
Universität des Saarlandes

Fachrichtung Physik

Deformability-Induced Effects

of Red Blood Cells in Flow

Dissertation
zur Erlangung des Grades

des Doktors der Naturwissenschaften
der Naturwissenschaftlich-Technischen Fakultät

der Universität des Saarlandes
von

David Alexander Kihm

Saarbrücken

2021





Tag des Kolloquiums: 19.11.2021

Dekan: Univ.-Prof. Dr. Jörn Walter

Berichterstatter: Univ.-Prof. Dr. Christian Wagner

Univ.-Prof. Dr. Rolf Pelster

Vorsitz: Univ.-Prof. Dr. Jochen Hub

Akad. Mitarbeiter: Dr. Herbert Wolf





Abstract

To ensure a proper health state in the human body, a steady transport of blood is necessary.
As the main cellular constituent in the blood suspension, red blood cells (RBCs) are govern-
ing the physical properties of the entire blood flow. Remarkably, these RBCs can adapt their
shape to the prevailing surrounding flow conditions, ultimately allowing them to pass through
narrow capillaries smaller than their equilibrium diameter. However, several diseases such as
diabetes mellitus or malaria are linked to an alteration of the deformability. In this work, we
investigate the shapes of RBCs in microcapillary flow in vitro, culminating in a shape phase
diagram of two distinct, hydrodynamically induced shapes, the croissant and the slipper. Due
to the simplicity of the RBC structure, the obtained phase diagram leads to further insights
into the complex interaction between deformable objects in general, such as vesicles, and the
surrounding fluid. Furthermore, the phase diagram is highly correlated to the deformabil-
ity of the RBCs and represents thus a cornerstone of a potential diagnostic tool to detect
pathological blood parameters. To further promote this idea, we train a convolutional neural
network (CNN) to classify the distinct RBC shapes. The benchmark of the CNN is validated
by manual classification of the cellular shapes and yields very good performance.
In the second part, we investigate an effect that is associated with the deformability of RBCs,
the lingering phenomenon. Lingering events may occur at bifurcation apices and are char-
acterized by a straddling of RBCs at an apex, which have been shown in silico to cause a
piling up of subsequent RBCs. Here, we provide insight into the dynamics of such lingering
events in vivo, which we consequently relate to the partitioning of RBCs at bifurcating vessels
in the microvasculature. Specifically, the lingering of RBCs causes an increased intercellular
distance to RBCs further downstream, and thus, a reduced hematocrit.



Zusammenfassung

Um die biologischen Funktionen im menschlichen Körper aufrechtzuerhalten ist eine stetige
Versorgung mit Blut notwendig. Rote Blutzellen bilden den Hauptanteil aller zellulären
Komponenten im Blut und beeinflussen somit maßgeblich dessen Fließeigenschaften. Eine
bemerkenswerte Eigenschaft dieser roten Blutzellen ist ihre Deformierbarkeit, die es ihnen er-
möglicht, ihre Form den vorherrschenden Strömungsbedingungen anzupassen und sogar durch
Kapillaren zu strömen, deren Durchmesser kleiner ist als der Gleichgewichtsdurchmesser einer
roten Blutzelle. Zahlreiche Erkrankungen wie beispielsweise Diabetes mellitus oder Malaria
sind jedoch mit einer Veränderung dieser Deformierbarkeit verbunden. In der vorliegen-
den Arbeit untersuchen wir die hydrodynamisch induzierten Formen der roten Blutzellen
in mikrokapillarer Strömung in vitro systematisch für verschiedene Fließgeschwindigkeiten.
Aus diesen Daten erzeugen wir ein Phasendiagramm zweier charakteristischer auftretender
Formen: dem Croissant und dem Slipper. Aufgrund der Einfachheit der Struktur der roten
Blutzellen führt das erhaltene Phasendiagramm zu weiteren Erkenntnissen über die kom-
plexe Interaktion zwischen deformierbaren Objekten im Allgemeinen, wie z.B. Vesikeln, und
des sie umgebenden Fluids. Darüber hinaus ist das Phasendiagramm korreliert mit der De-
formierbarkeit der Erythrozyten und stellt somit einen Eckpfeiler eines potentiellen Diag-
nosewerkzeugs zur Erkennung pathologischer Blutparameter dar. Um diese Idee weiter vo-
ranzutreiben, trainieren wir ein künstliches neuronales Netz, um die auftretenden Formen der
Erythrozyten zu klassifizieren. Die Ausgabe dieses künstlichen neuronalen Netzes wird durch
manuelle Klassifizierung der Zellformen validiert und weist eine sehr hohe Übereinstimmung
mit dieser manuellen Klassifikation auf.
Im zweiten Teil der Arbeit untersuchen wir einen Effekt, der sich direkt aus der Deformier-
barkeit der roten Blutzellen ergibt, das Lingering-Phänomen. Diese Lingering-Ereignisse kön-
nen an Bifurkationsscheiteln zweier benachbarter Kapillaren auftreten und sind durch ein
längeres Verweilen von Erythrozyten an einem Scheitelpunkt gekennzeichnet. In Simulatio-
nen hat sich gezeigt, dass diese Dynamik eine Anhäufung von nachfolgenden roten Blutzellen
verursacht. Wir analysieren die Dynamik solcher Verweilereignisse in vivo, die wir folglich
mit der Aufteilung von Erythrozyten an sich gabelnden Gefäßen in der Mikrovaskulatur in
Verbindung bringen. Insbesondere verursacht das Verweilen von Erythrozyten einen erhöhten
interzellulären Abstand zu weiter stromabwärts liegenden Erythrozyten und damit einen re-
duzierten Hämatokrit.
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Introduction

Among all organs in the human body, blood is the most delocalized one, consisting of a dense
aqueous solution of blood plasma, solubles, and cellular entities. Despite being delocalized,
the overall blood amount contributes roughly to 7 % to the body weight, and thus forms the
second largest organ besides the skin. An optimal perfusion of the blood throughout the
complex network of blood vessels in the body is a key component to ensure a proper health
state from the primordial embryonic state onwards. The red blood cells (RBCs) form the
major constituent of all cellular compounds in the suspension, and therefore, the bulk blood
flow is governed by the physical properties and behavior of RBCs [1–4]. Physiologically, se-
vere problems are associated with a failure or disturbance of this perfusion. The blockage
of entire vessels due to thrombi are known to occur in all parts of the vasculature, and has
a fatal impact on the health state, leading to ischemia and myocardial infarctions, the most
pronounced cause of deaths in developed countries [5].
Apart from the physiological interest, blood as a model fluid has reached the status of a
drosophila in the field of biological fluid dynamics due to its remarkable physical properties
in coincidence with its relative simplicity regarding the internal RBC structure. As a non-
Newtonian liquid, whole blood shows a shear-thinning behavior due to the presence of RBC
aggregates [6–8]. With increasing shear stress, the external forces overcome the binding forces,
leading to a subsequent break-up of these aggregates.
Such features of blood have been studied extensively throughout scientific history, culminating
in the dedicated branches of hemodynamics and hemorheology. However, alongside the thriv-
ing development of microscopy techniques and related analytical methods, the impact of blood
research has grown extensively. Due to this development, the initial focus on macroscopic phe-
nomena and coarse-grained approaches has shifted towards rather fine-grained investigations
on a single cell level in recent years. Despite this progress, a holistic picture of blood-related
phenomena is still lacking, as results found in vivo are unmatched in vitro, and in silico, and
vice versa.
The analysis of blood in vitro has been a major diagnostic procedure to gain insight into
the body functions and reactions to embodied pathogens. However, the procedures typically
involve the analysis of blood samples in stasis, such as e.g. blood smears, or in simple geome-
tries, such as in erythrocyte sedimentation protocols. A driven blood suspension enlarges the
parameter space towards the accessibility of dynamic blood parameters. Albeit the existence
of sophisticated apparatuses yielding blood parameters even on a single cell scale, they typ-
ically require pre-treatment of the specimen as e.g. staining. Allegedly, these protocols do
not alter the mechanistic properties of RBCs; nevertheless, they do not provide fundamental
physical insight into the measurement procedure and are less cost-effective.
A crucial parameter to maintain the blood flow, even in highly concentrated suspensions, is
their deformability, i.e., the ability to alter the shape depending on the underlying forces. As
a determinant for the fluid-particle interaction, a fundamental knowledge of the deformability
is desired, but still lacking. In collective phenomena of RBC suspensions, the deformability
of RBCs is known to have a tremendous impact, e.g. in the context of lateral migration
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of rigidified RBCs in flow. Even the axial distribution of single RBCs in channels is highly
influenced by the deformability of each RBC, as the shape is governed by the applied flow
regimes. In vivo, this change in deformability is, among other factors, correlated with the age
of individual RBCs and is supposed to be responsible for their removal of the blood flow in
the spleen [9, 10]. Hence, if the sensible equilibrium between the RBC production rate and
the removal rate is disturbed, anemic states arise.
In lab-on-a-chip devices, profound knowledge of such axial distributions can be employed in
cell sorting apparatuses, and in general, for the development of clinical devices and diagnostic
tools. We, therefore, investigate straight microfluidic channels through which a highly diluted
RBC suspension is perfused. Based on the microscopic footage we construct a shape phase
diagram.1

Apart from the direct consequence on morphology and correlated axial position in straight
channels, the deformability also affects the distribution of RBCs within the microvascular
network. As they tend to migrate towards annular regions in proximity to the vessel cen-
terline, they leave a cell-depleted layer close to the endothelium. At bifurcating vessels, this
phenomenon leads to a disproportionate partitioning of RBCs in the respective daughter
branches, known as the Zweifach-Fung effect [11, 12]. However, in the physical explanation of
this effect, no particular investigations have been carried out to study the single-cell behavior
of RBCs at the apex. Recent in silico studies address cell partitioning with a focus on RBCs
that linger at apices, eventually leading to a piling of subsequent RBCs. In vivo, no corre-
sponding studies exist so far, although the phenomenon itself is well known in intravascular
physiology. A qualitative and quantitative analysis of the flow characteristics in presence of
lingering RBCs could help to unravel open questions in the design of realistic in vitro net-
works and serve as a benchmark for the state-of-the-art in silico approaches. Additionally,
these cellular scale effects might have a severe impact on the distribution of RBCs in the living
organism and since it they are linked to a strong deformation of RBCs, lead to a discrepancy
of tissue oxygen supply in health and disease.

This thesis is organized as follows: In chapter 1, the scientific background of the blood con-
stituents, their mechanical and biological properties, and physical aspects of flow in low
Reynolds regimes is provided. Basic principles and phenomena are discussed with regard
to the collective phenomena of blood suspensions.
On the basis of this physical description, we develop the metrological procedures and manu-
facturing protocols in chapter 2. However, we restrict these experimental setup descriptions
to the main features, and additional information about specific adjustments accounting for
the distinct experiments are presented alongside each chapter, respectively.
Chapter 3 focuses on in vitro experiments of RBCs in flow. Therefore, straight microflu-
idic channels with rectangular cross-sections are connected to a reservoir containing a diluted
suspension of RBCs. With the aid of a pressure-driven flow, we then study the shape and
position of RBCs as they flow through these capillaries, whose dimensions are in the range of
individual RBCs’ diameters. Depending on the imposed flow speed, the RBCs take on two
characteristic shapes: A symmetric shape, also termed croissant, and an asymmetric shape,
termed slipper. A resulting shape phase diagram is then compared to the outcome of tailored
in silico approaches.
Based on the experimental data acquired in the in vitro experiments subject to chapter 3,

1The term phase diagram is used as a descriptor of morphological states of RBCs in a steady Poiseuille flow,
and does not coincide with the prevalent usage of this expression in the context of equilibrium configurations
in thermodynamics.
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we develop a classification of the cell shapes based on artificial intelligence. A sophisticated
convolutional neural network has been designed and trained to fulfill the specific needs for
classifying biological cells. As a result, we obtain an objective, unbiased classification algo-
rithm reducing the human input and increasing the performance. We evaluate the outcome
with respect to the manual classification, serving as a benchmark. These features are the
topic of chapter 4.
In the following chapter 5, the blood flow in the microcapillaries of living rodents is discussed.
In contrast to the straight microfluidic channels being the subject of the previous chapters,
we now focus on the influence of RBCs resting at a bifurcation apex on the subsequent blood-
stream. We show evidence that the disproportionate partitioning of RBCs, known as the
Zweifach-Fung effect, even underpredicts the real disproportion, which is achieved when the
previously mentioned, so-called lingering phenomena are taken into account.

3
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Literature review

The deformability of red blood cells (RBCs) is a key aspect to ensure proper perfusion of distal
tissue regions in the body of vertebrates, as this property allows RBCs to alter their shape
and pass through constrictions smaller than their equilibrium size [13–17]. Furthermore, a
change in the deformability of mature RBCs is linked to their eventual removal in the spleen
[18, 19], as well as to the release of ATP [20].
Affected by this physiological importance, the mechanistic properties of RBC suspensions
under flow have been investigated extensively. Yet, the variability of geometries in the cir-
culatory system of living beings is mirrored by the vast parameter space of vessels employed
in vitro and in silico, ranging from few microns in diameter up to several millimeters. Apart
from the hard-core interaction with the vessel walls’ narrow confinements, the intricate in-
terplay of forces acting on suspended RBCs under imposed flow conditions itself can lead to
deformations of RBCs, depending on the prevailing flow conditions. In microcapillaries, the
most commonly reported cell shapes are the discocyte shape, the axisymmetric croissant, and
the asymmetric slipper shape. The term croissant is used here distinctively from the term
parachute, which is reserved for rotationally symmetric shapes ubiquitous in cylindrical chan-
nels [21].
Experimentally, these shapes have been reported both in vivo and in vitro, yet in the context
of low hematocrits with nonetheless abundant intercellular interactions [22–31]. Dilute sus-
pensions in microconfined flows, where the RBCs can be regarded as isolated cells, are only
scarcely investigated with a focus on these hydrodynamically induced shapes [32, 33]. Gold-
smith and Marlow [34] investigated the orientation and deformation of RBCs in tubes with
diameters between 30 µm− 100 µm, i.e., much greater than the individual RBCs’ size. Simi-
larly, Gaehtgens et al. [24] provided one of the first investigations of converged RBC shapes
in glass capillaries with inner diameters in ranging from 5 µm − 12 µm and proved the exis-
tence of non-axisymmetric shapes, resembling slippers, for a set of confinements. Employing
stereomicroscopy, Bagge et al. [35] confirmed the existence of this slipper-like shapes in vitro.
Further conducted in vitro experiments noticed the existence of hydrodynamically induced
shapes without exploiting any configuration space of the flow parameters [36–39], but rather
focusing on transient states during time-dependent flows [40, 41], or qualitatively comparing
them to characteristic shapes found in vivo [25, 42].
Despite all these scattered results, no systematic experimental investigations of these hydro-
dynamically induced shapes have been conducted so far. A phase diagram, yet in pure shear
flow in a cone-plate geometry of a rheometer, has been proposed by Lanotte et al. [150]. By in
situ application of glutaraldehyde, they hardened RBCs under shear conditions and analyzed
the cells a posteriori. A manifold of shape categories could be identified for varying shear
rates, including multilobated cells. However, the regime of applied shear rates translates into
pseudo-shear rates in Poiseuille flow corresponding to a mean flow velocity of u . 2 mm s−1

for an exemplary cylindrical tube with a diameter of 10 µm.
Similarly, Abkarian et al. [17] provided a semi-quantitative phase diagram of symmetric and
asymmetric cell shapes, respectively, for flow velocities greater than 10 mm s−1 in cylindrical
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channels. They specifically focused on the influence of the viscosity contrast λvisc, which has
been tuned by viscosity adaptation of the ambient fluid, but generally obeys λvisc . 0.3.
Tsukada et al. [43] investigated rectangular ducts with an aspect ratio of ca. 1.5 (width ap-
prox. 9 µm) and flow velocities 1 mm s−1 . u . 2 mm s−1, noticing that parachutes are the
prevalent shapes in this regime.
Due to the complex modeling and limited computational resources, theoretical models have
been restricted historically to 2D models, employing vesicles [44], or axisymmetric RBCs [45,
46]. Nowadays, 2D models are still used to investigate migration behavior of RBCs [47], and
despite their simplicity, reveal rich dynamics up to the occurrence of deterministic chaos [48].
In 2D, the viscosity ratio is a key determinant of the terminal shape. Kaoui et al. [49] con-
structed a phase diagram with the sole branch for highest velocities dedicated to axisymmetric
shapes for λvisc = 1. Tahiri et al. [50] revealed the coexistence of these axisymmetric shapes
and slipper shapes upon a change to λvisc = 5. Albeit this indication of modeling RBC flows
with realistic, i.e., physiological viscosity ratios λvisc = 5 [51–53], recent 3D simulations in
microconfined flow employed a viscosity ratio of internal and external viscosity of the RBC
corpuscles of λvisc = 1 [27, 54, 55], or even λvisc . 0.3 [56].
A joint numerical-experimental approach has been performed by Secomb et al. [47]. The in
vitro setup consisted of a cylindrical tube with a diameter of 8 µm, through which a dilute
RBC suspension is advected with a velocity of ca. 1.25 mm s−1. This setup is mirrored in
silico by a bounded Poiseuille flow in 2D with otherwise identical dimensions. They revealed
a rudimental form of shape bistability in the sense that cells initiated at the channel center
yielded a terminal croissant shape. On the contrary, cells that started at an off-centered po-
sition with respect to the channel axis ended up as slippers.
In 2005, Noguchi et al. [54] qualitatively obtained a shape phase diagram of RBCs flowing in
cylindrical ducts with diameters of 9.2 µm, employing a realistic 3D model in silico. A key
observation has been the transition of discocytes to parachutes at a critical velocity, which in
turn depends approximately linearly on the mechanistic parameters of the cells.
A fine-grained phase diagram has been proposed by Fedosov et al. [55]. They simulated the
flow of RBCs through cylindrical tubes with varying confinements and shear rates and recorded
the steady RBC shapes. They specifically identified four shapes that are pooled into four ad-
jacent regions in their phase diagram, the slipper and the parachute shape, as well as tumbling
discocytes and a shape category, termed snaking shape, referring to an oscillating movement
of discocytes close to the channel axis. The existence of the latter has also been established in-
dependently via 2D simulations [49]. Interestingly, Fedosov et al. tuned the elastic parameters
of the RBC capsules, which resulted in qualitatively very different phase diagrams, however,
the viscosity ratio has been set to the unphysiological value of λvisc = 1, and in addition, the
imposed flow velocities are in a rather low regime, obeying 0.2 mm s−1 . u . 1 mm s−1.
Conclusively, experimental observations indicate the formation of slippers with increasing ve-
locities in microconfined flow and the absence of this shape upon decreasing the flow strength
[17, 32, 57]; however, a systematic investigation contributing to a holistic picture of the hydro-
dynamically induced shapes is still missing. Analogously, the imposed flow velocities in silico
are either in a regime far from the physiological one or comprise rather low velocities. Addi-
tionally, most models impose unphysiological viscosity ratios rendering a comparison with in
vitro results a challenging task. Hence, the development of lab-on-a-chip devices exploiting
the potential alterations in RBC deformability as a diagnostic biomarker is ultimately linked
to the aforementioned systematic analysis.

Albeit the implementation of straight cylindrical or rectangular channels already reveals rich
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phenomena that are associated with the elastic parameters of the RBCs, the comparison with
realistic microvascular beds in vivo is limited since they exhibit curvilinear channel segments
that are interconnected via bifurcations and confluences. Carr et al. [58] revealed the impor-
tance of the sequential topological structure and the resulting history of the hematocrit profiles
as a key contribution to plasma skimming. Thus, recent studies focus on physiological pre-
dictions based on complications such as e.g. stenosed vessels [59] or curved microvessels [60].
In vivo investigations of blood flow historically developed to assess physical mesoscopic or
macroscopic parameters, such as pressure distributions or hematocrit profiles [61–63]. Sim-
ilarly, the influence of such parameters has been characterized systematically in vitro [64].
The pioneering work of Schmid-Schönbein et al. [65] focused on the formation of the cell-free
layer and the resulting trajectories of RBCs in the vicinity of vascular bifurcations. However,
they reliably predicted time-dependent hematocrit distributions based on a one-dimensional
model.
The seminal work by Pries et al. [66], relying on in vivo observations of blood flow in bifurcat-
ing vessels, led to a heuristically derived formula to explain the observed skewed hematocrit
profiles. The latter have been identified to contribute to plasma skimming, i.e., the advection
of hematocrit profiles through bifurcation sites. A second contribution to flux partitioning
is given by intercellular interactions and cellular deformations, termed cell screening in the
entirety. Even though first probabilistic models [11, 12] provided insights into the dispro-
portionate partitioning of RBCs at bifurcation sites, later referred to as the Zweifach-Fung
effect, they failed to account for the finite-sized effects arising from the particulate nature of
RBCs. In fact, the classical disproportionate partitioning they predicted (i.e., the RBC flux
is relatively increased with respect to the flow rate) and which is regularly observed in vivo
is also contrasted by reports of an even partitioning of RBCs according to the flow rates in
bifurcating vessel geometries in the cat mesentery [63] or even the inverse partitioning behav-
ior, both in vivo [65, 66], and in vitro [67–69].
Novel in vitro studies are typically oriented towards the development of biomedical applica-
tions to utilize the non-uniform RBC distribution in microvessels to achieve a phase separa-
tion [70] or, to the very least, an increased disproportion of hematocrits [56]. The hematocrit
partitioning for two sets of RBCs with varying deformability, the physiological one and a
set of RBCs with increased stiffness, emulating malaria-infected cells, has been elucidated by
Li et al. [71]. Tripathi et al. [72] demonstrated the efficiency of plasma-skimming microfluidic
devices based on the Zweifach-Fung effect. They even outmatched any previous passive phase
separation by extending the formerly accepted maximal channel sizes by two orders of mag-
nitude, i.e., much greater than the particle size. Based on these findings, the basic principles
have been developed further with sophisticated arrangements of microvessels [73]. In contrast
to bulk flow properties and their macroscopic distribution, only a few studies address the flow
of isolated RBCs or small clusters of RBCs [74].
Balogh et al. [75] mimicked a realistic, 3D microvascular network in silico. They observed a
phenomenon of RBCs straddling at the apex of a bifurcation, which eventually culminates
in a piling up of subsequent RBCs further upstream. These lingering events are shown to
be one of the key mechanisms contributing to the final partitioning throughout the vascular
network in a second study employing identical in vivo-like networks [76]. Lingering is further
proven to cause a spatially inhomogeneous wall shear stress at bifurcation sites, which in turn
is known to be a chief catalyst of angiogenesis. In recent 2D simulations, this lingering could
be evoked by tuning the flow rates of the adjacent daughter branches of a feeding vessel. Yet,
the lingering itself has not been quantified but was rather obtained as a byproduct [74]. Qual-
itatively, a straddling of RBCs at bifurcation apices resembling the previously noted lingering
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phenomenon has also been observed in a further study; however, they only considered one
unique geometry exhibiting a symmetric opening angle between the two daughter branches,
and thus, the findings are incommensurable to the actual topology in vivo [77]. Ye et al. [78]
qualitatively observed a state of RBCs at a symmetric bifurcation apex in silico that resembles
the lingering phenomenon without further quantitative analysis.
In sum, no systematic studies addressing the impact of lingering in vivo, and in vitro, re-
spectively, exist in the scientific literature to provide a compliant description of the lingering
phenomenon, which has been proven to be of major importance in silico for the advection
of RBCs throughout the microvasculature. Since the lingering is an inherent feature of de-
formable entities, we conjecture a correlation between alterations of elastic parameters of
RBCs and the resulting lingering events.
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Chapter 1

Background

The transport of cellular components through the complex plumbing network in the human
body and microfluidic channels is subject to the physical principles of hydrodynamics. These
principles are at the focus of this chapter, providing an overview of the governing mechanisms
and derived phenomena. Additionally to the physical background, physiological and biological
aspects of blood and blood flow are provided. Concerning the overall complexity, we restrict
the discussion to the main characteristics and provide a more fine-grained approach in the
respective chapters of this work.

1.1 Blood and the cardiovascular system

For the development of living beings on earth, a working metabolism is a key factor. This
metabolism consists roughly of an intake of nutrients and soluble gases and a discharge of
waste. On a more fine-grained scale, the nutrients have to be transported to the cells inside
the body. While this transport can be achieved solely by diffusion for unicellular living beings,
the evolution of pluricellular life such as vertebrates would have been impossible without active
transport processes. In the case of human living beings, this active process is performed by the
heartbeat, transporting oxygen-enriched blood from the lung towards the organs and tissues
through a complex network of vessels, the cardiovascular system. As Schrödinger stated in
his famous essay “What is life” [79], living beings evade the status of thermodynamical equi-
librium by homeostasis, an adaptive self-regulating process, yielding an increase in entropy of
the coupled surroundings.
For vertebrates such as human beings, this is ensured by the blood flow, which is responsi-
ble for the heat transfer within the body limits, which itself can be adjusted by vasodilation
and vasoconstriction, respectively. The blood flow is organized in a way that it is enriched
with oxygen in the alveoli of the lungs and then transported to the heart, from where it is
flowing in arteries. These arteries then divide up into vessels of smaller diameters, the ar-
terioles. Arterioles themselves divide up into the capillary bed, which is embedded into the
tissues and responsible for the gas and nutrient exchange to these as well as the organs. The
capillaries merge again into bigger venules, and these merge into veins, finally delivering the
carbon dioxide-rich blood towards the lung. The oxygen binds chemically onto the hemoglobin
molecule encapsulated in erythrocytes, also termed red blood cells (RBCs).
RBCs form the main cellular constituent of whole blood, with a volume fraction of approx. 44 %
on average, depending on interindividual factors such as sex. Other cellular components are
composed of leukocytes or white blood cells (WBCs), respectively, and platelets. Together,
their volume fraction in whole blood is about 1 %. The remaining 55 % is the blood plasma,
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which is an aqueous solution of 93 % water, with dissolved proteins, monosaccharides, ions,
and vitamins among further nutrients and gases.
In vivo, the blood components form a suspension, whereas due to the influence of gravity
and a difference in densities, they separate ex vivo. This sedimentation is a reversible pro-
cess, whereas RBCs form irreversible aggregates in the case of blood clotting, caused by the
activation of platelets. In the presence of macromolecules such as Dextran and Fibrinogen,
RBCs form reversible aggregates resembling a stack of coins and often termed rouleaux [80], in
contrast to these irreversible aggregates. Under the influence of shear forces, these rouleaux
may break up and are responsible for the reported shear-thinning behavior of blood. The
magnitude of these shear forces spans several orders of magnitude for the entire cardiovascu-
lar system, depending on the vessel type and size. Accordingly, the mean flow velocity differs
for the various vessel types, as is noted in Table 1.1.

Table 1.1: Typical dimensions of human vessel types, with according mean velocities and
wall shear rates, given by γ̇ = 4u/r, with the tube radius r, and the velocity u. Data
reproduced from reference [80]

vessel type diameter (mm) ū (mm s−1) wall shear rate (s−1)

aorta 16− 32 600 150− 300
artery 2− 6 150− 500 200− 2,000
arteriole 0.04 5 1000
capillary 0.005− 0.01 0.5− 1 400− 1,600
post-capillary venule 0.02 2 800
venule 0.1 5 400
vein 5− 10 150− 200 120− 320
vena cava 20 100 40− 60

1.1.1 Red blood cells

The genesis of human RBCs, the so-called erythropoiesis, occurs in the bone marrow and
comprises a multitude of differentiated cell types from erythropoietic stem cells to the final
mature RBCs [81]. During this process, the structural composition of RBCs changes, most
notably leading to the absence of a nucleus. Thus, the integrity of RBCs is reduced to a
membrane encapsulating the internal fluid, termed cytosol.
Separating the cytosol from the outer plasma, the RBC membrane is composed of a lipid
bilayer containing a manifold of embedded proteins that are linked to a triangular spec-
trin network on the inner membrane layer. This bilayer largely contributes to the RBC’s
bending resistance while rendering its surface area practically inextensible, even under defor-
mations [82–84]. In fact, persistent area dilatations in the order of approx. 4 % of the total
surface area are known to rupture the cell body [85, 86]. Remarkably, the RBC exhibits a
significantly increased tolerance of area dilations, if the latter are only short-lasting [87]. The
spectrin network, on the other hand, is responsible for the resistance against two-dimensional
shear deformations.
Healthy RBCs obey a biconcave discocyte shape, with a diameter of 7.8 µm and a height
between 1.5 µm in the center up to 2.2 µm at the rim, cf. Fig. 1.1. On average, they cover a

10



1.1 Blood and the cardiovascular system

surface area of ca. 135 µm2 [32, 88], and an enclosed volume of ca. 90 fl [32].
A valid parametrization of the RBC has been proposed by Evans and Fung [89, 90], yielding

z(r) = ±R
2

√
1−

( r
R

)2
[
C0 + C1

( r
R

)2
+ C2

( r
R

)4
]
, (1.1)

the z-axis as symmetry axis and r =
(
x2 + y2

)1/2
. Under physiological conditions, the RBCs

obey a tonicity of 300 mOsm, yielding the parameters R = 3.91 µm, C0 = 0.81 µm, C1 =
7.83 µm and C2 = −4.39 µm.
Normalizing the RBC volume by the volume of a sphere with the given surface area, one
obtains the corresponding reduced volume of V ' 0.6. During its lifespan of 120 days, the
membrane vesiculates partially, resulting in a reduction of both the surface area and the
enclosed volume. Linked to these changes is an increase of the reduced volume, from V = 0.58
to V = 0.64. By measuring the hemoglobin content in the RBCs during the aging, it is known
that relatively more water than hemoglobin is lost, leading to an increased concentration in
the cytosol.
By a change in osmolality of the surrounding media, morphological changes of the RBC can be
induced. Whereas for a hypotonic solution, the RBC takes on a mono concave cup-like shape,
spicules are formed in a hypertonic solution. The first shape is called stomatocyte, and the
latter is referred to as echinocyte. Apart from the change in osmolality, these transitions can
also be caused by a change in pH, a change in the concentration of ATP, and by the addition of
special drugs, such as sodium salicylate (yielding echinocytosis), or chlorpromazine (yielding
(stomatocytosis). In between these two extreme morphological shape classes, there is no
discrete transition from one to the other, but rather a continuous shape transformation, also
known as the stomatocyte-discocyte-echinocyte (SDE) scale.

Figure 1.1: Various categories of RBC shapes, from stomatocytes to echinocytes, also re-
ferred to as the SDE-scale. In between, the discocyte shape which is the most common RBC
cell shape under physiological conditions in healthy human individuals. The image has been
adapted from reference [91].

1.1.2 Thrombocytes

Thrombocytes, also termed platelets, form the third moiety of solid blood constitutes. These
cell fragments originate from megakaryocytes and are responsible for the hemostasis in wounds
and blood coagulation in general. With a diameter up to 3 µm, they are significantly smaller
than RBCs and WBCs, albeit their biconvex oblate shape resembles the morphology of RBCs.
As a physical prerequisite to perform hemostasis, they need to adhere to the ruptured endothe-
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lium, where they induce a complex coagulation cascade [92] after being activated, alongside
a morphological transformation process.
In contrast to physiological clot formation, pathological states arise when the blood coagula-
tion occurs within the vessel, causing thrombi that eventually separate from the endothelium
and circulate in the vasculature. These thrombi then lead to a potential blockage of the vessel
and a malfunction of the oxygen supply or, in the worst case, entire tissue death. One determi-
nant in the origin of these thrombi is the apparent shear stress in the vessel geometry, leading
to a conformational change of proteins, which in turn triggers the activation of platelets [93,
94]. This mechanoenzymatical trigger is also known to hinder the action of biomedical devices
and therefore, needs to be accounted for when designing such apparatuses [95, 96].

1.1.3 Leukocytes

With a volume fraction of approximately 1 %, leukocytes, or WBCs, are responsible for im-
mune response. Given their relatively low occurrence in whole blood, their role in the bulk
rheological properties of blood is negligible. Unlike RBCs and platelets, they are nucle-
ated cells with organelles and form several subcategories of functional classes, such as e.g.
monocytes, and lymphocytes. The latter form the basis of the adaptive immune response
in vertebrates as they retain the immunological memory. Flowing in the vascular network,
they need to address infection sites, or in general, sites of adhered pathogens effectively. Due
to their physical properties, they tend to marginate in the bloodstream, i.e., unlike RBCs,
they preferentially migrate to axial positions close to the vessel walls [97, 98]. Although this
margination phenomenon has been subject to numerous studies, basic information about the
physical origin is still lacking. In context to alterations of lymphocyte concentrations in infec-
tious states and the influence of this change on the lateral migration remains unanswered. In
the microvascular system, leukocytes play an important role and are known to substantially
alter the flow resistance due to their presence [99, 100]. Similarly, they are further associated
with a partial or entire blockage of vessels in the microvascular bed [101].

1.1.4 Plasma

The formed constituents of blood are immersed in an aqueous solution, the blood plasma.
The plasma itself is composed of water with a volume fraction of 90 % and the rest being
composed of solubles such as dissolved respiratory gases, ions (mainly Na+, K+, and Ca2+),
metabolites, polysaccharides, and proteins ranging from small molecules up to several kDa
in molecular mass. The latter are known to cause the reversible aggregation of RBCs under
physiological conditions in stasis and under low, i.e., up to few s−1 shear rates. A break-up of
these rouleaux into single RBCs under higher shear rates is responsible for the shear-thinning
behavior of whole blood, and thus, the rheology of whole blood is governed to a large extent
by the presence of these proteins. Albeit the plasma is known to exhibit a constant shear
viscosity of µplasma = 1.2 mPa s at a body temperature of 37 ◦C, recent investigations indicate
that under pure extensional flow, the plasma exhibits a visco-elastic behavior [102].
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1.2 Hemodynamics and hemorheology

1.2.1 Mechanistic properties of RBCs

It is the relative simplicity of human RBCs that makes them an ideal model object to study
deformable microscopic entities, and the absence of a nucleus and further organelles renders
them a membraneous sack. This structural simplicity is linked to investigations of two iconic
microparticles: the vesicle and the capsule. While artificial capsules typically contain a liquid
encapsulated by a polymerized surface, vesicles consist of a lipid bilayer surrounding the
internal liquid phase. This lipid bilayer exhibits a thickness of approx. 5 nm in artificial vesicles
up to approx. 100 nm in the case of RBCs [103], and consists of two adjacent sheets of lipid
molecules whose hydrophilic heads are oriented towards the external and the internal fluid
phase, respectively, while the hydrophobic tails are facing each other in the intramembranous
volume.
The thin shell of capsules endows them with an extensible surface while maintaining the total
volume of the object. As a consequence, the dynamics of capsules in flow are governed by their
shear modulus as well as the area dilatation. Bending, on the other hand, although existent,
plays a minor role. In contrast to capsules, the lipid bilayer of vesicles is endowed with a high
area dilatation modulus, rendering the surface area practically constant. Together with the
volume conservation, they must be non-spherical to be able to deform under external forces.
A second difference is the absence of the shear elasticity in the case of vesicles.
Instead, the bending rigidity plays an important role in the vesicle dynamics [104]. RBC
structurally share distinct properties with each of these aforementioned model objects, and
therefore, they are often modeled as either one or as a combination of both models. A special
case arises in 2D in silico approaches, where the shear elasticity is absent, thus rendering
vesicles as the prevalent model system. Several experimental investigations study the complex
vesicle dynamics in flow, exhibiting rich phenomena such as tumbling (TB), tank-treading
(TT) or vacillating breathing states [105–112]. These findings are also reported in silico [48,
49, 113–115]. Tumbling motion is characterized by a periodic flipping of the inclination
angle versus the flow field, as sketched in Fig. 1.2. If the vesicle undergoes a TB motion,

Figure 1.2: Sketch of two common scenarios of vesicle motion in linear shear flow. For
lower shear rates γ̇, the vesicle exhibits a tumbling motion, i.e., the inclination angle θ is
time-dependent. As the shear rate γ̇ increases, the lipid bilayer of the vesicle exhibits a tank-
treading movement, such that fixed points on the membrane (depicted as black dots) are
non-stationary. In contrast to the former case, the inclination angle in the latter case remains
constant. In the transition regime between TB and TT motion, the membrane is performing
a TT motion, however, the inclination angle is typically oscillating around the flow direction.
The latter is known as vacillating breathing motion.

the relative position of the membrane is fixed apart from minor fluctuations. As the flow
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strength increases, this TB motion changes into the TT motion upon surpassing a critical
shear rate [111]. Then, the membrane starts to rotate around the steady inner fluid, i.e., the
inclination angle of the vesicle remains constant. In between these two regimes, a combination
of both motions is observed, known as swinging motion or vacillating breathing. This state
is characterized by a rotating membrane while the inclination angle of the vesicle oscillates
around the flow direction. However, we stress that these considerations are only a rough
scheme and the motion of the vesicle depends on additional parameters, such as e.g. the
reduced volume of the vesicle and the Reynolds regime (cf. section 1.2.2).
To model the vesicle dynamics in flow, one has to have a profound knowledge of the membrane
constitutive equations in order to determine its physical properties and to reliably predict the
fluid-structure interaction. At rest, the vesicle shape results from a minimum energy principle,
which is also applicable when exposed to external forces such as under flow conditions. In the
case of vesicles and RBCs, the bending energy associated with the existence of the lipid bilayer
is of major importance. Although various approaches exist to quantify the bending energy,
the one which is most common throughout the scientific literature and also employed in the
joint numerical-experimental approach as proposed in chapter 3, is the Helfrich-Canham [116,
117] formulation. In this model, the energy density per unit area, εB, has been obtained
phenomenologically as

εB = 2κB(H(r)−H0)2 + 2κGK , (1.2)

with the bending modulus κB, the Gaussian modulus κG, the Gaussian curvature K(r), the
spontaneous curvature H0, and the local mean curvature H(r). The latter is hereby defined
as the arithmetic mean of both principal curvatures H(r) = 1/2

(
R−1

1 (r) +R−1
2 (r)

)
, r ∈ S.

The total energy of the vesicle is then computed as

EB =

∮
2κB(H(r)−H0)2 dS +

∮
2κGK dS . (1.3)

According to the Gauss-Bonnet theorem [118], the closed surface integral over K is a topo-
logical invariant and can thus be omitted to facilitate the calculations. With the aid of a
multitude of various measurement techniques, the elastic modulus κB is found to fit in the
regime κB = 0.1× 10−19 J− 3× 10−19 J [32].
The bending energy and associated bending forces have a tremendous impact on the vesicle dy-
namics, as is pointed out in the subsequent section. However, the congruence of experimental
and numerical is essential to maintain a holistic view on the elastic properties of RBCs. Due
to the inherent complexity of modeling RBCs in flow, in silico approaches are benchmarked
by the experimental counterparts and therefore, the study of the governing fluid-structure
interaction is of high interest.

1.2.2 Axial migration of deformable particles: Balance of forces

Although the flow of all entities in the blood is governed by deterministic physical equa-
tions, the complex interplay between cells and endothelium as well as the interactions among
adjacent cells still reveals unknown phenomena. In contrast to a continuous liquid phase,
the particulate nature of blood implies collective phenomena as a result of heterogeneous
partitioning. If one considers the perfusion of blood suspensions through a pipe, analytic
expressions are scarcely derived. However, as a rough approximation, we might consider the
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fluid-structure interaction of rigid spherical objects in Poiseuille flow.
One of the very first systematic investigations on this subject has been performed by Segré
and Silberberg [119, 120]. They studied the properties of dilute suspensions consisting of neu-
trally buoyant, non-deformable spherical particles immersed in a liquid and driven through a
pipe with circular cross-section and the radius Rtube = 11.2 mm. Since two particle sizes have
been employed, with diameters 0.8 mm, and 1.71 mm, respectively, the Reynolds numbers are
in a range of 3 . Re . 17, given the fluid viscosity of µ = 400 mPa s and the imposed fluid
velocities. For comparably low flow velocities, they found that the particles remain randomly
distributed across the tube diameter. Similarly, they observed a random distribution for higher
velocities when the distance from the input reservoir was small. However, for high velocities
and observation points far enough from the entrance, they discovered an annular region at
around r = 0.6Rtube from the channel axis, where the particle concentration is significantly
increased. Although they revealed a linear dependency of this effect on the Reynolds number
and analogously, on the squared fluid velocity, they ultimately failed to explain the true origin
of this effect. Nevertheless, they conjectured that due to the aforementioned dependencies,
the origin of the transverse forces acting on the suspended particles is inertially driven.
Saffman [121] concluded from observing particles in bounded shear flow that the existence of
a wall is a key ingredient due to an additional drag force acting on the particles effectively
reducing their individual speed below that of the surrounding fluid. Ho and Leal [122], how-
ever, identified this velocity difference to play only a minor role as long as the particles are
neutrally-buoyant. Instead, the lateral migration of the suspended particles can be under-
stood as a linear combination of a wall-induced lift force Flw, and a second force Fls opposing
the former Flw. While Flw originates from a disturbance of the velocity field by the pres-
ence of the particle and its interaction with the wall, Fls emerges from the interaction of the
disturbed flow field with the curvature of the flow, yielding a net force towards regions with
higher shear rates. In Fig. 1.3, these forces are schematically depicted. Di Carlo et al. [123]

Figure 1.3: Schematic flow of a dilute particulate suspension at an intermediate to high
Reynolds number regime Re = O(101), similar to the experimental setup of Segré and Silber-
berg [119, 120]. Two forces act on the particles in the Poiseuille flow profile, the shear-induced
lift force Fls being directed away from the channel axis, and the wall-induced lift force Flw,
pointing towards the channel center (dashed line). The strength of both forces depends on
the relative lateral position of the particles, yielding a tubular pinch effect at a distance
r = 0.6Rtube, indicated by the dash-dotted lines.

revised the scaling behavior of the transversal lift force acting on a solid particle obtained for
confinements 2rp ' w, with rp, and w being the particle radius and the channel width (of a
quadratic cross-section), respectively, culminating in the expression

Fls = fl
ρu2(2rp)3

w
, (1.4)
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for the shear-induced lift force. Additionally, the wall-induced lift force scales as

Flw = fl
ρu2(2rp)6

w4
, (1.5)

with u denoting the maximum velocity of the fluid and the fluid density ρ. The factor fl

denotes a lift coefficient.
In the limit ofRe→ 0, the Navier-Stokes equation reduces to the linear Stokes equation, which
has tremendous impact on the qualitatively observed particle movement. Mathematically, the
formerly described limit implies a reversibility of the resulting Stokes equation, which in turn
disables non-deformable objects to migrate transversally in flow. A more detailed description
about Low Reynolds number regimes is presented in section 1.3.1. Indeed, several theoretical
studies focus on the necessary flow regimes to observe a transversal migration of suspended
particles and concluded that inertia is a crucial ingredient. Experimentally, Goldsmith and
Mason [124] even proofed the threshold of Re ≤ 10−6 for the existence of an inertial drift of
solid particles towards the channel axis.
Deformable particles such as vesicles, however, adapt their shape to the prevailing flow condi-
tions, causing an impaired particle symmetry, and thus, these deformable entities can migrate
in very low Reynolds regimes, where inertial effects are negligible. The lift force exerted on
vesicles in shear flow has been quantified experimentally by Abkarian et al. [110]. They found
for the lift force

Fl = µγ̇
r3

eff

w
f(1− V) , (1.6)

with the shear rate γ̇, the effective particle radius reff, the channel width w, and a dimensionless
function f(1−V), which depends solely on the reduced volume V of the vesicle. reff is defined
via the vesicle volume V as Reff = (3V/4π)1/3.
Kaoui et al. [125] showed that 2D vesicles migrate in unbounded Poiseuille flow with Reynolds
numbers 10−2 . Re . 10−3. Yet, they revealed a different scaling law, with the migration
velocity is proportional to the capillary number of the channel and the curvature of the flow
profile. Coupier et al. [126] similarly found experimental evidence that the migration velocity
of vesicles in bounded Poiseuille flow exhibits a power-law ∝ γ̇/y, with y being the lateral
position in the flow profile. This scaling behavior has been confirmed by simulations and is
the consequence of an intricate coupling between the flow curvature and the induced vesicle
shape, which in turn affects the resulting force acting on the vesicle.
Despite the extensive research conducted in the field of vesicle dynamics, a comprehensive
formulation is still lacking. This circumstance especially holds for the coupling of cells, such
as RBCs, and the fluid, where additional parameters affect the migration.

1.2.3 F̊ahræus effect

The complex interplay of the previously described forces acting on deformable particles in
flow has a tremendous impact on the flow properties of blood suspensions. One of the most
prominent phenomena is the formation of annular concentric regions with different particle
concentrations when blood suspensions are perfused through straight tubes. Whereas close to
the vessel walls, a cell-depleted or even cell-free layer is established, a densely packed region
close to the axial core of the tube is maintained.
In his seminal work, F̊ahræus conducted experiments on particulate flow in tubes of various
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cross-sections [127]. These tubes were connected to a reservoir containing blood suspen-
sions at a discharge hematocrit HD, and a collecting reservoir, as depicted in Fig. 1.4. For a

Figure 1.4: Illustration of the F̊ahræus effect: Two reservoirs containing RBCs are intercon-
nected via a narrow tube, i.e., the diameter of the capillary is in the order of the equilibrium
size of RBCs. Cells flowing in the capillary clearly leave a cell-depleted layer close to the tube
walls. Thus, they obey a higher mean speed than the surrounding fluid, due to the Poiseuille
profile of the flow.

given discharge hematocrit, the measured hematocrit in the vessel, the tube hematocrit HT

is decreased. Eventually, this phenomenon has been termed the F̊ahræus effect. Ongoing
investigations revealed a strong non-monotonic behavior with increasing tube diameters and
culminate in the empirical equation derived by Pries et al. [128] for the tube hematocrit HT

in glass capillaries:

HT

HD
= HD + (1−HD)

(
1 + 1.7e−0.415D − 0.6e−0.011D

)
, (1.7)

with the reservoir hematocrit HD, and the vessel diameter D in microns. As can be seen
from the graphs displayed in Fig. 1.5, the minimum of this reduced hematocrit is given for
vessel diameters in the range of the RBC size. Qualitatively, this relative hematocrit reduction

Figure 1.5: Reduction of the relative tube hematocrit HT due to the F̊ahræus effect, ac-
cording to Eq. (1.7). The normalization factor is given by the discharge hematocrit of the
reservoir, HD.

in capillaries can be explained by a mass balance analysis: Due to the imprinted Poiseuille
profile, the fluid in regions close to the axial core of the tube obeys a higher mean speed
than in outer regions. Since the axial core is more densely populated by RBCs, their mean
speed is higher than the mean speed of the fluid. Thus, the measured concentration of the
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sum of particle volumes and the total volume inside the tube, in the case of blood flow the
hematocrit, is decreased with respect to the feeding hematocrit:

HT

HD
∝ ūblood

ūRBC
< 1 , (1.8)

where ūblood refers to the mean speed of the perfused blood suspension and ūRBC to the
mean speed of the RBCs. Interestingly, the effect of relative hematocrit reduction is most
pronounced in capillaries with diameters in the range of the equilibrium size of RBCs. For
smaller diameters, the CFL vanishes, leading to an increase in reduced hematocrit. On the
other hand, the impact of the established CFL on the overall bulk flow is negligible for
diameters much larger than the RBC size.

1.2.4 F̊ahræus-Lindqvist effect

The biphasic nature of blood and resulting heterogeneities in the particle distribution not only
manifests in the former F̊ahræus effect but also affects the viscosity of blood suspensions. As
the cells tend to migrate to the vessel centerline, they leave a cell-depleted layer in proximity
to the channel walls. This CFL serves as a lubrication layer for the bulk blood flow, and thus
a decreased viscosity compared to whole blood suspensions. To quantify this drop in viscosity,
we define a so-called apparent viscosity µa. For Newtonian fluids, the Hagen-Poiseuille law
(Eq. (1.17)) is valid, stating a proportionality between the volumetric flow rate and the pres-
sure gradient. Since blood suspensions are non-Newtonian, the law does not hold. However,
by defining the apparent viscosity µa as

µa =
πr4∆p

8Ql
, (1.9)

we can relate the hydrodynamic resistance of the fluid to the flow of a Newtonian fluid,
translating through a vessel of diameter 2r, length l, with a volumetric flow rate Q caused by
a pressure gradient of ∆p.
However, the impact of this lubrication layer is most pronounced for vessels with a diameter
similar to the size of individual RBCs, i.e., around diameters of 8 µm. As the diameter of the
vessel increases, the impact of the CFL is negligible, and thus, for vessel diameters & 300 µm,
the apparent viscosity is almost constant. On the other hand, as the vessel diameter is less
than the individual RBC size, the deformation of the RBC impacts the apparent viscosity,
leading to a rapid increase of µa. This phenomenon has been termed F̊ahræus-Lindqvist effect.
In Fig. 1.6 the apparent viscosity is depicted for a variety of species and suspending media.
This change in suspending media is accounted for by normalizing the apparent viscosity with
the outer viscosity of the medium and termed relative apparent viscosity.
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1.2 Hemodynamics and hemorheology

Figure 1.6: Relative apparent viscosity µrel of blood suspensions with an adjusted discharge
hematocrit of HD = 0.45. The suspension is perfused through glass capillaries. The distri-
bution of µrel obeys a minimum at ' 7 µm as a result of the F̊ahræus-Lindqvist effect. The
image has been adapted from reference [128].

1.2.5 RBC partitioning at bifurcations: The Zweifach-Fung effect

The aforementioned effects arising from the particulate nature of blood not only affect the
lateral migration of RBCs within curvilinear channels but eventually the distribution of RBCs
in networks, i.e., interconnected vessel segments. A crucial parameter in the distribution pat-
tern of RBCs is the bifurcation apex connecting adjacent vessels, where cells end up in either
one. Svanes and Zweifach [12] and Fung [11] provided a phenomenological approach to char-
acterize the distribution of suspended particles in bifurcation geometries. They observed that
in adjacent vessels the one exhibiting a higher flow rate is entered by relatively more RBCs
than its counterpart. The latter vessel thus obeys a decreased hematocrit.
While they ultimately fail to quantify the hematocrit reduction due to this disproportion-
ate partitioning, they developed a physical explanation of this phenomenon. As the fluid
approaches the bifurcation site, the streamlines split up according to the flow rates in the
daughter vessels. An RBC located in proximity to the bifurcation apex, therefore, experi-
ences a net force due to the skewed force balance of the fluid forces and the finite size of the
particle. Statistically, this skewed force profile results in the phase separation effect, com-
monly referred to as the Zweifach-Fung effect.
Pries et al. [66, 134] studied 65 bifurcation sites in the rat mesentery. By means of regression,
they obtained an empirical correlation between the partitioning of the blood flow in both
daughter vessels and the respective partitioning of RBCs in these vessels. With the parame-
ters X = 0.4/dM, and B = 1 + 6.98× (1−HD)/dM, the partitioning function ψ of RBCs in a
symmetrical bifurcation, where both daughter vessels exhibit identical diameters, reads
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ψ =


0 , if φ < X ,

1 , if φ > 1−X ,
1

1+
(

φ−X
1−φ−X

)−B , otherwise .
(1.10)

The dimensionless parameters A and B as defined above depend on the discharge hematocrit
HD in the mother vessel, as well as the diameter of the mother vessel dM. Fig. 1.7 indicates the
analytical RBC flux in dependence of the blood flow fraction in one arbitrary daughter vessel
according to Eq. (1.10). This classical phase separation has been reviewed in microvascular

Figure 1.7: Illustration of the Zweifach-Fung effect: The disproportionate partitioning of the
RBC flux fraction ψ for a given blood flow fraction φ entering the daughter vessel. The black
dashed line yields identity, and the solid colored lines are generated according to the empirical
formula derived by Pries et al. [66, 134], for three different daughter vessel diameters. For
the sake of simplicity, a symmetrical bifurcation has been chosen, where the diameters of
both branching vessels are identical. The feeding hematocrit in the mother vessel is set to
HD = 0.2, representing typical physiological values in the microvasculature.

networks in vitro, showing a strong dependence on both the elastic cell parameters as well as
the hematocrit [69, 129]. However, due to manufacturing processes and their limitations, these
in vitro experiments on a scale . 10 µm focusing on vessel networks are surprisingly scarce.
Notably, significant progress to investigate cell partitioning has been made recently regarding
the development of realistic in vitro networks, consisting of bifurcation cascades [130], and
dilating vessels [131, 132].

1.3 Navier-Stokes equation

Newton’s laws form the deterministic set of equations of motion for solid bodies. Their
counterpart in fluid dynamics are the Navier-Stokes equations, obtained in the continuous
limit of Newton’s laws, i.e., by applying the latter to infinitesimal volume elements. The
Navier-Stokes equations can be formulated as a balance of rescaled forces f = F/V ,

finertia = fext + fstress , (1.11)
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with the inertial forces finertia, the external forces fext, and the stress term fstress.
For incompressible fluids, the continuity equation yields ∇ · u = 0, and the resulting force
balance in Eq. (1.11) can be expressed via the generalized Navier-Stokes equation

ρ∂tu + ρ (u · ∇) u = −∇p+ µ∇2u + fext , (1.12)

with the fluid density ρ, the viscosity µ, the velocity field of the fluid u, and the pressure
gradient ∇p.
Written in this form, the inertial forces correspond to the terms on the left hand side, being
composed of the variation ρ∂tu, and the convective acceleration ρ (u · ∇) u. On the right-
hand side of Eq. (1.12), the rescaled forces are composed of a term ∇p, taking into account
the pressure from the surrounding fluid, the internal force due to viscosity, µ∇2u, and an
external force fext, e.g. in the case of gravity.
The ratio of inertial forces and viscous forces is a key determinant of the qualitative behavior
of fluid flows. If the inertial effects dominate the system, then the flow is considered turbulent.
On the other hand, if the viscous forces govern the system, then the flow is considered laminar.
To classify the flow, a dimensionless quantity called the Reynolds number Re is defined as
the quotient of inertial and viscous forces [135], and reads

Re =
ρlu

µ
. (1.13)

From Eq. (1.13), the Reynolds number depends on the flow speed u = ‖u‖ being the absolute
value of the velocity and a characteristic length scale of the system l. In the context of particle
suspensions, a second quantity is often calculated, the so called particle Reynolds numberRep,
given as

Rep =
(2r)2

l2
Re . (1.14)

The quantity Rep is thus suitable to characterize the influence of a particle’s disturbance of
the surrounding flow field. To avoid confusions among the quantity defined in Eq. (1.13) and
the particle Reynolds number, the former is often termed tube or channel Reynolds number
and indexed as Rec. Henceforth, and if not stated otherwise, the term Reynolds number refers
to the channel Reynolds number without further mentioning.
In the case of a microfluidic channel with a width and a height, respectively, of l = 10 µm,
through which water (ρ = 1,000 kg m−3, µ = 1 mPa s) is flowing with a speed of u = 10 mm s−1,
the Reynolds number yields Re = 10−2, which is far below the critical value of Re ' 2000,
marking the transition point from laminar to turbulent flow [136].

1.3.1 Low Reynolds number regimes

As the Reynolds number decreases for a system, the influence of viscous forces dominates over
the inertial effects. Implications rise from the flow profile itself up to the movement of particles
suspended in the fluid. While the flow is turbulent for sufficiently high Reynolds numbers,
it becomes laminar for low Reynolds numbers. In this low Reynolds number regime, actively
propelling objects such as algae or bacteria can only travel a net distance with non-reciprocal
movements. This phenomenon is known as the scallop theorem [137], referring to the motion
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of scallops in the sea. By using a time-reversible motion of their shells, namely opening and
closing, they are able to maintain a net propulsion while submerged in the sea. However,
by increasing the Reynolds number, e.g. by submerging the scallops in fluid with increased
viscosity while keeping their size, this net propulsion will stop, indicating the overcome of
viscous forces.

1.4 Pressure driven flow in a rectangular channel

In the laminar flow regime, i.e. for low Reynolds numbers, inertial effects are negligible. The
steady flow is then characterised by ∂tu ≡ 0, and the Navier-Stokes equation for incompressible
Newtonian fluids in Eq. (1.12) reduces to the Stokes equation

∇p = fext + µ∇2u . (1.15)

For manufacturing purposes, we are limited to the use of rectangular microchannels in our
conducted experiments, as is further described in section 2.3. We therefore restrict the fol-
lowing considerations to such a geometry and the solution to the Stokes equation (1.15) for
a rectangular channel of length l, width w (−w/2 ≤ y ≤ w/2) and height h (0 ≤ z ≤ h) is
given in this case by [135]

ux(y, z) = ∆p
4h2

π3µl

∞∑
n,odd

1

n3

[
1−

cosh
(nπy

h

)
cosh

(
nπw
2h

)] · sin(nπz
h

)
, (1.16)

where we assume that the fluid flows due to the exerted pressure drop ∆p in x-direction.
We further assume without loss of generality that h ≤ w, which holds for our microfluidic
channels and can always be maintained in by rotation of the underlying coordinate system for
generalized rectangular geometries. In Fig. 1.8, the velocity profile for a rectangular channel is
depicted, obeying the dimensions as the one used in the microfluidic experiments. Due to the
intricate structure of the velocity profile in rectangular geometries, one typically approximates
the flow profile by the parabolic one of cylindrical channels, since deviations are negligible in
most cases, as can be seen in Fig. 1.8 (b).
By integrating Eq. (1.16) over the channel dimensions, one obtains the volumetric flow rate Q
as

Q = 2

w/2∫
0

dy

h∫
0

dz ux(y, z) = ∆p · wh
3

12µl

1− h

w

∞∑
n, odd

192

(nπ)5
tanh

(nπw
2h

)
︸ ︷︷ ︸

1/Rh

. (1.17)

The proportionality factor Rh only depends on the geometric properties of the channel, and is
referred to as the hydraulic resistance. The general proportionality between volumetric flow
rate and pressure drop in Eq. (1.17) is known as Hagen-Poiseuille’s law.
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1.4 Pressure driven flow in a rectangular channel

Figure 1.8: (a) Laminar flow profile in a microfluidic channel with a width w = 12 µm and a
height h = 10 µm. The flow speed u is hereby rescaled by a factor Gh2/2µ, with G = −∂p/∂x
being the applied pressure drop per unit length causing the flow. (b) Comparison of imposed
flow profiles in channels with a rectangular cross-section as in (a) and a circular cross-section
with a diameter of 10 µm, respectively. The flow profile has been obtained in both cases in the
channel center. Deviations of both flow profiles are insignificant for both channel geometries.
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Chapter 2

Materials and methods

This chapter is intended to provide profound background information on the materials and
methods that have been employed for the experiments described in the subsequent chapters.
The focus is set to cover the main experimental setups, from biological sample preparations
to technical imaging specifications. Additional information is provided in the sections of
the respective experiments, where special prerequisites and setups have to be accounted for.
However, if not stated otherwise, the steps described in the following remain valid.

2.1 Preparation of blood suspensions

For all performed in vitro experiments, and if not stated otherwise, the blood withdrawal
and preparation followed one distinct protocol. While the extraction of blood from healthy
donors is performed according to regulations and protocols that have been approved by the
ethic commission of the “Ärztekammer des Saarlandes” [Medical Association of the Saarland]
(reference 24/12), the routine for preparing the blood solutions and the handling follow the
guidelines by Baskurt et al. [138] and will be described in the following.
Blood withdrawal was either realized by a sterile needle prick in the fingertip or by venipunc-
ture and collecting the blood in a sealed vacutainer containing ethylenediaminetetraacetic
acid (EDTA) as an anticoagulant. Whereas the total blood amount is governed by skin tem-
perature and exact position of the needle prick in the first case and may vary between ca.
10 µl−100 µl, the amount is fixed to 9 ml in the latter case. To remove the autologous plasma
of the blood sample, gentle centrifugation is carried out for 5 min at 1,500 g. After this step,
a pellet of densely packed RBCs has formed on the bottom of the container, with a top layer
of autologous plasma and an intermediate layer of WBCs and platelets, also termed buffy
coat. Both the supernatant and the buffy coat are then pipetted away and discarded with
the remaining pellet being resuspended in the same quantity of isotonic phosphate-buffered
saline (PBS), according to [139]. This entire washing process is then repeated three times,
cf. Fig. 2.1. After the last centrifugation, 10 µl of the pellet are suspended in a solution of 1 ml
PBS and 1 mg bovine serum albumin (BSA), the latter causing an inactivation of the surface of
RBCs and thus avoiding the glass slide effect, causing a morphological change of RBCs [140].
Hence, the final blood solution yields a hematocrit of approx. 1 %. Since the influence of
sex and individual habits may influence the mechanical properties of RBCs and hence lead to
non-uniform results throughout the conducted experiments, the blood withdrawal has been
performed at different day times and furthermore the blood has been collected from different
individuals. In total, blood from three individuals has been used, avoiding any interindividual
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Figure 2.1: Blood washing scheme: From left to right, blood from sterile needle prick is
suspended in PBS. After gentle shaking, the obtained suspension is centrifuged according
to the blood handling guidelines [138]. After centrifugation, a pellet of highly concentrated
RBCs formed at the bottom of the Eppendorf tube, which is then resuspended in PBS. The
buffy coat, consisting of WBCs and platelets, as well as the supernatant, is discarded. This
centrifugation procedure is repeated three times in total. The final blood solution is obtained
by diluting the desired amount of the RBC pellet to a solution of 1 ml PBS and 1 mg BSA.
For the conducted experiments, we fix the final hematocrit value to approx. 1 %.

and intraindividual effects. Between the blood withdrawal and the conduct of the experiment
a maximum time span of 3 h is ensured.

2.2 Microfluidics

To perform the microfluidic experiments as explained in the following chapter 3, a subtle
tool to mimic the capillary vessels in humans is desired. Since the prevalent dimensions of
their cross-sections are in the micrometer range, special fabrication techniques are needed
to ensure the high precision of the outcome. Several approaches exist to fabricate these
capillaries, depending on the complexity of the architecture and the geometrical constraints
of the individual microchannels. Conventional techniques comprise mechanical procedures,
such as micro-milling [141], embossing or imprinting [142], in contrast to recently developed
techniques, ranging from etching procedures [143] to laser micro-channeling [144]. Among
all different approaches, an outstanding role in the context of biomedical investigations has
become the soft lithography. Numerous advantages are linked to this technique, creating
microchannels in polydimethylsiloxane (PDMS). Besides its cost efficiency compared to other
techniques, it allows for complex architectures and possesses high biocompatibility. These
features culminate in its prevailing status in many current lab-on-a-chip devices. However,
due to the inherent manufacturing procedure, one is typically restricted to channels with
rectangular cross-sections, although there has been recent progress in developing spherical
cross-sections [145].
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2.3 Fabrication of microfluidic devices

2.3 Fabrication of microfluidic devices

To produce a microfluidic chip utilizing soft lithography, a variety of single processing steps
is necessary. The final product will be a negative mold on a silicon wafer, also termed master
mold, from where identical copies of the architecture can be replicated using soft elastomers,
as the previously described PDMS.
Starting with a silicon wafer, we apply a photoresist, whose thickness is precisely adjusted
via spin-coating, see Fig. 2.2 (a), and (b). The light-sensitive photoresist is available in two
differing manifestations, specifying their behavior when exposed to light radiation. For our
purpose, we use the negative photoresist SU-8, indicating that it hardens under UV exposure,
in contrast to a positive photoresist, showing the inverse behavior. A binary lithography mask,
consisting of a transparent film containing the imprinted lateral channel geometries, is placed
in physical contact with this photoresist. In a subsequent step the assembly is radiated with
a collimated UV light source from the top, as depicted in Fig. 2.2 (c). To hold the mask and
the wafer in place and prevent any shifts, a glass plate is fixed on top using vacuum suction.
By rinsing the illuminated silicon wafer thoroughly with acetone, the unexposed photoresist
will be dissolved and removed, leaving a projection of the mask on the substrate of the wafer
in the desired thickness, see Fig. 2.2 (d). To further harden the substrate on the wafer, the
assembly is baked in the oven at 80 ◦C, increasing its mechanical strength. The relief structure
on the substrate is now the negative mold for the microchannels, and by pouring the soft elas-
tomer PDMS into this mold, we obtain the positive structure of the desired microchannels,
see Fig. 2.2 (e). A degassing step in a vacuum-sealed container is necessary to remove bubbles
before the entire chip can be cured in the oven at 80 ◦C for at least two hours prior to being
peeled off the mold. The removed cured PDMS contains now the microchannels, except the
bottom sealing, see Fig. 2.2 (f). Before attaching the bottom part, the PDMS is cut in shape,
i.e. residues from the mold are gently cut off. Additionally, holes are drilled in the reservoirs
of the microchannels to allow for connecting tubes to the microfluidics. After these holes are
drilled, the chip, as well as a glass cover slide (thickness 170± 5 µm), are cleaned with the
aid of an ultrasonic bath, and then activated in a plasma-cleaner. The activated surfaces are
then joined together and the covalent bonding will unify the chip. To increase mechanical
resistance, the chip is baked in the oven again for at least two hours at 80 ◦C.
Although the previous steps in manufacturing microchannels are well-documented, some as-
pects are hard to control, leading to slight aberrations in the outcome. While the height is
adjusted via spin-coating, a subtle change in viscosity due to temperature and aging effects
leads to a differing systemic height than desired. Similarly, the lateral dimensions of the
structure might be altered due to diffraction at the mask edges, or a falsely collimated UV
light beam. For this purpose, the real dimensions of the microchannels need to be measured
and may show an imprecision with respect to the desired dimensions. However, once the
deviations are acceptable regarding the experimental design, it is appropriate to duplicate the
master mold. To this aim, the positive PDMS chip is immersed into an epoxy resin. After
hardening, the PDMS can be removed and the resin keeps the negative relief of the channels
again, from where steps (e) and (f) in Fig. 2.2 are perpetuated. In this way, the efficiency of
the manufacturing process is increased and a copy of the channels is secured.
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Figure 2.2: Schematic of the fabrication of microfluidic devices. (a) Silicon wafer forms the
substrate of the photoresist. (b) A photoresist is applied onto a silicon wafer via spin coating
to ensure a homogeneous spread and leaving a submillimeter-thick layer of precise height. (c)
A binary mask with the desired geometrical constraints is applied onto the photoresist and
then exposed to UV light, leading to a partial polymerization of the resist. (d) Using solvents,
the photoresist which was not exposed to UV light is rinsed thoroughly. (e) The mold with
the relief of the channels is filled with a soft elastomer and then processed in the oven to cure.
(f) After removing the elastomer from the mold, the channel structures remain in the PDMS.
The next step consists of covalent bonding to a glass slide.

2.3.1 Design of the microfluidic device

The microfluidic chip consists of 90 straight channels in parallel with rectangular cross-sections
and a length of 4 cm. The entire set of channels is hereby divided into four subsets, each con-
taining channels with varying widths. Starting with the largest cross-section and in decreasing
manner, the channel widths are determined as: 28.7 µm, 19.4 µm, 15.1 µm, and 11.9 µm. The
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channel heights are given by the height of the substrate and equal 9.7 µm. Each channel
subset consists of a multitude of either 30 channels in the case of the two widest channels
or 15 channels in the two remaining cases. To ensure optimal perfusion of the channels and
allowing for an easy connection of the tubing, a reservoir is interconnecting the outlets and
the inlets of the channels, respectively. The flow through each channel can be calculated em-

Figure 2.3: Design of the microfluidic chip. The channels are divided into four groups,
depending on their cross-sections. With decreasing order, the channel widths are 28.7 µm
(1), 19.4 µm (2), 15.1 µm (3), and 11.9 µm (3). All channels obey the identical relief height
of 9.7 µm. Liquid inflow towards the channels and outflow of the channels is provided by
the reservoirs, respectively, indicated as white vertical bars, with a length of ≈ 1.0 mm and a
width of ≈ 2.0 cm.

ploying the hydrodynamic counterpart to Kirchhoff’s laws in electrostatics. Analogous to the
electrical resistance, the hydraulic resistance is abbreviated with R, whereas the volumetric
flow rate Q and the pressure drop ∆p are the equivalent of the electrical current and the
voltage, respectively. The mesh rule and the nodal rule are then given by

(a)
M∑
k=1

∆pk = 0 , (b)
N∑
k=1

Qk = 0 . (2.1)

We stress that M is the total number of pressure drops in one mesh and N is given by the
total count of incoming nodes. Together with the Hagen-Poiseuille law in Eq. (1.17), we then
find for the volumetric flow rate in each channel k:

Qk =
∆p

Rk
, (2.2)

with the global pressure ∆p as applied by the pressure controller and the hydrodynamic
resistance Rk in the k-th channel. Eq. (2.2) demonstrates the advantage that even in case of
a partial blockage of some of the microchannels, the flow rates in the remaining undisturbed
channel geometries remain constant. Together with the repetitive design of the channels, we
ensure a useful redundancy on one chip.
For a tube with circular cross-section, the hydrodynamic resistance Rh is given by

Rh =
8µL

πr4
, (2.3)

and we hence find for the resistance of the employed connection tubing (see section 2.4) a
value of Rh ≈ 9.4× 1010 Pa s/m3, where we set the viscosity to µ = 1.0 mPa s.
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Similarly, the hydrodynamic resistance of a rectangular duct of length L, width w, and height
h can be computed via the approximation

Rh ≈
12µL

wh3
(
1− 0.63 hw

) (2.4)

in the regime h < w. Inserting the numerical values of the channel inlet reservoir, we obtain a
resistance of Rh ≈ 6× 1011 Pa s/m3. Accordingly, we find the resistance of one microchannel
with the given dimensions to be Rh ≈ 2.1× 1016 Pa s/m3. Compared to the resistance of both
the inlet reservoir and the connection tubing, the resistance of the channel is five orders of
magnitude larger and hence, the contribution of the reservoir and tubing to the overall flow
resistance are negligible.

2.4 Experimental setup

Once the microchannels are readily manufactured, they are fixed onto an aluminum plate
with a rectangular duct to ensure a torsionally rigid underlying structure not provided by the
microfluidic chip itself. This aluminum plate is then fixed onto a stage, allowing for precise
horizontal positioning under the microscope.
Albeit the tremendous technological developments in the field of microscopy that emerged
in the last decades, we use a brightfield microscope (Nikon TE2000-S) to capture the flow-
ing RBCs in the microfluidic channels. For this microscopy technique, light is transmitted
through the specimen, and depending on their optical density, they cause attenuation of light
and create a contrast in the final footage. Besides its simplicity, we eschew the necessity
of staining RBCs, which in turn might lead to structural and mechanical alterations of the
cytoskeleton. To suppress any environmental noise, the whole microscopy setup is decoupled
from the surroundings via a damping table.
A polyethylene (PE) tubing (outer diameter 1.3 mm, inner diameter 0.9 mm) is inserted in
each of the drilled holes towards the channel reservoirs. The approximate length for both
the inlet and the outlet tubing is 30 cm. An Eppendorf tube is then connected to the outlet
tubing, collecting all the liquid debris after being flown through the microchannels. The inlet
tubing on the other hand is connected through a drilled hole in a custom-tailored sample
holder providing an airtight sealing of an Eppendorf tube containing the final blood solution
according to section 2.1. A second opening in this sample holder is connected to a high-
precision pressure controller (Elvesys Elveflow OB1-MkII), providing a stable pressure supply
from 0 mbar − 2,000 mbar. The experimental setup including the various steps involved is
presented in Fig. 2.4. A high-power red light-emitting diode (LED) is employed in the bright-
field illumination unit, delivering a monochromatic light with a wavelength of 640 nm. Using
fiber optics, the light is bundled into the optical path of the microscope. This divergent light
then passes a condenser lens, rendering it into a convergent light beam to ensure optimal
illumination of the specimen. The light which is passing through the object is collected by
the objective to create a magnified real image, which is then projected onto the chip of the
attached camera.
In the conducted experiments, we primarily seek to resolve the exact shape of flowing RBCs as
well as to achieve a high position accuracy. Due to its high magnification and numerical aper-
ture, an oil-immersion objective (Nikon Plan Apo VC 60×) has been used. Given the physical
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Figure 2.4: Experimental setup to study RBCs in microcapillary flow. (a) Pressurized air
(1) is fed into a high-precision pressure controller (2), whose output is connected to the sample
holder containing the dilute RBC suspension. A brightfield microscope (4) equipped with a
high-speed camera (3) is employed to record the footage. (b) Detailed view of the sample
holder (5) being connected to the microfluidic chip (7). The outlet of this chip is connected
to a waste container (8). To precisely control the positioning of the microfluidic chip, the
latter is mounted with all the necessary attachments on a moveable stage (6). White arrows
indicate the direction of the blood flow and the pressure gradient, respectively. (c) Snapshot
of RBCs in the microchannel at a pressure drop of 200 mbar for illustration purposes. On
the right-hand side, the inlet reservoir is partly visible containing inflowing RBCs. (d) Final
cropped image with the default magnification capturing a flowing RBC exhibiting a croissant
shape.

pixel size of the camera chip, 14 µm, we achieve a theoretical resolution of approx. 230 nm,
which is sufficiently large to resolve the characteristic features of the cellular shapes.

2.4.1 Image acquisition

Image series of flowing RBCs in the microfluidic channels were recorded at 50−500 fps using a
high-speed camera (Fastec HiSpec 1, cf. Appendix A). The actual framerate within this range
hereby depends on the set pressure of the pressure controller and hence the mean velocities
of the RBCs and is chosen to capture the moving RBCs but suppressing motion blur. The
footage is obtained in the so-called single mode of the camera, yielding a single image sequence.
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The camera is equipped with an internal memory, which makes the acquisition independent
of the CPU power since no data stream has to be processed by the operating PC. Albeit
the possibility of high-speed image acquisition, the data amount in one recording sequence
is limited to the internal memory size of the camera (2 GB). We, therefore, crop a region
of interest with the length of the field of view (1280 px) and a height slightly larger than
the channel width (≈ 100 px). Theoretically, multiple channels can be recorded by enlarging
the region of interest, however, since the intermediate space between neighboring channels is
comparably large, this would reduce the net output of recorded cells in one sequence.

2.4.2 Single particle tracking algorithm

The base version of the algorithm has been implemented by Thomas John to trace the movement
of microswimmers. Severe adjustments and extensions to adapt the algorithm to the detection
and tracking of RBCs have been carried out by the author.

In contrast to particle imaging velocimetry (PIV), where a frame-to-frame correlation is cal-
culated to obtain the velocity field of tracer particles in a surrounding fluid [146], we apply
a single particle tracking (SPT) method to the recorded image sequences. By this technique
we do not obtain any detailed information about the flow profile within the channel; however,
we are able to extract the necessary velocity and position data of every individual cell and
are therefore able to calculate a phase diagram of cell shapes in dependence on cell velocity
and axial position within the channel. The SPT algorithm consists of numerous steps and is
widely available and documented throughout scientific literature and thus we will only focus
on the features of the custom-tailored algorithm designed to fit the specific needs to detect
RBCs in our experiments.
As a first step in reliably detecting RBCs, we subtract the background of the image sequence.
Since the images capture a static channel, i.e. static pixel information, and dynamically chang-
ing pixels when cells are flowing through the field of view, this background Bij is estimated
by the arithmetic mean of a subset of N images Inij :

Bij =
1

N

N∑
n=1

Inij , (2.5)

with the pixel coordinates i, j. A value of N = 100 has been proven to be sufficient, such that
only small fluctuations are reminiscent in the resulting image after the background has been
subtracted iteratively from individual images. This n-th resulting image Rnij is then given
by

Rnij = |Bij − Inij | , (2.6)

where the absolute value has been calculated since all deviations from the background are
of interest. To smooth the resulting images, a median filter with a stride of 3 × 3 pixels
is then applied subsequently, removing artifacts and leaving a despeckled image. After the
conversion of the gray-value image to a binarized image, we obtain of all white pixel clouds
their respective centers of mass, which is equivalent to the center of mass of the RBCs. Since
the binarized images of flowing RBCs may contain neighboring black pixels within the white
cell cores, we fill these holes in the input binary images. An example of this overall process
with the single steps is sketched in Fig. 2.5.
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Figure 2.5: Scheme of image post-processing steps for RBCs in microcapillary flow. For
better visualization, the widths of the individual images have been cropped to fit one RBC.
(a) Background of the cropped channel, obtained by the arithmetic mean of 100 images of
one image sequence, cf. Eq. (2.5). (b) Raw image of a flowing RBC captured at the identical
channel position as in (a). (c) Resulting image after subtracting the background image (a)
from (b), according to Eq. (2.6). (d) Image after application of a median filter. (e) Binarized
image, obtained from gray-value image (d). (f) Filling the connected black pixels in (e), we
omit any holes in the final cell image. The red dot indicates the position of the center of
mass.

Additionally to the centers of mass, we obtain further shape descriptors such as the area,
the orientation, and the eccentricity of an ellipsoid exhibiting identical second moments. Due
to the installed optical components and the resulting resolution, we conjecture a general
uncertainty in the detection of the center of mass of sp = ±0.1 µm.
To obtain trajectories from these RBC positions, we minimize the distances of these positions
in adjacent image pairs. This linking protocol is applied to the entire image sequence yielding
the trajectories of all recorded cells.
We further apply a filter to the obtained trajectories, omitting all trajectories of RBCs that
cannot be regarded as isolated cells since the intercellular distance, i.e. the distance to the
preceding or succeeding cell is too close, such that hydrodynamic interactions are no longer
negligible. Images of RBCs fulfilling the isolated cell property are cropped within a section
of 90 px × 90 px, an image size large enough to cover the entire channel width including the
channel borders. A sophisticated algorithm ensures that the whole cell is captured within this
section, independent of the exact position of the center of mass.
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Chapter 3

Shape phase diagram of flowing RBCs in
microchannels

In this chapter, we present results from a joint numerical and experimental study, performed in
close collaboration with the Biofluid Simulation and Modeling group at Bayreuth University,
who carried out all numerical simulations shown in the subsequent sections. The addressed
research goal was the establishment of profound knowledge of single RBC behavior under
laminar flow conditions in microcapillaries. The results presented in this chapter have been
subject to prior publication [147].

3.1 Introduction

The mechanistic behavior of red blood cells as the major cellular constituent governs the
overall blood flow to a large extent. As a key to fully understand the flow dynamics and to
reliably predict blood flow in arbitrary confinements, e.g. in realistic in vivo networks, we
seek to analyze the dynamics of single RBCs traveling in a straight rectangular duct. Albeit
the simplicity of this setup, we present a rich shape phase diagram consisting of two distinct
shape categories, the axisymmetric croissants, and the asymmetric slippers. Based on our
experimental setup, an in silico approach has been tailored to mimic the employed channel
geometries in vitro. Both approaches show a very good agreement between the phase dia-
grams and the radial distribution of RBCs in the channel.
These phenomena form the cornerstone for the development of cell sorting techniques, specif-
ically for those being based on individual cell deformability, such as deterministic lateral
displacement devices [148]. Other possible applications involve diagnostics tools integrated
on lab-on-a-chip devices as a subtle tool to detect pathological conditions affecting the cell
deformability. In addition to current techniques that mainly deal with RBCs in stasis, a wide
parameter space can be explored using dynamic techniques.
One of the very first conducted experiments on dilute driven blood suspensions in vitro has
been performed by Gaehtgens et al. [24], describing distinct shape categories consisting of ax-
isymmetric and asymmetric shapes. A comparative study of in vitro and in silico experiments
was performed by Secomb et al. [47]. They used a cylindrical tube with a diameter identical
to the equilibrium diameter of the RBC discocyte, i.e., 8 µm. Tomaiuolo et al. [57] employed
slightly larger channel diameters of 10 µm, observing both croissants as well as slippers for
various velocities.
Most studies addressing blood flow in narrow capillaries focus on rather dense suspensions
and associated phenomena, such as e.g. collision dynamics and intercellular interactions [17,
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22, 24, 30, 78, 149]. Often, the assumed typical diameters of the channels are larger with
respect to our microfluidic setup [34, 150].
Among those studies addressing the isolated RBC behavior there are mostly numerical inves-
tigations with RBC models that do not capture the entire complexity of the real underlying
structure. Simplifications consist e.g. of the use of 2D vesicles as RBC models.

3.2 Experimental setup

Following the preparation and handling protocols outlined in section 2.1, we obtain a sus-
pension of RBCs in a phosphate buffer and bovine serum albumin solution. The hematocrit
of this solution has been adjusted to . 1.0 % to maintain on the one hand a solution dense
enough in RBCs such that the recorded image series contain sufficient cells. On the other
hand, we seek to record individual RBCs rather than (hydrodynamic) clusters with an insuffi-
cient intercellular distance. Nevertheless, we find single RBCs as well as agglomerates of cells
advecting through the channel. The former have been further processed to extract velocity
data and cropped images capturing only the cell shape, whereas the latter have been omitted
for our study. In accordance with both experimental and theoretical observations stating that
the hydrodynamic interactions can be neglected for intercellular distances twice the channel
width [27, 151], we set an intercellular distance of 40 µm as the threshold to define isolated
cells.

3.3 Modeling the RBC dynamics in silico

This study has been designed as a comparative study of experimental and numerical research
goals. The following modeling of the RBC flow in microcapillaries has been entirely designed
and carried out by Achim Guckenberger and Stephan Gekle from the Biofluid Modeling and
Simulation group at Bayreuth University.

The setup for the numerical simulations is based on the given experimental restrictions and
setup. A single RBC is modeled in a straight channel with a rectangular cross-section, obeying
a width ly = 12 µm and a height of lz = 10 µm. The length of the channel segment is set as
lx = 42.7 µm, with employed periodic boundary conditions. The channel walls themselves are
undeformable, with hardcore interactions being present between them and the RBC body.
Both the internal as well as the surrounding fluid of the RBC are modeled as Newtonian fluids.
Based on physiological values, the dynamic viscosity of the surrounding phase equals the
viscosity of plasma, µext = 1.2 mPa s. The internal viscosity of RBCs is subject to variations
spanning multiple orders of magnitude under physiological conditions and increases over the
lifetime of each RBC [83]. Yet, an average viscosity contrast λvisc = µRBC/µext = 5 of inner
and outer fluid is assumed as a realistic average value and hence maintained throughout the
performed simulations if not explicitly stated otherwise [83, 147].
The modeled RBC exhibits a surface with an area of 140 µm2, enclosing a volume of 100 µm3,
in accordance to the measured quantities of RBCs ex vivo, as described in section 1.1.1. The
RBC membrane is further modeled as an infinitely thin layer, whose bending resistance is
set to κB = 3× 10−19 J. Additionally, the area dilatation modulus κA is set to κA = 100κS,
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effectively limiting the total relative area change below 2 %. κS = 5× 10−6 N m−1 denotes
the shear elasticity of the membrane. Further implementation details are not provided in this
section; however, they are available in references [147, 152].
In the experimental approach, we are limited in influencing the initial RBC shape upon entry
of the microchannel. Additionally, the radial position when entering the channel remains
an uncontrollable parameter in the current experimental setup. In the numerical simulations,
however, these two parameters can be assessed and varied according to the underlying physical
restrictions, namely:

(i) Variation of the initial cellular configuration, and

(ii) Variation of the initial radial position.

In the first case, we vary the initial shape between discocyte, croissant, and slipper shapes.
The radial offset in the latter case is given as the Euclidean distance of the center of mass

with respect to the centerline as a reference point, rinit =
√
y2

init + z2
init. rinit is further varied

along a line parameterized as zinit = 5yinit/9, in very good aproximation to the diagonal axis,
as depicted in Fig. 3.1.

Figure 3.1: Starting configuration in the numerical model. A discocyte initial shape is
placed in a rectangular duct, with the symmetry axis of the RBC being aligned with the
channel centerline. The initial offset rinit can be varied along a parameterized line (see main
text for further specifications). Image adapted from reference [147].

In the case of the discocyte initial shape, whose symmetry axis is aligned with the channel
axis, we thus obtain a maximal initial offset of rmax

init ' 2.06 µm.

3.4 Experimental results

Among the final recorded cell images, we discriminate three hydrodynamically induced shape
classes by manual evaluation: The “croissant” and the “slipper” shapes as well as a class we
refer to as “others”, containing all cell shapes that do not fit into either of the previous cat-
egories. The croissant shape characterizes an axisymmetric RBC shape with respect to the
flow direction, contrasting the asymmetric slipper shape, describing off-centered RBCs with
respect to the channel centerline. The latter can be found in two configurations, originating
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from one another through mirroring on the channel axis.
Although the others are defined as outliers with respect to the distinct shape classes croissants
and slippers, subclasses within these others can be observed, depending on the prevailing flow
conditions. A collection of others prevalent in different flow conditions, alongside croissant
shapes and slippers, obtained both from experiments and simulations, is shown in Fig. 3.2.
Typically, discocytes displaying a tumbling motion are observed regularly at low flow veloc-

Figure 3.2: Comparison of cell shapes obtained in vitro and in silico. (a) In silico discocyte
shape, with a visible mesh and a diameter of 8 µm. For the sake of visibility, the front half has
been made translucent. (b) Typical croissant shape obtained in the numerical simulations,
which has been employed also as an initial shape in some simulations. The cell velocity is
around 1.1 mm s−1 and the cross-section of the middle plane has been marked by a solid
black line. (c) Similarly, a slipper shape from simulations is obtained at a cell velocity of
ca. 5.2 mm s−1. As in the previous case, the circumference of the center cut is highlighted
by the solid black line. The black horizontal lines on the top and bottom, resp., of (b,c)
indicate the channel borders. (d) A typical croissant shape obtained in vitro at a cell velocity
of 1.0 mm s−1. (e) Representative slipper shape for a cell velocity of 6.2 mm s−1. (f) A
collection of various cell shapes classified as others. Starting anti-clockwise in the upper
left corner, a tumbling discocyte in side view is depicted, with a cell velocity of approx.
0.4 mm s−1. Subsequently, the cell velocities increase, with the individual cells flowing at
2.1 mm s−1, 4.3 mm s−1, 6.3 mm s−1, 8.2 mm s−1 and 9.9 mm s−1, respectively. Multilobated
cells are seen to undergo either a tumbling motion or a membrane movement resembling tank-
treading behavior. For each cell image depicting a hydrodynamically induced shape, the flow
is coming from the right. All scale bars correspond to a length of 2 µm. Image adapted from
reference [147].

ities uRBC . 0.5 mm s−1. As the flow strength increases, the hydrodynamic forces become
more pronounced, inducing shape changes from the equilibrium discocyte shape to deformed
shapes. Others then consist mainly of multilobated cell shapes, similar to the ones found in
shear flow by Lanotte et al. [150]. They performed additional experiments in Poiseuille flow
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with adapted wall shear rates and confirmed the existence of the formerly obtained shapes.
In an intermediate flow regime, they observed the tumbling discocytes population to vanish,
and the most pronounced cell shape resembles a folded stomatocyte, which can be associated
with tilted slippers in top view, as depicted in one of the cell images in Fig. 3.2 (f).
Besides multilobated cells, formed wrinkles are regularly observed for others in a velocity
regime, where slippers are the most populous cell category. Although the position of these
wrinkles is non-stationary with respect to the cell, a tank-treading movement (cf. section 1.2.1)
cannot be confirmed in the current experimental setup. Apart from these previously described
subcategories of cell shapes, additional, highly irregular cell shapes are observed. In general,
the multitude of different shapes renders a more refined approach virtually impractical and
therefore, others do not comprise a well-defined cell shape but are rather defined as shape
outliers not fitting into the croissants or the slippers category.
We stress that in most scientific literature, the nomenclature is preallocated for the symmetric
cell shapes by the term parachutes. However, since a perfectly rotationally symmetric shape
(parachute) can only emerge in cylindrical ducts [21], we distinguish croissant shapes prevail-
ing in the employed rectangular duct from these parachutes.
For a systematic investigation, we apply a pressure drop on the microchannels containing
the final blood solution (cf. section 2.1), ranging from 20 mbar − 1,000 mbar in discretized
steps. These pressure drops translate linearly into mean cell velocities uRBC, ranging from
0.14 mm s−1 − 10.6 mm s−1, and thus cover the entire range of RBC velocities found in
humans (cf. table 1.1).
Yet, due to different axial positions within the channel and resulting velocity differences ac-
cording to the imprinted Poiseuille flow profile, the individual mean velocities of slippers,
croissants, and others slightly differ. In Fig. 3.3 the mean velocities and corresponding stan-
dard deviations σu are depicted.

Figure 3.3: Obtained cell velocity for the applied pressure drop in the microfluidic channel
with a cross-section of 12 µm×10 µm for all cell shape categories. The error bars indicate the
standard deviation from the mean speed (denoted by symbols). Image adapted from reference
[147].
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The error bars for the given mean velocities in Fig. 3.3 correspond to the calculated standard
deviations.
In the following sections, we restrict our findings to the channel cross-section of approx.
12 µm × 10 µm, since the experiments performed with divergent cross-sections show a less
rich phase diagram. Only the discussed geometry obeys significant slipper and croissant
populations due to the specific dimensions and the resulting aspect ratio.
Further, the cell images are recorded at two distinct positions: the channel entrance x = 0 mm,
i.e. the transition from inlet reservoir and channel, and the position x = 10 mm further
downstream, respectively. The first position reveals the initial distribution of RBCs upon
entering the confined geometry. At the latter position, on the other hand, transient shapes
converged to the steady-state shape, as was also confirmed by Claveŕıa et al. [30], observing
only minor quantitative changes in the cell shapes recorded at x = 2 mm and x = 10 mm.

3.4.1 Shape phase diagram of flowing RBCs

By manual classification of the individual cell shapes at a certain applied pressure drop, we
compute the fraction of croissants and slippers in each image set. In Fig. 3.4, these fractions
are shown, constituting the shape phase diagram.

Figure 3.4: Shape phase diagram of the underlying microfluidic channel geometry. Horizon-
tal error bars indicate the standard deviation σu of the mean cell velocity. Individual data
points of each respective population are connected via straight lines as a guide for the eye. As
such, the colored areas represent the fractions of croissants (reddish area), and slippers (blue
area), respectively. The insets represent typical cell images for the three distinct categories.
Image adapted from reference [147].

For each pressure drop, at least 100 cells have been classified, with a total number of 3090
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RBCs. The error bars in the diagram specify the velocity error, given as the standard devi-
ation σu of the velocity. At very low velocities the RBC shape is associated with tumbling
discocytes, which are then classified as others according to our scheme. A peak of the crois-
sant population is found for velocities 1 mm s−1 . uRBC . 2 mm s−1. With increasing RBC
velocity, the croissant fraction decreases, towards an increased slipper population, which is
the most pronounced shape for the highest velocities, as can be seen in Fig. 3.4.

3.4.2 Axial distribution of RBCs in the microchannel

From the particle tracking results, we have detailed knowledge of the y-positions, i.e. the
distributions of RBCs across the channel width are known (cf. section 2.4.2). To quantify the
lateral position of the cells, given as the z-projection of the RBC, we employ the probability
density distribution pdf(y) of the discrete position data for every imposed pressure drop. The
best estimate of the pdf is given by a kernel density estimator using the optimal bin width.
In particular, a gaussian kernel with a fixed support of [−6, 6] µm, according to the channel
width, was used.
In Fig. 3.5, the probability densities are depicted at two distinct positions: In Fig. 3.5 (a), the
initial RBC distribution at the channel entrance, i.e. at a position x = 0 mm, is depicted.
In contrast, Fig. 3.5 (b) shows the distribution at a position x = 10 mm further downstream,
where the cell shape evolution is supposed to have reached a steady state. In both cases, we

Figure 3.5: Radial distribution of RBCs along the channel width for two distinct positions:
In (a), the estimated probability density of all RBCs at the entrance position of the channel,
i.e., for x = 0 mm, is depicted. Similarly, the estimated probability densities of the y-offset
at a position x = 10 mm further downstream is depicted in (b). In both subfigures, numbers
adjusted to the left of the individual graphs indicate the applied pressure drop in matching
colors in mbar. Numbers to the right of the graphs indicate the corresponding mean speed
in mm/s. Graphs are subject to a vertical offset to enhance visibility. Image adapted from
reference [147].
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analyze the pooled distributions, i.e., independent of the individual cell shape for each applied
pressure drop. In Fig. 3.5 (a), the y-offset from the center shows an initially centralized peak
for low pressure drops, which subsequently broadens as the pressure drop increases. Further
downstream, the RBC distributions also obey a pronounced central peak for low pressure
drops ∆p . 200 mbar, as shown in Fig. 3.5 (b). As the RBC velocities increase, this central
peak minimizes and the distribution broadens towards the channel walls. Finally, for pressure
drops ∆p & 500 mbar, a bimodal distribution is adopted.
Qualitatively, the origin of the distribution characteristics can be understood by considering
the individual shape categories. As depicted in Fig. 3.6, the probability densities for each
distinct shape category at a position of x = 10 mm downstream of the channel entrance differ.
Croissants obey a central peak around the channel center indicating a narrow distribution,
while others mostly occur in the channel center for low pressure drops ∆p . 200 mbar. The

Figure 3.6: Radial distribution of RBCs along the channel width at a position x = 10 mm
downstream. (a) Distribution of cells classified as croissants. For pressure drops
∆p ≥ 600 mbar, no croissants are detected. (b) Radial distribution of slipper shapes
within the microfluidic constriction. Similar to the case in (a), no slipper shapes occur for
∆p ≤ 200 mbar. (c) Distribution of all shapes categorized as others. In each panel, numbers
adjusted to the left of the graphs indicate the applied pressure drop in matching colors. To
the right of the graphs, the mean speed is denoted. Graphs are subject to a vertical offset to
enhance visibility. Image adapted from reference [147].

distribution of others is consequently broadening for increasing pressure drops. In contrast,
the slipper distribution shows a bimodal behavior, indicating the off-centered position of the
detected cells. With increasing pressure drops both peaks are more pronounced and tend to
migrate towards the channel walls. The joint estimates for all RBCs is presented in Fig. 3.5
(b). From the results one might deduct that velocity is the key parameter in determining the
final shape of the RBC. However, a comparison of the RBC centroid positions at the entrance
position, i.e., at x = 0 mm, obeys an inhomogeneous distribution, as illustrated in Fig. 3.5 (a).
For low pressure drops, the distribution is biased towards a centralized peak at the channel
centerline. As the pressure drops increase, the distributions are successively broadening. These
observations give rise to the initial distribution as a second important parameter, besides
the RBC velocity, influencing the final shape. Our employed experimental setup limits the
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possibility to affect the initial distribution, however, we stress that in principle the initial
distribution can be altered, e.g. by the use of sophisticated optical tweezer setups.

3.5 Numerical results

According to the experimental setup, we investigate the properties and the behavior of single
RBCs while flowing through rectangular channels. The flow velocity, as well as the radial offset
rinit from the channel centerline, are varied to study their influence on the final RBC shape.
However, this final shape is either obtained in the steady-state, i.e., after a sufficient elapsed
time interval where the cell shape and the radial position remain constant. Alternatively,
we find a periodic oscillation of the center of mass induced by oscillating contractions of the
cellular shape, similar to previous findings in the case of slippers [55].
An exemplary temporal evolution from an initial discocyte towards a stable croissant shape
is depicted in Fig. 3.7. As an intermediate state, a slipper is formed, yielding the previously
described oscillatory motion of the centroid position due to the periodic contractions of the
cell. This slipper then develops into a croissant state, located at the channel center. Yet,
the croissant shape is not fully converged, as indicated by the peak, caused by minuscule
membrane deformations. A final, i.e., fully converged croissant shape is obtained in this case
after an elapsed time of ca. 14 s. In most cases, the cell shapes converge to either croissant

Figure 3.7: Temporal evolution of an initialized discocyte, whose symmetry axis is aligned
with the channel centerline. Soon an intermediate slipper state is formed, leading to oscillatory
shifts of the centroid position. At approx. 9 s, an intermediate croissant shape exists, which is
characterized by the minor membrane deformations leading to a shift in the radial position.
Finally, a stable croissant is formed, marking the steady state. An initial radial offset of
approx. 1.9 µm and a velocity of approx. 2.8 mm s−1 have been chosen to provoke this scenario.
Image adapted from reference [147].

or slipper shapes in the steady-state. The former can be subdivided into two categories: The
tank-treading (TT) and the non-tank-treading (non-TT) croissants. Taking into account the
symmetry of the croissant shapes, the tank-treading behavior can only arise in the case of
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asymmetrically formed croissants, which only emerge at high velocities, as will be discussed
in the following sections.
Throughout the analysis, we perform a simulation for one set of parameters with one cell, and
thus, the mean radial positions are given by a temporal average of the cell positions in the
steady-state, with the extremal values indicating the error bars. Starting with an intermediate
to high velocity of approx. 6.5 mm s−1 we observe a pronounced bistability of the final shape, as
depicted in Fig. 3.8. In other words, we find a sharp transition line between the croissant and
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Figure 3.8: Scheme of the pronounced bistability found in the simulations. RBCs initialized
as discocytes. At ≈ 6.5 mm s−1, a sharp transition between croissant and slipper shape is
observed, in conjunction with a sudden shift of the steady state radial position. Vertical error
bars correspond to the minimal and maximal centroid positions, originating from periodic
contractions of the slipper shapes (inset images show the respective shapes). Image adapted
from reference [147].

the slipper shape as the initial radial offset approaches rinit ' 0.7 µm. Below this transition
value, RBCs initialized as discocytes develop a croissant shape in the steady-state, contrary to
slippers that develop for cells with an initial offset above this critical value. Interestingly, the
slippers are mostly off-centered along the channel width, i.e. they are oriented as the slippers
obtained in vitro. Along the channel height, only minor off-sets are seen.
Generally, the observation of bistability indicates the importance of the initial radial offset
as a crucial parameter and we conjecture that the same holds for the initial shape, since the
maximal radial offsets are determined also by the adapted shape. Hence, for a systematic
investigation, we vary the velocity of the advecting cells gradually as in the experiment.
Additionally, we impose three different initial shapes and screen a set of initial radial offsets.
The resulting phase diagrams, where the previously described parameter spaces are exploited
are presented in the following section.

3.5.1 Shape phase diagram of flowing RBCs

Similar to the experimental findings we seek to investigate the shapes of the RBCs in the final
state. In contrast to the experimental approach, the in silico approach allows for manipulating
the initial shape configuration. We therefore employ three initial configurations, as discocyte,
croissant, or slipper, respectively. The discocyte is obtained directly from the standard initial
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modeling according to the formula in Eq. (1.1). The two latter shapes are initialized by
previous simulations yielding the respective final state.
The resulting three phase diagrams are presented in Fig. 3.9. We stress that these phase
diagrams conceptually differ from the experimental phase diagram presented in section 3.4.1
due to the intricate parameter space. Therefore, the final states are not only presented as
categorial fractions in dependence of their centroid velocity but rather the steady-state shapes
of simulated RBCs are depicted for different cell velocities and varying initial radial offsets
(cf. section 3.3 for detailed information).
In addition to the imposed cell velocities, we provide the bending capillary number CaB :=
µuRBCR

2
RBC/κB as a dimensionless measure of the relative flow strength in comparison to the

intrinsic bending forces in Poiseuille flow profiles. This capillary number is often referred to
in the context of the coupling of fluids and deformable objects in different geometries.
All three phase diagrams in Fig. 3.9 share a pronounced peak from 2 mm s−1 . uRBC .
3 mm s−1, where only croissants emerge in the steady-state. Slippers, on the other hand, show

Figure 3.9: Cell shapes obtained in silico for varying offsets rinit and RBC velocities. In
(a), cells are initialized as the typical discocyte, whereas in (b), croissant shapes, obtained by
previous simulations, are employed as initial cell shapes. Similarly, slipper shapes formed the
initial RBC shape in (c). In each subfigure, the dashed line corresponds to the maximal initial
offset rmax

init . Each symbol in the subfigures indicates one distinct simulation, with the mean
cell velocity in the steady-state by the abscissa value and horizontal error bars corresponding
to the obtained extremal velocity values (invisible if the error margins are within the symbol
size, e.g. for low velocities). The color shaded areas indicate the distinct shape phases of
croissants (reddish area), and slippers (blue area). They are separated by a sharp transition
line, drawn as a solid black intersection line. Image adapted from reference [147].

tank-treading behavior with the only exception at very low velocities uRBC < 0.5 mm s−1,
where non-TT slippers occur independently of the initial shapes. These non-TT slippers
instead show a tumbling motion when advecting through the channel, i.e., the cellular shape
is maintained while occasionally rotating around the z-axis. This tumbling movement has
been observed previously in cylindrical channels by Fedosov et al. [55]; however, a change of
the cellular shape was in effect [55]. Furthermore, the tumbling motion of the cells is also
observed for very low velocities in the experimental approach, yet with cell shapes classified
as others.
Similarly, we find atypical croissant shapes for high velocities & 7 mm s−1, which obey a tank-
treading movement. Henceforth, we will refer to these shapes as TT-croissants.
A comparison of the relative areas associated with croissants and slippers, respectively, reveals
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the fact that croissants are favored in the final state when initialized as such. On the other
hand, the final slipper state is privileged when slippers are initialized.

3.5.2 Axial distribution of RBCs in the microchannel

Besides the final shape, we are also interested in the final centroid position of the converged
cell shapes. Of each converged simulated cell shape, the positions are then computed via a
temporal average. This procedure then yields the mean cell positions by a simple arithmetic
average of the individual cell positions. The resulting graphs of these final radial positions are
given in Fig. 3.10 (a) for the three initial cell shape categories separately. A main finding is the

Figure 3.10: Simulation results of average steady state radial positions of RBC centroids
(a) and cell extents (b). The individual initial shapes are plotted separately to observe the
influence of this initial configuration on the final position. Horizontal error bars indicate the
velocity margins of the simulation ensemble. Vertical error bars, on the other hand, indicate
the minimal and maximal values. Image adapted from reference [147].

presumably logical fact that the final centroid position is independent of the initial cell shape.
Consequently, the position of each individual cell shape in the final state is solely determined
by the imposed flow velocity. As a consequence, the individual data points corresponding to
the final slipper shapes overlap for the distinct initial configurations.
Non-TT croissants further appear in very close proximity to the channel centerline, with only
minor deviations. These deviations mostly arise due to minor oscillations of the surrounding
membrane. TT-croissants, on the other hand, appear only at high velocities & 8 mm s−1 at
an off-centered position of approx. 0.4 µm. Even though they are still classified as croissants,
the tank-treading can only occur in non-symmetrical shapes, however, their slight asymmetry
resembles the typical croissant shape.
A closer inspection of the final slipper shapes is presented in Fig. 3.10 (b), where we focus
on the extents of the slippers. These extents are defined as the measured edge lengths of an
associated bounding box containing the respective slipper shape. Interestingly, the y-extent
and the z-extent show only minor changes with increasing velocity, in contrast to the slipper
length (x-extent), which is increasing as the velocity increases.
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3.6 Discussion of in vitro and in silico results

An accurate definition of the cell categories and the corresponding thresholds has proven to
be a major problem. This fact explicitly holds for the case of croissants, which are defined
as axially symmetric. In the simulation, detailed 3D information of the membranous sack is
accessible, contrary to the experimental data, only providing projections of the cellular body
in the z-plane.
Apart from the conceptual difference of these imaging techniques, we note that in the case of
experimental images the true cell borders are blurred out due to diffraction occurring at the
boundaries.
Additionally, the field of view is limited in the experimental setup, thus collision events of
adjacent cells remain ambiguous. Such collisions may directly alter the shape and position
of cells but also lead to transient cell shapes further on. To overcome this drawback, we
analyzed the image sequences twice in order to minimize the subjective input. Nevertheless,
a coherent distinction between the cell shapes is highly non-trivial and we therefore seek to
find an optimized, objective classification tool, as presented in chapter 4.

3.6.1 Comparison of shape phase diagrams

Qualitatively, the experimentally obtained and the numerically obtained phase diagrams lead
to identical implications: For very low velocities, the RBC shapes observed in the experiment
merely consist of other shapes, which is mirrored in the simulation data, favoring non-TT
slippers. An exception, however, is given for the cells initialized as croissants, which obviously
favor croissants also at low velocities. We thus conjecture that these shapes are highly unlikely
in the experimental distribution of cell shapes.
A second resemblance between these two phase diagrams is present at low velocities
2 mm s−1 . uRBC . 3 mm s−1, where in the simulations a croissant-only peak occurs.
Analogously, we observe a large proportion of croissant shapes, including the global peak of
the croissant fraction in the experiment. Furthermore, the population of croissants decreases
in favor of slippers as the velocity further increases.
For a direct quantitative comparison of the two methodologies, we need to translate the phase
diagram of the numerical approach, relating the final state shape to the imposed cell velocity
and the initial radial offset, to the experimental phase diagram, relating a true cell shape
fraction on the cell velocity with unknown initial cell shape configuration, yet with known
radial distribution at the channel entrance x = 0 mm.
Therefore, we perform a convolution of the experimental distribution of cells at the initial
position, as depicted in Fig. 3.5 (a) and the numerical phase diagram provided in Fig. 3.9 for
all the distinct initial cell shapes (a)-(c).
Since the outcome of this method is highly affected by the choice of the transition line of
slippers and croissants in the numerical phase diagram (cf. Fig. 3.9), we will discuss first the
essential estimation of the transition line based on the underlying finite simulation dataset.
We restrict the necessary steps that precede the estimation of this transition line to the case of
an initialized discocyte shape and note that the performed steps can be generalized to obtain
the transition lines of the remaining cases.
Starting with the discrete set of performed simulations yields the numerical phase diagram as
depicted in Fig. 3.9 (a); however, with the data points only. Connecting each of the largest
values of rinit which still yields croissants (red circles), and the lowest rinit yielding slippers
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Chapter 3 Shape phase diagram of flowing RBCs in microchannels

(blue diamonds), respectively, results in two lines, indicating the general uncertainty owed to
the discretization pattern of the simulation parameters, such as velocity and initial offset.
In Fig. 3.11, these two lines are represented by the violet line in the former case and the green
line in the latter case. The line in between these upper and lower bounds, shown as a grey

Figure 3.11: Scheme to determine the transition line between croissants and slippers and the
corresponding uncertainties in the prediction. The underlying data points (shaded symbols)
correspond to the ones in Fig. 3.9 (a), i.e., they are obtained with a discocyte as starting shape.
The violet solid line indicates the minimum position according to the numerical data, for the
transition value rtrans. Analogously, the grey and the green solid lines represent the average
and the maximum value, respectively, for the transition threshold between the distinct shape
categories of croissants and slippers. The non-shaded data points correspond to the mean
experimental velocities uRBC (circles), and the associated errors uRBC + σu. Image adapted
from reference [147].

line in the scheme, is obtained via the arithmetic mean of corresponding parameters from
adjacent simulation symbols. This line then represents the estimated transition line rtrans of
slippers and croissants.
In a further step, we evaluate the ordinate values on this line belonging to the measured ex-
perimental mean cell velocities uRBC, resulting in the best guess for the transition value rtrans,
denoted by the circular symbols in Fig. 3.11. Accordingly, the values of rtrans are evaluated
for the lower and upper transition lines as an error estimation of rtrans at the measured mean
cell velocity uRBC.
Bearing in mind that the velocity of the RBCs exhibits a certain standard deviation σu around
the mean value uRBC, we analogously compute the values of rtrans for the values of uRBC±σu.
We thus compute the respective values of rtrans at these abscissa values, analogously to the
previous case. Consequently, we obtain 9 values of rtrans.
We further consider the uncertainty of the experimental centroid positions, given as ±sp (cf.
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3.6 Discussion of in vitro and in silico results

section 2.4.2), which yield an uncertainty in the transition threshold of rtrans ± sp. For each
of these two values, the aforementioned procedure is repeated, yielding a total of 27 predicted
values of rtrans.
The entire set of values of rtrans is then simply converted into the corresponding values of the
y-offset (cf. the definition of rtrans provided in section 3.3), yielding a transformation into
values that exhibit an experimental equivalent.
Integrating the estimated probability densities of the experimental cell centroid positions at
the entrance position in the limits of the obtained y-offsets finally yields the predicted fraction
of croissants φ of the numerical simulation:

φ =

yinit∫
−yinit

pdf(y|x = 0 mm) dy . (3.1)

Specifically, the mean value of φ is obtained for the values of ytrans which are associated with
the best guess for rtrans.
Of the remaining 26 values, we calculate accordingly the predicted fractions φ and set the
minimal value φmin as the lower bound for the corresponding error and the maximal value
φmax as the upper bound for the error. These extremal results are indicated as triangles in
Fig. 3.11, with down-pointing triangles denoting the largest estimate of rtrans and up-pointing
triangles denoting the lowest estimate of rtrans.
A special case needs to be accounted for in this procedure at the croissant-only region of the
numerical phase diagram. In the simulation setup, the maximal initial offset rmax

init is limited,
depending in general on the initialized shape. As the entering RBCs in the experiment obey a
manifold of shapes, this value of rmax

init is principally exceeded. To overcome this inconsistency,
we set the value of the transition threshold as rtrans = 6, yielding correct outputs since the
probability densities are normalized onto this interval, coinciding with the physical channel
width.
As a major result, we thus obtain the predicted phase diagrams of the numerical approach for
each imposed initial shape category. These predicted phase diagrams are depicted in Fig. 3.12.
Overall, we find a good agreement between the predicted fraction of croissants from the sim-
ulations and the experimental counterpart. Interestingly, the employed slipper initial shape
results in a very good agreement with the experimental data (cf. Fig. 3.12 (c)), and we there-
fore conclude that the initial shapes in the experiment are rather asymmetric, as is the slipper
shape. Qualitatively, this holds with the observed starting cell shapes, mainly consisting of
arbitrary, asymmetric others in the experiment.
The uncertainty in the prediction of φ, indicated by the vertical error bars in Fig. 3.12, is rel-
atively increased in the croissant-only region around 2 mm s−1 . uRBC . 3 mm s−1, caused
by the experimental velocities located in proximity to the sharp boundaries.
A comparison with existing studies on shape dynamics of RBCs in microcapillaries is possible,
yet limited due to our specific geometries and flow parameters. However, the coexistence of
croissants and others has been confirmed by Tomaiuolo et al. [57], by driving dilute blood
suspension through a narrow cylindrical tube with a diameter of 10 µm, resembling qualita-
tively our findings. Additionally, they observed coexisting regimes of croissants and slippers;
however, for flow velocities triplicate our maximal imposed velocity. Although extrapolation
of our phase diagrams seems plausible, we refrain from this approach, since the flow charac-
teristics are generally differing due to a different Reynolds regime.
In non-circular channels, Cluitmans et al. [153] found coexisting croissants and others at
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Chapter 3 Shape phase diagram of flowing RBCs in microchannels

Figure 3.12: Overview of fractions of croissants φ as predicted by the simulations and the
experimental data. The initial configuration of the RBC shapes in the simulations varies
among discocytes in (a), croissants in (b), and slippers in (c). The experimental data is rep-
resented by the dashed black line and the grey-shaded enclosed area, whereas the simulation
data is indicated by the colored data points. The shaded areas and the connective lines serve
as a guide to the eye. Horizontal error bars indicate the uncertainty of the obtained cell
velocity and vertical error bars represent the uncertainty in the prediction, as described in
the main text. Image adapted from reference [147].

low velocities (. 5 mm s−1), as well as slippers for high velocities (& 10 mm s−1), albeit the
cross-sections of their employed microchannels exhibit different aspect ratios with respect to
our setup.
3D simulations carried out by Fedosov et al. [55] in cylindrical channels indicated a transi-
tion among the specified shapes, from slippers to parachutes (the equivalent of croissants in
circular confinements). These findings match qualitatively with our established coexistence
of TT-slippers and non-TT-croissants. In contrast to our simulation setup, they did not par-
ticularly focus on the initial condition.
Ultimately, Suzuki et al. [154] compared the deformation of RBCs in vitro and in vivo, lead-
ing to an in vivo phase diagram. For this purpose, vessels with different confinements and
underlying flow velocities have been investigated, resulting in the observation that croissants
dominate for low velocities and slippers for increased velocities and at smaller channel diam-
eters. However, for low velocities, both croissants and slippers have been observed, matching
our results. In addition, they find a croissant-only regime for 1 mm s−1 . uRBC . 2 mm s−1,
whose boundaries are almost identical to the ones obtained in our simulations.
Other studies mainly impose different viscosity ratios λvisc, which makes them difficult to
compare to our study, at least by quantitative means [17]. Nevertheless, they confirm quali-
tatively the emergence of slippers for high velocities and the dominance of croissants for low
velocities.
Conceivably, a more detailed experimental approach is given by the method proposed in
Quint et al. [155], using pre-stained RBCs flowing through inclined microchannels. Employ-
ing confocal microscopy, they can extract 3D information of the cell corpuscles. However,
the pre-treatment and limited throughput in conjunction with the technical limitations in the
resolvable RBC velocities render this approach as an ineligible basis for diagnostic tools.
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3.6.2 Comparison of axial positions of RBCs

The extracted centroid positions from the simulation results reveal a centered position of
croissant shapes, both in y-direction and in z-direction. Although we do not assess the z-
information in the experiment, the centered distribution along the y-direction is mirrored,
verified by the distribution of croissants as shown in Fig. 3.6 (a).
To achieve a quantitative comparison between the steady-state centroid positions in the ex-
periment and the numerical approach, we analyze the peak positions of the final RBC distri-
butions in the experiment, both for slippers and croissants. Due to the bimodal distribution
of slippers, however, we consider the absolute value of the arithmetic mean |yl − yr| /2 of both
peaks. The resulting value thus corresponds to an equally-weighted average offset, accounting
for the fact that both peaks are not necessarily equally pronounced due to the finite dataset.
In Fig. 3.13, the radial offsets obtained via simulations and experiments are depicted, for both
cell shape classes separately. Considering the average diameter of human RBCs, dRBC ' 8 µm,

Figure 3.13: Comparison of final positions of converged RBC shapes obtained by simula-
tions, and experiments, respectively. In (a), the slippers are depicted, whereas in (b), the
offsets of uniquely croissants are shown. The mean absolute values in both cases are intercon-
nected via the dotted lines as a guide for the eye. Horizontal error bars indicate the velocity
error, given by the standard deviation σu of the cell velocities. Vertical error bars correspond
to the general estimated uncertainty sp = ±0.1 µm in detecting the centroid position for the
experimental data, whereas it corresponds to the extremal values in the case of simulation
data. Due to the experimental setup, no direct information about the z-offsets is provided.
Image adapted from reference [147].

we find a systematic, yet minor deviation of y-offsets of ca. 0.4 µm, or ca. 0.05 dRBC for slip-
pers. We attribute this deviation to the fact that the cellular circumference is slightly out of
focus to enhance visibility. Croissants, on the other hand, are positioned in the center, as is
indicated by |z| ' 0 ' |y|.
A geometry with a mirrored aspect ratio and otherwise invariable setup can lead to encom-
passing investigations concerning the radial distribution of RBCs. Since the slippers tend to
migrate towards the long edge of the cross-section, one can obtain not only additional im-
ages capturing the top-down view of these shapes, but rather determine the z-offset, which is
inaccessible in the current setup. Further, the offset in both directions of croissants can be
resolved statistically by this inversed channel aspect ratio.
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Chapter 3 Shape phase diagram of flowing RBCs in microchannels

3.7 Summary

The joint investigations of experimental and numerical RBC flow in microcapillaries reveal
a rich shape phase diagram of two distinct shape categories, the off-centered slipper and the
centered croissant shape. Whereas croissants mostly occur for low to intermediate velocities,
uRBC . 4 mm s−1, significant slipper populations emerge with higher velocities. The imposed
flow velocities cover the entire range of velocities found in the microcirculation of human be-
ings.
In the experiment, we record images displaying the projected cells and their centroid positions.
The numerical approach, in contrast, yields detailed 3D information about the cell corpuscle.
Additionally, the initial shape and position upon entering the microchannels can be altered
in the latter case.
These initial shapes are varied among discocytes, croissants, and slippers. Apart from the
temptingly logical fact that initially off-centered, asymmetrical slipper shapes favor slipper
shapes as final states, and analogously, initialized croissants favor converged croissant shapes,
we find pronounced bistability of the final shape.
Specifically, we find that the final RBC shape is bistable with respect to the initial position
and imposed velocity for almost all velocities except a small region around approx. 2 mm s−1

where only croissants occur.
Albeit the technical restrictions regarding an initial focusing and shape determination, both
methodologies show a very good congruence of the obtained experimental phase diagram and
the predicted phase diagram from the numerical outcome. This is especially given for the
predicted phase diagram with initialized asymmetric slippers.
Moreover, the final cell positions in both approaches show identical trends, with only minor
systematic offsets in the case of slippers and negligible deviations in the case of croissants.
Our findings will help to elucidate the behavior of single RBCs in flow and can be easily gen-
eralized to more intricate structures due to the relative simplicity of the employed geometry.
Furthermore, we prove that it is possible to hydrodynamically induce a certain cellular shape
which will be useful for the development of cell sorting approaches, such as deterministic lat-
eral displacement devices and in lab-on-a-chip structures in general.
We conjecture that deduced parameters of the phase diagrams are prone to subtle changes in
the cells’ mechanistic properties, especially the bending rigidity. Several diseases are linked to
hemorheological alterations and thus, the presented methodologies might form the cornerstone
of diagnostic tools, where precise knowledge of individual cellular parameters is inevitable.
Additionally, due to the employed physiological contrast ratio, we conjecture that our re-
sults can be generalized and mirrored by in vivo studies with concurrent geometries and flow
parameters.
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Chapter 4

Neural network approach for classification of
RBC shapes

The following sections are intended to provide insight into the development of an artificial-
intelligence-based classification technique of RBC shapes in microcapillary flow. The results
have been subject to prior publication [156].

4.1 Introduction

In the preceding chapter 3, we presented a phase diagram of RBC shapes under microcapillary
flow conditions. The classification of the RBC shapes has been carried out manually. Due
to interindividual changes in size as well as cell-intrinsic physical parameters such as bending
rigidity, the entirety of RBCs has some inherent variations in the exact cell shape, i.e., an
individual croissant shape differs slightly from another one. By training, the human eye can
adapt to this circumstance; however, it is highly non-trivial to decide when a cell is not any
longer e.g. a croissant but “other”. Mathematically, one might think of measuring appropriate
properties of cell images, such as circumference or axial symmetry, among others. In practice
this task is time-consuming and it remains unclear what a reliable and robust parameter is to
classify the observed shapes.
The manual classification is within its limitations so far the best choice, yet subjective. In
terms of reproducible results, however, it cannot be guaranteed that manual classifications
are free of erratic decisions, and thus form a subjective input.
To overcome these drawbacks, an artificial neural network (ANN) is developed, which is
capable of detecting and classifying cell shapes into pre-defined categories. This ANN yields
an unbiased classification of input images and provides a stable and highly efficient analysis
once programmed and trained. Regarding the efficiency, we obtain a phase diagram predicted
by the ANN in approx. 20 s, which outmatches the manual approach by a factor of more
than 100. Furthermore, no expertise knowledge is needed to apply the ANN algorithm on a
recorded dataset. The training itself, however, is a crucial step in the development of ANNs
and rather time-consuming. Accordingly, the gold standard is still the manual evaluation of
cellular entities in blood smears, e.g. to determine the severity of sickle cell disease [157].
The features and results of the aforementioned ANN are at the focus of this chapter, which
is structured as follows: First, an overview of the state-of-the-art in machine learning will
be given, followed by a specific approach to classify biological cells with NNs. Compared to
these, the used NN will be explained in detail and the output, i.e., the results will be shown
to be in very good agreement with the manual classification.
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4.2 Aspects of artificial neural networks

Throughout biological evolution, the ability of animals to adapt to their internal and external
surrounding conditions is a key aspect of life. This task is fulfilled by the nervous system,
which receives signals and compares these to the current state. By this action a change of
the current state can be triggered, which is leading to better adaptations. The signals in the
nervous system of pluricellular animals are propagated via cells specialized in saltatory con-
duction, the nerve cells, also termed neurons. Each neuron consists of a cell body, the soma,
containing the nucleus as well as further organelles. From this soma, branched connectors
to other cells emerge in a tree-like structure, the dendrites [158]. As soon as the cumulative
signal received at the dendrites surpasses a certain threshold, the neuron gets activated.
Inspired by their biological counterpart, artificial neural networks (ANNs) are mimicking the
processing of input arguments and obey the capability to adapt their internal parameters
by a sophisticated training algorithm [159]. One of the conceptually simplest ANNs is the
perceptron, as first proposed by Rosenblatt [160]. A schematic representation of this percep-
tron is presented in Fig. 4.1 together with a biological neuron and its main constituents. The
perceptron receives an input vector x = {x1, . . . , xn} ∈ Rn, n ∈ N which is then multiplied
by a vector w = {w1, . . . , wn}, n ∈ N, and a bias term b ∈ R is added.

Figure 4.1: Comparison between biological neuron and artificial neuron. In (a), a biological
neuron is sketched with its major functional components. Dendrites receive various signals via
electrical stimuli. If the sum of these stimuli exceeds a certain threshold, a signal is propagated
towards the axon terminal. (b) Schematic representation of an artificial neuron, receiving an
input vector x = {x1, . . . , xn}, which is adapted by a weight vector w = {w1, . . . , wn} and
an additive bias term b before being fed into a processing unit, the neuron. The resulting
one-dimensional value is then passed onto an activation function f(·).

The result is forwarded to a non-linear activation function f(·), finally yielding the one-
dimensional output value y ∈ R:

y = f

(
n∑
i=0

xiwi + b

)
= f

(
w>x + b

)
. (4.1)

Nowadays, one is tempted to employ activation functions such as e.g. the tan-sigmoid func-
tion f(x) = 1/(1 + exp(−x)) that can be approximated linearly close to the origin and rather
quickly converge to the asymptote for distal input values to account both for mildly linear
dependencies and ensure a saturation for extreme cases. Despite all the structural complexity
of the perceptron, the mapping capability is limited. However, by iterative repetition of the
process denoted by Eq. (4.1), i.e., feeding the output y of such a neuron to further neurons,
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multi-layer perceptrons (MLPs) can be composed. The special case of only one layer, the
single-layer perceptron, is used synonymously to the term perceptron. The arbitrarily deep
structures of so-called hidden layers are composed of interconnected computation nodes, input
nodes, and output nodes, with any input signal being transmitted layerwise through the MLP.
The training procedure of the ANN can be subdivided into two categories. Historically and
still very common has been the supervised learning algorithm, which is generically comprised
of establishing the relationship between specified input-output data pairs. For this purpose, a
cost function is defined that needs to be optimized, e.g. the mean-squared error of predicted
values and assigned target values. Furthermore, the supervised learning algorithm can be sub-
divided into a mere processing step, where the predicted outputs of the respective inputs are
calculated accordingly, forming the so-called forward pass. The gradient of the cost function
with respect to the weights and biases is then back-propagated through the network structure.
Based on this back-propagation, the parameters are adjusted with the aid of an optimization
algorithm, typically gradient-based. The latter step can be regarded as the actual learning
procedure, and the entirety of back-propagation and optimization is then repeated until the
weights and biases ultimately converge.
However, the previous considerations are restricted to the class of supervised learning. In the
case of unsupervised learning, one can use auto-associative data structures which are compu-
tationally intensive. Moreover, any modifications on the output range, etc. cannot be taken
on by the user, such that the black box aspect of artificial neural networks is even aggravated,
and therefore not discussed in this work.

4.3 State of the art in artificial intelligence

In recent decades, there has been steady progress in the development of neural networks,
empowered by the growth in available computational power. The scope of applications in
modern life ranges from content filtering [161] to speech recognition [162] up to object clas-
sification issues [163]. A typical process involved in the application and the design of neural
networks is the so-called feature engineering. In the context of speech recognition, this feature
engineering is based on a breakdown of language to single phonemes and syllables to a more
coarse-grained word recognition.

4.3.1 Classification of biological cells

Albeit the tremendous capabilities of ANNs in object detection and classification tasks, the
application in biological and life sciences is underrepresented. The origin of this scarce dis-
tribution of newly developed approaches is multifaceted, yet collapsing into two major argu-
ments: On one hand, the sheer variability of biological specimen demands for an equally high
number of individual diagnosis tools, each with a specialized training procedure to account
for. On the other hand, the data storage and technical resolution limits have been restricting
the automated analysis in the past. Even nowadays, the differential counting of leukocytes,
one of the most frequently determined clinical laboratory parameters, is often assessed manu-
ally [164]. As such, the main analytic process remains unmodified since its emergence nearly
a century ago [165]. Few studies address automated cell classification based on image data
files. Restricting the plethora of various biological cells to the phenotypes of RBCs, recently
developed ANNs are capable of discriminating sickle cells among discocytes [166], or used
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bright-field microscopy images to classify upon their morphology in 2D [167]. Tripathy et
al. [168] used the identical methodology to discriminate breast cancer cells among healthy
cells. A joint approach of confocal imaging and ANNs has been proposed to use the intercel-
lular information of actin filament structures as a future diagnostic marker for breast cancer
cells and healthy cells [169].
Sophisticated approaches based on angular radial transformations of RBC shapes in flow have
been proposed recently by Apostolopoulos et al. [170], and in addition to self-organizing maps,
by Kriegel et al. [171]. Similarly, Simionato et al. [172] developed a neural network-based diag-
nostic approach to discriminate RBC shapes under healthy and pathological conditions, based
on spherical harmonics spectra. Albeit the success in classification and detecting the RBCs
in the aforementioned works, they involve time-intensive data acquisition techniques, such as
staining protocols, sophisticated microscopy tools, and the transfer of huge data structures. In
general, there is a trade-off between high-throughput devices and the resolution limits of the
imaging technique. For the development of diagnostic tools, it is evident that the processing
time needs to be minimized.

4.4 Architecture of the neural network

The design principles of NNs are governed by the assigned task they are supposed to resolve.
In the case of classification issues, the most prominent NN type is the so-called convolutional
neural network (CNN). In fact, the advantage of this network type is the translation invari-
ance, i.e., the outcome of the CNN approach is unaffected by the position of the objects in
the input image, which is a direct mathematical consequence originating from the convolution
operation.
In the case of RBC shapes in flow, we observe two distinct shapes, the croissant and the slip-
per, respectively, and a third category of merely unknown shapes with arbitrary morphologies.
In the latter case, one might be able to define subcategories of cell shapes, such as e.g. mul-
tilobed RBCs [150] or cells resembling slippers that are tilted by π/2 versus the optical axis.
Yet, these subcategories do not form a quantifiable population when analyzed manually, and
thus, we identify them as others. Conclusively, training a CNN for others is highly non-trivial
given the sheer diversity of individual shapes.
A typical classification network is characterized by the assignment of labels to input objects,
thus providing a binary output. Yet, in order to account for these others, we construct
a regression-based neural network rather than a default classification network by assigning
quantitative outputs to the input data. Subsequently, we will define thresholds for the indi-
vidual RBC populations, as outlined in section 4.4.5.
The final, i.e., the optimized architecture of the employed CNN consists of three convolutional
layers, with a schematic representation provided in Fig. 4.2. At the initial stage, an arbitrary
input image is fed into the first layer of convolution kernels, consisting of 25 individual ma-
trices of dimensions 21 × 21. The convolution of the input image exhibiting the dimension
90 px × 90 px with these matrices results in 25 intermediate images, or subimages, each of
dimension 70 px× 70 px. This operation is sketched in Fig. 4.3, showing an image montage of
the entire set of convolution kernels as well as the intermediate croissant and slipper images,
respectively, after the convolution operation. For the sake of visibility, a false color mapping
has been applied to the individual images in Fig. 4.3.
These intermediate images then undergo rectifying linear units (reLU), which is an essential
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Figure 4.2: Schematic representation of the various CNN layers. As input arguments, cell
images with a dimension of 90 px × 90 px are accepted. These images are preprocessed to
suppress the influence of border effects and maintain a uniform image background. There-
fore, the initial image pixels are weighted by a Tukey window with α = 0.25, as given in
Eq. (4.2), leading to a gradual fade out towards the upper and lower edges. The first pro-
cessing stage of the images consists of a convolution with 25 convolution kernels, each with
a size of 21 × 21, yielding 25 intermediate images with sizes 70 px × 70 px each. In the next
processing step, a non-linear transformation function (reLU) is applied. Consequently, these
resulting intermediate images are down-sampled by a factor of 2 in each dimension via a max
pooling operation. The entire group of operations, convolution, reLU, and max pooling are
repeated twice, yet with diverse convolution kernels. Finally, the output neuron interconnects
all kernel elements of the last processing stage, mapping them onto an output range via a
linear transfer function. All individual kernels and the input image obey properly scaled
dimensions. Image adapted from reference [156].

step for the stability of the CNN. These stepwise linear functions map the individual kernel
elements z onto z = max(z, 0), thus providing a nonlinear element in the entire process of
convolutions. Since the convolution stages can be decomposed into linear transformations,
the CNN without reLU layers would collapse into piecewise linear functions and thus lack
the capability to learn higher-order dependencies among the parameters. Additionally, the
application of reLUs is known to suppress the problem of vanishing gradients as encountered
in training approaches of ANNs with many layers. This effect refers to small error gradient
metrics, which do not affect training performance when back-propagated through the layer
structure up to the input layer. As a result, the final ANN remains in a poorly trained
state [173].
Maximum pooling, henceforth abbreviated as max pooling, is then applied to down-sample
the feature maps. Here, the max pooling algorithm obeys a fixed stride value of 2, allocating
the maximal value of each 2×2-sized patch in every kernel while omitting the remaining three
values. Eventually, the kernel dimensions are halved in each dimension, yielding an increase
in computational performance due to the reduced amounts of data being processed. Further-
more, this operation ensures a robust convergence, since only the most prominent features
remain in subsequent iteration steps instead of an average feature map, which is prone to
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encode adverse spatial information [174]. Pooling operations are inspired by the hierarchical
composition of image features, where objects are composed of parts, which in turn are a com-
bination of motifs and edges. By subsequently condensing these similar image patches that
are passed from previous layers into one, a pooling operation ensures an invariance against
shifts and atypical distortions and accentuates qualitative characteristics of objects.

Figure 4.3: Outcome of the first convolution stage in the trained CNN. The input im-
age (croissant and slipper, respectively) is therefore convoluted with 25 individual kernels
of size 21 × 21, resulting in 25 intermediate images (as montage) of size 70 px × 70 px each.
Distinctive features of the respective RBC shapes in the input images are marked by a cir-
cumscribing black square. Ensuing transformations are marked following the black arrows,
finally culminating in enhanced features. Both for the convolution kernels as well as for the
final image montage a false-color mapping is utilized to improve visibility. Image adapted
from reference [156].

Consecutive processing steps consist of the application of further convolution kernels and sub-
sequently, reLU layers and max pooling, yet with different dimensions of convolution kernels.
In total, the employed CNN consists of three convolution layers and an equal amount of max
pooling layers and reLUs, respectively. The entire structure is depicted in Fig. 4.2 and an
overview of the individual kernel sizes and resulting subimage sizes is provided in Tab. 4.1.
Lastly, the output node interconnects all kernel elements of the last processing step and maps
them onto a linear range, enabling them to be processed further.
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Table 4.1: Overview of the architectural details of the used CNN. In the leftmost column,
the descriptors of all layers are given, corresponding kernel sizes are presented in the middle
column. In the rightmost column, the resulting subimage sizes are given, which are obtained
after application of the respective layer.

layer kernel size subimage size
(
px2
)

input layer - 90× 90

convolution layer 1 21× 21 70× 70

reLU layer - 70× 70

max pooling layer 2× 2, stride 2 35× 35

convolution layer 2 14× 14 22× 22

reLU layer - 22× 22

max pooling layer 2× 2, stride 2 11× 11

convolution layer 3 6× 6 6× 6

reLU layer - 6× 6

max pooling layer 2× 2, stride 2 3× 3

output layer (regression type) - 1× 1

4.4.1 Image preprocessing

As outlined in section 2.4.2, we obtain cropped images of flowing RBCs in microchannels
with the aid of tracking data from datafiles obtained by brightfield microscopy. Furthermore,
non-isolated cells are sorted out, i.e. trains or clusters of cells whose intercellular distance is
too small such that hydrodynamic interactions are not negligible any longer. The installed
optical setup leads to typical maximal cell dimensions of 80 px in the final footage. Cellular
positions are computed by their two-dimensional center of mass, which can shift laterally for
some pixels due to the binarizing threshold. To account for this issue as well as for minor
physiological variations in cell size, a cropping window of 90 px× 90 px has been chosen.
In total, we obtain 3,090 images from three individual healthy donors and therefore, the
lighting conditions and the contrast in the final footage are inconsistent, albeit the deviations
are relatively small. However, to disregard the influence of the contrast on the output of the
CNN, we apply a histogram matching approach onto the entire image set, leading to uniform
contrast distributions.
Subsequently, the full image space has been exploited by mapping the pixel values to the
entire 8-bit range with the lowest and the highest 1 % of all pixel values being saturated. As
a consequence, the image pixels exhibit increased signal dynamics and we achieve robustness
of the following CNN approach towards marginal illumination discrepancies.
The post-processing is then comprised of applying a window function, yielding a fade-out
towards the upper and lower channel edges. This routine accounts for equal image boundaries,
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since the channel walls obey inaccuracies which may lead to malclassified cell images. As
window function, a so called Tukey window function w(y) is employed:

w(y) =


1
2

[
1 + cos

(
2π
α

(
y − α

2

))]
, 0 ≤ y < α

2 ,

1, α
2 ≤ y < 1− α

2 ,
1
2

[
1 + cos

(
2π
α

(
y − 1 + α

2

))]
, 1− α

2 ≤ y ≤ 1,

(4.2)

where y denotes the normalized vertical pixel position (0 ≤ y ≤ 1) of any individual image.

4.4.2 Prerequisites and limitations

The basic architecture and the design principles are chosen to fit the specific needs in our
employed setup. Adaptations in the various steps in image-preprocessing routines contribute
to a uniform dataset with the constraint of optimizing the performance. To guarantee these
potentially sensitive optimality principles, we stress that any alterations in the optical setup, as
well as the experimental setup, need to be neglected. Specifically, the usage of a different light
source, e.g. blue light, might affect the classification of RBC shapes. Similarly, upscaling or
downscaling, respectively, of cropped images can influence the outcome of the CNN approach.
Most importantly, the classification algorithm is outlier tolerant, yet, with respect to the
entirety of RBC shapes. Other cell types, such as e.g. WBCs, have not been considered in the
training approach and thus cannot be discriminated by the CNN. Hence, features reminiscent
of the RBC characteristics might lead to misclassified images. In its current form, the CNN
cannot be adapted towards more cell types but rather has to be retrained with a tailored set
of training data including the additional cell class.

4.4.3 Implementation details

As a prerequisite of the CNN to perform a classification, we have to train the network on
a dedicated training dataset. A crucial feature of the training dataset to ensure a robust
training procedure is the mutual exclusivity from the actual dataset. Based on the neuron’s
output of this training data the randomly initialized convolution kernels are updated. The
establishment of a suitable training dataset is one of the key aspects of the training procedure.
In principle, this training procedure is an optimization problem, comprising of the minimiza-
tion of a predefined error function. Thus, the finding of an appropriate optimization strategy
and an eligible error function form two remaining issues to train the CNN.
As the error function to characterize the actual training step, we choose the root-mean-square-
error function (RMSE), given as

RMSE =

[
1

N

N−1∑
n=0

(on − tn)2

]1/2

, (4.3)

with the momentary output value of the n-th input image on and the corresponding target
value tn. For regression networks, the RMSE is a standard loss function; however, we specif-
ically choose this function to penalize large deviations from the target value to guarantee a
disentanglement between the output values of the distinct cell shape categories.
To minimize the error function specified in Eq. (4.3), we apply a gradient descent algorithm.
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For this purpose, we condense the entirety of kernels, representing the weights in the employed
CNN, in the vector θ ∈ Rp, with p being the cumulated pixels of all kernels. Consequently,
the vector θ is updated to minimize the cost function, abbreviated as E(θ):

θk+1 = θk − λ∇E(θk) , (4.4)

with λ being the learning rate, specifying the step towards the negative gradient to update
the kernels and the iteration steps k, and k + 1, respectively. Adding a fraction of the
previous update vector to the current update vector ensures circumventing local minima and
a suppression of oscillating training curves and hence achieving a faster convergence towards
the global minimum [175, 176]. Eq. (4.4) thus transforms to

θk+1 = θk − λ∇E(θk) + γ (θk − θk−1) . (4.5)

Due to the structural analogy with the equations of motion for solid bodies, this additive
fraction of past update vectors resembles the momentum. Hence, Eq. (4.5) is referred to as
a stochastic gradient descent algorithm with momentum and γ = 0.9 has been set as the
momentum parameter.
Iteratively, a value of λ = 0.001 has proven to be the optimum choice in the current setup,
since higher values tend to overtrain the neural network, as can be seen from increasing os-
cillations during the training approach [177]. Lower values, on the other hand, drastically
increase the computation time without any gain in performance.
As a common practice to increase convergence, the iterative training process is only per-
formed on a subset of the whole training dataset [178–180]. We therefore define so-called
mini-batches, each consisting of 128 training images. Although the optimal mini-batch size
is still under debate, from preferably low-dimensional [181] to high-dimensional [182], the
current value of 128 yields a robust training convergence in conjunction with a fast training
process. The temporal evolution of the training approach is depicted in Fig. 4.4. Starting
with randomly initialized weights, the training state is depicted for each pass of a mini-batch.
The outcome will then be used as the starting point for the subsequent training iteration with
a second randomly chosen mini-batch. To evaluate the sensitivity of the training procedure,
we additionally calculate the loss function of a dedicated validation dataset, consisting of a
subdivision of 5 % of the whole training dataset, whereas the true training data constitutes
the remaining 95 % of the entire image dataset (cf. section 4.4.4). Most importantly, both
validation data and true training data form disjoint datasets, such that any interference can
be neglected. Moreover, both datasets are shuffled randomly in order not to maintain any
intrinsic labeling scheme as a potential feature to train for.
The validation loss is calculated after every complete processing cycle composed of 50 mini-
batches. Once the entire training dataset has been iterated, a so-called epoch is finalized.
Preventing an overtraining of the CNN, which is indicated by a diverging evolution of train-
ing and validation, we implement certain termination criteria for the training approach. For
instance, a total number of ten training epochs is fixed, noticing that an increase of this
number does not lead to a substantial gain in performance. Additionally, the training will be
terminated after a successive quintuply increase of the validation loss.
Among all hyperparameters that need to be optimized, the mini-batch size is tuned first,
followed by the learning rate. With their optimum values, the remaining hyperparameters are
tuned, such as the learning rate and the momentum parameter, respectively.
All training approaches can be performed either on a CPU or a GPU. In this work, a high-
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Figure 4.4: Evolution of (a) RMSE and (b) loss with an increasing number of training
epochs. The red curve indicates the interconnection of subsequent mini-batch iteration steps,
the black circles correspond to the validation, each being evaluated after processing 50 mini-
batches. A limit of ten training epochs has been implemented as a termination criterion to
inhibit overtraining. Image adapted from reference [156].

performance graphics card (Intel GeForce GTX 1080 Ti) has been used to minimize the elapsed
time.

4.4.4 Acquisition and characteristics of training data

To perform a robust training of the CNN, we record a set of training images containing RBCs
in flow under identical conditions as the latter input data. In particular, 1,500 slippers and
1,500 croissants are obtained, where in both cases the final number is doubled by horizontal
mirroring of the respective images and exploiting the systemic geometry. Every cell image has
been classified manually and labeled uniquely, i.e., no image has been used more than once
for training purposes.
Although the total number of these training images has proven to be sufficient a posteriori,
first training approaches could not validate a mutually exclusive classification of croissants
and others. We conjecture that others form a subcategory of so-called sheared croissants,
i.e., RBCs obeying similar characteristics as croissants, yet with an elongated and partially
asymmetric “tail” (cf. cell images in Fig. 4.5).
Based on these observations of insufficiently trained CNNs, we additionally recorded training
images of sheared croissants to account for this subclass. We stress the fact that these sheared
croissants are not mirrored as a subcategory in the phase diagram but only contribute to the
count of others. In this sense, the sheared croissants are only an auxiliary category of cell
shapes.
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Due to the relatively less occurring sheared croissants with respect to the remaining shape
categories in a typical experimental dataset, a total number of 2,000 sheared croissant images is
used for the training procedure, originating from 1,000 recorded images by horizontal mirroring
as for the formerly described shape classes.
To inhibit a biased training towards distinct pressure drops we recorded the corresponding
training images arbitrarily at a pressure regime where they form the predominant shape
category, yielding a profound variability among the individual cell shapes within the respective
shape categories. Specifically, croissant training images are recorded from 100 mbar−200 mbar,
slippers from 700 mbar− 1,000 mbar, and sheared croissants from 300 mbar− 500 mbar.
Albeit the lighting conditions during the conducted experiments are manually controlled and
adjusted to ensure a constant final footage, slight variations may occur. To render our training
approach invariant against these minor changes in the illumination, we randomly alter the
intensity of the microscopy light source in a range of 50 %−80 % with respect to the available
maximum intensity for each subset of the training data and a subsequent contrast adjustment,
identical to the one described in section 4.4.1.
Lastly, we intentionally include images of defocused RBCs in the training data, accounting
for optical misalignments and inherent minor curvatures of the microfluidic chip in the flow
direction. These defocused cell images are obtained via recording RBCs in flow at different
positions in an inclined microfluidic chip.
In sum, the above principles yield a robust training algorithm, which is capable of an unbiased
analysis of input data.

4.4.5 CNN output and benchmark

Once the training algorithm is successfully converged, the accuracy of the CNN output has
to be validated. This benchmarking is typically realized by opposing the CNN output to the
respective manual classification. However, since the specific design of our CNN yields decimal
values, no direct comparison is possible. Instead, a spectral representation of the individual
output values is chosen, as depicted in Fig. 4.5. Since the individual cell images of the distinct
cell shape classes are uniform for the human eye, we assume their corresponding CNN output
values to be narrowly distributed. The output values clearly obey this narrow distribution, as
indicated by the peaks in Fig. 4.5. The peak associated with slippers is situated at an output
value of ≈ −117, although the target value of the slipper class has been set to −127 in the
training process. We attribute this deviation to variations in the optical imaging resulting
from focal shifts and lighting conditions. Furthermore we assume that slipper shapes indeed
obey variations in the exact morphology, leading to an exploitation of the full target interval
and thus to a shift of the lateral peak position.
Similarly, the peaks of the CNN output values of croissants and sheared cells are relocated
with respect to the initial target values, towards ≈ 115 in the case of croissants (target value
127) and ≈ 40 in the case of sheared croissants (target value 64). However, these lateral shifts
do not affect the following analysis of cell shape classes since their thresholds are based on
standard deviations rather than mean values, i.e., positions.
To define the intervals of the respective predefined classes, we apply a fit with four Gaussians
to the spectral distribution of the output values, with one Gaussian each being associated to
the individual classes (croissants, slippers, sheared croissants), and one Gaussian to account
for the background noise emanating from indistinguishable shapes.
In a first attempt, we heuristically set the threshold of each shape category to a value of 1σ
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sheared

slippers

croissants

Figure 4.5: Spectral representation of cell counts for the entire interval of CNN output
values. The individual counts are represented by the grey line, which is then fitted by four
independent Gaussians, indicated by a solid red line. Three of the peaks are associated with
the distinct cell shape classes, namely, the slippers, the croissants, and the auxiliary class
of sheared shapes, as denoted in the graph. In the lower panel, typical snapshots of flowing
RBCs with their corresponding CNN output values in the yellow-colored box are depicted.
The images are ordered by increasing CNN output values, starting from slippers (subimage
1-3) via ambiguous others (subimages 4, 5) to sheared shapes (subimages 6, 7) through to
croissants (subimages 8, 9). Image adapted from reference [156].

of the corresponding Gaussian fit function of croissants (σcr), and slippers (σsl), respectively.
Thus, all cells obeying output values outside these regions contribute to the class of others.
In Fig. 4.6 (a), the CNN output of the entire dataset is depicted, with the colored areas corre-
sponding to the respective standard deviation. To benchmark this threshold, we now compare
the resulting predicted phase diagram to the manually obtained one. From Fig. 4.6 (b), we
observe a drastic underestimation of croissants for the first case with respect to the latter.
Similarly, slippers remain underrepresented throughout the applied pressure drops; however,
the qualitative characteristic of the phase diagram is reproduced.
An increase of the interval length of each population to a value of 2σcr, and 2σsl, respectively,
enhances the conformity with the reference phase diagram, as shown in Fig. 4.6 (c, d). Yet,
slipper populations are still systematically underestimated with respect to the manually ob-
tained phase diagram, yielding especially a wrong transition point of equal fractions of both
populations, which is assumed to be a distinctive feature of RBCs under healthy and patho-
logical conditions.
Instead of considering the standard deviation as the unique determinant of the assigned pop-
ulations, we develop an adapted threshold range of each shape class. Therefore, we define a
cost function, consisting of the sum of all misclassified cells.
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Figure 4.6: Comparison of predicted phase diagrams by the CNN and the manual phase dia-
gram. The left column depicts the CNN output spectrum of the entire recorded dataset (grey
line). Four Gaussians have been fitted to the data points, indicated by the solid black line.
These Gaussians represent the contribution of the three distinct classes and the background
as the sum of indistinguishable cell shapes. Thresholds have been chosen as (a) σ, (c) 2σ, (e)
adapted thresholds, to define the respective corresponding cell shape intervals, indicated as
blue shaded (slippers) and red shaded (croissants) areas. The corresponding predicted phase
diagrams are presented in the right column (b, d, f), alongside the manually classified one.
The former are indicated by the dash-dotted lines with identical color codes as in the left
column, whereas the latter are represented by the solid lines and their enclosed shaded areas.
In all phase diagrams, the lines consist of straight line segments in between the discrete set
of data points to guide the eye. Image adapted from reference [156].
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In particular, we find false positive croissants and slippers, respectively, as well as false negative
croissants and slippers, respectively. The term false positive hereby refers to cell shapes being
assigned to a distinct shape class according to the CNN output value, in contradistinction to
the manual reference class. Accordingly, manually assigned categories that are not reproduced
by the CNN outcome yield false negative cell shapes.
Consequently, we iterate for each population the corresponding thresholds by minimizing the
sum of falsely classified cell shapes around the respective peak position. These optimized
thresholds are found to be 116.8± 35.5 in the case of croissants, and −116.6± 28.5 in the
case of slippers and yield a very good prediction of the phase diagram with respect to the
reference phase diagram, as indicated in Fig. 4.6 (e, f).
An image montage of this minimal set of falsely classified slippers is presented in Fig. 4.7, and
analogously, the minimal set of misclassified croissants is depicted in Fig. 4.8.

Figure 4.7: Overview of falsely classified slippers. (a) Image montage of all RBCs not clas-
sified as slippers by the CNN, contrary to the manual classification (false negative slippers).
(b) Image montage of all false positive slippers, i.e., RBCs being classified as slippers accord-
ing to the CNN, but not by manual evaluation. Numbers in yellow boxes correspond to the
respective CNN output values of the cell image. Image adapted from reference [156].

The final result of the CNN-based prediction is constituted in the confusion matrix in Tab. 4.2,
relating the predicted shape categories to the reference shape categories. Although the ab-
solute numbers of the falsely classified slippers and croissants are almost identical, we stress
that the relative deviation of the results is lower in the case of slippers due to the increased
number of corresponding images in the dataset. The final error of the classification is gov-
erned by these misclassified cell images, and since the adapted threshold ranges are directly
influenced by the subjective classification, the actual rate of misclassified cell shapes might be
lower than the present one if a revision of the manual classification is considered. Intriguingly,
the CNN outputs of slippers and croissants are mutually exclusive, i.e. we achieve a true
disentanglement of the two shape categories.
In addition to relative errors in Tab. 4.2, we take into account further metrics to evaluate
the performance of the CNN. For brevity, we denote the false positive number by FPi, with

66



4.4 Architecture of the neural network

Figure 4.8: Image montage of all misclassified croissants. (a) Randomly ordered collection
of actual croissant images that have been classified as others by the CNN (false negative
croissants). (b) Assortment of all false positive croissant shapes, i.e., designated croissant
shapes according to the CNN output, contrasting the actual shape class. Image adapted from
reference [156].

Table 4.2: Overview of all false positive and false negative identified cells. Additionally, the
correctly classified cells are shown on the main diagonal axis. This so-called confusion matrix
serves as a benchmark for the performance of the trained CNN. The relative numbers with
respect to the sum of the absolute column values are given as a percentage, followed by the
respective absolute number in parentheses.

actual class

predicted class croissant slipper other

croissant 85.6 % (551) 0.0 % (0) 8.2 % (91)

slipper 0.0 % (0) 91.8 % (1227) 10.6 % (118)

other 14.4 % (93) 8.2 % (109) 81.2 % (901)

i ∈ {sl, cr}, denoting the croissant or slipper shapes, and analogously, FNi, TPi, and TNi, for
the false negative, the true positive, and true negative numbers, respectively. The exactness
of our CNN approach can then be quantified by calculating the precision, given as the fraction
TPi/(TPi +FPi) of true positive and the sum of both true positive, and false positive values,
separately for each shape category. Accordingly, the sensitivity is considered, as a measure
of the completeness of the classification. This sensitivity is hereby defined as the proportion
of correctly labeled positive shapes, TPi/(TPi + FNi). The specificity, on the other hand,
is defined as the proportion of true negatives, TNi/(FPi + TNi). Calculated values of these
metrics for both slippers, and croissants, are displayed in Tab. 4.3. Essentially, the slipper
classification is more robust in terms of precision and sensitivity compared to croissants. We
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Table 4.3: Standardized metrics of the trained CNN for each predefined cell shape category.

metric

actual class precision sensitivity specificity

croissant 85.8 % 85.6 % 96.5 %

slipper 91.2 % 91.8 % 94.0 %

attribute this circumstance to the fact that croissant shapes are located in proximity to the
auxiliary class of sheared croissants, exhibiting a large mutual similarity. Therefore, the lower
bound of the confidence interval in the case of adapted thresholds, distinguishing croissants
from others, captures a noticeably high fraction of sheared croissants. This fraction then
manifests as an increased amount of false positives, finally decreasing the precision for the
croissant population. Similarly, the false negative count is relatively increased by indifferent
croissants subject to human input. However, we note a high specificity of our CNN-based
classification for both populations, implying a high outlier tolerance.
According to these metrics, the presented CNN exhibits an outstanding performance compared
to the manual classification tasks of RBCs. Besides unbiased classification, the deployed CNN
is several orders of magnitude faster than any human being, yielding a complete phase diagram
in few seconds, compared to several hours in the latter case. We customized the architecture
of the presented CNN to fit the specific needs of our classification. As a benefit, the structural
principles of the neural network are relatively simple compared to typical libraries of NNs,
such as e.g. AlexNet [183]. In fact, they tend to be overengineered regarding our binary
classification scheme of RBC shapes, such that enormous amounts of training data need to be
recorded and provided to reliably train the CNN for the feature extraction.
We stress that the presented classification approach is not exclusive with respect to the under-
lying ANN type. However, the advantage of the CNN lies in the automated feature extraction,
which does not require any understanding of abstract features in image sets. Instead, invari-
ant features are generated from raw data and passed onto subsequent layers, where the entire
process is iterated until eventually, the CNN output has converged.

4.5 Summary

Artificial-intelligence-aided classification of biological specimens is a growing field of interest.
Empowered by the manifold of applications, the individual choice of the underlying algorithms
is a crucial, yet intricate task. The feature engineering of input data structures in this task
is an inherent problem that needs to be solved. Existing neural network structures typically
involve many layers, demanding enormous training datasets. Furthermore, we seek to dis-
tinguish distinct croissant and slipper cell shapes from a group of miscellaneous shapes, the
class of others. However, the diversity of the latter category increases the complexity of a
training approach. To overcome these drawbacks, we designed a CNN to classify the input
data according to our manually predefined ternary classification. Our approach employs a
regression-based CNN rather than a typical classification-based CNN to define output values
and yielding the opportunity to declare outliers.
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In the context of predicting a shape phase diagram of RBCs, we therefore trained a CNN
capable of mapping individual RBC shapes onto a linear output scale. Applying an iterative
thresholding sequence onto these output values by minimizing a customized cost function pro-
duces a phase diagram in very good accordance with the reference phase diagram.
Thus, we conjecture that this approach renders the basis of future investigations towards the
automatized analysis of cellular images in general, and RBC images in particular. Besides an
unbiased classification, the application of CNNs yields an enormous gain in performance and
inevitably forms the cornerstone in the development of cost-efficient point-of-care devices re-
lying on image data and without pretreatment of biological specimens such as the application
of biomarkers.
In contrast to conservative methods predominantly involving the human analysis of cellular
compounds in stasis, the parameter space is enhanced by the dynamic properties of RBCs.
Presumably, inherent features of the shape phase diagrams are linked to the health state due to
the influence of elastic parameters and therefore need to be exploited for certain hematological
diseases.
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Chapter 5

Lingering dynamics of red blood cells in vivo

This chapter provides a profound quantitative analysis of the dynamics of lingering events in
vivo. The results presented in the following have been published in reference [184].

5.1 Introduction

The microvascular network in the body of vertebrates is responsible for the nutrient and gas
exchange towards the tissues and, due to its tremendous amount and size of individual vessels,
is the largest dissipation site of cardiac energy [185]. Any alterations in the microvascular
flow patterns lead to a deterioration of the physiological performance and are linked to many
pathological states, including obesity [186] and cardiac ischemic disease [187, 188], among
others.
Most macroscopic observables obeying a homogeneous distribution in the macrovasculature
show spatial and temporal heterogeneity in microvascular networks. This hallmark of the
microcirculation arises from the bi-phasic nature of blood. An example of this temporal
heterogeneity is given in Fig. 5.1, where the temporal evolution of the hematocrit is depicted
in a capillary of a living hamster. This influence on the dynamics of individual RBCs implies

Figure 5.1: Measured hematocrit in the capillary of a living hamster. The red solid line
corresponds to the calculated value, the shaded area indicates the error due to experimental
restrictions. In contrast to a homogeneous hematocrit value in the macrovasculature, the
hematocrit in the microvasculature is highly heterogeneous.

the need for fine-grained models to predict hemodynamic quantities reliably in silico. Due to
this complex modeling, detailed knowledge of the dynamics on a cellular scale is sparse.
However, over the past years, there has been significant progress in the modeling of the
microvasculature. The topology of the employed microvascular architectures ranges from
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symmetrical bifurcations [78, 189] to the mimicking of an anatomically exact in vivo network
comprising an interconnected mesh-like structure with bifurcating and merging vessels [75,
190–192]. Balogh et al. [75] investigated such complex networks on a scale permitting, on
the one hand, dense suspensions of RBCs, and on the other hand yields information about
every individual RBC in the suspension. As a result of this fine-grained approach, they
analyzed the temporal evolution of the deformation characteristics of RBCs in the vicinity
of bifurcations. They particularly focused on so-called lingering events, the phenomenon of
resting RBCs at the bifurcation apex of branching vessels, as illustrated in Fig. 5.2. Although
this phenomenon is well known in physiology, no previously conducted studies addressed this
subject in a qualitative or a quantitative manner.

Figure 5.2: Overview of two different lingering scenarios. (A) Symmetric lingering in a
branching vessel, leading to symmetric flow rates in both daughter vessels. (B, C) Asymmetric
lingering in one of both daughter vessels yields an asymmetric partitioning of RBCs in both
daughter vessels. Black arrows indicate the voids that emerge from the lingering RBCs further
upstream. (D) Comparison of the flow rates for symmetric and asymmetric blockage of the
daughter vessels caused by a lingering event. The respective flow rates in both daughter vessels
are normalized by the flow rate in the mother vessel. Image adapted from reference [75].

Recent advances in intravital microscopy techniques improved the level of details for microvas-
cular blood flow and thus enable to match the findings in silico. This chapter is dedicated to
the fundamental dynamics of the aforementioned lingering events in vivo utilizing intravital
fluorescence microscopy in hamsters. Therefore, we have developed algorithms allowing us to
separate the effect of lingering on the flow of subsequent RBCs from non-lingering events. Our
findings show the severe impact lingering RBCs have on the partitioning of RBCs downstream
the bifurcation and the break-up of trains of RBCs.
We first give an introduction to the architecture and physical properties of microvascular beds
and the blood flow therein. Subsequently, we describe the experimental setup, comprising the
animal preparation as well as the microscopy setup and image acquisition. The following
sections are intended to provide the detailed results of all analyzed geometries, whose impli-
cations are discussed in a subsequent section. A summary is provided at the very end of the
chapter.
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5.2 Architecture of microvascular beds

The microvasculature in the body of mammals is a complex plumbing network consisting
of vessels with varying lengths and diameters. To ensure an optimal perfusion of tissues
and organs with oxygen and a steady supply of metabolites, a convective motion of blood
needs to be achieved. Whereas for unicellular living beings, this perfusion can be achieved
solely by diffusive processes, active transport processes are necessary to reliably perfuse the
body of pluricellular living beings. In the latter case, a pressure drop between the aorta
and vena cava, i.e., the main feeding and the main draining vessel, respectively, is providing
the active perfusion [185]. This pressure drop results from the synchronized contractions
of cardiac muscles and the vasoconstriction of blood vessels, performed by vascular smooth
muscles [193].
The entirety of arteries and veins is commonly referred to as macrocirculation, whereas all
smaller vessels are referred to as microcirculation. An overview of typical sizes and mean
speeds of the blood in various vessel types and different geometrical constraints are given in
Tab. 1.1. In between the macrovascular vessels, the microcirculation is located, consisting of
arterioles, capillaries, and venules. Since the diameters of these vessels are comparable to the
equilibrium diameter of RBCs, the particulate nature of blood is well pronounced.
Given the overall length of the constituting vessels in combination with the dimensions of each
individual vessel, the microvascular bed forms the largest hydrodynamic resistance and hence
the largest dissipation site of cardiac energy [194–196]. The ability of the microvasculature
and its constituent vessels to adapt to the systemic and local needs of the organism is crucial.
To ensure this adaptation of the microvasculature, accommodations both on a long-term scale
as well as on a short-term scale exist. Short-term adaptations comprise vasodilation and
vasoconstriction, i.e., the increase and the decrease of the vessel diameters, respectively. On
a long-term scale, a remodeling of parts of the microvascular network occurs, also termed
angioadaptation.

5.2.1 Constituent vessels in the microcirculation and Murray’s law

The inner cavity of healthy vessels, the lumen, is enclosed by a lining of endothelial cells.
Attached towards the outside are smooth muscle fibers, whose layer thickness may vary con-
siderably depending on the vessel type [197]. These muscle fibers are responsible for the
contractile movements of the vessel walls, the vasoconstriction. In dilated vessels, the cross-
sections have been found circular, whereas, in a contracted state, the cross-section can adopt
irregular, star-like patterns. Regulatory mechanisms of vasoconstriction and vasodilation are
manifold, and comprise e.g. neural [198], metabolic [199], and mechanic stimuli [200]. Among
all vessel types in the microvascular bed, arterioles are responsible for most of the diameter
changes, and thus for the largest pressure drop within the microvascular flow.
Murray assumed in his seminal work that universal optimality principles are governing any
convectively driven transport network [201]. This optimality principle has been proved e.g. for
the xylem of plants [202] and consists of the minimization of a cost function, equal to the sum
of dissipated energy due to viscosity and the energy required to maintain the transported vol-
ume. One consequence of Murray’s law is the cubic relationship between the lumen diameters
of mother vessel and daughter vessels. Even though this decrease in radii of subsequent vessel
generations could be proven to suffice Murray’s law in some peculiar cases, deviations and
also contrasting analyses on experimental data have been carried out. One major assumption
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leading to this deviation is the constant wall shear stress, which in reality is correlated with
blood pressure and thus decreases along the vessel segments [203].
Even though the connection of vessel diameters according to Murray’s law cannot be con-
firmed in all investigated geometries, there have been numerous studies indicating a qualitative
power-law behavior of connective vessel diameters. Implications arising from these findings
are a fractal-like hierarchical geometry and self-similarity of microvascular beds [204]. The
determinants of the final topology of microvascular beds are given by a complex interplay of
apparently opposite demands. Whereas mesh-like geometries can provide uniform diffusion
distances of oxygen towards the tissues, their hydrodynamic resistance is enlarged with re-
spect to tree-like patterns. Depending on specialized needs of organs and tissues, the topology
of microvascular beds can range from rather planar structures, as e.g. in the mesentery or
the retina [205], respectively, to structures in the cardiac muscle, where capillaries extending
throughout the entire tissue form three-dimensional networks [206]. Exemplary topological
structures of the aforementioned cases are depicted in Fig. 5.3.

Figure 5.3: Sketch of two possible topologies of microvascular beds. In (a), a hierarchical
structure is formed by the vessels, whereas in (b), an arcade-like topology is depicted. The
blood flow is indicated by the arrow and delivering oxygen-rich blood (red) towards the
arterioles. Venules carry carbon dioxide-rich blood (blue), i.e., oxygen-poor blood towards
the veins.

5.2.2 Angiogenesis

While genetic factors determine the principal pattern and arrangement of vessels in the hu-
man body, the development of microvascular beds is governed by random sprouting and the
regression of vessels [207]. This stochastic process tends to oversaturate tissues with vessels;
however, due to pruning mechanisms, a functionalized microvascular bed is established. This
creation of new vessels, or angiogenesis, is altered by factors such as pregnancy [208], sports
[209, 210], and wound healing [211]. If the oxygen supply of tissue regions is insufficient,
metabolic substances such as the vascular endothelial growth factor (VEGF) are generated,
triggering angiogenesis. However, in several pathological states, angiogenic protein concen-
trations are altered, leading to non-functional microvascular networks, e.g. in tumor growth
[212]. Therefore, the investigation of angiogenesis has become an important diagnostic tool.
The abnormal states range from poor vascularization to oversaturated beds, and even the
intrinsic topology varies. These intrinsic variations e.g. comprise the formation of shunts,
i.e. bypassing vessels interconnecting two distinct branches. Besides the metabolically driven
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angiogenesis, there is evidence that mechanical stimuli, such as an increased wall shear stress
acting on the endothelial layer of capillaries, trigger the formation of new vessels as well [213],
which highlights the importance of a detailed understanding of dynamics on a cellular scale
in microvascular networks.

5.3 Experimental setup for in vivo measurements

The animal preparation, as well as the recording of the in vivo blood flow, have been carried
out at the Institute for Clinical and Experimental Surgery situated at the Saarland University
Hospital. All the conducted experiments were approved by the local government animal pro-
tection committee (permission number: 25/2018) and were performed in accordance with the
German Legislation on the Protection of Animals and the NIH Guidelines for the Care and
Use of Laboratory Animals.

To investigate the capillary blood flow in the hamster models, two different objectives are
used. On the one hand, a water immersion objective is used (Plan-Apochromat 63×, Zeiss),
yielding an improved RBC tracking and analysis of individual RBC characteristics, e.g. the
evolution of the deformation while advecting through bifurcation sites and merging vessels.
As a drawback, this objective is restricted to shallow tissue layers due to the optimal working
distance. On the other hand, an air objective (Plan-Apochromat 50×, Zeiss), equipped with a
relatively increased working distance and an enlarged field of view is employed to capture the
blood flow in vessels of bigger dimensions or embedded in deeper tissue layers. The footage is
recorded as single video files, which are split into image series, containing up to 6,000 single
images each. The exact amount of single images being extracted depends on the frame rate
of the camera (ORCA-Flash4.0 V3, Hamamatsu) and the recorded time interval, generally
covering 4 s− 20 s.

5.3.1 Animal preparation

Although a variety of imaging techniques in clinical diagnostics are established, only a few
work on a cellular scale and are easy to implement. To gain insights into the microvasculature
of macroscopical living beings such as mammals, one subtle tool has been used predominantly
over the last decades. Originally designed to study angiogenesis and the biocompatibility of
implanted engineered tissues with the host tissue of the animal, the dorsal skinfold chamber
provides detailed knowledge of flowing RBCs in vivo [214].
In this section, the necessary steps in the animal preperation protocol are summarized briefly.
These descriptive steps are based on reference [215], where a profound explanation is given.
A dorsal skinfold chamber, consisting of two symmetrical titanium frames with a total mass of
approx. 4 g is implanted in the back of Syrian golden hamsters (Mesocricetus auratus) with a
body mass of 60 g−80 g, as depicted in Fig. 5.4. For this purpose, the animals are anesthetized
and from their depilated and disinfected back, the outer skin layer is disconnected generously
from deeper skin layers. Subsequent layers consisting of the subcutis and the panniculus
carnosus muscle and both layers of the retractor muscle are entirely removed within the cir-
cular observation window of the skinfold chamber (cf. Fig. 5.4). After the chamber has been
implanted, the animal is allowed to recover for at least two days from the surgical trauma to
ensure physiological conditions in the blood circulation. In order to avoid any interindividual
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Figure 5.4: Syrian golden hamster equipped with dorsal skinfold chamber. In the upper
center of the titanium frame, the circular observation window is located, containing visible
blood vessels of the microvasculature.

effects and also to focus on different phenomena in various microvascular geometries, a total
number of five hamsters were analyzed. Besides hamsters, also other rodents such as rats and
mice are common models to study biomaterials in the dorsal skinfold chamber, however, due
to anatomic reasons, the signal-to-noise ratio has proven to be the best in hamsters.
Prior to fixing the hamster on the microscopy stage, the animal is anesthetized by an in-
traperitoneal injection of 100 mg kg−1 ketamine and 10 mg kg−1 xylazine. Additionally, 0.1 ml
of 5 % fluorescein isothiocyanate (FITC)-labeled dextran (150 kDa, Sigma-Aldrich) is injected
into the retrobulbar venous plexus to stain the blood plasma. Eventually, the animal is fixed
onto the microscopy stage of an upright microscope, allowing for lateral positioning of the
desired field of view, as described in reference [216].

5.4 Image analysis and data acquisition

5.4.1 Image processing

To reliably detect RBCs in the microvasculature and to ensure uniform image quality, the
recorded image files have to be post-processed. In the first step, every image series has been
cropped to the desired geometry. This cropping results in faster image processing by subse-
quent algorithms but also helps to avoid unnecessarily big data structures. However, a proper
adjustment of the cropping region is crucial since all feeding and draining vessels, respectively,
of the analyzed geometry should remain in the final images. We then apply a correction for
lateral shifts caused by abundant breathing movements of the animal by crosscorrelation of
subsequent images. However, also shifts perpendicular to the focal plane occur, resulting in
defocusing of a subset of images. In this case, the image series is split up into subseries of
images where no defocusing of the vessels exists. We stress that, due to vessels exploiting a
complex three-dimensional topology, not all segments are necessarily in focus and we restrict
our analysis only to those segments that are in focus.
Due to the staining of the plasma, as described in section 5.3.1, in combination with the het-
erogeneous distribution of cells (cf. section 5.1), the concentration of fluorescent dye is highly
time-dependent. This time-dependent distribution of dye leads to flickering in the raw footage
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Figure 5.5: (a) Results of RBC tracking in the specified geometry. The feeding, or mother
vessel (“M” in figure (b)) in the top right part delivers the blood flow, which then exits in the
draining or daughter branches. The color bar indicates the magnitude of the tracked velocities.
A ubiquitous subset of 500 tracks is drawn in the masked geometry. (b) Snapshot of the
geometry with flowing RBCs (red) in false color representation to enhance the visibility. From
the top right to the bottom left the daughter branches are labeled numerically in ascending
order. (c) Distribution of voids and RBCs within a distinct branch (1) of a bifurcation.
The graph indicates the integrated intensity along a line segment perpendicular to the flow
direction (red line segment in the branch (1) in (b)). The mean value (red dash-dotted line)
serves as a threshold to discriminate voids from RBCs. The void durations are then defined
as the time interval of consecutive intensity values above this threshold, whereas advection
times of RBCs are specified by the time interval of consecutive intensity values below the
mean value. Voids have an average duration of ca 100 ms however, due to partial blockage of
vessels caused by lingering RBCs, voids exceeding multiple times the average void duration
are formed. The formation of such a long void with a duration of 350 ms manifests at t ≈ 4.7 s.
Image adapted from reference [184].

since the white balance of the camera is adapted automatically during the image acquisition.
If not corrected for this flickering, the evaluation of intensity signals will be impaired. To
achieve a uniform white balance throughout the recorded images, a histogram matching al-
gorithm has been applied. This step is crucial since for the data analysis, the integrated
signal for a line of pixels, and thus, the brightness is calculated to discriminate void areas
from RBCs. To despeckle and smooth the images, a Gaussian blur is applied. Afterwards,
the image series is convoluted with a manually obtained binary mask. This operation ensures
a contrast enhancement of the images by disregarding the background with the associated
noise, caused e.g. by staining artifacts. To obtain these masks, a subset of the images is
averaged. Eventually, the traced resulting image yields the vessel geometry. However, the
diameter of the vessels in the respective masks is larger than their real diameter. In Fig. (5.5),
an exemplary mask is depicted alongside the original underlying in vivo geometry.
A custom-tailored Matlab® script is adapted to perform a particle tracking out of the im-
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age series. These adaptations comprise specific corrections for the binarization threshold and
classification filters for the detected objects regarding the size and contour and are generally
based on the identical script as described in section 2.4.2. Due to heterogeneous tissue thick-
ness and the fact that the vessels are exploiting a three-dimensional topology, the focal plane
will only be adjusted correctly for a certain part of the geometry within the field of view.
Thus, an entirely automatized analysis of all datasets is merely impossible except for some
peculiar cases. Consequently, manual adjustments are necessary to reliably track the flowing
RBCs in all scenarios.
The staining agent yields a fluorescent plasma staining, implying that advecting RBCs yield
lower intensity signals than the surrounding plasma-rich zones, i.e., advecting voids. Based on
this observation we, therefore, define the occurrence of voids and RBCs from the correspond-
ing temporal intensity or brightness distributions. To guarantee an unbiased and uniform
identification of the aforementioned events, we binarize the integrated intensity signal with
respect to the arithmetic mean. In conjunction with the previous considerations, intensity
values above the respective mean value are thus defined as voids, whereas intensity values
below the threshold are considered as traversing RBCs. Yet, due to the variation of the flow
velocities in the respective vessels, the absolute void durations are an inadequate measure to
characterize the effect of lingering. Instead, we determine the mean advection time of RBCs
in each vessel and denote this value by τRBC. The rescaled void durations are then given by
τRBC, corresponding to normalization by the flow rate.

5.4.2 Parameter estimation using the maximum-likelihood approach

These normalized void durations τ/τRBC are then sorted in ascending order to obtain the
empirical cumulative distribution function ecdf (τn/τRBC). Since the values of the normal-
ized void durations are strictly non-negative, independent random variables, we assume that
their cumulative distribution function cdf (τn/τRBC) is represented by a log-normal distribu-
tion function. In addition, we observe a high variance in the data along with low means of
void durations, which additionally leads to the assumption of a log-normal distribution [217].
The likelihood function L(µ, σ|X) of the log-normal distribution for a series of N indepen-
dent observables xn, n ∈ {1, . . . , N}, µ ∈ R, σ ∈ R+ is given as the product of all individual
probability density functions of each xn,

L(µ, σ|xn) =
N∏
n=1

f(xn|µ, σ)

= (2πσ2)−N/2
N∏
n=1

(
x−1
n exp

[
−(log(xn)− µ)2

2σ2

])
. (5.1)

To find the parameters maximizing the likelihood function, we take the derivative of Eq. (5.1)
with respect to µ,

∂L
∂µ

= (2πσ2)−N/2
N∏
n=1

(
x−1
n exp

[
−(log(xn)− µ)2

2σ2

])
·

(
N∑
k=1

(log(xk)− µ)

σ2

)
. (5.2)
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Eq. (5.2) can only vanish if

0 =
N∑
k=1

(log(xk)− µ)

σ2

⇐⇒ µ =
1

N

N∑
k=1

log(xk) . (5.3)

Similarly, we find by derivation of Eq. (5.1) with respect to σ and equating it to zero,

σ2 =
1

N

N∑
k=1

(log(xk)− µ)2 . (5.4)

To prove that Eqs. (5.3) and (5.4) indeed maximize the likelihood function Eq. (5.1), one can
show that the corresponding Hessian is negative definite, and thus indicates a local maxi-
mum. Moreover, one finds lim

µ→±∞
L(µ, σ|xn) = −∞, and lim

σ→0,∞
L(µ, σ|xn) = −∞, and hence

Eqs. (5.3) and (5.4) indicate a global maximum.
The cumulative distribution function of the normalized void durations then reads

cdf

(
τn
τRBC

)
=

1

2

1 + erf

 log
(

τn
τRBC

)
− µ̂

√
2σ̂

 , (5.5)

with the error function erf(·). Here, the standard notation for the parameters µ̂, and σ̂ is used
to indicate that they originate from estimation, with

µ̂ =
1

N

N∑
n=1

log

(
τn
τRBC

)
,

σ̂2 =
1

N

N∑
n=1

(
log

(
τn
τRBC

)
− µ̂

)2

. (5.6)

Differentiating the cumulative distribution function in Eq. (5.5), we obtain the associated
probability density distribution of the constituing normalized void durations. The a priori
postulation of the void durations being log-normally distributed is verified a posteriori by a
Kolmogorov-Smirnov (KS) test. This test evaluates the supremum of all individual differences
from the empirical cumulative distribution function and the cumulative distribution function
based on the estimated parameters:

s = ‖cdf (τn/τRBC)− ecdf (τn/τRBC) ‖sup . (5.7)

5.5 Results

We analyze the flow of RBCs in the vicinity of bifurcating vessels with varying diameter and
bifurcating angles. Analogous to recent observations in silico, we find lingering events, i.e.,
RBCs resting at the bifurcation apex. Such a lingering RBC in an arteriolar bifurcation is
depicted in Fig. 5.6 at different timesteps. From the conducted experiments, we obtain various
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Figure 5.6: Snapshots of a lingering RBC at an arterial bifurcation for a time interval of
t = 380 ms. At t = 0 ms, an RBC is touching the apex of the bifurcation. Subsequently,
the RBC starts to deform and linger around this apex, leading to a partial blockage with
decreased flow rate as can be seen in the upper daughter vessel for the entire image series.
At t = 380 ms, the cell is detaching from the apex. The white arrows are pointing towards
the lingering RBC. The scale bar is 10 µm in width. Image adapted from reference [184].

unique branching geometries which are analyzed in section 5.5.3. Yet, to describe the entire
procedure of the analysis in detail, we restrict this section in the following to the most com-
plex vessel topology with a total number of four bifurcation apices and seven interconnected
daughter vessels, organized hierarchically.
Based on the geometry depicted in Fig. 5.5, we obtain the integrated intensity signal along a
perpendicular line with respect to the flow direction. This method yields information about
the general distribution of RBCs and cell-depleted areas; however, no information about lin-
gering is yet taken into account. We rather implement this technique since the particle tracking
results do not yield trajectories that do not cover a sufficiently large distance due to the fact
that not all parts of the recorded vessel geometry are in focus. The bifurcation apex is in
the focal plane for all the discussed geometries and hence the particle-tracking algorithm can
be applied to this region. We thus combine the results of both implemented techniques to
provide a holistic view on the lingering of RBCs and their dynamics.
According to the detailed remarks in section 2.4.2, we obtain trajectories of individual RBCs,
whereas, in contrast to the parameter settings for the in vitro experiments, we do not neglect
trains of cells for the current in vivo experiments. From the precise individual position data
of flowing RBCs, we calculate the RBC velocities for each frame. Specifically, we focused on
the velocities in a small circular region around each bifurcation apex due to the definition of
a lingering event in silico as an RBC resting at the bifurcation apex. Due to peculiarities of
intravital microscopical imaging and the resulting image noise level, the center of mass of the
detected RBC is fluctuating slightly in consecutive images. We, therefore, adjust the definition
of a lingering event as in reference [75] to a specific threshold of vRBC < 30 µm s−1, such that
RBCs in the specified annulus around the apex displaying a velocity below this value are clas-
sified as lingering cells. The threshold value is determined heuristically by the precision of the
tracked center of mass of resting RBCs in the current setup, which is approx. 200 nm−300 nm
due to minor lateral shifts resulting from breathing movements and alterations in the illu-
mination. Together with the time interval between consecutive images of approx. 10 ms, the
velocity profile exhibits a minimal value of vRBC ' 20 µm s−1 − 30 µm s−1 for resting RBCs.
We remark that this threshold value is significantly lower than typical velocity regimes in the
microvasculature (cf. Tab. 1.1) and that this adaptation is not contradictive to the original
definition but solely due to intrinsic experimental limitations.
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5.5.1 Void durations: The impact of lingering

Since vessels are exploiting a three-dimensional topology, not all parts of a given geometry are
in the focal plane. To account for this circumstance, we intentionally evaluate the integrated
brightness signals at vessel segments in focus. The resulting spatio-temporal shift of the lin-
gering RBC and the instantaneous impact on the flow field thereof at the position of the signal
evaluation downstream is corrected for by the average RBC velocity in the intermediate vessel
segment. In fact, this approach enables us to relate the influence of lingering events on void
formation at arbitrary suited positions in the branching vessels.
Using the maximum-likelihood approach, we first estimated the parameters of our empir-
ical cumulative distribution of void durations, as described in section 5.4.2. Here, all
void durations are taken into account, i.e., independent if they are associated with lin-
gering events or not. In Fig. 5.7, the good agreement between the analytical distribu-
tion function and the data is shown, as one can see by the deviations of datapoints and
analytical curves. Additionally, we perform the Kolmogorov-Smirnov test as an indica-

Figure 5.7: (left) Cumulative distribution functions of normalized void durations τ/τRBC for
all branches of the geometry in Fig. 5.5. The temporal length of the voids is hereby rescaled
for each branch by the average time of a RBC to pass, τRBC. The data points correspond to
measured void durations, whereas the solid line corresponds to the respective analytical log-
normal distributions with estimated parameters µ̂ and σ̂, as in Eq. (5.5). (right) Probability
density functions of all measured void durations for each branch of the analyzed geometry,
normalized by the passage time of RBCs. The individual graphs are given by derivation of
teh corresponding cumulative distribution function. Image adapted from reference [184].

tor to verify the assumption of log-normally distributed void durations. We find that
si = {0.11, 0.10, 0.07, 0.07, 0.09, 0.08, 0.06}, i ∈ {1, . . . , 7}, where i denotes the branch identi-
fier according to Fig. 5.5.
Due to this very good agreement between the predicted analytical distribution function and
the empirical distribution function, the log-normal distribution of void durations is justified
a posteriori. All other analyzed geometries confirm this assumption due to similar results
of the KS test. In all cases we find s < 0.13. The corresponding probability density func-
tions of all void durations are furthermore provided alongside the cumulative distribution
function in Fig. 5.7. Filtering the whole dataset of voids by the events of lingering RBCs
at the preceding bifurcation apex, we obtain the cumulative distribution functions and the
probability density functions, similarly to the previous considerations. However, we restrict
all further analysis to these probability density functions. The result of the separation of
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lingering and non-lingering events, respectively, is shown in Fig. 5.8. Whereas the left graph

Figure 5.8: (left) Probability density functions of void durations for all branches as in
Fig. 5.7 in the case of non-lingering events. The temporal length of the voids is scaled for
each branch by the average time of a RBC to pass, τRBC. (right) Probability density functions
of normalized void durations exclusively associated to lingering events for all branches. We
define a lingering event to occur if the speed of an RBC is lower than vRBC ≤ 30 µm s−1 in the
vicinity of a bifurcation apex. The numerical ordering of the labels is identical to the one in
Fig. 5.7. Filled circles in matching colors indicate median values of normalized void durations,
obtained from estimated parameters as in Eq. (5.6). Image adapted from reference [184].

in Fig. 5.8 depicts the void durations associated to non-lingering events, the right graph shows
the distribution of void durations exclusively associated to lingering RBCs. In the former
case, the median void durations are narrowly distributed, contrasting the observation in the
latter case, where the median values are shifted towards higher void durations for all daugh-
ter vessels except for branch 6. Additionally we notice a suppression of short void durations
τ/τRBC < 0.5 in the case of lingering associated voids, which in turn contributes to the men-
tioned median shift. We therefore quantify the probabilities to obtain void durations of less
than 0.5 τRBC. In the case of non-lingering, numerical integration of the respective probability
densities yields the probabilities Pi (τvoid < 0.5 τRBC) = {0.23, 0.47, 0.38, 0.31, 0.45, 0.27, 0.40},
i ∈ {1, . . . , 7}, where i denotes the branch identifier according to Fig. 5.5. Similarly, we obtain
P̃i (τvoid < 0.5 τRBC) = {0.02, 0.30, 0.00, 0.03, 0.01, 0.46, 0.10}, i ∈ {1, . . . , 7} with the probabil-
ities P̃i in the case of lingering. From these considerations, the drastic diminution of void
durations of less than or equal to 0.5 τRBC in all cases except for i = 6 is evident. Similar
results are obtained for the additional vessel geometries, which will be presented in section
5.5.3.

5.5.2 Lingering frequency

Apart from the impact of individual lingering events on the overall RBC distribution in the
network, we seek to quantify the number of voids in a distinct daughter branch associated
with lingering events and the total number of voids in that branch. This so-called lingering
frequency, denoted by nlinger, is depicted in Fig. 5.9 for the entire set of suitable geometries
presented in section 5.5.3. We evaluate these lingering frequencies in relation to the respective
normalized mean flow rates in the daughter branches of adjacent vessels. Due to the incom-
pressibility of the fluid, the mean flow rate of the feeding vessel equals the sum of the flow
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Figure 5.9: Lingering frequencies of the detected voids in relation to the normalized mean
flow rate in a distinct vessel. The lingering frequency is defined as the fraction of the void
count associated with a lingering event and the total void count in the vessel. Moreover,
we define the normalized mean flow rate as a fraction of the flow rate in a daughter vessel
Qi, i ∈ {1, 2}, and the mother vessel QM. Identical color codes belong to pairs of vessels
branching from the same apex; the dashed lines connect the data points of vessels. Image
adapted from reference [184].

rates of all draining vessels within one generation of a hierarchical bifurcation cascade. Hence,
the suitable geometries comprise the subset where the normalization factor of the flow rates is
accessible. Since the apparent vessel diameters are smaller than the equilibrium size of RBCs,
they are highly deformed while advecting through them. We therefore conjecture that their
mean velocity may serve as a good approximation of the mean velocity of the plasma phase,
the so-called plug flow. Hence, the time-averaged flow rate Q simplifies to

Q =
∆V

∆t
= Avfluid ' A

lRBC

τRBC

, (5.8)

with the finite volume element ∆V advecting in the time interval ∆t, the cross-sectional area
A, the mean velocity of the plasma vfluid, the length of the major axis of the circumscribing
ellipse of RBCs lRBC and the average RBC advection time τRBC, as introduced in the previous
paragraphs. The presented data in Fig. 5.9 shows a clear qualitative trend that among adjacent
daughter vessels, the lingering frequency is relatively increased in the vessel exhibiting the
lower flow rate.
Lastly, we remark that the analysis of void durations is not obvious in the context of blood flow
in general and especially in microvascular networks. Admittedly, a more intuitive observable
in the field of hemodynamics is given by the hematocrit. However, since we do have access
to microscopic observables such as the individual RBC and void distributions throughout the
network, a subtle investigation of intercellular distances provides a fine-grained picture of the
influence of lingering, in contrast to the mesoscopic hematocrit picture. Nevertheless, the
tube hematocrit in a vessel segment HT is accessible via the mapping

HT =
VRBC

VRBC + Vvoid
=

1

1 + τ
τRBC

, (5.9)
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with the volume fractions VRBC of RBCs and Vvoid of voids, respectively.
In the derivation of the above expression, we explicitly used the assumption of plug flow, as
denoted in Eq. (5.8). Via Taylor expansion, the obtained expression for HT can be approxi-
mated as HT ≈ 1 − τ

τRBC
in the case of short void durations τ < τRBC, and HT ≈ τRBC

τ for
τ > τRBC, respectively.

5.5.3 Additional bifurcation geometries

Besides statistical reasons to cover further geometrical and topological varieties, additional
analyses on various geometries in the hamster models have been conducted to neglect any
effects originating from individual pathological particularities of the animal. The probability
density functions along with the binarized mask indicating the geometry are depicted in the
following figures in this section. The findings for the void durations corroborate the precedent
findings qualitatively in most cases. Namely, the suppression of short void durations as well
as the median increase of the void durations. In Figs. 5.10-5.14, we find for the majority of
scenarios a qualitative coincidence to the previous analysis of the void durations in section
5.5.1. However, we also find the contrasting state, and geometries where only one vessel is
suited for the analysis of voids.
Ideally, both bifurcating vessels are suitable for the application of our algorithm. Neverthe-
less, exceptions are given mainly due to the fact that one vessel is not in focus, resulting in
an unreliable signal evaluation. Second, in some peculiar cases, the diameter of one daughter
vessel is in a range that no file-like movement of RBCs is any longer present but rather a bulk
flow of cells, making them indistinguishable in the available optical resolution limit. Examples
of this circumstance are given in Fig. 5.10 (b, d), Fig. 5.12 (d), and Fig. 5.14 (b, d), where only
temporal void distributions of a subset of bifurcating vessels are given. In these cases, the
normalized flow rates cannot be established, since the normalization factor is inaccessible.
Among all investigated geometries, only the one depicted in Fig. 5.12 (e) does not obey any
lingering events. Similarly, the geometry shown in Fig. 5.14 (c) exhibits only two lingering
events and thus, no probability density functions are presented. Detailed descriptions will be
given in the respective figure captions for all scenarios. In general, we restrict the abscissa to
a limit of τ/τRBC = 4, since we are interested especially in the regions of short void durations
in the order of the cell passage time and further, the probability densities for longer void
durations are significantly low. Only in rare cases where long tails of the probability density
functions arise, we restrict the abscissa to values up to τ/τRBC = 5.
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Figure 5.10: (a, c, e) Three different sections of the microvascular network are depicted.
The blood flow in each geometry is coming from the mother vessel (M) and exits in the
numerically labeled daughter branches. For a better visualization, only the binarized mask
of each geometry is depicted. (b, d, f) Probability densities of the corresponding geom-
etry on the left panel in the case of lingering-associated void formations (solid lines) and
non-lingering associated voids (dashed lines). The abscissa values of the filled circles in
the graphs depict the median void durations. With the notation as in section 5.5.1, we
find for the dimensions and the probabilities P , and P̃ : (b) P1 (τ < 0.5 τRBC) = 0.44,
P̃1 (τ < 0.5 τRBC) = 0.02, n1,linger = 0.13, and d1 = 2.9 µm at the position of the

intensity signal evaluation. (d) P1 (τ < 0.5 τRBC) = 0.33, P̃1 (τ < 0.5 τRBC) = 0.00,
d1 = 2.8 µm, (e) P1,2 (τ < 0.5 τRBC) = {0.51, 0.22}, P̃1,2 (τ < 0.5 τRBC) = {0.06, 0.03},
the vessel diameters yield d1,2 = {4.1, 3.5} µm, with corresponding normalized flow rates
q1,2 = Q1,2/QM = {0.73, 0.27}, and lingering frequencies n1,2,linger = {0.07, 0.20}. This ge-
ometry is linked to the unique identifier “ ” in Fig. 5.9. Image adapted from reference [184].
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Figure 5.11: (a, c, e) Three different bifurcation geometries are depicted, with the blood
flow coming from the mother vessel (M) and draining in the numerically labeled daugh-
ter branches. These geometries are linked to the unique identifiers “ ” (a), “ ” (c), and “ ”
(e) in Fig. 5.9. (b, d, f) Probability densities of lingering-associated void durations (solid
lines) and non-lingering associated void durations (dashed lines) for the geometries on the
left panel. The filled circles in the graphs indicate the median void durations. The di-
mensions and lingering frequencies are as follows: (b) P1,2 (τ < 0.5 τRBC) = {0.45, 0.59},
P̃1,2 (τ < 0.5 τRBC) = {0.37, 0.34}, n1,2,linger = {0.69, 0.42}, with the corresponding measured
vessel diameters d1,2 = {3.1, 3.6} µm at the position of the signal evaluation. Corresponding
average flow rates are determined as q1,2 = Q1,2/QM = {0.39, 0.61}. (d) P1,2 (τ < 0.5 τRBC) =

{0.08, 0.01}, P̃1,2 (τ < 0.5 τRBC) = {0.00, 0.00}, n1,2,linger = {0.18, 0.06}, with the cor-
responding measured vessel diameters d1,2 = {3.9, 4.2} µm, and normalized flow rates

q1,2 = {0.31, 0.69}. (f) P1,2 (τ < 0.5 τRBC) = {0.21, 0.41}, P̃1,2 (τ < 0.5 τRBC) = {0.09, 0.18},
n1,2,linger = {0.39, 0.22}, d1,2 = {2.9, 3.3} µm, with normalized flow rates q1,2 = {0.31, 0.69}.
Image adapted from reference [184].
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Figure 5.12: (a, c, e) Three different bifurcation geometries are depicted, with the blood
flow coming from the mother vessel (M) and draining in the numerically labeled daughter
branches. These geometries are linked to the unique identifiers “ ” (a), and “ ” (c) in Fig. 5.9.
(b, d, f) Probability densities of lingering-associated void durations (solid lines) and non-
lingering associated void durations (dashed lines) for the geometries on the left panel. The
filled circles in the graphs indicate the median void durations. The dimensions and linger-
ing frequencies are as follows: (b) P1,2 (τ < 0.5 τRBC) = {0.55, 0.55}, P̃1,2 (τ < 0.5 τRBC) =
{0.32, 0.49}, n1,2,linger = {0.28, 0.36}, with the corresponding measured vessel diameters
d1,2 = {3.1, 2.9} µm at the position of the signal evaluation. Corresponding average
flow rates are determined as q1,2 = {0.59, 0.41}. (d) P1,2 (τ < 0.5 τRBC) = {0.34, 0.34},
P̃1,2 (τ < 0.5 τRBC) = {0.46, 0.37}, n1,2,linger = {0.74, 0.72}, with the corresponding measured
vessel diameters d1,2 = {3.3, 2.9} µm, and normalized flow rates q1,2 = {0.43, 0.57}. (f) We
do not observe a single lingering event of a RBC, and hence n1,2,linger = {0, 0}. This special
case is found to be the only one which does not obey any lingering events among all analyzed
geometries. Image adapted from reference [184].
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Figure 5.13: (a, c, e) Three different bifurcation geometries are depicted, with the blood
flow coming from the mother vessel (M) and draining in the numerically labeled daugh-
ter branches. These geometries are linked to the unique identifiers “ ” (a), and “ ” (e)
in Fig. 5.9. (b, d, f) Probability densities of lingering-associated void durations (solid
lines) and non-lingering associated void durations (dashed lines) for the geometries on the
left panel. The filled circles in the graphs indicate the median void durations. The di-
mensions and lingering frequencies are as follows: (b) P1,2 (τ < 0.5 τRBC) = {0.29, 0.00},
P̃1,2 (τ < 0.5 τRBC) = {0.44, 0.44}, n1,2,linger = {0.79, 0.80}, with the corresponding
measured vessel diameters d1,2 = {4.6, 3.4} µm at the position of the signal eval-
uation. Corresponding average flow rates are determined as q1,2 = {0.55, 0.45}.
(d) P1,2 (τ < 0.5 τRBC) = {0.21, 0.44}, P̃1,2 (τ < 0.5 τRBC) = {0.03, 0.19}, n1,2,linger =
{0.44, 0.37}, with the corresponding measured vessel diameters d1,2 = {3.6, 2.8} µm,
and normalized flow rates q1,2 = {0.52, 0.48}. (f) P1,2 (τ < 0.5 τRBC) = {0.17, 0.14},
P̃1,2 (τ < 0.5 τRBC) = {0.04, 0.02}, n1,2,linger = {0.11, 0.11}, with the corresponding measured
vessel diameters d1,2 = {2.9, 2.3} µm, and normalized flow rates q1,2 = {0.55, 0.45}. Image
adapted from reference [184].
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Figure 5.14: (a, c) Two bifurcation geometries are depicted, with the blood flow coming
from the mother vessel (M) and draining in both respective daughter branches. However,
in both cases, one of the daughter branches is not in the focal plane and thus not suitable
for analyis. (b, d) Probability densities of lingering-associated void durations (solid lines),
and non-lingering associated void durations (dashed lines) for the geometries on the left
panel. The filled circles in the graphs indicate the median void durations. (b) Analogously to
previous analyses, we find P1 (τ < 0.5 τRBC) = 0.35, P̃1 (τ < 0.5 τRBC) = 0.01, n1,linger = 0.04,
with the corresponding measured vessel diameter d1 = 2.7 µm at the position of the signal
evaluation. Since only one daughter vessel is prone to a quantitative analysis, we do not
provide normalized flow rates. (d) We find P1 (τ < 0.5 τRBC) = 0.04, and the vessel diameter
yields d1 = 3.4 µm. Only two lingering events are detected throughout all passing cells, and
hence n1,linger = 0.00. Probability densities are not provided for these single events. Image
adapted from reference [184].

5.5.4 Deformation of RBCs in the vicinity of bifurcations

Since the deformability of RBCs is crucial to obey lingering events, we also analyzed the de-
tailed deformation of RBCs in the vicinity of branches, i.e. bifurcation and confluence apices.
However, lingering is caused by hardcore interaction between the surface of the RBC and the
endothelium of the bifurcation apex, the sole presence of these apices already induces shape
changes of RBCs which are approaching or distancing, respectively.
To assess the deformation of RBCs, we restrict the analysis to geometries that provide a re-
liable outcome from the particle tracking algorithm along the whole path of individual cells,
yielding the eccentricity of detected cells. The geometry presented in Fig. 5.15 is the only suit-
able geometry prone to these preliminaries, exhibiting both a confluence and a bifurcation.
However, we only derive a qualitative description of the deformation of RBCs, whose general
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properties are similar in other geometries, and thus, our findings can easily be generalized
to other bifurcation scenarios. To characterize this deformation behavior of flowing RBCs,

Figure 5.15: (a) Analyzed geometry to investigate the deformation behavior of flowing
RBCs in a confluence-bifurcation scenario. The flow direction in each vessel is indicated by
arrows, whereas the apex positions are indicated by xb, and xc, respectively, for a bifurcation
and a confluence. (b) Eccentricity ε of RBCs, obtained by particle tracking, as a function
of centroid position within the geometry in (a). The eccentricity is hereby calculated as the
ratio of the distance between the two foci and the length of its major axis of an ellipse with
the identical second moments for each individual RBC for all consecutive images. The thick
red solid line represents the average of all individual graphs, represented by the thin shaded
curves. For the analysis, only single cells are taken into account, i.e. trains of consecutive
cells are rejected. The offset of the centroid position is chosen such that the bifurcation apex
xb is at position zero. Image adapted from reference [184].

we calculated the ellipse obeying the same second moments as each individual flowing RBC.
From the parametrization of this ellipse, we obtain both the centroid position as well as the
eccentricity ε, given as the ratio of the distance between the two foci and the length of its
major axis. The spatio-temporal evolution of the eccentricity is shown in Fig. 5.15, both for
each individual RBC as well as an average curve.
From the average curve, one can deduct the transition the cell shapes undergo while flowing
through the vessels. While the RBCs are flowing in one of the daughter branches, they remain
in an elongated shape due to the constriction of the narrow vessels. As they approach the
confluence apex xc, the eccentricity reaches the global minimum, indicating the most spherical
shape. As the RBCs flow towards the bifurcation apex through the intermediate vessel, they
elongate again, indicated by the local maximum at x ≈ −7 µm. At the position of the bifurca-
tion apex, xb, the elongated RBC is expanding in a more spherical shape again, as is indicated
by the local minimum of ε. Finally, when entering one of the two branching vessels, the elon-
gation increases again. As a main difference to the lingering phenomenon, the cell speed is
adapted to the individual flow rates in the daughter branches of the geometry. In the lingering
case, however, the reduction of the speed is significantly below the mean speed of the bulk flow.
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5.6 Discussion

In section 5.5.1, we showed evidence of an apparent increase in median void durations for the
majority of investigated geometries. Since we analyzed the formations of voids downstream
the bifurcation apex in the given geometry, this increase originates out of two distinct con-
tributions. In reference [75], lingering events are characterized by the type of blockage they
cause. In the case of a symmetrical lingering, the reduction of flow rates in every daughter
vessel is reduced equally. In contrast, asymmetrically lingering RBCs lead to a nonuniform
constriction of both daughter vessels, leading to an imbalanced partition of the respective
flow rates (cf. Fig. 5.2). They show furthermore, that these asymmetric lingering events occur
periodically in the sense that the flow rates in both daughter vessels fluctuate periodically
for subsequent lingering events. We conjecture this unequal reduction of flow rates to be one
cause of the increased void durations in our experimental data. A redistribution of consecutive
RBCs further upstream of the lingering RBC is the manifestation of this effect, leading to an
increased median void duration.
A second contribution of the aforementioned increase on the temporal void duration is yielded
by the break up of clusters of flowing RBCs, induced by a lingering cell. We refer to the term
cluster as trains of moving RBCs, where the intercellular distance is in the order of the cellular
size, where hydrodynamic interactions are ubiquitous [22, 30]. The partial obstruction caused
by a lingering RBC leads to an alteration of the flow rate in one or both daughter vessels.
However, this decreased flow rate is related to a change in void speed in the affected vessel,
which in turn implies that the distance between consecutive RBCs and hence the spatial void
length sustains in the prevalent Reynolds regime. Yet, we do not observe this in our data.
Although deviations of individual cell speeds from the mean speed are present, the variance
of these is smaller than the mean speed itself, i.e., var(τi,RBC)/〈τi,RBC〉 < 0.5. In addition,
deviations from the mean speed are arbitrarily distributed, independent of lingering events,
but rather governed by the temporal flow heterogeneity of the whole microvascular network.
We use this observation a posteriori as a justification to consider the mean RBC passage time
as a normalization factor for the void durations since the variation of each individual RBC
passage time is negligible within the experimental limits.
In Fig. 5.16, intensity signals of all investigated branches of the geometry in Fig. 5.5 are de-
picted, where the flow characteristics of RBCs and voids can be qualitatively inferred. From
these findings, we conjecture that temporal void durations and spatial void lengths are highly
correlated, and this implies a breakup of clusters of RBCs while approaching a lingering RBC
at a bifurcation apex. Similarly, the considerations above explain the suppression of short
void durations.
The spatio-temporal heterogeneity of cell distributions leads furthermore to the rather long-
tailed probability densities of void durations provided in sections 5.5.1 and 5.5.3. These long
tails emerge from the inherent flow properties of the microvascular network itself, rather than
as a direct consequence of a lingering event. Depending on the actual geometrical parameters
of the bifurcation and its feeding and draining vessels, we observe cell-depleted sequences and
regions, up to an entirely plasmatic flow in extreme cases and thus long void durations in
absence of lingering events.
So far, effects arising from individual lingering events on the blood flow in the constituent
vessels of the bifurcation have been elucidated. When it comes to the impact on the blood
flow, the number of lingering events among all traversing RBCs, in other words, the lingering
frequency, is of high importance. Despite the fact that most parameters allegedly influenc-
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ing this quantity are inaccessible in our experimental setup, we restrict our analysis to the
dependence of lingering frequency on the flow rates in both daughter vessels. From Fig. 5.9,
we find a decreased frequency in the vessel with a higher flow rate with respect to its coun-
terpart among all investigated adjacent vessel pairs. RBCs merely follow the streamlines of
the surrounding plasma [65], hence fewer cells are flowing in the vessel with a lower flow
rate. Despite this observation, the interplay of RBCs with the endothelium is highly complex
[133], and thus it is non-intuitive to obey this relationship also for lingering cells. Even more
remarkable is the circumstance that we find the aforementioned correlation for all analyzed
geometries, independent of the cutting angles between feeding vessels and daughter vessels.

Figure 5.16: Integrated intensity signals for all branches of the geometry depicted in Fig. 5.5
in ascending order. In each subplot, the red dash-dotted line represents the mean value of
the integrated intensity. These mean values of the integrated intensity serve as a threshold to
binarize the signals and thus to define voids and RBCs, respectively. For a better comparison,
the integrated intensities are normalized in each branch. From the local minima and the width
of the binarized peaks, one can see that the passage time of RBCs is narrowly distributed in
every respective branch.

Furthermore, the difference in lingering frequencies of associated adjacent vessels vanishes as
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the flow rates approach an equal partition, i.e., close to 0.5 × QM. Yet, we find no evidence
that the overall magnitude of the lingering frequency is affected by relative flow rates but
rather influenced by the cutting angle between the feeding and the draining vessels, such that
smaller angles exhibit higher lingering frequencies in most cases.
The observed increase of the median void durations in conjunction with the suppression of
void durations τ < 0.5 τRBC leads to a decreased fraction of RBCs in the daughter vessels in
the case of lingering, and thus, to a reduction in the hematocrit. This hematocrit reduction
downstream the bifurcation in the presence of lingering events is also observed in the study
of Balogh et al. [75], modeling a realistic microvascular network in silico. They further report
the lingering to be causing a hematocrit reduction upstream the bifurcation. Due to the fact
that the feeding vessel in our investigated geometries typically provides a bulk flow of RBCs,
we can not assess the density of flowing RBCs and hence the hematocrit in that vessel. For
future experiments, this limitation could be improved by an enlarged field of view and im-
proved image acquisition with the aid of high-speed cameras capable of recording at a higher
framerate. However, we conjecture that the aforementioned trains of RBCs approaching a
bifurcation apex in peculiar cases result from this hematocrit reduction upstream of the in-
vestigated bifurcation.
The very good qualitative agreement between our experimental results and their observations
in silico is remarkable given the sheer complexity of the overall microvascular network in
the used hamster model and the experimental drawbacks, such as limited knowledge of the
overall geometry due to a limited insight, contrasting the well-defined boundary conditions
implemented in the numerical modeling. Furthermore, we observe in all but one geometry
lingering events, which are also matched in silico, where all investigated bifurcations embodied
lingering cells, yet the most pronounced in capillaries.
By combining the observation of the imbalanced lingering frequency and the median increase
of void durations, we conjecture that the classical partitioning behavior of RBCs according to
the Zweifach-Fung effect even underestimates the hematocrit reduction due to lingering sce-
narios. We attribute this deviation to the fact that lingering has not been taken into account
in the existing in vivo studies and therefore, the complex interaction of the RBC structure
with the endothelium is not mirrored [133]. In fact, these interactions and the finite size
effects of RBCs are identified as the major contributions to the underestimation of the cell
partitioning in silico [76].
Even though we assess the impact of lingering cells at bifurcations on the distribution of
subsequently flowing RBCs, detailed knowledge of the exact flow profiles and pressure dis-
tributions in the local vessels is lacking. However, these parameters are crucial to provide a
holistic view on the lingering events, especially since Balogh et al. [75] showed evidence that
lingering RBCs are responsible for a negative pressure-flow correlation, which is absent in
the case of non-lingering cells and contradicts the positive pressure-flow correlation deduced
from Poiseuille’s law. In future experiments, a more detailed knowledge of flow profiles can
be obtained by the injection of fluorescent tracer particles, which have already been employed
to confirm margination and antimargination behavior in recent studies [189]. Endowed with
the knowledge of flow profiles within the bifurcation geometry, we would further be able to
estimate the wall shear stress, which has also been found to increase drastically in the lingering
scenario, and which is linked to triggering angiogenesis and angioadaptation (cf. sections 5.2 -
5.2.2).
We focused so far on the impact of lingering events on the characteristics and dynamics of
hematological parameters. However, the origin and prerequisites to facilitate lingering have
not been discussed yet. The inner network of spectrin fibers plays an important role since it
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provides the crucial deformation ability of RBCs, allowing them to squeeze through constric-
tions much smaller than their equilibrium size [218, 219]. We investigated this deformability in
the vicinity of branching and confluent vessels, and find a characteristic deformation pattern
for RBCs approaching a bifurcation apex and distancing a confluence apex, respectively, as
depicted in Fig. 5.15. These characteristic deformations match the findings of recent simula-
tions addressing the deformation for a various number of RBCs approaching a bifurcation [78].
We stress that this shape deformation depends on the confinement of the underlying geome-
try and this strong coupling with the plasma results in the observed lingering phenomenon.
Parameters such as opening angles or curvatures of the endothelium at the apex are essential
determinants of lingering behavior since they in turn have an impact on the position of RBCs
and their trajectory. The bending rigidity of RBCs is also known to be altered by various
diseases, and therefore we conjecture that the impact of lingering on the overall health state
may also vary with other pathological states.

5.7 Summary

Using state-of-the-art intravital microscopy, we are able to extract image sequences of the
blood flow in living Syrian golden hamsters. In addition to a joint application of a customized
particle tracking algorithm and sophisticated signal processing within a vessel segment, we
analyzed the distribution of RBCs and cell-free areas, the voids, inside a given microvascular
geometry. Motivated by recent in silico studies addressing effects arising from the particulate
nature of blood suspensions, we focus in the data analysis on the influence of RBCs resting at
a bifurcation apex, the so-called lingering phenomenon. More precisely, we aimed to separate
voids that are linked to these lingering RBCs from voids that are not in direct connection to
any lingering RBC.
We show that in the case of lingering-associated voids the median void duration is in the
majority of investigated geometries increased with respect to non-lingering associated voids.
In some extreme cases, we observed that the median void durations in the case of lingering
exceeded 1.5 times the median void durations in the non-lingering case. Additionally, we
note a suppression of very short void durations in the lingering case, which is not mirrored
in the latter case. Both, the suppression of short void durations and the shift of median void
durations towards higher values are associated with a reduction of the hematocrit downstream
the bifurcation. This observation is in very good qualitative agreement with the in silico
results presented in reference [75]. We conjecture that this decreased hematocrit is caused by
a break-up of clusters of RBCs approaching a lingering RBC, and furthermore, a redistribution
of subsequent cells into the adjacent daughter vessel. Even though these effects seem to be
rather fine-grained, the impact on the whole organism may be severe, given the importance of
microvascular blood flow to the health state. Indeed, lingering is found to contribute to peaks
in the local wall shear stress, which in turn is known to be an important trigger for the pruning
of new vessels, the angiogenesis. The lingering phenomenon itself is governed by the topology
of the bifurcation apex and its constituent vessels; however, the cellular deformability plays
a key role. Considering the fraction of lingering cells and the total count of passing cells, the
lingering frequency, we find a significant amount of cells to linger at a bifurcation. We thus
conclude that the lingering phenomenon is one important factor among others, influencing
the development of microvascular beds and their topology. It has a tremendous impact on
the flow characteristics of the subsequent bloodstream and may be altered significantly by
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pathological states influencing the rigidity of RBCs.
Our findings may further serve as a benchmark for the accuracy and the performance of in
silico models, addressing microvascular blood flow.
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General Conclusion and Perspectives

In this work, we present two research projects illustrating the importance of the intrinsic de-
formability of red blood cells (RBCs) in microcapillary flow regimes. Structurally, the work
is divided into two parts, with the first one dedicated to in vitro experiments of driven dilute
RBC suspensions in straight capillaries and the phenomenological characterization of their hy-
drodynamically induced shapes. The second part investigates the dynamics of RBCs in vivo
upon approaching bifurcation apices in vivo and the consequences of this so-called lingering
behavior on the distribution of the subsequent RBC flux.
In the first part, we evaluated the hydrodynamically induced shapes of RBCs and constructed
a shape phase diagram based on a binary classification into axisymmetric shapes, termed
croissants, and asymmetric shapes oriented towards the channel walls, called slippers. The
findings of the conducted in vitro experiments are backed up by sophisticated 3D simulations
to mimic the flow of isolated RBCs in a channel segment of identical dimensions as in the
former case. Both methodologies show a very good congruence for all implied flow velocities,
ranging from 0.1 mm s−1 − 10 mm s−1 and thus covering the entire regime of flow conditions
prevalent in the microvasculature of the human body. Moreover, the simulations employed
different initial shape configurations to investigate the impact of this initial configuration on
the terminal state.
Compared to previous studies addressing the hydrodynamically induced shapes, the simula-
tions, as well as the experiment, used physiological viscosity ratios of λvisc ≈ 5, which is known
to be a crucial parameter for the steady-state shape.
The evaluation of the RBC shapes obtained in vitro has been carried out manually, which is po-
tentially biased due to the subjective human classification and the lack of suitable parameters
associated with distinct shape categories. To overcome these drawbacks, we designed a state-
of-the-art convolutional neural network (CNN), trained to classify the input images according
to our binary classification scheme. However, standard CNN approaches for object recogni-
tion and pattern detection provide an unsatisfactory environment since the dataset comprised
of all recorded RBC images flowing in the microfluidic channel additionally consists of in-
distinguishable shapes, referred to as others, besides croissants and slippers. Therefore, the
employed CNN is a regression-type network, yielding a continuous output number to which,
in a subsequent step, thresholds are adjusted to minimize a predefined cost function. Overall,
this procedure reproduces the manually obtained phase diagram of RBC shapes, yet with
an unbiased output and highly time-efficient. This automatized classification thus forms the
basis for future developments of cost-inexpensive, label-free tools prevalent in lab-on-a-chip
devices.
The building blocks this research is resting on can easily be extended to consolidate the
current findings. Starting with the microfluidic chip design, we are confident to investigate
cross-sections with further aspect ratios in particular and different geometries in general. Al-
beit the flow regimes and typical dimensions are covered in the body of mammals, the use
of rectangular ducts can only serve as an approximation of the actual findings in vivo. Un-
fortunately, the experimental setup is limited to projections of the RBC, which reduces the

97



Chapter 5 Lingering dynamics of red blood cells in vivo

information and hence increases the complexity of the shape evaluation. We are confident
to resolve this limiting factor in future studies by in situ hardening of flowing RBCs with
the aid of externally triggered activation of the crosslinker glutaraldehyde and ensuing char-
acterization of the obtained cell shapes via high-resolution microscopy techniques. Hence,
more characteristic details can be resolved, achieving an easier comparison with RBC shapes
obtained via 3D simulations. In particular, the 3D information of the RBC shapes in vitro
might elucidate the occurrence of others, which we attribute partially due to a lack of multiple
view angles. Similarly, others may form subpopulations of shapes that can be accounted for
with additional morphological information, since e.g. the auxiliary class of sheared croissants
resembles inverted slippers, but contributes to the population of others In the context of au-
tomated analysis of RBC shapes, we are currently limited by data acquisition and storage.
To promote the diagnostic usefulness of the CNN technique, a reduction of the data transfer
is crucial, especially concerning an on-the-fly analysis of cell shapes. Recent, yet preliminary
developments comprise the modulation of the cell images with specialized binary masks and
the recording of the resulting one-dimensional signal, allowing for high throughputs and in-
stantaneous cell recognition.
Analogously, we have to benchmark the sensitivity of the CNN approach by the characteri-
zation of blood diseases associated with a change in morphology or the RBC deformability.
Preliminary experiments with drug-induced alterations of the RBC rigidity lead to shifts in
the transition velocity of slippers and croissants, where both shape fractions are equally likely
to observe. Additionally, the overall populations are reduced in both cases. Nevertheless,
systematic studies characterizing RBC disorders and their implications in the phase diagram
are inevitable.

Secondly, we investigated the lingering phenomenon at bifurcation apices, defined as RBCs
resting at an apex which in silico has been found to evoke a piling up of subsequent RBCs. To
characterize the lingering events we analyzed multiple bifurcating vessels in the microvascu-
lature of five living Syrian golden hamsters in total. Subsequently, the intercellular distances
between a lingering RBC and the closest preceding RBC downstream in each daughter vessel,
the void durations, have been monitored with the aid of a sophisticated combination of RBC
tracking and signal intensity correlations. This approach allowed us to separate the influence
of lingering RBCs from the non-lingering RBCs. In most observed geometries, the lingering
of RBCs leads to an increase of the temporal void durations with respect to non-lingering
associated void durations, and thus, a temporarily decreased hematocrit.
Recent in silico studies indicate a correlation between the lingering events of RBCs at mi-
crovascular bifurcation apices, and the distribution of wall shear stress and local pressure
gradients, which in turn are identified as an important factor of angiogenesis. To correlate
lingering events with wall shear stress in vivo and thus confirm the findings in silico, a precise
knowledge of the local flow profiles is necessary. For this purpose, we plan to inject tracer
particles into the hamster models, such that we can retrieve detailed information about the
plasma flow rates, in contrast to the flux of RBCs which we can extract so far. Additionally,
in vitro studies of bifurcating geometries exhibiting various angles and dimensions need to
be designed, where the flow rates can be adjusted precisely. Besides the injection of tracer
particles, the insertion of a fraction of RBCs exhibiting a decreased deformability into the
bloodstream can be associated with pathological states affecting the deformability of RBCs
and their influence on lingering characteristics, which in turn affects the partitioning of RBCs
and ultimately, the supply of oxygen in the tissues. This oxygen supply is potentially altered
directly by redistribution of the RBCs as oxygen carriers, but also indirectly by the induced
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vascular growth and angiogenesis resulting from locally increased wall shear stress.
Furthermore, the influence of the topological structure of the network can be analyzed, which
is limited in vivo by the field of view and more importantly, by the non-planar structure of
the microvascular bed. Moreover, the investigation of additional bifurcation sites will increase
the statistical relevance and eventually allow to predict the occurrence of lingering events
or even the severity of lingering upon retrieving a distinct scenario in the microvasculature.
Currently, we cannot reliably relate parameters such as cutting angles of both daughter ves-
sels, flow rates, or diameter ratios to the impact of lingering events, although the influence of
these parameters has been found to impact the partitioning of hematocrits at microvascular
bifurcations in general, both in vivo and in silico.
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[189] C. Bächer, A. Kihm, et al. “Antimargination of Microparticles and Platelets in the
Vicinity of Branching Vessels”. Biophysical Journal 115 (2) (2018), pp. 411–425.

[190] C. Pozrikidis. “Numerical Simulation of Blood Flow Through Microvascular Capillary
Networks”. Bulletin of Mathematical Biology 71 (6) (2009), pp. 1520–1541.

[191] P. Bagchi. “Mesoscale Simulation of Blood Flow in Small Vessels”. Biophysical Journal
92 (6) (2007), pp. 1858–1877.

111

https://arxiv.org/abs/1804.07612
https://arxiv.org/abs/1206.5533


Bibliography

[192] P. Balogh and P. Bagchi. “A computational approach to modeling cellular-scale blood
flow in complex geometry”. Journal of Computational Physics 334 (2017), pp. 280–307.

[193] L. Kaestner. Calcium signalling Approaches and Findings in the Heart and Blood.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

[194] J. Poiseuille. Recherches sur les causes du mouvement du sang dans les veines. 1832.

[195] A. R. Pries, T. W. Secomb, et al. “Resistance to blood flow in microvessels in vivo.”
Circulation Research 75 (5) (1994), pp. 904–915.

[196] I. G. Gould, P. Tsai, et al. “The capillary bed offers the largest hemodynamic resistance
to the cortical blood supply”. Journal of Cerebral Blood Flow & Metabolism 37 (1)
(2017), pp. 52–68.

[197] G. S. Kassab. Coronary Circulation: Anatomy, Mechanical Properties, and Biomechan-
ics. Cham: Springer International Publishing, 2019.

[198] B. Gunnar Wallin.“Neural control of human skin blood flow”. Journal of the Autonomic
Nervous System 30 (1990), S185–S190.

[199] A. Sato, K. Terata, et al. “Mechanism of vasodilation to adenosine in coronary arte-
rioles from patients with heart disease”. American Journal of Physiology-Heart and
Circulatory Physiology 288 (4) (2005), H1633–H1640.

[200] B. Fromy, S. Merzeau, et al. “Mechanisms of the cutaneous vasodilator response
to local external pressure application in rats: involvement of CGRP, neurokinins,
prostaglandins and NO”. British Journal of Pharmacology 131 (6) (2000), pp. 1161–
1171.

[201] C. D. Murray. “The Physiological Principle of Minimum Work: II. Oxygen Exchange in
Capillaries”. Proceedings of the National Academy of Sciences 12 (5) (1926), pp. 299–
304.

[202] K. A. McCulloh, J. S. Sperry, and F. R. Adler. “Water transport in plants obeys
Murray’s law”. Nature 421 (6926) (2003), pp. 939–942.

[203] A. R. Pries, B. Reglin, and T. W. Secomb.“Structural response of microcirculatory net-
works to changes in demand: information transfer by shear stress”. American Journal
of Physiology-Heart and Circulatory Physiology 284 (6) (2003), H2204–H2212.

[204] J. B. Bassingthwaighte, L. S. Liebovitch, and B. J. West. Fractal Physiology. New York,
NY: Springer New York, 1994.

[205] K. Ley, A. Pries, and P. Gaehtgens.“Topological structure of rat mesenteric microvessel
networks”. Microvascular Research 32 (3) (1986), pp. 315–332.

[206] R. Potter and A. Groom. “Capillary diameter and geometry in cardiac and skeletal
muscle studied by means of corrosion casts”. Microvascular Research 25 (1) (1983),
pp. 68–84.

[207] T. W. Secomb, J. P. Alberding, et al. “Angiogenesis: An Adaptive Dynamic Biological
Patterning Problem”. PLoS Computational Biology 9 (3) (2013). Ed. by C. D. Little,
e1002983.

[208] M. Zygmunt, F. Herr, et al. “Angiogenesis and vasculogenesis in pregnancy”. European
Journal of Obstetrics & Gynecology and Reproductive Biology. The Regulation of Fetal
Growth, Fetal Oxygen Supply and Intrauterine Development 110 (2003), S10–S18.

112



[209] C. Morland, K. A. Andersson, et al. “Exercise induces cerebral VEGF and angiogenesis
via the lactate receptor HCAR1”. Nature Communications 8 (1) (2017), p. 15557.

[210] P. Wahl, F. Jansen, et al. “Effects of High Intensity Training and High Volume Train-
ing on Endothelial Microparticles and Angiogenic Growth Factors”. PLoS ONE 9 (4)
(2014). Ed. by P. Madeddu, e96024.

[211] M. G. Tonnesen, X. Feng, and R. A. F. Clark. “Angiogenesis in Wound Healing”.
Journal of Investigative Dermatology Symposium Proceedings 5 (1) (2000), pp. 40–46.

[212] M. E. Maragoudakis, P. Gullino, and P. I. Lelkes, eds. Angiogenesis in Health and
Disease. Boston, MA: Springer US, 1992.

[213] B. M. Prior, H. T. Yang, and R. L. Terjung. “What makes vessels grow with exercise
training?” Journal of Applied Physiology 97 (3) (2004), pp. 1119–1128.

[214] M. Laschke, A. Strohe, et al.“In vivo biocompatibility and vascularization of biodegrad-
able porous polyurethane scaffolds for tissue engineering”. Acta Biomaterialia 5 (6)
(2009), pp. 1991–2001.

[215] M. W. Laschke, B. Vollmar, et al. “The dorsal skinfold chamber: window into the
dynamic interaction of biomaterials with their surrounding host tissue”. European Cells
and Materials 22 (2011), pp. 147–167.

[216] L. Hertz, S. Ruppenthal, et al. “The Evolution of Erythrocytes Becoming Red in Re-
spect to Fluorescence”. Frontiers in Physiology 10 (2019).

[217] E. Limpert, W. A. Stahel, and M. Abbt. “Log-normal Distributions across the Sciences:
Keys and Clues”. BioScience 51 (5) (2001), p. 341.

[218] N. Mohandas and E. Evans. “Mechanical Properties of the Red Cell Membrane in
Relation to Molecular Structure and Genetic Defects”. Annual Review of Biophysics
and Biomolecular Structure 23 (1) (1994), pp. 787–818.

[219] V. Heinrich, K. Ritchie, et al. “Elastic Thickness Compressibilty of the Red Cell Mem-
brane”. Biophysical Journal 81 (3) (2001), pp. 1452–1463.

113



114



Appendix





A List of devices and consumables

I Phosphate buffered saline (PBS): Thermo Fisher, Gibco, pH 7.4, 280−315 mOsm kg−1

I Bovine serum albumin (BSA): Thermo Fisher Scientific

I Blood withdrawal container: S-Monovette K3 EDTA, 9 ml, Sarstedt AG

I High-speed camera (in vitro): Fastec HiSpec 1, 2 GB internal memory, physical
pixel size: 14 µm×14 µm, 1280 px× 1024px

I Microscope: Nikon TE2000-S, equipped with a 60× oil-immersion plan-apochromatic
objective, NA=1.6

I Tubing: Scientific Commodities, Inc., Low Density Polyethylen, inner diameter:
0.9 mm, outer diameter: 1.3 mm

I Red light illumination: Zett Optics ZLED CLS 9000 MV-R, λ = 640 nm± 20 nm

I Pressure controller: Elvesys Elveflow OB1-MkII, maximum pressure 2 bar, pressure
stability 0.005 %

I High-speed camera (in vivo): Hamamatsu ORCA-Flash 4.0 V3, Hamamatsu Pho-
tonics K.K.
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