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The Kynurenine Pathway Is Upregulated by Methyl-deficient
Diet and Changes Are Averted by Probiotics

Sandra Tillmann, Hussain M. Awwad, Chad W. MacPherson, Denise F. Happ,
Giulia Treccani, Juergen Geisel, Thomas A. Tompkins, Per Magne Ueland,
Gregers Wegener, and Rima Obeid*

Scope: Probiotics exert immunomodulatory effects and may influence
tryptophan metabolism in the host. Deficiency of nutrients related to C1
metabolism might stimulate inflammation by enhancing the kynurenine
pathway. This study used Sprague Dawley rats to investigate whether a
methyl-deficient diet (MDD) may influence tryptophan/kynurenine pathways
and cytokines and whether probiotics can mitigate these effects.
Methods and Results: Rats are fed a control or
MDD diet. Animals on the MDD diet received vehicle, probiotics (L. helveticus
R0052 and B. longum R0175), choline, or probiotics + choline for 10 weeks
(n = 10 per group). Concentrations of plasma kynurenine metabolites and
the methylation and inflammatory markers in plasma and liver are measured.
Results: MDD animals (vs controls) show upregulation of plasma kynurenine,
kynurenic acid, xanthurenic acid, 3-hydroxyxanthranilic acid, quinolinic
acid, nicotinic acid, and nicotinamide (all p < 0.05). In the MDD rats,
the probiotics (vs vehicle) cause lower anthranilic acid and a trend towards
lower kynurenic acid and picolinic acid. Compared to probiotics alone,
probiotics + choline is associated with a reduced enrichment of the bacterial
strains in cecum. The interventions have no effect on inflammatory markers.
Conclusions: Probiotics counterbalance the effect of MDD diet and
downregulate downstream metabolites of the kynurenine pathway.

1. Introduction

The intestinal microbiota influences nutrient metabolism and
systemic and mucosal immune cells in the host by providing
metabolic intermediates to the host. For example, the microbiota
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regulates the degradation of the essential
amino acid tryptophan into aromatic
organic compounds called indoles that
play a role in host immunity[1,2] and
inflammatory processes.[3] Several com-
mensal species such as Bifidobacterium
spp.,[3] Peptostreptococcus russellii,[4] and
Lactobacillus spp.[5,6] have been shown
to contribute to tryptophan metabolism.
In addition, S-adenosylmethionine is
produced by some bacterial strains
through fermentation processes.[7] Pro-
biotics induce slight modifications in
the gut microbial composition and inter-
fere with tryptophan and methyl group
metabolisms in the host, which may alter
host immunity.
Tryptophan is used for protein synthe-

sis or converted by hydroxylation in the
brain to serotonin and melatonin; by de-
carboxylation to tryptamine; by transam-
ination indolepyruvic acid; and by con-
version to kynurenine. The kynurenine
pathway accounts for 95% of tryptophan
metabolism[8] and produces biologically
active metabolites such as kynurenic acid

(antioxidant, modifiers of vascular inflammation),[9,10] an-
thranilic acid (N-methyl-d-aspartate antagonist and neuropro-
tective), 3-hydroxykynurenine (N-methyl-d-aspartate agonist
proinflammatory and source of radicals), picolinic acid (neuro-
protective), and quinolinic acid (an N-methyl-d-aspartate agonist
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Figure 1. Tryptophanmetabolic pathways to serotonin and via the kynurenine pathway. IDO, indoleamine 2,3-dioxygenase; KAT, Kynurenine-oxoglutarate
transaminase 3; KMO, Kynurenine 3-monooxygenase; KYNU, Kynureninase; TDO, Tryptophan 2,3-dioxygenase.

and proinflammatory metabolite[11,12] (Figure 1). Moreover, the
kynurenine pathway is the only de novo source of nicotinamide-
dinucleotide (NAD) (i.e., CD4+ T-cell differentiation and
apoptosis)[13] and thus plays a role in energy metabolism.
The enzymes involved in tryptophan metabolism are widely
distributed in the intestinal cells, liver, kidney, and immune
cells (i.e., macrophages and dendritic cells). The kynurenine
pathway has been shown to be upregulated in obesity and
diabetes,[14,15] and to be downregulated by caloric restriction and
ketogenic diet.[16] A dysregulated kynurenine pathway has been
reported in several disease conditions that are associated with
inflammation.[10,17,18]

Host tryptophan metabolism is modifiable by probiotics[19]

and nutritional cofactors such as pyridoxal 5-phosphate.[20] Pyri-
doxal 5-phosphate (vitamin B6) is a cofactor for enzymes in-
volved in the tryptophan/kynurenine pathway [i.e., kynurenine-
oxoglutarate transaminase 3 (KAT) and kynureninase (KYNU)]
and for enzymes operating in the methionine transsulfura-
tion pathway and folate cycle.[21] A diet that is deficient in
certain micronutrients can cause metabolic and/or immune
dysregulations.[22–24] For example, folate and vitamin B12 defi-
ciency induced liver inflammation and hepatosteatosis in a rat
model of colitis.[24] It is not known whether a methyl-deficient

diet (MDD) may stimulate tryptophan degradation and increase
pro-inflammatory cytokines and whether probiotics can mitigate
this effect.
We hypothesized that MDD may upregulate tryptophan

metabolism to kynurenine and induce inflammation in rats com-
pared with a control diet (CON,methyl-sufficient diet). Moreover,
administration of probiotics (PRO), choline (CHOL) as a methyl
donor, or probiotics + choline (PRO+CHOL) to animals on the
MDD diet may ameliorate these effects compared with vehicle-
treated animals. In a SpragueDawley rat’smodel, we investigated
1) whether plasma levels of metabolites of the kynurenine path-
way and cytokines are influenced by MDD versus CON diet and
2) whether the intervention with PRO, CHOL, or PRO+CHOL
(vs vehicle) can reverse these effects.

2. Results

2.1. Bodyweight and Food Intake

The experiment started with a 3-week dietary modification
phase (CON or MDD100) followed by provision of PRO and/or
CHOL (Figure S1, Supporting Information). The starting
bodyweight did not differ between animals (week −3; mean
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± SD; CON: 158 ± 13 g; MDD: 160 ± 20 g; p = 0.770; Fig-
ure S2A, Supporting Information). Weight gain was lower
under the MDD100 diet. After 1 week of receiving CON or
MDD100 diet, CON animals weighed 211 ± 15 g andMDD100 ani-
mals weighed 128± 15 g (p< 0.001). MDD100 rats lost on average
22.5% of their starting bodyweight after 2 weeks of MDD100 diet,
whereas CON animals showed rather a linear weight gain during
the whole experiment. A 70%methyl-depleted diet (MDD70) was
provided from week −1 until the end of the whole experiment.
The day before starting the intervention with PRO and/or CHOL
(hereafter referred to as “baseline”), CON rats weighed [median
(IQR) = 280 (28)g], whereas MDD70 rats weighed 172 (38) g (p
< 0.001) (Table 1). On decapitation day, CON rats weighed 507
(59) g and VEH-treated MDD70 rats weighed 434 (137) g (p =
0.029). The four intervention groups (all on MDD70 diet) did
not differ in bodyweight at baseline (p = 0.064) or endpoint (10
weeks; p = 0.402) (Figure S3, Supporting Information).
After 1 week of CON or MDD100 diet consumption, rats con-

sumed 9.8 ± 0.4 g (CON) versus 3.8 ± 0.8 g food/100 g body-
weight (MDD100), p < 0.001) (Figure S2B, Supporting Informa-
tion). After 1 week on CON or MDD70 diet (just before the inter-
vention; week 0), CON rats consumed 9.0 ± 3.1 g and MDD70
rats consumed 14.7 ± 0.5 g food 100 g−1 bodyweight. At the
last food measurement (week 9), CON rats consumed 4.9 ± 0.4
100 g−1 and VEH-treated MDD70 rats consumed 6.0 ± 0.3 g
food 100 g−1bodyweight (p = 0.008). The four MDD70 interven-
tion groups did not differ in food intake at baseline. However,
the MDD70 PRO+CHOL group consumed less food than the
MDD70VEH group (5.2 ± 0.2 g vs 6.0 ± 0.6 g food/100 g body-
weight; Bonferroni: p= 0.050) in week 10 (p= 0.033). There were
no diet or intervention effects on water intake (mL 100 g−1 body-
weight) at baseline or following time points.

2.2. C1-related Biomarkers and Liver Function Markers

VEH-treated animals receiving MDD diet had significantly lower
plasma concentrations of choline [median (IQR) = 5.0 (1.0) vs
7.1 (1.2) µmol L−1, p < 0.001] and methionine [57.8 (15.6) vs 76.0
(43) µmol L−1; p= 0.013] than those onCONdiet after 11 weeks of
feeding (Table 1). There were no effects of diet on plasma betaine,
dimethylglycine, vitamin B12, SAM, or S-adenosylhomocysteine
(SAH). Compared to the CON group, the MDD diet caused lower
liver SAM [89 (32) vs 52 (35) nmol g−1 tissue, p = 0.001], a trend
toward lower levels of liver SAH [29.8 (7.7) vs 20.7 (16.8) nmol
g−1 tissue, p = 0.089], and a lower liver SAM/SAH ratio [3.1 (1.0)
vs 2.4 (0.7), p = 0.016] (Table 1). The intervention groups (VEH,
PRO, CHOL, and PRO+CHOL) did not differ in concentrations
of any of the aforementioned plasmamarkers or activities of liver
enzymes in plasma (Table 2).

2.3. Kynurenine Pathway

Animals on MDD diet had slightly higher plasma tryptophan
than animals on CON diet [190 (66) vs 152 (51) µmol L−1;
p = 0.082]. Rats on the MDD diet showed upregulated trypto-
phan metabolism to kynurenine compared to those on the CON
diet. Rats on the MDD diet had higher kynurenine [3.6 (1.0)

Table 1. Concentrations of one-carbon metabolites, liver enzymes, and
kynurenine metabolites after 10 weeks of feeding with CON or MDD70%
diet.

Intervention VEH VEH p
a)

Diet MDD CON

Body weight [g]

Before starting the treatment
b)

172 (38)b) 289 (28) <0.001

At 10 weeks 434 (137) 507 (59) 0.029

Food consumption [g 100 g−1 body weight]

Before starting the treatment 14.7 (1.0) 9.0 (4.7) 0.008

At 10 weeks 6.1 (1.3) 4.9 (0.7) 0.016

EDTA plasma biomarkers

Betaine [µmol L−1] 62 (25) 69 (6) 0.257

Choline [µmol L−1] 5.0 (1.0) 7.1 (1.2) < 0.001

Dimethylglycine [nmol L−1] 1.3 (0.8) 1.6 (1.2) 0.940

Vitamin B12 [pg mL−1] 1347 (236) 1250 (401) 0.513

Methionine [µmol L−1] 57.8 (15.6) 76.0 (43) 0.013

SAH [nmol L−1] 62 (47) 48 (53) 0.821

SAM [nmol L−1] 285 (75) 272 (53) > 0.999

Serotonin [nmol L−1] 2056 (515) 1513 (809) 0.025

AST [U L−1] 123 (74) 134 (24) 0.540

ALT [U L−1] 40 (11) 42 (9) 0.838

Pyridoxal 5’-phosphate [nmol L−1] 988 (422) 822 (228) 0.131

Pyridoxal [nmol L−1] 903 (476) 675 (364) 0.174

4-Pyridoxic acid [nmol L−1] 117 (91) 93 (42) 0.520

Pyridoxine [nmol L−1] 1.7 (5.5) 0.0 (2.8) 0.267

Riboflavin [nmol L−1] 56.3 (16.2) 52.3 (17.6) 0.450

Flavin mononucleotide [nmol L−1] 36.2 (13.7) 38.1 (10.5) 0.473

Tryptophan [µmol L−1] 190 (66) 152 (51) 0.082

Kynurenine [µmol L−1] 3.6 (1.0) 2.8 (1.0) 0.019

Kynurenic acid [nmol L−1] 83.1 (36.5) 71.2 (25.6) 0.010

Anthranilic acid [nmol L−1] 48.1 (16.4) 58.1 (25.7) 0.473

3-Hydroxykynurenine [nmol L−1] 19.2 (6.5) 16.5 (4.3) 0.220

Xanthurenic acid [nmol L−1] 16.8 (8.3) 12.5 (3.2) 0.004

3-Hydroxyanthranilic acid [nmol L−1] 28.1 (17.7) 10.7 (5.5) 0.009

Picolinic acid [nmol L−1] 106 (75) 100 (66) 0.545

Quinolinic acid [nmol L−1] 749 (372) 417 (325) 0.010

Nicotinic acid [nmol L−1] 28.0 (34.7) 0.0 (0.0) 0.013

Nicotinamide [nmol L−1] 4345 (1620) 2770 (635) 0.001

N1-methylnicotinamide [nmol L−1] 263 (1761) 117 (203) 0.082

Cystathionine [µmol L−1] 1.41 (0.47) 1.10 (0.31) 0.034

Liver extract, nmol g−1 tissue

SAH 20.7 (16.8) 29.8 (7.7) 0.089

SAM 52 (35) 89 (32) 0.001

SAM/SAH 2.4 (0.7) 3.1 (1.0) 0.016

Data are presented as median (IQR). n = 10 in each group.
a)
p values are according

to Mann-Whitney test.
b)
before starting the treatment, the MDD rats had received

MDD100% for 2 weeks followed by the MDD70% for 1 week. Both diet groups received
vehicle (xylitol, maize-derived maltodextrin, plum flavor, malic acid). ALT, Alanine
transaminase; AST, Aspartate transaminase; CON, Control; MDD, Methyl-Deficient
Diet; S-adenosylhomocysteine; SAM, S-adenosylmethionine; VEH, Vehicle.
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vs 2.8 (1.0) µmol L−1; p = 0.019], kynurenic acid [83.1 (36.5) vs
71.2 (25.6) nmol L−1; p = 0.010], xanthurenic acid [16.8 (8.3) vs
12.5 (3.2) nmol L−1; p = 0.004], 3-hydroxyxanthranilic acid [28.1
(17.7) vs 10.7 (5.5) nmol L−1; p= 0.009], quinolinic acid [749 (372)
vs 417 (325) nmol L−1; p = 0.010], nicotinic acid [28.0 (34.7) vs
0.0 (0.0) nmol L−1; p = 0.013], nicotinamide [4345 (1620) vs 2770
(635) nmol L−1; p = 0.001], N1-methylnicotinamide [263 (1761)

vs 117 (203) nmol L−1; p = 0.082], and cystathionine (a compo-
nent of homocysteine transsulfuration pathway) [1.41 (0.47) vs
1.10 (0.31) µmol L−1; p = 0.034] (Table 1). The diet had no effect
on plasma levels of vitamin B6 forms (pyridoxal 5’-phosphate,
pyridoxal, 4-pyridoxic acid, and pyridoxine).
The four intervention groups (VEH, PRO, CHOL, PRO+

CHOL) differed in the following kynurenine metabolites;

Table 2. Concentrations of C1 metabolites, neurotransmitters, liver function markers, and kynurenine metabolites in biospecimens collected after
10 weeks of intervention with VEH, PRO, CHOL, or PRO+CHOL in rats fed on a methyl-deficient diet.

Intervention VEH (reference group) PRO CHOL PRO+CHOL p
a)

Diet MDD MDD MDD MDD

Number 10 10 10 10

Bodyweight [g]

Before starting the treatment 172 (38) 176 (22) 174 (33) 185 (22) 0.064

At 10 weeks 434 (137) 453 (67) 459 (108) 479 (32) 0.402

Food consumption in g 100g−1 bodyweight, mean (SD)

Before starting the treatment 14.7 (0.5) 14.3 (1.2) 14.4 (0.7) 13.5 (0.9) 0.159

At 10 weeks 6.0 (0.6) 5.3 (0.1)a) 5.5 (0.3) 5.2 (0.2)l) 0.033

Log bacterial strains/g cecum

Lactobacillus helveticus R0052 0 8.6 (0.8) 0 7.9 (2.5)a) -

Bifidobacterium longum R0175 0 7.5 (0.4) 0 6.5 (1.7)a) -

Plasma biomarkers

Betaine [µmol L−1] 62 (25) 70 (14) 64 (23) 77 (19) 0.085

Choline [µmol L−1] 5.0 (1.0) 4.3 (1.5) 5.3 (1.2) 5.4 (0.9) 0.369

Dimethylglycine [nmol L−1] 1.3 (0.8) 1.4 (1.1) 1.6 (1.0) 1.9 (1.2) 0.320

Vitamin B12 [pg mL−1] 1347 (236) 1175 (188) 1230 (148) 1234 (127) 0.220

Methionine [µmol L−1] 57.8 (15.6) 64.7 (10.2) 58.0 (16.6) 57.9 (9.5) 0.666

SAH [nmol L−1] 62 (47) 71 (53) 52 (47) 47 (33) 0.444

SAM [nmol L−1] 285 (75) 247 (77) 250 (65) 274 (36) 0.457

Serotonin [nmol L−1] 2056 (515) 1684 (1062) 2134 (381) 1896 (780) 0.296

AST [U L−1] 123 (74) 134 (38) 132 (48) 140 (14) 0.630

ALT [U L−1] 40 (11) 46 (13) 43 (9) 47 (8) 0.241

Pyridoxal 5’-phosphate [nmol L−1] 881 (368) 950 (292) 967 (320) 947 (207) 0.963

Pyridoxal [nmol L−1] 804 (412) 616 (206) 900 (427) 732 (333) 0.138

4-Pyridoxic acid [nmol L−1] 111 (51) 77 (22) 109 (76) 88 (79) 0.090

Pyridoxine [nmol L−1] 1.1 (3.8) 0.0 (0.9) 1.3 (3.2) 0.0 (1.96) 0.176

Riboflavin [nmol L−1] 55.8 (12.5) 48.8 (18.1) 58.6 (7.7) 49.6 (12.1) 0.315

Flavin mononucleotide [nmol L−1] 37.5 (9.5) 37.1 (9.4) 44.7 (19.3) 36.6 (11.1) 0.569

Tryptophan [µmol L−1] 118 (61) 170 (44) 191 (35) 168 (48) 0.129

Kynurenine [µmol L−1] 3.3 (0.9) 3.0 (0.5) 2.8 (0.9)f) 3.0 (0.6) 0.015

Kynurenic acid [nmol L−1] 77.3 (12.7) 56.1 (22.5)c) 59.8 (43.7)g) 61.1 (20.0)k) 0.019

Anthranilic acid [nmol L−1] 50.7 (18.5) 39.4 (6.4)d) 49.1 (17.2)h) 44.0 (12.1) 0.010

3-Hydroxykynurenine [nmol L−1] 17.4 (5.4) 13.9 (6.1) 18.5 (13.4) 15.3 (4.6) 0.075

Xanthurenic acid [nmol L−1] 15.1 (5.0) 13.0 (1.7) 17.1 (4.5)i) 14.3 (4.9) 0.026

3-Hydroxyanthranilic acid [nmol L−1] 14.4 (20.3) 17.3 (13.3) 28.6 (27.0) 15.7 (7.5)m) 0.024

Picolinic acid [nmol L−1] 102 (76) 67 (44)e) 118 (58)j) 85 (32) 0.016

Quinolinic acid [nmol L−1] 608 (342) 465 (177) 617 (509) 501 (155) 0.040n)

Nicotinic acid [nmol L−1] 0.0 (28.8) 25.2 (26.5) 13.4 (30.8) 11.9 (33.2) 0.783

Nicotinamide [nmol L−1] 3400 (1930) 3780 (535) 4235 (1608) 3620 (1525) 0.285

N1-methylnicotinamide [nmol L−1] 154 (487) 353 (915) 242 (1870) 313 (1688) 0.993

Cystathionine [µmol L−1] 1.21 (0.41) 1.27 (0.43) 1.26 (0.56) 1.18 (0.34) 0.720

(Continued)
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Table 2. Continued.

Intervention VEH (reference group) PRO CHOL PRO+CHOL p
a)

Diet MDD MDD MDD MDD

Liver extract (nmol g−1 tissue)

SAH 20.7 (16.8) 22.0 (8.5) 18.9 (12.0) 19.1 (11.7) 0.813

SAM 52 (35) 60 (18) 55 (16) 61 (12) 0.450

SAM/SAH Ratio 2.4 (0.7) 2.4 (1.7) 2.7 (1.4) 2.9 (1.9) 0.579

Data are presented as median (IQR) except for food consumption (mean and SD). Rats received VEH, PRO, CHOL, or PRO+CHOL once daily for 10 weeks. VEH intervention
consisted of xylitol, maize-derived maltodextrin, plum flavor, and malic acid (i.e., the same excipient as in the other interventions, but without any active substance).

a)
p

values are according to independent samples Kruskal-Wallis test. Significance values for paired comparisons have been adjusted by the Bonferroni correction for multiple
tests. For the comparisons of PRO versus VEH;

b)
p = 0.096,

c)
p = 0.052;

d)
p = 0.016;

e)
p = 0.097. For the comparisons of CHOL versus VEH;

f)
p = 0.011;

g)
p = 0.067.

For the comparisons of CHOL versus POR;
h)
P = 0.016;

i)
P = 0.046;

j)
p = 0.034. For the comparisons of PRO+CHOL versus VEH;

k)
p = 0.068;

l)
p = 0.05. For the

comparisons of CHOL versus POR+CHOL; m)
p = 0.017.

n)
between-groups p values > 0.100 after correction for multiple comparisons. For the comparisons of PRO+CHOL

versus PRO; O) p = 0.076; P) p = 0.028 (one-way ANOVA test between two groups). ALT, Alanine transaminase; AST, Aspartate transaminase; CHOL, Choline; PRO, Probiotics;
S-adenosylhomocysteine; SAM, S-adenosylmethionine; VEH, Vehicle.

kynurenine (independent samples Kruskal-Wallis test p= 0.015),
kynurenic acid (p = 0.019), anthranilic acid (P = 0.010), 3-
hydroxykynurenine (p = 0.075), xanthurenic acid (p = 0.026), 3-
hydroxyanthranilic acid (P = 0.024), picolinic acid (p = 0.016),
quinolinic acid (P = 0.040) (Figure S4, Supporting Information,
and Table 2). The between-group comparisons showed that in-
tervention with probiotics suppressed tryptophan degradation to
kynurenine as compared to the VEH group. The PRO group
showed significantly lower anthranilic acid [39.4 (6.4) vs 50.7
(18.5) nmol L−1; p = 0.016], and a trend towards lower kynurenic
acid [56.1 (22.5) vs 77.3 (12.7) nmol L−1; p = 0.052] and picol-
inic acid [67 (44) vs 102 (76) nmol L−1; p = 0.097] compared to
the VEH group. The intervention groups showed no significant
differences in plasma concentrations of the cofactor pyridoxal 5’-
phosphate or any other vitamin B6 form (Table 2).
The intervention with CHOL caused lower median plasma

level of kynurenine [2.8 (0.9) vs 3.3 (0.9) µmol L−1; p = 0.011] and
kynurenic acid [59.8 (43.7) vs 77.3 (12.7); p = 0.067] compared to
the intervention with VEH. The group that received PRO+CHOL
showed slightly lower kynurenic acid [61.1 (20.0) vs 77.3 (12.7);
p = 0.068] compared to the VEH group.
The intervention with PRO alone showed selective lowering

effects on plasma concentrations of anthranilic acid [49.1 vs
39.4 nmol L−1; p= 0.016], xanthurenic acid [17.1 (4.5) vs 13.0 (1.7)
nmol L−1; p= 0.046], and picolinic acid [118 (589) vs 67 (44) nmol
L−1; p = 0.034] compared to the CHOL group (Table 2). The com-
parisons of the concentrations of C1 metabolites, neurotrans-
mitters, liver function markers, and kynurenine metabolites be-
tween the intervention groups (PRO, CHOL, and PRO+CHOL)
fed on a MDD versus the (CON+VEH) group are shown in Table
S3 (Supporting Information).

2.4. Plasma Serotonin and Plasma and Liver Cytokines

VEH-treated rats on MDD diet had significantly higher plasma
serotonin concentrations than those on CON diet [2056 (515) vs
1513 (809) nmol L−1; p= 0.025] (Table 1). The intervention groups
did not differ in plasma serotonin (Table 2).
VEH-treated MDD rats tended to have higher concentrations

of RANTES than those on CON diet [701 (381) vs 580 (320) pg

mL−1; p = 0.072]. None of the 22 cytokines that were measured
in plasma differed according to the diet (MDD vs CON). Also,
none of the plasma cytokines differed according to the inter-
vention (Tables S4 and S5 and Figures S5 and S6, Supporting
Information).

2.5. Stool Bacterial Population (qPCR) and Behavioral Tests

The qPCR tests showed that L. helveticus R0052 and B. longum
R0175 were not detectable in cecum of VEH-treated rats (CON
and MDD diets) or CHOL-treated rats (Tables 1 and 2). The me-
dian (IQR) concentrations of L. helveticus R0052 were 8.6 (0.8) log
bacteria g cecum in the PRO group and 7.9 (2.5) log bacteria/g in
the PRO+CHOL group. The concentrations of B. longum R0175
were 7.8 (0.5) log bacteria/g in PRO and 6.5 (1.7) log bacteria/g in
PRO+CHOL. The PRO group tended to have higher concentra-
tions of both L. helveticus R0052 (p = 0.076) and B. longum R0175
(p = 0.028) than the PRO+CHOL group (Table 2).
The intervention groups generally did not differ in several

behavioral tests related to cognition (Novel Object Recognition,
Y-Maze), anxiety (Elevated Plus Maze), and depression (Forced
Swim Test) (Figure S7 and Text, Supporting Information).

3. Discussion

We investigated whether feeding a MDD may cause dysregula-
tion in tryptophan metabolism pathways and whether the inter-
vention with probiotics, the methyl donor choline, or probiotics
plus choline can modify this effect. The following novel results
were found (summarized in Figure 2): first, the 70% MDD diet
(without choline, methionine, and folate) led to hypomethyla-
tion in the animals compared to the CON diet, but did not in-
fluence liver function markers (plasma ALT and AST activities)
or plasma and liver concentrations of key cytokines. Second, the
MDDdiet caused higher plasma serotonin and a profound upreg-
ulation of the kynurenine pathway in plasma. Third, administra-
tion of PRO to animals on the MDD diet ameliorated the effects
of the deficient diet on kynurenine metabolites (selectively low-
ered anthranilic acid, picolinic acid, and 3-hydroxykynurenine).

Mol. Nutr. Food Res. 2021, 65, 2100078 2100078 (5 of 9) © 2021 The Authors. Molecular Nutrition & Food Research published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.mnf-journal.com


www.advancedsciencenews.com www.mnf-journal.com

Figure 2. Summary of the observed significant differences in the tryptophan and kynurenine metabolic pathways between the methyl sufficient and the
methyl deficient diet and according to the intervention. The MDD+VEH versus CON+VEH were compared by Mann-Whitney test. The arrows indicate
the direction of statistically significant changes; ↑ higher; ↓ lower. Choline; MDD, methyl-deficient diet; PRO, Probiotics; SAH, S-adenosylhomocysteine;
SAM, S-adenosylmethionine; VEH, vehicle.

In contrast, PRO intervention was not associated with signif-
icant changes in plasma or liver C1 metabolites, or plasma
serotonin compared to animals that received VEH. Administra-
tion of CHOL alone was associated with lower plasma kynure-
nine and slightly lower kynurenic acid, while administration of
PRO+CHOL was associated with slightly lower kynurenic acid
compared to animals that received VEH. Notably, administering
PROwith choline reduced the enrichment of the bacterial strains
in the cecum which may explain that the effect of PRO on trypto-
phan metabolism was weakened when combined with choline.
Supplementation of Lactobacillus johnsonii N6.2 (vs placebo)

for 8 weeks in healthy individuals caused an increase in serum
tryptophan and systemic effects on innate and adaptive immune
cell populations (i.e., increased circulating effector Th1 cells and
cytotoxic CD8+T cells subset).[29] Compared to the placebo, Lacto-
bacillus plantarum 299V has been shown to lower plasma kynure-
nine while causing no change in plasma IL6, IL-1𝛽, TNF-𝛼,
and cortisol in patients with depression.[30] In addition, different
probiotic strains have been shown to downregulate the kynure-
nine pathway in animal models of depression or chronic stress
stimuli.[31,32] Therefore, our results on downregulation of the
kynurenine pathway after treatment with Lactobacillus helveticus
R0052 and Bifidobacterium longum R0175 are in line with earlier
studies.
The present study was performed in animals with an upreg-

ulated kynurenine metabolism due to the 70% MDD diet. We
found no evidence that the dysregulation of the kynurenine path-

way is associated with pro-inflammatory or anti-inflammatory
cytokines (i.e., in plasma or liver). The liver and immune cells
are main sources of kynurenine metabolites. The immunomod-
ulatory role of probiotics could take place in the liver, the kidney,
immune cells, and/or the gut mucosal immune system.[33,34]

Macrophages express indoleamine 2,3-dioxygenase (IDO), the
enzyme that converts tryptophan to kynurenine. IDO1 is in-
duced by pro-inflammatory cytokines (i.e., TNF-𝛼, IFN-𝛾 , IL-1,
and IL-6) leading to higher kynurenine production.[35] The
source of plasma kynurenine metabolites in our study is not
known. The divergent effects of the MDD diet and probiotics
on plasma kynurenine without affecting the cytokines suggest
that tryptophan dysregulation under MDD diet took place in the
intestinal cells rather than in the liver or immune cells. This
issue deserves further investigation.
Kynurenine and its downstream metabolites anthranilic

acid, picolinic acid, and quinolinic acid represent inflammatory
sensors[36] that have been shown to be associated with cardio-
vascular risk factors such as diabetes.[14,15] The kynurenine
pathway delivers NAD+ and shows a tissue specific response to
exercise.[37] Feeding a ketogenic diet or a caloric restricted diet to
animals caused downregulation of the kynurenine pathway.[16]

In our study, the upregulation of the kynurenine pathway in rats
on the MDD diet versus CON diet (both received VEH) could
reflect a metabolic adaptation to higher NAD+ -demands in the
MDD group. Accordingly, the MDD animals had higher food in-
take compared with the CON towards the end of the experiment,
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although they weighted less. Brandacher et al. suggested that
activation of the IDO could drive disorders in appetite-satiety
regulation and could increase caloric intake.[38] Thus, probiotics
may influence food intake and regulation of body weight through
downregulation of the kynurenine pathway, but this needs to be
further investigated.
The MDD70 diet had no marked effects on behavioral

tests or liver enzymes, indicating that the diet did not in-
duce brain or liver cell damage, as would be expected by
feeding a 100% deficient diet.[39,40] However, previous stud-
ies often combined a MDD with a high-fat diet to stimulate
hepatosteatosis.
The present study has some limitations. The dietary inter-

vention with MDD100 at a young age followed by MDD70 could
have affected early life epigenetic programming (i.e., weight
regulation) that made the rats resilient and resistant to inflam-
mation. The differences between the CON+VEH group and
the intervention groups (all on MDD) (Table S3, Supporting
Information) should be interpreted with caution since the
food intakes and weight gain were different according to the
background diets. Moreover, the study was conducted in young
male rats. Age and sex differences in C1-metabolism have been
reported.[41] In addition, the bacterial enrichment could be
minor after using probiotics and could interact with dietary
components as was seen in this study in the PRO+CHOL group
(i.e., less enrichment than in the PRO group).
Also competing bacterial strains such as those producing

trimethylamine from choline may lead to producing trimethy-
lamine N-oxide, a metabolites with potentially atherosclerotic
effects.[42]

Overall, our study supports that the MDD induced trypto-
phan degradation via the kynurenine pathway. Intervention
with Lactobacillus helveticus R0052 and Bifidobacterium longum
R0175 caused a profound downregulation of the kynurenine
pathway especially in the downstream metabolites (i.e., an-
thranilic acid and 3-hydroxykenurenine). CHOL alone reversed
the effect of MDD on plasma kynurenine and kynurenic acid
(upstream metabolites). The metabolic effects of the combina-
tion of PRO+CHOL were weak, probably due to lower bacterial
enrichment in the cecum following the combination of PRO
with choline. Future studies may investigate the activities of the
enzymes participating in tryptophan metabolism and possible
tissues (i.e., liver, intestinal mucosal membrane) where probi-
otics may target the tryptophan-kynurenine pathway. Our results
suggest that tryptophan metabolism is an important molecular
mechanism to be investigated in RCTs of probiotics as modifiers
of health outcomes in human studies.

4. Experimental Section
Animals and Diet: Male Sprague Dawley rats (n = 50, age 4 weeks)

were purchased from Taconic Bioscience A/S (Ry, Denmark) and allowed
to acclimatize for 1 week on a standard diet after arrival. The day before
the diet modification start (week −3), rats were 5 weeks old and weighed
160 ± 18.3 g (mean ± SD). From week −3 to week −1, they received ei-
ther a standard control diet (CON) or a customized 100%MDD (MDD100)
without choline, betaine, methionine, and folic acid for 2 weeks (both diets
were obtained fromSsniff SpezialdiätenGmbH, Soest, Germany). The diet
specifications are shown in Table S1 (Supporting Information). From week

−1 until the end of the experiment (week 10), the degree of methyl defi-
ciency was adjusted to 70% (MDD70) as explained below. Rats receiving
the same diet and intervention were pair-housed in standard cages (Cage
1291H Eurostandard Type III H, 425 × 266 × 185 mm, Tecniplast, Italy)
at 20 ± 2°C and 60 ± 5% relative humidity on a reversed 12 h light/dark
cycle (lights on at 2 p.m.), which was introduced in 3-h increments. Rats
had access to food and tap water ad libitum. Cages (containing bedding,
a tunnel shelter, nesting material, and a wooden stick) were changed once
a week. Animal weight and food/water intake (per 100 g bodyweight) were
recorded throughout the study.

Rats receiving the MDD100 diet (n = 40) lost more than 20% of their
total body weight within 2 weeks. Thus, the diet was changed from 100%
deficiency (received from week −3 to week −1) to 70% deficiency (here-
after referred to as MDD70). Rats were allowed to adapt to the MDD70
diet for one additional week, and the intervention was started in week 0.
The complete experimental timeline is presented in Figure S1 (Supporting
Information). The MDD70 diet was prepared by grinding and thoroughly
mixing the 100% MDD pellets with 30% grinded CON pellets. Tap water
(approximately 20% of the total mass) was added to form pellets. Since
the consistency of the MDD pellets now changed from dry to wet pellets,
the pure CON diet was also grinded and prepared with water in the same
manner. Pellets were freshly prepared every 3–4 days from week −1 un-
til week 10. All experiments were approved by the Danish Animal Experi-
ments Inspectorate before initiation of the experiments (approval number:
2012-15-2934-00254) and were conducted in accordance with the Euro-
pean Community Council Directive.

Intervention: Rats on MDD70 diet were randomly assigned to one
of four interventions: VEH, probiotics (PRO), choline (CHOL), or
PRO+CHOL. Rats on CON diet received vehicle (VEH) only.

The commercial formulation CEREBIOME (previously known as Pro-
bio’Stick, a new name for an existing formula combining Lactobacillus hel-
veticus Rosell-52 and Bifidobacterium longum Rosell-175, LallemandHealth
Solutions Inc.,Montreal, QC, Canada) was used. The formulation is a pow-
der mix of probiotics and excipients (xylitol, maize-derived maltodextrin,
plum flavor, malic acid). The vehicle consisted of the same excipients (xyli-
tol, maize-derivedmaltodextrin, plum flavor, malic acid) but without active
cultures and was of identical taste to the PRO. The exact composition of
the 1010 CFUs between the two bacterial strains is proprietary information
of the company producing the probiotics.

Dosage Information/Dosage Regimen: We prepared solutions of the ve-
hicle and probiotic just before administration by dissolving the respective
weight (g) of the powder in tap water (mL) 1:1. The intervention dose per
rat and day was 0.2 g powder containing either VEHor 1010 colony-forming
units (CFU) dissolved in 0.3 mL water. This amount was administered via
syringe-feeding once daily toward the end of the active phase (2 p.m.± 1 h)
over the 10-week intervention period as in our previous study.[25] Syringe-
feeding is based on voluntary consumption of a solution directly from a
syringe held into the cage, thereby enabling exact and controlled dosing
to the animals.[26]

Choline bitartrate (8 mg rat−1 day−1; Sigma-Aldrich, St. Louis, MO,
USA) was dissolved in the same vehicle or probiotic solutions and also
administered via syringe-feeding (total volume 0.3 mL day−1).

Sample Collection and Processing: Rats were decapitated after 10 weeks
of starting the intervention. Decapitation took place in a random order be-
tween 2 and 6 p.m. over 2 consecutive days. Trunk blood was collected in
EDTA-coated tubes and immediately centrifuged at 3000 × g for 10 min.
Plasma was aliquoted and stored at −80 °C. Plasma for SAM/SAH mea-
surements was added into tubes containing 1 N acetic acid (for a ra-
tio of acetic acid:plasma of 1:10). Liver tissue (from the left lateral lobe)
were quickly removed, snap-frozen in pre-cooled isopentane, and stored
at −80°C. Tissues were later homogenized in 1 N acetic acid (10 µL mg−1

tissue) using a tissue lyser (MixerMill MM 400, Retsch GmbH, Haan, Ger-
many; frequency: 30 s−1, 2 min, carbide bead) and centrifuged at 10 000
× g for 10 min. For monoamine measurements, 20 µL perchloric acid was
added to 180 µL plasma followed by centrifugation.

Biochemical Measurements: Plasma concentrations of one carbon
(C1)-metabolites (betaine, choline, dimethylglycine, SAH, and SAM)
and liver SAH and SAM were measured using isotope-labeled internal
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standards and an Acquity Ultra Performance LC system coupled to a
MicroMass Quattro Premier XE tandem quadrupole mass spectrometer
(UPLC-MS/MS) (Waters Corporation, Milford, MA, USA) as reported
before.[27,28] Plasma alanine transaminase (ALT), aspartate transami-
nase (AST), and vitamin B12 were measured using routine automated
methods (Table S2, Supporting Information). Plasma methionine con-
centrations were measured at MS-Omics (Frederiksberg, Denmark)
using gas chromatography mass spectrometry. Plasma concentrations
of kynurenine pathway metabolites were measured at Bevital AS, Norway
using LC-MS/MS devices.

Concentrations of plasma serotonin were measured using ultra-
high performance liquid chromatography with electrochemical detection
(UHPLC-ECD, Dionex Ultimate 3000 UHPLC, Thermo Scientific, Rockford,
IL, USA) as described before.[25]

Concentrations of soluble inflammatory protein markers in plasma
and liver extracts were analyzed using a fluorescent magnetic bead-based
multiplex immunoassay (Luminex-based Bio-Plex 200 Bio-Rad Laborato-
ries Inc., Hercules, CA, #10014905) according to the methods shown in
Table S2 (Supporting Information). The following inflammation markers
and cytokines were measured; G-CSF, GM-CSF, GRO/KC, IFN-𝛾 , IL-1𝛼,
IL-1𝛽, IL-2, IL-4, IL-5, IL-6, IL-7, IL-10, IL-12 (p70), IL-13, IL-17A, IL-18,
M-CSF, MCP-1, MIP-1𝛼, MIP-3𝛼, RANTES, TNF-𝛼, VEGF.

Bacterial DNA Extraction and Quantitative Real-time PCR: Total DNA
was isolated from 180 ± 20 g cecal samples using the QIAamp Fast DNA
Stool Mini Kit (Qiagen, Hilden, Germany) as per manufacturer’s instruc-
tions with some modifications (Table S2, Supporting Information). The
extracted DNA was used to detect and quantify L. helveticus R0052 and B.
longum R0175 in cecal samples by qPCR using SYBR Select Master Mix
(Thermo Fisher) and the primers and cycling conditions shown in Table
S2 (Supporting Information).

Behavioral tests for cognition, anxiety, and depression were performed
at the time points shown in Figure S1 (Supporting Information) as de-
scribed in Supplemental Text.

Data Analysis: Bodyweight and food consumption of the animals were
expressed as mean ± SD and the differences between the groups were
tested using one-way ANOVA test and Bonferroni post hoc test when
ANOVA was significant. The one-sample Kolmogorov-Smirnov Test with
Lilliefors Significance Correction and the quintile-quintile plots were used
to study the distribution of the data. The majority of the concentrations
of the biomarkers were not normally distributed and the distribution did
not improve after ln-transformation. Thus, the biomarkers are shown as
median and (interquartile range, IQR). The nonparametric test Mann-
Whitney was used to study differences in the concentrations of the mark-
ers between the MDD and CON diets. The independent samples Kruskal-
Wallis test was used to compare the variables across the intervention
groups. When Kruskal-Wallis test was significant for a given variable, pair-
wise comparisons were performed and the significance values of the sub-
group comparisons were adjusted for multiple tests. We used the post hoc
Bonferroni test for adjusting the p value to prevent type I error. However,
this test is considered rather conservative which may cause higher type
II error or missing possible effects. p values below 0.05 were considered
statistically significant, while those between 0.05 and 0.1 were interpreted
as a trend. Statistical analyses were carried out using IBM SPSS 27.0 (IBM
Corp., Armonk, NY, USA).

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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