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Abstract: Infliximab is approved for treatment of various chronic inflammatory diseases including
inflammatory bowel disease (IBD). However, high variability in infliximab trough levels has been
associated with diverse response rates. Model-informed precision dosing (MIPD) with population
pharmacokinetic models could help to individualize infliximab dosing regimens and improve therapy.
The aim of this study was to evaluate the predictive performance of published infliximab population
pharmacokinetic models for IBD patients with an external data set. The data set consisted of 105 IBD
patients with 336 infliximab concentrations. Literature review identified 12 published models eligible
for external evaluation. Model performance was evaluated with goodness-of-fit plots, prediction- and
variability-corrected visual predictive checks (pvcVPCs) and quantitative measures. For anti-drug
antibody (ADA)-negative patients, model accuracy decreased for predictions > 6 months, while
bias did not increase. In general, predictions for patients developing ADA were less accurate for
all models investigated. Two models with the highest classification accuracy identified necessary
dose escalations (for trough concentrations < 5 µg/mL) in 88% of cases. In summary, population
pharmacokinetic modeling can be used to individualize infliximab dosing and thereby help to
prevent infliximab trough concentrations dropping below the target trough concentration. However,
predictions of infliximab concentrations for patients developing ADA remain challenging.

Keywords: infliximab; population pharmacokinetics; inflammatory bowel disease; model-informed
precision dosing; dose individualization

1. Introduction

Infliximab is an intravenously administered recombinant chimeric monoclonal anti-
body that inhibits both soluble and membrane-bound tumor necrosis factor alpha (TNF-
α) [1]. Infliximab is approved for treatment of various chronic inflammatory diseases
including the inflammatory bowel diseases (IBD) Crohn’s disease (CD) and ulcerative
colitis (UC) [2,3]. After its approval in 1999 by the European Medicines Agency (EMA),
infliximab revolutionized the treatment of CD and UC because of its ability to induce long-
term remission, reduce hospitalizations, and restore quality of life [4,5]. Today, infliximab
is still widely used and available as different biosimilars [3].
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Infliximab exhibits linear pharmacokinetic behavior, while low trough concentra-
tions are associated with impaired or even loss of response to infliximab therapy [6–9].
UC patients with detectable serum infliximab trough concentrations showed a 4 times
higher probability and CD patients even a 13 times higher probability of being in clin-
ical remission, making serum infliximab levels a predictor of clinical response [6,9–12].
According to a recent guideline from the American Gastroenterological Association Insti-
tute, infliximab should be dosed to achieve target trough concentrations of ≥ 5 µg/mL
in order to improve therapy outcome [13]. However, a high inter-individual variabil-
ity in infliximab trough levels has been observed contributing to a high rate of treat-
ment failure [9,12–14]. About 10–40% of patients fail to respond to induction therapy
(primary non-response) [15], and subsequently, 13% of patients lose response annually af-
ter initially responding (secondary non-response) [16]. One of the reasons for primary and
secondary non-response is the formation of anti-drug antibodies (ADAs) against infliximab,
leading to an increased infliximab clearance (CL) [9,17,18].

A good understanding of the high variability in infliximab trough levels is essen-
tial for dose individualization strategies [4,19–22]. In the past, several efforts have been
made to characterize infliximab pharmacokinetics (PK), including the quantification and
explanation of inter-individual variability, and to develop population pharmacokinetic
models for dose individualization [21,23–27]. While these analyses identified various
covariates (e.g., albumin levels, sex, weight, ADA development, and use of concomi-
tant immunomodulators) that influence infliximab CL and volume of distribution (Vd),
the covariates could only partly explain the observed inter-individual and inter-occasion
variability (IOV) [23,24,26,27].

Thus, population pharmacokinetic models combined with data from therapeutic
drug monitoring could help to optimize drug dosing regimens in individual patients via
model-informed precision dosing (MIPD) [28–32]. Infliximab models have recently been
used to simulate dosing regimens for different patient populations or for evaluation of
individualized dose adjustments and incidences of loss of response [31,33,34]. However,
a comprehensive external evaluation of the different infliximab population pharmacoki-
netic modeling approaches including assessment of accuracy and bias of model predictions
over time as well as the ability to predict the need for dose escalation is still pending.
Hence, the aim of this work was to provide an overview of published infliximab popu-
lation pharmacokinetic models for patients with IBD as well as to evaluate and compare
model performance with a focus on differences between ADA-negative and ADA-positive
subpopulations in a Bayesian forecasting setting using an external data set.

2. Materials and Methods
2.1. External Evaluation Data Set

For predictive external model evaluation, data originated from a previously published
observational study that was reviewed and approved by the institutional review board of
the Medical University of Vienna [35]. All participating patients had signed an informed
consent form.

Patients with an established diagnosis of CD and UC were enrolled in the study.
All participants had previously responded to induction therapy, receiving three infusions
at weeks zero, two, and six, and were assigned to a maintenance dosing regimen. Serum
samples of patients (median 2, range 1–12 samples) were collected during infliximab
therapy at both midpoint and trough times of a dosing interval while exact time points were
not specified in the protocol. Laboratory and demographic data were collected, including
serum infliximab concentrations, ADA levels, serum albumin concentrations, C-reactive
protein levels, weight, use of concomitant immunomodulators, Harvey–Bradshaw index
(HBI), and smoking status.

Serum infliximab concentrations used in this analysis were measured with a com-
mercially available enzyme-linked immunosorbent assay (ELISA) method (Immundiag-
nostik Germany, Bensheim, Germany) with a lower limit of quantification (LLOQ) of
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2.68 ng/mL [36]. ADA concentrations were determined using the homogeneous mobility
shift assay (HMSA) from Prometheus Labs Inc., San Diego, CA, USA with an LLOQ of
3.13 U/mL [37]. Patients were assigned to the ADA-positive patient cohort if any measured
ADA concentration was above the threshold of 6.6 U/mL [37,38].

2.2. Population Pharmacokinetic Models and Software

A comprehensive and systematic literature search in PubMed was performed for in-
fliximab population pharmacokinetic analyses in patients with IBD. The search terms were
“infliximab” AND “population” AND “pharmacokinetics” and reference lists of identified
articles were manually screened for further eligible studies. Subsequently, modeling and
study information was collected, including model structure, population pharmacokinetic
parameter values, covariates, inter-individual variability, residual variability, information
on patient cohorts, disease type, number of patients, number of collected blood sam-
ples, and ADA immunogenicity rate. The population pharmacokinetic models described
in the gathered studies were implemented and evaluated using the nonlinear mixed ef-
fects modeling software NONMEM® version 7.4 (Icon Development Solutions, Ellicott
City, MD, USA). Computations for prediction- and variability-corrected visual predictive
checks (pvcVPCs) were generated with the PsN (version 4.9.0) tool “vpc” [39,40]. Data
management, graphics, and quantitative model diagnostics were carried out using the R
programming language version 3.6.3 (R Foundation for Statistical Computing, Vienna,
Austria) and R Studio® version 1.2.5019 (R Studio, Inc., Boston, MA, USA).

2.3. Model Performance Evaluation

For the implemented population pharmacokinetic models, all parameters
(fixed and random effects) were set to published values of the respective study. To as-
sess the potential applications in a clinical setting, model performances to predict serum
infliximab concentrations with a Bayesian approach were evaluated with the external data
set. Here, the first measured serum infliximab concentration of each patient (CMAP) was
used for maximum a posteriori (MAP) estimation of individual pharmacokinetic parameters
(empirical Bayes pharmacokinetic parameter estimates [EBEs]) considering interaction be-
tween inter-individual variability and residual variability for prediction of subsequent serum
infliximab concentrations (Bayesian forecasting). As recommended by Abrantes and cowork-
ers, IOV was included in the estimation of EBEs but excluded in the calculation of indi-
vidual pharmacokinetic parameters used for predictions [41]. For prospective predictions,
individual patient covariates for times after CMAP were imputed using last observation
carried forward.

Visual and quantitative methods were applied for the evaluation of predictive model
performances. Goodness-of-fit plots of individual predicted infliximab concentrations
vs. observed infliximab concentrations were generated for visual evaluation. Moreover,
two quantitative measures were calculated, including the median symmetric accuracy
(ζ, Equation (1)) and the symmetric signed percentage bias (SSPB, Equation (2)) to evaluate
the model regarding prediction accuracy and prediction bias.

ζ = 100 ×
[

e
(

median
(∣∣∣ln (

yi
xi

)∣∣∣)) − 1
]

, (1)

SSPB = 100 ×
[

sign
(
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(

ln
(
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xi

)))]
×

[
e
(∣∣∣median

(
ln

(
yi
xi

))∣∣∣) − 1
]

. (2)

In Equations (1) and (2) xi represents the ith observed infliximab serum concentration
and yi the corresponding predicted serum concentration.

ζ represents the typical absolute percentage error with 50% of absolute percentage
errors below ζ [42]. The SSPB, a measure of bias, estimates the central tendency of the er-
ror penalizing underprediction and overprediction equally as illustrated by Morley and
coworkers [42].
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As mentioned before, dose escalation can be beneficial in patients with trough concen-
trations below the target threshold of 5 µg/mL. Hence, a model’s ability to correctly predict
the need for dose escalation was further investigated. For that, observed and predicted
trough concentrations were split into two categories: Ctrough < 5 µg/mL (dose escalation
needed) and Ctrough ≥ 5 µg/mL (no dose escalation needed). Correct predictions of need
for dose escalation are referred to as “true positive” while correct predictions of no need
for dose escalation are referred to as “true negative”. Model accuracy, i.e., the fraction
of observed and corresponding predicted trough concentrations, both <5 µg/mL or both
≥ 5 µg/mL, were calculated for all models. Here, model classification performance was
evaluated for trough samples in which ADA status was negative and for trough samples
in which ADA status was positive individually.

In addition, pvcVPCs were performed with multiple replicates (n = 1000) of the study
population. The simulated concentrations (median, 5th, and 95th percentiles), the corre-
sponding 95% confidence intervals as well as prediction- and variability-corrected observed
concentrations (with median, 5th, and 95th percentiles) were plotted against time after dose.

3. Results
3.1. Characteristics of Published Population Pharmacokinetic Models of Infliximab in Patients
with IBD

The comprehensive literature search in PubMed for population pharmacokinetic anal-
yses of infliximab in patients with IBD revealed 25 population pharmacokinetic models,
which are listed in Table 1 together with the respective model characteristics. The models
partially differ both in base model structure as well as tested and integrated covariates.
The majority of the studies used a 2-compartment model (n = 18) with first-order elimi-
nation, while seven models implemented a 1-compartment model. Yet, five out of seven
studies that used a 1-compartment base model were developed with sparse data including
only infliximab trough samples in the model building process.

Integrated covariates on infliximab CL and central volume of distribution (Vc) include
patient characteristics (sex, weight, and age), clinical characteristics (albumin levels, HBI,
ADA status, etc.) as well as concomitant medication of immunomodulators (IMM).

Of the 25 models, 14 included albumin concentrations, 14 weight, and four sex as a co-
variate on CL. Moreover, four models included an IOV for the CL parameter. Eighteen
models integrated ADA as a covariate (sixteen as binary, one as ordinal, and one as contin-
uous covariate), two models implemented a risk function of developing ADA, and three
did not include ADA status in the model since only a small fraction of patients in the re-
spective model building data set were ADA positive (≤3%). Two studies did not include
ADA-positive patients for the model building process (see Table 1).

Furthermore, model building data sets vastly differed in patient and sample numbers,
patient cohort (patients with CD/UC; adult/pediatric patients) as well as sampling times
(see Table 1). Eleven models used data from both patients with CD and UC, eleven from
patients with CD, and three from patients with UC. The majority of models were developed
with data from adult patients (19/25), three with data from both adult and pediatric
patients, and three with data from pediatric patients only.

3.2. Eligible Population Pharmacokinetic Models for Evaluation

Twelve out of 25 population pharmacokinetic models (entries marked with an asterisk
in Table 1) were eligible for model performance evaluation with the external data set. From
Fasanmade et al., 2011, two of three models that were developed using a data set of adult
patients and a data set of both pediatric and adult patients, respectively, were included
in the analysis [24]. Edlund et al. published three different approaches for handling
the ADA covariate [43]. All three models based on ADA measurements by HMSA were
included in the analysis and are, hereafter, referred to as I (ADA covariate on the patient
level), II (ADA covariate on sample level), and III (ADA concentrations as a continuous
covariate). Eleven out of 25 models (Ternant et al., 2008 [44], Dotan et al., 2014 [45], Ter-
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nant et al., 2015 [46], Brandse et al., 2017 [47], Kevans et al., 2018 [48], Dreesen et al.,
2019 [49], Matsuoka et al., 2019 [50], Petitcollin et al., 2019 [51], Dreesen et al., 2020 [27],
Bauman et al., 2020 [21], and Kantasiripitak et al., 2021 [26]) could not be evaluated because
of data set incompatibility (e.g., missing covariates in our data set) or lack of reported model
implementation details. The model by Grišić et al. was not included in the analysis as
it was specifically focused on modeling the effects of pregnancy affecting infliximab PK [52].
In summary, models developed by Aubourg et al., 2015 [53], Buurman et al., 2015 [54],
Brandse et al., 2016 [55], Edlund et al., 2017 (I–III) [43], Fasanmade et al., 2009 [23], Fasan-
made et al., 2011 (adults and adults/children) [24], Passot et al., 2016 [56], Petitcollin et al.,
2018 [25], and Xu et al., 2012 [57] were implemented and included in the external evalua-
tion. Additional information on the investigated models regarding assumptions for model
implementation (e.g., handling of missing units or ambiguities) are outlined in Section 1 of
the Supplementary Materials.

3.3. External Evaluation Data Set

Four hundred serum infliximab concentrations from 124 patients were available
in the data set. Data from 11 patients (33 infliximab concentrations total) were excluded
because of insufficient information on the respective dosing regimen (e.g., unknown
time of dosing). Three concentrations below the LLOQ (<1% of samples) were excluded
from the external evaluation (M1 method) [58]. Moreover, 28 concentrations classified as
pharmacokinetically implausible (concentrations that did not decrease over a sampling
period of at least seven days within a dosing interval) were removed from the analysis.
Consequently, eight patients lacked informative infliximab PK data, i.e., at least one sample
with detectable infliximab concentrations, and were therefore excluded from the analysis.

As a result, a total of 336 infliximab concentrations from 105 patients with IBD,
including 76 cases of CD and 29 cases of UC, were available for external evaluation (median
number of infliximab samples per patient: 2; range: 1–12). Twenty-two patients had at
least one positive ADA sample. In total, ADA levels above the threshold of 6.6 U/mL were
measured in 49 samples. An overview of clinical and demographic patient characteristics
of the external data set is presented in Table 2. Infliximab was administered to patients
using various dosing regimens with a median (interquartile range (IQR)) infliximab dose
of 5.5 (5.1–5.9) mg/kg and a median (IQR) dosing interval of 8.0 (7.7–8.6) weeks.
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Table 1. Overview of published pharmacokinetic models for infliximab in patients with IBD.

Publication CD/UC Patient
Cohort

No. of Patients
(Samples) Sampling Times Base Model Covariates on CL Covariates on Vc IOV Induction/

Maintenance 1
Inclusion of

ADA+ Patients Ref.

Ternant et al., 2008 both adults 33 (478) peak, trough 2-CMT ADA sex, weight - both yes (15%) [44]

Fasanmade et al., 2009 * UC adults 482 (4145) peak, midpoint,
trough 2-CMT ADA, alb, sex sex, weight - both yes (7%) [23]

Fasanmade et al.,
2011 (a) * CD adults 580 (/) peak, midpoint,

trough 2-CMT ADA, alb, IMM,
weight weight 2 CL both yes (11%) [24]

Fasanmade et al., 2011 (c) CD children 112 (/) peak, midpoint,
trough 2-CMT alb, weight weight 2 CL both yes (3%) [24]

Fasanmade et al.,
2011(a/c) * CD both 692 (5757) peak, midpoint,

trough 2-CMT ADA, alb, IMM,
weight weight 2 CL both yes (10%) [24]

Xu et al., 2012 * both both 655 3 (/) / 2-CMT ADA, alb, weight 4 weight 2 - / yes (/) [57]

Dotan et al., 2014 both adults 54 (169) trough 2-CMT ADA, alb, weight 4 weight 2 - both yes (31%) [45]

Aubourg et al., 2015 * CD adults 133 (/) trough, peak 2-CMT sex sex, weight - treatment
initiation no [53]

Buurman et al., 2015 * both adults 42 (188) trough 2-CMT ADA, period 5, sex HBI - both yes (5%) [54]

Ternant et al., 2015 CD adults 111 (546) throughout dosing
interval 1-CMT FCGR3A-158V/V,

hsCRP - - maintenance yes (2%) [46]

Brandse et al., 2016 * UC adults 19 (/) throughout dosing
interval 2-CMT ADA, alb - - induction yes (32%) [55]

Passot et al., 2016 * both both 79 6 (/) trough 1-CMT CD/UC, sex, weight CD/UC, sex,
weight - both no [56]

Brandse et al., 2017 both adults 332 (997) throughout dosing
interval 2-CMT ADA, alb, previous

exposure, weight 4 weight 2 - both yes (23%) [47]

Edlund et al., 2017(I–III)
*,7 CD adults 68 (152) midpoint, trough 2-CMT ADA 8, weight 4,9 weight 2,9 - maintenance yes (37%) [43]

Kevans et al., 2018 both adults 51 (/) throughout dosing
interval 2-CMT ADA, alb, weight 4,

time-varying CL 10 weight 2 - induction yes (11%) [48]

Petitcollin et al., 2018 * CD children 20 (145) trough 1-CMT
alb, time-varying

CL/risk of
immunization 11

- - both yes (15%) [25]

Dreesen et al., 2019 UC adults 204 (583) trough 1-CMT alb, CRP, Mayo FFM, CS, panc. CL induction yes (1%) 12 [49]

Matsuoka et al., 2019 CD adults 121 (832) trough 1-CMT ADA, alb, weight - - maintenance yes (26%) [50]
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Table 1. Cont.

Publication CD/UC Patient
Cohort

No. of Patients
(Samples) Sampling Times Base Model Covariates on CL Covariates on Vc IOV Induction/

Maintenance 1
Inclusion of

ADA+ Patients Ref.

Petitcollin et al., 2019 both adults 91 (607) trough 1-CMT

CD/UC, CRP, dose,
Mayo, AZA,

time-varying CL/risk
of immunization 11,

weight 13

- - maintenance yes (1%) [51]

Bauman et al., 2020 both children 135 (289) trough 2-CMT ADA 14, alb, ESR,
weight weight 2 - maintenance yes (62%) [21]

Dreesen et al., 2020 CD adults 116 (1329) midpoint, trough 2-CMT ADA, alb, CDAI, fCal - - both yes (18%) [27]

Grišić et al., 2020 both pregnant 19 (172) throughout dosing
interval 1-CMT ADA, 2nd/3rd

trimester - - both yes (30%) 12,15 [52]

Kantasiripitak et al., 2021 both adults 104 (272) trough 2-CMT ADA, age, alb, CRP,
FFM - - induction yes (13%) [26]

Note: -: none; /: unknown; (a): (adults); (a/c): (adults/children); ADA: anti-drug antibodies; ADA+: anti-drug antibody positive; alb: albumin concentrations; AZA: azathioprine; (c): children; CD: Crohn’s
disease; CDAI: Crohn’s disease activity index; CL: clearance; CMT: compartment; CRP: C-reactive protein; CS: corticosteroids; ESR: erythrocyte sedimentation rate; fCal: fecal calprotectin; FCGR3A-158V/V: Fc
fragment of IgG, low affinity IIIa, receptor (CD16a) polymorphism; FFM: fat-free mass; HBI: Harvey–Bradshaw index; hsCRP: high-sensitivity C-reactive protein; IBD: inflammatory bowel disease; IMM:
immunomodulators; IOV: inter-occasion variability; Mayo: Mayo score; No.: number; panc.: pancolitis; Ref.: reference; UC: ulcerative colitis; Vc: volume of central compartment; * included in the external model
performance evaluation; 1 blood sample data collected during induction and/or maintenance therapy; 2 covariate also on volume of peripheral compartment (Vp); 3 133 more pediatric patients with other
inflammatory diseases were included; 4 covariate also on intercompartmental clearance (Q); 5 induction or maintenance phase; 6 139 more patients with other inflammatory diseases were included; 7 three similar
models with different handling of the ADA covariate; 8 ADA as binary or continuous covariate; 9 allometric scaling; 10 a component of CL that varies over time independent of patient factors; 11 describing
varying infliximab CL over time (independent from ADA testing); 12 percentage of ADA-positive blood samples; 13 as a covariate on the CL increase over time; 14 ADA was included as an ordinal covariate with
four categories; 15 samples with infliximab concentrations ≤5 µg/mL were assessed for ADAs.
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Table 2. Clinical and demographic patient characteristics.

Characteristic Median or No. Range IQR

Patients, n 105
Sex, female, n (%) 50 (48)

Patients with CD, n (%) 76 (72)
Patients with UC, n (%) 29 (28)

ADA-positive patient status, n (%) 22 (21)
IMM 1, n (%) 17 (16)

Nonsmoker, n (%) 35 (33)
Smoker, n (%) 41 (39)

Past smoker, n (%) 28 (27)
Unknown smoking status, n (%) 1 (1)

Body weight 1 [kg] 70 47–115 59–80
Height 1 [cm] 171 155–190 165–178

Albumin 1 [g/dL] 4.35 2.53–5.08 4.12–4.54
CRP 1 [mg/dL] 0.29 0.02–7.49 0.11–0.49

HBI 1 1 0–18 1–3

Total serum samples, n 336
ADA-positive serum samples, n (%) 49 (15)

Note: ADA: anti-drug antibodies; CD: Crohn’s disease; CRP: C-reactive protein; HBI: Harvey–Bradshaw index; IMM: immunomodulators
(including azathioprine and methotrexate); IQR: interquartile range; No.: number; UC: ulcerative colitis; 1 at the time of first drug sampling.

3.4. Predictive Model Evaluation Goodness-of-Fit Plots

The first concentration (CMAP) was used for MAP estimation of EBEs, and all sub-
sequent concentrations were predicted. Data was split into two sets of ADA-positive
and ADA-negative patients. Additionally, for ADA-negative patients, predictions were
stratified for different time intervals after CMAP (i.e., “within 1 month”, “between 1 and
6 months” and “>6 months”). For ADA-positive patients, predicted concentrations were
stratified as follows: infliximab concentrations for patients that have not been tested ADA
positive yet (“before ADA+”), concentrations measured within one month or at first ADA
detection (“1st time ADA+ and ≤1 month”), and concentrations measured after one month
of first ADA detection (“>1 month of being ADA+”).

Goodness-of-fit plots (Figure 1) show that model predictions of infliximab concen-
trations for most ADA-negative patients (turquoise symbols) matched precisely with
the observed concentrations. However, predictions of concentrations of ADA-positive
patients (pink symbols), especially those measured within and after one month of first
ADA detection, were less accurate (turquoise symbols). Additionally, in ADA-negative
patients, predictions of concentrations measured more than six months after CMAP showed
larger deviation from the corresponding observed concentrations compared to predictions
of concentrations measured within the first six months after CMAP in this study setting.
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Brandse et al. 2016
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Fasanmade et al. 2009
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Passot et al. 2016
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1
Figure 1. Individual predicted versus observed serum infliximab concentrations for twelve different population pharmacoki-
netic models (a–l). Concentrations of anti-drug antibody (ADA) negative patients are shown in turquoise, concentrations
of ADA-positive patients in pink. Concentrations used for maximum a posteriori (MAP) estimation (CMAP) are depicted
as triangles, the remaining symbols depict predictions in different time intervals after CMAP. Black solid lines represent
the lines of identity, gray dashed lines mark the target trough concentration of 5 µg/mL. In (k), one serum concentration
falls outside the plotting range but is included in the full plot depicted in the Supplementary Materials. a: adults; a/c:
adults/children; (neg): ADA-negative patients; (pos): ADA-positive patients.
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3.5. Accuracy and Bias of Model Predictions

ζ values represent a measure of accuracy with smaller values indicating higher accu-
racy, while SSPB values represent a measure of bias with values closer to zero indicating
less bias. Figure 2 shows the development of ζ and SSPB values over time for all included
population pharmacokinetic models in the ADA negative (Figure 2a,b) and ADA-positive
(Figure 2c,d) patient subpopulations. The last category (“all pred”) subsumes unstratified
results for all predicted concentrations excluding CMAP. The corresponding ζ values were
calculated for all 12 models to be within 26–44% (median: 30%) for ADA-negative patients
and 77–215% (median: 92%) for ADA-positive patients. SSPB values for all models were
within −22–27% (median: 6%) for ADA-negative patients and 8–145% (median: 43%) for
ADA-positive patients.

The models exhibiting the highest overall accuracy (lowest ζ) for predicted concentra-
tions in ADA-negative patients were the two models by Fasanmade et al., 2011, both with
ζ values of ~26%. Regarding bias in model predictions, four models had absolute SSPB
values of ≤5% (with SSPB values for Fasanmade et al., 2009: −3%; Xu et al., 2012: −1%;
and the two models from Fasanmade et al., 2011: −5%).

ζ values for predictions in ADA-negative patients increased from a median of 25%
(predictions within one month of CMAP) and 28% (predictions one to six months after
CMAP) to 54% (predictions more than six months after CMAP) over time (see Figure 2a).
In contrast, the median SSPB value for model predictions in ADA-negative patients did
not increase over time (median (SSPB < 1 month): 7%, median (SSPB 1–6 months): 8%, median
(SSPB > 6 months): 2%; Figure 2b). All calculated ζ and SSPB values for each model are listed
in Table S1 and Table S2 of the Supplementary Materials.

In ADA-positive patients, predictions of infliximab concentrations were less accu-
rate, especially for concentrations measured within and after one month of first ADA
detection (Figure 3c, median (ζ 1st time ADA+ and ≤ 1 month): 97%, median (ζ > 1 month ADA+):
301%). For some models, bias (SSPB) was still low for predictions of concentrations
when patients were tested ADA positive for the first time and within one month of de-
tection (Petitcollin et al., 2018: −1%, Fasanmade et al., 2009: −2%, Fasanmade et al., 2011
(adults/children): 5%, Edlund et al., 2017 (II): 9%, and Edlund et al., 2017 (III): −9%) but
was high for all models regarding concentrations measured more than one month after
patients tested ADA positive for the first time (range of SSPB values: 78–344%).

ζ values for model simulations of CMAP were 0–24% (median: 9%) for ADA-negative
patients and 0–43% for ADA-positive patients (median: 12%). The corresponding SSPB
values were −24–0% (median: −5%) for ADA-negative patients and −13–22% for ADA-
positive patients (median: −4%).

The model by Edlund et al., 2017 (III) included ADA concentrations measured by
HMSA (Prometheus Laboratories, San Diego, CA) as a continuous covariate on infliximab
CL [43] in contrast to a binary covariate (i.e., ADA negative or ADA positive) as imple-
mented in other evaluated models. However, since model predictions were executed with
individual patient covariates imputed from time of CMAP, model predictions for later time
points could not benefit from continuous measurements of ADA concentrations and other
time-varying covariates. In order to examine these potential benefits for the model by
Edlund et al., 2017 (III), predictions were also performed with fully informed covariates for
the ADA-positive subpopulation and results are depicted in Figure 2c,d (green dashed line).
This led to an improvement in both model accuracy and bias, especially for concentrations
measured more than one month after patients tested ADA positive for the first time (ζ: 130%
vs. 206% and SSPB: 11% vs. 206%).

Predictions with fully informed time-varying covariates were also performed for all
other evaluated models for both ADA-negative and ADA-positive patients, and results are
shown in Tables S3 and S4, as well as in Figures S1 and S2 in the Supplementary Materials.
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(a) (b)

(c) (d)

1
Figure 2. Model prediction accuracy (ζ, (a,c)) and bias (SSPB, (b,d)) over time. The upper panel shows results for anti-drug
antibody (ADA) negative patients, the lower panel for ADA-positive patients. Numbers in parentheses refer to the number
of observed concentrations in the respective time interval. “all pred” covers all predicted concentrations excluding
concentrations used for maximum a posteriori (MAP) estimation (CMAP) of individual pharmacokinetic parameters. Solid
lines depict the results for model predictions using patient covariates determined at the time of CMAP. The green dashed
line shows the results for predictions with the model by Edlund et al., 2017 (III), using measured time-varying covariates.
a: adults; a/c: adults/children; ADA+: anti-drug antibody positive; cov: covariates; (neg): ADA-negative patients, (pos):
ADA-positive patients; pred: predictions; SSPB: symmetric signed percentage bias; ζ: median symmetric accuracy.

3.6. Predictions of “Need for Dose Escalation”

According to the American Gastroenterological Association Institute Guideline, the tar-
get trough concentration for infliximab is ≥5 µg/mL [13]. In total, 69 serum trough sam-
ples from the external data set exhibited infliximab concentrations ≥ 5 µg/mL (no dose
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escalation needed), 90 trough samples exhibited infliximab concentrations < 5 µg/mL
(dose escalation needed). For serum trough samples in which ADA status was negative,
67 samples showed infliximab trough levels ≥5 µg/mL (50%) and 67 showed infliximab
trough levels < 5 µg/mL (50%). In contrast, for serum trough samples in which ADA status
was positive, only 2 samples showed infliximab levels ≥ 5 µg/mL (8%) and 23 showed
infliximab levels < 5 µg/mL (92%).

Table 3 presents the results regarding model abilities to correctly predict the need for
dose escalation in the external data set. Results were split into two groups—predictions for
serum trough samples in which ADA status was negative and predictions for serum trough
samples in which ADA status was positive. Models with the highest accuracy for the ADA-
negative sample cohort were the models by Edlund et al., 2017 (II + III), and the models
by Fasanmade et al., 2011, with 113/134 (84%) correct predictions. For the ADA-positive
sample cohort, the model by Buurman et al., 2015, correctly classified 20 of 25 (80%)
concentrations to be above or below the threshold of 5 µg/mL. In summary, the investi-
gated models correctly identified the need for dose escalation (i.e., trough concentration
< 5 µg/mL) in 63–89% of cases. In 4–43% of cases a dose escalation would have been recom-
mended (predicted trough concentration < 5 µg/mL) although the measured concentration
was above the target concentration.

Table 3. Predictions of “need for dose escalation” (i.e., trough concentration <5 µg/mL [13]).

ADA Negative ADA Positive

Dose Escalation Needed?
(Cobs < 5 µg/mL) Yes (n = 67) No (n = 67) Yes (n = 23) No (n = 2)

Correctly Predicted? Yes No Yes No Accuracy Yes No Yes No Accuracy

Aubourg et al., 2015 48 19 63 4 82.8% 13 10 2 0 60.0%

Brandse et al., 2016 62 5 39 28 75.4% 18 5 0 2 72.0%

Buurman et al., 2015 38 29 62 5 74.6% 19 4 1 1 80.0%

Edlund et al., 2017 (I) 51 16 61 6 83.6% 16 7 2 0 72.0%

Edlund et al., 2017 (II) 50 17 63 4 84.3% 15 8 1 1 64.0%

Edlund et al., 2017 (III) 50 17 63 4 84.3% 16 7 1 1 68.0%

Fasanmade et al., 2009 54 13 58 9 83.6% 17 6 1 1 72.0%

Fasanmade et al., 2011 (a/c) 60 7 53 14 84.3% 19 4 0 2 76.0%

Fasanmade et al., 2011 (a) 60 7 53 14 84.3% 19 4 0 2 76.0%

Passot et al., 2016 44 23 64 3 80.6% 13 10 2 0 60.0%

Petitcollin et al., 2018 62 5 48 19 82.1% 15 8 0 2 60.0%

Xu et al., 2012 56 11 52 15 80.6% 18 5 1 1 76.0%

Note: a: adults; a/c: adults/children; ADA: anti-drug antibody; Cobs: observed trough concentration.

3.7. Prediction- and Variability-Corrected Visual Predictive Checks (pvcVPCs)

The results of pvcVPCs for each investigated population pharmacokinetic model are
presented in Figure 3. The pvcVPCs showed a clear overprediction of the 95th percentile
of observations for the models by Aubourg et al., 2015, Edlund et al., 2017 (II), Fasan-
made et al., 2009, and Xu et al., 2012, but predictions of median infliximab concentrations
were reasonable for all four models. The model by Petitcollin et al., 2018, overpredicted
and the model by Brandse et al., 2016, underpredicted both the median and 95th percentile
of observations. In contrast, the model by Buurman et al., 2015, overpredicted the 5th
percentile while slightly underpredicting the 95th percentile. Model simulated median
and 95th percentile showed high agreement with the corresponding median/percentile ob-
served for the model by Passot et al., 2016. However, the 5th percentile was overpredicted
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most of the time. The remaining four models showed high congruence with a slight initial
underprediction of the median observations for the two models by Fasanmade et al., 2011,
and the model by Edlund et al., 2017 (III).

(a)
Aubourg et al. 2015
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Brandse et al. 2016
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Buurman et al. 2015
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Edlund et al. 2017 (I)
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Edlund et al. 2017 (II)
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(f)
Edlund et al. 2017 (III)
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Fasanmade et al. 2009
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(h)
Fasanmade et al. 2011 (a)
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Fasanmade et al. 2011 (a/c)
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(j)
Passot et al. 2016
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Petitcollin et al. 2018
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Xu et al. 2012
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Figure 3. Prediction- and variability-corrected visual predictive checks (pvcVPCs) of serum infliximab concentrations for
each investigated population pharmacokinetic model (a–l). Prediction- and variability-corrected observed concentrations
are shown as black circles, observed medians are depicted as black solid lines, 5th and 95th data percentiles as black
dashed lines. The model simulations (n = 1000 replicates) are depicted as gray solid lines (median) and blue dashed lines
(5th and 95th percentiles). Colored areas represent the simulation-based 95% confidence intervals for the corresponding
model-predicted median (gray areas) and 5th and 95th percentiles (blue areas). For ease of comparison, y-axis upper
limits were set to 140 µg/mL. Plots with automatic y-axis limits are shown in the Supplementary Materials. a: adults; a/c:
adults/children; Pvc: prediction- and variability-corrected.
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4. Discussion

Several MIPD approaches have recently shown major success in supporting and op-
timizing dosing regimen selection for various drugs [28,59–62]. As infliximab trough con-
centrations exhibit high inter-individual variability and, hence, contribute to a high rate
of primary and secondary non-response [9,12–14,18] and as infliximab drug exposure is
a predictor of clinical response [6,10–12], dose selection for infliximab could benefit consider-
ably from population pharmacokinetic modeling and MIPD [31,63]. Consequently, many
efforts have been made to analyze infliximab PK, quantifying and explaining inter-individual
variability in various population pharmacokinetic models [21,23–27,43–49,51–57].

However, for the application of population pharmacokinetic models, an extensive
assessment including internal and external evaluation regarding accuracy, robustness,
and predictive performance is crucial [64]. While different methods have been applied
in the respective internal model evaluations, only a fraction of the models has been evalu-
ated with an independent data set [34,65–68], and a comprehensive external evaluation for
predictive model performances has not been conducted yet. External evaluation with an in-
dependent data set allows the evaluation of model performance regarding prediction and
variability in patients with a clinical background similar to the internal data set and thus
evaluates not only the modeling approach itself, but also other study-related factors [64].

As shown in this analysis, differences in the predictive performances of the 12 investi-
gated models could be observed by external evaluation, and trends in the predictability of
infliximab concentrations could be identified for the ADA-negative as well as the ADA-positive
subpopulation when using first measured infliximab concentration for estimation of EBEs.

While in ADA-negative patients the absolute SSPB values, as a measure of model
bias, did not increase for virtually all models from the predictions of concentrations within
one month (SSPB median of 7%) to the predictions of concentrations after more than six
months of CMAP (SSPB median of 2%), model accuracy decreased noticeably for predictions
of concentrations more than six months after CMAP in this study setting (median (ζ < 1 month):
25%, median (ζ 1–6 months): 28%, median (ζ > 6 months): 54%). As this observation also held true
for model predictions performed with time-varying covariates, yet to a lesser extent, long-term
predictions should be treated carefully because of the deterioration in model accuracy.

Different analytical methods have been used to measure infliximab and ADA concen-
trations in the population pharmacokinetic analyses, leading to differences in immuno-
genicity rate [17]. While in some studies, “drug sensitive” methods (ADAs not detectable
in the presence of infliximab because of analytic interferences) were used to measure
ADA concentrations, “drug-tolerant” assays were applied in other investigations, yielding
a much higher rate of ADA-positive patients (up to 62% compared to as low as 1%) [21,51].
Nevertheless, 18 out of 23 models that included ADA patients implemented ADA sta-
tus as a covariate. The five remaining studies identified only ≤3% of patients as ADA
positive or used a risk function of developing ADA. The implementation of ADA status
in the majority of models highlights the importance of ADA for the PK of infliximab.

Predictions in ADA-positive patients showed much larger deviations from the corre-
sponding observed values compared to predictions in ADA-negative patients: While pre-
diction accuracy for concentrations before the first ADA-positive blood sample (median(ζ):
31%, range: 17–89%) were similar compared to predictions for ADA-negative patients, pre-
dictions became much less accurate as soon as ADA status turned positive (median(ζ): 97%,
range 72–361%). As noted, for predictions in this analysis, individual patient covariates for
times after CMAP were imputed (last observation carried forward). This especially affected
predictions of concentrations in patients showing changes in important covariates such as
ADA status. Hence, model predictions were also performed with time-varying covariates
(depicted in the Supplementary Materials). While improvements in model predictions
were especially noted for concentrations in ADA-positive blood samples, predictions still
exhibited ζ values of >100% for concentrations more than one month after patients tested
ADA positive for the first time, albeit the inclusion of ADA status in most models.
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The study by Edlund et al., 2017, aimed to tackle the challenges of predicting inflix-
imab CL in ADA-positive patients [43]. The corresponding population pharmacokinetic
model was based on the models by Fasanmade et al., 2011, and Ternant et al., 2015, with
the advancement of including ADA concentrations as a continuous covariate [43]. As a re-
sult, when using time-varying covariates, the model by Edlund et al., 2017 (III), showed
the highest accuracy and least bias for model predictions in ADA-positive patients for “all
pred”. However, the respective model predictions were still less accurate and showed
a higher bias compared to predictions for the ADA-negative patient cohort. Additionally,
the implemented covariates albumin and IMM in the model by Fasanmade et al., 2011,
were not found to be statistically significant with the data set used for model development
by Edlund et al., 2017 [43]. This may have contributed to the slightly lower accuracy
and higher bias for predictions in ADA-negative patients compared to the models by
Fasanmade et al., 2011.

One reason for the observed overprediction in ADA-positive patients could be due
to the fact that the exact time of ADA onset is often unknown. ADA-positive patients
develop ADA during a time period of unknown length before they test positive for the first
time, which is supported by findings from Petitcollin and coworkers [51]. A close and
regular monitoring for ADA using drug-tolerant assays as well as the development and
application of models identifying predictors of ADA development [69] might help to
improve predictive performances for ADA-positive patients.

For predictive performance evaluation in Bayesian forecasting, only the first measured
serum infliximab concentration of each patient was used for MAP estimation of EBEs
(CMAP). Due to the design of the study, CMAP was usually a midpoint concentration and
results should be interpreted with this in mind. However, using a midpoint infliximab
concentration for estimation of EBEs to predict the subsequent trough level allows potential
adjustment of the current dosing interval before infliximab concentrations drop below
the target concentration of 5 µg/mL.

As infliximab therapy can be adapted based on trough levels [13], model performances
to correctly predict the need for dose escalation (i.e., trough concentration <5 µg/mL) were
further investigated. The two examined models by Fasanmade et al., 2011, correctly
identified 79 of 90 (88%) trough concentrations to be below the target trough concentration
(true positive) while correctly identifying 53 of 69 (77%) trough concentrations to be above
the target trough concentration (true negative). This represented the highest classification
accuracy of correctly identified infliximab trough samples (132/159, 83%) in this study
setting. The model by Brandse et al., 2016 [55], exhibited the highest true positive rate
(89%); however, it was accompanied by a low true negative rate of 57%. The model by
Passot et al., 2016 [56], showed the highest true negative rate (96%) with a low true positive
rate of only 63%. While a high false negative rate yields an increased number of patients
with insufficient infliximab levels and, hence, decreased drug effect, a high false positive
rate corresponds to an increased number of patients with higher exposure and potentially
higher rates of adverse effects (e.g., rate of infection [70]). It should be noted that these
measures only reflect whether model predictions were correctly below or above the target
trough concentration and do not assess how much predictions deviated from the actual
measured concentration.

The investigation of factors leading to differences in model performances was out-
side the scope of this study, but it is worth mentioning that the vast majority of blood
samples from the external data set were collected during infliximab maintenance therapy.
In contrast, three examined models were developed with data only from the first 6 weeks
(Brandse et al., 2016 [55]), “treatment initiation” (Aubourg et al., 2015 [53]), and the first
22 weeks of infliximab treatment (Passot et al., 2016 [56]), which might have affected
prediction performance. The model by Petitcollin et al., 2018, was included in the anal-
ysis to study the performance of a model with implemented ADA risk function instead
of an ADA covariate, although the model was developed with data from pediatric pa-
tients [25]. While the corresponding CL and Vd model parameters appear comparable to
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parameters in infliximab models developed with adult patients [25,43,46,56], the difference
in patient cohorts might still explain larger deviations between predicted and measured
infliximab concentrations observed in the corresponding pvcVPC and goodness-of-fit plot.

There are some limitations of this analysis, which are discussed in the following
paragraphs. Since the study was based on routine therapeutic drug monitoring data,
a full dosing schedule was not available for all patients. In such cases, regular dosing
from the start of treatment with infliximab and from every change in dosing regimen was
assumed. Moreover, sampling times as well as the included patient cohort, treatment
period (induction vs. maintenance therapy), analytical methods, or dosing regimens
in the external data set could have affected the results of the analysis. Hence, further
evaluations with independent data sets should be conducted in future studies.

Another factor influencing the results of an analysis is the choice of quantitative
measure. Here, median symmetric accuracy (ζ) and symmetric signed percentage bias
(SSPB) values were computed. As illustrated by Morley et al., ζ attenuates the issues
with asymmetric penalty and effects of outliers while maintaining interpretability [42].
ζ is a robust measure of accuracy minimizing the effect of the skewness of the distribution
of absolute errors [42]. The SSPB estimates the central tendency of the error and can be
interpreted similar to a mean percentage error (MPE) [42]. However, in contrast to the MPE,
SSPB is not affected by the likely asymmetries in the distribution [42]. As illustrated
throughout the analysis, different performance metrics stratified by different patient co-
horts (here, ADA-negative and ADA-positive patients) can be of interest when evaluating
population pharmacokinetic models in the framework of MIPD. Since different models
showed strengths in different measures, we could not appraise which published model
was the “best” model, as this also depends on the question of interest and was beyond
the scope of this analysis.

Additionally, because of data set incompatibility (e.g., missing covariates) or the lack
of reported model implementation details, only 12 of the 25 identified population pharma-
cokinetic models of infliximab in IBD could be evaluated. While this work already adds
a comprehensive analysis to recently published evaluations of single models, an external
evaluation including additional covariates (such as the erythrocyte sedimentation rate or
fecal calprotectin [21,27]) would be of interest for future studies. Moreover, new modeling
approaches (e.g., pharmacokinetic/pharmacodynamic models [27,49]) regarding treatment
efficacy could investigate recent findings such as the relation of intestinal microbiota to
anti-TNF-α treatment outcome in IBD patients [71,72]. Improvement in gut microbial
dysbiosis in IBD patients has been observed during infliximab therapy [71,73], and fecal
microbiota has been suggested as a response indicator of infliximab treatment [72]. Fu-
ture pharmacokinetic/pharmacodynamic studies that examine therapeutic outcome could
further investigate this interplay of intestinal microbiota and infliximab therapy. For this,
the presented comprehensive external evaluation can also serve as guidance to adopt
a suitable population pharmacokinetic model in order to explore these complex response
mechanisms.

5. Conclusions

This work presents an external evaluation of the predictive performance of 12 pub-
lished infliximab population pharmacokinetic models in IBD patients using an independent
data set. Differences in predictive performance regarding model accuracy, model bias,
and need for dose escalation have been observed for both ADA-negative and ADA-positive
patients. Using the first measured infliximab concentration for MAP estimation (CMAP)
in a Bayesian forecasting setting, overall model accuracy decreased for predictions more
than six months after CMAP for ADA-negative patients, while bias did not increase. The two
investigated models by Fasanmade et al., 2011, showed the highest dose escalation clas-
sification accuracy of correctly identified infliximab trough samples (83%) in this study
setting. Overall, the investigated population pharmacokinetic models showed a classifi-
cation accuracy of 75–84% for ADA-negative samples and of 60–80% for ADA-positive
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samples. The results of this predictive performance evaluation could help to guide and plan
future MIPD approaches with infliximab population pharmacokinetic models to improve
individual dosing strategies and prevent infliximab trough concentrations dropping below
the target concentration. Yet clinical application needs to be tested and confirmed in larger,
prospective clinical trials. In comparison to predictions for ADA-negative patients, model
predictions of serum concentrations for ADA-positive patients showed lower accuracy and
higher bias. Thus, predictions with population pharmacokinetic models remain particularly
challenging for ADA-positive patients and for patients with unknown ADA status.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pharmaceutics13091368/s1, Electronic Supplementary Materials: Additional evaluation
results. Figure S1: Individual predicted versus observed serum infliximab concentrations for the pop-
ulation pharmacokinetic model by Petitcollin et al. 2018. Concentrations of anti-drug antibody
(ADA) negative patients are shown in turquoise, concentrations of ADA positive patients in pink.
Concentrations used for maximum a posteriori (MAP) estimation (CMAP) are depicted as triangles,
the remaining symbols depict predictions in different time intervals after CMAP. The black solid line
represents the line of identity, grey dashed lines mark the target trough concentration of 5 µg/mL.
(neg): ADA negative patients; (pos): ADA positive patients, Figure S2: Model prediction accuracy
(ζ, a and b) and bias (SSPB, c and d) for anti-drug antibody (ADA) negative pa-tients over time.
The left panel shows ζ and SSPB values for model predictions with fixed covariates determined
at the time of the first measured serum infliximab concentration of each patient (CMAP), the right
panel shows ζ and SSPB val-ues for model predictions with time-varying covariates. “all pred”
covers all predicted concentrations excluding CMAP. Numbers in parentheses refer to the number
of observed concentrations in the respective time interval. (neg): ADA negative patients, pred:
predictions; SSPB: symmetric signed percentage bias; ζ: median symmetric accuracy, Figure S3:
Model prediction accuracy (ζ, a and 2b) and bias (SSPB, c and d) for anti-drug antibody (ADA)
positive pa-tients over time. The left panel shows ζ and SSPB values for model predictions with
fixed covariates determined at the time of the first measured serum infliximab concentration of each
patient (CMAP), the right panel shows ζ and SSPB val-ues for model predictions with time-varying
covariates. “all pred” covers all predicted concentrations excluding CMAP. Numbers in parentheses
refer to the number of observed concentrations in the respective time interval. (pos): ADA pos-itive
patients, pred: predictions; SSPB: symmetric signed percentage bias; ζ: median symmetric accuracy,
Figure S4: Prediction- and variability-corrected visual predictive check (pvcVPC) of serum infliximab
concentrations for the population pharmacokinetic model by Petitcollin et al. 2018. Prediction-
and variability-corrected observed concen-trations are shown as black circles, observed median
is depicted as black solid line, 5th and 95th data percentiles as black dashed lines. The model
simulations (n = 1000 replicates) are depicted as grey solid line (median) and blue dashed lines
(5th and 95th percentiles). Colored areas represent the simulation-based 95% confidence intervals for
the corresponding model-predicted median (grey areas) and 5th and 95th percentiles (blue areas).
Pvc: prediction- and variability-corrected, Table S1: ζ and SSPB values for model predictions with
fixed covariates at time of CMAP for ADA negative patients, Table S2: ζ and SSPB values for model
predictions with fixed covariates at time of CMAP for ADA positive patients, Table S3: ζ and SSPB
values for model predictions with time-varying covariates for ADA negative patients, Table S4: ζ
and SSPB values for model predictions with time-varying covariates for ADA positive patients.
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