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Abstract

Science revolves around forming hypotheses, designing experiments,
collecting data, and tests. It was not until recently, with the advent
of modern hardware and data analytics, that science shifted towards
a big-data-driven paradigm that led to an unprecedented success
across various fields. What is perhaps the most astounding feature of
this new era, is that interesting hypotheses can now be automatically
discovered from observational data. This dissertation investigates
knowledge discovery procedures that do exactly this. In particular,
we seek algorithms that discover the most informative models able to
compactly “describe” aspects of the phenomena under investigation,
in both supervised and unsupervised settings.
We consider interpretable models in the form of subsets of the

original variable set. We want the models to capture all possible in-
teractions, e.g., linear, non-linear, between all types of variables, e.g.,
discrete, continuous, and lastly, we want their quality to be meaning-
fully assessed. For this, we employ information-theoretic measures,
and particularly, the fraction of information for the supervised set-
ting, and the normalized total correlation for the unsupervised. The
former measures the uncertainty reduction of the target variable
conditioned on a model, and the latter measures the information
overlap of the variables included in a model.
Without access to the true underlying data generating process,

we estimate the aforementioned measures from observational data.
This process is prone to statistical errors, and in our case, the errors
manifest as biases towards larger models. This can lead to situations
where the results are utterly random, hindering therefore further
analysis. We correct this behavior with notions from statistical
learning theory. In particular, we propose regularized estimators that
are unbiased under the hypothesis of independence, leading to robust
estimation from limited data samples and arbitrary dimensionalities.
Moreover, we do this for models consisting of both discrete and
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continuous variables.
Lastly, to discover the top scoring models, we derive effective

optimization algorithms for exact, approximate, and heuristic search.
These algorithms are powered by admissible, tight, and efficient-to-
compute bounding functions for our proposed estimators that can
be used to greatly prune the search space.
Overall, the products of this dissertation can successfully assist

data analysts with data exploration, discovering powerful description
models, or concluding that no satisfactory models exist, implying
therefore new experiments and data are required for the phenomena
under investigation. This statement is supported by Materials Science
researchers who corroborated our discoveries.
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Zusammenfassung

In der Wissenschaft geht es um Hypothesenbildung, Entwerfen
von Experimenten, Sammeln von Daten und Tests. Jüngst hat sich
die Wissenschaft, durch das Aufkommen moderner Hardware und
Datenanalyse, zu einem Big-Data-basierten Paradigma hin entwick-
elt, das zu einem beispiellosen Erfolg in verschiedenen Bereichen
geführt hat. Ein erstaunliches Merkmal dieser neuen Ära ist, dass
interessante Hypothesen jetzt automatisch aus Beobachtungsdaten
entdeckt werden können. In dieser Dissertation werden Verfahren
zur Wissensentdeckung untersucht, die genau dies tun. Insbeson-
dere suchen wir nach Algorithmen, die Modelle identifizieren, die
in der Lage sind, Aspekte der untersuchten Phänomene sowohl in
beaufsichtigten als auch in unbeaufsichtigten Szenarien kompakt zu
“beschreiben”.

Hierzu betrachten wir interpretierbare Modelle in Form von Un-
termengen der ursprünglichen Variablenmenge. Ziel ist es, dass diese
Modelle alle möglichen Interaktionen erfassen (z.B. linear, nicht-
lineare), zwischen allen Arten von Variablen unterscheiden (z.B.
diskrete, kontinuierliche) und dass schlussendlich ihre Qualität sin-
nvoll bewertet wird. Dazu setzen wir informationstheoretische Maße
ein, insbesondere den Informationsanteil für das überwachte und
die normalisierte Gesamtkorrelation für das unüberwachte Szenario.
Ersteres misst die Unsicherheitsreduktion der Zielvariablen, die durch
ein Modell bedingt ist, und letztere misst die Informationsüberlap-
pung der enthaltenen Variablen.
Ohne Kontrolle des Datengenerierungsprozesses werden die oben

genannten Maße aus Beobachtungsdaten geschätzt. Dies ist anfäl-
lig für statistische Fehler, die zu Verzerrungen in größeren Mod-
ellen führen. So entstehen Situationen, wobei die Ergebnisse völlig
zufällig sind und somit weitere Analysen stören. Wir korrigieren
dieses Verhalten mit Methoden aus der statistischen Lerntheorie.
Insbesondere schlagen wir regularisierte Schätzer vor, die unter der
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Hypothese der Unabhängigkeit nicht verzerrt sind und somit zu
einer robusten Schätzung aus begrenzten Datenstichproben und
willkürlichen-Dimensionalitäten führen. Darüber hinaus wenden
wir dies für Modelle an, die sowohl aus diskreten als auch aus
kontinuierlichen Variablen bestehen. Um die besten Modelle zu
entdecken, leiten wir effektive Optimierungsalgorithmen mit ver-
schiedenen Garantien ab. Diese Algorithmen basieren auf speziellen
Begrenzungsfunktionen der vorgeschlagenen Schätzer und erlauben
es den Suchraum stark einzuschränken. Insgesamt sind die Pro-
dukte dieser Arbeit sehr effektiv für die Wissensentdeckung. Letztere
Aussage wurde von Materialwissenschaftlern bestätigt.
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1
Introduction

The recent advances of modern hardware and data analytics in col-
lecting, storing, and analyzing large volumes of data, have propelled
science towards a paradigm shift with an unprecedented success:
data-driven scientific discovery [HTT09]. Scientists, with the help of
algorithms, can now analyze data to predict system states, test corre-
lations between random variables from observations, learn unforeseen
patterns in nature, and discover new scientific laws [MCGBK19].
Materials Science, for example, investigates interpretable models that
identify and meaningfully describe the mechanisms behind physi-
cal and chemical processes such as the crystallization of composite
semiconductors [GVL+15, GBV+17, SBG+20]. A compact represen-
tation of these mechanisms, e.g., in the form “these atomic material
properties directly influence crystallization”, can be used to improve
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accuracy and generalization of prediction algorithms, validate do-
main knowledge, and even lead to new findings, facilitating therefore
advancements in material development such as more efficient photo-
voltaics and batteries.

Arriving at novel discoveries is a process that involves cycles of
forming hypotheses, designing experiments, acquiring data, iden-
tifying models and assessing their quality. The cycles start with
ideas and data exploration [Tuk80]. The goal of this dissertation
is to assist practitioners in the knowledge discovery process. In
particular, we propose algorithms that explore data and solve the
following problems.

Problem 1 (Unsupervised). Given observational data over the
random variables I = {X1, . . . , Xd} of some process under inves-
tigation, discover the most informative models to “describe” that
process.

Problem 2 (Supervised). Given observational data over the ran-
dom variables I = {X1, . . . , Xd} and Y of some process, with Y being
a target under investigation, discover the most informative models to
“describe” Y .

Despite being compactly stated, these are formidable data analysis
tasks with challenging requirements in order to be effective. First,
for the analysts to understand the results and reason about, the
procedures need to be interpretable. For example, while deep neu-
ral networks pushed the boundaries in prediction to the point they
can achieve better-than-human performance, they lack the ability
to explain how and why. Second, the procedures must be able to
capture all possible interactions, whether linear, non-linear, multi-
variate. Some high-quality models can be missed if, for example,
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only pairwise associations are being modeled. Third, the procedures
should work with data of arbitrary types, e.g., discrete, continuous,
as this is the case in many practical scenarios. Fourth, since we
are only given observational data, principally answering questions
about the underlying mechanisms behind some process requires ro-
bust inference techniques. Otherwise, spurious discoveries can lead
to wrong conclusions. Lastly, the procedures should be able to effi-
ciently discover the best models out of all possible models. This way
analysts can be confident with moving the models to post-processing,
or concluding that the cycle should restart with new experiments
and data. Moreover, by accounting for multiple models, the analysts
have the opportunity to investigate alternative descriptions. In sum-
mary, we seek interpretable exploratory procedures [Tuk77], free from
parametric assumptions, statistically robust, exact, and efficient.

In this dissertation, we consider interpretable models in the form of
subsets X ⊆ I of the original variable set I. In other words, we seek
the parts of the process that are most informative and can be used
as descriptions. Solutions to Problems 1 and 2 then consist of three
parts: deriving scoring functions to assess the quality of candidate
subsets X ⊆ I while satisfying the first three requirements, using
inference techniques that satisfy the fourth, and designing efficient
combinatorial optimization algorithms to discover the top scoring
subsets X ∗ ⊆ I.
Regarding appropriate scoring functions, information-theoretic

tools [Sha48] are already the perfect candidates. The Shannon en-
tropy of a random variable quantifies the amount of uncertainty,
or equivalently the amount of information, as the expected number
of bits to transmit one symbol. Mutual information quantifies the
amount of shared information between two random variables and
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can capture any type of relationship. Both can generalize to sets of
random variables with arbitrary data types. With these two ingredi-
ents as building blocks, one can design scoring functions formalizing
concepts such as statistical (in)dependence, relevancy, and redun-
dancy, in a non-parametric way. It should not be a surprise that
for certain applications, e.g., learning Chow–Liu trees [CL68] and
feature selection [BPZL12], mutual information is the means to an
optimal solution. Properties like these have popularized information
theory in several scientific communities including neuroscience [TL18]
and molecular biology [Ada04]. In this dissertation, we investigate
information-theoretic scoring functions that can meaningfully assess
model quality for Problems 1 and 2.
After obtaining such functions, the next step is to estimate them

from observational data. That is, we derive these functions assuming
the data generating process is known, but in practice we only have
limited samples of that process. While inference from data is in
general a challenging task, for our purposes it can go arbitrarily
wrong. As an example, let us consider two discrete random variables
X and Y that are statistically independent in the population, having
true mutual information I(X;Y ) = 0. To estimate I from data, we
have to rely on estimators such as the plugin (maximum likelihood)
Îpl. Despite being consistent, i.e., given enough data Îpl can measure
the true mutual information, with limited data it can easily be that
Îpl(X;Y ) > 0, i.e., X and Y appear to be dependent. In fact, it
is even possible that X and Y appear to be maximally dependent,
i.e., one variable functionally determines the other. For our settings
where we have to compare the estimates of all subsets X ⊆ I, this
overestimation trivially leads to spurious discoveries and hence to
wrong conclusions. The situation becomes more complicated when we
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consider variable sets of mixed types. While discretizing continuous
variables is a standard practice, it is not clear whether the discretized
estimates are consistent with the population, nor what conditions are
required for this. Hence, we need to derive appropriate estimators
for our scoring functions.
Finally, after arriving at appropriate estimators, we need to effi-

ciently solve the resulting combinatorial optimization problems for
finding the best models with potentially huge search spaces (expo-
nential in the size of I). Not only exhaustive search is infeasible, but
such problems are often NP-hard excluding polynomial time exact
solutions. Hence, we need to design exhaustive optimization algo-
rithms that are effective in practice. For situations where worst-case
exponential complexity is not practical, we need approximate algo-
rithms that come with result guarantees such that the data analysts
can still draw conclusions.
Overall, we investigate in this dissertation the following research

questions.

Question 1. Given a process over random variables I = {X1, . . . , Xd}
and (potentially) a target random variable Y , how can we meaning-
fully describe and compactly represent aspects of that process?

To answer this question, we employ information theory and inves-
tigate scoring functions to assess the quality of candidate description
models X ⊆ I. Information-theoretic measures are naturally inter-
pretable, non-parametric, and in many cases theoretically justified.
For candidate models X ⊆ I, we use the fraction of information
F (X ;Y ) for the supervised scenario (Ch. 3), and the normalized
total correlation w(X ) for the unsupervised (Ch. 4). Both capture
all possible variable interactions and measure the quality in [0, 1],
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with 0 and 1 implying statistical independence and maximum depen-
dency, respectively.

Question 2. Given observational data of a process, how can we
robustly measure the true population value for the fraction of infor-
mation and normalized total correlation?

We answer this question by employing notions from statistical
learning theory. In particular, we design estimators that are unbiased
under the null hypothesis of independence by regularizing the plugin
estimators. The regularizers are the biases under the null hypothesis,
estimated non-parametrically as the expected values of the plugin es-
timators across sample permutations. For the fraction of information
we can efficiently perform all possible sample permutations, while for
the normalized total correlation we rely on an upper-bound for effi-
ciency. In addition, for sets of discrete and continuous variables, we
derive a consistent mixed-data mutual information estimator based
on partitioning techniques for Euclidean spaces (Ch. 5).

Question 3. Given robust estimators for the fraction of information
and normalized total correlation, how do we efficiently discover the
top scoring models X ∗ ⊆ I with guarantees?

We answer this question with exact, approximate, and heuristic
combinatorial optimization algorithms. To greatly reduce the search
space, we derive pruning rules that are based on admissible, tight,
and efficient-to-compute bounding functions for our proposed estima-
tors. For the normalized total correlation, we show that admissibility
is only enabled under a strict search space enumeration order. For
exact search, we employ the branch-and-bound framework that is
in practice very effective for hard problems. For cases where worst-
case exponential complexity in not practical, the branch-and-bound
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framework can principally trade solution optimality for runtime effi-
ciency in the form of approximation guarantees α ∈ (0, 1]. Moreover,
when solutions guarantees are not mandatory and/or very fast so-
lutions are required, we employ the standard greedy algorithm for
heuristic search, that in our case, produces near-optimal results.

1.1 Overview of contributions and outline

This dissertation presents knowledge discovery algorithms for Prob-
lems 1 and 2. Our goal is to assist data analysts with data exploration,
discovering powerful description models, or concluding that no satis-
factory models exist, implying therefore new experiments and data
are required for the process under investigation. In Figure 1.1 we
showcase our solution for Problem 2. Our algorithms can be found
online1 under MIT License, together with detailed descriptions on
how to use them.
Below is an overview of the contributions that appear in Chap-

ters 3, 4, and 5. The dissertation starts with an introduction to
information-theoretic measures and estimation in Chapter 2, and
finishes with discussion and conclusions in Chapter 6.
Supervised knowledge discovery. We conclude in Chapter 3

that maximizing the fraction of information F (X ;Y ) over all sub-
sets X ⊆ I is the desired solution for Problem 2. The fraction of
information quantifies the proportional reduction of uncertainty of
random variable Y by knowing X . It takes values in [0, 1], with
extreme values indicating statistical independence and functional
dependency Y = f(X ), respectively. Besides interpretability, this is

1https://github.com/pmandros/fodiscovery
https://github.com/pmandros/wodiscovery
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a theoretically justified goal. The top X ∗ ⊆ I achieves the Bayes
error in classification, it is the solution to maximizing the condi-
tional likelihood, and if we assume a Bayesian network, it has causal
interpretations. We then derive an estimator for the fraction of
information and discrete data that is corrected for inflated estimates
and well-suited for high-dimensional optimization. This estimator
is the difference of the plugin estimator versus its average value
across all possible sample permutations, and is essentially unbiased
under the hypothesis of independence. We show that the problem
of maximizing this estimator is NP-hard, justifying both exhaustive
and heuristic search. We derive bounding functions for the estimator
that can be used as pruning rules in both styles of optimization.
Last, we propose algorithms for exact, approximate, and heuristic
search. The results demonstrate that the resulting method is effi-
cient, statistically robust, and that it indeed discovers meaningful
dependencies. This chapter also lays the foundation for the following
chapters, e.g., by introducing algorithms, pruning rules, and esti-
mators. This chapter is based on work published as Mandros et
al. [MBV17, MBV18, MBV20].
Unsupervised knowledge discovery. We argue in Chapter 4

that maximizing the normalized total correlation w(X ) among all
X ⊆ I is an attractive solution for Problem 1. Normalized total
correlation takes values in [0, 1], quantifying the proportion of mutual
dependency residing in a set of random variables compared to the
maximum possible. It takes value 0 for statistical independence
between all X ∈ X , and value 1 if there exists a X ∈ X such that
X ′ = f(X) for all the remaining X ′ ∈ X \{X}. We then derive a fast-
to-compute estimator for the normalized total correlation and discrete
data that is corrected for inflated estimates and well-suited for high-
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dimensional optimization. This estimator is based on subtracting an
upper-bound for the expected value across all sample permutations.
We derive bounding functions for the estimator to be used as pruning
rules in combinatorial optimization. For the bounding functions
to be admissible, we identify a strict enumeration order. Last, we
propose algorithms for exact, approximate, and heuristic search. The
results demonstrate that the resulting method is efficient, statistically
robust, and that it indeed discovers meaningful dependencies. This
chapter is based on work published as Mandros et al. [MBV19].
Estimating mutual information from mixed-type data. It

is known that the population mutual information I(X;Y ) between a
pair of continuous random variables X and Y can be attained non-
parametrically as the limit of a series of finer-grained equal-width
quantizations. That is, if we quantize the domain of the continuous
random variables X and Y in k ∈ Z+ and q ∈ Z+ equal-width bins
to create discrete variables Xk, Yq, respectively, then it holds that
I(X;Y ) = limk,q→∞ I(Xk, Yq). We extend this result for sets of vari-
ables X and Y that can be mixtures of random variables of any type,
as well as identify a larger class of quantization techniques applicable.
We then show how to apply this process for functional dependency
discovery given observational data, arriving at a mixed-data mutual
information estimator framework that requires two ingredients: a
discrete consistent estimator and a partitioning technique. We ar-
gue that not all consistent estimators can achieve robust estimation.
Last, we show that this estimator framework synergizes well with
our proposed method for robust functional dependency discovery
(Ch. 3). In particular, the robust estimator allows polynomial time
exact search through all possible Euclidean space partitions, and
efficient pruning rules can be derived. Results demonstrate that the
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estimation process is indeed robust and consistent, while the resulting
discovery algorithms remain effective for data of arbitrary variable
types. These appear in Chapter 5, which is based on work published
as Mandros et al. [MKBV20].
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Figure 1.1: Demo of our solution to Problem 2 on a Materials
Science case study. The dataset contains 12200 gold cluster configura-
tions (of sizes 5 to 14 atoms) generated at finite temperature by replica-
exchange molecular dynamics simulations [GBV+17]. The attributes in
this dataset are 23 physicochemical and geometrical properties of the gold
clusters. Here we are interested in discovering models that are descriptive
for the target variable HOMO-LUMO gap that determines the electro-
chemical properties of a cluster. Out of all possible 222−1 variable subsets,
our proposed method uncovers as top X ∗ the structural variable radius of
gyration and non-local dispersion energies evdw per atom, that combined
reduce the uncertainty of HOMO-LUMO gap by 43%, i.e., the estimated
fraction of information is 0.43. The scatterplot represents the nano-clusters
against the two-dimensional descriptor, with color indicating the values
of the HOMO-LUMO gap. The lines represent the partition of R2 in up
to 5 bins per axis that contributes the most to reducing the uncertainty
of HOMO-LUMO gap.
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2
Information-theoretic dependency

measures and estimation from data

In this chapter we cover the information-theoretic tools we use
throughout the dissertation. We show how to estimate these tools
given empirical data, and we introduce basic notation.

2.1 Information-theoretic measures

Ever since Claude E. Shannon formalized information theory in
his 1948 seminal article “A mathematical theory of communica-
tion” [Sha48], information-theoretic principles have been adopted
virtually in every machine learning and data mining application.
Examples include decision trees [Qui86], feature selection [Lew92],
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representation learning [Lin88, TPB00], learning tree-structured dis-
tributions [CL68], computer vision [VWI97]. The reason for being
so broadly applicable is that information theory provides tools that
meaningfully quantify the uncertainty of random variables, or equiv-
alently, the amount of information.
The Shannon entropy for a discrete random variable Y , with

domain VY , domain size SY = |VY |, and probability distribution pY ,
is defined as the functional

H(Y ) = −
∑
y∈VY

pY (y) log(pY (y)) .

Note that we use y ∈ Y and p(y) instead of y ∈ VY and pY (y),
respectively, whenever clear from the context. Assuming a logarithm
of base 2, Shannon entropy quantifies uncertainty as the expected
number in bits to transmit one symbol from Y . For example, assum-
ing that Y follows a uniform probability, then it has the maximum
possible1 entropy of log(SY ). Given a second random variable X and
probability distribution pX,Y , the conditional Shannon entropy
of Y given X is defined as

H(Y |X) =
∑
x∈X

p(x)H(Y |X = x)

=−
∑
x∈X

p(x)
∑
y∈Y

p(y |x) log(p(y |x)) .

The amount of shared information between the two variables is
1Among all distributions with the same domain size.
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quantified by the mutual information functional

I(X;Y ) =
∑
x∈X

∑
Y ∈Y

p(x, y)
p(x, y)

p(x)p(y)

=H(Y )−H(Y |X)

=H(X)−H(X |Y )

=H(X) +H(Y )−H(X,Y ) .

Mutual information satisfies an important property useful in many
data analysis tasks: I(X;Y ) ≥ 0, with equality if and only if X and
Y are statistically independent, a fundamental relation we recall here
for self-containment.

Definition 2.1.1 (Statistical independence). For two random
variables X and Y , we say that X and Y are statistically independent,
denoted as X ⊥⊥ Y , if and only if for every x ∈ X and y ∈ Y , it
holds that p(x, y) = p(x)p(y).

Note that mutual information is the Kullback–Leibler divergence [KL51]
between p(X,Y ) and p(X)p(Y ). Now given a third variable Z, the
conditional mutual information of X and Y given Z is defined
as

I(X;Y |Z) =H(Y |Z)−H(Y |Z,X)

=H(X |Z)−H(X |Z, Y ) .

The last measure we introduce is the fraction of information,
an asymmetric normalized version of mutual information expressed
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as

F (X;Y ) =
I(X;Y )

H(Y )
.

The fraction of information is a supervised measure quantifying the
proportional reduction of uncertainty of a target variable (the second
argument) by conditioning on another. It takes values in [0, 1], with
extreme values indicating statistical independence and functional
dependency, respectively. Here, functional dependency is defined
as follows.

Definition 2.1.2 (Functional dependency). For two random
variables X and Y , we say that Y functionally depends on X, denoted
as Y = f(X), if and only if for every value y ∈ Y , there exists a
value x ∈ X such that p(y |x) = 1.

The following proposition summarizes important properties sat-
isfied by the aforementioned information-theoretic measures. In
Figure 2.1 we illustrate their relationships with Venn diagrams.

Proposition 2.1.1 ([CT06], Ch. 2). Given random variables X,Y, Z,
the following statements hold:

a) H(Y ) ≥ H(Y |X) with equality if and only if Y ⊥⊥ X

b) H(Y |X) = 0 if and only if Y is a function of X

c) I(X;Y ) ≥ 0 with equality if and only if X ⊥⊥ Y

d) I(X;Y ) ≤ min{H(X), H(Y )}

e) I(X;Y |Z) = 0 if and only if X ⊥⊥ Y |Z

f) F (X;Y ) ∈ [0, 1], with 0 if and only if X ⊥⊥ Y , and 1 if and
only if Y = f(X)
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H(Z)

H(X)

H(Y )

I(X;Y )

I(X;Y |Z)

Figure 2.1: Venn diagram for relations among information-
theoretic measures. The red, green, and blue circles are the Shannon
entropies of Z, X, Y , respectively, while the rugby ball shaped region in
the middle is the mutual information of X and Y , and the small light green
is I(X;Y |Z). The purple area is H(Y |X,Z). All the circles combined is
H(Z,X, Y ). No overlap would imply H(Z,X, Y ) = H(Z) +H(X) +H(Y )
and 0 mutual information for all pairs.

In addition to these, we note the following desired properties:

• these measures, as functionals of probability distributions, triv-
ially extend to sets of variables and multivariate distributions.
For example, given sets of variables X = {X1, . . . , Xm} and
Y = {Y1, . . . , Yl}, with values x ∈ VX ,y ∈ VY , and probability
distribution pX ,Y , we have I(X ;Y), H(X ), H(X ,Y), etc.

• Moreover, while so far we considered the discrete case, these
measures are agnostic with respect to variable types. That
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is, the random variables involved can be nominal, ordinal,
continuous, etc. We explore this further in Chapter 5.

• Mutual information, and hence the fraction of information, is
agnostic with respect to the variable relationship, e.g., non-
linear, XOR. This is easy to verify since mutual information
detects dependence as lack of independence, without the need
to assume specific relationship types.

To summarize, information theory provides a high-level language
to build objective functions and formalize concepts such as statisti-
cal (in)dependence, relevancy, redundancy, in a non-parametric way.
Note, however, that this language involves probability distributions
which we assumed so far to be known. That is, we were at popula-
tion level. In practice, we estimate them from the empirical level
with data-dependent estimators Ĥ, Î, F̂ .

2.2 Estimation

We consider in this dissertation two scenarios: an unsupervised, where
we are given n i.i.d. samples Dn = {d1, . . . ,dn} over input random
attributes I = {X1, . . . , Xd} with joint probability distribution p(I),
and a supervised, with an additional special random variable of
interest Y and joint probability distribution p(I, Y ). In both cases,
the goal is to maximize some information-theoretic measure over all
possible subsets X ⊆ I. We focus on discrete random variables, with
the mixed-type scenario explored in Chapter 5.
We identify samples of a random variable X with the labeling

X : [n]→ VX it induces on the data sample, i.e.,X(i) = di(X). More-
over, for a set X = {X1, . . . , Xl} of labelings over [n], we define the
corresponding vector-valued labeling by X (i) = (X1(i), . . . , Xl(i)).
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We define cX : VX → Z+ to be the empirical counts of X,
i.e., cX(x) = |{i ∈ [n] : X(i) = x}|. We further denote with
p̂X : VX → [0, 1], where p̂X(x) = cX(x)/n, the empirical distribu-
tion of X. Given another random variable X ′, p̂X |X′=x′ : VX → [0, 1]

is the empirical conditional distribution of X given X ′ = x′,
with p̂X|X′=x′(x) = cX,X′ (x,x

′)/cX′ (x
′) for x ∈ X. However, we use p̂(x)

and p̂(x |x′), respectively, whenever clear from the context.
Straightforward estimators for H, I, F, can be derived by maximum

likelihood estimation, where the empirical distribution p̂ is plugged
in to evaluate the functionals. This gives rise to plugin estimators
Ĥpl, Îpl, and F̂pl. Despite their simplicity, these estimators are
consistent [AK01], i.e., they converge in probability to the true
population values as n → ∞. While this is a desired statistical
property, the research community has argued that these estimators
are of little practical use in the case of high-dimensional distributions,
or equivalently, large alphabet distributions.2 This statement is nicely
captured with the following quote3 by Wyner and Foster [WF03]:

“the plugin estimate is universal and optimal not only for
finite alphabet i.i.d. sources but also for finite alphabet,
finite memory sources. On the other hand, practically as
well as theoretically, these problems are of little interest.”

The importance of information theory and the need for better
estimators has therefore led to a large amount of proposals [NSB02,
Gra08, SG96, Gra88, VV13, WY16, VV11, JVHW15, Pan03, Pan04,
Sch13] (see Jiao et al. [JVHW15] for a great review). Here we focus on

2A set of random variables X = {X1, . . . , Xm} can be seen as a single variable
X with domain VX =

∏
Xi∈X VXi . In that sense, large alphabet and high-

dimensional are equivalent.
3Which came into our attention by being quoted in Jiao et al. [JVHW15].
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two theoretically optimal estimators, namely the unseen estimator
Ĥun by Valiant and Valiant [VV13] and the minimax estimator
Ĥmm by Jiao et al. [JVHW15]. The former tries to estimate the
unseen portion of the population4 solving linear programs, while the
second employs best-polynomial approximation to obtain a minimax
rate-optimal estimator. These two are theoretically optimal because
they achieve the necessary and sufficient conditions for consistent
estimation of entropy, i.e., they require number of samples that are
sublinear to the domain size of the variable involved. In more detail,
the sample complexity of an estimator represents the minimum
number of samples required to achieve a certain ε-δ-PAC guarantee.
This is a more useful evaluation criterion than limit consistency. For
Shannon entropy, the sample complexity is expressed as a function
of the domain size of the random variable involved, with the plugin
estimator Ĥpl requiring number of samples linear to the domain size,
i.e., SĤpl

(k) ∈ O(k), where k is the domain size. The unseen and the
minimax achieve the best possible SĤ(k) ∈ Ω(k/ log(k)).

The majority of the estimators proposed, including the theoretically
optimal, have not been used in statistically high-demanding practical
scenarios such as the one we consider in this dissertation, i.e., finding
the maximum over all subsets X ⊆ I. In the following chapters
we show that they indeed under-perform, and proceed to derive
appropriate estimators.

4Essentially seek a better estimate for p rather than using the empirical p̂.
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3
Discovering robust

functional dependencies

Given categorical data over attributes I = {X1, . . . , Xd} and a
target attribute of interest Y , there exist a multitude of applications
concerned with discovering subsets X ⊆ I that are “relevant” to Y .
Hence, it is a central research topic in many communities including
data management, feature selection, Bayesian networks, and causal
inference. To arrive at a desired solution for our knowledge discovery
purposes, let us first review the different methods proposed.
In data management, practitioners seek (approximate) func-

This chapter is an extended version of work that originally appeared in ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD) [MBV17],
IEEE International Conference on Data Mining (ICDM) [MBV18], and Knowl-
edge and Information Systems (KAIS) [MBV20].
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tional dependencies [RG99, Ch. 15], also known as keys, to be
used in applications such as schema discovery [KPHN16], data inte-
gration [MHH+01], schema design [KLLZ16], normalization [PN17],
query relaxation [NK04]. Here, a functional dependency is a map-
ping from the values of some X ⊆ I to Y , i.e., the values of X
uniquely determine the values of Y , while an approximate functional
dependency allows for errors. A plethora of methods have been
proposed (see, e.g., [PEM+15, LLLC12]), that in a nutshell, quantify
the degree of functional dependency by counting the amount of data
samples violating it and search for all minimal subsets satisfying
some threshold. The fraction of information has also been proposed
to better quantify the degree of functional dependency [CP87, GR04].
Regarding knowledge discovery, this type of analysis has a major
drawback due to the implicit closed-world assumption where the
data generating process p is equal to the empirical p̂ [GR04]. Hence,
the dependencies discovered, although functional, reflect only the
structure of the given empirical data and do not generalize.
Feature selection is concerned with selecting a subset of at-

tributes to facilitate prediction algorithms in terms of accuracy,
generalization, training/testing time, as well as reduce storage re-
quirements [GE03, LY05, JKP94, LMSZ10]. Hence, they must be
able to efficiently provide subsets of attributes that contain the ma-
jority of predictive information for Y . The various methods proposed
can be split into three categories: wrapper, embedded, and filter
methods. Wrappers select features by using an induction algorithm as
a black box, and via various search strategies, find features that max-
imize some performance metric, e.g., cross-validation error [KJ97].
Embedded methods are prediction algorithms with an embedded
feature selection process, e.g., LASSO with the L1 penalty term for
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sparsity [Tib96]. Filter methods, in contrast to the previous two,
select features independently of any prediction algorithm by using
proxy measures to assess the quality of feature subsets [KR92, Lew92].
The most prominent feature selection methods are filters based on
information-theoretic scoring functions maximized with cardinal-
ity constraints (desired number of features) by the greedy algo-
rithm [Lew92, Bat94, VE14, BPZL12]. This comes as no surprise
since filter methods are independent of any prediction algorithm,
mutual information captures arbitrary relationships and is invariant
under invertible and differentiable transformations, while the greedy
algorithm is efficient. Some well-known methods are presented in Ta-
ble 3.1. Given the set of already selected features S, these algorithms
select the next best feature X∗ by maximizing a univariate target
relevance term, minus the redundancy with S modeled as a function
of low-order (e.g., pairwise for MRMR) interactions. It is worth not-
ing that Brown et al. [BPZL12] unify in seminal work two decades of
research, showing that proposed information-theoretic filter methods
are approximations to the problem of maximizing mutual information
under certain assumptions.1 In fact, maximizing mutual information
(and not low-order approximations) is considered to be the ultimate
feature selection procedure with theoretical justifications: it leads to
the Bayes error in classification [FH61, Ch. 9] [HR70, TD68], i.e., the
minimum possible classifier-independent error, and it corresponds to
maximizing the conditional likelihood of the target given subsets of
attributes [BPZL12]—a fundamental principle in statistics. Despite
their success in feature selection, filter methods are not tailored
towards knowledge discovery: they do not consider functional depen-

1For example, an assumption for MRMR is that of target conditional inde-
pendence, the same assumption as that of Naive Bayes (see Figure 3.1b).
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Table 3.1: Representative sample of filter feature selection algorithms
based on information theory. With I = {X1, . . . , Xd} we denote the set
of features, Y is the target variable, and S is the set of already selected
features, i.e., if we assume we currently seek the k-th feature, S contains
the previous k − 1 selected features. See [BPZL12, VE14] for extensive
reviews.

method objective function

MRMR [PLD05] arg max
X∈I\S

(
I(X;Y )− 1

|S|
∑
X′∈S

I(X;X ′)
)

CMIM [Fle04] arg max
X∈I\S

(
I(X;Y )− max

X′∈S

(
I(X;Y )− I(X;Y |X ′)

))
CIFE [LT06] arg max

X∈I\S

(
I(X;Y )− ∑

X′∈S

(
I(X;Y )− I(X;Y |X ′)

))
JMI [YM99] arg max

X∈I\S

(
I(X;Y )− 1

|S|
∑
X′∈S

(
I(X;Y )− I(X;Y |X ′)

))

dencies and hence potential high-order relationships can be missed,
while the necessary assumptions for both statistical and computa-
tional efficiency restrict the space of possible hypotheses for the data
generating distribution (see Fig. 3.1).
Markov blanket discovery algorithms is a family of methods

that identify local neighborhoods in Bayesian networks. A Bayesian
network (BN) [Pea88, Ch. 3.2] is a directed acyclic graph (DAG)
over a set of variables corresponding to a factorization of a joint
probability distribution and for which the Markov condition2 holds:
every variable Z in the DAG is conditionally independent of its non-
descendants3 given its parents.4 The Markov blanket of a random
variable is defined as follows.

Definition 3.0.1 (Markov blanket (MB)). In a Bayesian net-
2Also known as local Markov condition and Markov assumption.
3Nodes that cannot be reached by directed paths starting from Z.
4Nodes that have a directed edge towards Z.
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Y

X2

X1

X3

X4

X5

X6

(a) a general BN

Y

X1 X2 X3 X4 X5

X6

(b) a BN with target conditional
independence assumption

Figure 3.1: Examples of two Bayesian networks over variables I =
{X1, . . . , X6} and target Y . Shaded nodes indicate the Markov blanket of
Y . Left: a general BN where MB(Y ) comprises of the parents of Y (i.e.,
X3), the children (i.e., X2, X4), and the parents of the children (i.e., X1,
also known as spouses). Right: a BN that has the structural assumption
of target conditional independence. Note that with this assumption Y can
have at most 1 parent.

work over set of random variables R, the Markov blanket of a node
Y ∈ R, which we denote as MB(Y ), is a minimal subset of fea-
tures S ⊆ R \ {Y } for which it holds that Y ⊥⊥ Z | S, for all
Z ∈ R \ (S ∪ {Y }). In other words, MB(Y ) is a set of variables
that renders Y independent of the remaining R. See Figure 3.1 for
examples.

As the definition suggests, Markov blankets are (at least from a BN
point of view) the optimal set of attributes. Interestingly, Markov
blankets can be easily identified under the assumption of faithful-
ness: the only independencies to hold in the distribution are those
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entailed by the Markov condition,5 and as a consequence, it guaran-
tees the existence of a unique MB for every variable comprising of the
parents, children, and spouses. Note that Markov blankets are devoid
of directionality, i.e., knowing the MB does not tell us which nodes are
the parents, etc. Established approaches that operate under this as-
sumption, e.g., IAMB [TA03, TASS03], GS [MT99], or the more data
efficient6 HITON [ATS03], MMMB [TAS03], PCMB [PNBT07],
can be abstracted as grow-shrink type of algorithms that employ
conditional independence tests to first identify the true positives
(i.e., the members of the MB), and then remove the false positives.
In Algorithm 1 we present IAMB that implements the grow step
with the while loop and the shrink step with the for loop. If the
faithfulness assumption is violated, and particularly the intersection
property,7 then there can exist multiple Markov blankets. For this,
various randomized and approximate methods have been proposed
for weaker assumptions,8 e.g., KIAMB [PNBT07], EGSG [LLZ10],
TIE [SLA13]. It is important to note that Markov blanket discovery
algorithms, unlike filters, explicitly consider a data generating model
(i.e., the BN) which they can recover (without directionalities) under
certain non-structural assumptions (e.g., faithfulness), and hence
they can give insights about potential underlying mechanisms.9 How-

5An example of a faithfulness violation is the XOR relationship Y = X ⊕ Z
for uniform binary X and Z, where the DAG is X → Y ← Z with X 6⊥⊥ Z as the
only independence, while we additionally have in the distribution that X ⊥⊥ Y
and Z ⊥⊥ Y .

6They are more data efficient because they employ conditional independence
tests with subsets of the currently selected Markov blanket, while IAMB and
GS condition on the entire MB.

7That is, the distribution is not strictly positive.
8For example, the composition property.
9There exists work relating feature selection and Markov blankets, e.g., the

MB comprises of the strongly relevant features [JKP94] in feature selection for
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Algorithm 1 IAMB: Given a set of input variables I, target Y ,
independence test T , significance level α, and dependency score Q,
the algorithm returns under the faithfulness assumption the Markov
blanket of Y
1: function IAMB(I, Y )
2: MB = ∅
3: while MB does not change do
4: X∗ = arg max{Q(X;Y ) : X ∈ I \MB}
5: if X∗ 6⊥⊥ Y |MB then . according to T and α
6: MB = MB ∪ {X∗}
7: I = I \ {X∗}
8: for X ∈MB do
9: if X ⊥⊥ Y |MB \ {X} then . according to T and α

10: MB = MB \ {X}
11: return MB

ever, they exhibit the following drawbacks. First, the faithfulness
assumption implies that not all possible relationships are considered,
e.g., XOR. Second, to retrieve multiple Markov blankets they resort
in randomized and approximate techniques. Third, the results heavily
depend on parameters such as significance level for the tests, as well
as a parameter limiting the size of the conditional set for efficiency
and statistical robustness.
From a causal inference perspective, identifying relevant at-

tributes for Y in data corresponds to identifying causal relationships:
we say that X causes Y if an intervention on the underlying data
generating process to assign different values x to X, causes the con-
ditional probabilities p(Y | do(X = x)) to change. These are not
associative relationships like the aforementioned scenarios, but rather

faithful distributions [PE08, GAE07, AST+10].
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reflect the underlying mechanisms of the system under investigation.
While the former can be solved solely by employing classic statistics
on i.i.d. samples, e.g., an independence test, the gold standard to
identify causal relationships are carefully designed randomized con-
trol trial experiments that are, however, in many cases prohibitive.
For example, we cannot force people to adopt bad habits in order to
test whether they cause bad consequences. Hence, in such situations,
causality must be inferred from observational data and Bayesian net-
works are augmented with necessary assumptions for identifiability10

(see, e.g., [Pea09, Ch. 2] [Pea88, Ch. 8]). For example, to give a
causal interpretation to Markov blankets, besides faithfulness, there
are two additional assumptions required. One assumption is the
belief that the DAG represents causal relationships, which translates
the Markov condition to the causal Markov condition, i.e., every
variable is conditionally independent of its non-descendants given
its direct causes.11 A second assumption is that of causal sufficiency
which states that all common causes for any pair of variables are
measured. Under these three assumptions, the (unique) Markov
blanket is the set of direct causes, direct effects, and direct causes of
the direct effects. Note that by employing conditional independence
tests, one gets an equivalence class of oriented graphs12 (Markov
equivalent graphs). For stronger claims about directionality, the
class of variable relationships is restricted, e.g., using additive noise
models [HJM+09, PMJS14].

10Intuitively, the goal is ensure that the directionality in the DAG matches
the true causal structure, and with more assumptions, the stronger the claims
can be.

11In a causal DAG, the notions of parents, children, spouses, correspond to
direct causes, direct effects, and direct causes of the direct effects, respectively.

12There are more than one directed graphs matching the independencies found
in the distribution with different directionalities.
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To meet our goal for an effective knowledge discovery, we investigate
in this chapter a different angle. In particular, we consider the combi-
natorial optimization problem of maximizing the fraction of informa-
tion for the top-k, i.e., find the k attribute subsets X ∗1 , . . . ,X ∗k ⊆ I (
that satisfy

F (X ∗i ;Y ) = max{F (X ;Y ) : F (X ∗i−1;Y ) ≥ F (X ;Y ),X ⊆ I} .
(3.1)

Note that since H(Y ) is constant during the optimization, this
problem is equivalent to maximizing mutual information. We call
Eq.(3.1) the functional dependency discovery (FDD) task,13

which is well-motivated for our goal. First of all, it enjoys all the
benefits of using the fraction of information: it is agnostic of the rela-
tionship type, agnostic of the type of variables involved (e.g., discrete,
continuous), and is interpretable as it quantifies in [0, 1] the relative
reduction of uncertainty of Y by knowing X , with extreme values
indicating statistical independence and functional dependency, re-
spectively. Second, it is theoretically justified as it satisfies optimality
criteria such as Bayes error and conditional likelihood maximization
equivalence. Third, while it is free from structural assumptions re-
garding the data generating process p (e.g., a DAG), by making the
assumption that p is a BN solutions to Eq.(3.1) can correspond to
Markov blankets without needing additional assumptions such as
faithfulness.

Theorem 3.0.1. Given random variables I = {X1, . . . , Xd} and Y
13Note that this term is standard terminology in data management, and we

are in fact interested in the same goal, i.e., finding approximate keys. In our case,
however, we aim to recover keys w.r.t. the true data generating process p.

29



with joint probability distribution represented by a Bayesian network
where Y has k Markov blankets, the top-k minimal and maximal
solutions to Eq.(3.1) correspond to the k Markov blankets of Y and
vice versa.

Proof. Here, minimality ensures that the top-k does not include sets
X ,X ′, with X ⊆ X ′ and F (X ;Y ) = F (X ′;Y ). In that case, only
X is part of the top-k. This can be achieved, e.g., by breadth-first
search. Maximality ensures that the top-k does not not include sets
X ,X ′, with X ⊆ X ′ and F (X ;Y ) < F (X ′;Y ). In that case only X ′
is part of the top-k. This could be achieved by growing a prefix tree
for the top-k, where only the root-to-leaf paths are reported. Then,
the proof follows directly from the definition of a Markov blanket
and the properties of mutual information. We prove both directions
by contradiction.
Let us assume that at least one of the maximizers X ∗i , i ∈ [k], is

not a Markov blanket. Then there exists a Zi ∈ I \ X ∗i for which
Y 6⊥⊥ Zi | X ∗i . We know that mutual information is monotonically
increasing with the superset relation, i.e., I(X ;Y ) ≤ I(X ′;Y ) for
X ⊆ X ′ ⊆ I, with equality if only if Y ⊥⊥ (X ′ \ X ) | X . Therefore,
adding the Zi in X ∗i would result in I(X ∗i ∪ {Zi};Y ) > I(X ∗i ;Y ),
which is a contradiction as then X ∗i would not be part of the top-
k. Conversely, let us assume that there exists at least one Markov
blanket that is not a top-k maximizer. As every maximizer is a
Markov blanket, this would imply there exist at least k + 1 Markov
blankets, which is a contradiction as there are k Markov blankets.

The result implies that Eq.(3.1) can be seen as a score-based
approach14 for learning Markov blankets in Bayesian networks, and

14Note that score-based in Bayesian structure learning terminology corresponds
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hence the solutions have structural and causal interpretations. In
fact, Eq.(3.1) is potentially a superior formulation, at least in theory,
as it does not require further assumptions and can retrieve and assess
the quality of multiple Markov blankets.
Despite the theoretical justifications, solving Eq.(3.1) is a very

challenging problem in practice. Estimating the fraction of informa-
tion from an empirical sample of the joint probability distribution
p(I, Y ) is a process susceptible to statistical errors. For the discrete
data case in particular, the empirical estimator Îpl, while asymptoti-
cally efficient [AK01], exhibits an increasing bias with the domain
size of the variables involved that leads to an overestimation of the
actual degree of dependency15 (see Fig. 3.2 for a demonstration).
Hence, it is not suited for optimization where we have to soundly
compare different variable sets X ⊆ I of varying dimensionality and
consequently of widely varying domain sizes. Even if an appropriate
estimator was available, the search space for the optimization problem
is exponential in the number of attributes d and exhaustive search is
infeasible. At the same time it is unlikely to admit a polynomial time
solution [KG05]. To the best of our knowledge, this is the second
attempt for a solution to Eq.(3.1). The first attempt by Nguyen
et al., [VCB14], while it addresses the need for a correction and
proposes a solution based on asymptotics (see Sec. 3.5), the exact

to methods that infer the Markov equivalent DAG, and not only Markov blankets,
by scoring the different DAG with functions such as maximum likelihood and
the Bayesian Information Criterion [GH94, HMC06, Chi03].

15Note that this error is not applicable to data management solutions as they
operate purely empirically, i.e., they implicitly assume p = p̂, while in feature
selection it is mitigated due to the low-order approximations (e.g., pairwise). For
Markov blanket discovery, however, the independence tests are error prone in
a similar manner and remedies include requiring that data samples are at least
five times the number of degrees of freedom in the test [PNBT07].
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Figure 3.2: Histogram of plugin fraction of information esti-
mates F̂pl for independent dice rolls. Top: for a pair of dice d1, d2,
we perform 50 independent rolls and compute F̂pl(d1; d2). This process is
repeated with 10000 simulations, and we plot the histogram for 20 equal-
frequency bins. Despite having a population value of F (d1; d2) = 0, the
histogram has a right-tailed bell shape with expected value 0.17. Bottom:
same procedure but with 5 dice. Here the histogram has a left tail, with
expected value 0.95.

search algorithm proposed is only applicable for low-dimensional
datasets.16 In addition, our work makes the connection to causality

16The exact search algorithm proposed is essentially exhaustive search with an
upper-bound for the maximum search level derived from the corrected estimator
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and focuses on exploratory analysis, while Nguyen et al. consider
feature selection. In the next sections we present our solution and
the following contributions:

• to correct for overestimation, we derive a consistent and robust
estimator for mutual information, as well as accompany it with
a set of useful properties that can be used for optimization
(Sec. 3.1),

• we show that maximizing the robust estimator is NP-hard, jus-
tifying worst-case exponential as well as heuristic optimization
algorithms (Sec. 3.2),

• we derive two effective bounding functions for the robust es-
timator that can be used by algorithms to prune the search
space (Sec. 3.3),

• we propose a branch-and-bound algorithm to discover the α-
approximate top dependencies for desired approximation guar-
antee α ∈ (0, 1], a fast greedy algorithm, as well as a shrink step
to remove potentially uniformative variables from the results
(Sec. 3.4), and last,

• we perform an extensive evaluation for the estimator, pruning
functions, and resulting discovery framework (Sec. 3.5).

We finish with discussion and conclusions in Section 3.6.

3.1 Permutation mutual information and properties

In this section we derive a corrected estimator for mutual information,
as well as properties that can be used for effective optimization.

proposed. This solution is inefficient as all subsets below the maximum level will
be evaluated.
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3.1.1 Permutation mutual information

Intuitively, the reason why Îpl is unreliable as an estimator for
Eq.(3.1) is that it does not take into account the confidence in the
empirical estimates Ĥpl(Y |X = x) for some X ⊆ I. For example,
in the extreme case where the empirical count cX (x) is equal to 1,
then cX ,Y (x, y) = 1 for one value of y ∈ VY and hence Ĥ(Y |X = x)

is trivially equal to 0 independent of the true distribution p. This
case is likely to occur for many of the sampled values for X if the
data size n is small compared to the observed domain of X—even
when F (X ;Y ) = 0, which coincides with the highest error, because
then H(Y |X = x) = H(Y ) while Ĥpl(Y |X = x) = 0.

The tendency for the plugin estimator Îpl to overestimate is more
formally explained by its bias (see, e.g., [Rou99])

E[Îpl(X ;Y )− I(X ;Y )] ≈ SX ,Y − SX − SY + 1

2n
.

We see that the bias is independent of the actual distribution p and
it depends solely on the domain sizes SX ,Y , SX , SY and the number
of samples n. The bias is high when the X and Y samples produce
jointly a large domain VX ,Y compared to their marginal domains and
sample size n, and is at the highest when X and Y are independent
in the underlying distribution p, i.e., when I(X ;Y ) = 0. Regarding
the error of the estimator in general, it is known that the bias is the
dominating term for high-dimensional X [JVHW15].
These last observations suggest a correction for the empirical

Îpl(X ;Y ) by subtracting its bias assuming independence for X and
Y . A non-parametric choice for this null hypothesis is the permu-
tation model [Lan69, p. 214], arriving at the bias E[Îpl(X ;Y ) −
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I(X ;Y ) | I(X ;Y ) = 0] expressed as the expected value

E0[Îpl(X ;Y )] =
1

n!

∑
σ∈Sn

Îpl(X ;Yσ) , (3.2)

where Sn denotes the symmetric group of [n], i.e., the set of bijections
from [n] to [n], and Yσ denotes the composition of map Y with the
permutation σ ∈ Sn, i.e., Yσ(·) = Y (σ(·)). Essentially, Eq.(3.2) is the
average empirical mutual information over all possible sample per-
mutations with fixed marginal counts. With this, the permutation
mutual information is defined as

Î0(X ;Y ) = Îpl(X ;Y )− E0[Îpl(X ;Y )] ,

and the permutation fraction of information as

F̂0(X ;Y ) = Î0(X ;Y )/Ĥpl(Y ) .

With this type of correction we achieve the following desired
behaviors. First, we arrive at a consistent estimator for I and
consequently F . In particular, Nguyen et al. [NEB10] show that
limn→∞ E0[Îpl(X ;Y )] = 0, and together with the consistency of
the plugin Îpl [AK01], we have that limn→∞ Î0(X ;Y ) = I(X ;Y ).
Second, we correct the inflated estimates by accounting for the largest
possible bias. Third, we incorporate elements from exact significance
testing. We know that mutual information indicates independence at
population level with the value 0, and hence, by being unbiased under
the null hypothesis, we ensure accurate estimates for independence
(see Fig. 3.3 for a demonstration). Compared to exact significance
tests, this approach can better adapt to the data at hand as it does
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not require fixed confidence intervals, and while finding the exact
probability for the tail of the null distribution is only feasible for small
data, we see below that the expected value is much more efficient.
Hence, the robust estimator Î0 is well-suited to control the number
of false positive solutions of Eq.(3.1), efficiently, and without the
need of any parameters. From here on we abbreviate the correction
terms E0[Îpl(X ;Y )] as m0(X , Y, n) and the normalized version as
b0(X , Y, n) = E0[F̂pl(X ;Y )] = m0(X , Y, n)/Ĥpl(Y ).

Regarding the evaluation of Eq.(3.2), a naive approach with n! pos-
sible permutations is computationally infeasible. However, Nguyen
et al. [NEB09] show that the complexity is dramatically reduced
by reformulating it as a function of contingency table cell values
and exploiting symmetries. Let the observed domains of X and
Y be VX = {x1, . . . ,xR} and VY = {y1, . . . , yC}, respectively. We
define shortcuts for the observed marginal counts ai = c(X = xi) and
bj = c(Y = yj) as well as for the joint counts ci,j = c(X = xi, Y = yj).
The contingency table c for X and Y is then the complete joint
count configuration c = {ci,j : 1 ≤ i ≤ R, 1 ≤ j ≤ C}. The empirical
mutual information for X and Y can then be computed as

Îpl(X , Y ) = Îpl(c) =

R∑
i=1

C∑
j=1

cij
n

log
cijn

aibj
.

Each σ ∈ Sn results in a contingency table cσ. We denote with
T = {cσ : σ ∈ Sn} the set of all such contingency tables. Crucially, all
these tables have the same marginal counts ai, bj , i ∈ [1, R], j ∈ [1, C].
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Figure 3.3: Histogram of permutation fraction of information
estimates F̂0 for independent dice rolls. Top: for a pair of dice
d1, d2, we perform 50 independent rolls and compute F̂0(d1; d2). This
process is repeated with 10000 simulations, and we plot the histogram for
20 equal-frequency bins. Bottom: same procedure but with 5 dice. Here,
unlike the example in Figure 3.2, the histograms have an expected value
of 0. Note that for the 6 dice, the histogram does not have a bell shape
because the large domain size of {d1, d2, d3, d4} in combination with the
small number of data samples results in most permutations having the
same value.

Hence, we can rewrite

m0(X , Y, n) =
∑
c∈T

p̂0(c)

R∑
i=1

C∑
j=1

cij
n

log
cijn

aibj
,
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where p̂0(c) is the probability of contingency table c ∈ T . This
allows us to re-order the terms to have a per-cell contribution to m0,
rather than per-contingency-table c ∈ T , i.e.,

m0(X , Y, n) =

R∑
i=1

C∑
j=1

n∑
k=0

p̂0(cij = k)
k

n
log

kn

aibj
.

Under the permutation model, the empirical counts cij are distributed
hypergeometrically, i.e.,

p̂0(cij = k) =

(
bi
k

)(
n− bi
aj − k

)
/

(
n

aj

)
.

These probabilities can be computed efficiently in an incremental
manner using the support of the hypergeometric distribution, i.e., k
is non-zero for k ∈ [max(0, ai + bj − n),min(ai, bj)], and the hyper-
geometric recurrence formula

p̂0(k + 1) = p̂0(k)
(ai − k)(bj − k)

(k + 1)(n− ai − bj + k + 1)
.

The complexity for m0 is then O(nmax{|VX |, |VY |}) [RBNV14].
Moreover, the computation can be done in parallel for each individual
cell.

In addition to the permutation mutual information and fraction of
information, their conditional versions are defined as

Î0(X ;Y | Z) =
∑
z∈VZ

p̂(z)Î0(X ;Y | Z = z)
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and

F̂0(X ;Y | Z) =
Î0(X ;Y | Z)

E0[Ĥpl(Y | Z)]
,

respectively. Here, Î0(X ;Y | Z = z) indicates the permutation mutual
information between X and Y restricted to the data samples {i ∈ [n] :

Z(i) = z}, and E0[Ĥpl(Y | Z)] = Ĥpl(Y )− Î0(Z;Y ) is the conditional
Shannon entropy of Y given Z under the permutation model. Note
that we normalize with the corrected conditional entropy, and not
with the plugin Ĥpl(Y | Z), because otherwise the estimates will be
deflated for high-dimensional Z.

In the following section, we couple the above information-theoretic
quantities with relations for empirical attributes.

3.1.2 Specializations and Labeling Homomorphisms

Since we identify sets of random variables with their corresponding
sample-index-to-value map, they are subject to the following general
relations of maps with common domains.

Definition 3.1.1 (Specialization relation). Let A and B be maps
defined on a common domain N . We say that A is equivalent to
B, denoted as A ≡ B, if for all i, j ∈ N it holds that A(i) = A(j) if
and only if B(i) = B(j). We say that B is a specialization of A,
denoted as A � B, if for all i, j ∈ N with A(i) 6= A(j) it holds that
B(i) 6= B(j).

A special case of specializations is given by the subset relation of
variable sets, e.g., if X ⊆ X ′ ⊆ I for some set of variables I, then X �
X ′. The specialization relation implies some important properties
for empirical probabilities and information-theoretic quantities.
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Proposition 3.1.1. Given variables X,Z, Y, with X � Z, the fol-
lowing statements hold:

a) there is a projection π : VZ → VX , s.t. for all x ∈ VX , it holds
that p̂X(x) =

∑
z∈π−1(x) p̂Z(z)

b) Ĥpl(X) ≤ Ĥpl(Z)

c) Ĥpl(Y |Z) ≤ Ĥpl(Y |X)

d) Îpl(X;Y ) ≤ Îpl(Z;Y )

e) m0(X,Y, n) ≤ m0(Z, Y, n)

Proof. Let us denote with p and q the p̂X,Y and p̂Z,Y distributions
respectively. Statement (a) follows from the definition. For (b), we
define h(x) = −p(x) log p(x) for x ∈ X, and similarly h(z) for z ∈ Z.
We show that for all x ∈ X, h(x) ≤∑z∈π−1(x) h(z). The statement
then follows from the definition of Ĥpl. We have

h(x) = −p(x) log p(x)

= −

 ∑
z∈π−1(x)

q(z)

 log

 ∑
z∈π−1(x)

q(z)


= −

∑
z∈π−1(x)

q(z) log

 ∑
s∈π−1(x)

q(s)


≤ −

∑
z∈π−1(x)

q(z) log q(z) =
∑

z∈π−1(x)

h(z) ,

where the inequality follows from the monotonicity of the log function
(and the fact that q(z) is positive for all z ∈ Z).
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For (c) let us first recall the log-sum inequality [CT06, p. 31]: for
non-negative numbers a1, a2, . . . , an and b1, b2, . . . , bn,

n∑
i=1

ai log
ai
bi
≥
( n∑
i=1

ai

)∑n
i=1 ai∑n
i=1 bi

, (3.3)

with equality if and only if ai/bi constant. We have

Ĥpl(Y |Z) =−
∑

z∈Z,y∈Y
q(z, y) log

q(z, y)

q(z)

(a)
= −

∑
x∈X,y∈Y

∑
z∈π−1(x)

q(z, y) log
q(z, y)

q(z)

(3.3)
≤ −

∑
x∈X,y∈Y

( ∑
z∈π−1(x)

q(z, y)
) ∑
z∈π−1(x)

q(z, y)

∑
z∈π−1(x)

q(z)

=−
∑

x∈X,y∈Y
p(x, y) log

p(x, y)

p(x)
= Ĥpl(Y |X) .

For (d) we have Îpl(Z;Y ) = Ĥpl(Y ) − Ĥpl(Y |Z) ≤ Ĥpl(Y ) −
Ĥpl(Y |X) = Îpl(X;Y ) following from (c). For (e), using the chain
rule of information and that mutual information is non-negative [CT06,
Ch. 2], we have that Îpl(X;Y ) ≤ Îpl(Z;Y ). Then for each σ ∈ Sn it
holds that Îpl(X;Yσ) ≤ Îpl(Z;Yσ), and hence

∑
σ∈Sn Îpl(X;Yσ) ≤∑

σ∈Sn Îpl(Z;Yσ), which concludes the proof.

To analyze the monotonicity properties of the permutation model,
the following additional definition is useful.

Definition 3.1.2 (Homomorphic relation). We call a labeling X
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homomorphic to a labeling Z w.r.t. to some labeling Y , denoted as
X -Y Z, if there exists σ ∈ Sn with Y ≡ Yσ such that X � Zσ. We
use X - Z whenever clear from the context.

See Table 3.2 for examples of both introduced relations. Impor-
tantly, the inequality of mutual information for specializations carries
over to homomorphic variables and in turn to their correction terms.

Proposition 3.1.2. Given variables X,Z, Y, with X - Z, the fol-
lowing statements hold:

a) Îpl(X;Y ) ≤ Îpl(Z;Y )

b) m0(X,Y, n) ≤ m0(Z, Y, n)

Proof. Let σ∗ ∈ Sn be a permutation for which Y ≡ Yσ∗ and X �
Zσ∗ . Property (a) follows from

Îpl(Z;Y ) = Îpl(Zσ∗ ;Yσ∗)

= Îpl(Zσ∗ ;Y )

≥ Îpl(X;Y ) ,

where the inequality holds from Prop. 3.1.1d). For (b), note that
for every σ ∈ Sn, it holds from Prop. 3.1.1d) that Îpl(Zσ◦σ∗ ;Y ) ≥
Îpl(Xσ;Y ). Hence

m0(Z, Y, n) =
1

n!

∑
σ∈Sn

Îpl(Zσ;Y )

=
1

n!

∑
σ∈Sn

Îpl(Zσ◦σ∗ ;Y )
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Table 3.2: Specialization and homomorphism examples. We have X1 �
X2, X1 - X2, X1 - X3, X1 - X4, X2 - X3. Note that X3 6- X4 as there
is no σ ∈ S4 that satisfies specialization w.r.t. X4 and Y ≡ Yσ.

X1 X2 X3 X4 Y

a a a b a
a b b a b
b c b b b
b c c c b

≥ 1

n!

∑
σ∈Sn

Îpl(Xσ;Y ) = m0(X,Y, n) .

3.2 Hardness of optimization

In this section, we prove NP-hardness of maximizing F̂0 (and hence Î0)
by providing a reduction from the well-known NP-hard minimum
set cover problem: given a finite universe U = {u1, . . . , un} and
collection of subsets B = {B1, . . . , Bm} ⊆ 2U , find a set cover,
i.e., a sub-collection C ⊆ B with

⋃
B∈C B = U , that is of minimal

cardinality [KV12, Ch. 16.1]. A partial set cover C ⊆ B is one
where

⋃
B∈C B 6= U .

The reduction consists of two parts. First, we construct a base
transformation τ1(U,B) = Dl that maps a set cover instance to a
dataset Dl, such that a) the plugin F̂pl is monotonically increasing
with coverage, b) set covers correspond to attribute sets with an
empirical fraction of information score F̂pl of 1, and c) correction
terms b0 are a monotonically increasing function of their cardinality.
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u1 u2

u3 u4

u5

B1 B3

B4 B2

X1 X2 X3 X4 Y

1 1 a 1 1 a
2 a 2 2 a a

S1 3 3 a a a a
4 4 a 4 a a
5 a 5 a 5 a

6 a a a a b
7 a a a a b

S2 8 a a a a b
9 a a a a b
10 a a a a b

11 b c c c c
12 c b c c c

S3 13 c c b c c
14 c c c b c
15 c c c c c

Figure 3.4: Base transformation example. Left: a set cover instance
U = {u1, . . . , u5} and B = {B1,B2, B3, B4}. Right: the resulting D15

using τ1(U,B), with bold indicating the set cover)

In a second step, we calibrate the b0 terms such that all candidate
set covers have a higher F̂0 value than partial set covers. The latter
is achieved by copying the dataset Dl a suitable number of times k
such that the correction terms are sufficiently small but the overall
transformation, denoted τk(U,B) = Dkl, is still of polynomial size.
Combining these, we arrive at a polynomial time reduction.
The base transformation τ1(U,B) = Dl is defined as follows.

The dataset Dl contains m descriptive attributes I = {X1, . . . , Xm}
corresponding to the sets of the set cover instance, and a target
attribute Y. The sample size is l = 2n+m+1 with a logical partition
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of the sample into the three regions S1 = [1, n], S2 = [n+ 1, 2n], and
S3 = [2n+ 1, l]. The target attribute Y assigns to data points one of
three values corresponding to the three parts, i.e., Y : [l]→ {a,b, c}
with

Y (j) =


a, j ∈ S1

b, j ∈ S2

c, j ∈ S3

,

and the descriptive attributes Xi assign up to n+ 3 distinct values
dependending on the set of universe elements covered by set Bi, i.e.,
Xi : [l]→ {1, 2, . . . , n, a, b, c} with

Xi(j) =


j, j ∈ S1 ∧ uj ∈ Bi
a, (j ∈ S1 ∧ uj 6∈ Bi) ∨ j ∈ S2

b, j = 2n+ i

c, j ∈ S3 \ {2n+ i}

.

See Figure 3.4 for an illustration.
In a nutshell, the base transformation establishes a one-to-one

correspondence between C ⊆ B and variable sets X ⊆ I, which we
denote with I(C). We note the following two remarks. Let us use
a for (a, . . . , a), and

⋃ C as a short-cut for
⋃
B∈C B. We have that

S1 and S2 couple the amount of uncovered elements U \⋃ C to the
conditional entropy Ĥpl(Y | I(C) = a) via

p̂(Y = a | I(C) = a) = |U \
⋃
C|/(n+ |U \

⋃
C|) .

In addition, part S3 links the size of C to the number of distinct
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values of I(C) on S3, i.e., |C| = VI(C)S3
− 1. We now establish three

central properties for the base transformation.

Lemma 3.2.1. Let τ1(U,B) = Dl be the transformation of a set
cover instance (U,B), and C, C′ ⊆ B two sets. The following state-
ments hold.

a) If |⋃ C| ≥ |⋃ C′|, then F̂pl(I(C);Y ) ≥ F̂pl(I(C′);Y ), i.e., the
plugin F̂pl is monotonically increasing with coverage, and in
particular, C is a set cover if and only if F̂pl(I(C);Y ) = 1,.

b) If C is a set cover and C ′ is not, then Îpl(I(C);Y )−Îpl(I(C′);Y ) ≥
2/l.

c) If C and C′ are both set covers, then I(C) - I(C′) if and only
if |C| ≤ |C′|.

Proof. Statement (a) follows from the definition of τ1.
To show (b), since F̂pl(I(C′);Y ) and thus Îpl(I(C′);Y ) are mono-

tone in |⋃ C′|, it is sufficient to consider the case where |U \⋃ C′| = 1,
i.e., only one element u ∈ U is uncovered. In this case we have

Îpl(I(C);Y )−Îpl(I(C′);Y ) = Ĥpl(Y | I(C′))− Ĥpl(Y | I(C))︸ ︷︷ ︸
=0

and, moreover, as required

Ĥpl(Y | I(C′)) = −p̂(a, a) log p̂(a |a)− p̂(a, b) log p̂(b |a)

= −1

l
log

(
1

n+ 1

)
− n

l
log

(
n

n+ 1

)
≥ 2

l
.
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For (c) observe that for variable set X = I(C) corresponding to set
cover C, we have for all i, j ∈ S1 that X (i) 6= X (j). Thus, XS1 ≡ X ′S1

for variable set X ′ = I(C′) corresponding to set cover C′. Moreover,
we trivially have XS2

≡ X ′S2
. Finally, let Q,Q′ ⊆ S3 denote the

indices belonging to S3 where X and X ′ take on values different from
(c, . . . , c). Note that all values in these sets are unique. Furthermore,
if |C| ≤ |C′| then |Q| ≤ |Q′| and in turn |Q \ Q′| ≤ |Q′ \ Q|. This
means we can find a permutation σ ∈ Sn such that for all i ∈ Q \Q′
it holds that σ(i) = j with j ∈ Q′ \ Q and σ(i) = i for i 6∈ Q ∩ Q′
(that is σ permutes all indices of non-(c, . . . , c) values of C in S3 to
indices of non-(c, . . . , c) values of C′). For such a permutation it holds
that Yσ ≡ Y and XS3

� X ′S3σ
. Therefore, X - X ′ as required.

Now, although set covers C ⊆ B correspond to variable sets I(X )

with the maximum empirical fraction of information value of 1,
due to the correction term, it can happen that F̂0(I(X ′);Y ) ≥
F̂0(I(X );Y ) for a variable set I(X ′) corresponding to a partial set
cover. To prevent this, we make use of the following upper-bound of
the expected mutual information under the permutation model.

Proposition 3.2.1 ([NEB10], Thm. 7). For a sample of size n of
the joint distribution of variables A and B with domain sizes SA and
SB respectively, it holds that

m0(A,B, n) ≤ log

(
n+ SASB − SA − SB

n− 1

)
.

Proposition 3.2.1 implies that we can arbitrarily shrink the cor-
rection terms if we increase the sample size but leave the number
of distinct values constant. Thus, we define the extended trans-
formation τi(U,B) = Dil through simply copying Dl a number of i
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times, i.e., by defining dj = d(j mod l) for j ∈ [l + 1, il]. With this
definition, we proceed with the NP-hard result.

Theorem 3.2.1. Given an i.i.d. sample of the joint distribution of
random variables I = {X1, . . . , Xd} and Y , the problem of maximiz-
ing F̂0( · ;Y ) over all possible subsets X ⊆ I is NP-hard.

Proof. First, let us assume that there exists a number k ∈ O(l)

such that w.r.t. transformation τk, all set covers C ⊆ B and their
corresponding variable sets X = I(C) have correction terms with
m0(X , Y, kl) < 2/l. Since all properties of Lemma 3.2.1 transfer
from τ1 to τk, this implies that for all variable sets X ′ = I(C′)
corresponding to partial set covers C′ ⊆ B, it holds that

F̂0(X ;Y ) = F̂pl(X ;Y )−m0(X , Y, kl)/Ĥpl(Y )

> F̂pl(X ;Y )− 2/(lĤpl(Y ))

≥ F̂pl(X ;Y )− (Îpl(X ;Y )− Îpl(X ′;Y ))/Ĥpl(Y )

= F̂pl(X ′;Y ) ≥ F̂0(X ′;Y ) ,

where the greater-than follows from Lemma 3.2.1a) and 3.2.1b). Thus,
all X corresponding to set covers have larger F̂0 than partial set covers.
Moreover, we know that C must be a minimum set cover as required,
because for a smaller set cover C′, we would have I(C′) - I(C)
by Lemma 3.2.1c), and thus b0(I(C′), Y, kl) ≤ b0(I(C), Y, kl) from
Proposition 3.1.2b). Therefore, I(C) would not maximize F̂0.

Now, to find the number k that defines the final transformation τk,
let Dil = τi(U,B) and C be a set cover of (U,B). Since X = I(C) has
at most l distinct values inDil and Y exactly 3, from Proposition 3.2.1
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and the monotonicity of ln, we have that

ln(2)m0(I(C), Y, n) ≤ ln

(
il + 3l

il − 1

)
≤ ln

(
i+ 3

i− 1

)
≤ 4

i− 1
,

where the last inequality follows from ln(x) ≤ x − 1. Thus, for
k > 2l/ ln 2 + 1 ∈ O(l) we have m0(X , Y, kl) < 2/l as required. The
proof is concluded by noting that the final transformation τk(U,B)

is of size O(l2m) (where l = 2n+m+ 1), which is polynomial in the
size of the set cover instance.

3.3 Admissible bounding functions for pruning

The NP-hardness established in the previous section excludes the
existence of a polynomial time algorithm for maximizing the per-
mutation fraction of information over all X ⊆ I (unless P=NP),
leaving therefore exact but exponential search and heuristics as the
two options. For both, and particularly the former, reducing the
search space can lead to more effective algorithms. For this, we derive
in this section bounding functions for the permutation fraction of
information F̂0 to be used for pruning.

An admissible bounding function f̄ , also called an optimistic
estimator, is an upper bound to the optimization function value f
over all supersets of a candidate solution X ⊆ I. The value f̄(X ) is
called the potential of node X , and it must hold that f̄(X ) ≥ f(X ′)
for all X ′ with X ⊆ X ′ ⊆ I. With this property, all supersets
X ′ of X can be pruned if f̄(X ) ≤ f(X ∗), where X ∗ is the current
best candidate solution found during search. Therefore, for optimal
pruning, the bounding function has to be as tight as possible. At
the same time, it needs to be efficiently computable. For example,
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while the ideal bounding function for the permutation fraction
of information would be

f̄ideal(X ) = max{F̂0(X ′;Y ) : X ⊆ X ′ ⊆ I} ,

solving it is equivalent to the original problem of Eq.(3.1) and hence
NP-hard.
A first attempt for an efficient bounding function involves the

upper bound of the fraction of information (i.e., F = 1) and the
monotonicity of the b0 term with respect to the subset relation
(Prop. 3.1.1e)). In particular, for all X ⊆ X ′ ⊆ I, it follows that

F̂0(X ′;Y ) =F̂pl(X ′;Y )− b0(X ′, Y, n)

≤1− b0(X , Y, n) .

Hence, we define

f̄mon(X ) = 1− b0(X , Y, n) (3.4)

to be the monotonicity bounding function. This optimistic
estimator is both inexpensive,17 and applicable to any estimator
that has a monotonically increasing correction term. However, it is
potentially loose as it assumes that full information about the target
can be attained, without the penalty of an increased b0 term.

An alternative idea leading to a more principled admissible bound-
ing function, is to relax the maximum over all supersets to the
maximum over all specializations of X . We define the specializa-

17One can cache the b0(X , Y, n) term required for Eq.(3.4) while computing
F̂0(X ;Y ) for a X ⊆ I during search.
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tion bounding function f̄spc(X ) through

f̄spc(X ) = max{F̂0(X ′;Y ) : X � X ′} (3.5)

≥max{F̂0(X ′;Y ) : X ⊆ X ′ ⊆ I} = f̄ideal(X ) .

While Eq.(3.5) constitutes an admissible bounding function, it is
unclear how it can be efficiently evaluated. To do so, let us denote
by R+ the operation of joining a labeling R with the target attribute
Y , i.e., R+ = {R, Y } (see Table 3.3 for an example). This definition
gives rise to a simple constructive form for computing f̄spc.

Theorem 3.3.1. The function f̄spc can be efficiently computed as
f̄spc(X ) = F̂0(X+;Y ) in time O(n|VX ||VY |).

Proof. We start by showing that the (·)+ operation causes a positive
gain in F̂0, i.e., for an arbitrary labeling R it holds that F̂0(R+;Y ) ≥
F̂0(R;Y ). It is sufficient to show that Î0(R+;Y ) ≥ Î0(R;Y ). We
have

Î0(R+;Y ) =
(
Ĥpl(Y ) + Ĥpl(R

+)− Ĥpl(R
+, Y )

)
− 1

n!

(∑
σ∈Sn

(Ĥpl(Yσ) + Ĥpl(R
+)− Ĥpl(R

+, Yσ)

)

=
1

n!

∑
σ∈Sn

Ĥpl(R
+, Yσ)− Ĥpl(R

+, Y )

≥ 1

n!

∑
σ∈Sn

Ĥpl(R, Yσ)− Ĥpl(R, Y ) = Î0(R;Y ) ,

since Ĥpl(R
+, Y ) = Ĥpl({R, Y }, Y ) = Ĥpl(R, Y ), and from Proposi-

tion 3.1.1b), for every σ ∈ Sn, Ĥpl(R
+, Yσ) ≥ Ĥpl(R, Yσ).

To conclude, let Z be an arbitrary specialization of X . We have
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by definition of Z and Z+, that X+ � Z+. Moreover, F̂pl( · ;Y ) =

F̂pl({ · } ∪ {Y };Y ) = 1. Thus

F̂0(X+;Y ) =F̂pl(X+;Y )− b0(X+, Y, n)

=1− b0(X+, Y, n)

≥1− b0(Z+, Y, n)

=F̂0(Z+;Y ) ≥ F̂0(Z;Y ) ,

as required. Here, the first inequality follows from Proposition 3.1.1e),
the second from the positive gain of Z+ over Z.
Regarding the complexity for f̄spc, recall that b0(X , Y, n) can be

computed in time O(nmax{SX , SY }). The result follows from SX+ ≤
SXSY .

In a nutshell, the operation (·)+ can only increase the F̂0 value,
and X+ constitutes the most efficient specialization of X in terms of
growth in F̂pl and b0 (which is not necessarily attainable by a subset
of input variables). Note that the X+ operation is not computed
explicitly since it is obtained as the non-zero cell counts of the
joint contingency table for X and Y (which has to be computed for
F̂0(X ;Y ) anyway). The following proposition shows that this idea
indeed leads to a superior bound compared to f̄mon.

Proposition 3.3.1. Let X ⊆ I and ∆ = f̄mon(X )− f̄spc(X ). The
following statements hold:

a) ∆ ≥ 0 for all X ⊆ I, i.e., f̄spc is a tighter bounding function,
and

b) there are datasets D4l for all l ≥ 1 s.t. ∆ ∈ Ω(1− 1
log 2l ), i.e.,

f̄spc has an unbounded pruning potential over f̄mon.
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Proof. a)

f̄spc(X ) =1− b0(X+, Y, n)

≤1− b0(X , Y, n) = f̄mon(X ) ,

where the inequality holds from Proposition 3.1.1b) and X � X+.
b) For l ≥ 1 we construct a dataset D4l with two variables X :

[4l]→ {a, b} and Y : [4l]→ [2l], with

X(i) =

a, i mod 2 = 1

b, i mod 2 = 0

and Y (i) = di/2e respectively (see Table 3.3). We have

∆ = 1− b0(X,Y, 4l)− 1 + b0(X+, Y, 4l)︸ ︷︷ ︸
=Ĥpl(Y |X+

σ )/Ĥpl(Y )=0

=
1

n!

∑
σ∈Sn

Ĥpl(Y |Xσ)/Ĥpl(Y )

≥ min
σ∈Sn

Ĥpl(Y |Xσ)/Ĥpl(Y ) .

One can show that the minimum of the last step is attained by the
permutation σ∗ ∈ Sn with

σ∗(i) =

2i− 1, i ∈ [1, 2l]

4l − 2(4l − i), i ∈ [2l + 1, 4l]
,

which corresponds to sorting the a and b values of X (see Table 3.3).
For this permutation the normalized conditional entropy evaluates
to 1− 1/ log(2l) as required.
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Table 3.3: Construction showing the advantage of bound f̄spc versus f̄mon.
We have f̄spc(X) = 1−b0(X+, Y, n) = 0 while f̄mon(X) = 1−b0(X,Y, n) ≥
1− 1/ log(n/2), i.e., all specializations of X that contain full information
about Y are injective (key) maps (see Prop. 3.3.1).

X Y X+ Xσ∗

a 1 (a,1) a
b 1 (b,1) a
a 2 (a,2) a
b 2 (b,2) a

...

X Y X+ Xσ∗

...
a 2l-1 (a,2l-1) b
b 2l-1 (b,2l-1) b
a 2l (a,2l) b
b 2l (b,2l) b

Thus, we have established that f̄spc is tighter than f̄mon, and even
that their ratio, and thus the potential for additional pruning, is
unbounded.

Regarding their applicability to other mutual information estima-
tors, f̄mon only requires monotonicity for the correction term, while
f̄spc additionally needs a positive gain w.r.t. to the (·)+ operation.
The former is easier to satisfy. Computationally, f̄spc(X ) is more
expensive than f̄mon(X ) by a factor of SY . In practice one can com-
bine both optimistic estimators in a chain-like manner: first check
the pruning condition w.r.t. f̄mon and only compute f̄spc if that
first check fails. That is, whenever f̄mon(X ) is sufficient to prune a
candidate X we can still do so with the same computational complex-
ity. We refer to this trick as the chain bounding function f̄chn.
However, the additional evaluation of f̄spc(X ) can be a disadvantage
in case it still does not allow to prune. This trade-off is evaluated in
Section 3.5.2.
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Algorithm 2 Opus: Given a set of input variables I, function
f , bounding function f̄ , and α ∈ (0, 1], the algorithm returns the
X ∗ ⊆ I satisfying f(X ∗) ≥ αmax{f(X ′) : X ′ ⊆ I}
1: function Opus(Q,S)
2: if Q is empty then
3: return S
4: else
5: (X ,Z) = pop(Q)
6: R = {(X ∪ {Z}, Z) : Z ∈ Z}
7: X ∗ = arg max{f(X ′) : X ′ ∈ R ∪ {S}}
8: R′ = {(X ′, Z) ∈ R : αf̄(X ′) > f(X ∗)}
9: Z ′ = {Z : (X ′, Z) ∈ R′}

10: [(X1, Z1), . . . , (Xk, Zk)] = sort(R′)
11: Q′ = Q ∪ {(Xi,Z ′ \ {Z1, . . . , Zi}) : i ∈ [k])}
12: return Opus(Q′,X ∗)
13: X ∗ = Opus({(∅, I)}, ∅)

3.4 Optimization algorithms

In this section we provide exact and heuristic optimization algo-
rithms combined with the bounding functions of Section 3.3 to solve
Eq.(3.1). In addition, we propose a post-processing shrink step to
remove potentially redundant attributes from the solutions based on
conditional dependency measures. In the case of a Bayesian network,
the heuristic algorithm corresponds to the grow phase for Markov
blanket discovery, while the post-processing step corresponds to the
shrink phase and is mandatory together with faithfulness to guaran-
tee the discovery of a Markov blanket. Note that we state the top-1
formulation for simplicity, since these algorithms can be trivially
extended for top-k by considering a result set of size k. Moreover, we
only solve for minimal solutions and not maximal (see Thm. 3.0.1),
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leaving the latter for future work (see Sec. 3.6.4).

3.4.1 Exact search

We instantiate the exact search algorithm with the branch-and-
bound (BnB) algorithm that as the name suggests, consists of
two main ingredients: a strategy to explore the search space and a
bound for the optimization function at hand to be used for branch
pruning (see, e.g., [MS08, Ch. 12.4]). The former is governed by
the refinement operator (also known as branching operator), a
function rI : 2I → 2I that non-redundantly generates the search
space of I = {X1, . . . , Xd} from the designated root element ∅, i.e.,
for all X ∈ 2I there must be a unique sequence ∅ = X1, . . . ,Xl = X
such that Xi+1 ∈ rI(Xi) for i = 1, . . . , l − 1. For example, one such
operator is the alphabetical refinement operator

rAI (X ) = {X ∪ {Xi} : i > max{j : Xj ∈ X}, Xi ∈ I} . (3.6)

Besides being very effective in practice for hard problems, this style of
optimization also provides the option of relaxing the required result
guarantee to that of an α-approximation for accuracy parameter
α ∈ (0, 1]. Hence, using α-values of less than 1 allows to trade
accuracy for computation time in a principled manner. Here, we
consider optimized pruning for unordered search (OPUS)
by Webb [Web95], an advanced variant of branch-and-bound that
effectively propagates pruning information to siblings in the search
tree. Algorithm 2 shows the details of this approach.

In addition to keeping track of the best solution X ∗ explored so far,
the algorithm maintains a priority queue Q of pairs (X ,Z), where
X ⊆ I is a candidate solution and Z ⊆ I constitutes the variables
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Algorithm 3 Grd: Given a set of input variables I, function
f , and bounding function f̄ , the algorithm returns the X ∗ ⊆ I
approximating f(X ∗) = max{f(X ′) : X ′ ⊆ I}
1: function Grd(C,S)
2: if I \ C is empty or f̄(C) ≤ f(S) then
3: return S
4: else
5: R = {C ∪ {Z} : Z ∈ I \ C}
6: C∗ = arg max{f(X ′) : X ′ ∈ R}
7: X ∗ = arg max{f(X ′) : X ′ ∈ {S, C∗}}
8: return Grd(C∗,X ∗)
9: X ∗ = Grd(∅, ∅)

that can still be used to refine X , e.g., X ′ = X∪{Z} for a Z ∈ Z. The
top element is the one with the smallest cardinality and the highest
potential f̄ (a combination of breadth-first and best-first order).
Starting with Q = {(∅, I)}, X ∗ = ∅, and a desired approximation
guarantee α ∈ (0, 1], in every iteration Opus creates all refinements
of the top element of Q and updates X ∗ accordingly (lines 5-7).
Next the refinements are pruned using f̄ and α (line 8). Following,
the pruned list is sorted according to decreasing potential,18 the
possible refinement elements Z ′ are non-redundantly propagated to
the refinements of the top element, and finally the priority queue is
updated with the new candidates (lines 9-11).
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3.4.2 Heuristic search

A commonly used alternative to exponential search for optimizing
dependency measures is the standard greedy algorithm (Grd).
This algorithm only refines the best candidate in a given iteration.
Moreover, bounding functions can be incorporated as an early ter-
mination criterion. For the permutation fraction of information in
particular, there is potential to prune many of the higher levels of
the search space. The algorithm is presented in Algorithm 3.

The algorithm keeps track of the best solution X ∗ explored, as well
as the best candidate for refinement C∗. Starting with X ∗ = ∅ and
C∗ = ∅, the algorithm in each iteration (i.e., search space level) checks
whether C∗ can be refined further, i.e., if I \ C∗ is not empty, or if C∗
has potential (the early termination criterion). If not, the algorithm
terminates returning X ∗ (lines 2-3). Otherwise C∗ is refined to all
possible refinements, and the best one is selected as a candidate to
update X ∗ (lines 5-7).

Concerning the approximation ratio of the greedy algorithm, there
exists a large amount of research focused on submodular and/or
monotone functions (see, e.g., [FMV07]). Recall that for a set I =

{X1, . . . , Xd}, a function f : 2I → R is called submodular if for
every X ⊆ X ′ ⊆ I and Xi ∈ I \ X ′, it holds that

f(X ′ ∪ {Xi})− f(X ′) ≤ f(X ∪ {Xi})− f(X ) ,

i.e., it satisfies the diminishing returns property. The following
proposition establishes that I, Îpl, and Î0, are all violating this
property.

18An admissible heuristic that propagates the most refinement elements to the
least promising candidates which have higher chances of being pruned [Web95].
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Proposition 3.4.1. Given I = {X1, . . . , Xd} and target variable
Y , the mutual information I(.;Y ), the plug-in Îpl(.;Y ), and the
permutation Î0(.;Y ) are not submodular w.r.t. the first argument.

Proof. We prove it via an intuitive counter example. Let us consider
the data of Table 3.4 and the corresponding induced empirical dis-
tribution p̂. Here B and C are connected to Y via a XOR function,
where Y is marginally independent of B and C, but functionally
dependent on {B,C}. For sets {A}, {A,B}, and element C, we have
that

Îpl({A,B,C};Y )− Îpl({A,B};Y ) =0.5

>Îpl({A,C};Y )− Îpl({A};Y ) = 0.19 ,

i.e., there is a violation of the diminishing returns property, and hence
Îpl is not submodular. By considering p = p̂, it is straightforward to
show that I is also not submodular.

Regarding Î0, we have that

Î0({A,B,C};Y )− Î0({A,B};Y ) =0.17

>Î0({A,C};Y )− Î0({A};Y ) = −0.17 ,

and hence Î0 is not submodular. Also note that while both Îpl and I
are monotone functions with respect to the subset relation, Î0 is not
because both Îpl and the correction b0 are monotonically increasing
(Prop. 3.1.1).

While approximation results for submodular and/or monotone
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Table 3.4: Example data used in Proposition 3.4.1 to show non-
submodularity of I, Îpl, Î0.

A B C Y

a a a a
a a b b
a b b a
b b a b

functions are not directly applicable to Î0, we empirically evaluate
the quality of solutions in Section 3.5.2.

3.4.3 Shrinking

After obtaining the solution X ∗ using either the exact or greedy
algorithm, one can quantify the marginal gains Q(X;Y | X ∗ \ {X})
for each X ∈ X ∗ for some conditional dependency measure Q, and
assess the individual contributions to the solution. In Algorithm 4
we present the shrink step (Shrk) that removes attributes from
the solution if the marginal gain is less then some threshold φ ∈ [0, 1].
Note that while this procedure can be used optionally to remove
low marginally scoring attributes, assuming a Bayesian network and
employing the greedy makes it mandatory to guarantee the discovery
of a Markov blanket. In fact, the greedy algorithm and shrink step
combination is identical to the grow-shrink type of Markov blanket
discovery algorithms such as IAMB (Alg. 1), since the conditional
fraction of information can be used as a conditional independence
test with φ regulating the level of conservatism.

60



Algorithm 4 Shrk: Given solution set X ∗, target Y , conditional
dependency score Q, and threshold φ ∈ [0, 1], the algorithm shrinks
the result X ∗ according to Q and φ

1: function Shrk(X ∗, Y,Q, τ)
2: while X ∗ does not change do
3: X = arg min{Q(X;Y | X ∗ \ {X}) : X ∈ X ∗}
4: if Q(X;Y | X ∗ \ {X}) ≤ φ then
5: X ∗ = X ∗ \ {X}
6: return X ∗

3.5 Evaluation

In this section, we empirically evaluate the performance of discovering
functional dependencies with the permutation fraction of informa-
tion F̂0, including the bias and variance of F̂0 as an estimator, the
performance of the bounding functions for both branch-and-bound
and greedy search, precision and recall on Market blanket discovery,
as well as perform qualitative experiments with two case studies.

3.5.1 Estimator performance

Here, we evaluate the estimated bias and variance of F̂0 for various
degrees of dependency. We do so by creating synthetic data from
various models for which we know the true fraction of information
F . Let us denote by P the set of all joint probability mass functions
over two random variables X and Y with SX = SY = 3, and by
P[a,b] all such probability mass functions for which we have a score
of F (X;Y ) ∈ [a, b]. We consider four dependency regions: weak
P[0,0.25), low P[0.25,0.5), high P[0.5,0.75), and strong P[0.75,1].

We sample uniformly 100 pmfs p(1), . . . , p(100), 25 from each depen-
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dency region. Note that for every p(i) we know the true Fp(i) value
and we can sample data Dn ∼ p(i) of arbitrary size n. Let τ(Dn) be
the result of an estimator τ computed on data Dn. We denote with
bn(p, τ) and stdn(p, τ) the bias and standard deviation of τ when fix-
ing the underlying pmf to a p ∈ P , i.e., bn(p, τ) = EDn∼p[τ(Dn)]−Fp
and stdn(p, τ) =

√
EDn∼p[(τ(Dn)− EDn∼p[τ(Dn)])2]. The expecta-

tion terms are estimated by sampling per pmf p(i) and n a total of
500 datasets. We average over P[a,b] regions and end up with esti-
mates µn(τ,P[a,b]) and σn(τ,P[a,b]) for the average bias and standard
deviation of estimator τ and sample size n.
For this experiment we evaluate over the different samples sizes

n ∈ {10, 20, . . . , 60} and the following estimators: the plugin F̂pl, the
permutation F̂0, the unseen F̂un, the minimax F̂mm (Sec. 2.2), and in
addition, we consider 3 estimators that specifically aim to correct for
spurious dependencies. The first, proposed by Nguyen et al. [VCB14],
is based on the same correction principle using asymptotics, and
particular the chi-square distribution. This corrected estimator,
which we term the chi-square estimator and denote as F̂χ,α, is
defined as

F̂χ,α(X ;Y ) =
Îpl(X , Y )− 1

2nχα,l(X ,Y )

Ĥpl(Y )
,

where χα,l(X ,Y ) is the critical value corresponding to a confidence
level 1−α and degrees of freedom l(X , Y ) = (

∏
X∈X VX−1)(VY −1).

Here, α controls the amount of penalty with suggested values 0.01

and 0.05. The second by Suzuki [Suz16], which we term the MDL
estimator, penalizes by the minimum description length principle
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Figure 3.5: Average empirical bias and standard deviation of
estimators over all dependency degrees and varying number of
samples. Average bias µn(τ,P[0,1]) (top) and average standard deviation
σn(τ,P[0,1]) (bottom) of estimators τ for all 100 sampled pmfs p(i) ∈ P[0,1]

across data sizes n = {10, 20, . . . , 60}.

and is defined as

F̂mdl(X ;Y ) =
Îpl(X ;Y )− 1

2n l(X , Y ) log(n)

Ĥpl(Y )
.

The third follows a similar correction resulting from the application
of the quantification adjustment framework proposed by Romano
et al. [RVBV16]. We term this estimator the chance-adjusted
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Figure 3.6: Bias of estimators averaged over weak and strong
dependencies for varying number of samples. Average bias over all
weak dependency p(i) (top), and over all strong dependency p(i) (bottom)
of estimators τ for all 100 sampled pmfs p(i) ∈ P[0,1] across data sizes
n = {10, 20, . . . , 60}.

estimator and is defined as

F̂ca(X ;Y ) =
Îpl(X , Y )− E0[Îpl(X , Y )]

Ĥpl(Y )− E0[Ĥpl(X , Y )]
.

Note that estimators F̂0, F̂pl, F̂χ,α, F̂mdl are normalized by the plu-
gin entropy estimator, while F̂un, F̂mm, F̂ca by the entropy estimator
corresponding to the style of correction used.
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We first focus on the general behavior of the bias and standard
deviation for each estimator τ , and plot in Figure 3.5 the average
bias µn(τ,P[0,1]) (top) and average standard deviation σn(τ,P[0,1])

(bottom). We observe that the plugin F̂pl and minimax F̂mm expe-
rience positive bias, with F̂pl having the largest, as expected. The
unseen F̂un starts with a negative bias for sample size 10, which
then turns positive. The chance-adjusted F̂ca experiences a small
positive bias. The remaining estimators all have a negative bias, with
F̂χ,01 having the largest. The F̂mdl also has a large negative bias,
with F̂χ,05 following. Notice how F̂χ,α increases the bias for smaller
α. The permutation F̂0 has the smallest negative bias. Regarding
the convergence to 0 bias, additive smoothing and MDL are the
slowest, with the remaining having good speed, and particularly the
permutation F̂0. As for the standard deviation, the unseen F̂un has
the largest by far. The remaining all show similar behavior, with the
minimax F̂mm and chance-adjusted F̂ca having slightly higher.
It is also informative to consider the bias behavior not on aver-

age for all dependency degrees, but specifically for weak and strong
dependencies, i.e., the cases closer to independence and functional
dependency, respectively. For this, we plot in Figure 3.6 the av-
erage biases µn(τ,P[0,0.25)) (top) and µn(τ,P[0.75,1]) (bottom). In
Figure 3.5, the positive bias estimators (i.e., F̂mm and F̂pl) have a
large bias for weak dependencies and small bias for strong dependen-
cies. The situation is reverted for the negative bias estimators. It is
interesting to note that the unseen F̂un has for weak dependencies
both a large negative bias for n = 10, and then a large positive bias
for n > 10. However, for strong dependencies it has a small positive
bias.
We observe in general that the permutation estimator F̂0 has a
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consistent behavior with very small negative bias across all degrees
of dependency, with comparable standard deviation and fast conver-
gence. Note that this behavior is obtained without any parameter,
unlike F̂χ,α, but rather it adapts to the data at hand by employing
the data-dependent expected value under the permutation model.
Hence, it is well-suited for exploratory tasks.

3.5.2 Optimization performance

We next investigate the optimization performance of the algorithms
and bounding functions proposed on real-word data. Our code is
available online.19

We consider datasets from the KEEL data repository [SRAFFH+11].
In particular, we use all classification datasets with d ∈ [10, 90] and
no missing values, resulting in 35 datasets with 52000 and 30 rows
and columns on average, respectively. All metric attributes are dis-
cretized in 5 equal-frequency bins. The datasets are summarized in
Table 3.5. The runtimes are averaged over 3 runs.

We use two metrics for evaluation, the relative runtime differ-
ence (rrd) and the relative difference in number of explored
nodes (rnd). For methods A and B, the relative runtime difference
on a particular dataset is computed as

rrd(A,B) =
(τA − τB)

max{τA, τB}
,

where τA and τB are the run times for A and B respectively. The rrd
score lies in [−1, 1], where positive (negative) values indicate that
B is proportionally faster (slower). For example, a rrd score of 0.5

19https://github.com/pmandros/fodiscovery
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corresponds to a factor of 2 speed-up, 0.66 to a factor of 3, 0.75 to 4

etc. The relative nodes explored difference rnd is defined similarly.
For both scores, we consider (−0.5, 0.5) to be a region of practical
equivalence, i.e., a factor of 2 of improvement is required to consider
a method “better”.

Branch-and-bound

We first investigate the performance of the branch-and-bound algo-
rithm. We consider Opuschn and Opusmon, i.e., Algorithm 2 with
the chain bounding function f̄chn (i.e., f̄spc and f̄mon combined ) and
the monotonicity f̄mon, respectively. For a fair comparison, we set a
common α value for both methods on each dataset by determining
the largest α value in increments of 0.05 such that they terminate in
less than 90 minutes. The results are in Table 3.5. Regarding run-
time, Opuschn and Opusmon require 296 and 360 seconds on average,
respectively. For the majority of the data, both need less than 10

minutes. The approximation guarantees α are 0.85 on average, with
23 out of 35 datasets having α = 1, i.e., an optimal solution.

For a more thorough comparison, in Figure 3.7 we present the rnd
and rrd for Opuschn and Opusmon. The top plot demonstrates that
f̄spc can lead to a considerable reduction of nodes explored over f̄mon,
that in absolute numbers comes down to roughly 50% on average
(41434 versus 78309). More specifically, 15 cases have at least a
factor of 2 reduction, 7 have 4, and there is one 1 with 760. For 20

cases there is no practical difference. The plot validates that the
potential for additional pruning is indeed unbounded (Sec. 3.3). In
terms of runtime efficiency (bottom), Opuschn is “faster” in 70% of
the datasets. In more detail, and considering practical improvements,
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Figure 3.7: Evaluating the bounding functions for branch-and-
bound optimization. Relative nodes explored difference (top) and rela-
tive runtime difference (bottom) between methods Opuschn and Opusmon.
Positive (negative) numbers indicate that Opuschn (Opusmon) is propor-
tionally more effective. The datasets are sorted in decreasing number of
attributes.

12 datasets have at least a factor of 2 speedup, 6 have 4, 1 has 266,
while only 2 have a factor of 2 slowdown. Moreover, we observe from
the plot (since datasets are sorted in decreasing number of attributes)
a clear correlation between number of attributes and efficiency: the
6 out of 10 datasets with the slowdown are also the ones with the
lowest number of features. We observe in general that both bounding
functions, and particularly the f̄spc, make the branch-and-bound
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search very effective in practice.
In Table 3.5 we also report the maximum depth and solution

depth for Opuschn, i.e., the maximum level of the search space the
algorithm had to explore and in which level the solution was found.
First, we see that F̂0 retrieves solutions small in cardinality, 3.6

on average, which is a reasonable number for the size of the data
considered. We also see that f̄chn with 5.9 maximum depth level on
average, prunes many of the higher levels of the search space, which
explains to a large extend the effectiveness of Opus.

Greedy

We now proceed with the evaluation for the heuristic search. We
present the relative runtime differences of Grd and Grdchn, i.e.,
Algorithm 3 with and without f̄chn, in Figure 3.8 (results in Tab. 3.5).
While the greedy algorithm is fast with 32 and 51 seconds on average
with and without pruning, respectively, the plot shows that f̄chn

indeed improves the efficiency of the heuristic search, as we find that
for 12 datasets there is a speedup of at least a factor of 2, and 8 of
at least a factor of 4.
Next, we investigate the quality of the greedy results. Note that

this is possible as we have access to the branch-and-bound results.
In Figure 3.9 we plot the differences between the F̂0 score of the
results obtained by greedy and branch-and-bound on each dataset.
Note that branch-and-bound uses the same α values as with the
experiments in Section 3.5.2, and that we only show the non-zero
solution differences: left for α = 1, i.e, optimal solutions, and right
for α < 1, i.e., approximate solutions with guarantees. We observe
that there is no difference in 21 out of 35 cases considered, 7 where
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Figure 3.8: Evaluating f̄spc for heuristic optimization. Relative
time difference between methods Grdchn and Grd. Positive (negative)
numbers indicate that Grdchn (Grd) is proportionally more effective. The
datasets are sorted in decreasing number of attributes.

greedy is better,20 and 7 where branch-and-bound is better. Out of
the 21 cases where the two algorithms have equal F̂0, 16 of them
have α = 1, i.e., the greedy algorithm is optimal roughly 45% of the
time. Moreover, the cases where branch-and-bound is better is only
by a small margin, 0.03 on average, while greedy “wins” by 0.1 on
average. Another observation from the right plot of Figure 3.9 is
that the largest differences are for the 3 datasets where the lowest α
values where used, i.e., 0.05, 0.1, and 0.35.

In Figure 3.10 we consider the relative runtime difference between
greedy and branch-and-bound, i.e., Grdchn and Opuschn. As ex-
pected, the greedy algorithm is significantly faster in the majority of
cases. There are, however, 4 cases where branch-and-bound termi-
nates much faster, which also happen to coincide with more aggressive
α values.

These results suggest that heuristic optimization with Algorithm 3
is a good option for the permutation fraction of information as it

20This of course on the datasets for which α < 1.
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Figure 3.10: Comparing exact and heuristic algorithms in terms
of running time. Relative time difference for Grdchn and Opuschn. Pos-
itive (negative) numbers indicate that Grdchn (Opuschn) is proportionally
more effective. Datasets are sorted in decreasing number of attributes.

produces fast and nearly optimal solutions.
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Table 3.5: Datasets from Section 3.5.2, with number of rows, columns, and classes. The α values are
the maximum guarantee in increments of 0.05 for Opus to finish in ≤ 90 minutes. The F̂0 columns are
the quality of the solutions for exhaustive and greedy search. Maximum depth is the maximum search
level for Opus.

time(s) F̂0 depth

ID dataset #rows #attr. #cl. α Opuschn Opusmon Grdchn Grd Opus Grd max sol.

1 australian 690 14 2 1.00 7.0 8.3 1.0 1.0 0.54 0.54 8 4
2 chess 3196 36 2 0.75 192.1 545.9 2.5 3.6 0.77 0.87 5 5
3 coil2000 9822 85 2 0.05 1.0 1.0 189.1 294.4 0.06 0.17 1 1
4 connect-4 67557 42 3 0.10 1236.8 951.5 164.3 174.8 0.10 0.29 6 4
5 fars 100968 29 8 0.65 3.0 7.0 93.9 119.8 0.66 0.68 2 2
6 flare 1066 11 6 1.00 6.8 3.2 1.0 1.0 0.65 0.65 10 3
7 german 1000 20 2 1.00 931.5 960.1 1.0 1.0 0.21 0.21 11 6
8 heart 270 13 2 1.00 1.9 1.9 1.0 1.0 0.42 0.42 7 4
9 ionosphere 351 33 2 1.00 46.4 47.6 1.0 1.0 0.62 0.58 5 3

10 kddcup 494020 41 23 0.90 18.1 37.8 520.2 616.4 0.97 0.99 2 2
11 letter 20000 16 26 1.00 659.5 1501.0 3.8 19.1 0.60 0.60 6 5
12 lymph. 148 18 4 1.00 31.2 20.2 1.0 1.0 0.48 0.45 10 5
13 magic 19020 10 2 1.00 38.5 31.6 1.3 1.3 0.43 0.43 8 5
14 move-libras 360 90 15 0.50 1.0 266.6 1.7 25.9 0.32 0.32 3 2
15 optdigits 5620 64 10 0.35 1.0 4.3 25.1 139.3 0.36 0.53 2 2
16 pageblocks 5472 10 5 1.00 7.4 5.2 1.0 1.0 0.65 0.60 8 4
17 penbased 10992 16 10 1.00 233.6 277.5 1.6 5.6 0.75 0.75 7 4
18 poker 1025010 10 10 1.00 2594.7 1705.2 86.0 205.3 0.57 0.57 7 5
19 ring 7400 20 2 1.00 1393.9 1197.3 1.1 7.4 0.29 0.29 6 4
20 satimage 6435 36 7 0.80 173.8 954.4 2.0 27.6 0.74 0.74 4 4
21 segment 2310 19 7 1.00 39.1 53.3 1.0 1.2 0.84 0.84 9 3
22 sonar 208 60 2 1.00 403.5 431.9 1.0 3.8 0.34 0.32 5 3
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23 spambase 4597 57 2 0.55 515.6 574.6 15.4 50.1 0.54 0.60 7 4
24 spectfheart 267 44 2 1.00 171.1 369.3 1.0 1.9 0.23 0.22 5 3
25 splice 3190 60 3 0.65 92.3 851.0 1.5 46.9 0.65 0.65 4 4
26 texture 5500 40 11 0.80 62.9 480.3 2.1 36.6 0.76 0.76 5 4
27 thyroid 7200 21 3 0.50 1.0 5.8 1.8 2.0 0.50 0.50 3 3
28 twonorm 7400 20 2 1.00 1332.2 1162.4 1.3 7.4 0.42 0.42 6 4
29 vehicle 846 18 4 1.00 38.2 53.2 1.0 1.0 0.48 0.48 8 3
30 vowel 990 13 11 1.00 3.2 5.1 1.0 1.0 0.45 0.45 5 3
31 wdbc 569 30 2 1.00 19.9 38.2 1.0 1.2 0.76 0.75 7 3
32 wine 178 13 3 1.00 1.0 1.0 1.0 1.0 0.71 0.71 3 2
33 wine-red 1599 11 11 1.00 18.7 10.3 1.0 1.0 0.20 0.20 7 3
34 wine-white 4898 11 11 1.00 77.4 36.2 1.0 1.0 0.19 0.19 8 5
35 zoo 101 15 7 1.00 1.0 4.1 1.0 1.0 0.80 0.75 7 5

avg. 52000 30 6.4 0.85 296 360 32 51 0.51 0.53 5.9 3.673



3.5.3 Markov blanket discovery on Bayesian networks

Next we evaluate the algorithms and estimators proposed for max-
imizing the fraction of information on the task of Markov blanket
discovery. For this, we use the Alarm dataset [BSCC89], a bench-
mark Bayesian network with 37 attributes implementing an alarm
message system for patient monitoring. We sample datasets21 for
each size n ∈ {100, 500, 1000, 2000, 5000, 10000, 20000}, and evaluate
the performance in terms of precision, recall, and F1, averaging across
all 37 attributes as targets. For more accurate results, we sample 10

datasets per n and average.
First, we consider a comparison against test-based Markov blanket

discovery algorithms, and more specifically, the data-inefficient base-
line IAMB22 family [TASS03], and the data-efficient state-of-the-art
HITON [ATS03] and MMMB [TAS03]. We use the Causal Explorer
software [ASTB03] for the aforementioned algorithms with the de-
fault settings (α = 0.05 for tests). Since we know this benchmark
dataset satisfies the faithfulness assumption, we use for score-based
algorithm the greedy combined with shrinking (φ = 0.01) with the
permutation (conditional) fraction of information F̂0. Recall that
the shrink step is necessary to guarantee the discovery of the unique
Markov blanket. We denote this approach with ShrkF̂0

. We show
the results in Figure 3.11. We observe that the performance of greedy
with shrinking is on par with the test-based approaches. Regarding
the data efficiency of the test-based approaches, the data-efficient
HITON and MMMB are only marginally better than IAMB in

21The network configurations can be found here: https://www.bnlearn.com/
bnrepository/.

22We consider IAMB, IAMBpc that uses the PC algorithm [SGS93, Sec. 5.4.2]
for shrinking, inIAMB that interleaves the grow-shrink phase to keep the size of
the conditioning set as small as possible, and inIAMBpc.
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terms of F1. So while superior in theory, in practice HITON and
MMMB restrict the size of the conditioning set and hence they
become approximate algorithms. Lastly, note that the test-based ap-
proaches and Causal Explorer are highly specialized towards Markov
blanket discovery implementing various “tricks”, e.g., interleaving,
while the score-based approach we consider is a simple greedy opti-
mization algorithm— the performance can be improved using similar
techniques.

Next, we evaluate the different fraction of information estimators
combined with the greedy algorithm in Figure 3.12. Note that here
we do not use the shrink step as not all estimators have conditional
fraction of information estimators proposed. We observe that the
permutation estimator F̂0 clearly outperforms all other estimators
on this task. The low precision behavior is attributed to positive
biases (e.g., for plugin F̂pl) meaning that a lot of false positives enter
the solution, as well as the large negative biases that contribute to a
large error.

3.5.4 Case studies

We close this section with examples of concrete dependencies dis-
covered in two different applications: determining the winner of a
Tic-tac-toe board configuration and predicting the preferred crystal
structure of octet binary semiconductors. Both settings are examples
of problems where elementary input features are available, but to
correctly represent the input/output relation either non-linear models
have to be used or—if interpretable models are sought—complex
auxiliary features have to be constructed from the given elementary
features.
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Tic-tac-toe. The game of Tic-tac-toe [MR89] is one of the earliest
examples of this complex feature construction problem. There are
two players where each player picks a symbol from {x, o} and, taking
turns, marks his symbol in an unoccupied cell of a 3×3 game board. A
player wins the game if he marks 3 consecutive cells in a row, column,
or diagonal. A game can end in draw, if the board configuration does
not allow for any winning move. The dataset consists of 958 end
game winning configurations (i.e., there are no draws). The 9 input
variables I = {X1, . . . , X9} represent the cells of the board, and can
have 3 values {x, o, b}, where b denotes an empty cell (see Fig. 3.13).
The target variable Y with VY = {win, loss} is the outcome of the
game for player x.

Searching for the top-1 dependency X ∗ ⊆ I reveals as pattern with
empirical fraction of information F̂pl(X ∗;Y ) = 0.61 and corrected
score F̂0(X ∗;Y ) = 0.45 the variable set X ∗ = {X1, X3, X5, X7, X9}
i.e., the four corner cells and the middle one, which we show in Fig-
ure 3.13. This is a sensible discovery as these cells correspond exactly
to those involved in the highest number of winning combinations.
Removing a variable results in the loss of a considerable amount of
information, while adding a variable would provide more information,
but also redundancy. That is, the increase of fraction of information
would not be higher than the increase of b0. For top-k, the next
results have also cardinality of 5, but with corrected score 0.37. Out
of the MB discovery algorithms of Section 3.5.3, only HITON and
MMMB were able to discover the same result, with the rest finding
a solution of size 4.

In Figure 3.14 we plot the top-3 results with the target variable now
being X5, while the win/loss attribute is part of the input variables.
Note that all three results include win/loss Y as part of the solution.
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Again the discoveries are meaningful, with top-1 and 2 having the
same score 0.29, and top-3 having 0.27. The MB discovery algorithms
recover either the top-1 or top-2 as a solution, since they can only
identify one MB.
Materials Science. Our second example is a classical prob-

lem from Materials Science [VV69], which has meanwhile become
a canonical example for the challenge of the automatic discovery
of interpretable and physically meaningful prediction models of ma-
terial properties [GVL+15, GBV+17]. The task is to predict the
symmetry or crystal structure in which a given binary compound
semi-conductor material will crystalize. That is, each of the 82 mate-
rials involved consist of two atom types (A and B) and the output
variable Y = {rocksalt, zincblende} describes the crystal structure
it prefers energy-wise. The input variables are 14 electro-chemical
features of the two atom types considered in isolation: the radii of
the three different electron orbitals shapes s, p, and d of atom type
A denoted as rs(A), rp(A), rd(A), as well as four important energy
quantities that determine its chemical properties (electron affinity,
ionization potential, HOMO and LUMO energy levels); the same
variables are defined for component B.

For this dataset, the top dependencies of cardinality 2 and identical
F̂0 score of 0.702 are combinations of {rs(A), rp(A), rp(B), EA(B)},
i.e., the atomical s and p radii of component A, the p radii of
component B, and the electronic affinity of B. Again, this is a sensible
finding, since three of them are contained in the best structure
prediction model that can be identified using the non-linear subgroup
discovery approach of Goldsmith et al. [GBV+17] (see Fig. 3.15).
Also, all features are parts of the best linear LASSO model based on
systematically constructed non-linear combinations of the elementary
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input variables by Ghiringhelli et al. [GVL+15]. The fact that not
all variables of those models are identified can likely be explained
by the facts that the continuous input variables are discretized and
the dataset is extremely small with only 82 entries, which renders
the discovery of reliable patterns with more than two variables very
challenging.

The MB discovery algorithms of Section 3.5.3 fail in this task: the
MMMB and HITON output a solution of size 9, i.e., almost all
atomic properties from both materials A and B, while the IAMB
family and GS output a solution of size 1.

3.6 Discussion and conclusions

We considered the dual problem of measuring and efficiently discov-
ering functional dependencies from data, and for effective knowledge
discovery, we investigated the combinatorial optimization problem of
maximizing the fraction of information F . This problem is theoretical
justified and the results have causal interpretations under standard
assumptions. To overcome the bias arising from high-dimensional
distributions and correct the inflated estimates, we proposed a con-
sistent and robust estimator for mutual information based on the
expected value of the null distribution. Concerning the optimization
problem, we proved NP-hardness and derived two bounding func-
tions for the estimator that can be used to prune the search space.
With these, we can effectively discover the optimal, or α-approximate
top-k dependencies with branch-and-bound. The experimental eval-
uation showed that the estimator has desired statistical properties,
the bounding functions are very effective with both exhaustive and
heuristic algorithms, and the greedy algorithm provides solutions
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that are nearly optimal. Assuming a Bayesian network, our resulting
method for Markov blanket discovery is on par with the state-of-the-
art algorithms based on independence tests. Qualitative experiments
on two case studies indicate that our proposed framework indeed
discovers informative dependencies corroborated by domain experts,
while independence testing Markov blanket discovery algorithms
under-perform.

3.6.1 Greedy optimization

While the given reduction from set cover can be extended to show that,
unless P=NP, no fully polynomial time approximation scheme exists,
the possibility for weaker approximation guarantees remains. In
particular, the strong empirical performance of the greedy algorithm
hints that F̂0 could have a certain structure favored by the greedy
algorithm, e.g., some weaker form of submodularity (we remind
that F̂0 is neither submodular nor monotone). For instance, one
could explore ideas from Horel and Singer [HS16] where a monotone
function is ε-approximately submodular if it can be bounded by a
submodular function within 1± ε. Another idea is that of restricted
submodularity for monotone functions [DGP+08], where a function
is submodular over a subset of the search space. Perhaps the most
promising is the submodularity index for general set functions [ZS16],
where a proxy for the degree of non-submodularity is incorporated
in the approximation guarantee.

3.6.2 Significance testing and multiple hypotheses

An important aspect for further investigation is connections of our
correction approach to multiple hypothesis testing. This is a topic
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in statistics concerned with problems arising from performing signif-
icance tests on a large volume of hypotheses (see Hämäläinen and
Webb for a great tutorial [HW19]). Let us consider the following
example [HW19, Sec. 6]. We perform tests on m ∈ Z+ true null
hypotheses at significance level α. Assuming that the probability of
type I error is exactly α, then we should be expecting m · α false
positives on average. For example, with m = 100000, we can expect
5000 false positives. Such numbers are common in typical data anal-
ysis tasks. To overcome this problem, methods try to control the
familywise error rate (FWER) or the false discovery rate (FDR) by
making the rejection of null hypotheses harder. A basic approach for
this is the Bonferroni correction that uses an adjusted significance
level α′ = α/b, where b is the total number of hypotheses.

Our approach adjusts the estimation such that it is unbiased under
the null hypothesis. That is, we aim to reduce the number of false
positives by correcting the estimation error when the variables are
independent. For a fixed number of samples n, both the plugin
estimator and the correction term monotonically increase with the
superset relation. In general, they both have the tendency to increase
with the domain size. If the domain sizes are large compared to n, the
estimates are penalized heavier. This is very similar to the approach
of Webb [Web08], where the α values are adjusted according to the
search level, with higher levels being penalized more.
Some directions to investigate are connections of our approach

to significance testing and multiple hypotheses, e.g., implications
of subtracting the mean of the null distribution. Is it related to
performing tests at level α = 0.5? Since we are performing a top-k
formulation, does it mean we stop searching for larger candidates
the moment such a test fails? Can we argue about FWER and FDR
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as a function of k? It would be also interesting to argue further
about the benefits of using this correction approach by relating it to
multiple tests for exploratory research [GS11], where in a nutshell, it
is more favorable to retrieve a larger number of potential interesting
hypotheses, instead of using strict tests to reduce false positives.

3.6.3 Markov blanket discovery

Assuming a Bayesian network, maximizing the fraction of information
can be seen as a dual formulation to independence testing for Markov
blanket discovery. While the evaluation showed that our score-based
approach is competitive on the Alarm network, it is important to
note the main advantage of the testing approach: the data efficient
algorithms, e.g., HITON,MMMB, are better-suited for recovering
larger Markov blankets. For example, if the Bayesian network has
an MB of size 60, it is unreasonable to expect our approach, GS,
and IAMB, to retrieve it, unless the number of samples is enormous.
However, HITON and MMMB are approximate, as in order to
be computationally efficient, they consider a maximum size for the
conditional set. That is, these methods conclude that a variable
should enter the Markov blanket not by testing all possible subsets
of the currently selected MB, but only subsets up to a certain size.
Note that as the sizes of Markov blankets increase, these methods
have to become more and more approximate to maintain efficiency.
To summarize, we conclude that exact methods, i.e., methods that
consider jointly all the variables, are statistically inefficient, while the
data efficient are computationally infeasible and approximate. For
very large Markov blankets, standard feature selection, e.g., MRMR,
should be preferred, but note that they do not guarantee the discovery
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of a Markov blanket.
The advantages of score-based approaches on the other hand are

two. First, searching for the exact and maximal top-k corresponds
to identifying multiple Markov blankets. It would be interesting
to see a comparison with methods for multiple Markov blankets
such as KIAMB [PNBT07], EGSG [LLZ10], TIE [SLA13], and
also derive criteria for identifying the number k of possible Markov
blankets. Second, since it is a combinatorial maximization problem,
it allows for approximate algorithms such as greedy, accelerated
greedy [Min78], and stochastic greedy [MBK+15], that can scale to
problems of arbitrary size. It would be interesting to see under what
conditions, e.g., faithfulness, there can be approximation guarantees.

3.6.4 Future work

Perhaps the most interesting direction is that of efficiently arriving
at a diverse set of top-k solutions. Here, we used a top-k formula-
tion without considering maximal solutions or any post-processing.
Indeed, such formulations would come closer to the objective of Theo-
rem 3.0.1 for discovering the k Markov blankets. Regarding efficiency,
Pennerath [Pen18] introduce efficient algorithms to compute entropic
measures for large k based on FP-Growth. This framework could
potentially be extended to retrieve maximal solutions, e.g., with the
result set represented by a prefix tree, and only reporting root-to-leaf
paths. Moreover, Pennerath [Pen10] also introduce efficient post-
processing techniques to retrieve diverse sets from top-k with the
notion of locally optimal patterns.
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Figure 3.11: Precision, recall, and F1 of score-based versus test-
based algorithms for Markov blanket discovery on the Alarm
dataset. Evaluating the greedy algorithm (Alg. 3) and the permuta-
tion fraction of information with shrinking step (Alg. 4 with φ = 0.01)
for Markov blanket discovery versus algorithms that employ conditional
independence tests.
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Figure 3.12: Precision, recall, and F1 of different estimators
combined with the greedy algorithm for Markov blanket discov-
ery on the Alarm dataset.
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Figure 3.13: Top-1 dependency on Tic-tac-toe with win/loss Y
as target variable. Left: board with input variables in corresponding
board positions, and variables contained in top dependency marked in red.
Right: number of winning combinations each position is involved in.
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Figure 3.14: Top-3 dependencies on Tic-tac-toe with X5 as target
variable. Target X5 is in blue, while red indicates part of the solution.
Note that all three include the win/loss attribute that is not shown here
as part of the solution.
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Figure 3.15: Materials Science case study. Binary semiconductors
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materials are correctly classified by subgroup-based prediction model—the
involved rules (annotated) use elements of the top dependency discovered.
(source: [GBV+17])
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4
Discovering robust totally

correlated sets

In this chapter we consider categorical input variables I = {X1, . . . , Xd}
and propose algorithms for discovering subsets X ⊆ I that exhibit
high mutual dependency and can summarize aspects of the process
under consideration.
For our knowledge discovery purposes, existing solutions for this

problem have several drawbacks. Many methods are primarily
defined for binary data and measure only pairwise associations
with interestingess functions such as chi-square statistic [BMS97],
all-confidence [Omi03], h-confidence [XTK06], or mutual informa-

This chapter is an extended version of work that originally appeared in IEEE
International Conference on Data Mining (ICDM) [MBV19].
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tion [KCN08]. By considering only pairwise associations, higher-order
interactions among the features are neglected. In addition, data
transformations from categorical attributes to boolean may incur in-
formation loss. Finally, such methods are parameterized with various
thresholds, e.g., minimum all-confidence, leading to an uncontrollable
output size, i.e., they might miss interesting dependencies or receive
too many. In a nutshell, we find that unsupervised mining methods,
although relevant for their own respective applications, lack a com-
prehensive formalization of dependency, as well as parameter-free,
single-objective optimization problems for categorical data that we
are interested in.
In this chapter, we build upon the concept of total correla-

tion1 W (X ) for sets X ⊆ I, the multivariate extension of mu-
tual information, which quantifies the amount of shared informa-
tion in a set of random variables while being agnostic about the
type of relationship [Wat60]. Total correlation has been success-
fully employed in other unsupervised scenarios, such as learning
latent representations [SG14], measuring correlation in real-valued
data [NMV16, WRN+17], and mining high order interactions in bi-
nary data [ZPWN08]. Without appropriate normalization, however,
scores over sets of different cardinalities are not comparable, which is
a problem when searching for the top dependent subsets X ∗ ⊆ I. We
hence consider normalized total correlation w(X ), which does
not only address this, but is also interpretable: a score of 0 means
the random variables in a set are statistically independent, and a
score of 1 that there exists a variable that “explains” all others. With
this, we are then looking solutions to the combinatorial optimization

1Correlation here does not imply linear relationships. In that sense, total
dependency would be more accurate.
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problem of finding the top-k subsets X ∗1 , . . . ,X ∗k ⊆ I with

w(X ∗i ) = max{w(X ) : w(X ∗i−1) ≥ w(X ),X ⊆ I} . (4.1)

Although theoretically sound, in practice normalized total correla-
tion suffers from inflated estimates when computed from empirical
data. This is not a surprise since it is an extension of mutual infor-
mation. In fact, compared to the supervised scenario of the previous
chapters, the situation here is more “chaotic” since total correlation
is a sum of increasingly higher-dimensional mutual information terms
(see Fig. 4.2 for a demonstration). As for the resulting combinatorial
optimization problem Eq.(4.1), putting aside the exponential search
space, the lack of a special attribute (i.e., a target Y ) that can lead
to a more informed search, as well as the existence of a normalizer
that is not constant throughout the search process, make it harder
to obtain admissible bounding functions for pruning.

To solve these, we build upon the previous chapter and propose a
robust and efficient estimator for normalized total correlation. Fur-
thermore, we enable effective exact and heuristic algorithms for the
discovery of the top dependent sets by exploiting various structural
properties of the estimator proposed. Our main contributions are
the following:

• we propose a consistent, robust, and efficient estimator for the
normalized total correlation (Sec. 4.2),

• we derive admissible bounding functions for effective pruning
and provide algorithms for exact, approximate, and heuristic
search (Sec. 4.3), and finally,

• we perform evaluation on a wide range of real and synthetic
datasets (Sec. 4.4, see Fig. 4.1 for a demonstration).
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We introduce the normalized total correlation in Section 4.1 and
round up with discussion and conclusions in Section 4.5.

4.1 Normalized total correlation

Introduced by Watanabe [Wat60], the total correlation for set of
variables X = {X1, . . . , Xm} with joint probability distribution p(X )

is defined as

W (X ) =
∑
X∈X

(
H(X)

)
−H(X ) =

m∑
i=2

I(Xi−1;Xi) ,

where Xi represents the set {Xj ∈ X : j ≤ i ≤ m}, with X0 being
the empty set. Essentially, total correlation is a multivariate depen-
dency/redundancy measure quantifying the total amount of shared
information in a set of random variables. It holds that W (X ) ≥ 0,
with equality if and only if all variables X ∈ X are statistically
independent, and is monotonically increasing with the subset rela-
tion, i.e., for sets of variables X and X ′ with X ⊆ X ′, it holds that
W (X ) ≤W (X ′). Note that total correlation can be expressed as the
KL-divergence between the joint p(X ) and the product of marginals∏
X∈X p(X) and that it is order invariant as a functional of p.
Total correlation, however, is not suitable for comparing the de-

gree of dependency between different sets of variables, since set
cardinalities, as well as the joint and marginal entropies of the vari-
ables involved, all can vary. In addition, the monotonicity property
implies that larger sets are more preferable as solutions, even in
situations where W (X ′) = W (X ) + ε for sets X ⊆ X ′. This intro-
duces redundancy and might hinder next steps of the analysis, such
as visualizations. Finally, total correlation lacks an intuitive and
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intepretable scale, e.g., in [0, 1], that would facilitate the process to
understand the results and reason about. These can be resolved by
expressing how far the correlation in a set of variables is from the
scenario of them being maximally correlated. To achieve this, we
present the following proposition.

Proposition 4.1.1. Given a set of variables X = {X1, . . . , Xm},
we have that

a) W (X ) ≤∑X∈X H(X)−maxX∈X H(X),

b) with equality iff ∃Xi ∈ X s.t., Xj = f(Xi),∀Xj ∈ X .

Proof. a) We upper-bound W (X ) by lower bounding H(X ). Since
Shannon entropy is monotonically increasing with the subset rela-
tion, we have that H(X ) ≥ maxX∈X H(X), and hence W (X ) ≤∑
X∈X H(X)−maxX∈X H(X).
b) Suppose that W (X ) =

∑
X∈X H(X) −maxX∈X H(X). Then

H(X ) = maxX∈X H(X) = H(Xq) for some q ∈ [1,m]. Using the
chain rule for entropy, i.e., H(X ) =

∑m
i=1H(Xi | Xi−1), and since

this decomposition is order-invariant, it is clear that H(Xi |Xq) = 0

for all Xi ∈ X . This is possible if and only if Xi = f(Xq) for all
Xi ∈ X .
Conversely, suppose there exists Xq ∈ X s.t., Xj = f(Xq),∀Xj ∈
X . Hence, we have that H(Xj |Xq) = 0 for all Xj ∈ X , and
H(X ) = H(Xq). Now, Xq = maxX∈X H(X), i.e., Xq must be the
variable with the highest entropy, hence W (X ) =

∑
X∈X H(X) −

maxX∈X H(X).
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We now define the total correlation upper-bound as W̄ (X ) =∑
X∈X H(X)−maxX∈X H(X), and proceed to define the normal-

ized total correlation as

w(X ) = W (X )/W̄ (X ) ,

for which it holds that w(X ) ∈ [0, 1], with 0 being the case where
all X ∈ X are statistically independent, and 1 when there exists a
variable that “explains” all other.2 By quantifying the percentage of
correlation within X , the score is now better interpretable, as well as
comparable across the different variable sets with varying joint and
marginal entropies.

Now given empirical data Dn, estimating the information-theoretic
quantities involved in w poses the same problem as in the previous
chapters, i.e., inflated estimates. Here the problem is in fact more
profound: while it is easier in general to obtain good estimates
for marginal quantities, e.g., the normalizer of w, total correlation
involves mutual information terms that need to be estimated for
increasingly larger sets of variables. This can lead to situations with
arbitrary estimates (see Fig. 4.2 for a demonstration).

4.2 Permutation normalized total correlation

In this section we derive a robust, consistent, and efficient to compute
estimator for the normalized total correlation. Following the same
correction principle as in Chapter 3, and assuming we can adequately
estimate marginal entropies Ĥpl(X), we can define a robust estimator

2Note that the bound for total correlation is in general known in the literature,
e.g., [Wat60]. However, a formal proof for the bound is often missing, which we
present here for both self-containment, and to better understand its properties.
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for the normalized total correlation by plugging Î0 and arrive at

m∑
i=2

(
Îpl(Xi−1;Xi)−m0(Xi−1, Xi, n)

)
/W̄ (X ) .

However, unlike the plugin ŵpl, this estimator violates the order-
invariance of total correlation since the correctionm0 is not a function
of p̂, but rather a function of domain sizes and marginal counts. To
ensure order-invariance, we select the order of variables that leads to
the most conservative estimate for the normalized total correlation,
which translates to the order that maximizes the correction term,
i.e.,

ŵ0(X ) =

∑m
i=2 Îpl(Xi−1;Xi)− max

σ∈Sm

∑m
i=2m0(Xσ(i−1), Xσ(i), n)

W̄ (X )

=ŵpl(X )− t0(X , n) ,

where Xσ denotes set X ordered according to a variable permutation
σ ∈ Sm.

Regarding efficiency, ŵ0 is clearly infeasible to compute in practice.
For a set of m variables, there are m− 1 calculations of the permuta-
tion model with each subsequent calculation having an increased cost
(since domain sizes SXσ(i−1)

can grow exponentially with i), and there
are m! possible permutations to find the maximum correction term,
resulting in a total complexity of O(m2(m− 1)!nSX ). We dramati-
cally reduce this complexity by first replacing the exact calculation
of the expected value m0 with an upper-bound, and then propose a
relaxation to this bound such that we can efficiently find the order
σ∗ ∈ Sm of variables maximizing the correction term.
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The upper-bound we consider is the one by Nguyen et al. [NEB10,
Thm. 7] that we also introduced in Section 3.2, i.e., for variables
X,Y, with domain sizes SX , SY , and sample size n, it holds that
m0(X,Y, n) ≤ log n+SXSY −SX−SY

n−1 . We denote this upper-bound
with m0̄(X,Y, n), and the corresponding correction term with
t0̄(X , n), i.e.,

t0̄(X , n) = max
σ∈Sm

m∑
i=2

m0̄(Xσ(i−1), Xσ(i), n)/W̄ (X ) .

Now, while the exact expected values have been replaced with
something more efficient, t0̄(X , n) as function of the joint domain
sizes SXσ(i−1)

remains infeasible: for every σ ∈ Sm and i ∈ [2,m], we
need to compute the joint domain size of Xσ(i−1) with Xσ(i). We
proceed to relax this requirement.

Assuming a strictly positive distribution p, i.e., p(X = x) > 0

for all X ⊆ I and x ∈ VX , then joint domain sizes can be written as a
product of marginal domain sizes, i.e., SX =

∏
X∈X SX . Furthermore,

a relaxation that considers only the joint contribution of the variables
in X , leads to the relaxed upper-bound m¯̄0 with

m¯̄0(Xi−1, Xi, n) = log
n+

(∏
X∈Xi−1

SX
)
SXi

n− 1
,

and to the following relaxed correction term t¯̄0 with

t¯̄0(X , n) = max
σ∈Sm

m∑
i=2

m¯̄0(Xσ(i−1), Xσ(i), n)/W̄ (X ) .

In the following theorem we establish that this quantity is both
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a consistent upper bound for t¯̄0, and efficient to compute without
explicitly considering all permutations σ ∈ Sm.

Theorem 4.2.1. For set of variables X = {X1, . . . , Xm}, it holds

a) t¯̄0(X , n) ≥ t0̄(X , n)

b) limn→∞ t¯̄0(X , n) = 0

c)
∑m
i=2m¯̄0(Xσ(i−1), Xσ(i), n) is maximized for σ∗ ∈ Sm with

SXσ∗(1)
≥ SXσ∗(2)

· · · ≥ SXσ∗(m)

Proof. For readability, we drop σ as a subscript whenever clear from
the context.
We prove (a) by first showing that it holds for any σ ∈ Sm. Given a
σ ∈ Sm, and any i ∈ [2,m], we have

m¯̄0(Xi−1, Xi, n) = log

n+ SXi
∏

X∈Xi−1

SX

n− 1

≥ log

n+ SXi
∏

X∈Xi−1

SX −
∏

X∈Xi−1

SX − SXi

n− 1

=m0̄(Xi−1, Xi, n) .

Since this holds for any σ ∈ Sm and i ∈ [2,m], then for the σ∗

with σ∗ = arg maxσ∈Sm
∑m
i=2m0̄(Xσ(i−1), Xσ(i), n) we have that∑m

i=2m¯̄0(Xσ∗(i−1), Xσ∗(i), n) is larger. Statement (b) follows from
limn→∞ log( (n+a)

(n−1) ) = 0.
For (c) let us consider a σ∗ ∈ Sm for which SXσ∗(1)

≥ · · · ≥
SXσ∗(m)

, and any arbitrary σ ∈ Sm. We prove this statement
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by doing a pairwise comparison between m¯̄0(Xσ(i−1), Xσ(i), n) and
m¯̄0(Xσ∗(i−1), Xσ∗(i), n) for any i ∈ [2,m]. We have

m¯̄0(Xσ∗(i−1), Xσ∗(i), n) = log
n+

∏
X∈Xσ∗(i) SX

n− 1

≥ log
n+

∏
X∈Xσ(i)

SX

n− 1

=m¯̄0(Xσ(i−1), Xσ(i), n) ,

where the inequality follows from the fact that
∏
X∈Xσ∗(i) SX is the

product of the i largest domain sizes. Since this holds for any σ ∈ Sm
and i ∈ [2,m], then σ∗ = arg maxσ∈Sm

∑m
i=2m¯̄0(Xσ(i−1), Xσ(i), n).

We now have an efficiently computable correction term t¯̄0(X , n),
going from an initial complexity of O(m2(m − 1)!nSX ), to that of
O(m+m logm), where m logm is for sorting the domain sizes SX ,
for X ∈ X . In addition, as an upper bound to t0̄, this correction is
as conservative with regards to its estimates, which is a design goal
for robustness. Finally, we arrive at the permutation normalized
total correlation3

ŵ¯̄0(X ) = ŵpl(X )− t¯̄0(X , n) .

In addition to being very efficient, the consistency of the plugin
Ĥpl [AK01], together with Theorem 4.2.1b), implies that ŵ¯̄0 is a con-
sistent estimator for the normalized total correlation. The estimators
discussed here are evaluated further for their statistical properties in

3Note that upper-bounded should have been part of the name, but for sim-
plicity we omit it.
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Section 4.4.1.

4.3 Optimization algorithms

Here, we provide algorithms for the optimization problem of Eq.(4.1).
Given the combinatorial nature of the problem, as well as the hardness
result for optimizing the permutation mutual information (Sec. 3.2),
it is unlikely that the optimization of ŵ¯̄0 allows for a polynomial
algorithm. While the complexity of the optimization problem under
consideration is an open question, here we derive two practically
efficient algorithms for exact and heuristic search. For both, we
derive admissible bounding functions for ŵ¯̄0 to be used for pruning.
Recall that an admissible bounding function (see Sec. 3.3) is an

upper-bound for the maximum attainable score ŵ¯̄0(X ′) for supersets
of X in the enumerated search space. Hence, the ideal one would be

w̄∗¯̄0(X ) = max{ŵ¯̄0(X ′) : X ⊆ X ′ ⊆ I} .

Efficiently computing this function, however, would imply an effi-
cient algorithm for the original optimization problem. Instead, we
shift our attention into independently deriving tight bounds for the
two terms of ŵ¯̄0(X ), i.e., an upper bound for ŵpl(X ) and a lower
bound for t¯̄0(X , n), in order to arrive at a looser, but efficient to
compute bounding function. In our setting, however, it is not possible
to both derive tight bounds and also guarantee their admissibility
for arbitrarily enumerated search spaces. The difficulty stems from
the inability to predict their behavior with respect to the subset
relation—both numerators (i.e., plugin and correction) are mono-
tonically increasing functions, but this property does not extend
combined with the normalizer W̄ (X ). For example, for a X ′ ⊇ X
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it might be that t¯̄0(X ′, n) ≥ t¯̄0(X , n), but for a different superset
X ′′ ⊇ X that t¯̄0(X ′′, n) ≤ t¯̄0(X , n). In other words, anything can
happen.
As it turns out, under a more strict partial order we can induce

a certain structure into our problem that allow us to derive tight,
admissible bounds for both terms.

Definition 4.3.1 (Low entropy extension). Given I = {X1, . . . , Xd},
we say that X ′ ⊆ I is a low entropy extension of a X ⊆ I, de-
noted as X ⊆H X ′, if X ⊆ X ′, and for all X ′ ∈ X ′ \ X , Ĥpl(X

′) ≤
minX∈X Ĥpl(X).

We can guarantee that this partial order holds in the enumerated
search space by simply considering a decreasing-entropy refine-
ment operator (see Sec. 3.3) of the form

rHI (X ) = {X ∪ {X} : Ĥpl(X) ≤ min
X′∈X

Ĥpl(X
′), X ∈ I \ X} ,

i.e., it holds that X ⊆H X ′ for all X ′ ∈ rHI (X ). We now proceed
with showing that under this partial order, the correction term t¯̄0 is
monotonically increasing. First, we provide the following required
lemma.

Lemma 4.3.1. For two fractions a/x and b/y of positive integers, if
a/x ≤ b/y, then it holds that a/x ≤ (a+b)/(x+y).

Proof. We have

a

x
≤ b

y
⇒ ay ≤ bx⇒ ay + ax ≤ bx+ ax⇒

ay + ax

x(x+ y)
≤ ax+ bx

x(x+ y)
⇒ a(y + x)

x(x+ y)
≤ x(a+ b)

x(x+ y)
⇒
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a

x
≤ a+ b

x+ y
,

concluding the proof.

Theorem 4.3.1. For subsets X ,X ′ of I with X ⊆H X ′, it holds
that t¯̄0(X , n) ≤ t¯̄0(X ′, n).

Proof. Let X = {X1, . . . , Xm} and X ′ = X∪Z, with Z = {Z1, . . . , Zq}.
Let us assume for simplicity and w.l.o.g. that X1 is the variable
with the maximum entropy in X , and that SX1

≥ · · · ≥ SXd
and SZ1

≥ · · · ≥ SZq .4 In addition, let us assume for now that
minX∈X SX ≥ maxZ∈Z SZ .

Since X ⊆H X ′, X1 is also the largest entropic variable in X ′, and
because minX∈X SX ≥ maxZ∈Z SZ , we can separate the contribu-
tions of X and Z and reformulate t¯̄0(X ′, n) as∑m

i=2m¯̄0(Xi−1, Xi, n) +
∑q
j=1m¯̄0(X ∪ Zj−1, Zj , n)∑m

i=2 Ĥpl(Xi) +
∑q
j=1 Ĥpl(Zj)

.

Now let us use the notation a =
∑m
i=2m¯̄0(Xi−1, Xi, n), b =

∑q
j=1m¯̄0(X∪

Zj−1, Zj , n), x =
∑m
i=2 Ĥpl(Xi), y =

∑q
j=1 Ĥpl(Zj). We need to

show that a+b
x+y ≥ a

x .
As X ⊆H X ′, we have that

∑q
j=1 Ĥpl(Zj) is a sum of q terms,

smaller than them−1 terms of
∑m
i=2 Ĥpl(Xi). In addition, and by the

definition of m¯̄0, the quantity
∑q
j=1m¯̄0(X ∪ Zi−1, Zi, n) is a sum of

q terms larger than the m− 1 terms of
∑m
i=2m¯̄0(Xi−1, Xi, n). Hence,

the fraction b/y is larger than that of a/x, and from Lemma 4.3.1,
we have that a+b

x+y ≥ a
x .

4The former allows us to write the normalizer W̄ (X ) as
∑m
i=2 Ĥpl(Xi), and

the latter to remove the max operator from the numerator of t¯̄0.
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Now if it were not the case that minX∈X SX ≥ maxZ∈Z SZ , i.e.,
there exist variables in Z with domain sizes larger than those in X ,
then we could still write the numerator of t¯̄0(X ′) as two sums a′ and
b′ with m− 1 and q terms respectively, and it would hold that a′ ≥ a
and b′ ≥ b, and hence

a

x
≤ a+ b

x+ y
≤ a′ + b′

x+ y
,

concluding the proof.

Following from the theorem, and using the upper bound 1 for
ŵpl(X ), we have that

ŵ¯̄0(X ′) =ŵpl(X ′)− t¯̄0(X ′, n)

≤1− t¯̄0(X , n) ,

for all X ′ that are low entropy extensions of X , which allows us to
define the monotonicity bounding function

w̄mon(X ) = 1− t¯̄0(X , n) . (4.2)

It is clear, however, that Eq.(4.2) is not tight: it upper bounds
ŵpl(X ) with the maximum possible value for the normalized total
correlation, without taking into consideration both the dependency
in X so far, nor how “good” it might actually become for X ′. We
derive a much tighter upper bound for ŵpl by further exploiting the
structure of the enumerated space. We define RX = {X : Ĥpl(X) ≤
minX′∈X Ĥpl(X

′), X ∈ I \ X} to be the set of all refinement ele-
ments of X in the enumerated search space, and w̄(X ) the branch-
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informed upper-bound

w̄(X ) =

∑m
i=2 Îpl(Xi−1;Xi) +

∑
X′∈RX Ĥpl(X

′)

W̄ (X ) +
∑
X′∈RX Ĥpl(X ′)

,

i.e., the plugin ŵpl(X ) after adding the marginal entropies of the
refinement elements of X . The following theorem establishes that
w̄(X ) is an upper bound to ŵpl(X ) with respect to ⊆H .

Theorem 4.3.2. For a X ⊆ I and any X ′ ⊆ I with X ⊆H X ′, it
holds that w̄(X ) ≥ ŵpl(X ′).

Proof. Let X = {X1, . . . , Xm} and X ′ = X∪Z, with Z = {Z1, . . . , Zq}.
We have

ŵpl(X ′) =

∑m
i=2 Îpl(Xi−1;Xi) +

∑q
j=1 Îpl(X ∪ Zj−1;Zj)

W̄ (X ) +
∑q
j=1 Ĥpl(Zj)

≤
∑m
i=2 Îpl(Xi−1;Xi) +

∑q
j=1 Ĥpl(Zj)

W̄ (X ) +
∑q
j=1 Ĥpl(Zj)

≤

∑m
i=2 Îpl(Xi−1;Xi) +

∑q
j=1 Ĥpl(Zj) +

∑
X′∈RX′

Ĥpl(X
′)

W̄ (X ) +
∑q
j=1 Ĥpl(Zj) +

∑
X′∈RX′ Ĥpl(X ′)

=

∑m
i=2 Îpl(Xi−1;Xi) +

∑
X′∈RX Ĥpl(X

′)

W̄ (X ) +
∑
X′∈RX Ĥpl(X ′)

= w̄(X ) ,

where the first inequality follows from the fact that Îpl(X;Y ) ≤
min{Ĥpl(X), Ĥpl(Y )} for variables X and Y (Prop. 2.1.1), and that
X ⊆H X ′, i.e., Îpl(X ∪ Zj−1;Zj) ≤ Ĥpl(Zj) for all j ∈ [1, q]. The
second inequality follows from Lemma 4.3.1.
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We can now define the branch-informed bounding function

w̄bin(X ) = w̄(X )− t¯̄0(X , n) , (4.3)

which has an extra O(|RX |) complexity compared to w̄mon(X ). Note
that in practice we use both in a chain-like manner, i.e., first evaluate
w̄mon that we get for free by caching t¯̄0 after computing ŵ¯̄0, and then
proceed with Eq.(4.3) if it fails. We refer to this optimistic estimator
as the chain bounding function w̄chn(X ).

With these, we use Algorithms 2 and 3 to solve Eq.(4.1). Regarding
practicalities, for branch-and-bound we use a priority queue based on
potential that leads to the best-first variant. The branching operator
rHI is equivalent to the standard alphabetical enumeration with
rAI (Eq.(3.6)) after initially sorting the input variables in decreasing
entropy order. It is important to note that since we sort I initially, the
admissible heuristic of Webb [Web95] to assign the most refinement
operators to the least promising nodes (i.e., smallest potential) is
not applicable here as it violates the ordering. As w(X ) is undefined
for |X | ≤ 1, we define potential 1 for |X | = 1, and a score of 0 for
|X | ≤ 1. Moreover, the enumeration order allows for an efficient
incremental calculation of ŵ¯̄0.

4.4 Evaluation

In this section we empirically evaluate the proposed discovery frame-
work for dependent sets. In particular, we perform experiments on
synthetic data in order to investigate the performance of the esti-
mators, we use a wide selection of benchmark data to evaluate the
performance of the algorithms and bounding functions, as well as
provide concrete findings in example exploratory tasks.
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4.4.1 Estimator performance

Here we evaluate the performance of the estimators discussed in this
section, i.e., the robust ŵ0, ŵ0̄, ŵ¯̄0 proposed, and the plugin ŵpl. For
this evaluation, we first create synthetic data in the following way.
We randomly and uniformly sample joint probability distributions
p(i) ∈ Pd[a,b], where Pd[a,b] denotes the set of all joint probability
distributions with d dependent random variables and resulting w score
in [a, b]. Each random variable has a domain size of 3. For example,
P4

[0,0.3] is the set of probability distributions p(X ), X = {X1, . . . , X4},
with SXi = 3, and w(X ) ∈ [0, 0.3]. We augment these distributions
with 3 independent and uniformly distributed random variables, also
of domain size 3. Each p(i) ∈ Pd[a,b] has then its own set of 2d+3 − 1

marginalized distributions for which we can compute the w score.
Note that due to the varying marginal entropies H of the normalizer,
it is not guaranteed that the full (original) joint has the highest w,
but rather that the maximum is at least as large.

We consider dimensionalities d = 2, 3, 4, and four different regimes
P d[0.1,0.2), P

d
[0.2,0.3), P

d
[0.3,0.4), P

d
[0.4,0.5], representing weak, low, medium,

and high dependency.5 We sample one distribution for each com-
bination, resulting in 12 different distributions p(i), i = 1, . . . , 12.
We consider data sizes n ∈ {10, 20, 30, . . . , 100}, and for each p(i)

and n we sample 500 datasets according to p(i) and denote them as
D

(i)
n,j , j ∈ [1, 500]. We pick n ∈ {10, . . . , 100}, since the probability

distributions we consider are “small” in size. It is expected, given
that all estimators are consistent, that their behavior carries on for

5Note that randomly sampling joint distributions with high normalized total
correlation, e.g., in [0.5, 1], is in practice hard for increasing dimensionalities
since it requires that all conditional distributions are highly peaked. In addition,
this range is less challenging for estimators as it is easily separated from noise.
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larger sample sizes and distributions.
We choose regret to evaluate the estimators as it is an accurate

summary of essential properties for an estimator, such as consistency,
convergence, and generalization error. The regret is defined as
rn(τ, p(i)) = E

[
w(X ∗i ) − w(X ∗i,j,n,τ )

]
, where X ∗i represents the true

maximizer of population p(i), and X ∗i,j,n,τ the maximizer in D
(i)
n,j

according to an estimator τ ∈ {ŵpl, ŵ0, ŵ0̄, ŵ¯̄0}, for which we use
exhaustive search to obtain.6 The expected value is with respect
to j ∈ [1, 500]. We average regrets across the different p(i) to ob-
tain rn(τ,P [u,v]

[a,b] ), e.g., rn(τ,P [2,3]
[0,0.5]) would be the average regret of

estimator τ across all p(i) ∈ P3
[0,0.5] and p

(i) ∈ P4
[0,0.5].

We start with Figure 4.3 and plot rn(τ,P [2,4]
[0.1,0.5]), i.e. the average

regret across all p(i). We observe that in general, the corrected estima-
tors perform much better than the plugin. They have a smaller regret
across all n, and for some n there is even a factor of 5 improvement.
In addition, they converge faster to a regret close to 0. Regarding
the efficient ŵ¯̄0, we see that despite the necessary relaxations, it has
performance that is on par with both ŵ0 and ŵ0̄.
Next, in Figure 4.4 we plot the regrets averaged for the dif-

ferent dimensionalities of the joint probability distributions, i.e.,
rn(τ,P2

[0.1,0.5]) (left), rn(τ,P3
[0.1,0.5]) (middle), and rn(τ,P4

[0.1,0.5])

(right). Under this different view, we see that the plugin estimator
ŵpl has an increasing difficulty to converge to 0 regret with respect
to dimensionality, while the corrected estimators do not exhibit this
behavior, as expected. Among the corrected, the differences are more
profound for d = 2 with ŵ¯̄0 having worse performance. This artifact
can be attributed to the following behavior. For small n, not all 5

6The d+ 3 variables are the input variables, the rows are the samples, and an
estimator is used as the function to be optimized.
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random variables (2 dependent, 3 independent) get to have samples
with domain size 3, and hence, ŵ¯̄0 that penalizes with the product of
domain sizes misses the 2 dependent variables when they are sampled
with domain size 3, but the independent ones with domain size 2.
In addition, for d = 2 the maximum is obtained for the pair of the
dependent variables, with its subsets having a score of 0 (since they
are singletons). We do not observe this behavior for d = 3, 4, for the
simple fact that the subsets have a non-zero score, hence contributing
to better regret.

Finally, in Figure 4.5 we plot the regrets averaged over two degrees
of dependency, low with p(i) ∈ rn(τ,P [2,4]

[0.1,0.3)) (left) and relatively

high p(i) ∈ rn(τ,P [2,4]
[0.3,0.5]) (right). Again, the corrected estimators

have better regret curves. Since their correction is based on a null
hypothesis model, they are particularly well-suited for the scenario
where the dependency is low, i.e., closer to independence. The plugin
ŵpl on the other hand, cannot distinguish between the chance effects,
and hence, has an almost flat curve as we see in the left plot. However,
even for better separation with such effects, the corrected estimators
still outperform the plugin.
Overall, we see that our proposed robust estimators ŵ0, ŵ0̄, and

ŵ¯̄0, clearly outperform the plugin, sometimes even by a factor of 5.
In addition, we observe that the efficiently computable ŵ¯̄0 is on par
with ŵ0 and ŵ0̄.

4.4.2 Optimization performance

In this section we investigate the performance of the chain bounding
function w̄chn and algorithms proposed for exhaustive and heuristic
search for the permutation normalized total correlation ŵ¯̄0. For
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the evaluation, we consider benchmark data from the KEEL data
repository [SRAFFH+11], and particularly all classification datasets
with no missing values and d ≥ 7, resulting in 49 datasets with
n ∈ [101, 1025010] and d ∈ [7, 91], summarized in Table 4.1. All
metric attributes are discretized in 5 equal-frequency bins. This
experiment is executed on a Intel Xeon E5-2643 v3 with 256 GB
memory. Our code is online for research purposes.7

We employ the two algorithms in order to retrieve the top depen-
dency. For Opus, we set α to be the highest possible in increments
of 0.05 such that it terminates in less than 30 minutes, and report in
Table 4.1 the runtime, the percentage of the pruned search space,8 the
depth of the solution, the maximum depth Opus had to selectively
reach, and the quality ŵ¯̄0 of the top dependent set. For Grd we
report runtime and the difference of the quality for the top result
with that from Opus. We average runtimes over 3 independent
executions.
We observe that Opus is highly efficient as it finds the optimum

solution in ≤ 30 minutes (i.e., α = 1) for 42 out of 49 datasets. In
30 of them, it takes less than a minute. For all 49, it requires 77

seconds on average. The bounding function w̄chn is very effective in
pruning, enabling the discovery of optimum solutions on datasets
such as coil2000 and movement-libras with 86 and 91 attributes, that
with exhaustive search would otherwise be impossible. In addition,
an average of 5 maximum depth combined with an average solution
size of 2.2, shows that the synergy of w̄chn and enumerated search
space allows to selectively explore based on the structure of the data,
and not simply by cardinality. That is, it can potentially go to higher

7https://github.com/pmandros/fodiscovery
8Defined as 100− (100 ∗ q)/2d, where q are the nodes Opus explored.
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levels for promising candidates.
The Grd algorithm requires only a couple of seconds on the

majority of the datasets. On average, it terminates after 3 seconds.
In addition, the solutions produced by Grd are almost optimal
considering that there are only 2 negligible cases where the two
algorithms differ.
Overall, both algorithms are very effective with w̄bin and w̄mon

as bounding functions. The Opus algorithm would be preferable in
scenarios were solution guarantees are required, while Grd when
efficiency is more important, e.g., on very large datasets.

4.4.3 Example discoveries

Last, we proceed with presenting concrete discoveries on three sce-
narios: finding dependencies on the Tic-tac-toe game, identifying
sets of co-inhabitant European land mammals together with factors
affecting their coherence, and exploring Bayesian networks.
Tic-tac-toe. First we consider the Tic-tac-toe game (Sec. 3.5.4).

Here we treat the 9 attributes X1, . . . , X9 corresponding to the
cell symbols and the win/loss attribute Y as the input variables
I = {X1, . . . , X10} (i.e., X10 is Y ). We present in Figure 4.1 the
top-9 results retrieved with ŵ¯̄0. The input variables Xi, i ∈ [1, 9] are
mapped to their corresponding board positions and color indicates
the result. Red designates the result set contains X10. We observe
that top-1, 2, 8, 9 are all winning configurations, and top-3 has X5

from which the majority of winning configurations go through. Top-
4, 5, 6, 7 are losing configurations, something that can be validated
by superimposing, for example, top-1 and top-4. The blue results
also appear to be four rotations of a unique configuration, indicative
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of a potential common losing pattern. In a nutshell, ŵ¯̄0 identifies
interesting “red” and “blue” dependent sets that can act as latent
factors for win and loss, respectively.

Regarding X10, we should be expecting dependency with the losing
configurations in a similar manner as the winning ones. This can be
attributed to the fact that the losing configurations are in general
more random compared to winning, and this combined with the small
size of the dataset, cannot support a “losing” top result of size 4.
As a further experiment, we use estimators ŵpl, ŵ0, ŵ0̄ with ex-

haustive search. We report that ŵpl essentially orders the results
according to cardinality, i.e., the top-1 is all the input variables I,
the next 9 are all subsets of I with size 9 etc. For ŵ0 and ŵ0̄ there
is agreement with the top 4 of ŵ¯̄0, but the next 5 are all supersets of
the top 2 with an extra cell. We find the results of ŵ¯̄0 to be more
interesting in this case.

Lastly, we note that the nature of this game implies that the cells
are independent, i.e., p(X1, . . . , X9) =

∏9
1 p(Xi), and that subsets of

these cells should become dependent the moment they are conditioned
on X10. However, they can take any of 3 values and hence, any
dependency is expected to be small. For example, the top-1 of ŵ¯̄0

has score 0.08, and when measured with the plugin ŵpl, has a score of
0.12. These two values are more indicative for the maximum amount
of dependency we should expect, in contrast to the value 0.36 for the
top-1 retrieved with ŵpl. To put it differently, ŵ¯̄0 is able to identify
aspects of the “low” signal residing in this dataset.
European land mammals. We now shift our attention into data

that contain a lot more information, and particular the European land
mammal dataset [HFEM07]. The dataset contains presence/absence
records of 124 land mammals for a set of 2183 grid cells covering
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Europe, where each cell is approximately 50× 50 km. The dataset
also contains enviromental information, such as temperature, precip-
itation, and elevation, which we discretize into 2 categories to reflect
low and high.
In the top results we mainly recover coherent sets of mammals

that are categorized as small, i.e., in the families of Insectivora,
Rodentia, and Lagomorpha, and are endemic in southern Europe
and the European Alps. For example, the top-1 set with score 0.7

contains the Cretan spiny mouse and the Cretan shrew, and top-2
with same score the Savi’s pine vole and Crested porcupine, both
rodents inhabiting Italy. Larger sets include various species of shrews
and rodents. Particularly interesting is the set of the greater white-
toothed shrew, the Canarian shrew, and the Osorio shrew. The
latter two appear mainly in the Canary islands, while the former
in central-west Europe. This set could be used, for example, as
an indicator that Osorio shrew, originally described as a separate
species, indeed belongs to the shrew family [MBSP03]. Furthermore,
we find that the coherence of sets with large mammals depends on
the presence of environmental information. As an example, a set
with score 0.45 contains two large mammals, moose and Arctic fox,
along with three rodents, wood lemming, Norway lemming, and gray
red-backed vole. All these inhabit Scandinavia. More coherent sets
of large mammals appear together with environmental information,
e.g., the set temperature, moose, European bison, and wild goat,
with score 0.37. We find that our analysis is to a large extend in sync
with that of Heikinheimo et al., and particular the coherent sets of
small mammals in southern/central Europe, and the environmental
effect on the coherence of sets with large mammals [HFEM07].
Alarm network. Last, we consider the Alarm dataset with
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n = 10000 data samples (Sec. 3.5.3). The goal of this evaluation
is to investigate the type of network structures discovered. Ideally,
we would like to obtain dependencies that corresponds to connected
variable subgraphs. We run the algorithm for the top-30, and report
that we discover 5 dependencies of size two, 7 of size three, 10 of size
four, and 8 of size five. We present a few in Figure 4.6, and observe
that dependencies indeed correspond to connected subgraphs.

4.5 Discussion and conclusions

We considered the problem of measuring and efficiently discovering
dependent sets from data. We adopted an information-theoretic ap-
proach, and proposed a robust and efficient estimator for normalized
total correlation. In addition, we derived two bounding functions
to be used for pruning, and proposed effective algorithms for ex-
act, approximate, and heuristic optimization. The results showed
that the estimator has attractive statistical properties, the bounding
functions lead to effective optimization algorithms, while qualitative
experiments validated that the discoveries are indeed informative.

4.5.1 Different formulations

Note that we can employ total correlation as a global objective: given
I = {X1, . . . , Xd}, discover a decomposition of I into disjoint sets
of variables such that the total correlation is maximized. That is,
cluster the attributes into sets of mutually dependent variables. One
here could potentially also consider overlapping sets, as a form of soft
clustering. This global problem is, however, more computationally
demanding for an exact solution. One idea for hard clustering would
be to use our current approach to discover the top-1, then remove it
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and restart for the next top-1. Alternatively, one could employ the
conditional total correlation for subsequent iterations and condition
on previous solutions.

4.5.2 Future work

Similar to the fraction of information (Ch. 3), we observe again the
greedy algorithm performing near-optimal, and similar to Sec. 3.6.1,
investigating set function optimization can tell us why. It would be
also interesting to consider alternative normalizers for total correla-
tion, e.g., normalize by the cardinality of the set. That way we can
favor different types of structures for set dependencies, e.g., larger
sets.
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Figure 4.1: Top-9 dependent sets discovered on Tic-tac-toe with
our proposed solution. Color indicates the selected cells, with red
designating the inclusion of X10 that corresponds to the binary outcome
of the game. In a nutshell, red and blue dependent sets can be interpreted
as descriptions for win and loss, respectively. (Section 4.4.3)
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Figure 4.6: Example discoveries on the Alarm dataset and their
corresponding graphical structure.
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Table 4.1: Datasets used in Section 4.4.2. The α values correspond to the maximum possible approx-
imation guarantee in increments of 0.05 such that branch-and-bound (Opus) finishes in less than 30
minutes. Maximum search level is the maximum level that Opus had to selectively reach in order to find
the solution, while solution depth is the depth where the solution was found. Pruning percentage is the
amount of search space reduced by the bounding function and Opus. The last two columns correspond
to the value of the top solution of Opus and the difference with the value of the top solution by Grd.

search level time(s) ŵ¯̄0(X∗)
dataset #rows #attr. α max sol. prune% Opus Grd Opus Opus−Grd

abalone 4174 9 1 6 2 48.90 0.5 0.2 0.67 0
appendic. 106 8 1 3 2 71.37 0.1 0.1 0.56 0
australian 690 15 1 3 2 99.67 0.1 0.1 0.97 0
bupa 345 7 1 5 2 15.70 0.1 0.1 0.10 0
car 1728 7 1 5 2 14.87 0.1 0.1 0.20 0
chess 3196 37 1 9 3 99.99 617.4 0.6 0.64 0
coil2000 9822 86 1 3 2 99.99 7.2 6.7 0.99 0
connect 67557 43 0.8 6 2 99.99 1094.8 11.5 0.62 0
contracept. 1473 10 1 6 2 50.59 0.3 0.1 0.25 0
fars 100968 30 1 2 2 99.99 15.4 10.3 0.99 0
flare 1066 12 1 4 2 93.36 0.1 0.1 0.62 0
german 1000 21 1 6 2 98.63 15.8 0.1 0.26 0
glass 214 10 1 5 2 58.57 0.1 0.1 0.19 0
heart 270 14 1 5 2 83.33 0.4 0.1 0.17 0
ionosphere 351 34 1 5 2 99.99 69.8 0.1 0.45 0
kddcup 494020 42 1 4 2 99.99 284.4 73.5 0.98 0
kr-vs-k 28056 7 1 5 3 8.26 1.6 0.3 0.18 0
led7digit 500 8 1 6 2 37.50 0.1 0.1 0.50 0
letter 20000 17 1 8 2 80.37 390.2 1.2 0.41 0
lymph. 148 19 1 6 2 99.15 0.5 0.1 0.28 0
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magic 19029 11 1 5 2 81.63 2.5 0.3 0.67 0
monk 432 7 1 4 2 32.23 0.1 0.1 0.31 0
move. libras 360 91 1 3 2 99.99 12.7 0.5 0.92 0
nursery 12690 9 1 4 2 68.19 0.6 0.2 0.60 0
optdigits 5620 65 0.35 2 2 99.99 3.3 3.4 0.49 0
pageblocks 5472 11 1 5 2 77.71 0.8 0.1 0.69 0
penbased 10992 17 1 7 3 85.38 118 0.8 0.51 0
poker 1025010 11 0.9 8 4 4.95 1760.8 20.6 0.02 0
ring 7400 21 0.1 4 2 99.93 4.4 0.4 0.08 0
saheart 462 10 1 5 2 52.95 0.1 0.1 0.21 0
satimage 6435 37 0.65 6 4 99.99 632.8 1.6 0.55 0.004
segment 2310 20 1 5 2 99.71 2.4 0.1 0.82 0
shuttle 58000 10 1 7 4 57.00 16.2 1.4 0.58 0
sonar 208 61 1 5 2 99.99 1246 0.2 0.35 0
spambase 4597 58 1 4 2 99.99 130.6 2.0 0.89 0
spectf. 267 45 1 5 2 99.99 331.9 0.1 0.29 0
splice 3190 61 0.25 2 2 99.99 1.4 1.5 0.25 0
texture 5500 41 1 3 2 99.99 1.4 1.4 0.99 0
thyroid 7200 22 1 6 2 99.67 26.5 0.5 0.40 0
tic-tac-toe 958 10 1 7 4 11.04 0.4 0.1 0.08 0.005
twonorm 7400 21 0.2 6 2 99.13 84.1 0.4 0.13 0
vehicle 846 19 1 4 2 99.79 0.4 0.1 0.87 0
vowel 990 14 1 2 2 99.43 0.1 0.1 0.95 0
wdbc 569 31 1 4 2 99.99 0.9 0.2 0.90 0
wine 178 14 1 4 2 93.19 0.1 0.1 0.48 0
wine-red 1599 12 1 6 2 53.13 2.1 0.1 0.25 0
wine-white 4898 12 1 7 3 51.29 6.0 0.3 0.32 0
yeast 1484 9 1 5 2 64.21 0.1 0.1 0.19 0
zoo 101 17 1 4 2 99.87 0.1 0.1 0.79 0

avg. 39000 25 0.92 5 2.2 77.00 142 3
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5
Functional Dependency Discovery

from Mixed-Type Data

In many practical scenarios data are high-dimensional collections of
mixed variable types (i.e., nominal, ordinal, continuous), and estimat-
ing the mutual information from such data in a non-parametric way
is not trivial. For example, instead of directly considering the under-
lying continuous variables, we have to resort to their approximations
from either data-based discretization or density estimation, with
potential loss of information. Moreover, it is not clear how we can
do this in the presence of discrete data. The situation becomes even

This chapter is an extended version of work that originally appeared
in ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD) [MKBV20].
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more problematic when we have to efficiently identify the strongest
and most robust dependencies for FDD by comparing the estimates
for all possible subsets X ⊆ I.

Proposed mutual information estimators consider mainly the purely
discrete and continuous cases. The different families include the
discrete, e.g., the plugin Îpl, the chi-square Îχ,α, the minimax Îmm,
while for continuous there is adaptive partitioning [SN10, DV99], k-
NN [KSG04, BSY19], and kernel density estimation [PY08, GSG15].
For mixed data, the state-of-the-art k-NN [GKOV17] based on the
Radon-Nikodym derivative is applicable for multivariate mixtures.
None of the above, however, fits to our mixed data FDD scenario.
The continuous estimators are defined for Euclidean spaces, where
nominal attributes cannot be trivially embedded. Moreover, given
purely discrete data, the Radon-Nikodym mixed estimator recovers
the plugin estimator Îpl that trivially fails the FDD task. Discrete
estimators, on the other hand, can work with continuous data after
discretization has been applied. While efficiently discovering robust
dependencies in discrete data has been principally addressed in the
previous chapters, it remains unclear with what quantization methods
it can be combined such that the search consistently identifies the
strongest dependencies in mixed-type data. We solve these with the
following contributions:

• first, to arrive at a consistent mixed estimator Îmx, we recall
that mutual information for two continuous random variables
can be attained as a limit along a refining quantization se-
quence [CT06, Sec. 8.3]. We extend this result for mixed sets
of variables, as well as identify the class of quantizations applica-
ble that includes known techniques such as equal-frequency. We
then translate this process to empirical samples, and identify
the requirements for consistency (Sec. 5.2).
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• Second, based on the theory developed we propose a framework
for mixed mutual information estimation and demonstrate how
it can be applied in practice for FDD (Sec. 5.3).

• Third, we combine the mixed estimator with the robust FDD
framework developed in Chapter 3. In particular, we show that
the permutation mutual information estimator is well-suited for
the mixed estimator framework, and modify the algorithms for
exact, approximate, and heuristic search (Sec. 5.4, see Fig. 5.1
for a demonstration).

• Lastly, we perform extensive evaluation on a wide range of real
and synthetic data (Sec. 5.5).

We start with preliminaries in Section 5.1, and end with discussion
and conclusions in Section 5.6.

5.1 Preliminaries

We often use D,G, to indicate sets of discrete variables, and C for
sets of continuous variables. We consider quantization strategies
for continuous random variables which we denote with Q. Given
k ∈ Z+ and a continuous random variable C, Q produces a partition
Qk = {S1, . . . , Sk} of the domain VC ⊆ R in k consecutive intervals
with ∪ki=1Si = VC (upper-bound exclusive). With CQk we represent
the quantized C according to Q and k. As an example, equal-
frequency denoted as QEF, partitions C with QEF

k = {S1, . . . , Sk}
such that

∫
Si
fC(c)dc = 1/k for all i ∈ [k], where fC(c) is the density

function of C. Given Q and k, we use δi for the corresponding length
of the sub-interval Si. In this paper, we are interested in the class of
quantization strategies for which maxi∈[k] δi → 0 as k →∞, which
we refer to as converging strategies. These notions extend to
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the multivariate case C = {C1, . . . , Cm}, with Qkm = {S1, . . . ,Skm}
being a partition of VC ⊆ Rm, produced by partitioning each C ∈ C
in k bins. We use Qk whenever clear from the context. For a Q, the
set Πl(Q) = {Q1, . . . , Ql} corresponds to all partitions by Q in up
to l bins, and Πm

l (Q) to the set of all partitions for domains in Rm.
We define the following relation for two partitions: Q′v is a refine-

ment of Qu, denoted as Qu � Q′v, if v ≥ u and there exists a map
r : [u]→ 2[v], such that for every i ∈ [u], we have Si = ∪j∈r(i)S′j . For
example, we have that QEF

2 = {S1, S2} � QEF
4 = {S′1, S′2, S′3, S′4},

since S1 = S′1 ∪ S′2 and S2 = S′3 ∪ S′4.
Given samples, a quantization strategy Q translates to a dis-

cretization strategy, denoted as Q̂, that corresponds to the same
strategy to partition the n sample points Xs in k bins, where
Xs is X sorted in ascending order. For example, let us con-
sider random variable X ∼ U(−1, 1), and a sorted sample X =

[−0.5,−0.3, 0, 0.6, 0.9, 1]. For k = 3 and equal-frequency, π̂ = Q̂EF
3

can be seen as a map π̂ : R → {1, 2, 3} that splits the data sam-
ple in three bins of two points each, to create discrete variable
Xπ̂ = [1, 1, 2, 2, 3, 3] with domain VXπ̂ = {1, 2, 3}. With Πl,n, we
denote the set of all possible partitions of n data points in up to l ≤ n
bins, and for a Q̂, we have Πl,n(Q̂) = {Q̂1, . . . , Q̂l}. Note that we also
consider Xπ for π = QEF

k , meaning that X is discetized according
to the equal-frequency quantization of the population domain VX =

[−1, 1], that is, for π = QEF
3 = {[−1,−1/3), [−1/3, 1/3), [1/3, 1]},

Xπ = [1, 2, 2, 3, 3, 3].
Finally, recall the notion of dominated convergence: let amn

be a sequence such that for all m the limit a∗m = limn→∞ amn exists.
Further, let pm ≥ 0 be another sequence and let um ≥ |amn| for all
m,n such that

∑
m pmum <∞. Then the limit limn→∞

∑
m pmamn
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exists and is equal to
∑
m pma

∗
m.

5.2 Consistent mixed mutual information estimation

In this section we introduce the information-theoretic notions of
multivariate entropy and mutual information for mixtures of dis-
crete (both nominal and ordinal) and continuous random variables.
We demonstrate how a sequence of finer-grained quantizations of
continuous random variables leads to the actual (i.e., unquantized)
mutual information. Finally, we show how this process translates to
empirical samples, enabling estimation from mixed-type data.
Given sets D and C of discrete and continuous random variables,

respectively, the Shannon entropy of D ∪ C with joint probability
distribution f(d, c) = fC |d(c |d)p(d) is

H(D, C) =−
∑
d∈D

∫
C
f(d, c) log f(d, c)dc

=−
∑
d∈D

p(d)

∫
C
fC |d(c |d) log fC |d(c |d)dc

−
∑
d∈D

p(d) log p(d)

∫
C
fC |d(c |d)dc

=H(C |D) +H(D) .

Let us consider a converging Q and Qk = {S1, . . . ,Skm} an m-
dimensional partition of the domain VC ⊆ Rm. Let us assume that
fC |d(c |d) is continuous within each hypercube for all d ∈ D. Then,
using the mean value theorem for integrals, there exists a value ci
within each hypercube i such that fC |d(ci |d)δi =

∫
Si
fC |d(c |d)dc.

The quantized C is defined as CQk = ci for C ∈ Si, and has conditional
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probability pi |d = δifC |d(ci |d) that CQk = ci when D = d. The
following lemma shows how H(D, CQk) converges to H(D, C).

Lemma 5.2.1. Given random variables D of finite domain VD,
random variables C, and converging Q, if the conditional density
fC | d(c |d) is Riemann integrable for all d ∈ D, then

lim
k→∞

H(D, CQk) + βQk(D) = H(D, C) ,

where βQk(D) =
∑

d∈D p(d)
∑
i δifC(ci |d) log δi. Further, if for all

d ∈ D, k, we have hk(d) =
∣∣∣∑k

i=1 δif(ci | d) log f(ci | d)
∣∣∣ ≤ a(d)

such that
∑

d p(d)a(d)<∞, the result also holds for infinite VD.

Proof. We write fC(ci |d) instead of fC |d(ci |d). We have

H(D, CQk) =−
∑
d∈D

p(d)

k∑
i=1

δifC(ci |d) log
(
δifC(ci |d)

)
+H(D)

=−
∑
d∈D

p(d)

k∑
i=1

δifC(ci |d) log fC(ci |d)

−
∑
d∈D

p(d)

k∑
i=1

δifC(ci |d) log δi︸ ︷︷ ︸
βQk (D)

+H(D) .

Since fC |d(c |d) is Riemann integrable, the inner sum of the first
term converges to its integral as k → ∞. For finite V (D), the
first sum then converges to H(C | D). For infinite V (D), the sum
also converges to H(C | D) as

∑
d p(d)a(d) <∞ is the assumption

required for dominated convergence.

Lemma 5.2.1 states that for convergence a sequence of finer-grained
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quantizations and a correction by β are required. In addition, hk(d)

have to be bounded for convergence with infinite V (D). Note that
the correction βQk(D) is necessary due to the infinite quantization
error as k → ∞. That is, as the partitions get finer, H(D, CQk)

diverges. We also note that the entropy H(D, C), unlike the discrete
case H(D), can be negative, e.g., for C ∼ U(0, a), a < 1 [CT06,
Sec. 8.1]. These, however, do not extend to mutual information.
The mutual information for X = {D, C} and Y = {D′, C′}, is

defined as I(X ;Y) = H(D, C) + H(D′, C′) −H(D, C,D′, C′), and it
holds that I(X ;Y) ≥ 0. We proceed with the following theorem
about the convergence of I(X ;Y) w.r.t. the quantization process.

Theorem 5.2.1. Given random variables X = {D, C},Y = {D′, C′},
with Riemann integrable conditional density fC,C′ | d,d′(c, c′ |d,d′) for
all d ∈ D,d′ ∈ D′, as well as converging Q,Q′, then

I(X ;Y) = lim
k→∞

I(D, CQk ;D′, C′Q′k) .

Proof. For readability, we drop k, as well as use fC(ci |d) instead of
fC |d(ci |d), whenever clear from the context. We have:

I(D, CQ;D′, C′Q′) = H(D, CQ) +H(D′, C′Q′)−H(D, CQ,D′, C′Q′)
=−

∑
d∈D

p(d)
∑
i

δifC(ci |d) log fC(ci |d) + βQ(D) +H(D)

−
∑

d′∈D′
p(d′)

∑
j

δ′jfC′(cj |d′) log fC′(cj |d′) + βQ′(D′) +H(D′)

+
∑

d∈D,d′∈D′
p(d,d′)

∑
i,j

δiδ
′
jfC,C′(ci, cj |d,d′) log fC,C′(ci, cj |d,d′)

− βQ,Q′(D,D′)−H(D,D′) .
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We know from Lemma 5.2.1 that the sums converge to H(C |
D), H(C′ | D′), and H(C, C′ | D,D′). It remains to show that
βQ,Q′(D,D′) = βQ(D) + βQ′(D′). We have

βQ,Q′(D,D′) =
∑
d∈D

∑
d′∈D′

p(d,d′)
∑
i=1

∑
j=1

δiδ
′
jfC,C′(ci, cj |d,d′) log(δiδ

′
j)

=
∑
d∈D

∑
d′∈D′

p(d,d′)
∑
i=1

δifC(ci |d,d′) log(δi)

+
∑
d∈D

∑
d′∈D′

p(d,d′)
∑
j=1

δ′jfC′(cj |d,d′) log(δ′j) .

Let us focus on the first term, for which we have∑
d∈D

p(d)
∑
i=1

δi log(δi)
∑

d′∈D′
p(d′ |d)fC(ci |d,d′)

=
∑
d∈D

p(d)
∑
i=1

δi log(δi)fC(ci |d)

= βQ(D) .

Similarly, the second term is βQ′(D′), and therefore βQ,Q′(D,D′) =

βQ(D) + βQ′(D′), concluding the proof.

Theorem 5.2.1 states that the unquantized I(X ;Y) is attained for
converging strategies Q. We now proceed to translate this quanti-
zation process for samples of p(X ,Y), enabling the estimation from
mixed data in practice. For this, we use consistent discrete estimators
Ĥ for entropy H and their corresponding sampling complexities SĤ .

Recall that an estimator Ĥ is called consistent (Sec. 2.2) if Ĥ p−→ H

as n→∞. For entropy, the sample complexity, i.e., the minimum
sample size that achieves a certain concentration (ε-δ-PAC guarantee),
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is usually expressed as a function of the domain size. For example,
the plugin Ĥpl has sample complexity SĤpl

(k) ∈ O(k) where k the
domain size. The main idea of the following theorem is to use
consistent estimators for Shannon entropy and upper-bound the
number of partitions for a given number of samples n w.r.t. their
sample complexity.

Theorem 5.2.2. Let X = {D, C}, Y = {D′, C′} be i.i.d. samples
from p(X ,Y), with finite VD, VD′ and Riemann integrable conditional
densities f(c, c′ | d,d′). Further, let Q,Q′ be two converging strate-
gies, Ĥ a consistent estimator for discrete entropy, and g(n) a strictly
increasing function such that g(n) ≤ S−1

Ĥ
(n). Then

lim
n→∞

Î(D, CQg(n)
;D′, C′Q′

g(n)
) = I(X ,Y) .

Further, if p̂(d,d′) L1−→ p(d,d′) and Ĥ(CQk | d,d′)+Ĥ(C′Q′k | d,d
′) ≤

α uniformly for all d ∈ VD,d′ ∈ VD′ and k ∈ Z+, the result also
holds for countably infinite V (D), V (D′).

Proof. We drop subscripts from Q,Q′ for readability. Note that the
latter two assumptions are implied for finite V (D), V (D′), and hence,
we prove the more general statement. We have

Î(X ;Y) = Ĥ(D, CQ) + Ĥ(D′, C′Q′)− Ĥ(D, CQ,D′, C′Q′) .

Now, let us focus on the first term, i.e., Ĥ(D, CQ) = Ĥ(CQ | D)+Ĥ(D).
For Ĥ(D), we know it converges due to the consistency of Ĥ. For
Ĥ(CQ | D), we have

Ĥ(CQ | D) =
∑
d∈D

p̂(d)Ĥ(CQ | D = d)
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=
∑
d∈D

(
p̂(d)− p(d)

)
Ĥ(CQ | D = d)

+
∑
d∈D

p(d)Ĥ(CQ | D = d) .

Since all Ĥ(CQ̂ | D = d) ≤ α are bounded and p̂ L1−→ p, the first sum
converges to zero. For the second sum, we have that limn→∞ Ĥ(CQ̂ |
D = d) = H(C | D = d) due to the additional assumption for Ĥ.
Hence, the complete sum converges to H(C | D) as the conditions
for dominated convergence apply. Analogous arguments for the
remaining entropy terms establish the result.

Theorem 5.2.2 states the two requirements for convergence to
I(X ;Y) given i.i.d. samples: converging quantization strategies and
consistent discrete estimators for entropy. To end this section, we
make the following two remarks. In exploratory scenarios with no
access to p, a Q that partitions the variable domain is not directly
applicable. Instead, we use the empirical Q̂. Note, however, that for
EF we have Q̂k

n→∞−→ Qk. In the remainder of this chapter we remove
hat symbols for Q̂. For the second remark, while the necessary and
sufficient requirements for consistent entropy estimation is SĤ(k) ∈
Ω(k/ log(k)), in this chapter we study “slower" estimators of the form
Îpl + b(n), with b(n)

n→∞−→ 0. The reason is that these estimators
are more flexible w.r.t. the FDD task, e.g., b(n) directly penalizes
data sparsity and optimization algorithms have been provided. In
the next section, we derive a mutual information estimator for mixed
variables.

128



5.3 Practical mixed data estimator

We start by noting that attaining the population value I(X ;Y) via
quantization can be equivalently formulated as a supremum over all
finite partitions of the domains VC , VC′ . Translating this to a sample,
we arrive at an estimator of the form

max
π∈Π

|C|
l,n,π

′∈Π
|C′|
l,n

Î(D, Cπ;D′, C′π′) ,

i.e., the optimization problem of maximizing a discrete consistent
estimator Î over the set of all possible partitions Π

|C|
l,n and Π

|C′|
l,n , with

l ∈ Z+ being the maximum number of bins. For our FDD purposes,
we consider the mutual information I(X ;Y ) between X = {D, C}
and a univariate discrete target Y , i.e., the case

Îmx(X , Y ) = max
π∈Π

|C|
l,n

Î(D, Cπ;Y ) . (5.1)

This optimization problem of Eq.(5.1), however, is infeasible in prac-
tice: the search space is prohibitively large with |C|∑l

i=0

(
n−1
i

)
possible |C|-dimensional partitions π in up to l bins. Moreover, while
estimators Î are consistent, they can be statistically inefficient for
limited data samples and almost trivially produce arbitrary partitions
and estimates due to data sparsity in the |X |-dimensional space. We
present solutions for both problems, starting with the former.

5.3.1 Optimization

First, let us assume |C| = m, and reformulate the problem. Instead
of directly searching for high-dimensional partitions π ∈ Πm

l,n, we
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can equivalently search for m univariate partitions, i.e.,

max
π1,...,πm∈Πl,n

Î(D, {C1π1
, . . . , Cmπm};Y ) .

This approach allows us to consider the abundant research on par-
titioning the real line R. Here, we provide two solutions from prior
work on dependency estimation. The first has been used for an exact
solution, while the second for an approximate. Let us focus for now
on the univariate continuous case, i.e., X = {C}.

For an exact solution, note that a naive algorithm would perform
exhaustive search through all

∑l
i=0

(
n−1
i

)
partitions for C. How-

ever, Reshef et al. in seminal work on dependency estimation for
pairs of continuous variables [RRF+11], give a polynomial time al-
gorithm for the plugin Îpl, exploiting the optimal substructure
of maxπ∈Πl,n Îpl(Cπ;Y ): the best partition in up to l bins is com-
prised of the best partition in up to l − 1 bins. The dynamic
programming (DP) algorithm has complexity O(ln2). For ef-
ficiency, the authors propose a relaxation where C is partitioned
in l equal-frequency bins, and DP finds the best partition from
{π : π � QEF

l }. For more candidate partitions, a parameter c ∈ Z+

controls the number of initial bins via cl (see [RRF+11, Sup. material,
Sec. 3.2.2]). The complexity now is O(c2l3), and we refer to this par-
titioning scheme as contrained optimal partition (cOP), with
Πl,n(QcOP) = {π : π � QEF

cl , |π| ≤ l} for parameter c. For cl = n,
cOP becomes optimal. The approximate technique is based on
equal-frequency. To find an appropriate partition for estimating
mutual information from pairs of discrete/continuous random vari-
ables, Suzuki suggests to pick the equal-frequency partition that
maximizes mutual information in up to l = 0.5 log2(n) bins, i.e.,
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maxk∈[l] Î(CQEF
k

;Y ) [Suz19]. Sugiyama and Borgwardt perform the
same process in order to estimate the information dimension of a
continuous variable, with l = log2(n) [SB13]. For QEF, we have
Πl,n(QEF) = {π : π = QEF

k , k ∈ [l]}. Regarding the two techniques,
cOP has a clear advantage: a larger space of candidate partitions con-
trolled by parameters based on the availability of resources. However,
EF has the negligible complexity of O(l). In addition, EF is applica-
ble to any estimator Î, while cOP requires optimal substructure for
the polynomial DP algorithm.

Now given set X = {D, C}, in order to perform a multidimensional
discretization in practice, we adopt a greedy approach of iteratively
discretizing one C ∈ C at a time. Note that while this approach is
greedy in nature, the choice for a partition is done jointly with all the
already discrete and discretized variables. In addition, the consistency
should not violated for k, n → ∞. Since the result now depends
on the order, we first sort the variables X ∈ X in decreasing order
of marginal mutual information Î(X;Y ). For the continuous
C ∈ C, we marginally discretize them according to Q and l. That
way, we let the most informative continuous variables discretize first,
jointly with the already discrete. The details of our proposed mixed
estimator framework are shown in Algorithm 5. Given mixed set
of random variables X = {D, C}, discrete target Y , partitioning
strategy Q, consistent discrete estimator Î, and maximum number of
bins l, the estimation process starts by marginally sorting the X ∈ X
according to Q, l, Î (Q, l, are used for X ∈ C), and create the empty
set G for discrete variables. Then, continuous variables X ∈ C are
discretized jointly with G and added to G, while the discrete X ∈ D
are added to G. The mixed estimator result is then Î(G;Y ). If TQ
is the cost for optimization based on Q, TÎ the cost of estimator Î,
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Algorithm 5 Îmx: Given set of mixed random variables X = {D, C},
discrete target Y , partitioning strategy Q, consistent discrete esti-
mator Î, and maximum number of bins l, the algorithm returns an
estimate of I(X ;Y )

1: function Îmx(X , Y,Q, Î, l)
2: X ′ = sortMarginally(X , Y,Q, Î, l)
3: G = ∅
4: for X ∈ X ′ do
5: if X ∈ C then
6: π∗ = arg max{π : Î(G, Xπ;Y ), π ∈ Πl,n(Q)}
7: G = G ∪ {Xπ∗}
8: else
9: G = G ∪ {X}

10: return Î(G;Y )

and |C| = m, the algorithm complexity is dominated by O(mTQTÎ).
For the remainder, we refer to a specific instantiation of the mixed
estimator with the estimator and partitioning technique choices, e.g.,
Îpl with EF.

5.3.2 Statistical efficiency

Now that an optimization framework is established, we shift our
attention to a brief discussion regarding appropriate qualities discrete
consistent estimators should possess for the task of FDD.

We are mainly after estimators that allow for efficient discovery, i.e.,
come with the means for high-dimensional exhaustive and heuristic
search. An optional, yet important requirement, is admitting optimal
substructure for applying DP and giving access to a large set of
candidate partitions in polynomial time. The third dimension is that
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of statistical efficiency: the estimator should give robust estimation
from limited data samples for both the partitioning process, as well
as the discovery process. Let us mainly focus on the last requirement,
and demonstrate how the consistency of an estimator, alone, does
not satisfy it. As an example, we consider the plugin estimator Îpl

and start with the following lemma.

Lemma 5.3.1. Given continuous variable C, discrete set G, discrete
target Y , and maximum number of bins l, we have that

a) Îpl(G, Cπ;Y )≤ Îpl(G, Cπ′ ;Y ), for all π, π′⊆ Πl,n with π � π′

b) Îpl(G, CQEF
k

;Y ) ≤ Îpl(G, CQEF
2k

;Y ) for k = 1, . . . , bl/2c

c) Îpl(G, Cπ;Y ) ≤ Îpl(G, CQEF
l

;Y ), for all π ∈ Πl,n(QcOP)

Proof. Recall the specialization relation (Def. 3.1.1): for two discrete
variables A,B, we say that B is a specialization of A, denoted as
A � B, if for all i, j ∈ [n] with A(i) 6= A(j), it holds B(i) 6= B(j).
It is clear that a refinement relation for π � π′, corresponds to
a specialization relation for Cπ � Cπ′ . Finally, we have that for
three variables A,B,C with A � B, that Îpl(A;C) ≤ Îpl(B;C)

(Prop. 3.1.1).
For (a), we have that Cπ � Cπ′ for any π � π′, and hence

Îpl(G, Cπ;Y )≤ Îpl(G, Cπ′ ;Y ). For (b) and (c), we have that QEF
k �

QEF
2k for k = 1, . . . , bl/2c, and π � QEF

l for all π ∈ Πl,n(QcOP),
respectively. The two statements then follow from (a).

Lemma 5.3.1 states that Îpl considers refinements to be at least
as good of a choice. However, unlike the quantization process in the
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population, refined partitions on a sample do not necessarily lead to a
better estimation error, but rather to overfitting. For Îpl in particular,
the overfitting is controlled by the statistical bias that is a function
of the domain sizes SG,Cπ and SY [Rou99]. In a nutshell, larger |π|
implies more bias for Îpl(G, Cπ;Y ), and hence Îpl tends to trivially
select the most refined partition for a Q and l. We demonstrate this
behavior with the following example.

Example 5.3.1. In this example we investigate the resulting par-
titions from estimating mutual information on a clustering dataset
in R2, where the target variable Y is the cluster assignment. The
dataset has 600 data points and 15 clusters [FS18], and we use
C1, C2, to refer to x and y-axis, respectively. We are after an es-
timate of Îpl(C1, C2;Y ), and consider two versions of cOP. For
the first, we use a fixed l = 30 for both Ci, while for the second
we use l = g(n, b,G, Y ) per Ci that is proposed in [RRF+11], where
g(n, b,G, Y ) =

⌈
nb/(

∏
G∈G VGVY )

⌉
. We set b = 0.6 that is suggested

by the authors, and refer to this estimator as the MIC estimator
Îmic. For both we use c = 3. We present the results in Figure 5.2.
On the left, we observe that Îpl indeed selects for C1 the most refined
partition possible, i.e., QEF

30 , as the lemma suggests. For C2, there are
8 bins, but only because there is a perfect cluster separation already
for a total of 240 bins in R2. On the right, Îmic has a maximum
l = 4 for C1, and l = 2 for C2 (for C2, G already contains the
discrete C1). Again, Îpl selects the maximum number of bins for
both variables, but here we actually observe underfitting caused by
the criterion l = g(n, b,G, Y ).

We see that Îpl can easily under/over fit the data during the
partition process, even with more elaborate criteria for l, e.g., the
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g(n, b,G, Y ) used in mic [RRF+11]. Note that Îmic is an inherent
part of mic, as it identifies the best partition for each k = 1, . . . , l =

g(n, ∅, Y ). The best partitions are afterwards penalized by their size
k, which is not a statistical adjustment accounting for the biased
estimates. It is demonstrated that mic overfits on noisy data [KA14].

In addition to the partition process, we consider the task of FDD,
i.e., finding the X ∗ ⊆ I maximizing F (X ∗;Y ). Translating this to
our example, it would mean to identify the top clustered data out of
a potentially huge candidate space of varying dimensionalities. For
FDD, the F̂pl fails by trivially considering X ∗ = I to be a maximizer.
As we see, choosing an estimator for FDD is non-trivial: besides
being “optimizable” for efficient algorithms and exhibiting optimal
substructure, estimators need to be statistically efficient and robust
against choices for l, Q, and varying dimensionalities. In Section. 5.5
we evaluate different choices for Î and Q.

5.4 Robust functional dependency discovery from mixed
data

In this section, we show the permutation mutual information esti-
mator Î0 exhibits optimal substructure and then give algorithms for
Eq.(3.1) and mixed data.

Theorem 5.4.1. Given discrete variables G, continuous X, discrete
Y , and maximum number of bins l, the optimization problem

max
π∈Πl,n(QcOP)

Î0(G, Xπ;Y )
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exhibits for 1 < l ≤ m ≤ n the optimal substructure

f(l,m) = max
1≤i<m

{ i
m
f(l−1, i) +

m−i
m

Î0(G ;Y | i+ 1,m)} ,

with

f(l,m) = max
π∈Πl,m

Î0(G, Xπ;Y | 1,m) ,

and

Î0(. ;Y |u, v) = Îpl(. ;Y |u, v)−
∑
σ∈Sn

Îpl(. ;Yσ |u, v)/n! ,

where Îpl(. ; . |u, v) with u, v ∈ [n], v ≥ u is the empirical mutual
information restricted to data samples {i ∈ [n] : Xs(u) ≤ X(i) ≤
Xs(v)}.

Proof. Let us assume w.l.o.g. that f(m, l) corresponds to partition
π∗ = {S1, . . . , Sl} of l bins, and VXπ∗ = {x1, . . . , xl}. We use cj =∑j
i=1 nxi for j ∈ [l], and nσ denotes the empirical count after a

permutation σ ∈ Sn for Y . We have f(l,m) =

− 1

n!

∑
σ∈Sn

∑
y∈Y

∑
g∈G

l∑
i=1

nσygxi
m

log
nσygxi
ngxi

+
∑
y∈Y

∑
g∈G

l∑
i=1

nygxi
m

log
nygxi
ngxi

=− 1

n!

∑
σ,y,g

l−1∑
i=1

nσygxi
m

log
nσygxi
ngxi

− 1

n!

∑
σ,y,g

nσygxl
m

log
nσygxl
ngxl

+
∑
y,g

l−1∑
i=1

nygxi
m

log
nygxi
ngxi

+
∑
y,g

nygxl
m

log
nygxl
ngxl
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=− cl−1

mn!

∑
σ,y,g

l−1∑
i=1

nσygxi
cl−1

log
nσygxi
ngxi

− m−cl−1

mn!

∑
σ,y,g

nσygxl
m−cl−1

log
nσygxl
ngxl

+
cl−1

mn!

∑
y,g

l−1∑
i=1

nygxi
cl−1

log
nygxi
ngxi

+
m−cl−1

mn!

∑
y,g

nygxl
m−cl−1

log
nygxl
ngxl

=− cl−1

m

( 1

n

∑
σ,y,g

l−1∑
i=1

nσygxi
cl−1

log
nσygxi
ngxi

−
∑
y,g

l−1∑
i=1

nygxi
cl−1

log
nygxi
ngxi

)
− m−cl−1

mn!

( ∑
σ,y,g

nσygxl
m−cl−1

log
nσygxl
ngxl

−
∑
y,g

nygxl
m−cl−1

log
nygxl
ngxl

)
=
cl−1

m
Î0(G,Xπ∗\{Sl};Y | 1, cl−1) +

m−cl−1

m
Î0(G ;Y | cl−1 + 1,m)

=
cl−1

m
f(l−1, cl−1) +

m−cl−1

m
Î0(G ;Y | cl−1 + 1,m) ,

where the last equality holds, otherwise we could increase f(l,m)

with a different partition for the first cl−1 points. Hence, for l,m > 1

we arrive at the following optimal substructure recursive relation

f(l,m) = max
1≤i<m

{ i
m
f(l−1, i) +

m−i
m

Î0(G ;Y | i+ 1,m)} .

Now that optimal substructure has been established, we shift our
attention to optimization algorithms for FDD. For mixed data, first
note the problem of maximizing F̂0 remains NP-hard. Second, the
admissible bounding functions f̄mon(X , Y ) and f̄spc(X , Y ) (Sec. 3.3)
remain admissible as they are independent of “future" partitions for
X ′ with X ⊆ X ′. However, unlike the discrete case, here evaluating
Î0(X ;Y ) for a candidate X = {D, C} is more expensive—Algorithm 5
sorts in decreasing order of marginal Î0, and performs |C| discretiza-
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tions. For efficiency, we first remove the repetitive sorting by sorting
I initially instead. Then the alphabetic refinement operator only re-
fines with variables of smaller marginal mutual information. Second,
we apply the following heuristic: once a variable C ∈ C has been
discretized, it remains discretized for the remaining of the search
branch. With these, we then adapt and use Algorithms 2 and 3 from
Section 3.4. It is important to note that since we sort I initially, the
admissible heuristic of Webb [Web95] to assign the most refinement
operators to the least promising nodes (i.e., smallest potential) is not
applicable here as it violates the ordering.

5.5 Evaluation

In this section, we perform an evaluation on the different aspects of
our FDD solution for mixed data. In particular, we investigate the
statistical performance of various estimators coupled with partitioning
techniques on synthetic data, we evaluate the proposed discovery
algorithms on real-world benchmark data, and finally, we qualitatively
analyze the partitions selected from estimation.

5.5.1 Estimator performance

First, we focus on the statistical performance of mixed estimator
configurations. We are interested in their consistency with regards to
the FDD process. For this, we generate data from models governing
functional relationships for which we know the population values for
mutual information, perform FDD with exhaustive search to obtain
the estimated value of the maximizer variable set, and then plot
curves corresponding to absolute estimation error.
In this experiment, we model our functional relationships with
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the class of generalized linear models. We consider a set of
four continuous random variables I = {X1, X2, X3, X4}, and one
categorical variable Y , and distinguish two cases of functional rela-
tionship: E[Y | I] = f−1(α0 +

∑4
j=1 αjXj) and E[Y | I] = f−1(β0 +∑3

i=1 βi
∑
j=1 αj,igi(Xj)), where f is an appropriate link function

and g1(X) = log(X + 2), g2(X) = X2, g3(X) = cos(2X) are non-
linear variable transformations. We use h ∈ {lin, nlin} to indicate
the former and latter cases respectively. The coefficients α, β, fol-
low a bimodal Gaussian distribution that uniformly selects one of
N (− log(10), 1) and N (log(10), 1). The means log(10) and -log(10)

are chosen such that the respective classes for binary Y (positive
for log(10) and negative for − log(10)), are 10 times more likely. To
cover a wider range of scenarios, we further parametrize the models in
two ways: we consider a varying number e ∈ {1, 2, 3} of explanatory
variables, with the remaining 4− e receiving weights α = 0, and we
use three domain sizes d ∈ {2, 5, 10} for Y .

For our generative models pα,β(I, Y ), variables Xj follow a uni-
form U(−1, 1) and Y a multinomial with expectations as above.
We omit α, β from notation for readability. Given parameters
d ∈ {2, 5, 10}, e ∈ {1, 2, 3}, and h ∈ {lin, nlin}, we denote the
resulting models with ple,d(I, Y ). For the conditional phe,2(Y | I) we
use the sigmoid function (i.e., logit link function), and the softmax
for phe,{5,10}(Y | I) (i.e., multinomial logit). The analytic expressions
are found in Table 5.1. With these, for any set of coefficients α, β,
we can compute the population value I(I;Y ). To sample data from
the models, we first randomly and uniformly sample 90 conditional
probability distributions p(i), i = 1, . . . , 90, 5 for each combination of
e, d, h. To make the results comparable, we ensure for each p(i) the
population value F (p(i)) lies in (0, 0.5]. We denote with P le,d the sets

139



Table 5.1: Analytic expressions for phe,d(Y | I)

parameters analytic expressions
h = lin, d = 2, Y = 1 1

1+e
−(α0+

∑4
j=1

αjXj)

h = nlin, d = 2, Y = 1 1

1+e
−(β0+

∑3
i=1

βi
∑4
j=1

αj,igi(Xj)

h = lin, d ∈ {5, 10}, Y = q e
α0,q+

∑4
j=1 αj,qXj∑d

z=1 e
α0,z+

∑4
j=1

αj,zXj

h = nlin, d ∈ {5, 10}, Y = q e
β0,q+

∑3
i=1 βi,q

∑4
j=1 αj,igi(Xj)∑d

z=1 e
β0,z+

∑3
i=1

βi,z
∑4
j=1

αj,igi(Xj)

of p(i) corresponding to specific e, d, l. For example, P lin
2,2 is the set

of the 5 p(i) corresponding to d = 2, e = 2, h = lin. We consider data
sizes n ∈ {20, 40, 80, 160, 320, 640, 1280, 2560}, and for each p(i) and
n, we sample 50 datasets D(i)

n,j , j ∈ [1, 50]. Two sampled datasets are
illustrated in Figure 5.3.
Now, given these data, we perform the FDD task with input

variables I and target Y , considering different estimator/partitioning
configurations combined with exhaustive search. We consider the
plugin Îpl, the permutation Î0, the mic Îmic (Example 5.3.1), and the
chi-square estimator Îχ,α (Sec. 3.5.1). To evaluate the performance,
we use the absolute estimation error tailored for FDD, defined
as rn(F̂mx, p

(i)) = E[|F (p(i)) − F̂mx(X ∗i,j,n;Y )|], where F (p(i)) is
the population fraction of information value for model p(i), and
X ∗i,j,n ⊆ I is the maximizer on D

(i)
n,j for a configuration F̂mx. We

use the fraction of information instead in order to have the error
in [0, 1]. The expected value is with respect to j ∈ [1, 50]. We
average the absolute errors across different p(i) to obtain averages of
the form rn(F̂mx,P{lin,hlin}

[a,b],{2,5,10}). For example, rn(F̂mx,P{lin,hlin}
[1,3],{2,5,10})

corresponds to the average absolute error across all 90 models p(i),
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while the rn(F̂mx,Phlin
[1,3],2) would be the average for p(i) ∈ Phlin

1,2 ∪
Phlin

2,2 ∪ Phlin
3,2 .

We start with Figure 5.4 and plot the average error curves across
all p(i), for F̂0 with cOP and EF, F̂pl with cOP, F̂mic, and F̂χ,α

with EF. For F̂χ,α, we tested both α = 0.95 and 0.99, and show
the latter that has better performance. For cOP and EF we use
maximum number of bins l = 5, and for cOP c = 2. In addition, we
consider F̂pl with pre-discretized data in 5 equal-frequency bins as a
baseline, which we refer to as PeF. Let us focus first on the three
uncorrected configurations, i.e., Îpl with cOP, PeF, and F̂mic. All
under-perform, with the highest errors and slower convergence rates.
Interestingly, we see that PeF performs better than cOP, despite
both having l = 5. This behavior is attributed to the I being uniform
and independent, and while PeF is well-suited for this, F̂pl with cOP
overfits by finding joint effects. For F̂mic, the convergence is better,
but only because the maximum number l = g(n, 0.6,G, Y ) decreases
per X ∈ X , and the subsequent “coarser" X exchange overfitting for
underfitting (as in Example 5.3.1). Moving on to the two corrected
estimators F̂0, F̂χ,01, combined with EF, we observe lower errors and
faster convergence, with F̂0 showing the best performance. Lastly,
the permutation F̂0 combined with cOP has higher error for smaller
number of samples, but performs well in terms of convergence speed
and “catches" up. Note that X ∈ I are uniform, and EF meets
this requirement. The cOP with c = 5, c = 2, considers only one
equal-frequency partition, that of QEF

5 , which cannot be supported
for small n due to the correction.
Now let us briefly focus on averages over different configurations.

Note that all p(i), i ∈ [90], are different models and for the following
figures, one should focus mainly on the convergence speed comparison
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between two plots. In Figure 5.5 we show the results averaged over
the 45 p(i) corresponding to the additional non-linear layer in the
functional relationship, i.e., h = nlin (right), and over the 45 p(i)

with h = lin (left). Between the two, we observe that convergence
speeds are better for the case h = lin, as expected. We also see that
EF performs well in both cases. Moving on, we average over the 30

p(i) where there is only one explanatory variable, i.e., e = 1, and
the 30 p(i) with e = 3. Additionally, we average over the 30 p(i)

with target domain size VY = 2, i.e., d = 2, and the 30 p(i) with
d = 10. In Figure 5.6 and 5.7 corresponding to the former and latter,
we observe that methods are robust against number of explanatory
variables, but there is over fitting for SY = 2. Here, the dependency
is “easier" to infer and estimators may select supersets X ′ of X ∗ that
have the same value F (X ∗;Y ) = F (X ′;Y ), but on the sample there
is overestimation. Note that in Figure 5.7 we do not plot F̂mic as
it could not terminate due to the scale of the experiment, since for
SY = 2 there is a large number of candidate partitions to consider.

Overall, the permutation F̂0 shows the best performance with EF
that accurately fits the uniform data I. Combined with cOP that
for l = 5, c = 2, considers mostly non-uniform partitions, the error is
higher for small n, but the convergence is fast. The EF should be
preferred when assumptions are met, i.e., uniformity, and cOP for
exploratory scenarios.

5.5.2 Optimization performance

Here, we perform FDD on the KEEL data repository [SRAFFH+11].
In particular, we use all classification datasets with mixed and con-
tinuous input attributes I and no missing values, resulting in 29
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datasets with 25000 and 30 rows and columns on average, respectively.
There are 12, 6, and 2, continuous, ordinal discrete, and nominal
attributes, respectively, on average per dataset, all summarized in
Table 5.2. We employ the two algorithms Opus and Grd (Sec. 3.4)
with the chain bounding function f̄chn (Sec. 3.3) to retrieve the top
solution X ∗ ⊆ I, both combined with EF and cOP for l = 5, c = 2.
To increase the difficulty, the ordinal discrete D ∈ I per dataset are
also partitioned when VD ≥ l. For Opus, and for each of EF and
cOP, we set α to be the highest possible in increments of 0.05, such
that they terminate in less than 1 hour. For Opus, we report in
Table 5.2 the α values, the runtime, the size |X ∗| of the solution,
and the value F̂0(X ∗;Y ). Similarly for Grd, we report runtime and
F̂0(X ∗;Y ). The runtimes are averaged over 3 independent executions.
This experiment is executed on an Intel Xeon E5-2643 v3 with 256
GB memory. Our code is online for research purposes.1

1https://github.com/pmandros/fodiscovery
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Figure 5.1: Functional dependency discovery from mixed data
on a Materials Science case study. The dataset contains 12200 gold
cluster configurations (of sizes 5 to 14 atoms) generated at finite tem-
perature by replica-exchange molecular dynamics simulations [GBV+17].
The attributes in this dataset are 23 physicochemical and geometrical
properties of the gold clusters. Here we are interested in discovering depen-
dencies that are descriptive for the target variable HOMO-LUMO gap that
determines the electro-chemical properties of a cluster. Out of all possible
222 − 1 variable subsets, our proposed mixed-data FDD method uncovers
that structural variable radius of gyration and non-local dispersion energies
evdw per atom approximately determine the target with F̂0 score 0.43.
The scatterplot represents the nano-clusters against the two-dimensional
descriptor, with color indicating the values of the HOMO-LUMO gap.
Black lines represent the resulting partition in R2 with a budget of up to
5 bins per axis (cOP, l = 5, c = 2).
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Figure 5.2: Resulting partitions from estimating mutual infor-
mation on a clustering dataset in R2. Plugin Îpl combined with
two versions of OP. The target Y is the cluster assignment (colored).
(Example 5.3.1)
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Figure 5.3: Example data sampled from generalized linear mod-
els. Here we have 10 classes (colored), 2 explanatory variables, and
n = 2560 data points
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Figure 5.4: Absolute estimation error averaged across all p(i).
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Figure 5.5: Absolute estimation error averaged across all p(i)

with (right) and without (left) the non-linear layer.
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Figure 5.6: Absolute estimation error averaged across all p(i)

with one (left) and three (right) explanatory variables.
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Figure 5.7: Absolute estimation error averaged across all p(i)

with target domain size VY = 2 (left), and 10 (right).
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Table 5.2: Datasets used in Section 5.5.2. Number of attributes is subdivided into real, integer, and
nominal. With / we separate the results for EF (left) and cOP (right). The α column corresponds to
the highest possible α value such that Opus terminates ≤ 1 hour. The cardinality of the solution is
column |X ∗|. Last two columns is the score for X ∗ by Opus and Grd, respectively.

time(s) F̂0(X∗;Y )

dataset #attr. (r/i/n) #rows #clas. α |X∗| Opus Grd Opus Grd

australian 14 (3/5/6) 690 2 1.00/1.00 5/5 26/25 1/2 0.57/0.56 0.57/0.55
coil2000 85 (0/85/0) 9822 2 0.05/0.05 1/1 1/1 75/38 0.06/0.06 0.14/0.14
fars 29 (5/0/24) 100968 8 0.65/0.65 2/2 4/2 49/43 0.66/0.66 0.68/0.68
german 20 (0/7/13) 1000 2 0.80/1.00 7/6 3040/3065 5/5 0.22/0.21 0.21/0.21
heart 13 (1/12/0) 270 2 1.00/1.00 4/4 8/9 1/2 0.42/0.42 0.43/0.42
ionosphere 33 (32/1/0) 351 2 1.00/1.00 3/3 549/962 1/5 0.61/0.64 0.59/0.66
kddcup 41 (26/0/15) 494020 23 0.95/0.95 2/2 159/122 706/412 0.96/0.97 0.99/0.99
letter 16 (0/16/0) 20000 26 0.95/0.95 5/4 1220/1914 204/122 0.61/0.61 0.62/0.61
lymph. 18 (0/13/5) 148 4 1.00/1.00 4/5 63/85 1/1 0.49/0.48 0.49/0.48
magic 10 (10/0/0) 19020 2 1.00/1.00 5/4 118/435 7/35 0.43/0.43 0.43/0.43
move. libras 90 (90/0/0) 360 15 0.85/0.90 3/2 2043/3183 66/90 0.36/0.36 0.38/0.36
optdigits 64 (0/64/0) 5620 10 0.35/0.45 2/3 16/132 128/122 0.36/0.46 0.59/0.54
pageblocks 10 (4/6/0) 5472 5 1.00/1.00 4/5 58/70 3/8 0.65/0.73 0.65/0.73
penbased 16 (0/16/0) 10992 10 1.00/1.00 5/4 1228/1784 17/28 0.78/0.76 0.78/0.77
ring 20 (20/0/0) 7400 2 0.45/0.35 5/6 1819/777 27/18 0.30/0.35 0.30/0.48
satimage 36 (0/36/0) 6435 7 0.80/0.80 4/4 988/1861 69/104 0.74/0.75 0.73/0.74
segment 19 (19/0/0) 2310 7 1.00/1.00 3/3 153/197 6/9 0.86/0.86 0.86/0.87
sonar 60 (60/0/0) 208 2 0.70/0.70 4/3 435/1808 3/10 0.45/0.41 0.45/0.40
spambase 57 (57/0/0) 4597 2 0.50/0.30 4/3 383/180 15/38 0.50/0.33 0.66/0.57
spectfheart 44 (0/44/0) 267 2 0.65/0.65 3/3 938/1747 4/14 0.34/0.37 0.34/0.33
texture 40 (40/0/0) 5500 11 0.80/0.80 4/4 409/765 46/50 0.76/0.75 0.73/0.77
thyroid 21 (6/15/0) 7200 3 0.55/0.85 3/4 18/24 4/4 0.55/0.85 0.55/0.85
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twonorm 20 (20/0/0) 7400 2 0.60/0.20 6/5 1414/200 26/24 0.46/0.20 0.46/0.41
vehicle 18 (0/18/0) 846 4 1.00/1.00 4/3 1275/872 4/10 0.48/0.50 0.49/0.49
vowel 13 (10/3/0) 990 11 1.00/1.00 3/3 12/19 5/5 0.45/0.49 0.47/0.49
wdbc 30 (30/0/0) 569 2 1.00/1.00 5/2 373/286 2/8 0.81/0.82 0.82/0.82
wine 13 (13/0/0) 178 3 1.00/1.00 2/2 1/1 1/1 0.76/0.79 0.74/0.79
wine-red 11 (11/0/0) 1599 11 1.00/1.00 5/4 158/256 12/16 0.21/0.22 0.22/0.23
wine-white 11 (11/0/0) 4898 11 1.00/1.00 5/4 481/779 11/24 0.20/0.19 0.19/0.19

avg. 30 (12/6/2) 25000 7 0.81/0.81 3.8/3.5 599/743 51/43 0.52/0.53 0.53/0.55
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We start with Opus and α values. For both EF and cOP, the
average α value for Opus to complete in ≤ 1 hour is 0.81. There are
14 datasets for EF and 15 for cOP with α = 1, which corresponds
to an exact solution, while there are 6 datasets for both with α ∈
[0.8, 1). Here, we see that both methods offer good guarantees with
a budget of 1 hour. Regarding the cardinality |X ∗| of the solutions,
for EF they have size 3.8 on average, while for cOP 3.5. Again, the
two partitioning techniques show similar performance, with cOP
returning slightly smaller sets. We hypothesize this is due to the
ability of cOP to better adapt on data, and hence extract more
information with fewer attributes. Time-wise, EF and cOP require
599 and 743 seconds on average. The cOP is slower, as expected.
Finally, the average quality of the solution is 0.52 and 0.53 for EF
and cOP, respectively, with cOP recovering 1% more information
by considering more candidate partitions. The greedy algorithm
is efficient, with EF requiring 51 seconds on average and cOP 43.
Interestingly, the quality of the solutions are higher than Opus, with
0.53 and 0.55 on average for EF and cOP, respectively. In fact, the
solutions of Grd have roughly the same quality as those of Opus
for high α values, while for smaller α Grd has better quality.
Overall, we observe that both algorithms Opus and Grd, with

both partitioning techniques EF and cOP, are very effective in
practice. For truly exploratory scenarios, cOP should be preferable
over EF, unless the assumptions on the data distributions are met
by EF. The branch-and-bound algorithm should be used whenever
solution guarantees are required. The greedy algorithm, however, is
very efficient and hence a better candidate for larger datasets. In
addition, it shows good performance in terms of solution quality.
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5.5.3 Qualitative analysis

Here, we present the resulting partitions from estimating mutual
information on clustering datasets in R2, where the target Y is the
cluster assignment [FS18]. We denote the variables corresponding to
x and y-axis with C1 and C2, respectively. We use the permutation
Î0 with optimal (cOP) and equal frequency (EF) partitioning. For
both cOP and EF we set the maximum number of bins l to 10, and
use c = 3 in order to have 30 initial equal-frequency bins for cOP.
This allows to investigate whether Î0 overfits by having access to
more candidate partitions. For all methods, C1 is discretized first for
better comparison. We present the results in Figure 5.8.

The first dataset has 15 clusters. The Î0 with both cOP and EF
results in the same partition in 40 bins. Here, Î0 performs well at
separating the clusters. The second dataset has 2 clusters. The
Î0,cOP, configuration with 20 bins in R2 perfectly separates the
clusters, while with EF there are 45 bins. In addition to these, we
used Îχ,01 with EF, Îpl with cOP, and Îmic. We report that Îχ,01 has
identical results with Î0 and EF, Îpl partitions with the maximum
number of bins, while Îmic selects an overly refined partition for C1,
and mostly 2 bins for C2. Overall, we see that Î0 results in good
partitions for both EF and cOP. For the latter in particular, there
is better class separation with less bins. This indicates that Î0 with
cOP selects good partitions, without overfitting on larger spaces of
candidates, and can better adapt on more “exotic" distributions. For
EF, both Î0 and Îχ,01 select finer-grained partitions. The Îpl with
cOP and Îmic under-perform, as expected.
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Figure 5.8: Resulting partitions from estimating mutual infor-
mation on clustering datasets in R2. The target Y is the cluster
assignment (colored).

5.6 Discussion and conclusions

We considered the task of robust functional dependency discovery
from mixed data. We proposed a mixed mutual information estima-
tor framework based on the theoretical process of random variable
quantization. We demonstrated how it can be applied for the task
of functional dependency discovery from empirical data and instan-
tiated it with the permutation fraction of information. Lastly, we
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gave algorithms for exact, approximate, and heuristic search. The
experimental evaluation showed that the estimator has desired sta-
tistical properties, the bounding functions remain very effective with
both exhaustive and heuristic algorithms, and the greedy algorithm
provides again solutions that are nearly optimal. A case study with
data from Materials Science (Fig. 5.1), as well as qualitative experi-
ments regarding the partitioning process, indicate that our proposed
framework indeed discovers informative dependencies.

5.6.1 Maximum number of partitions l

The various sub-linear to n criteria discussed in this chapter, e.g.
log2(n), correspond to methods that consider univariate pairs. On
the one hand, naively extending these for each C ∈ C can lead to
an exponential increase of partitions in the |C|-dimensional space
with each data point falling in one hypercube, violating therefore
consistency even for optimal estimators (Thm. 5.2.2). For example,
let us assume n = 10000. We have l = log2(n) ≈ 13, and we can
already for |C| = 4 arrive at one point per hypercube. On the
other hand, a more appropriate way would be to set log2(n) as the
maximum number of hypercubes allowed in R|C|, but this can be
very conservative–in our example, it would mean to place 10000
data points in 13 hypercubes, regardless of |C|. Note that these
calculations are done independently of D that only exacerbates this
behavior. For our purposes, we instead considered a fixed l, e.g., 5.
This way, and combined with a corrected estimator, we better control
for the aforementioned problems. While one could potentially derive
a joint criterion accounting for both |X | and n, we did not consider
this investigation here.
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5.6.2 Unsupervised scenario

In this chapter we considered the supervised scenario. The unsuper-
vised case investigated in Chapter 4, i.e., maximizing the normalized
total correlation on discrete data, poses many challenges. In par-
ticular, the search space is enumerated under a strict partial order
that depends on the marginal entropies of the discrete variables.
For continuous attributes, their discrete marginal entropies are not
known in advance since they get discretized during optimization.
While the possibility for greedy search remains, it is not trivial to
design pruning rules to be used for exhaustive search. A possible
direction would be to consider equal-frequency discretization and
ensure that refinements use as upper-bound l the domain size of the
previous attribute.

5.6.3 Future work

For future work, it would be interesting to consider experiments
with generalized linear models and correlated explanatory variables,
e.g., Gaussian with non-diagonal covariance matrix. That would
highlight the importance of the joint discretization our framework
considers. Moreover, adaptive partitioning could be applicable, which
would allow to consider a different class of candidate partitions and
potentially more data efficient. Another direction is establishing
the regularized supervised discretization process and add it to a
large family of supervised discretization techniques such as the MDL
approach by Fayyad and Irani [FI93].
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6
Conclusion

This dissertation proposed knowledge discovery algorithms to assist
data analysts with data exploration, discovering powerful description
models, or concluding that no satisfactory models exist, implying
therefore new experiments and data are required for the phenomena
under investigation. For our solutions to be effective, we put spe-
cial emphasis in interpretability, statistical robustness, and efficient
exact algorithms. This way analysts can understand the results,
trust them to represent aspects of the underlying data generating
process, and obtain them fast knowing they are indeed the best
solutions. Extensive experimental evaluation showed that our es-
timators have attractive statistical properties, outperforming the
state-of-the-art on the intensive discovery tasks considered. The
optimization algorithms and bounding functions proposed are very
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effective in practice, requiring a reasonable amount of time for exact
search. The fast greedy algorithms provided near-optimal results
on roughly 50 benchmark datasets. Qualitative results from case
studies with Materials Science data, Bayesian networks, clustering
datasets, and toy examples such as Tic-tac-toe, demonstrated that
the products of this dissertation can indeed assist data analysts in
discovering knowledge. This statement is supported by Materials
Science researchers who corroborated our discoveries. On the same
data, the state-of-the-art Markov blanket discovery algorithms and
mutual information estimators were inadequate.

6.1 Discussion and future directions

The general methodology of this dissertation is the following: use
information-theoretic measures for model assessment, regularize them
to be robust and allow generalization when estimated from obser-
vational data, and use combinatorial optimization to find the best
model. We follow this methodology in all three problems investi-
gated, namely functional dependency discovery, discovery of totally
correlated sets, and partitioning for mixed-data mutual information
estimation. There are many advantages with this approach:

• the quality of a model can be assessed and quantified in a
meaningful way. That is, information theory gives the tools
to construct objective functions tailored to some problem and
allows us to argue in terms of (in)dependence, redundancy,
and relevancy, in a non-parametric manner. Moreover, we can
quantify the quality of a model in intuitive scales.

• The regularization brings robustness which we can model in
certain ways to favor specific structures. For example, the
permutation model as a regularizer takes into account the

156



data configuration, while the upper-bound (Prop. 3.2.1) only
takes into account the marginal counts. Another example is
a trade-off between type I and II error, with stricter regular-
ization favoring the former. Moreover, the regularization can
turn monotone objective functions into non-monotone, favoring
sparsity as well as leading to parameter-free methods.

• Different optimization algorithms can be applied depending on
the problem setting. For example, if exact algorithms are not
practical, then one can resort to greedy algorithms of various
flavors, e.g., standard greedy, stochastic, accelerated, etc., and
approximation guarantees can be derived to bound the solution
error. In general, advances in algorithms translate to advances
in the efficiency and applicability of the knowledge discovery
tasks.

That being said, there are possible configurations that we did not
consider in this dissertation. For example, we could have investigated
different normalizers for the total correlation, e.g., the cardinality of
the set, or even no normalization, and then proceed to derive pruning
functions. Another example would be to study larger problem in-
stances and use faster greedy algorithms, e.g., stochastic greedy, and
evaluate their performance. Also, we could have derived approxima-
tion guarantees for greedy optimization with the regularized scores
we considered (see Sec. 3.6.1).

Regarding different knowledge discovery tasks to apply our method-
ology, one could consider time series analysis. In fact, there ex-
ists a direct analogue of mutual information for time series, the
directed information [Mar73, Mas90], which possesses good theo-
retical properties [PKW11] and links to causality [WR19]. One
could employ directed information for both supervised [ZS16] and
unsupervised discovery tasks, develop efficient discovery algorithms,

157



and propose estimation techniques such as coding distributions and
weighting [JPZ+13, BEYY04, WST97, Bel15, Hut13] to be robust
against sparsity.
Another possible direction is establishing relations between null-

unbiased estimation combined with top-k optimization and signif-
icance testing/multiple hypotheses (see Sec. 3.6.2). The statistics
and data mining community have contributed a lot towards pattern
mining tasks following the latter [TTS13, LLSPB15, Tar90, Ham10,
Web07]. Demonstrating the validity of the former could be beneficial
in many applications that require scoring and retrieving the top-k,
since, for example, one can use approximate algorithms with the
possibility of guarantees.
Lastly, one could further investigate connections between score-

based and independence-based approaches for Markov blanket dis-
covery (see Sec. 3.6.3). For example, maximizing the fraction of
information for top-k minimal requires no assumptions at all and can
retrieve multiple Markov blankets. Using an algorithmic framework
that is better tailored for large k values, e.g., from Pennerath [Pen18],
as well as finding a criterion to determine the number of Markov
blankets, could potentially result in a powerful algorithm for multiple
MB discovery (see Sec. 3.6.4).
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empirical distribution . 13
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homomorphic relation . 33

labeling . 13
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MDL estimator . 51
MIC estimator . 110
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quantization strategies . 99
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