mini-mental state examination, Montreal
cognitive assessment score, Ab 42, tau and phospho-tau
values, antidementive drugs, beta-blocker, and antihyperten-
sive drugs) of the novel AD (n5 49) and unaffected control
(n 5 55) cohort are presented in Table 1.

The analytical procedurewas performed as described pre-
viously [6,8]. In brief, from the tubes, total RNAwas isolated
using the PAXgene Blood miRNA Kit (Qiagen) following
the manufacturer’s instruction. For sequencing library
preparation, 200 ng of total RNA was used (quantified by
RNA 6000 Nano Chip using Bioanalyzer 2100 [Agilent]).
Preparation was performed according to the protocol of
the TruSeq Small RNA Sample Prep Kit (Illumina).
Concentration of the ready prepped libraries was measured
by using the Bioanalyzer (DNA 1000 Chip). Libraries
were then clustered with a concentration of 9 pmol with
six samples in one lane. Sequencing of 50 cycles was
performed on a HiSeq 2000 instrument (Illumina) and
demultiplexing of the raw sequencing data was done using
CASAVA version 1.8.2.

Table 1
Information on newly measured AD samples and controls in the validation
study

Variable
Alzheimer’s
disease Controls P value

Age 70.7 6 8.2 67.3 6 7.8 .034
Age of onset 68.7 6 8.1 NA .39
Gender (f/m) 22/27 29/26 .44
MMSE (0–30) 21.6 6 3.8 29.5 6 0.86 ,10216

MoCA (0–30) 15.9 6 4.7 28.8 6 2.1 ,10216

Abeta42 (pg/mL) 453 6 209 NA NA
Tau (pg/mL) 629 6 334 NA NA
p-tau (pg/mL) 83 6 43 NA NA
Antidementive

drugs (yes/no)
14/34 NA NA

Beta-blockers
(yes/no)

7/31 NA NA

Other antihypertensive
drugs (yes/no)

17/21 NA NA

Abbreviations: AD, Alzheimer’s disease; NA, not applicable; MMSE,
mini-mental state examination; MoCA, Montreal cognitive assessment;
p-tau, phosphorylated tau.
NOTE. For age, age of onset, MMSE, and MoCA, two-tailed unpaired t

tests were calculated. For gender, Fisher’s exact test has been applied. With
respect to the age of onset, the age distribution was compared with the age
distribution of controls.
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2.2. Statistical analysis

All 290 samples were processed by miRDeep2 as
described previously [8,10] before downstream analysis in
R (version 3.0.2) had been carried out. For all samples
together, quantile normalization was performed and all
miRNAs with ,5 reads in less than five samples were
excluded to minimize noise. This procedure resulted in a
set of 580 miRNAs that were further investigated. Where
applicable, P values were adjusted for multiple testing
using Benjamini-Hochberg correction. For hypothesis
testing, we calculated unpaired two-tailed t tests. Because
not all miRNAs were normally distributed, we also calcu-
lated nonparametricWilcoxonMann-Whitney (WMW) tests
(unpaired, two tailed). Beyond the hypothesis tests, the area
under the receiver operator characteristic curves (AUC) was
calculated for each miRNA. For correlating AUCs in both
cohorts, AUCs were provided in an interval between 0 and
1. miRNAs with higher expression in AD have AUC ,0.5
and miRNAs with higher expression in controls.0.5, miR-
NAs that are equally abundant have AUCs of around 0.5. To
calculate confidence intervals (CIs) for the AUC, 1000 boot-
strap samples have been performed using the pROC
package. As further statistical approaches, we performed
hierarchical clustering as implemented in the Heatplus R
package (read counts were transformed to z-scores and com-
plete linkage clustering relying on the Euclidian distance
was done). We also carried out principal component analysis
(PCA) as implemented in the prcomp R package and showed
the first versus second principal component as scatter plot.
Finally, analysis of variance (ANOVA) has been applied to
the three groups: AD, unaffected controls, and diseased con-
trols (MCI/MS).

To combine the predictive power of multiple miRNAs,
machine learning has been performed similar to the
approach described previously for lung cancer [11]. In
detail, support vector machines using a radial basis function
as kernel were trained and evaluated using fivefold cross
validation on the complete data set. To account for variations
between different cross-validation runs, the procedure has
been repeated with 20 random partitions in test and training
data. To select most informative miRNAs with respect to
AD, a stepwise forward feature selection based on the P
values has been carried out. Here, in each iteration, the k fea-
tures (k was varied between two and 500 features) with
lowest P values in the training part of the cross validation
were selected and subsequently evaluated on the test sample
part. To check for potential over training, 20 repetitions of
permutation tests have been performed. Here, the complete
subset selection step as well as the classification was carried
out with randomly permuted class labels.

2.3. MiRNA enrichment and targetome analysis

We applied the miEAA tool (http://www.ccb.uni-saar
land.de/mieaa_tool), which builds up on GeneTrail [12],

which is tailored for gene set enrichment analysis, to find
categories that are enriched with the 68 miRNAs significant
in both studies and compared them to the background of all
580 miRNAs that were expressed in this study. All results
with adjusted P values ,.05 in an overrepresentation anal-
ysis after adjustment for multiple testing were considered
significant.

To investigate putative downstream effects, we focused
only on validated targets that have been extracted from the
most recent build of the miRTarBase database (release 6,
September 2015) [13]. We excluded the targets with weak
interactions and include only those with functional interac-
tions from that database leaving us with 6862 pairs of miR-
NAs targeting genes. Of these, 1638 have been duplicated
entries, which were also removed, leaving us with 5224 pairs
of miRNAs and validated targets. For the 68 miRNAs that
overlapped in both studies, we built the full target network
and also considered hubs, i.e., genes that are targeted by at
least five miRNAs. Because these results may be biased to-
ward more frequently analyzed miRNAs or genes, we also
carried out random permutation tests. From all 580 miRNAs
that were expressed but not among the 68 miRNAs overlap-
ping in both studies (512 miRNAs) as background distribu-
tion, we randomly picked 68 miRNAs and performed the
same analysis as mentioned previously. Specifically, we
counted how many miRNAs target the hubs that are discov-
ered for the original data. This random procedure has been
repeated 10,000 times.

3. Results

For each of the 290 individuals (54 AD cases and 22 un-
affected controls that have been previously published, novel
49 AD cases and 55 controls, 20 MCI and 90 MS patients),
about 14 million reads were generated, totaling 3.85 billion
NGS reads that have been statistically evaluated. The main
goal of the present study is to compare the results on the pre-
viously published screening cohort (54 AD patients and 22
unaffected controls with similar age/gender distribution)
and the newly measured German validation cohort (49 AD
patients and 55 unaffected controls with similar age/gender
distribution).

Beyond the validation of the initial results comparing AD
to unaffected controls, we asked whether the signatures
found by NGS are specific for AD. We, thus, sequenced 90
MS and 20 MCI samples that were used as non-AD controls.
After excluding miRNAs that are expressed close to the
background and contribute substantially to the noise in the
signatures, 580 markers remained in our final data set
(Supplementary Table 1).

In the following, we first compare the overall signatures
in the screening and replication cohort and then focus specif-
ically on the initially published signature. Second, we
compare the miRNA abundance to clinical information
such as therapy. Third, we derive in silico downstream infor-
mation on the targets and target networks of the reported
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Alzheimer miRNAs, and fourth, we compare the Alzheimer
patients to patients with other diseases (MS and MCI).

3.1. Comparing AD samples to controls

First, we compared the dysregulation of all miRNAs be-
tween AD patients and unaffected controls in the screening
and replication, not including the MCI and MS patients.
Because for all miRNAs the abundances were not normally
distributed, we performedWMW tests for calculating signif-
icance values in addition to t tests (the t test P values are pro-
vided in Supplementary Table 1). In the US cohort, we
observed 203 dysregulated miRNAs at a significance level
of 0.05 before adjustment and 127 dysregulated miRNAs af-
ter adjustment for multiple testing using WMW tests. In the
validation cohort, we observed lower effect sizes and gener-
ally higher P values. Here, 146 miRNAs were dysregulated
at a significance level of 0.05 before adjustment, 49 remain-
ing after adjustment for multiple testing. In both cohorts, we
found slightly more miRNAs with lower expression in AD
patients. Of the 203 and 146 miRNAs, 68 overlapped. Given
the total number of 580 expressed miRNAs, 203 miRNAs in
the screening, and 146 in the validation cohort and an over-
lap of 68 miRNAs, we asked whether this overlap is statisti-
cally significant. Using the hypergeometric distribution, we
calculated a statistically significant overlap (P5 .0003). De-
tails on the significance values (raw and adjusted t test and
WMW test, P values, and AUC values) are provided in
Supplementary Table 1. To provide further evidence for
the high degree of concordance, we correlated the AUC
values of the 68 miRNAs in the screening and validation
cohort (Fig. 1). The correlation was as high as 0.93 (95%
CI, 0.89–0.96) with a significance value ,10216. Impor-

tantly, all 68 miRNAs match in the direction of regulation
in the screening and replication cohort. As a graphical repre-
sentation, we illustrate the expression of the 68 miRNAs as
heat map after hierarchical clustering in Fig. 2. This heat
map, which is based on z-scores of miRNAs in the screening
and validation cohort, highlights a cluster with most controls
on the right hand side, most AD patients in the middle, and a
cluster containing AD and controls on the left hand side.

Initially, we published a 12-miRNA marker signature,
containing 10 miRNAs known from miRBase and two novel
miRNAs discovered in our screening cohort. In the replica-
tion, we focused only on known miRNAs as annotated in
the reference database because novel miRNAs predicted by
NGS may represent artifacts. Fig. 3 details all markers that
have been dysregulated in the replication in the same direc-
tion as initially observed.However, not allmiRNAs’P values
(two-tailed WMW test adjusted for multiple testing) were
below the alpha level of .05 in the replication. Especially
miR-5010-3p and miR-26b-5p with significance values of
0.16 and 0.82 were not significantly dysregulated. Nonethe-
less, the correlation of AUC values of the screening and vali-
dation cohort was similar to the 68 markers overlapping in
both studies (0.92), indicating that already the initial signa-
ture has been reasonably selected using only one cohort.

The marker with the lowest P value in the discovery and
validation study combined was miR-151a-3p (adjusted
P value of 1027) with an AUC of 0.74. On average, we
measured 3758 reads in AD samples versus 2158 reads in con-
trol samples. Overall, largestAUCswere reached for hsa-miR-
17-3p (AUC 0.77, adjusted P value of 1025). For miRNA
17-3p and 151a-3p, the receiver operator characteristic
(ROC) curve is exemplarily shown in Figs. 4A and B, respec-
tively. The blue shaded areas in the ROC curves correspond to
the 95% CI that have been calculated by 1000 bootstrap sam-
ples.Altogether, the combined analysis of both cohorts yielded
192 significantmiRNAs (two-tailedWMWtest) before adjust-
ment for multiple testing of which 127 remained significant
after adjustment (details in Supplementary Table 1).

Although already single markers have a remarkable diag-
nostic potential, we performed a classification using Support
Vector Machines (SVMs). The procedure has been carried
out with a filter-based subset selection on the complete data
set using 20 repetitions of fivefold cross validation (details
are provided in the Methods section). In combining the pre-
dictive power of miRNAs using SVMs on 200 markers, the
AUC increased significantly (z-score base P value of ,.05)
from 0.77 for best single marker to 0.84 on average for the
200 marker signatures. A representative example from the
repeated cross-validation runs is presented in Fig. 4C. With
the AUC, also the accuracy of the classification improved.
For the best single marker accuracy, specificity and sensi-
tivity were 73.3%, 75.3%, and 71.8%, respectively. By using
signatures, the accuracy increases to 78.2%. Specificity and
sensitivity were 68.9% and 87.6%. As the ROC curve
in Fig. 4C demonstrates, specificity and sensitivity can,
however, be well traded off against each other.

Fig. 1. AUC values for the comparison AD versus matched controls in the
screening cohort (x-axis) and the validation cohort (y-axis). Abbreviations:
AUC, area under the receiver operator characteristic curves; AD, Alz-
heimer’s disease.
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Fig. 2. Heat map after hierarchical clustering of the 68 miRNAs overlapping in both studies. Green individuals are controls, and red individuals AD cases. The
color code for the cases and controls are projected between the dendrogram and the heat map. This figure contains all AD samples and all controls from the
screening and validation cohort. Abbreviations: miRNA, micro RNA; AD, Alzheimer’s disease.
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3.2. Correlation of miRNome to therapy and other
available clinical information

Because we had access to CSF markers of neurodegener-
ation, we correlated the available clinical and neurochemical
information with the miRNA repertoires. Furthermore, the
patients included in the study got different therapies such
that wewere also able to estimate variations inmiRNA abun-
dance correlated to the therapy.

First, we investigated a potential influence of antidemen-
tive and antihypertensive drugs. We did not observe any sig-
nificant miRNA differences between AD patients with and
without such treatment after adjustment for multiple testing.
These data suggest that the influence of typical drug therapy
on the miRNA pattern in the blood of the AD samples is
negligible.

Disease duration may also influence miRNA pattern. In
the present study, we included patients’ blood samples close
to the time of initial diagnosis but also samples of patients at
more advanced stages. The mean lag time between diagnosis
and blood collection was 2 years. We, therefore, compared
samples of AD patients with disease duration ,2 years to
samples of patients with longer disease durations. In this
comparison, we again calculated nonsignificant P values;
none of the miRNAs remained significant after adjustment
for multiple testing.

In a third comparison, we correlated values of cerebrospi-
nal biomarkers including Abeta42, tau, and phosphorylated
tau to all miRNAs separately. As for the drug analysis, we
also did not observe any significant miRNA after adjustment
for multiple testing.

3.3. MiRNA categories and the AD miRNAs’ targetome

To understand common grounds of the respective miR-
NAs, we applied miEAA using the standard parameters.

Specifically, we searched for categories that contain more
of the 68 miRNAs overlapping in both cohorts as compared
with the background of 580 miRNAs. With the lowest P
value, we of course found our initial Alzheimer disease
miRNA set. With respect to the organs category from miR-
Walk [14], we, e.g., observed overrepresentation of blood
platelets and erythrocytes but also neurons. We also found
a negative correlation of AD miRNAs with increasing age
in individuals without known disease affection, meaning
that the AD miRNAs per se were less expressed in controls
older than 100 years [15]. All enriched categories at a signif-
icance level of 0.05 are summarized in Supplementary
Table 2 along with the miRNAs contained in the respective
categories.

We also investigated putative downstream effects and
analyzed the targetome as described in the Materials and
Methods section. Focusing on validated targets of the 68
miRNAs, we discovered a total of 563 interactions. The re-
sulting network contains 33 miRNAs and 349 target genes.
Of the 349 targeted genes, 14 are validated targets of at least
five of the 33 miRNAs overlapping in both studies: VEGFA,
DICER1, AGO1, PTEN, CDKN1A, APP, RB1, CCND1,
CCND2, WEE1, IL13, HMGA2, TNFRSF10B, and MYC.
The resulting subnetwork containing the respective hubs is
presented in Fig. 5.

Because these analyses may be biased toward more
frequently analyzed genes or miRNAs, we performed
10,000 permutation tests. For randomly selected 68miRNAs
from the background distribution, the same analyses as for
the original 68 miRNAs were done. As compared to the
563 interactions in the original data, we observed an average
of 390 miRNA-target interactions in the permutation tests,
targeting on average 330 genes. Both numbers were lower
compared with the original data; however, still 7.7% (overall
number of interactions) and, respectively, 39.5% (overall
number of genes) permutation runs exceeded the original re-
sults. Considering on the number of hubs, e.g., genes that are
targeted by at least five miRNAs, we found an average of 1.3
genes across the 10,000 permutation test runs. In none of
these runs, 14 genes were found to be targeted by at least
five miRNAs as for the original data, indeed the maximal
value was eight genes. Especially for the genes AGO1,
APP, and IL13, not a single miRNA targeting these genes
in the background distribution of 10,000 runs was observed.
Calculating the P value for each gene as fraction of permu-
tation tests with at least the same number of miRNAs target-
ing the respective gene (P value for those genes without any
hit were set to 1/10,000), all 14 genes remained significant at
an alpha level of 0.05 after adjustment for multiple testing.

3.4. Differentiation of AD from MCI and MS

In the previous section, we have described a successful
validation of miRNAs that distinguish between AD samples
and controls without known affection and similar age/gender
distribution. We also observed potential relevance of the

Fig. 3. AUC values in the screening and validation cohort for the 10 miR-
Base miRNAs from the initial signature. The dysregulation was concor-
dantly observed for all miRNAs (upregulation in controls are above AUC
values of 0.5—represented by the horizontal black line—and downregula-
tion vice versa). The effects were, however, frequently lower in the replica-
tion cohort. Abbreviations: miRNA, micro RNA; AUC, area under the
receiver operator characteristic curves.
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miRNAs to changes in the metabolism of patients. The spec-
ificity of respective changes for AD remained, however, un-
answered. We, thus, asked whether similar differences could
be likewise detected in other diseases. In further computa-
tions, we first differentiated between AD and MCI patients.
Again, we observed a substantial upregulation of miRNAs in
AD patients. The lowest P value was discovered for miR-
30c-5p. Here, 5836 readsmapped on average to AD samples,

whereas 2158 mapped to MCI samples. Correspondingly,
the adjusted P value was 4 ! 10213 and the AUC was 0.9.
In sum, we found 148 significant miRNAs after adjustment
for multiple testing remaining below the alpha level of
0.05. Of these, 119 were upregulated in AD and 29 were
downregulated in AD samples as compared to MCI. The
classification results for MCI versus AD again exceeded
the single marker performance; however, from the limited

Fig. 4. ROC curves of the two miRNAs with lowest P values miR-151a-3p and miR-17-3p, and the 200-marker AD signature. The blue shaded areas represent
the 95% confidence intervals computed by 1000 bootstrap samplings. Abbreviations: ROC, receiver operator characteristic; miRNA, micro RNA; AD, Alz-
heimer’s disease.
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MCI cohort, stable signatures can be derived just to a limited
extent.

BesidesMCI, we also compared the AD profiles to neuro-
inflammatory disorders. For MS (clinically isolated syn-
drome [CIS] as well as relapsing-remitting multiple
sclerosis [RRMS]), we achieved the highest performance.
Here, the AUC derived from the SVM model was 0.983
(95%CI, 0.969–0.997). Comparing AD to bothMS subtypes
CIS and RRMS, we did not observe significant differences in
classification performance.

To provide further evidence that the results of AD, unaf-
fected controls, and diseased control (MCI and MS) are
different, we performed PCA and plotted the first versus sec-
ond component as scatter plot (Fig. 6). Although the three
cohorts show an overlap, the tendency of different patterns
can be well observed, the unaffected controls are predomi-
nantly in the upper left part, the AD samples at the bottom,
and the MS samples in the upper right part. Another advan-
tage of our study is that for specific miRNAs, the patterns in
those three cohorts can be directly compared to each other.
Exemplarily, the two miRNAs differentiating between AD
and controls presented in Fig. 4 are shown as box plots in
Figs. 7A and B. For miR-151a-3p (adjusted ANOVA P value

of 6! 10212) and miR-17-3p (adjusted ANOVA P value of
3 ! 10211), the differences between AD and unaffected
controls can be observed. At the same time, diseased con-
trols show a similar pattern as the unaffected controls, indi-
cating that these miRNAs are specific for AD. On the other
hand, miR-363-3p (adjusted ANOVA P value of 1026) pre-
sented in Fig. 7C is not only dysregulated in AD versus con-
trols but also in MCI and MS against controls and, thus, not
specific for AD. In sum, the results demonstrate that AD pa-
tients can be well separated from matched controls with
similar age and gender distribution. Likewise, MCI patients
show characteristic profiles that deviate from AD patients’
profiles. Other neurologic disorders such as CIS and
RRMS reveal even larger differences from AD and control
profiles. Although a difference in the age of MS patients to
the AD patients may contribute to the substantial differences
in miRNA abundance, our results suggest that our signatures
are rather specific for AD.

4. Discussion

To provide evidence that miRNAs measured from body
fluids are reasonable disease markers, additional validation

Fig. 5. Core regulatory network. The middle of the network contains the 14 genes targeted by at least fivemiRNAs, which are ordered as circle around the target
genes. Abbreviation: miRNA, micro RNA.
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in independent cohorts has to be carried out. In the present
study, we compared results of a miRNA marker discovery
study on AD that has been performed on a US cohort with
a German validation cohort. Between both studies, we
observed a good concordance, 68 markers were significant
in both studies.

Of the original marker signature, we focused on the 10
miRNAs from the reference database miRBase [16], leaving
out the two novel candidates that deserve further investiga-
tion toward the question whether the molecules represent
actual miRNAs or are artifacts from the NGS procedure.

Of the miRNAs, some were dysregulated significantly in
both studies although the baseline level of miRNA between
the US and German patients varied. One example is an
miRNA from our original study: miR-1285-5p has average
normalized read count of 8.9 and 3.6 in AD and controls
samples in the United States cohort. In the German cohort,
normalized read counts were 21.6 and 15.6 in AD and con-
trols. This miRNAwas downregulated in AD samples from
United States and Germany; however, the absolute levels of
that miRNAwere higher in samples from Germany. Because
these variations may reflect actual changes in miRNA levels
but likewise sample handling may affect levels, especially
for lower abundant miRNAs, technologies with improved
quantification such as RT-PCR or immunoassay technology
are likely more suitable for routine application. Likewise,

different threshold values in miRNA abundance of individ-
uals from different ethnics groups could be reasonable.
With respect to our recently published immunoassay, we
observed that around 25 of the 68 miRNAs are expressed
in a sufficient manner to be above the detection limit of
the immunoassay, whereas the remaining 43 would be too
close to the detection limit of this amplification-free quanti-
fication approach. This together with the required degree of
multiplexing makes RT-PCR a more reasonable platform for
measuring the AD miRNAs in clinics as compared with our
immunoassay.

Using machine learning techniques, we were able to
distinguish well between AD patients and controls. Because
of the previously described bias, we performed the whole
classification procedure as cross-validation on the complete
data set.

An enrichment analysis highlighted target genes that are
controlled by the dysregulated miRNAs. Our analysis high-
lighted 14 genes that are targeted by at least five of the 68
miRNAs dysregulated in both cohorts: VEGFA, DICER1,
AGO1, PTEN, CDKN1A, APP, RB1, CCND1, CCND2,
WEE1, IL13, HMGA2, TNFRSF10B, and MYC. Many of
those are key players for AD such as Ab A4, or at least
described in the context of AD. Vascular endothelial growth
factor is known to be expressed in the brain of AD patients,
e.g., in frontal and parahippocampal cortex [17]. Thomas
et al. also report an increase of VEGF with disease severity.
Recently, it has been reported that exogenous Abs stimulate
normal adult human astrocytes to produce and secrete even
VEGF-A through calcium-sensing receptor–mediated
mechanism [18]. Beyond the expression in the brain, low
serum levels of VEGF are described to be associated with
AD [19].

In addition, the tumor-suppressor PTEN has been re-
ported to accumulate in Alzheimer neurofibrillary tangles
[20]. Specifically, PTEN, alters tau phosphorylation [21,22].

miR-26b, which has been already included in our previ-
ously published signature on downstream targets, has been
investigated. The known signaling cascades involve upre-
gulation of Rb1/E2F leading to substantial downstream
effects [23]. This miRNA was downregulated in blood of
AD patients in the screening and validation cohort, the de-
gree of downregulation was, however, marginal in the
replication (Fig. 3). Interestingly, this miRNA is described
to be upregulated in the brain of AD patients, showing the
opposite behavior than blood-borne patterns. Inverse regu-
lation of tissue and blood profiles has already been
observed, e.g., in the case of cancer miRNAs [24]. A
comprehensive PubMed analysis indicated several hundred
hits for nine of the 14 genes related to AD. A less obvious
example was Wee1, which is active in neurons of normal
brain and is less active in AD patients. It is postulated
that it promotes activation of Cdc2/cyclin B1 and, thus,
represents a mitotic regulator, contributing to neurodegen-
erative processes [25].

Fig. 6. PCA of miRNA expression in all 290 samples. The first and second
principal component (PC) for all samples is visualized as scatter plot. Green
dots are AD patients, orange dots are controls, and blue dots are MS/MCI
patients. The profiles overall show an overlap but a clear tendency of sam-
ples of the different cohorts clustering together can be observed, although
these two principal components contain only 25% of the overall data vari-
ance. Abbreviations: PCA, principal component analysis; miRNA, micro
RNA; AD, Alzheimer’s disease; MS, multiple sclerosis; MCI, mild cogni-
tive impairment.
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Fig. 7. Box plots for three miRNAs and the three cohorts AD (green), unaffected controls (blue), and MCI/MS (blue). The y-axis denotes the normalized NGS
read count for the miRNAs in the three cohorts. Although the first two miRNAs in panels (A) and (B) are dysregulated in AD and match in MS and controls, the
third example in panel (C) is upregulated in AD and MS samples. Abbreviations: miRNA, micro RNA; AD, Alzheimer’s disease; MS, multiple sclerosis; MCI,
mild cognitive impairment; NGS, next-generation sequencing.
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The core of our study was, however, to test whether the
initial miRNA signature from the screening cohort can be
replicated and beyond this, to compare the signature to other
diseases. To address the question whether the validated
signature is specific for AD patients, we compared the pro-
files also to MCI and MS patients. In both comparisons,
we observed significant miRNAs that let us distinguish be-
tween AD and the other two diseases. Although the prox-
imity of AD patients to MCI patients was closer as
compared with unaffected controls, we found larger differ-
ences from neuroinflammatory disorders. The different pro-
files between MCI and AD patients let us ask on significant
alterations in miRNA abundance depending on the disease
duration. In correlating the miRNA level to the disease dura-
tion of AD patients, we did, however, not observe a signifi-
cant influence. There are three reasons, the observed time
period may be too short, the observed cohort size is too small
to discover small changes in the abundance of single miR-
NAs, or there is indeed no significant correlation between
both variables. Similarly, we did not observe significant cor-
relation of medication to miRNA abundance. Although we
found a certain tendency for several miRNAs, no correlation
remained significant at an alpha level of 0.05 after adjust-
ment for multiple testing. As for the correlation to medica-
tion and disease duration, the correlation to other markers
may become significant if larger cohorts are tested.

5. Conclusion

In this study, we performed a blinded validation of a US
case-control study on AD with German patients and controls
that show comparable age and gender distribution. In gen-
eral, both cohorts showed a very substantial degree of
concordance. In this study, the medication of patients and
the duration of the disease had just a very limited influence
on the AD patients’ miRNA profiles. Increased cohorts are
required, however, to provide further evidence that miRNA
signatures are indeed not correlated to the disease duration
or therapy. Beyond distinguishing between AD patients
and unaffected controls, we also report differences in
miRNA abundance between AD, MCI, and MS patients.
Especially the comparison of AD and MCI patients may
contribute to the in-time detection of patients. Because small
sets of markers were sufficient to perform accurate diag-
nosis, a clinical application on established platforms such
as RT-PCR seems to be feasible.
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RESEARCH IN CONTEXT

1. Systematic review: We previously published an
article on Alzheimer micro RNAs (miRNAs) and a
systematic review on novel molecular Alzheimer
biomarkers. The result was that almost all novel
markers require additional validation.

2. Interpretation: Our findings suggest that miRNA sig-
natures can be well validated and may contribute to
in-time diagnosis of Alzheimer’s disease and on the
long term to improved patient care.

3. Future directions: The next reasonable step is the
validation of a cohort of around 1000 individuals us-
ing the markers that were significant in both
screening and validation study using another technol-
ogy such as RT-PCR.
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ABSTRACT

We present a human miRNA tissue atlas by deter-
mining the abundance of 1997 miRNAs in 61 tissue
biopsies of different organs from two individuals col-
lected post-mortem. One thousand three hundred
sixty-four miRNAs were discovered in at least one
tissue, 143 were present in each tissue. To define the
distribution of miRNAs, we utilized a tissue speci-
ficity index (TSI). The majority of miRNAs (82.9%) fell
in a middle TSI range i.e. were neither specific for sin-
gle tissues (TSI > 0.85) nor housekeeping miRNAs
(TSI < 0.5). Nonetheless, we observed many differ-
ent miRNAs and miRNA families that were predom-
inantly expressed in certain tissues. Clustering of
miRNA abundances revealed that tissues like several
areas of the brain clustered together. Considering -3p
and -5p mature forms we observed miR-150 with dif-
ferent tissue specificity. Analysis of additional lung
and prostate biopsies indicated that inter-organism
variability was significantly lower than inter-organ
variability. Tissue-specific differences between the
miRNA patterns appeared not to be significantly al-
tered by storage as shown for heart and lung tis-
sue. MiRNAs TSI values of human tissues were sig-
nificantly (P = 10−8) correlated with those of rats;
miRNAs that were highly abundant in certain hu-
man tissues were likewise abundant in according
rat tissues. We implemented a web-based repository

enabling scientists to access and browse the data
(https://ccb-web.cs.uni-saarland.de/tissueatlas).

INTRODUCTION

Knowing the expression and distribution of different
molecule classes in tissues is essential for the understand-
ing of both physiological and pathological mechanisms. The
gene expression atlas (1), hosted at the European Bioin-
formatics Institute, collects gene expression patterns under
different biological conditions in various organisms. Like-
wise, the Human Protein Atlas presents information on pro-
teomes in various tissues (2). For the class of small non-
coding nucleic acids, the so-called microRNAs or miRNAs,
there is a lack of up-to-date databases showing their tissue-
specific distribution. The first and as of now most com-
prehensive analysis of miRNA abundance in different tis-
sues has been reported by Landgraf et al. in 2007 (3). This
sequencing-based study reported 340 miRNAs in 26 organs.
We recently investigated the miRNA repertoire of different
blood cell types (4), already indicating a complex miRNA
repertoire strongly dependent on the considered cell types.
To improve the understanding of the miRNA abundance in
human tissues, we now profiled 1997 different mature miR-
NAs for 61 tissues. In contrast to the previous catalogue of
miRNAs in human tissues, we measured all miRNA pro-
files from only two different individuals to minimize inter-
individual variability. We selected an array-based analysis to
have a robust platform for determining the miRNA abun-
dance. The applied Agilent microarray technology has been
proven sensitive and, more important, reproducible in a re-
cent comprehensive platform comparison (5). Using this
technology, we achieved technical Pearson correlation co-
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efficients of between 0.97 and 1 for technical replicates in
previous studies.

Here, we first characterize technical stability of our ap-
proach before we describe variations in the abundance of
the miRNAs across tissues. To provide easy access to the
tissue atlas, we implemented a web-based repository that
also links results to important miRNA resources. This web
service is freely available online at https://ccb-web.cs.uni-
saarland.de/tissueatlas.

MATERIALS AND METHODS

Tissues and RNA extraction

Tissues analysed in this study originated from two male
bodies. Both cadavers were obtained as anatomical gift to
be dissected in a study of medicine under German law. The
first body was from a 65-year-old male patient, who suffered
from multiple myeloma, a cancer that forms in a type of
white blood cells (plasma cells). The body was stored at 4◦C
upon arrival at the anatomical institute and tissue samples
were collected the following day, i.e. 2 days post-mortem.
In total, we analysed 24 different tissues, i.e. adipocytes,
arachnoid mater, artery, colon, small intestine (ileum), dura
mater, brain, urinary bladder, skin, myocardium, bone (rib),
liver, lung, stomach, spleen, muscle, gall bladder, muscle fas-
cia, epididymis, intercostal nerve, kidney, thyroid, testis and
tunica albuginea of testis.

The second body was from a 59-year-old male individual,
who died a natural death. The body was frozen at −20◦C
after arrival at the anatomical institute and dissected af-
ter 3 weeks of storage. Autopsy showed no signs of can-
cer. As we aimed at increasing the resolution our tissue at-
las, we collected 37 samples including several sub-areas for
different organs, i.e. nine brain areas (grey matter, white
matter, frontal, temporal, occipital, nucleus caudatus, tha-
lamus, pituitary gland and cerebellum), dura mater, spinal
cord, nerve, artery, vein, myocard, muscle, lymph node, thy-
roid, esophagus, stomach, pancreas, duodenum, jejunum,
colon, liver, three kidney areas (kidney unspecified, medulla
and cortex), spleen, adrenal gland, prostate, testis, skin,
adipocyte, lung, pleura and bone marrow.

To assess the influence of RNA degradation originating
from different storage times of the tissue on the miRNA
profile, we used normal lung and normal heart tissue that
was stored in physiological salt solution at 4◦C for 1, 2, 3, 7
and 14 days, before RNA isolation. To understand short-
term effects on the miRNA pattern in a comprehensive
manner, we analysed lung tissue from another individual.
The following 16 time points were profiled: 0, 0.5, 1, 1.5, 2,
3, 4, 5, 6, 9, 12, 24, 36, 48, 72 and 96 h.

To estimate inter-individual variations, we exemplarily
performed in-depth analysis for lung tissues. For 16 normal
tissue biopsies from different individuals, the miRNA ex-
pression intensity was determined as for the two bodies and
the samples from the degradation analysis.

RNA isolation and integrity

RNA was isolated using the miRNeasy Mini Kit (Qia-
gen) and the Qiagen tissue lyser using 7 mm stainless steel
beads. Tissue samples were disrupted for 5 min 30 Hz (1800

oscillations/min) in Qiazol lysis reagent. Further purifica-
tion was done according to manufacturer’s instructions.
Concentration and purity was measured using NanoDrop
2000 (Thermo Scientific). RNA integrity was measured us-
ing Bioanalyzer RNA Nano Chip (Agilent). As expected for
autopsy samples, the RNA integrity values (RIN) ranged
between 1.8 and 2.7.

miRNA profiling

Microarray analysis was performed using SurePrint 8 ×
60K Human V19 miRNA microarrays (Agilent) that con-
tain 2007 miRNAs of miRBase V19 (http://www.mirbase.
org/), according to the manufacturer’s instructions for the
first corpse. For the second corpse, the most recent miR-
BAse v21 has been used and the analysis has been carried
out on 1997 human miRNAs present in both versions. In
brief, a total of 100 ng RNAs were processed using the
miRNA Complete Labeling and Hyb Kit to generate fluo-
rescently labelled miRNA. Microarrays were scanned with
the Agilent Microarray Scanner at 3 !m in double path
mode. Microarray scan data were further processed using
Agilent Feature Extraction software. The raw expression in-
tensity values are available for download at https://ccb-web.
cs.uni-saarland.de/tissueatlas. Since the normalization may
have an impact on the results, we performed all analyses on
the raw data, normalized data by quantile normalization
and by variance stabilizing normalization (6). For train-
ing the Variance Stabilized Normalization (VSN) model all
samples and all miRNAs were used. The detailed results
for the variance stabilizing normalization are provided in
the supplementary material. To account for negative values
(i.e. miRNAs that are not expressed, that may get a nega-
tive value due to background subtraction) a pseudo-count
has been added. All calculations have been carried out in R
version 3.0.2.

Tissue specificity index

To evaluate the variability of expression patterns, we calcu-
lated a tissue specificity index (TSI) for each miRNA anal-
ogously to the TSI ‘tau’ for mRNAs originally developed
by Yanai et al. (7). This specificity index is a quantitative,
graded scalar measure for the specificity of expression of a
miRNA with respect to different organs. The values range
from 0 to 1, with scores close to 0 represent miRNAs ex-
pressed in many or all tissues (i.e. housekeepers) and scores
close to 1 miRNAs expressed in only one specific tissue (i.e.
tissue-specific miRNAs). Specifically, the TSI for a miRNA
j is calculated as

tsi j =
∑N

i=1 (1 − xj,i )
N − 1

,

where N corresponds to the total number of tissues mea-
sured and xj,i is the expression intensity of tissue i normal-
ized by the maximal expression of any tissue for miRNA
j.

Hierarchical clustering of tissues

To estimate the proximity of profiles from different tissues,
hierarchical clustering analysis has been applied. To ac-
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count for the high dynamic range of miRNAs, clustering
has been performed on log expression intensities and miR-
NAs that are close to the background were removed. To
extend the cluster analysis, the 100 most variable miRNAs
have been selected. In each case, complete linkage hierar-
chical clustering using the Euclidian distance has been per-
formed.

Expression of miRNA families

For estimating the tissue specificity of miRNA families, we
extracted all miRNA families from the most recent miR-
Base version 21. For each miRNA precursor all mature
forms have been considered as family members, duplicated
mature miRNAs (e.g. coming from different precursors in
the same family) have been counted once in order to min-
imize a potential bias introduced by multiple precursors.
For discovering co-expressed miRNAs, Spearman correla-
tion of intensity values between all pairs of miRNAs has
been calculated. Network visualization has been performed
in Cytoscape.

Conservation of tissue specificity

To compare conserved tissue specificity in humans and rats,
we downloaded data from the Gene Expression Omnibus
(GEO) series GSE52754, containing expression profiles for
55 different rat tissues that have been measured using Ag-
ilent microarrays (8). To match miRNAs we extracted all
rat miRNA identifiers from the respective manuscript and
matched them via a 100% sequence match. For matching
miRNAs and matching tissues, we calculated and corre-
lated the tissue specificity indices. To minimize artefacts
introduced by normalization, we carried out all analyses
on raw data. Since this analysis only addresses the ques-
tion whether a miRNA is rather specific or a housekeeping
miRNA, we also correlated the human and rat expression
profiles using Spearman correlation.

Additional data from literature

In addition to the 44 tissue samples from the degradation
and reproducibility analysis, the 16 individual lung cancer
tissues and the 61 tissues from two bodies newly measured
for this study, we searched the literature for other stud-
ies where normal tissues have been profiled. In the GEO
(9), we found 1178 series related to miRNAs. Of these, 722
were from Homo sapiens. Excluding series with low sam-
ple count (below 20 samples), 302 series remained. After
excluding studies from body fluids such as serum, plasma,
blood or urine, we examined the remaining hits for avail-
ability of unaffected tissue measurements. The respective
data tables were downloaded from GEO and all IDs were
matched from the respective platform identifiers to miR-
Base Version 21 IDs. For the respective studies, raw and nor-
malized data (VSN and quantile normalized) were added
to our tissue atlas web repository. These include 43 samples
from 9 tissues and 463 miRNAs from GSE11879, 40 sam-
ples measured for 709 miRNAs from normal gastric tissue
from GSE23739, 48 benign prostate tissues measured for
480 miRNAs from series GSE54516 and 32 benign prostate

tissues measured for 825 miRNAs from series GSE76260.
The data have been used partially in the present manuscript,
all data are included in the web-based tissue atlas resource.

RESULTS

In this work, we present the draft of a human tissue
miRNome atlas. In the first part of the manuscript, we de-
scribe pre-analytics, investigating the general reproducibil-
ity of the miRNA profile measurements and also the effect
of storage of tissues on miRNA profiles. In the pre-analytics
consideration, we measured 44 tissue miRNomes. It is es-
sential to understand respective variability to understand
the biological variability of different tissue miRNomes.

In the second part, we describe the screening of all ma-
ture miRNAs from miRBase version 21 across different or-
gans of two male bodies. We investigated miRNA expres-
sion in 24 different tissues from the first body and in 37 dif-
ferent tissues from the second body. To determine the miR-
NAs abundance in the different tissues, we utilized a TSI
score, known from transcriptomics (7). Furthermore, we in-
vestigated the proximity of organs based on miRNA abun-
dances by hierarchical clustering and co-expression anal-
ysis. To estimate inter-individual variations, we measured
16 additional miRNomes from control lung tissues and ex-
tracted further data sets from the GEO.

To provide researchers access to the first version of the
miRNA tissue atlas, we implemented a web-based repos-
itory that is freely available at www.ccb.uni-saarland.de/
tissueatlas.

Reproducibility of miRNA patterns

An important factor for estimating the biological variabil-
ity is to understand the technical variability of the under-
lying profiling platform. Previously, we compared techni-
cal reproducibility of the two common platforms, microar-
rays (Agilent) and NGS (Illumina HiSeq) (10). In these ex-
periments, we discovered an increased variability of miR-
NAs dependent of the sequencing library preparation. Sim-
ilarly, we observed a strong bias based on the nucleotide
composition of miRNAs (11). Of 10 replicated Agilent mi-
croarray measurements of the same individual, we calcu-
lated 10 * 9/2 pair-wise correlations of technical replicates.
Minimal correlation was 0.998 and mean/median correla-
tion 0.999, highlighting the high degree of technical repro-
ducibility of the array platform. To translate these results
on our tissue atlas and determine technical reproducibility
of the array analysis, technical duplicates from nine ran-
domly selected tissue samples from the second body were
measured. The duplicates were processed at different days
and have been measured on different arrays, each. Hierar-
chical cluster analysis shows that the technical replicates al-
ways clustered together showing that the applied technology
was suited to provide reproducible results (Figure 1 shows
the heat map for quantile-normalized data, Supplementary
Figure S1 for VSN-normalized data). Altogether, we found
high correlations between these technical replicates with the
overall lowest correlations at 0.986 and 0.994 observed for
liver tissue and pleura, respectively. Highest correlation of
0.999 was reached for the brain samples.
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Figure 1. Hierarchical clustering of the 44 samples included in the stability and reproducibility study. Quantile normalized and log2 transformed expression
intensity values were used for clustering. The intensity values and distribution are presented in the upper left corner. In the present heat map, heart and
lung tissues cluster together on the right-hand side. Technical replicates (marked by ‘TR’ in the labels below the heat map) of other organs cluster together
in each case in the left-hand side. For VSN-normalized data the same representation is provided in Supplementary Figure S1.

Stability of miRNA patterns in tissues

Measuring tissues of corpses the storage time prior to RNA
extraction and a potential degradation of RNA may have
an influence on the profiles. We exemplarily investigated the
process for heart and lung tissue. Biopsies were taken from
two individuals and have been stored for 1, 2, 3, 7 and 14
days at 4◦C. Hierarchical cluster analysis shows that all lung
and all heart samples each cluster together (Figure 1; Sup-
plementary Figure S1). The duration of the storage was,
however, not reflected in the clustering pattern indicating
that a storage time between 1 and 14 days at 4◦C has a lim-
ited influence on the overall miRNA tissue pattern.

We also performed the analysis with more dense time in-
tervals within the first 3 days to understand short-term ef-
fects. For a lung tissue from a third individual 16 time points
between 0 and 96 h were profiled. These biopsies clustered
well together with the lung tissues from the second individ-

ual with storage time over 14 days. Again, no time curse
could be recognized in the clustering pattern.

Remarkably, the results presented above describe the
overall miRNA patterns. For single miRNAs still differ-
ences dependent on the storage could be observed. Thus,
we calculated the TSI for all lung tissues and for all tis-
sues in the pre-analytical study. With respect to lung tissues,
large TSI values mean in this case not tissue specific but
rather specific in one of the replicated measurements. We
thus expect that TSI values of miRNAs from the lung tis-
sue are low. Especially for five miRNAs we, however, calcu-
lated TSI values that are increased in lung tissue by at least
20%: hsa-miR-8069, hsa-miR-6821–5p, hsa-miR-4800–5p,
hsa-miR-6775–5p, hsa-miR-5001–5p. For all miRNAs, TSI
values from the pre-analytical step are summarized in Sup-
plementary Table S1.
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Frequency of miRNAs per tissue and tissue specificity of miR-
NAs

For each miRNA in each tissue, we determined its pres-
ence and frequency using the so-called present calls as de-
termined by Agilent Feature Extraction software. Out of
the 1997 different mature miRNAs, 633 (31.7%) were not
detected in any of the tested tissues by the applied microar-
ray technology. Out of the remaining 1364 miRNAs, 143
(10.5%) were found in all tissues. To present more compre-
hensive information on the tissue distribution of miRNAs,
we utilized the miRNA TSI analogously to the mRNA TSI
‘tau’ that has successfully been employed by Yanai et al. (7).
This index has a range of 0–1 with the score of 0 correspond-
ing to ubiquitously expressed miRNAs (i.e. ‘housekeepers’)
and a score of 1 for miRNAs that are expressed in a single
tissue (i.e. ‘tissue-specific’ miRNAs). We calculated TSI for
the 1364 miRNAs that have been detected in at least one
tissue sample. For each miRNA, we compared TSI for the
two bodies, for raw, quantile- and VSN-normalized data
(Supplementary Table S2). Using the quantile-normalized
data for the first body, 83.7% of all miRNAs showed an av-
erage abundance throughout the tissues with intermediate
TSI values ranging from 0.15 to 0.85 (Figure 2A, Supple-
mentary Figure S2A for VSN-normalized data). Only one
miRNA (miR-3960) was ubiquitously expressed with a TSI
< 0.15 and 222 miRNAs showed a highly tissue-specific ex-
pression with TSI > 0.85. For the second body, 88.8% of
all miRNAs showed intermediate TSI values; one miRNA
(miR-6089) showed a TSI < 0.15 and 152 miRNAs a TSI
> 0.85 (Figure 2B, Supplementary Figure S2B for VSN-
normalized data). The correlation of the VSN-normalized
TSI values with the quantile-normalized TSI values was
0.88 (P < 10−10).

The overall most tissue-specific miR-1–3p is presented
in Figure 3. For all 61 samples raw-, quantile- and VSN-
normalized expression intensities are presented as bar plot.
Respective bar plots for all miRNAs can be generated using
the online repository.

Clustering of tissue patterns and analysis of miRNA families

Beyond the analysis of single miRNAs, we determined the
overall similarity/dissimilarity of the miRNA pattern be-
tween the different tissues. We performed hierarchical clus-
tering of miRNAs and tissues using normalized expression
intensities. We found two major clusters, the first of which
containing mainly nervous system tissues and muscle tis-
sues from both bodies. In the second cluster, the organs
of the two individuals frequently did not cluster together
(Figure 4A). Since the large number of miRNAs used for
this clustering likely caused substantial noise, we restricted
the clustering analysis to the 100 miRNAs with the high-
est data variance (Figure 4B). Here, we found three main
clusters with the first one containing kidney, liver, stomach
and small intestine of both bodies. The second cluster ex-
clusively contained all brain tissue samples of both bodies
and nervous system related tissue, i.e. spinal cord and dura
mater. The third cluster contained thyroid, nerve, muscle,
myocardium and colon each of both bodies. Other organs
were found in different clusters, e.g. the lung samples and
the brain coverings dura mater and arachnoid mater. For

VSN-normalized data we observed a similar pattern, how-
ever, we found a stronger tendency of clustering of individu-
als in the different sub-clusters (Supplementary Figure S3).

To gain further insights into expression of tissue-specific
miRNAs, we performed clustering with the 25 miRNAs dis-
playing a TSI > 0.85 for both bodies in raw-, quantile- and
VSN-normalized data (Figure 5). We found several groups
of miRNAs with tissue-specific expression. In detail, we de-
tected high expression of miR-133b, miR-133a-3p, miR-1–
3p and miR-206 in both muscle samples and, with the ex-
ception of miR-206 also in both myocardial samples. Addi-
tionally, we found a cluster of four miRNAs specifically ex-
pressed in various brain tissues, i.e. miR-338–3p, miR-219a-
5p, miR-124–3p and miR-9–5p. Another group of miRNAs,
miR-507, miR-514a-3p and miR-509–5p was almost exclu-
sively expressed in the testis samples. Besides these miRNA
clusters, we also found single miRNAs that were expressed
in a highly tissue-specific manner, i.e. miR-122–5p, miR-7–
5p and miR-205–5p were each exclusively expressed in liver,
pituitary gland and skin, respectively.

Tissue specificity of miRNA families

To further determine to what extend miRNA families show
similar abundances in specific organs, we calculated the
TSI not only for single miRNAs but also for mature miR-
NAs inside each miRNA family. Out of 187 miRNA fam-
ilies from the miRBase with at least two family members,
we analysed 25 miRNA families with at least five mature
forms (Figure 6A; Supplementary Table S3). We found sev-
eral miRNA families with high TSI values including the
above-mentioned mir-378 family with most of the fam-
ily members showing a high abundance in muscle tissues
and the myocardium. Similarly, the mir-506 family with
18 family members showed generally a high abundance in
testis tissue while they were less expressed in other tissues.
Other families, such as the mir-449 family with five mem-
bers, did not show a common pattern in the different tis-
sues: MiR-449c-3p was expressed specifically in spleen tis-
sue, miR-449c-5p and -449b-5p in kidney and small intes-
tine, miR-449a in lung, kidney and brain and miR-449b-3p
in spleen. To extend this analysis we searched for miRNAs
co-expression patterns in specific tissues. We used a high
correlation cut-off and considered only miRNA-pairs with
Pearson correlation exceeding 0.95. Altogether, we identi-
fied 73 miRNA pairs with tissue co-expression. In addi-
tion to pair-wise interactions, we also found sub-networks
with at least four participants. The networks have been vi-
sualized using Cyto-Scape (Figure 6B). While we frequently
observed co-expression among mature members of specific
families (e.g. the mir-548 family), we also found correlations
of miRNAs from different miRNA families. For example,
miR-4312 was co-expressed with miRNAs from the let-7
family. Performing the same analysis with raw data, we de-
tected an increased number of co-expressions, but generally
confirmed the observation that has been based on the nor-
malized data.

Tissue specificity of -3p and -5p mature forms

We asked whether -3p and -5p mature forms of miRNAs
have different tissue specificity. To limit the bias of miR-
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Figure 2. Histogram plot for the frequency of TSI of miRNAs in different tissues. Panel A represents TSI of the first, panel B of the second body. The
vertical dotted lines correspond to the threshold originally proposed for defining housekeeping and specifically expressed miRNAs of <0.15 and >0.85.
The same representation for VSN-normalized data is presented in Supplementary Figure S2.

NAs that are annotated with only one mature form, we only
included those miRNAs that have two mature forms an-
notated and carried out the analyses in a paired manner
(41% of the 1364 mature miRNAs were included). First,
we investigated whether -3p or -5p mature forms are overall
higher expressed. For both quantile- and VSN-normalized
data, we calculated significantly higher expression of the -
5p mature forms. The effects in VSN exceeded the quantile-
normalized effects. Mature -5p forms were on average 21%
higher expressed as compared to -3p forms (paired t-test P-
value of 3.6×10−10). To estimate whether the two mature
forms are more or less specific for tissues, we calculated and
compared the TSI values for the -3p and -5p forms. For
both, TSI values based on VSN- and quantile-normalized
data, we did not found significant differences between -3p
and -5p forms (P > 0.5 in both cases). Having a detailed
look at single miRNAs, we discovered that in all cases where
-3p and -5p mature forms were tissue specific independent
on the normalization technique the tissue patterns matched.
The best matching profiles were found for hsa-miR-140,
hsa-miR-378a, hsa-miR-509, hsa-miR-122, hsa-miR-124,
hsa-miR-192 and hsa-miR-455. Only for one miRNA, miR-
150, no significant correlation for -5p and -3p mature form
was calculated (Supplementary Figure S4). The -3p form
was specific for pancreas and the -5p form for stomach. All
TSI values for -3p and -5p mature forms of quantile- and
VSN-normalized data are available in Supplementary Ta-
ble S4.

Inter-individual variations

In the previous analyses, we suggested that miRNAs are tis-
sue specific. From two bodies it is impossible to extrapolate

inter-individual variations within specific organs. In a first
approach we searched for miRNAs that are overall higher
or lower in all tissues of one of the two bodies, independent
of the normalization technique. Two miRNAs, hsa-miR-
548n and hsa-miR-548ap-5p, fulfilled these stringent crite-
ria. Although these (and similarly differentially abundant
miRNAs between both individuals) miRNAs had low TSI
values and are not considered tissue specific the differences
emphasize the importance of incorporating inter-individual
variations.

We exemplarily analysed 16 lung tissue biopsies of 16 dif-
ferent individuals. Here, we expect miRNAs to be more ho-
mogenously expressed, leading to overall lower TSI values.
For the quantile- and VSN-normalized data, we calculated
significantly decreased TSI values in the individuals (P <
10−16). The respective TSI values for biological replicates
of lung tissue and the two bodies are presented in Supple-
mentary Figure S5A (quantile normalized) and 5B (VSN
normalized). These figures also indicate that few miRNAs
have higher TSI in lung as compared to the overall TSI,
i.e. variations between organs are smaller than variations
between individuals. Inspecting the respective miRNAs, we
found that they usually were specific for other organs than
the lung and expressed to a very moderate limit in the lung.
Here, already small variations lead to artificially high TSI
values.

As the second example we downloaded expression values
from 32 prostate tissues from the GEO (not affected tissues
as part of a case-control cancer study, GSE76260). The TSI
values were calculated for quantile- and VSN-normalized
intensity values. Only the 625 miRNAs that were included
in both studies were considered. In this analysis the varia-
tions between individuals were even lower as compared to
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Figure 3. Bar plots for all 61 samples for miR-1–3p, the miRNA with highest overall TSI in the first and second body. The vertical dashed line separates
the first from the second body. TSI values for both bodies are highlighted in the figure. The miRNA is high expressed in muscle and myocardium. Raw-,
quantile- and VSN-normalized expression intensities for this miRNA match well across all different tissues.

the variations between organs. Again, TSI values were sig-
nificantly lower for prostate tissue (P < 10−16). The scatter
plots are analogously to the lung tissues presented in Sup-
plementary Figure S6. Also for the other tissues extracted
from the GEO, which are also available on the tissue atlas
web resource, lower TSI values were observed. In sum our
results thus indicate that the inter-individual variations are
smaller as compared to inter-organ variability.

Homology of tissue specificity in humans and rats

To addressed the question to what extend a tissue-specific
abundance of the miRNA pattern is conserved between hu-
man and rodents, we matched the data of our study to data

published in a recent study, which used the same miRNA
platform (Agilent) (8). From all miRNAs expressed in our
tissue collection, 230 matched in sequence identically be-
tween human and rat. Of the tissues included in the human
and rat studies, 42 organs could be matched. For all these
miRNAs and organs, we calculated the TSI values in human
and rat, showing an overall correlation of 0.362 (P-value of
9 × 10−8). To determine the significance of this finding, we
additionally performed 1 million permutation tests, which
showed an average correlation value of 0. While these results
indicate an overall matching of miRNA abundances in hu-
mans and rats, the TSI does not acknowledge the origin of
the miRNAs, i.e. a value of 1 for a rat miRNA may indicate
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Figure 4. Hierarchical clustering of all tissues in both bodies. Log2 transformed quantile normalized intensity values were used for clustering. The intensity
value distribution is shown in the upper right corner of the figures. Panel A shows significantly expressed miRNAs, while panel B focuses on the 100 miRNAs
with overall highest data variance. The respective representation for VSN-normalized data is presented in Supplementary Figure S3.
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Figure 5. Heat map for the 25 miRNAs that have TSI values of >0.85 in both bodies. Log2 transformed expression intensities of quantile normalized
expression values are presented. To facilitate the interpretation of specific miRNAs in organs or organ groups low expressed miRNAs were greyed out (see
also color distribution scheme in the upper left corner). The analysis highlights tissue-specific miRNAs that are exemplarily presented on the right-hand
side of the plot, such as hsa-miR-1–3p that has already been described in Figure 3 as most specific miRNA overall.

specificity for spleen and for the same miRNA specificity for
brain in humans. However, the overall correlation of the ex-
pression values of rat and human miRNAs was 0.361 (P <
10−16), indicative of a significant matching of human and rat
expression profiles. Similar to the results for humans in Fig-
ure 5, we clustered the miRNAs with high TSI values in hu-
man and rat. Altogether, we focused on very specific miR-
NAs: 54 miRNAs with TSI values exceeding 0.9 were con-
sidered. The resulting heat map where maximal rat and hu-
man miRNA expression was set to 100% to make both data
sets comparable to each other is presented in Figure 7. In
this analysis we did not observe a predominant clustering in
humans and rats but a strong tendency of organs to cluster
together. Examples of directly matching pairs include the
spleen, myocardium, muscle, pancreas, kidney, liver, stom-
ach, skin, brain or spinal cord. The miRNAs in this heat
map matched the specific miRNAs in Figure 5 very well
such as miR-133a-3p, and miR-133b for muscle and my-
ocardium or miR-9–5p, miR-219a-5p, miR-7–5p and miR-

124–3p for brain and spinal cord. Bar plots comparing each
miRNA directly for specificity in tissues of rat and human
are provided in the supplementary material.

DISCUSSION

As miRNAs emerge as important regulators of protein ex-
pression during tissue development and homeostasis, there
is an increasing need for a standardized atlas of miRNA ex-
pression in multiple human tissues. Although there is am-
ple evidence for differential miRNA expression in different
human tissues, the majority of studies investigate differen-
tial expression in only one organ/tissue. Due to the differ-
ent identification methods and normalization strategies, the
results of these studies are not easily comparable limiting
their value for comparison of miRNA expression in differ-
ent tissues. The optimal human miRNA tissue atlas would
be based on different fresh tissues each obtained from the
same donor; different donors should be of different age and
gender both of which are known to influence the miRNA
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Figure 6. A: Average and standard deviation of TSI value in different miRNA families. For each miRNA family with at least five members the mean and
standard deviation of all family members TSI is presented as bar plot. Families are sorted with decreasing average tissue specificity from left to right.
Highest tissue specificity was observed for the miR-378 family, predominantly being specific for myocardium and muscle. The number of mature family
members is shown above the columns with balloons, representing the family size. B: Co-expression network of miRNAs. Each miRNA pair connected by
an edge has co-expression across all samples with Spearman correlation coefficient above 0.95.

pattern (12). As this ideal scenario is not possible in human
studies, fresh biopsy material could be used for miRNA iso-
lation with the advantage of yielding high-quality RNA.
There are, however, several disadvantages: (i) biopsies will
be mostly taken from patients with affected organs, (ii) high
inter-individual differences can mask tissue-specific differ-
ences of miRNA abundances, (iii) a bias is likely introduced
by multiple centres that are involved in tissue collections
and (iv) samples of vital organs, e.g. thalamus, spinal cord
or cerebellum, are not available. Alternatively, miRNAs can
be isolated from tissues collected from the same individu-
als upon autopsy. The advantage of the latter approach is
the availability of multiple tissues from the same individu-

als, even from vital organs, with the disadvantage of RNA
degradation in the samples due to the storage duration of
the body and the advanced age or the disease status of the
body donors. In context of our tissue atlas, the main ques-
tion is whether the differences in the abundance of miRNAs
induced by post-mortem RNA degradation, which is dif-
ferent from in-vitro RNA degradation by UV light or heat,
are higher than the differences between the tissues profiled.
There is scant evidence for extended post-mortem stability
of individual miRNAs (13,14). In case of whole miRNA tis-
sue profiles, Ibberson et al. found that RNA degradation
due to prolonged inadequate tissue storage has a random ef-
fect on miRNAs and compromises the reliability of miRNA
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Figure 7. Conservation of tissue-specific expression of miRNAs in human and rat. Matching miRNAs (100% matching of mature miRNA sequence) from
organ expression in rats and humans were calculated. For each miRNA in rats and humans the TSI was calculated and highly specific miRNAs were
clustered. Since overall expression in humans and rats varied, the maximal intensity of each miRNA in the two organs was set to 100% and all other
miRNAs were linearly scaled. All miRNAs with below 10% expression of maximal intensity are shown in grey to facilitate data interpretation (see also
colour gradient presented in the upper right corner). On the right-hand side the human/rat miRNA identifiers are shown, below the heat map the matched
tissues are presented (HU for human; RA for rat). For rat tissues the average intensity of replicated measurements is presented.

profiles, generating false positive deregulated miRNAs (15).
But they also clearly state that ‘even samples with the most
degraded RNAs still preserve a tissue-specific miRNA sig-
nature’. This finding is in line with our observations in the
present study. For lung and heart tissue we investigated
short- and long-term degradation, highlighting an overall
limited impact on the tissue specificity of miRNA profiles.
Only very few miRNAs were affected at all. Given the data
from two organs, we however cannot exclude the possibil-
ity that some tissue-specific miRNAs might be affected by
degradation of the sample. We are also aware that the au-
topsy samples of the two male individuals provide only a
snapshot of the full variability of miRNA expression. While
we aim at adding more full body profiles we supported the
data in the present study by tissue collections extracted from
the literature (e.g. gastric and prostate tissues) and by own
measurements (lung tissue).

We used a microarray platform for miRNA expression
detection since this platform shows a high reproducibility
as evidenced by the miRQC study (5). In our study, analysis
of technical replicates of nine samples processed in different
batches reached high correlation values above 0.986 for all
samples. In previous studies, we observed a substantial bias
introduced in Next Generation Sequencing (NGS) data by
sample preparation of blood samples (10). However, NGS
analysis would enable to detect presently unknown miR-
NAs as well miRNAs iso-forms that have demonstrated to
target biological pathways in a cooperative manner (16). A
key challenge with microarray data is normalization. Many
techniques that are frequently applied such as variance sta-
bilizing normalization or quantile normalization can have
a substantial influence on the results. Quantile normaliza-
tion e.g. assumes an overall similar distribution of all miR-
NAs. We thus performed the relevant analyses on raw data,
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quantile- and VSN normalization. Irrespective of the nor-
malization technique we found higher TSI values for miR-
NAs as, e.g. known from mRNAs (7). This result suggests
that miRNA expression is more tissue specific as compared
to mRNA expression.

The, as of now, most comprehensive study on tissue-
specific miRNAs in humans was published by Landgraf et
al. in 2007 (3). They sequenced 256 small RNA libraries
from 26 different organ systems and cell types of humans
and rodents, with ∼1000 clone each. The human samples in-
cluded normal samples from 16 tissues most of them brain
and reproductive tissues. They identified 340 mature hu-
man miRNAs including 33 novel miRNAs not listed in the
miRBase version 9.1, which was the current version at the
time of the study (17). For canonical miRNAs they found
a high concordance of tissue-specific expression in humans
and rodents. When we compared our data to a data set on
55 different rat tissues available at GEO database (8), we
could confirm conserved tissue-specific expression of sev-
eral miRNAs, including miR-133b, miR-124 and miR-9.
Amongst others, Landgraf et al. detected tissue-specific ex-
pression of miR-122 in liver, of miR-9, miR-124 and miR
128a/b in brain, of miR-7, miR-375, miR-141 and miR-
200a in pituitary gland and of miR-142, miR-144, miR-
150, miR-155 and miR-223 in hematopoietic cells. Over-
all, our results correlated well with this data, confirming
specific expression of miR-122, miR-9, miR-124 and miR-
7 in the respective organs. Consistent with Landgraf‘s re-
sults, we found miR-122–5p as highest expressed miRNA
in the liver of both bodies. Our study, however, also iden-
tified low expression of miR-122–5p in spleen, gall blad-
der and veins. MiR-124 (miR-124–3p) was identified as the
third most specific miRNA in the nervous system by Land-
graf et al. We observed expression of this miRNA in dif-
ferent areas of the brain but not in other tissues. For miR-
144, we found highest expression in vein and spleen, consis-
tent with the assumption of residual hematopoietic cells in
these samples; additionally, we found high expression of this
miRNA in thyroid. Of note, miR-144 has been found highly
expressed in normal thyroid and downregulated in papil-
lary thyroid carcinoma (18). We also found high expression
of miR-1–3p, miR-133a-3p, miR-133b and miR-206 in my-
ocard and muscle. These miRNAs are known as myomiRs
that regulate key genes in muscle development (19,20). Ad-
ditionally, we detected a highly specific expression of miR-
205–5p, miR-514a-3p and miR-192–5p in skin, testis and
colon samples of one of the bodies, respectively. MiR-205–
5p that is highly expressed in melanocytes and downregu-
lated in melanoma is inverse correlated with melanoma pro-
gression (21). MiR-514a-3p belongs to the miR-506 fam-
ily; the mouse orthologue of miR-506, mmu-201, has been
shown to be specifically expressed in reproductive tissues
(3). A significant decrease in expression of miR-192–5p in
colorectal cancer compared to normal mucosa has been re-
ported (22).

The knowledge of the expression pattern of miRNAs in
different tissues is essential for understanding normal de-
velopment and disease development of the respective tis-
sue. In addition, knowing the tissues that express specific
miRNAs helps to develop a miRNA found in whole blood
or serum into a biomarker for a specific disease. Elevated

serum levels of liver-specific miR-122 have been detected in
patients with drug induced liver injury, steatosis, hepatitis-B
and -C infections and in patients with hepatocellular carci-
noma (23–26). Elevated levels of circulating myomiRs, i.e.
miR-1, miR-206 and miR-133a/b, have been proposed as
biomarker for heart failure and different forms of muscle
dystrophy, but are also elevated after half-marathon run
(27–29).

In summary, we provide an atlas of miRNA expression
in multiple human tissues. This atlas can be used as starting
point for elucidation of the role of miRNAs in tissue devel-
opment and tissue-specific diseases.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENT

We acknowledge the support of Siemens Healthcare.

FUNDING

Saarland University and Siemens Healthcare. Funding
for open access charge: Saarland University and Siemens
Healthcare; funded in part by FP7 project BestAgeing.
Conflict of interest statement. None declared.

REFERENCES
1. Petryszak,R., Burdett,T., Fiorelli,B., Fonseca,N.A.,

Gonzalez-Porta,M., Hastings,E., Huber,W., Jupp,S., Keays,M.,
Kryvych,N. et al. (2014) Expression atlas update–a database of gene
and transcript expression from microarray- and sequencing-based
functional genomics experiments. Nucleic Acids Res., 42, D926–D932.

2. Ponten,F., Jirstrom,K. and Uhlen,M. (2008) The human protein
atlas–a tool for pathology. J. Pathol., 216, 387–393.

3. Landgraf,P., Rusu,M., Sheridan,R., Sewer,A., Iovino,N., Aravin,A.,
Pfeffer,S., Rice,A., Kamphorst,A.O., Landthaler,M. et al. (2007) A
mammalian microRNA expression atlas based on small RNA library
sequencing. Cell, 129, 1401–1414.

4. Leidinger,P., Backes,C., Meder,B., Meese,E. and Keller,A. (2014)
The human miRNA repertoire of different blood compounds. BMC
Genomics, 15, 474.

5. Mestdagh,P., Hartmann,N., Baeriswyl,L., Andreasen,D., Bernard,N.,
Chen,C., Cheo,D., D’Andrade,P., DeMayo,M., Dennis,L. et al.
(2014) Evaluation of quantitative miRNA expression platforms in the
microRNA quality control (miRQC) study. Nat. Methods, 11,
809–815.

6. Huber,W., von Heydebreck,A., Sultmann,H., Poustka,A. and
Vingron,M. (2002) Variance stabilization applied to microarray data
calibration and to the quantification of differential
expression. Bioinformatics, 18(Suppl. 1), S96–S104.

7. Yanai,I., Benjamin,H., Shmoish,M., Chalifa-Caspi,V., Shklar,M.,
Ophir,R., Bar-Even,A., Horn-Saban,S., Safran,M., Domany,E. et al.
(2005) Genome-wide midrange transcription profiles reveal
expression level relationships in human tissue specification.
Bioinformatics, 21, 650–659.

8. Minami,K., Uehara,T., Morikawa,Y., Omura,K., Kanki,M.,
Horinouchi,A., Ono,A., Yamada,H., Ohno,Y. and Urushidani,T.
(2014) miRNA expression atlas in male rat. Sci. Data, 1, 140005.

9. Edgar,R., Domrachev,M. and Lash,A.E. (2002) Gene Expression
Omnibus: NCBI gene expression and hybridization array data
repository. Nucleic Acids Res., 30, 207–210.

10. Backes,C., Leidinger,P., Altmann,G., Wuerstle,M., Meder,B.,
Galata,V., Mueller,S.C., Sickert,D., Stahler,C., Meese,E. et al. (2015)
Influence of next-generation sequencing and storage conditions on
miRNA patterns generated from PAXgene blood. Anal. Chem., 87,
8910–8916.



Nucleic Acids Research, 2016, Vol. 44, No. 8 3877

11. Backes,C., Sedaghat-Hamedani,F., Frese,K., Hart,M., Ludwig,N.,
Meder,B., Meese,E. and Keller,A. (2016) Bias in high-throughput
analysis of miRNAs and implications for biomarker studies. Anal.
Chem., 88, 2088–2095.

12. Meder,B., Backes,C., Haas,J., Leidinger,P., Stahler,C., Grossmann,T.,
Vogel,B., Frese,K., Giannitsis,E., Katus,H.A. et al. (2014) Influence
of the confounding factors age and sex on microRNA profiles from
peripheral blood. Clin. Chem., 60, 1200–1208.

13. Nagy,C., Maheu,M., Lopez,J.P., Vaillancourt,K., Cruceanu,C.,
Gross,J.A., Arnovitz,M., Mechawar,N. and Turecki,G. (2015) Effects
of postmortem interval on biomolecule integrity in the brain. J.
Neuropathol. Exp. Neurol., 74, 459–469.

14. Lv,Y.H., Ma,K.J., Zhang,H., He,M., Zhang,P., Shen,Y.W., Jiang,N.,
Ma,D. and Chen,L. (2014) A time course study demonstrating
mRNA, microRNA, 18S rRNA, and U6 snRNA changes to estimate
PMI in deceased rat’s spleen. J. Forensic Sci., 59, 1286–1294.

15. Ibberson,D., Benes,V., Muckenthaler,M.U. and Castoldi,M. (2009)
RNA degradation compromises the reliability of microRNA
expression profiling. BMC Biotechnol., 9, 102.

16. Cloonan,N., Wani,S., Xu,Q., Gu,J., Lea,K., Heater,S., Barbacioru,C.,
Steptoe,A.L., Martin,H.C., Nourbakhsh,E. et al. (2011) MicroRNAs
and their isomiRs function cooperatively to target common biological
pathways. Genome Biol., 12, R126.

17. Griffiths-Jones,S., Grocock,R.J., van Dongen,S., Bateman,A. and
Enright,A.J. (2006) miRBase: microRNA sequences, targets and gene
nomenclature. Nucleic Acids Res., 34, D140–D144.

18. Swierniak,M., Wojcicka,A., Czetwertynska,M., Stachlewska,E.,
Maciag,M., Wiechno,W., Gornicka,B., Bogdanska,M., Koperski,L.,
de la Chapelle,A. et al. (2013) In-depth characterization of the
microRNA transcriptome in normal thyroid and papillary thyroid
carcinoma. J. Clin. Endocrinol. Metab., 98, E1401–E1409.

19. Callis,T.E., Chen,J.F. and Wang,D.Z. (2007) MicroRNAs in skeletal
and cardiac muscle development. DNA Cell Biol., 26, 219–225.

20. Thum,T., Catalucci,D. and Bauersachs,J. (2008) MicroRNAs: novel
regulators in cardiac development and disease. Cardiovasc. Res., 79,
562–570.

21. Liu,S., Tetzlaff,M.T., Liu,A., Liegl-Atzwanger,B., Guo,J. and Xu,X.
(2012) Loss of microRNA-205 expression is associated with
melanoma progression. Lab. Invest., 92, 1084–1096.

22. Karaayvaz,M., Pal,T., Song,B., Zhang,C., Georgakopoulos,P.,
Mehmood,S., Burke,S., Shroyer,K. and Ju,J. (2011) Prognostic
significance of miR-215 in colon cancer. Clin. Colorectal Cancer, 10,
340–347.

23. Akamatsu,S., Hayes,C.N., Tsuge,M., Miki,D., Akiyama,R., Abe,H.,
Ochi,H., Hiraga,N., Imamura,M., Takahashi,S. et al. (2015)
Differences in serum microRNA profiles in hepatitis B and C virus
infection. J. Infect., 70, 273–287.

24. Krauskopf,J., Caiment,F., Claessen,S.M., Johnson,K.J., Warner,R.L.,
Schomaker,S.J., Burt,D.A., Aubrecht,J. and Kleinjans,J.C. (2015)
Application of high-throughput sequencing to circulating
microRNAs reveals novel biomarkers for drug-induced liver injury.
Toxicol. Sci., 143, 268–276.

25. Pirola,C.J., Fernandez Gianotti,T., Castano,G.O., Mallardi,P., San
Martino,J., Mora Gonzalez Lopez Ledesma,M., Flichman,D.,
Mirshahi,F., Sanyal,A.J. and Sookoian,S. (2015) Circulating
microRNA signature in non-alcoholic fatty liver disease: from serum
non-coding RNAs to liver histology and disease pathogenesis. Gut,
64, 800–812.

26. Xu,J., Wu,C., Che,X., Wang,L., Yu,D., Zhang,T., Huang,L., Li,H.,
Tan,W., Wang,C. et al. (2011) Circulating microRNAs, miR-21,
miR-122, and miR-223, in patients with hepatocellular carcinoma or
chronic hepatitis. Mol. Carcinog., 50, 136–142.

27. Akat,K.M., Moore-McGriff,D., Morozov,P., Brown,M., Gogakos,T.,
Correa Da Rosa,J., Mihailovic,A., Sauer,M., Ji,R., Ramarathnam,A.
et al. (2014) Comparative RNA-sequencing analysis of myocardial
and circulating small RNAs in human heart failure and their utility as
biomarkers. Proc. Natl Acad. Sci. USA, 111, 11151–11156.

28. Gomes,C.P., Oliveira-Jr,G.P., Madrid,B., Almeida,J.A., Franco,O.L.
and Pereira,R.W. (2014) Circulating miR-1, miR-133a, and miR-206
levels are increased after a half-marathon run. Biomarkers, 19,
585–589.

29. Cacchiarelli,D., Legnini,I., Martone,J., Cazzella,V., D’Amico,A.,
Bertini,E. and Bozzoni,I. (2011) miRNAs as serum biomarkers for
Duchenne muscular dystrophy. EMBO Mol. Med., 3, 258–265.



RESEARCH Open Access

cPAS-based sequencing on the BGISEQ-500
to explore small non-coding RNAs
Tobias Fehlmann1, Stefanie Reinheimer3, Chunyu Geng2*, Xiaoshan Su2, Snezana Drmanac2,4, Andrei Alexeev2,4,
Chunyan Zhang2, Christina Backes1, Nicole Ludwig3, Martin Hart3, Dan An2, Zhenzhen Zhu2, Chongjun Xu2,4,
Ao Chen2, Ming Ni2, Jian Liu2, Yuxiang Li2, Matthew Poulter2, Yongping Li2, Cord Stähler1, Radoje Drmanac2,4,
Xun Xu2*, Eckart Meese3 and Andreas Keller1*

Abstract

Background: We present the first sequencing data using the combinatorial probe-anchor synthesis (cPAS)-based
BGISEQ-500 sequencer. Applying cPAS, we investigated the repertoire of human small non-coding RNAs and
compared it to other techniques.

Results: Starting with repeated measurements of different specimens including solid tissues (brain and heart) and
blood, we generated a median of 30.1 million reads per sample. 24.1 million mapped to the human genome and
23.3 million to the miRBase. Among six technical replicates of brain samples, we observed a median correlation of 0.
98. Comparing BGISEQ-500 to HiSeq, we calculated a correlation of 0.75. The comparability to microarrays was
similar for both BGISEQ-500 and HiSeq with the first one showing a correlation of 0.58 and the latter one
correlation of 0.6. As for a potential bias in the detected expression distribution in blood cells, 98.6% of HiSeq reads
versus 93.1% of BGISEQ-500 reads match to the 10 miRNAs with highest read count. After using miRDeep2 and
employing stringent selection criteria for predicting new miRNAs, we detected 74 high-likely candidates in the cPAS
sequencing reads prevalent in solid tissues and 36 candidates prevalent in blood.

Conclusions: While there is apparently no ideal platform for all challenges of miRNome analyses, cPAS shows high
technical reproducibility and supplements the hitherto available platforms.

Keywords: Next-generation sequencing, miRNA, Biomarker discovery, BGISEQ

Background
Currently, high-throughput analytical techniques are
massively applied to further the understanding of the
non-coding transcriptome [1]. Still, the full complexity
of non-coding RNAs is only partially understood. One
class of well-studied non-coding RNAs comprises small
oligonucleotides, so-called miRNAs [2, 3].
Among the techniques most commonly used for

miRNA profiling are microarrays, RT-qPCR, and next-
generation sequencing (NGS), also referred to as high-
throughput sequencing (HTS). An excellent review on
the different platforms and a cross-platform comparison
has been recently published [4]. A detailed examination

of technologies, however, frequently reveals a bias. One
reason for the respective bias is the ligation step, as, e.g.,
reported by Hafner and co-workers [5]. For example, the
quantification of miRNAs differs between NGS and
microarrays as it is dependent on base composition [6].
Especially, the guanine and uracil content of a miRNA
seems to influence the abundance depending on the
platform used. A substantial strength of NGS is the abil-
ity to support the completion of the non-coding tran-
scriptome. Unlike microarrays and RT-qPCR, NGS
allows the discovery of novel miRNA candidates. To this
end, different algorithms have been implemented, with
miRDeep being one of the most popular ones [7]. A sub-
stantial part of small RNA sequencing data has been
obtained using HiSeq and MiSeq platforms (Illumina)
based on stepwise sequencing by polymerase on DNA
microarrays prepared by bridge PCR [8], as well as the
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IonTorrent systems from Thermo Fisher Scientific using
a different type of polymerase-based stepwise sequencing
on micro-bead arrays generated by emulsion PCR, the
first method proposed for making microarrays for mas-
sively parallel sequencing [9]. Another approach is the
ligase-based stepwise sequencing also using micro-bead
arrays, applied for example by ThermoFisher Scientific’s
SOLiD sequencing platform, and which has also been
used to analyze and present novel miRNAs [10].
In the current study, we applied the new combinatorial

probe-anchor synthesis (cPAS)-based BGISEQ-500 se-
quencing platform that combines DNA nanoball (DNB)
nanoarrays [11] with stepwise sequencing using poly-
merase. An important advantage of this technique com-
pared to the previously mentioned sequencing systems is
in that no PCR is applied in preparing sequencing arrays.
Applying cPAS, we investigated the human non-coding
transcriptome. We first evaluated the reproducibility of
sequencing on standardized brain and heart samples,
then compared the performance to Agilent’s microarray
technique and finally evaluated blood samples. Using the
web-based miRNA analysis pipeline miRmaster and the
tool novoMiRank [12], we finally predicted 135 new
high-likely miRNA candidates specific for tissue and 35
new miRNA candidates specific for blood samples.

Methods
Samples
In this study, we examined the performance of three
sample types using three techniques for high-throughput
miRNA measurements (Illumina’s HiSeq sequencer, Agi-
lent’s miRBase microarrays, and BGI’s BGISEQ-500 se-
quencing system, see details below). The three
specimens were standardized HBRR sample ordered
from Ambion (catalog number AM6051) and UHRR
sample ordered from Agilent (catalog number 740000).
UHRR and HBRR samples were measured in two and
six replicates, respectively. As third sample type, we used
PAXGene blood tubes. Here, two healthy volunteers’
blood samples were collected and miRNAs were ex-
tracted using PAXgene Blood RNA Kit (Qiagen) accord-
ing to manufacturer’s protocol. The study has been
approved by the local ethics committee.

Next-generation sequencing using BGISEQ-500
We prepared the libraries starting with 1 μg total RNA
for each sample. Firstly, we isolated the microRNAs
(miRNA) by 15% urea-PAGE gel electrophoresis and cut
the gel from 18 to 30 nt, which corresponds to mature
miRNAs and other regulatory small RNA molecules.
After gel purification, we ligated the adenylated 3′
adapter to the miRNA fragment. Secondly, we used the
RT primer with barcode to anneal the 3′ adenylated
adapter in order to combine the redundant unligated 3′

adenylated adapter. Then, we ligated the 5′ adapter and
did reverse transcript (RT) reaction. After cDNA first
strand synthesis, we amplified the product by 15 cycles.
We then carried out the second size selection operation
and selected 103–115 bp fragments from the gel. This
step was conducted in order to purify the PCR product
and remove any nonspecific products. After gel purifica-
tion, we quantified the PCR yield by Qubit (Invitrogen,
Cat No. Q33216) and pooled samples together to make
a single strand DNA circle (ssDNA circle), which gave
the final miRNA library.
DNA nanoballs (DNBs) were generated with the ssDNA

circle by rolling circle replication (RCR) to enlarge the
fluorescent signals at the sequencing process as previously
described [11]. The DNBs were loaded into the patterned
nanoarrays and single-end read of 50 bp were read
through on the BGISEQ-500 platform for the following
data analysis study. For this step, the BGISEQ-500 plat-
form combines the DNA nanoball-based nanoarrays [11]
and stepwise sequencing using polymerase, as previously
published [13–15]. The new modified sequencing ap-
proach provides several advantages, including among
others high throughput and quality of patterned DNB
nanoarrays prepared by linear DNA amplification (RCR)
instead of random arrays by exponential amplification
(PCR) as, e.g., used by Illumina’s HiSeq and longer reads
of polymerase-based cycle sequencing compared to the
previously described combinatorial probe-anchor ligation
(cPAL) chemistry on DNB nanorrays [11]. The usage of
linear DNA amplification instead of exponential DNA
amplification to make sequencing arrays results in lower
error accumulation and sequencing bias.

Next-generation sequencing using HiSeq
Samples have been sequenced using Illumina HiSeq se-
quencing according to manufacturer’s instructions and
as previously described [16, 17].

Agilent microarray measurements
For detection of known miRNAs, we used the SurePrint
G3 8×60k miRNA microarray (miRBase version 21, Agi-
lent Technologies) containing probes for all miRNAs
from miRBase version 21 in conjunction with the
miRNA Complete Labeling and Hyb Kit (Cat. No. 5190-
0456) according to the manufacturer’s recommenda-
tions. In brief, 100 ng total RNA including miRNAs was
dephosphorylated with calf intestine phosphatase. After
denaturation, Cy3-pCp was ligated to all RNA
fragments. Labeled RNA was then hybridized to an indi-
vidual 8×60k miRNA microarray. After washing, array
slides were scanned using the Agilent Microarray
Scanner G2565BA with 3-μm resolution in double-pass
mode. Signals were retrieved using Agilent AGW
Feature Extraction software (version 10.10.11).
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Data availability
The new sequencing data using BGISEQ-500 data are
available in the Additional file of this manuscript (Add-
itional file 1: Table S3).

Bioinformatics analysis
The raw reads were collapsed and used as input for the
web-based tool miRMaster, allowing for integrated ana-
lysis of NGS miRNA data. On the server side, mapping to
the human genome was carried out using Bowtie [18] (one
mismatch allowed). miRNAs were quantified similar to
the popular miRDeep2 [19] algorithm. The prediction of
novel miRNAs was performed using an extended feature
set built up on novoMiRank [12]. For classification, an
AdaBoost model using decision trees was applied. Novel
miRNAs were cross-checked against other RNA re-
sources, including the miRBase [20], NONCODE2016
[21], and Ensembl non-coding RNAs. The assessment of
the quality of new miRNAs was carried out using the
novoMiRank algorithm. A downstream analysis of results
including cluster analysis was performed using R. For tar-
get prediction, we applied TargetScan 7.1 (http://www.tar-
getscan.org/vert_71/) and predicted for all new miRNAs
the targets. With the predictions, we extracted the context
++ scores and used them for prioritizing the targets,
miRNA-target interactions with context++ scores below 1
were considered as high-likelihood targets. Target net-
works were constructed using an offline version of MiR-
TargetLink [22] and visualized in Cytoscape. miRNA
target pathway analysis has been carried out using Gene-
Trai2 [23]. For the GeneTrail2 analysis, all available cat-
egories were analyzed, the minimal category size was set
to 4 and all p values were adjusted using Benjamini-
Hochberg adjustment.

Results
Raw data analysis
We sequenced six brain, two heart, and two blood samples
using the BGISEQ-500 system. The resulting reads were
mapped to the human genome allowing one mismatch per
read. The 10 samples had a median of 30.1 million reads.
Of these, 24.1 million reads mapped to the human genome
and 23.3 million reads to miRNAs annotated in the human
miRBase version 21. The remaining 0.7 million reads per
sample contain potentially new miRNAs.

Technical reproducibility of the BGISEQ-500 and compari-
son to microarrays
To assess the technical reproducibility of the sequencing
platform, we evaluated the six technical replicates of the
human brain sample (see correlation matrix in Fig. 1).
The median correlation between the six replicates was
0.98, and the 25 and 75% quantile were 0.98 and 0.99,
respectively. These data suggest an overall high

correlation for technical replicates on the BGISEQ-500
platform.
Comparing the BGISEQ-500 data to the measurements

of the brain sample with microarrays (miRBase version
21) that have also been carried out as six technical repli-
cates (median correlation of the microarrays was 0.999),
we observed a log correlation of 0.48. A direct comparison
is presented in the scatter plot in Fig. 2a. This plot high-
lights many miRNAs that can be measured at a compar-
able level on both platforms. However, a subset of the
small non-coding RNAs is shifted towards higher expres-
sion on the array platform. The same behavior can be ob-
served in the cluster heat map in Fig. 2b. This heat map
graphically represents the 50 miRNAs with most different
detection between both techniques. To compare rather
the ranks of miRNAs instead of the absolute read counts,
the replicated brain samples on both platforms were
jointly quantile normalized. Three miRNAs, in particular,
showed highly significant deviations (multiple testing ad-
justed p values below 10−20). Hsa-miR-8069 was almost
not detected in the BGISEQ-500 but had 0.9 million nor-
malized intensity counts on the array platform, hsa-miR-
4454 had 51.6 normalized reads on the BGISEQ-500 ver-
sus 1.9 million normalized counts on the microarrays, and
hsa-miR-7977 had 343.2 normalized reads on the
BGISEQ-500 versus 1.3 million normalized counts on the
microarrays. This means that the three miRNAs were or-
ders of magnitudes more abundant on microarrays as
compared to the sequencing system. The secondary struc-
tures of the three precursors are presented in Additional
file 2: Figure S1. These results match well to previously
published platform comparisons between NGS and micro-
arrays [6]. Here, several miRNAs such as hsa-miR-941
(not detected in any array experiment, not detected in RT-
qPCR, average read count of ~1000 reads using Illumina
HiSeq sequencing) had expression levels differing several
orders of magnitude between the miRBase microarrays
and using HiSeq sequencing.
The full list of miRNAs with raw and adjusted p values

in t test and Wilcoxon-Mann-Whitney test comparing
BGISEQ-500 and microarrays is presented in Additional
file 3: Table S1. Overall, the results are well in-line with
those obtained between HiSeq NGS and the same
microarray platform [6]. Reasons that explain differences
between arrays and NGS include different sensitivity
levels of the platforms, cross-hybridization of miRNAs
with similar sequences on the microarrays or bias in li-
brary preparation. Further, effects of the normalization
can lead to variations in miRNA quantification.

Biological replicates of blood samples and comparison to
other platforms
One of the most promising applications in small RNA
analysis is biomarker profiling in body fluids. We
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previously analyzed over 2000 blood samples on Agilent
microarrays [17, 24, 25] and about 1000 samples using
HiSeq sequencing [26, 27] and compared both platforms
[6]. We correlated two newly sequenced blood samples
using the BGISEQ-500 system to the data generated by
HiSeq and Agilent microarrays. When interpreting the
results, it is important to keep in mind that the microar-
rays and HiSeq data are from the same samples [6] while
the newly sequenced blood drawings are from other in-
dividuals and thus biological but no technical replicates.
To minimize a potential bias between the platforms with
respect to different miRNA sets, we first reduced the
marker set to the 2525 human miRNAs that were pro-
filed on all platforms and next to the subset of 658 miR-
NAs that were discovered in all three platforms. For
each, platform data were normalized using quantile
normalization. Due to the wide dynamic range of miR-
NAs in blood samples, which is approximately 107, we
present the three pairwise comparisons (BGISEQ-500 to
microarrays, BGISEQ-500 to HiSeq, and HiSeq to mi-
croarrays) on a log scale. The scatter plots are presented
in Fig. 3. The highest correlation was observed for
BGISEQ-500 to Illumina (0.75, Fig. 3a). Even the correl-
ation between microarrays and HiSeq was below this

value (0.6, Fig. 3c). Especially since technical replicates
have been measured for these platforms, the increased
correlation of sequencing platforms is remarkable. The
comparison of BGISEQ-500 and microarrays revealed
correlation values in the same range as for the brain
samples (0.58, Fig. 3b). The 3D scatter plot in Fig. 3d
compares the expression of the three platforms directly
to each other. The coloring of the miRNAs has been car-
ried out with respect to the GC content.

Expression distribution of miRNAs
As mentioned, miRNA expression is highly variable and
can scatter across many orders of magnitude. We thus
compared the distribution of the sequencing reads in
blood samples on the HiSeq to the BGISEQ-500. Blood
samples, including blood cells (especially red blood cells)
are known to be enriched for few miRNAs that are
highly expressed. The diagram in Fig. 4 (panel A) high-
lights that 90.8% of all blood sequencing reads from the
HiSeq match to one single miRNA: hsa-miR-486-5p.
The second most abundant miRNA miR-92a-3p takes
further 5.5%, and already the third most abundant
marker miR-451a has below 1% of all reads. In sum,
98.6% of all reads match to the top 10 miRNAs. For the

Fig. 1 Correlation matrix of the brain (six technical replicates), heart (two technical replicates), and blood (two biological replicates) sequenced by
the BGISEQ-500 system
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Fig. 2 a Log average expression of common miRNAs for the brain RNA on BGISEQ-500 and on Agilent microarrays (six technical replicates each).
b Heat map with dendrogram for the 50 most differently detected miRNAs in the brain RNA between Agilent and BGISEQ-500 (six technical
replicates each)
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BGISEQ-500 (panel B), 45.9% of reads match to miR-
451a, further 20% map to miR-191-5p and 13.3% map to
miR-92a-3p. The most abundant miRNA in HiSeq, miR-
486-5p, is detected in 7.7% of all reads. 93.1% of all
sequenced reads match to the top 10 miRNAs.
Comparison of the distribution and abundance of miR-

NAs on the microarray platform is difficult since micro-
arrays show a saturation effect. This means that for two
miRNAs expressed in a range above the saturation, no
difference can be observed. We nonetheless performed
the same analysis as presented above, assuming that the
sum of all expression counts equals to 100%. In this ana-
lysis, miR-451a which is found in 0.8% of HiSeq reads
and 45.9% of BGISEQ-500 reads is the highest expressed

in microarrays (37.2% of all expression counts), followed
by 17% of miR-486-5p.

Prediction of novel miRNAs
Predicting new miRNAs from NGS data is a challenging
task since many false positive miRNA candidates are ob-
served. We implemented our own prediction tool for
miRNAs from NGS data and filtered the candidates
stringently to reduce the false discovery rate. Without
any filtering steps, our initial predictor trimmed for
maximizing the ROC AUC returned 25,086 candidates
across all samples. The exclusion of the candidates with
low abundance (less than 10 total reads) reduced the
number of candidates to around 10% (2354 candidates).

Fig. 3 a-c Pairwise scatter plots for comparing expression of miRNAs in blood cells on microarrays, HiSeq, and BGISEQ-500. Please note that for
HighSeq and Agilent technical replicates were measured, for BGISEQ-500 biological replicates. d 3D scatter-plot colored by the GC content
of miRNAs
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Further analysis with novoMiRank (cutoff 1.5) filtered
out more miRNAs, leaving 1553. The miRNAs were
flagged by novoMiRank because of a high deviation from
miRNAs in the first miRBase versions, including deviat-
ing length, free energy, or nucleic acid composition of
miRNAs. Matching the remaining candidates to other
RNA resource in a blacklisting step finally presented 926
miRNA candidates (Additional file 4: Table S2). Still, it is
likely that this set contains many false positives.
Additionally, low-throughput experimental validation of
almost 1000 miRNA candidates, e.g., by Northern Blot is
a very labor-extensive approach. We thus additionally
compared the frequency of reads mapping to the blood
versus tissue samples. As detailed in Fig. 5a, we observe
a substantial variability between blood and tissue for the
926 miRNA candidates (correlation 0.18). Defining a
miRNA as tissue/blood specific if it occurs with a factor
of 100-fold higher in one of both sample types (normal-
ized for the total number of samples) highlighted 74 new
miRNA candidates specific for tissue and 36 new
miRNA candidates specific for blood samples. Figure 5b
shows bar plots for two miRNA precursors, the most tis-
sue specific novel-mir-36616 (blue), only present in the
brain samples, and the blood specific novel-mir-31007.
The first miRNA, which is observed exclusively in the
brain samples and not in the heart, reveals a significantly

less expressed 3′ mature form as compared to the 5′
mature form. The second miRNA is exclusively observed
in blood samples. Here, the 5′ mature form is lower
expressed compared to the 3′ form. The boxes above
the bar plots show the secondary structures of both
miRNA candidates.

miRNA target analysis
For all 926 miRNAs, we predicted targets using TargetS-
can. To rank miRNA-target interactions, we used the
context++ score (distribution of the context++ score
across all predictions is provided in Additional file 5:
Figure S2). Thereby, we observed an accumulation of
high-likelihood targets for tissue-specific miRNAs. Of
the 926 miRNAs, the tissue specific had an average 42.8
targets, the neither for blood nor for tissue-specific miR-
NAs 40.7 targets while for blood-specific miRNAs, only
34.5 targets were predicted. The complex miRNA-target
network is presented in Additional file 6: Figure S3. It
contains 6014 nodes (5088 genes and 926 miRNAs).
Network characteristics such as degree distribution and
shortest path length are presented in Additional file 7:
Figure S4. The genes with largest numbers of predicted
miRNAs targeting the gene were CYB561D1 (229 miR-
NAs), FBXL12 (174 miRNAs), PML (162 miRNAs), and
VNN3 (154 miRNAs). The distribution of miRNAs in

Fig. 4 Expression distribution of the 10 miRNAs with the highest detection in the blood RNA on the HiSeq system (a), BGISEQ-500 (b), and microarray
system (c). Note that for the Agilent microarray system, the sum of all expression intensities was assumed to be 100%
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the different group is presented as Venn diagram in
Additional file 8: Figure S5). Among the predicted target
genes that were found only for candidate miRNAs being
blood specific was, e.g., HMOX1, heme oxygenase 1,
mediating the first step of the heme catabolism by cleav-
ing heme to build biliverdin or HPX, coding for hemo-
pexin. The complex nature of the in silico calculated
miRNA-target network requires further analyses to

understand whether target genes accumulate in specific
biochemical categories such as KEGG pathways or gene
ontologies. We thus applied GeneTrail2 separately to the
set of genes targeted by blood specific miRNAs, targeted
by tissue specific miRNAs and by all other miRNAs. As
the background sets, all genes predicted to be targeted
by at least a single miRNA were selected and the func-
tionality to compare different enrichment analyses by

Fig. 5 a Expression of novel miRNAs in blood versus tissue. The green miRNAs are specific for blood, the orange miRNAs for tissue, and the blue
miRNAs were detected in both specimens. b Bar plot for two different miRNAs. The first miRNA novel-mir-36616 in blue is detected only in the
brain tissue and not in the heart tissue or blood, the -3p form is one order of magnitude less expressed compared to the -5p mature form. The
second miRNA novel-mir-31007 is expressed in blood and not in tissue, here, the -3p form is more than an order of magnitude more abundant
compared to the -5p form
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GeneTrail2 has been used. Enriched pathways seem to
be largely relevant for either blood or tissue miRNAs, as
Additional file 9: Figure S6 highlights. Tissue specific
miRNAs had target genes enriched for DNA damage re-
sponse, the apoptosis, or RNA polymerase II regulatory
region DNA binding while blood miRNAs target genes
were, e.g., enriched for TP35 network. Interestingly,
tissue miRNA target genes also clustered on specific
genomic locations (e.g., 19p12 and 19.q13) while blood
miRNA targets did not show such an enrichment. In
contrast, blood miRNA targets were enriched for disease
phenotypes such as carotid artery diseases. In sum, the
enrichment analysis highlights very distinct patterns for
blood and tissue miRNA targets. Of course, not only the
new miRNAs themselves but also the predicted targets
deserve detailed experimental validation.

Discussion
The advent of next-generation sequencing reduced the
costs of sequencing while simultaneously increasing the
speed of throughput [28]. Today, the costs for small
RNA seq are almost equal to and even lower than
miRNA microarrays, although small RNA-seq provides
the additional possibility for detecting novel small RNA
entities.
In the present study, we investigated two current

sequencing approaches supporting massively parallel
sequencing, which is of high relevance in small RNA
research because of the high dynamic range of these
molecules: DNA nanoball [11]-based sequencing by
BGISEQ-500 and PCR cluster [8]-based sequencing by
HiSeq. An important difference between these tech-
niques is in that the first approach uses linear DNA
amplification, and the second uses exponential DNA
amplification to make sequencing arrays. The latter
approach may in turn lead to amplification errors and
some specific biases. Besides this fundamental difference,
both approaches have their additional advantages and dis-
advantages. Specifically for the BGISEQ-500, the library
preparation currently takes around three working days,
the sequencing itself needs one or at maximum two work-
ing days. Each flowcell of the BGISEQ-500 has two lanes.
On each of these lanes, 32 Gb data can be generated using
single-end reads of length 50 bases. The cost of the re-
agent and material is around 200 USD for 20 million reads
ensuring high-quality data at a reasonable cost.
Recently, we published a manuscript about bias in

NGS and microarray analysis for miRNAs [6], highlight-
ing that the expression of miRNAs on different plat-
forms varies by, for example, the nucleic acid
composition. In the validation by RT-qPCR, we focused
on miRNAs discordant between the high-throughput
platforms. Thereby, we observed cases where the RT-
qPCR results were concordant with Illumina HiSeq, with

microarrays or with none of the techniques. Therefore,
we were especially interested how the BGISEQ-500
platform compares to the HiSeq platform and microar-
rays with the content from the miRBase for small RNA
analysis.
Three miRNAs had high divergence between arrays

and BGISEQ-500, among them hsa-miR-4454, which
was high abundant in arrays but almost not detectable
in BGISEQ-500. According to the miRBase, only 28% of
users believe that this miRNA is real. Although such
votes have only limited value, they at least indicate that
this miRNA may be influenced by technological bias.
For high-throughput sequencing, the library prepar-

ation and the kits used play a crucial role for the quality
of the sequencing results. Others and we noticed an
overly abundance of the miRNA miR-486-5p when using
the TruSeq kit (Illumina, San Diego), which seems to be
independent of the source of the analyzed material
[6, 29, 30]. Using the BGISEQ-500 platform, we ob-
served lower read counts for this miRNA. However, in
some cases, the miRNA abundance of BGISEQ-500
matches to the HiSeq sequencing results while microar-
rays show a different expression level, and in other cases,
the BGISEQ-500 deviates from the other platforms and
in several cases, all three techniques provide substan-
tially divergent results. The more even distribution of
reads of the BGISEQ-500 compared to the HiSeq results
facilitates the discovery of new miRNAs, which are ex-
pected to be significantly less expressed as compared to
the already known miRNAs, especially from early miR-
Base versions.
With respect to many miRNA currently annotated in

miRBase and the rapidly growing number of new miRNAs,
it is essential not only to have tools for filtering likely false-
positives such as the NovoMiRank tool but also to carry
out validation of miRNAs using other molecular biology
approaches such as cloning and Northern blotting.
Focusing on the performance of the BGISEQ-500, we

found a high technical reproducibility of sequencing
results, which was however slightly below the technical
reproducibility of microarrays. This fact can have differ-
ent reasons, e.g., the different limit of detection of
microarrays. In contrast to sequencing, microarrays have
a saturation effect. With respect to the total number of
discovered known miRNAs, performance of the
BGISEQ-500 was comparable both to the Illumina and
the microarray platform.

Conclusions
In sum, none of the mentioned platforms seems to pro-
vide the “ultimate solution” in miRNA analysis. All have
their advantages and disadvantages and show some bias
for the detection of certain sequence types.
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predicted target genes for tissue-specific miRNA candidates, blood-specific
miRNA candidates, and all other miRNA candidates. (PNG 156 kb)

Additional file 9: Figure S6. Comparison of the pathway enrichment
analysis for the GeneTrail2 analysis with respect to the three target sets.
Red arrows represent significant enrichments. (PNG 289 kb)
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