
����������
�������

Citation: Lauer, A.A.; Grimm, H.S.;

Apel, B.; Golobrodska, N.; Kruse, L.;

Ratanski, E.; Schulten, N.; Schwarze,

L.; Slawik, T.; Sperlich, S.; et al.

Mechanistic Link between Vitamin

B12 and Alzheimer’s Disease.

Biomolecules 2022, 12, 129.

https://doi.org/10.3390/

biom12010129

Academic Editor: Ben A. Bahr

Received: 14 December 2021

Accepted: 11 January 2022

Published: 14 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomolecules

Review

Mechanistic Link between Vitamin B12
and Alzheimer’s Disease
Anna Andrea Lauer 1,† , Heike Sabine Grimm 1,†, Birgit Apel 2, Nataliya Golobrodska 2, Lara Kruse 2,
Elina Ratanski 2, Noemi Schulten 2, Laura Schwarze 2, Thomas Slawik 2, Saskia Sperlich 2, Antonia Vohla 2

and Marcus Otto Walter Grimm 1,2,3,*

1 Experimental Neurology, Saarland University, 66424 Homburg, Germany; anna.lauer@uks.eu (A.A.L.);
heike.grimm@gmx.de (H.S.G.)

2 Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences,
51377 Leverkusen, Germany; Birgit.Apel@stud.srh-gesundheitshochschule.de (B.A.);
Nataliya.Golobrodska@stud.srh-gesundheitshochschule.de (N.G.);
Lara.Kruse@stud.srh-gesundheitshochschule.de (L.K.);
Elina.Ratanski@stud.srh-gesundheitshochschule.de (E.R.);
Noemi.Schulten@stud.srh-gesundheitshochschule.de (N.S.);
Laura.Schwarze@stud.srh-gesundheitshochschule.de (L.S.);
Thomas.Slawik@stud.srh-gesundheitshochschule.de (T.S.);
Saskia.Sperlich@stud.srh-gesundheitshochschule.de (S.S.);
Antonia.Vohla@stud.srh-gesundheitshochschule.de (A.V.)

3 Deutsches Institut für DemenzPrävention, Saarland University, 66424 Homburg, Germany
* Correspondence: marcus.grimm@mx.uni-saarland.de
† These authors contributed equally to this work.

Abstract: Alzheimer’s disease (AD) is the most common form of dementia in the elderly population,
affecting over 55 million people worldwide. Histopathological hallmarks of this multifactorial disease
are an increased plaque burden and tangles in the brains of affected individuals. Several lines of
evidence indicate that B12 hypovitaminosis is linked to AD. In this review, the biochemical pathways
involved in AD that are affected by vitamin B12, focusing on APP processing, Aβ fibrillization, Aβ-
induced oxidative damage as well as tau hyperphosphorylation and tau aggregation, are summarized.
Besides the mechanistic link, an overview of clinical studies utilizing vitamin B supplementation are
given, and a potential link between diseases and medication resulting in a reduced vitamin B12 level
and AD are discussed. Besides the disease-mediated B12 hypovitaminosis, the reduction in vitamin
B12 levels caused by an increasing change in dietary preferences has been gaining in relevance. In
particular, vegetarian and vegan diets are associated with vitamin B12 deficiency, and therefore
might have potential implications for AD. In conclusion, our review emphasizes the important role
of vitamin B12 in AD, which is particularly important, as even in industrialized countries a large
proportion of the population might not be sufficiently supplied with vitamin B12.

Keywords: vitamin B12; cobalamin; intrinsic factor; Alzheimer’s disease; tau pathology; Amyloid
beta; homocysteine; vegetarian diet; vegan diet

1. Introduction
1.1. Hallmarks of Alzheimer’s Disease

Alzheimer’s disease (AD) is a devastating neurodegenerative disorder and the most
common form of dementia in the elderly population, clinically characterized in patients
by a progressive loss of cognitive brain functions leading to memory loss and cognitive
decline [1,2]. Histopathological hallmarks of AD are extracellular neuritic plaques and
intracellular neurofibrillary tangles in vulnerable brain regions such as the hippocampus
and cortex [3,4]. Extracellular neuritic plaques are composed of small peptides, called
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amyloid-β (Aβ), that are derived by sequential proteolytic cleavage of a large type-1 trans-
membrane protein, the amyloid precursor protein (APP) [5]. The release of Aβ peptides is
strongly dependent on the amyloidogenic APP processing pathway, initiated by BACE1-
mediated β-secretase cleavage of APP generating the amino-terminus (N-terminus) of Aβ

peptides [6–8] (Figure 1). The remaining membrane-tethered carboxyl-terminal (C-terminal)
APP fragment is further cleaved by γ-secretase, a heterotetrameric protein complex con-
sisting of Presenilin 1 or 2 (PS1 or PS2), anterior pharynx defective 1 (APH-1), presenilin
enhancer 2 (PEN-2) and nicastrin (NCSTN) [9–11]. The most abundant Aβ species gener-
ated by γ-secretase activity are Aβ40 (80–90%) and Aβ42 (10%). The relative non-specificity
of γ-secretase, leading beside Aβ40 and Aβ42 to additional Aβ isoforms varying in length
at the C-terminus, might be caused by the unusual intramembrane proteolytic activity
of γ-secretase, cleaving APP within the hydrophobic transmembrane domain. Several
lipids of cellular membranes have been found to affect the generation of Aβ peptides, Aβ

aggregation and Aβ clearance [12–16]. The severe accumulation of Aβ peptides within
brain tissue, starting years or even decades prior to the first symptoms, is considered as
an important factor of AD pathogenesis, caused by an imbalance between Aβ production
and Aβ clearance by Aβ-degrading enzymes such as insulin-degrading enzyme (IDE)
and neprilysin (NEP) [17,18]. Beside the Aβ-releasing amyloidogenic pathway, APP can
be cleaved in a non-amyloidogenic processing pathway mediated by γ-secretases. The
γ-secretases have been identified as members of the ADAM (a disintegrin and metallo-
protease) protein family [19–21] cleaving APP within the Aβ domain and thus preventing
Aβ formation. Most AD cases belong to the sporadic form of AD, with a disease onset
after the age of 65 (late-onset Alzheimer’s disease (LOAD)), and only approximately 5%
of AD cases are caused by mutations in the genes encoding for APP or PS1/PS2 (familial
Alzheimer’s disease FAD), leading to an increased production of highly amyloidogenic
Aβ42 peptides. The progression of AD is classified by BRAAK stages scaled by the presence
of a tau pathology through the brain. Neurofibrillary tangles beside amyloid plaques are
an important pathological hallmark of AD and consist of insoluble paired helical fragments
(PHF) inside neurons composed mainly of hyperphosphorylated tau proteins [4,22,23]. Tau
proteins belong to the family of microtubule-associated proteins (MAPs), essential for the
assembly of tubulin monomers into microtubules, to stabilize the neuronal microtubule
network, important for maintaining cell shape and axonal transport [24]. The microtubule
assembly promoting the activity of tau is regulated by its phosphorylation status, regulated
by protein kinases [25] and protein phosphatases [26]. In AD, tau proteins are hyper-
phosphorylated and polymerize into paired helical fragments, forming the intraneuronal
neurofibrillary tangles.

1.2. Risk Factors for Sporadic AD

Aging is the most important risk factor to develop LOAD. However, beside increased
age, several non-genetic risk factors for LOAD are discussed, e.g., hypercholesterolemia,
hyperhomocysteinemia, hypertension, atherosclerosis, diabetes mellitus and obesity [27,28].
Furthermore, dietary habits and the availability of different micronutrients have been
discussed as linked to AD pathogenesis [29,30]. The possession of the apolipoprotein E
(ApoE) e4 allele has been identified as the most important genetic risk factor for sporadic
AD [31,32]. ApoE is one of the main lipid acceptors in the central nervous system to remove
cholesterol from cells and to generate high-density lipoprotein (HDL) particles, dependent
on the ApoE isoform. Beside removing cholesterol, ApoE isoforms have been found to
differentially regulate Aβ clearance from the brain [33–35]. ApoE4 is therefore strongly
associated with hypercholesterolemia, an important risk factor for AD.
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ated cleavage products.

Several epidemiological studies indicate that a high serum cholesterol level in midlife
is associated with a higher risk for developing AD [36–39]. Cholesterol also has been
reported to be elevated in the human AD post mortem brain and to be highly enriched
in amyloid plaques [40–42]. Several cell culture studies dealing with cholesterol sup-
plementation, cholesterol depletion or inhibition of cholesterol de novo synthesis have
unambiguously illustrated that cellular cholesterol enhances Aβ production [43–47]. The
molecular mechanisms of cholesterol-induced Aβ release out of APP can be attributed to a
direct stimulation of β- and γ-secretase activity by cholesterol [45–47]; increased internal-
ization of APP, leading to Aβ generation in the acidic compartments [48,49]; and a higher
content of lipid rafts, which are cholesterol-rich membrane microdomains reported to be
involved in amyloidogenic APP processing [43,50,51]. In addition, cholesterol has been
shown to promote Aβ aggregation and Aβ toxicity [52–54]. Hypercholesterolemia also
strongly correlates with elevated Aβ levels in several animal models [44,55–58].

Beside hypercholesterolemia, a high level of homocysteine has been discussed as a risk
factor for AD [59–61]. Homocysteine levels have been found to be increased in cerebrospinal
fluid of patients with AD compared to that of control subjects [62]. Furthermore, a meta-
analysis of 13,000 AD patients compared to healthy controls revealed significantly elevated
homocysteine blood levels in sporadic AD [63]. Several prospective population studies
point towards elevated homocysteine levels predicting dementia up to several decades
before disease onset [59,64,65]. Several pathological effects of homocysteine have been
identified, including the impairment of blood–brain barrier function [66], inducing neuronal
damage [67,68] and modulation of Aβ generation [69,70] and Aβ toxicity [71]. Furthermore,
homocysteine generates oxidative stress, which is another risk factor for the development
of AD [72,73].

Based on aging being the most important risk factor to develop AD, it has been dis-
cussed that free radicals leading to oxidative stress are involved in the pathogenesis of
AD. Neurons are highly vulnerable to oxidative stress as they contain low levels of the
free-radical-eliminating antioxidant glutathione [74] and high amounts of polyunsaturated
fatty acids (PUFAs) that can interact with reactive oxidative species (ROS), leading to lipid
peroxidation and molecular destruction [75]. In this context, it has to be mentioned that the
AD protective PUFA docosahexaenoic acid (DHA) has an opposite effect on Aβ generation
in its oxidized form. In the presence of oxidized DHA and lipid peroxidation products of
omega-3 and omega-6 PUFAs, the soluble Aβ levels have been found to be increased [76].
Beside oxidation of lipids, increased oxidative damage to proteins as well as nucleic acids
has been reported in the AD brain [77–80]. Oxidative stress thereby plays an essential role
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in the development of AD by promoting Aβ deposition [81–84], tau hyperphosphorylation
and subsequent loss of synapses and neurons [85–87]. On the other hand, oxidative stress
in AD can be induced by β-amyloid accumulation [85,86], hyperphosphorylated tau pro-
teins [88,89], inflammation [90,91], metal accumulation [85,92,93] as well as mitochondrial
dysfunction [85,86,94]. Interestingly, Aβ has been found to accumulate in mitochondria
in AD neurons as well as in transgenic mouse models and neuronal cell cultures [95],
resulting in elevated hydrogen peroxide (H2O2) production and decreased cytochrome-c
oxidase activity, leading to mitochondrial dysfunction and reduced energy metabolism.
Therefore, antioxidants might be potential therapeutics to prevent or treat AD. Several
antioxidative substances have been reported to exert beneficial properties with respect
to AD [96–100]. Furthermore, the fat-soluble vitamins vitamin A, D, E and K possess
anti-oxidative actions and have an impact on AD [101–104]. The water-soluble vitamin
B12 might be another very interesting micronutrient for AD treatment as it does not only
possess anti-oxidative properties, but also interferes with different pathways reported to be
involved in the pathogenesis of AD, which is discussed in the following paragraphs.

1.3. Vitamin B12

B vitamins, including vitamin B12 (cobalamin), are essential water-soluble micronu-
trients that have to be taken up in sufficient quantities from one’s diet. They are crucial
for maintaining neuronal health and hematopoiesis [105]. Clinical vitamin B12 deficiency
leading to myeloneuropathy or megaloblastic anemia is rare in developed countries, but
subclinical vitamin B12 deficiency is common and can be found in 10 to 15% of individuals
older than 60 years and in 25 to 35% of individuals aged over 80 years [105]. Subclinical
vitamin B12 deficiency, defined as 119–200 pmol/L of serum vitamin B12, often remains
asymptomatic over years. Based on the anti-oxidative property of vitamin B12, B12 defi-
ciency might lead to oxidation of lipids, proteins and nucleic acids and might contribute to
the development of age-related diseases, in which oxidative stress is believed to be a major
factor, including AD, Parkinson disease and type 2 diabetes [106,107].

The antioxidant properties of vitamin B12 are discussed to be accomplished by differ-
ent mechanisms, including direct scavenging of ROS, particularly superoxide in the cytosol
and mitochondria [108,109] and indirectly stimulating ROS scavenging by preservation
of glutathione [110,111]. Furthermore, vitamin B12 might protect against inflammation-
induced oxidative stress by modulating cytokine and growth factor production, including
interleukin-6, tumour necrosis factor alpha (TNF-α) and epidermal growth factor. No-
tably, the involvement of neuroinflammation is reported to play a fundamental role in
the progression of AD [112,113]. A reduced vitamin B12 status is associated with an
increase in interleukin-6 production and TNF-α levels [114,115], and interleukin-6 has
been shown to induce hyperphosphorylation of tau [116] and TNF-α increases the Aβ

burden by upregulation β-secretase production and increased γ-secretase activity [116].
Another important antioxidative mode of action of vitamin B12 is closely linked to AD: a
reduction in homocysteine-induced oxidative stress. Vitamin B12 is an important cofac-
tor of methionine-synthase, converting homocysteine into methionine. Subclinical B12
deficiency reduces the conversion of homocysteine to methionine, leading to an elevated
intracellular homocysteine level [105]. Homocysteine has been discussed as mediating ROS
accumulation through multiple mechanisms, including autooxidation of homocysteine,
leading to H2O2, and by inhibition of cellular antioxidant enzymes, namely, glutathione
peroxidase and superoxide dismutase [117]. Beside the discussed anti-oxidative function
of vitamin B12, vitamin B12 exerts essential roles in the central and peripheral nervous
system, maintaining the health of the nervous system [118,119], including, e.g., the cellular
energetic processes, myelin, and neurotransmitter synthesis [120].

As already mentioned, vitamin B12 is essential for transforming homocysteine to
methionine. Homocysteine is a sulfur-containing amino acid not participating in protein
synthesis. The complex biochemical pathway of homocysteine is regulated by the presence
of folate (vitamin B9), vitamin B6 and vitamin B12 (Figure 2) [121,122]. Methyl-folate
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provides the methyl group for vitamin B12, which is in its active form—methyl-vitamin
B12—an essential cofactor for the 5-methyltetrahydrofolic acid (MTHF)-dependent methio-
nine synthase, which catalyzes the synthesis of methionine from homocysteine. Methionine
is then converted to s-adenosylmethionine (SAM), a very important methyl-group donor
to a variety of genomic and non-genomic substrates, e.g., DNA, RNA, proteins and lipids,
being itself converted in s-adenosyl-homocysteine (SAH). A folate and/or vitamin B12
deficiency with a reduction in genomic and non-genomic methylation processes caused by
folate and/or vitamin B12 deficiency, might lead to decreased DNA stability/repair and
changes in gene expression/transcription, thus affecting neuronal differentiation and repair
as well as promoting hippocampal atrophy and demyelination [118,123,124], impairing the
propagation of action potentials. Beside the vitamin B12-dependent conversion of homo-
cysteine to methionine, vitamin B6 enables a proportion of homocysteine to be metabolized
to cysteine, a precursor of the important cellular antioxidant glutathione. In addition to the
important role of vitamin B12 in the homocysteine/methionine cycle, vitamin B12 can enter
the mitochondria supporting the enzyme methyl-malonyl CoA mutase (MCM), converting
methyl-malonyl CoA into succinyl-CoA, an important intermediate of the Krebs/citric acid
cycle, relevant for energy metabolism.
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Figure 2. Stylized illustration of the homocysteine/methionine cycle and biochemical mechanism
of action of vitamin B12 in the homocysteine/methionine and the methyl-malonyl-CoA pathway.
The complex Kennedy pathway involved in phosphatidylcholine synthesis is not illustrated in detail.
PtDEth: phosphatidylethanolamine; PtDCh: phosphatidylcholine; SAM: s-adenosyl-methionine;
SAH: s-adenosyl-homocysteine.

Importantly, SAM is also required for the methylation-dependent synthesis of
phosphatidylcholine—the most abundant phospholipids in neuronal membranes—in the
Kennedy cycle [125] (Figure 2). In this context, it has to be mentioned that supplementation
with dietary precursors for lipid synthesis has been shown to increase neurite outgrowth
and synaptogenesis [126,127]. Furthermore, a recent cell culture study analyzing the
effect of the medical food Souvenaid, containing the specific nutrient combination For-
tasyn Connect, on synaptogenesis by supplementing it with primary neuron-astrocyte
co-cultures revealed positive effects. Fortasyn Connect, containing beside other supple-
ments vitamin B12, vitamin B6 and folate, resulted in an increased number of neurons
without affecting astrocyte numbers [126]. Souvenaid/Fortasyn Connect also improved
the memory performances in early AD patients [128], underlining the effect of Fortasyn
Connect on synaptogenesis.
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Beside the above-described important roles of vitamin B12 in homocysteine/methionine
metabolism, nerve metabolism (transmethylation processes), energy production and synap-
togenesis, vitamin B12 is involved in fatty acid and nucleic acid synthesis. Vitamin B12
also has an impact on the formation of myelin, by affecting the DNA synthesis of myelin-
producing oligodendrocytes [120,129–131]. Notably, recently it has been shown that myelin
impairment may play an important role in AD pathology and that myelin pathology might
even precede Aβ and tau pathologies of AD [132]. The regeneration of nerves after injury
has also been found to be supported by vitamin B12 [119,131].

2. Vitamin B12 Cell Culture and Animal Studies Related to the Molecular Mechanisms
of AD and AD Pathology
2.1. Effect of Vitamin B12 Deficiency on the Aβ Peptide Level and Aβ Deposition in AD
Mice Models

In the following paragraph, animal and cell culture studies dealing with the effect of
vitamin B12 with respect to AD pathology are presented. As already described in the intro-
duction, methionine metabolism strongly depends on three important cofactors, namely,
folate (vitamin B9), vitamin B6 and vitamin B12. A deficiency in these cofactors results in
hyperhomocysteinemia, a risk factor for the development of AD [61]. Transgenic mice over-
expressing the Swedish mutation of AD (Tg2576), leading to increased γ-secretase cleavage
of APP and thus Aβ levels, fed with a diet deficient in folate, vitamin B6 and vitamin B12
for 7 months, revealed significantly elevated Aβ peptide levels in the hippocampus and
cortex compared to Tg2576 fed with a control diet [133]. Immunochemical detection of Aβ

deposition also showed an elevation of Aβ deposits in the hippocampus and cortex of an
AD mouse model fed with a folate/vitamin B6/vitamin B12-deficient diet. Elucidating the
molecular mechanism leading to the acceleration of brain amyloidosis in the diet group,
Zhuo and Pratico found unchanged steady state levels of APP itself and the secretases
involved in amyloidogenic APP processing, γ-secretase BACE1 and the γ-secretase compo-
nents PS1 and nicastrin compared to the controls. The sAPPβ levels were also unaltered.
Furthermore, reduced non-amyloidogenic processing could be excluded to be responsible
for the elevated Aβ levels as unchanged levels of γ-secretase ADAM10, sAPPβ and α-CTF
were found in the transgenic mice fed with a diet deficient in folate/vitamin B6 and vitamin
B12. Changes in the total plasma cholesterol as the molecular mechanism for increased brain
amyloidosis in the diet group is rather unlikely as total plasma cholesterol and triglycerides
were not significantly different between both groups. Interestingly, α-CTF, representing
the membrane-tethered fragment of γ-secretase cleavage, was significantly lower in the
brains of the vitamin-deficient diet group, indicating an elevated turnover of α-CTF by
γ-secretase. The authors discuss in their study that γ-secretase might be redistributed to
lipid rafts, where amyloidogenic APP processing has been found to take place [134,135],
in the mice fed with the vitamin-deficient diet. This would be a potential mechanism of
altered γ-secretase cleavage and thus Aβ generation without affecting the total protein
levels of APP or the secretases involved in its processing. Furthermore, unchanged levels
of the Aβ-degrading enzymes NEP and IDE were found in this study between the diet
group and the control group, indicating that the diet deficient in folate/vitamin B6 and
vitamin B12 does not induce changes in Aβ catabolism [133]. Notably, the same authors
found that a diet combining excessive methionine and low level of B vitamins, including
folate, vitamin B6 and vitamin B12, did not alter the Aβ level and Aβ deposition in Tg2576
mice [136]. Zhuo and Pratico explain these findings by changes in the severity of diet-
induced hyperhomocysteinemia. Whereas the Tg2576 mice fed with the folate/vitaminB6
and vitamin B12 diet [133] showed homocysteine levels of about 30 µM, which is in the
range of homocysteine levels observed in the elderly individuals (5,5 bis 61,1 µM) [59],
the TG2576 mice fed with a diet containing beside the low levels of B vitamins excessive
methionine levels revealed homocysteine levels higher than 150 µM [136]. In line with the
findings by Zhuo and Pratico in Tg2576 mice fed with a diet deficient in folate/vitamin B6
and vitamin B12, Fuso et al. reported elevated amyloid-β deposition in TgCRND8 mice,
expressing two APP mutations—the Swedish mutation and the Indiana mutation (leading
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to an increase in the Aβ 42/40 ratio)—as well as wildtype (WT) littermates fed with a
diet deficient in folate, vitamin B12 and vitamin B6 compared to mice fed with a control
diet [137]. In both mouse strains the vitamin-deficient diet induced an elevation of PS1 and
BACE expression with a more prominent effect in the TG2576 mice, which is in contrast to
the findings by Zhuo and Pratico. These discrepancies in BACE1 and PS1 gene expression
and protein level between the two studies, both using an AD mouse model fed with a vita-
min B-deficient diet, might be caused by the use of different transgenic mouse models and
the diet-induced hyperhomocysteinemia in these mice. Whereas the Tg2576 mice develop
Aβ deposition at the age of 12 months, the TgCRND8 mice already develop Aβ deposition
at the age of 3 months. The diet-induced hyperhomocysteinemia is also much stronger
in the TgCRND8 mice, reaching a homocysteine level of about 400 µM compared to the
homocysteine level of 30 µM in the Tg2576 mice. APP gene expression was found to be not
affected by the vitamin B-deficient diet in both studies. Fuso et al. also found intraneuronal
amyloid-β and a slight cognitive impairment in a water maze task at a pre-plaque stage in
the TgCRND8 mice fed with the vitamin B-deficient diet [137]. Furthermore, a reduction
in the ratio of SAM/SAH was found in plasma and brain of both mouse strains fed with
the vitamin B-deficient diet, indicating a reduction in the methyl donor molecule SAM
that donates a methyl group to different substrates, including DNA, lipids and proteins,
hypothesizing that PS1 demethylation could be responsible for gene overexpression. In
a follow-up study using the same mouse strains, TgCRND8 and Sv129 mice, the increase
in PS1 expression could be reversed by oral supplementation of SAM at 800 mg every
two days in combination with a vitamin B-deficient diet [138]. Notably, the vitamin B
deprivation induced hypomethylation of specific CpG moieties in the 5′-flanking region
of PSEN1 in mice and the PSEN1 promoter methylation status correlated with PS1 gene
expression [138]. These findings reveal a direct relationship between B vitamin-dependent
alteration of the homocysteine cycle and DNA methylation of the PSEN1 promoter, finally
resulting in an elevated amyloid-β level in mice fed with a vitamin B-deficient diet.

2.2. Reduced Gene Expression of the Vitamin B12 Transporter Cubulin in the Intestinal Epithelium
of Pre-Symptomatic Young AD Mice Models

Beside the discussed possible mechanisms of how vitamin B deficiency might lead to
an elevated amyloid-β load, a recent study (2020) found that dysfunction of the intestinal
epithelial barrier (IEB) occurs prior to the accumulation of brain amyloid-β and white matter
injury in the central nervous system of pre-symptomatic 6-month-old Tg2576 mice [139].
Compared to 15-month-old transgenic mice that show a significant plaque burden in the
subiculum and hippocampus, plaques were absent in the brain of pre-symptomatic mice at
6 months. Interestingly, significantly reduced gene expression of cubulin, a vitamin B12
transporter mediating B12 absorption in the ileum [140], in the intestinal epithelium was
observed in pre-symptomatic young Tg2576 mice compared to age-matched WT littermates.
This change in cubulin gene expression was not found for symptomatic 15-month-old
Tg2576 mice, which showed, in accordance with a decrease in cubulin in pre-symptomatic
transgenic mice, low levels of blood plasma vitamin B12. The pre-symptomatic Tg2576
mice revealing decreased expression of the vitamin B12 transporter cubulin also showed
elevated levels of interleukin-9 (IL-9), vascular endothelial growth factor-α (VEGF-α) and
interferon-gamma-induced protein 10 kD (IP-10) compared to age-matched littermates and
symptomatic Tg2576 mice, indicating that peripheral disturbances in pro-inflammatory and
angiogenic plasma cytokines occur prior to the development of cerebral pathology [139].
These results indicate that impairment of vitamin B12 intestinal absorptive function occurs
before development of cerebral pathology in Tg2576 mice and potentially in human AD.

2.3. Vitamin B12 Supplementation Antagonizes Homocysteine Induced Changes in APP
Processing and Tau Phosphorylation in Wildtype Animals

Several animal studies provide evidence that vitamin B12 supplementation exerts
positive effects in respect to AD pathology not only in transgenic AD model mice but also
in WT animals. Zhang et al. investigated whether vitamin B12 supplementation in hyper-
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homocysteinemic rats could antagonize homocysteine-induced changes in APP processing
and tau phosphorylation. High plasma homocysteine levels in young WT rats (three to four
months old) were induced by vena caudalis injection of homocysteine for two weeks [70].
After two weeks of homocysteine injection, elevated mRNA and protein levels of PS1 were
observed, whereas the expression level of BACE1 and PS2 were found to be unchanged.
Furthermore, hyperhomocysteinemic rats revealed an increase in APP phosphorylation
at threonine-668, a crucial site discussed as facilitating the amyloidogenic processing of
APP [141]. Along with these changes in PS1 expression and APP phosphorylation, spatial
memory deficits were detected in the hyperhomocysteinemic rats [70]. The simultaneous
supplementation of folate and vitamin B12 attenuated the hyperhomocysteinemic-induced
changes in APP processing and improved memory in these rats. Beside changes in APP
processing, these hyperhomocysteinemic rats also exhibited an AD-like tau pathology.
The homocysteine-induced hyperphosphorylation of tau at multiple sites in the rat brain
hippocampus [142] was attributed to inhibition of protein phosphatase 2A (PP2A) involved
in the dephosphorylation of tau proteins. Again, the simultaneous supplementation of
folate and vitamin B12 partially restored the plasma homocysteine level and significantly
antagonized the homocysteine-induced hyperphosphorylation of tau and PP2A inacti-
vation. The positive effect of vitamin B12 supplementation described for young three-
to four-month-old hyperhomocysteinemic rats was also found for aged rats [143]. WT
rats at the age of 18 month were injected with homocysteine via the vena caudalis with
or without concurrent supplementation of folate/vitamin B12 for 28 weeks. Beside the
homocysteine-induced inhibition of PP2A that was already found for young rats, aged
homocysteinemic rats also exhibited changes in several kinases involved in tau phosphory-
lation: activation of glycogen synthase-3β, cyclin-dependent kinase-5, C-jun N-terminal
kinase, extracellular signal-regulated kinase and activation of p38MAPK. These alterations
in the activity of kinases and phosphatase PP2A also resulted in tau hyperphosphorylation
and accumulation in the hippocampus and cortex in the homocysteinemic aged rats along
with significant memory deficits. These biochemical and behavioral changes of chronic ho-
mocysteinemia could all be reversed by supplementation of folate/vitamin B12, indicating
that folate/vitamin B12 has also positive properties in a chronic hyperhomocysteinemic rat
model in reversing the AD-like tau pathology and memory deficits [143]. Although extra-
cellular amyloid plaques and intracellular neurofibrillary tangles in the brain of individuals
suffering from AD are the main pathological hallmarks of AD, impaired visual function
is reported in AD patients, including retinal ganglion cell degeneration, nerve fiber layer
thinning and alterations in vascular parameters. Furthermore, Aβ accumulation and tau
hyperphosphorylation is present in the retina, an outgrowth of the developing brain, at
early AD stages [144,145]. Supplementation of folate and vitamin B12 also revealed positive
effects on Aβ level and tau hyperphosphorylation in the retina of hyperhomocysteinemic
three- to four-month-old rats [146]. After homocysteine injection for two weeks the rats
showed elevated Aβ42 level in the retina as well as abundant intracellular Aβ accumulation
in the ganglion cell layer. This increase in Aβ pathology in the rat retina was found to be
caused by a significant increase in APP, PS1 and BACE1 due to homocysteine injection.
Notably, this increase in the APP, PS1 and BACE1 protein levels could be reverted by
folate/vitamin B12 supplementation. Similarly, tau hyperphosphorylation present in the
retina of homocysteinemic rats was rescued by folate/vitamin B12 supplementation.

2.4. Effect of Vitamin B12 on Amyloid Toxicity in Aβ-Expressing C. elegans as an AD
Animal Model

Beside the studies revealing positive effects of vitamin B12 supplementation in transgenic
mice and rats of different age, recent studies in 2021 used the roundworm Caenorhabditis elegans
as an animal model to investigate the effects of vitamin B12 on amyloid-β toxicity [147,148].
Transgenic expression of human Aβ42 peptides in C. elegans body wall muscles causes
AD-like pathological characteristics such as reduced ATP levels, defects in mitochondrial
morphology, increased oxidative stress and a robust time-dependent paralysis [149–151].



Biomolecules 2022, 12, 129 9 of 34

Changed time to paralysis is used to identify genes or agents that influence Aβ-induced
proteotoxicity. Transgenic C. elegans worms lacking vitamin B12 supplementation exhibited
paralysis faster and more severely than worms that received vitamin B12 supplementa-
tion [147]. In-line vitamin B12 supplementation delayed Aβ-induced paralysis [148]. Along
with delayed paralysis, Aβ-expressing C. elegans receiving a vitamin B12-containing diet
showed a higher ATP level, decreased mitochondrial fragmentation and reduced oxidative
species (ROS) than those without vitamin B12. Interestingly, manipulation of vitamin
B12 availability during adulthood affected Aβ-induced paralysis in C. elegans similar to
worms fed a vitamin B12-enriched diet their entire lifespan, indicating potential benefits
for dietary vitamin B12 supplementation later in life. Using specific mutations in the
two enzymes that need vitamin B12 as an essential cofactor, methyl-malonyl-coenzyme A
mutase (C. elegans MMCM-1) and methionine synthase (C. elegans METR-1), the authors
identified that vitamin B12 exerts its protective effect via the homocysteine/methionine/S-
adenosylmethionine cycle, which is in line with the studies in mammals.

Several lines of evidence regarding the beneficial properties of vitamin B12 with
respect to AD pathogenesis can also be found in cell culture and in vitro studies. The
protective effects of vitamin B12 found in the ex vivo studies are associated to amyloid
formation and fibrillization, epigenetic modifications, tau fibrillization, synaptogenesis of
neuronal membranes, oxidative stress and cholesterol synthesis.

2.5. Vitamin B12 Inhibits Aβ Aggregation In Vitro

By the use of a Thioflavin-T fluorescent (ThT) assay to monitor Aβ aggregation, Fumo
et al. could show that vitamin B12 inhibits Aβ42 aggregation in a dose-dependent manner.
In the presence of 25 µM and 50 µM of vitamin B12, the ThT fluorescence intensity, reflect-
ing Aβ aggregation, decreased to 70% and 23%, respectively compared to the control [152].
After a prolonged incubation for 70 h, vitamin B12 also significantly prevented Aβ42
from undergoing a random coil to β-sheet formation, which is closely associated with the
amyloid fibril-forming tendency. Furthermore, vitamin B12 reduced the hydrophobicity
of Aβ fibrils as well as the size of the aggregates. Vitamin B12 was also found to alter
the fibril morphology: short and less densely populated amyloid fibrils were observed
in the presence of vitamin B12. In a recent study (2021), the inhibitory effect of vitamin
B12 on Aβ fibrillation could be shown by the use of artificial neuronal membranes mim-
icked by liposomes as Aβ generation is strongly influenced by the lipid environment of
cellular membranes. To mimic neuronal cell membranes, lipid components at comparable
ratios were chosen to compose the lipid vesicle: phosphatidylcholines (1,2-dimyristol-
sn-glycero-3-phosphocholine), cholesterol, sphingomyelin and phosphatidylserine (L-α-
phosphatidylserine) [153]. Performing a ThT fluorescent assay in the presence of Aβ1–42
and presence or absence of vitamin B12 the authors found that vitamin B12 slows down
the transition from Aβ oligomers to mature fibrils and significantly reduced the content of
fibrils in aqueous solution without the synthetic neuronal membranes. In the presence of
synthetic neuronal membranes, the effect of vitamin B12 on Aβ fibrillization was less pro-
nounced, but still significant. This decline in the anti-amyloidogenic properties of vitamin
B12 might be due to the competitive interaction of the vitamin B12 with the lipid membrane
and the Aβ peptides. However, also in the presence of synthetic neuronal membranes,
vitamin B12 slowed down the Aβ fibrillization and reduced the Aβ fibril content. Beside
these findings, vitamin B12 also exhibited a strong activity to disaggregate fibrils, both in
an aqueous solution or in the presence of synthetic neuronal membranes, indicating that
vitamin B12 is a promising target not only for AD prevention but also to cure AD.

2.6. Vitamin B12 Protects Cells from Cytotoxicity and Aβ-Induced Oxidative Damage

Beside the beneficial properties of vitamin B12 on Aβ fibrillization, vitamin B12 pro-
tects cells from Aβ-induced cytotoxicity and oxidative damage. In the study by Wang and
Xu, PC12 cells were chronically exposed to Aβ25–35 peptides to establish an AD cell model
for Aβ-induced toxicity [154]. Exposure of cells to Aβ25–35 leads to an increase in oxygen
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radicals, nitric oxide and disrupts calcium homeostasis, thus impairing mitochondrial func-
tion and triggering apoptosis [155–157]. Cotreatment of PC12 cells exposed to Aβ25–35
peptides with methyl-vitamin B12 improved cell viability by decreasing the percentage
of apoptotic cells in presence of vitamin B12 (4.28% of apoptotic cells) compared to con-
trols (7.26% of apoptotic cells) [154]. The identified mechanisms primarily underly the
antioxidative function of methyl-vitamin B12 to scavenge ROS, reducing the endoplasmic
reticulum-mitochondria calcium flux through IP3R (inositol-3-phosphat receptor), prevent-
ing mitochondrial dysfunction, and thus protecting cells against apoptosis and cytotoxicity.
The neuroprotective antioxidative effects of vitamin B12 and the possible underlying mech-
anism was also addressed in H2O2-induced apoptosis in SH-SY5Y cells [158]. Treatment of
SH-SY5Y cells with 200 µM H2O2 decreased cell number by 50%. Pre-treatment of SH-SY5Y
cells with different concentrations of vitamin B12 (0.2, 2, 20 and 200 µM) followed by H2O2
exposure revealed that vitamin B12 promotes cell survival in a dose-dependent manner.
Significant neuroprotective effects of vitamin B12 were already apparent at 2 µM vitamin
B12. Protein expression profiling revealed that 22 out of 3505 proteins were significantly
differentially expressed in the vitamin B12-treated cells before exposure to H2O2. The
authors found that polypyrimidine tract-binding protein 1 (PTBP1) was highly associated
with the protective effect of vitamin B12. Vitamin B12 exerted no protective effect on cell
viability in PTBP1 knock-down SH-SY5Y cells generated by small interfering RNA. PTBP1
belongs to a subfamily of RNA-binding proteins that influence pre-mRNA processing,
mRNA metabolism and transport. Therefore, the authors conclude that pre-mRNA pro-
cessing is involved in the neuroprotective effects of vitamin B12, and expression of PTBP1,
the main target of vitamin B12, is essential to mediate resistance against H2O2-induced
oxidative damage [158]. The protective effect of vitamin B12 with respect to cell viability
could be also shown in SH-SY5Y cells exposed to 70 h aged Aβ42 amyloids [152]. Cell
viability of SH-SY5Y cells was decreased to 32% in presence of Aβ42 aggregates, whereas
in additional presence of 25 and 50 µM vitamin B12 cell viability was increased from 32%
to 74% (25 µM vitamin B12) and to 83% (50 µM vitamin B12), also indicating that vitamin
B12 protects against amyloid-induced cytotoxicity.

2.7. Vitamin B12 Deficiency Increases the Aβ Level in Neuroblastoma Cell Lines by an Elevation in
the PS1 and BACE1 Protein Level

As already found in animal studies, the DNA methylation status, regulating gene
expression of genes involved in APP processing and thus Aβ generation, is affected by
vitamin B12. The reduction in folate and vitamin B12 in the culture medium of two different
neuroblastoma cell lines, SK-N-SH and SK-N-BE, leads to a decrease in the level of the
methyl-donor SAM beside an increase in the PS1 and BACE1 protein level and an elevation
in the Aβ level. Expression of APP was unaffected by folate/vitamin B12 deprivation.
These results also provide evidence that DNA methylation regulates gene expression of
PS1 and BACE1 and that the DNA methylation status of the promoter of these two genes is
dependent on vitamin B12 [159]. The exogenous addition of SAM to the deprived medium
restored the normal protein expression of PS1 and BACE1 and consequently reduced the Aβ

levels [159]. Furthermore, administration of SAM in human neuroblastoma SK-N-SH cell
cultures resulted in downregulated PS1 expression caused by an elevation in PS1 promoter
methylation, leading to RNA downregulation and thus reduced protein synthesis, finally
resulting in reduced Aβ peptide generation [160]. This is in line with the study by Fuso
et al., which revealed reduced PS1 expression by addition of SAM to the neuroblastoma cell
line SK-N-BE [138]. In contrast, PS1 expression was significantly elevated (3.5-fold) when
SK-N-BE cells were cultured in a vitamin B-deficient medium (deficient in folate, vitamin
B6 and vitamin B12). Addition of SAM to the vitamin B deficient medium restored PS1 gene
expression to that of control cells (cultured in control medium). Bisulfite modification and
genomic sequencing to evaluate the methylation status of PSEN1 revealed that vitamin B
deficiency induced hypomethylation of specific CpG moieties in the 5′-flanking region and
that PSEN1 promoter methylation status is correlated with gene expression.
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2.8. Vitamin B12 Inhibits Tau Polymerization by Direct Binding to Tau Proteins

Beside the findings in animal studies that vitamin B12 can inhibit tau polymerization
by affecting PP2A activity [142], Rafiee et al. found that vitamin B12 inhibits tau poly-
merization also by direct binding to tau proteins. The authors found that vitamin B12
can bind to cysteine residues in tau and that binding to tau cysteine residues is essential
for the inhibitory effect of vitamin B12 on tau fibrillization. These results indicate that
binding of vitamin B12 to tau proteins, thus preventing tau aggregation, might be an
alternative mechanism beside vitamin B12-induced changes in PPA2 activity regulating tau
phosphorylation and tau aggregation.

2.9. Vitamin B12 Deficiency Increases the Cholesterol Level in Human Adipocyte Cell Cultures

Interestingly, vitamin B12 can also interfere with the biosynthesis of cholesterol, a
known risk factor for AD [161,162]. Human adipocytes cultured in media containing low
(0.15 nM) vitamin B12 or no (0 nM) vitamin B12 were compared to control cells incubated
with 500 nM B12 (representing adequate vitamin B12). Total cholesterol was significantly in-
creased in human adipocytes exposed to low or no vitamin B12 conditions compared to the
controls [163]. qPCR analysis revealed that several genes involved in cholesterol de novo
synthesis, including the rate-limiting enzyme 3-hydroxy-3-methylglutaryl-CoA reductase
(HMGCR), were significantly increased in vitamin B12-reduced or -deficient cells. Further-
more, low vitamin B12 significantly elevated the gene expression of the sterol regulatory
element-binding proteins (SREBP1 and 2) as well as the sterol regulatory element-binding
transcription factors (SREBF1 and 2), involved in the regulation of cholesterol synthesis and
gene expression of the low-density lipoprotein receptor (LDLR). The authors found that the
induction of cholesterol biosynthesis in cells with insufficient vitamin B12 was associated
with a significant decrease in SAM, involved in DNA methylation. Genome-wide and
targeted DNA methylation analysis revealed that the promoter regions of SREBF1 and
LDLR were hypomethylated under vitamin B12-deficient conditions, leading to increased
expression and thus cholesterol synthesis. Beside the increased expression of BACE1 and
PS1 [70,137,138,159,160] in vitamin B12-deficient cells or animals, thus leading to elevated
Aβ levels, this study indicates that vitamin B12 deficiency elevates Aβ generation by
increasing the amount of cholesterol, known to elevate Aβ generation [43,45,47,55].

Figure 3 illustrates the potential beneficial properties of vitamin B12 on the pathological
processes of AD based on the discussed animal, cell culture and in vitro studies.
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has to be mentioned that some of the illustrated potential mechanisms (marked with asterisks) are
based on studies under vitamin B12 (and folate) deficiency/hypovitaminosis.
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3. Clinical Studies

Several clinical randomized controlled trials showed beneficial effects of vitamin B12
alone or in combination with for example other B vitamins or folic acid. In the following
paragraph we will present recent clinical studies examining a potential link between vitamin
B12 and AD. This was due to the detection of the vitamin B12 status in mild-cognitive
impairment (MCI) and AD patients or observing the effect of vitamin B12 supplementation.
Firstly, studies including elderly adults without cognitive decline or MCI patients will be
presented, separating those using combinations of vitamin B12 and other supplements
from those using vitamin B12 alone (Table 1). Secondly, clinical trials and meta-analysis of
vitamin B12 and AD-diagnosed patients will be discussed (Table 2).

In a recent study dealing with a potential role of paraoxonase 1 (PON1), a high-density
lipoprotein-associated enzyme, in the development of neurological diseases, the authors
could show that B vitamins abrogated associations of PON1 with cognition. A total of
95 individuals with MCI received a daily dose of folic acid (0.8 mg), vitamin B12 (0.5 mg)
and B6 (20 mg) in this randomized, double-blind placebo-controlled trial and 101 MCI
patients received the placebo for a period of two years. A significant association of the
phenylacetate hydrolase activity of PON1 with global cognition, verbal episodic memory
and attention/processing speed at the end of the study was found in the placebo group. In
the intervention group, B vitamins ameliorate the detrimental effects of PON1 on cognition.
This study highlighted a novel positive aspect of B vitamin treatment on the central nervous
system [164]. In contrast, a randomized controlled trial from 2010, investigating the effect
of supplementation with daily doses of 2 mg folic acid, 25 mg vitamin B6 and 500 µg
vitamin B12 over two years, did not detect any beneficial effects of B vitamins on cognitive
function or the risk of cognitive impairment or dementia. However, as the authors stated,
a limitation of this study could be the selection of the participants, since the men aged
≥ 75 years with preexisting hypertension were not selected based on high homocysteine
levels or low vitamin serum concentrations and this could have compromised the effect
size of the intervention [165]. Contrary to these findings, numerous further studies provide
evidence for an association between B vitamins and cognitive functions. For example, a
meta-analysis including 21 observational studies aimed to examine the association between
the intake and plasma levels of vitamins B12, B6 and folate and the prevention of cognitive
decline in community-dwelling older adults aged ≥ 45 years. This study reported higher
levels of vitamin B12 to be associated with better cognition in cross-sectional studies
(odds ratio = 0.68, 95% confidence interval = 0.51–0.90), but not in sensitivity analyses
or prospective studies [166]. Furthermore, a recent meta-analysis (2021) also reported a
preventive efficacy of vitamin B supplements on the cognitive decline of elderly adults. The
analyzed 21 randomized controlled trials involving 7571 participants revealed a significant
effect in global cognitive function and homocysteine. This effect is lacking in parameters
of information processing speed, episodic memory, and executive function. Based on
this, the authors recommend vitamin B supplements to be considered as a preventive
medication to MCI patients since vitamin B might delay or maintain the cognitive decline
of elderly adults [167]. In line with this evidence of the beneficial effects of vitamin B12 in
individuals without or with mild cognitive impairments, a recent randomized controlled
trail reported that the combination of oral vitamin B12 (25 µg) and folic acid (800 µg)
for six months reduced the levels of peripheral inflammatory cytokines and improved
cognitive performance significantly in MCI patients, assessed by the measurement of the
full-scale intelligence quotient (IQ), verbal IQ as well as information and digit span scores.
Interestingly, the combined intervention with vitamin B12 and folic acid was significantly
advanced compared to either vitamin B12 or folic acid alone for all endpoints [168].

Besides inflammation and cognition, further studies show that treatment with vitamin
B is also able to prevent brain atrophy of the key regions related to cognitive decline in
MCI patients. Scientists from the University of Oxford obtained numerous findings in this
context from their single-center, randomized, double-blind controlled trial (VITACOG trial)
of daily high-dose B vitamins treatment (0.8 mg folic acid, 20 mg vitamin B6, and 0.5 mg
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vitamin B12) of individuals with MCI for two years. They used serial volumetric magnetic
resonance imaging scans to evaluate the change in the rate of atrophy of the whole brain.
Significantly reduced rates of brain atrophy per year in the treated group compared to the
placebo group (0.76% vs. 1.08%, p = 0.001) were demonstrated. Moreover, this treatment
response was found to be related to the baseline homocysteine levels [169]. As a secondary
outcome of this study, a significant benefit of vitamin B intervention in MCI-suffering
individuals, with higher baseline homocysteine levels in global cognition, episodic memory
and semantic memory, has been reported [170]. Additionally, the authors reported a seven-
fold reduced gray matter atrophy by this combined B vitamins treatment over two years.
This beneficial vitamin B effect was restricted to participants with high homocysteine and
based on this the authors conclude that B vitamins reduce homocysteine, which directly
lower gray matter atrophy and thereby slowing cognitive decline [171]. The same authors
could show in a following study that plasma omega-3 fatty acid concentrations modify
the vitamin B effect on brain atrophy rates in elderly people with MCI. A total of 85 MCI
patients were treated daily with high-dose vitamin B supplementation (0.8 mg folic acid,
20 mg vitamin B6, 0.5 mg vitamin B12) for two years. In subjects with high baseline
omega-3 fatty acids (>590 µmol/L), this slowed the mean atrophy rate significantly by 40%
compared with placebo-treated participants. Through this study, the importance to identify
the subgroups likely to benefit in clinical studies was highlighted [172]. In their recent
randomized controlled trial, these authors could show that the baseline omega-3 fatty acid
status interacts with the effects of vitamin B treatment in individuals with MCI. They found
the final scores for the verbal delayed recall, global cognition and clinical dementia rating
(CDR) sum-of-boxes improved in the MCI participants randomized to B vitamins (folic
acid, vitamin B6 and B12) for two years according to increasing baseline concentrations
of omega-3 fatty acids. In more detail, higher docosahexaenoic acid concentrations alone
significantly enhanced the beneficial cognitive effects of B vitamins. Based on this, a
combined supplementation of B vitamins and omega-3 fatty acids is suggested as potential
therapy to slow the conversion from MCI to AD, which should be analyzed in further
studies [173].

An earlier randomized control trial examined the effect of a nutraceutical formulation
(NF) containing vitamin B12, folate, alpha-tocopherol, S-adenosyl methionine, N-acetyl
cysteine and acetyl-L-carnitine on cognitive performance in MCI patients. In the first six
months of the study, the 34 individuals were randomized to NF or the placebo and in a
six-month open-label extension all individuals received NF. The intervention resulted in
improvements in the Dementia Rating Scale and maintenance of the baseline performance
in CLOX-1. These beneficial effects could not be observed in the placebo group, only during
the open-label extension [174].

Moreover, a randomized control trial performed among 299 men (≥75 years) with
daily treatment of 2 mg folate, 25 mg vitamin B6 and 400 µg vitamin B12 over two years
reported an influenced plasma level of Aβ40. The mean increase of Aβ40 was 7.0 pg/mL
in the intervention group compared to 26.8 pg/mL in the placebo group. Based on these
data, the authors suggested a potential role of B vitamins in the prevention of AD [175]. In
contrast to the Aβ40 levels, the degree of immune activation and inflammation seems to
remain unchanged due to vitamin B supplementation, as a clinical trial from 2006 reported.
The authors examined the effects of daily vitamin B supplementation (50 mg vitamin
B1, 50 mg vitamin B6, 5 mg folic acid and 0.05 mg vitamin B12) on the homocysteine
and neopterin concentrations in 58 patients with AD (n = 30), vascular dementia (n = 12)
and MCI (n = 16) after one month. While the homocysteine concentrations declined
significantly after one month of vitamin B supplementation, the concentrations of neopterin
were not influenced. Since analysis of the neopterin concentrations is used to monitor
mediated immune activation and inflammation status, these data suggested that B vitamin
supplementation did not influence the immune system activation status [176].

In the prospective analysis of a recent clinical trial with participants between 50 and
70 years of age, an inadequate dietary vitamin B12 uptake was significantly associated
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with an accelerated cognitive decline. Moreover, the authors were able to show in MCI
patients that reduced serum vitamin B levels may contribute to worse cognitive perfor-
mance by affecting the DNA methylation levels of redox-related genes such as NUDT15 or
TXNRD1 [177]. In line with this, a controlled clinical trial, including 28 nursing home resi-
dents with dementia and low serum vitamin B12 levels (<250 pg/mL) and 28 participants
with normal serum vitamin B12 levels (>300 pg/mL), reported significant improvement
in metabolic and hematologic parameters after 16 weeks of intramuscular vitamin B12
treatment (1000 µg daily for one week, then 1000 µg weekly for 15 weeks). However, the
authors could not detect beneficial effects on cognitive or psychiatric symptoms mediated
by the vitamin B12 supplementation, which could be explained due to the short follow-up
period of 16 weeks [178].

Besides these clinical studies investigating the role of vitamin B12 in elderly without
cognitive decline or in MCI patients, numerous recent trials aimed to analyze this link
in patients suffered from AD. In a meta-analysis from 2015, it could be demonstrated
that AD patients have lower levels of vitamin B12 in plasma than healthy individuals.
Interestingly, these differences in vitamin B12 levels were further enlarged with increased
age [179]. These significantly lowered plasma levels of vitamin B12 in AD patients are in
line with the findings of a meta-analysis published one year before [180] or an earlier study
reporting that the median vitamin B12 concentration was reduced in neurological patients
(AD: n = 34; Parkinson’s disease: n = 46; other cognitive disorders: n = 47) compared to
healthy control individuals [181].

In a pilot study of 69 AD patients supplemented with a vitamin B12 and B6 combi-
nation for eight weeks, the authors reported a significant reduction in fasting and post-
methionine-loading homocysteine. Interestingly, these reductions were also found in AD
patients taking standard multivitamin supplements [182]. In line with these findings, a
randomized controlled trial, including male and female patients with mild to moderate
AD, found decreased homocysteine concentrations after 26 weeks of supplementation with
a multivitamin supplement containing vitamins B6, B12 and folic acid. Besides 500 mg
mecobalamin (B12), 5 mg pyridoxine (B6), 1 mg folic acid, other vitamins and iron, all
participants received an acetylcholinesterase inhibitor in this study, which aimed to investi-
gate if oral multivitamin supplementation would improve cognitive function and reduce
serum homocysteine levels in AD patients. Under the conditions used in this trial, no
statistically significant beneficial effects of this intervention on cognition or performance
of activities of daily living could be observed [183]. An additional randomized controlled
trial, which was published one year later (2008), reported similar findings of high-dose
vitamin B supplementation and cognitive decline in AD. A total of 202 individuals with
mild to moderate AD received 5 mg folate, 25 mg vitamin B6 and 1 mg vitamin B12 daily,
while 138 individuals were treated with an identical placebo for 18 months. In line with the
previously described study, the vitamin B intervention was effective in reducing the homo-
cysteine levels, but no beneficial effects on cognitive measurements were observed [184].
In line with this, a meta-analysis including four randomized controlled trials reported
supplementation of folic acid along with vitamin B12 and/or vitamin B6, resulting in
decreased serum homocysteine levels, but did not influence cognitive improvement—as
evaluated by a mini-mental state examination (MMSE)—in patients with cognitive decline
secondary to AD or dementia [185].
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Table 1. Clinical studies examining a potential link between vitamin B12 and cognitive performance
in elderly adults without cognitive impairments or MCI patients. MCI: mild cognitive impairment.
RCT: randomized controlled trial. SAM: S-adenosyl methionine. NAC: N-acetyl cysteine. ALCAR:
acetyl-L-carnitine.

Author Year Type of Study/Duration/n Main Finding

Perla-Kaján et al.
[164] 2021 RCT/2 years/intervention group

(n = 95) and placebo group (n = 101)

A daily dose of folic acid, vitamin B12 and B6 ameliorates
detrimental effects of paraoxonase 1 (PON1) on cognition

in individuals with mild cognitive impairment

Li et al.
[167] 2021 Meta-Analysis/until 1 December

2019/21 RCTs (7571 participants)

Vitamin B supplements (vitamin B12, B6, folic acid alone
or in combination) show preventive efficacy on cognitive

decline of elderly adults

Zhang et al.
[166] 2020

Meta-Analysis/until 8 August 2019/21
observational studies (sample sizes:

155–7030)

Higher levels of vitamin B12 concentration were
associated with better cognition in cross-sectional studies

Ma et al.
[168] 2019 RCT/6 months/240 participants with

MCI (four treatment groups)

Daily oral uptake of vitamin B12 (25 µg) in combination
with folic acid (800 µg) significantly improved cognitive

performance and reduced inflammatory cytokine levels in
peripheral blood in MCI elderly

Oulhaj et al.
[173] 2016 RCT/2 years/266 participants with

MCI aged ≥70 years
The effect of vitamin B treatment on cognitive decline in
MCI depends on the omega-3 fatty acid concentrations

Remington et al.
[174] 2015

RCT/6 months nutraceutical
formulation (NF) and placebo +

6 months extension with NF for all
participants/34 individuals with MCI

Intervention with nutraceutical formulation (400 µg folic
acid, 6 µg B12, 30 I.U. alpha-tocopherol, 400 mg SAM,

600 mg NAC, and 500 mg ALCAR) improved
cognitive performance

Jernerén et al.
[172] 2015 RCT/2 years/intervention group

(n = 85) and placebo groups (n = 83)

High plasma long-chain omega-3 fatty acids are important
for the beneficial effect of vitamin B treatment (folic acid,

vitamin B6 and B12) on brain atrophy in MCI patients

Douaud et al.
[171] 2013 RCT/2 years/intervention group

(n = 80) and placebo group (n = 76)

High-dose vitamin B treatment (folic acid, vitamin B6 and
B12) slow the atrophy of specific brain regions related to

AD and cognitive decline in MCI patients

A de Jager et al.
[170] 2012 RCT/2 years/intervention group

(n = 133) and placebo group (n = 133)

Vitamins B (folic acid, vitamin B6 and B12) appear to slow
cognitive and clinical decline in MCI patients, especially

among participants with elevated baseline
homocysteine levels

Ford et al.
[165] 2010 RCT/2–8 years/299 hypertensive men

≥ 75 years

No beneficial effect of supplementation with B vitamins
(B12, B6, folic acid) on cognitive function (2 years

outcome) or the risk of cognitive impairment or dementia
(8 years outcome)

Smit et al.
[169] 2010 RCT/2 years/intervention group

(n = 85) and placebo group (n = 83)

Accelerated brain atrophy in MCI patients can be slowed
by treatment with B vitamins (folic acid, vitamin B6

and B12)

Flicker et al.
[175] 2008 RCT/2 years/intervention group

(n = 150) and placebo group (n = 149)

Reduced increase of plasma Aβ40 levels in older men
treated with a combination of folate, vitamin B6 and B12

compared to placebo group

Frick et al.
[176] 2006

Clinical Trial/1 month/58 patients (AD,
n = 30; vascular dementia, n = 12; MCI,

n = 16)

Daily supplementation of B vitamins (vitamins B1, B6,
B12, folic acid) declines concentrations of homocysteine

but not of neopterin in demented patients

An et al.
[177] 2019

Clinical trial/2.3 years/2533
participants for longitudinal study + a

subgroup of 109 MCI patients and
73 controls for DNA methylation and

biochemical analyses

Significant association between inadequate dietary intake
of vitamin B12 and accelerated cognitive decline, which

may be mediated by affected methylation levels of specific
redox-related genes

Van Dyck et al.
[178] 2009

Controlled clinical
trial/16 weeks/replacement group

with low serum B12 levels (n = 28) and
control group with normal serum B12

levels (n = 28)

Vitamin B12 replacement in dementia with low serum B12
levels resulted in significant improvements in hematologic

and metabolic parameters but is unlikely to benefit
cognitive or psychiatric symptoms
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A pilot study examining the efficacy of a vitamin/nutraceutical formulation (NF)
(400 µg folic acid, 6 µg vitamin B12, 30 IU vitamin E, 400 mg S-adenosyl methionine, 600 mg
N-acetyl cysteine and 500 mg acetyl-L-carnitine) for 12 months in 14 participants with
clinically diagnosed early-stage AD reported improved cognitive functions, for example, in
the Dementia Rating Scale and clock-drawing tests (Clox 1 and 2) [186]. In the following
randomized controlled trial, the efficacy of this formulation (NF) was analyzed in twelve
institutionalized patients with a moderate-stage to later-stage AD diagnosis. After three
months of daily intake, a clinically significant delay in decline in the Dementia Rating
Scale and clock-drawing test could be observed compared to the placebo group [187].
Later, a double-blind, multi-site, phase II study of this nutritional formulation for cognition
and mood in AD was performed, including 106 AD patients for a duration of up to
six months with an open-label extension with NF supplementation for six additional
months. This study extended the phase I studies, showing a maintained or improved
cognitive performance as well as mood and behavior [188]. One year later, the same
authors could show that this nutraceutical formulation causes that the 24 individuals
diagnosed with AD, which received this supplementation for 12 months under open-
label conditions, maintained their baseline cognitive performance and behavioral and
psychological symptoms of dementia [189].

An additional clinical trial investigating the effect of vitamin B12 in combination with
other components aimed to investigate the treatment of AD with the cholinesterase inhibitor
donepezil combined with the most common antioxidants in a so called formula F (100 mg
Carnosine, 1.4 mg vitamin B1, 1.6 mg vitamin B2, 28 mg vitamin B3, 2 mg vitamin B6,
200 µg vitamin B9, 1 µg Cyanocobalamin (B12), 30 mg vitamin C, 20 mg vitamin E, 10 mg
Coenzyme Q10, 800 RE β-carotene, 27.5 µg selenium, 10 mg L-cysteine and 25 mg Ginkgo
biloba). A total of 52 patients suffering from moderate AD, who already received 5 mg
donepezil per day for at least two months, were divided into two groups and followed for a
period of six months. The MMSE II score, which was measured as secondary parameter to
evaluate the overall clinical condition, was significantly improved in patients treated with
donepezil plus formula F [190]. Moreover, the beneficial effects of the combined treatment
with antipsychotic drugs and vitamin B12 with respect to pro- and anti-inflammatory
cytokines were reported in AD patients. Besides reduced expressions of IL-8 and TNF-α,
and an elevated expression of TGF-β, the combination of vitamin B12 and quetiapine
decreased the pain in psychotic AD patients [191]. A further clinical trial, aiming to assess
the influence of vitamin B supplementation on parameters of oxidative stress, inflammation
and cognition in AD and MCI patients, reported significantly decreased levels of carbonyl
proteins in patients supplemented with vitamin B1 (50 mg), B6 (50 mg), B12 (0.05 mg) and
folic acid (5 mg) for three months. Additionally, a negative correlation between carbonyl
proteins and MMSE was found, suggesting carbonyl proteins as potential markers for the
monitoring of patients with dementia [192].

The LipiDiDiet trial examined the use of Souvenaid, containing Fortasyn Connect,
comprising docosahexaenoic acid, eicosapentaenoic acid, uridine monophosphate, choline,
phospholipids, selenium, folic acid, vitamin B12, B6, C, and E in prodromal and early stages
of AD. No significant effect of this non-pharmacological intervention on the primary efficacy
endpoint, change over 24 months in a composite score of cognitive performance evaluated
by a neuropsychological test battery, was observed. But the authors reported significant
benefits in parameters of disease progression, like in attention, memory, executive function
(domains of cognition affected in AD) and hippocampal atrophy [193]. Moreover, in
preceding studies the influence of Fortasyn Connect on nutritional markers and levels of
plasma homocysteine could be shown [194,195]. These findings suggested this intervention
as beneficial for earlier stages of AD since risk factors for its progression were affected.

A recent randomized controlled phase II clinical study investigated the efficacy of
BrainUp-10® in modifying behavioral and cognitive symptoms as well as in providing life
quality in patients with mild to moderate AD. Besides significantly reduced homocysteine
levels, the authors reported significant improvements in the MMSE score after 24 weeks of
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daily BrainUp-10® treatment in 82 AD patients. Moreover, scores of the Neuropsychiatry
Index, caregiver distress and alimentary response improved significantly after twelve
weeks. Additionally, apathy was significantly reduced both after four and twelve weeks.
Since no adverse events were observed, this nutraceutical may enable early-stage AD
patients to receive the benefits in cognition and behavior [196].

A further randomized controlled study from 2021 examined the effects of a combined
supplementation of folic acid and vitamin B12 on cognitive impairment and inflammation
in AD patients. A total of 51 participants received 1.2 mg folic acid and 50 µg vitamin
B12 daily for six months and 50 participants were in the placebo group. Compared to
the untreated subjects, beneficial effects in the Montreal Cognitive Assessment (MoCA)
total, naming, orientation and Alzheimer’s Diseases Assessment Scale—Cognitive subscale
(ADAS-Cog) score of attention were observed in the intervention group. Moreover, positive
effects in plasma SAM, SAM/SAH, SAH and serum homocysteine and TNF-α resulted
from this intervention [197].

Table 2. Clinical studies dealing with vitamin B12 and Alzheimer’s disease. RCT: randomized
controlled trial. MCI: mild cognitive impairment. SAM: S-adenosyl methionine. NAC: N-acetyl
cysteine. ALCAR: acetyl-L-carnitine.

Author Year Type of Study/Duration/n Main Finding

Chen et al.
[197] 2021 RCT/6 months/intervention group

(n = 51) and placebo group (n = 50)

Supplementation of folic acid and vitamin B12 had a
beneficial therapeutic effect in AD patients who were not

on a folic acid-fortified diet

Guzman-
Martinez et al.

[196]
2021 RCT/24 weeks/82 mild to moderate

AD patients

The nutraceutical BrainUp-10®, containing vitamin B12,
produces a significant improvement in apathy,

ameliorating neuropsychiatric distress of patients

Rasmussen
[193] 2019 RCT/24 + 12 months/311 patients with

prodromal AD

Fortasyn Connect, a multi-nutrient combination
containing vitamin B12, may show benefit on domains of

cognition affected by AD

Vakilian et al.
[191] 2017 Clinical trial

Vitamin B12 in combination with antipsychotic drugs is
able to reduce and induce the expression of pro- and

anti-inflammatory cytokines in AD patients

Zhang et al.
[185] 2017 Meta-Analysis/until 7 May 2015/4

studies included

Data on vitamin B-induced improvement in cognition by
reducing homocysteine levels are conflicting and should

be addressed in further studies

Remington et al.
[189] 2016 RCT/12 months/24 individuals

diagnosed with AD

Over the duration of nutraceutical formulation (folate,
alpha-tocopherol, vitamin B12, SAM, NAC, ALCAR)

supplementation behavioral and psychological symptoms
of dementia as well as baseline cognitive performance

were maintained

Remington et al.
[188] 2015

Clinical trial/3- or 6-months
intervention + 6 months open-label
extension/106 individuals with AD

The results of this trial extended phase I studies showing
maintained or improved cognitive performance and

mood/behavior after supplementation of nutraceutical
formulation (folate, alpha-tocopherol, vitamin B12, SAM,

NAC, ALCAR) in AD patients

Rommer et al.
[192] 2016

Clinical trial/3 months/healthy control
(n = 15), AD or MCI (n = 16),

supplemented AD or MCI (n = 17)

Supplementation of vitamins B1, B6, B12 and folic acid for
three months resulted in decreased levels of carbonyl
proteins, which negatively correlated with MMSE in

AD/MCI patients

Shen et al.
[179] 2015 Meta-Analysis/up to January 2014/68

studies included
Higher homocysteine and lower folic acid and vitamin

B12 levels in AD patients than healthy individuals

Lopes da Silva
et al.
[180]

2014
Meta-Analysis/literature published

after 1990/more than five publications
for a specific nutrient

Significantly lower plasma levels of vitamin B12 were
found in AD patients.
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Table 2. Cont.

Author Year Type of Study/Duration/n Main Finding

Cornelli
[190] 2010

Clinical trial/6 months/52 moderate
AD patients already being treated with

5 mg donepezil per day for at least
two months

Treatment with formula F (Carnosine, vitamins B1, B2, B3,
B6, B9, B12, C, E, Coenzyme Q10, β-carotene, selenium,

L-cysteine, Ginkgo biloba) decreased oxidative stress and
homocysteine levels and improved MMSE II

scores significantly

Remington et al.
[187] 2009

RCT/9 months/12 institutionalized
patients diagnosed with

moderate-stage to later-stage AD

Supplementation of a vitamin/nutraceutical formulation
containing folate, vitamin B12, alpha-tocopherol,

S-adenosyl methionine (SAM), N-acetyl cysteine (NAC),
acetyl-L-carnitine (ALCAR) seems to delay the decline in

cognition, mood, and daily function

Chan et al.
[186] 2008

Clinical trial/12
months/14 community-dwelling
individuals with early-stage AD

Treatment with a vitamin/nutraceutical formulation
(folate, vitamin B12, alpha-tocopherol, SAM, NAC,

ALCAR) resulted in improved cognitive performance

Aisen et al.
[184] 2008

RCT/18 months/intervention group
(n = 202) and placebo group (n = 138) of

AD patients

Daily supplementation of folate, vitamin B6 and B12 for
18 months was effective in reducing homocysteine levels,
but not in slowing cognitive decline in individuals with

mild to moderate AD

Sun et al.
[183] 2007

RCT/26 weeks/89 patients with mild
to moderate AD and normal folic acid

and vitamin B12 concentrations

Multivitamin supplement including vitamins B12, B6 and
folic acid reduced concentrations of homocysteine but had
no statistically significant beneficial effects on cognition

compared to placebo treatment

Aisen et al.
[182] 2003

Clinical trial/8 weeks/69 subjects with
AD, including 33 with standard

multivitamin supplements

This open-label trial shows high-dose, combined vitamin
B12 and B6 supplementation to reduce homocysteine

levels in AD patients

Teunissen et al.
[181] 2003

Clinical trial/one-point/neurological
patients (AD: n = 34; Parkinson’s
disease: n = 46; other cognitive

disorders: n = 47) and healthy controls
(n = 61)

Compared to healthy individuals the median vitamin B12
concentration was decreased in all neurological patients

4. Is There an Association of Diseases and Medications, Known to Be Linked to
Vitamin B12 Deficiency, with AD?

In a further step of our review, we aimed to analyze if diseases and medications, which
are known to be linked to vitamin B12 deficiency, can also be associated with dementia,
especially AD (Table 3).

An example of a disease associated with a vitamin B12 deficiency is inflammatory
bowel disease (IBD). Among patients with IBD, deficiencies of micronutrients, such as
vitamin B12, are common. Crohn’s disease patients are more affected than ulcerative colitis
patients [198]. Possible causes for this IBD-related vitamin B12 deficiency could be ileal
disease or resection, fistulas and small bowel bacterial overgrowth, amongst others. Up
to 22% of Crohn’s disease patients were reported to be affected by reduced vitamin B12
serum levels [199,200]. Moreover, a recent study also reported significantly higher rates
of vitamin B12 deficiency in Crohn’s disease compared to ulcerative colitis patients and
reduced deficiencies after a six-months treatment with vitamin B12 [201]. In this context,
it must be mentioned that evaluating the vitamin B12 status based on serum vitamin B12
levels is relatively insensitive. Holotranscobalamin combined with methylmalonic acid
is suggested to be a more accurate way to identify an impaired vitamin B12 status [202].
A recent clinical study analyzed if there is an association between IBD and the risk of
dementia in patients aged over 60 years with an initial diagnosis of Crohn’s disease or
ulcerative colitis (n = 3850) and patients without IBD (n = 3850) over a period of 15 years.
The authors reported that IBD is associated with a 1.22-fold elevated risk of developing
dementia [203]. In line with these findings, a longitudinal study, also published in 2021,
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reported IBD to be associated with a higher risk of dementia. Moreover, the greatest
increase was observed in the risk of developing AD after 16 years [204]. Based on these
recent results, the relationship between IBD and dementia should be the aim of future
research. For example, a long-term supplementation of IBD patients with vitamin B12
followed by an evaluation of a dementia/AD diagnosis should be performed.

A further disease, which is considered as a possible cause for the deficiency in water-
soluble vitamin B12, is gastritis [205]. It can be differentiated between environmental
atrophic gastritis, which can be caused by Helicobacter pylori, environmental factors or
specific diets, or autoimmune atrophic gastritis [206]. A recent study (2021) demonstrated
an association of atrophic gastritis (AG) with significantly lower serum total vitamin B12
levels compared to individuals without AG. A possible explanation for this finding could
be that this disease mediates the suppression of gastric acid and may thereby impair the
absorption of vitamin B12 from foods [207]. In line with this, an earlier study also reported a
prevalence of 2.5% of low serum vitamin B12 levels related to atrophic corpus gastritis [208].
Further authors aimed to investigate the association between gastritis and dementia in older
adults and found an increased prevalence of dementia in individuals suffering from gastritis
compared to healthy controls (29.5% vs. 13.2%) [209]. Moreover, an adjusted, significant
odds ratio of 2.42 was found for gastritis associated with dementia. A recent Swedish
study reported an elevated risk of an AD diagnosis in patients previously diagnosed with
an autoimmune disorder. An increase in the standardized incidence ratio of 1.64 was
reported for pernicious anemia [210]. Pernicious anemia (PA) is defined as a macrocytic
anemia, which is one of the distinctive manifestations of autoimmune metaplastic atrophic
gastritis and caused by vitamin B12 deficiency [211]. In line with the findings of this recent
study, an early study could also associate neuropsychiatric conditions such as dementia
with PA [212]. Besides the suggested vitamin B12 deficiency-mediated associations, a link
between another cause of gastritis and AD also was shown, that of Helicobacter pylori. In a
cohort of 50 AD patients, 88% (44 out of 50 participants) showed a histologically proven
infection with H. pylori compared to 46.7% (14 out of 30 participants) in the control group.
Proving the causality of this association by eradicating H. pylori and observing the course
of AD should be the aim of further research [213].

Besides diseases, also surgical interventions, such as a total or partial gastrectomy,
could cause a severe vitamin B12 deficiency [205]. A study comparing the risk of AD in
gastric cancer patients who underwent gastrectomy (n = 63,998) with the risk in the general
population (n = 203,276) reported an elevated risk of AD for gastrectomy patients. Moreover,
the risk was even more increased in patients with a total gastrectomy (adjusted hazard
ratio: 1.39, 95% confidence interval 01.25–1.54). Interestingly, total gastrectomy patients,
which were continually supplemented with vitamin B12, had a reduced AD risk compared
to the control (adjusted hazard ratio: 0.71, 95% confidence interval 0.54–0.92) [214].

Regarding medications that are associated with a vitamin B12 deficiency, proton pump
inhibitors (PPI) are of special interest since they are discussed to be overused. PPIs are
commonly prescribed for the treatment of, for example, gastroesophageal reflux disease,
reflux esophagitis, gastric and duodenal ulcers, and others. A study in the U.S. ambulatory
setting from 2002 until 2009 reported a significant increase in the use of PPIs in general, from
4.0% to 9.2%. Moreover, the highest significant increase was found for the PPI omeprazole
(0.9% in 2020 to 3.9% in 2009), which was included in this study next to esomeprazole and
pantoprazole [215]. PPIs should be used carefully since they are known to increase the
gastric pH into the alkaline milieu, which result in impaired pepsin activation and further
protein-bound vitamin B12 malabsorption [216–219]. In line with this adverse effect, a
large population-based study reported a long-term exposure to PPIs of two or more years
to be associated with an elevated vitamin B12 deficiency risk (odds ratio, 1.65 and 95%
confidence interval, 1.58–1.73). Moreover, the authors reported that the strength of this
association depends on the used dosage [220]. These findings are in line with an early
study including ten healthy, male volunteers between the age of 22 to 50 years, who were
randomly treated with 20 mg or 40 mg omeprazole per day for two weeks. The subsequent
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evaluation of protein-bound cyanocobalamin (vitamin B12) absorption showed significant
dose-dependent decreases in both groups (20 mg omeprazole: from 3.2% to 0.9%, p = 0.031;
40 mg omeprazole: 3.4% to 0.4%, p < 0.05) [221]. Additionally, a case report from 2002 of a
78-year-old nonvegetarian white woman showed a malabsorption of dietary protein-bound
vitamin B12 and vitamin B12 deficiency because of PPI usage for over four years [222].

Table 3. Diseases that are linked to vitamin B12 homeostasis and their association with AD.

Link to Vitamin B12 Link to Alzheimer’s Disease

Author Main Finding Author Main Finding
Inflammatory Bowel Disease (IBD)

Weisshof et al.
(2015)
[198]

Micronutrient deficiencies are common
(>50%) in patients with IBD with

vitamin B12 deficiency belonging to the
most common ones.

Zingel et al.
(2021)
[203]

This study analyzing 3850 patients with
an initial diagnosis of inflammatory

bowel diseases (IBD; Crohn’s Disease,
ulcerative colitis) and 3850 patients

without IBD reported that IBD is
associated with a 1.22-fold increase in

the risk of developing dementia.

Yakut et al.
(2010)
[199]

Patients with Crohn’s disease common
have a serum vitamin B12 deficiency.

Zhan et al.
(2021)
[204]

An increase in the risk of developing
AD was reported in IBD patients in a
16-year longitudinal study including

1742 patients with IBD.

Bermejo et al.
(2013)
[200]

15.6% (95% CI 9.7–20%) of patients
with Crohn’s disease suffer from

vitamin B12 deficiency.

Park et al.
(2021)
[201]

Crohn’s disease patients are more often
deficient in micronutrients like

vitamin B12.

Ward et al.
(2015)
[202]

The prevalence of vitamin B12
deficiency is common in patients with

Crohn’s disease.
Gastritis

Porter et al.
(2021)
[207]

Atrophic gastritis was associated with
significantly lower serum total vitamin

B12 levels and higher prevalence of
vitamin B12 deficiency.

Li et al.
(2018)
[210]

The risk of dementia and AD is
increased in patients with many types

of autoimmune disorders, like
pernicious anemia.

Green
(2017)
[205]

Pernicious anemia (autoimmune
gastritis) is a cause of vitamin

B12 deficiency.

Metzler et al.
(1991)
[212]

Specific clinical entities of a vitamin B12
deficiency include, amongst

others, dementia.

Sipponen et al.
(2003)
[208]

Association of low vitamin B12 serum
levels and atrophic gastritis in an

elderly male cohort.

Kountouras et al.
(2006)
[213]

There is a link between an infection
with Helicobacter pylori and

Alzheimer’s disease.

Based on these adverse effects of PPIs on vitamin B12 uptake and their increased use
in the last years, an examination of the potential cognitive impact of PPIs has become a
subject of current studies. A randomized controlled trial including sixty healthy volun-
teers examined the neuropsychological association of the PPIs omeprazole, lansoprazole,
pantoprazole, rabeprazole and esomeprazole, with cognitive functions evaluated by five
computerized neuropsychological tests of the Cambridge Neuropsychological Test Auto-
mated Battery. Visual memory, attention, executive function as well as planning function
were measured at the beginning of the study and on Day 7. The results showed that all ana-
lyzed PPIs affected cognition in a negative way, with varying degrees of influence between
the single PPIs [223]. The outcomes of clinical studies dealing with an association between
the use of PPIs and the risk of dementia and AD are heterogenous, as reviewed in a recent
meta-analysis involving ten independent studies with more than 600,000 patients [224].
Besides studies resulting in the finding that vitamin B12 deficiency is not associated with an
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increased risk for dementia or AD [225,226], several clinical investigations reported oppo-
site findings. An observational study from 2016, involving more than 73,000 dementia-free
participants older than 75 years, reported a significantly elevated risk of incident dementia
in patients using PPIs compared to non-medicated patients (1.44, with 95% confidence
interval 1.36–1.52, p < 0.001) [227]. These data are in line with previous findings resulting
from a longitudinal, multicenter cohort study of more than 3000 community-dwelling
persons aged ≥75 years. PPI medication resulted in significantly increased risk of any
dementia and AD in comparison to nonusers [228]. Especially long-time usage of PPIs
seems to be directly associated with the onset of dementia, as reviewed in [229]. Based
on this heterogeneity among studies published so far, the ongoing examination of this
potential link is the aim of the current research. Besides the inhomogeneous outcomes
of clinical trials, some preclinical studies reported additional mechanisms, next to the
caused vitamin B12 deficiency, for the neurological effects of PPIs, which can cross the
blood–brain barrier. For example, an interaction with tau protein, influencing the neuronal
microenvironment or elevating levels of neurotoxic Aβ, has been described [230]. A further
mechanism by which PPIs may increase the risk of dementia, besides causing a deficiency
in vitamin B12, was reported recently. An in silico docking study provides evidence that a
PPI is a selective inhibitor of choline-acetyltransferase, and this might explain its association
with an increased risk of dementia [231]. Based on these findings, the risks and benefits of
prescribing PPIs as medication should be balanced individually.

5. Veganism/Vegetarianism, Vitamin B12 Levels and AD

Besides the above-mentioned diseases and medications, which can cause a deficiency
of vitamin B12 due to a malabsorption, also a low or inadequate dietary intake of this
vitamin from animal-sourced foods has been described as a common explanation for
a poor vitamin B12 status. In this context, numerous recent observational and clinical
studies reported uniformly that vegan and vegetarian diets are strongly associated with
a vitamin B12 deficiency [232–238]. While vegetarian diets exclude animal foods or parts
of them, vegan diets exclude animal and all their by-products/derivatives. Reasons for
such a kind of diet are multiple and include ethical, spiritual, religious, low socioeconomic
status, animal welfare or environmental reasons. In this context, it is suggested to include
levels of circulating holotranscobalamin II, which is the bioactive B12 fraction, and total
homocysteine, which is a parameter of the metabolic ability, besides serum vitamin B12
concentration to evaluate an individual’s vitamin B12 status [239].

A recent systematic review, which included 12 cohorts and 36 cross-sectional studies,
evaluated the adequacy and the micro- and macronutrient intake of vegan diets. The
authors reported a lower intake of protein, vitamins (B2, B3, B12 and D), iodine, zinc,
calcium, potassium and selenium. Especially the intake of vitamin B12 was significantly
reduced from the recommended 2.4 µg to 0.24–0.49 µg in veganism compared to other
diet types in this study [240]. Moreover, two randomized controlled trials examining the
influences of vegan, vegetarian or Mediterranean diets were recently performed. The
first one aimed to investigate the influence of low-calorie lacto-ovo vegetarian in compar-
ison to Mediterranean diets on body weight and the cardiovascular risk in overweight
118 omnivores over three months as the primary outcome. The authors reported significant
differences in vitamin B12 levels of 32.32 pg/mL (p < 0.01) in end-of-diet values between
participants randomly assigned to a vegetarian diet (decrease in vitamin B12 during the
study) compared to Mediterranean diet (increased vitamin B12 concentrations at the end
of the study) [241]. The second study, which was published in 2019, assigned 53 healthy
omnivore participants randomly to a controlled vegan diet without supplements or to a
meat-rich diet for four weeks and investigated the vitamin B12 status after this short-term
intervention by determining the serum vitamin B12, holotranscobalamin, methylmalonic
acid and total plasma homocysteine. Plasma holotranscobalamin was significantly reduced
in the vegan diet-treated group compared to the meat-rich group and a lower serum vi-
tamin B12 concentration was found. Additionally, methylmalonic acid and total plasma
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homocysteine were not changed after this intervention time [242]. Taken together, these
studies reported homogenously a causal link between vegan or vegetarian diet patterns
and an insufficient supply with the essential micronutrient vitamin B12.

Since the only known naturally source of vitamin B12 are animal food products (meat,
poultry, fish, egg, milk, etc.) and the general absence of this vitamin in plant foods because
there are no cobalamin-dependent enzymes in plants, strict vegetarians and vegans are
advised to supplement vitamin B12 to avoid a deficiency [243–245]. Several B12 plant-based
food sources were reported on over the last years, for example, Mankai plant [246], sea-
weed [247], Hippophae rhamnoides, Elymus, Inula helenium [248], some algal species [249]
as well as next-generation nutritionally fortified plant-based milk substitutes [250]. One
caveat that must be mentioned in this context, is that such natural sources often contain
biological inactive vitamin B12 analogues. Methods used to assess the bioavailability
of vitamin B12, and the technologies suggested to enhance its absorption, are reviewed
in [251]. In a randomized controlled trial, vegans and vegetarians with marginal vitamin
B12 deficiency were supplemented with either 350 µg vitamin B12 per week (low dose)
or 2000 µg per week (high dose) sublingual for twelve weeks. The outcomes showed no
differences in the abilities of both intervention conditions to restore the serum vitamin B12
concentrations and improve the levels of the related metabolic blood markers, and the
authors suggested a low dose for nutritional adequacy [252].

As summarized earlier in this review and as homogenously described in the literature,
a vitamin B12 deficiency is closely linked to an increased risk of neurodegenerative diseases,
such as AD. Considering this link, adequate levels of vitamin B12 are very important
in individuals who follow a vegan or vegetarian diet. Moreover, the question arises if
there is also a causal link between plant-based diets and cognitive function. Up to now
there are no (interventional) studies reporting such a causal link or possible underlying
mechanisms [253]. Therefore, one might speculate if the known and common deficit
of vitamin B12 in vegans and vegetarians should be weighted more than the positive
nutritional aspects that are associated with an animal product-free lifestyle.

On the one hand, most vegans or vegetarians not supplementing micronutrients are
affected by a vitamin B12 deficiency, for which the negative aspects regarding AD have
been summarized before. On the other hand, plant-based diets are accompanied by a
healthy blood lipid profile, for example, due to low levels of saturated fats or cholesterols.
Moreover, they are enriched in dietary fiber, flavonoids, folic acid, magnesium or vitamin C,
and may be advocated to control energy, as described in a recent comparative study [254].

Taking into consideration that an AD pathology is strongly interconnected with dia-
betes, obesity, insulin resistance or cardiovascular diseases, preventing strategies including
nutritional interventions are discussed as beneficial in AD prevention. Especially plant-
based diets with a high intake of for example omega-3 fatty acids or antioxidants and
simultaneously reduced intake of saturated fatty acids or proteins derived from animals
are favorable, as reviewed in [255]. In contrast, the consumption of red meat was recently
shown to be associated with the risk of cognitive impairments in a cohort study includ-
ing more than 16,000 participants. The intake of meat was measured in the midlife age
of the participants (45–74 years) and the risk of cognitive impairment was detected in
later life (61–96 years). The authors reported an increased risk of cognitive impairment
associated with the highest quartile of red meat intake compared to the lowest quartile.
Interestingly, a diet focused on fish showed an association with lowered risks of cognitive
impairments [256]. These findings are in line with the results of an earlier (2015) longitudi-
nal study in individuals aged 65 years and older, which reported that a Western dietary
pattern (more than seven times a week consumption of meat/poultry; less than four times
a week consumption of fish; less than two times a week consumption of beans and legumes;
and less than ten times a week consumption of fruits and vegetables) significantly elevated
the risk of cognitive decline over eight years (adjusted odds ratio = 4.35, 95% CI = 1.52–12.50,
p < 0.05) [257].
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On a biochemical level, more common risk factors, such as plasma total cholesterol,
low-density lipoprotein cholesterol or triacylglycerol levels, have been reported in om-
nivores eating both plant- and animal-based diets. These risk factors are accompanied
by further risky conditions, such as, for example, an increased body mass index or blood
pressure [258]. In this context, a vegetarian diet might be beneficial in the prevention of
numerous diseases such as hypertension, renal diseases, cardiovascular or dementia, to
mention only a few [259]. Furthermore, not only on pathological conditions and diseases
but also in the process of healthy aging do plant-based diets seem to be favorable, as
reviewed in [260].

In line with these beneficial properties of a plant-based diet but also taking the defi-
ciency of vitamin B12 into consideration, a recent study of adult Canadians recommended
a balanced diet of plant- and animal-based protein foods as a healthy nutritional ap-
proach [261]. Along with this, it is recommended and important to sensitize especially
vegans or vegetarians to be aware of the risk of potential dietary deficiencies, for example,
by providing nutritional guidance. This seems to have been met with widespread approval,
as a recent cross-sectional study examining the macro- and micronutrient status of vegans
reported. The authors reported similarly sufficient vitamin B12 concentrations in vegans
and non-vegans and suppose a high rate of supplementation as a possible reason for this
finding [262].

6. Conclusions

This review focused on the biochemical pathways involved in AD, which are known
to be affected by vitamin B12, by summarizing the recent cell culture, animal and clini-
cal studies.

On a molecular level, animal studies demonstrated the influence of vitamin B12 on Aβ

generation via β- and γ-secretase cleavage and moreover vitamin B12-dependent alterations
of the homocysteine cycle and DNA methylation of BACE1 and PSEN1 promotors. Further,
these studies could show that a supplementation of vitamin B12 exerts positive effects
with respect to AD pathology, both in transgenic AD models and in wildtype animals. In
line with this, cell culture and ex vivo studies provided further evidence for the protective
effects of vitamin B12. These are linked to amyloid formation and fibrillization, epigenetic
modifications, tau fibrillization, synaptogenesis of neuronal membranes, oxidative stress
and cholesterol synthesis. A detailed overview of the proposed beneficial properties of
vitamin B12 with respect to amyloid and tau pathology in AD is given in Figure 3.

Clinical studies showed homogenously that vitamin B12 in combination with further
representatives of the B vitamin family or alone have beneficial effects on cognitive function,
inflammation and brain atrophy in elderly adults without cognitive decline or in mild
cognitive impairment patients. Studies dealing with patients suffering from AD found
reduced vitamin B12 plasma levels compared to healthy controls. Moreover, supplementa-
tion of B vitamins was reported to improve cognitive functions in numerous (randomized)
clinical trials.

Interestingly, there are diseases, such as inflammatory bowel disease or gastritis,
medications (for example proton pump inhibitors) and surgical interventions (total or
partial gastrectomy) that are known to be associated with a vitamin B12 deficiency, and
which could be linked to an increased risk of dementia or worse cognitive performance.

Besides these medications or diseases, also a low or inadequate dietary intake of
vitamin B12 from animal-based food can be a reason for vitamin B12 hypovitaminosis.
Based on this, it is important and recommended to inform vegans and vegetarians to be
aware of the risk of their potential dietary deficits. Further research could be to examine the
association and molecular mechanisms between a plant-based diet and cognitive function.
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