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Abstract
Research has shown benefits of physical exercise on memory performance when carried out before or after a memory task. 
The effects of concurrent physical exercise and particularly resistance exercise are still inconclusive. The current study 
investigates the influence of resistance exercise with two intensities (fast and slow squats) on performance in a wordlist 
learning task using a within-subject design. Sport students (N = 58, Mage = 23 years; 26 women) were trained in a mnemonic 
technique to encode word lists (method of loci). In each session they were asked to encode two lists, each consisting of 20 
words. During encoding, participants either performed one squat per word (fast-squat-condition), one squat every second 
word (slow-squat-condition), or stayed seated (control-condition). Participants performed three sessions for each condi-
tion, in counterbalanced order. Heart rates differed significantly according to exercise intensity. Memory performances in 
the sitting condition were better, compared to the exercise conditions. Performance in sitting and the fast squat conditions 
improved similarly over time, while performance in the slow squat condition increased faster, and reached the level of the 
fast squat condition at the end of the study phase. We conclude that light to moderate resistance exercise while working on 
an episodic memory task may rather represent a dual-task situation (= two tasks that compete for attentional resources). 
Especially doing a squat every second word may represent an inhibition task that people have to get used to. Future studies 
should include biochemical markers of arousal and neuronal plasticity in addition to heart rate.
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Introduction

Cognition is an essential ability needed to learn, act and 
remember. Thus, it is important to investigate possible 
ways that can enhance cognitive functions. Chronic physi-
cal exercise has been shown to improve cognition (Hillman 
et al., 2011; Singh et al., 2018; Tomporowski et al., 2008). 
Furthermore, an acute bout of physical exercise can be ben-
eficial for various cognitive functions (Chang et al., 2012b; 
Verburgh et al, 2014), including memory (Loprinzi et al., 
2019a; McMorris & Hale, 2012; Roig et al., 2013, 2016; 
Tomporowski, 2003).

The neuropsychological and neurophysiological mecha-
nisms that underlie these positive effects of physical exercise 
on cognition have not been thoroughly investigated. Factors 
that are affected by physical exercise are changes in physi-
ological arousal, the release of neurotransmitters, and nerve 
growth factors (Loprinzi & Frith, 2019; Loprinzi et al., 
2017, 2018a; McMorris, 2016).

Physical exercise improves physiological arousal, includ-
ing alertness, resource allocation, and executive control, 
presumably by increasing neuronal excitability (Audiffren 
et al., 2008; Loprinzi et al., 2018a; McMorris & Gray-
don, 2000). These changes in physiological arousal can be 
linked to changes in heart rate, blood pressure, and skin 
conductivity, which are closely associated with changes in 
the concentration of various endogenous neurotransmitters 
(Cooper, 1973; McMorris, 2016). One of these transmit-
ters is norepinephrine (NE), which controls the activation 
of the noradrenergic system. This is a possible pathway to 
improve LTP via activation of β-receptors (Hansen & Man-
ahan-Vaughan, 2015; Loprinzi et al., 2018a). In this con-
text, Segal et al. (2012) showed that exercise significantly 
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increased NE concentration, and was positively correlated 
with memory performance. In addition, a study by Cahill 
and Alkire (2003) demonstrated that an intravenous injec-
tion of NE after memory encoding improved the memory 
consolidation process. Dopamine (DA), serotonin (5-HT), 
and acetylcholine (ACh) seem to have a mediating effect on 
hippocampal CA1 structure and thus facilitate LTP (Loprinzi 
et al., 2018a). DA and NE closely interact with each other. 
While DA regulates the filtering of signals, NE increases the 
response to incoming signals (Finlay et al., 1995). 5-HT, in 
turn, activates the dopaminergic system via receptors in the 
medial prefrontal cortex (mPFC) (Díaz-Mataix et al., 2005) 
and may also facilitate NE release (McMorris, 2016).

The level of various nerve growth factors like brain 
derived neurotropic factor (BDNF), vascular endothelial 
growth factor (IGF-1) and neurotransmitters (like epineph-
rine (EPI), NE or DA) can be elevated by physical exercise. 
These substances are positively associated with memory 
and learning (Skriver et al, 2014). Nerve growth factors and 
catecholamines may also influence episodic memory. In this 
context, Winter et al. (2007) investigated BDNF, catecho-
lamine concentrations (EPI, NE, DA), and memory perfor-
mance in a word-picture pseudoword learning task, after a 
moderate endurance exercise, after intense sprint exercise, 
or after a resting period. The intense exercise group showed 
the highest increases in BDNF and catecholamine concen-
trations, and was faster in learning but not in the retention 
tests. Increased BDNF was associated with better memory 
performance immediately after learning, while DA concen-
tration correlated with performance after 1 week and EPI 
with performance after 8 months. These results show that the 
influence of neurobiological markers is time-dependent and 
may affect different steps of the memory process, namely 
memory encoding, memory consolidation, and memory 
retrieval (Loprinzi et al., 2017, 2019b). The time depend-
ency could be due to different time courses for exercise-
induced increases in various neurosubstrates and their meta-
bolic breakdown (see Meeusen & Meirleir, 1995 for DA, 
NA, and 5-HT in rat striatum).

In the past, positive effects of acute exercise bouts on 
memory have been observed for aerobic exercises, and for 
resistance exercises. These two types of studies are sum-
marized in the following sections.

Effects of Acute Aerobic Exercise on Episodic 
Memory

The current study focused particularly on how physical exer-
cise can affect the processes underlying episodic memory. 
Most studies so far have focused on exercise bouts before 
or after memory encoding (Coles & Tomporowski, 2008; 
Etnier et al., 2014; Hötting et al., 2016; Labban & Etnier, 
2011; Pesce et al., 2009; Pyke et al., 2020; Schramke & 

Bauer, 1997). Acute exercise during memory encoding 
has hardly been investigated (Loprinzi et al., 2019a), but it 
may have a great potential for improving episodic memory. 
Exceptions are three studies by Maren Schmidt-Kassow and 
colleagues (Schmidt-Kassow et al., 2010, Schmidt-Kassow 
et al., 2013, Schmidt-Kassow et al., 2014). For all studies, 
participants learned word pairs from their native language 
(German) and from languages that they did not know well 
(French or Polish).

Schmidt-Kassow et al. (2010) had participants learn the 
word pairs either while cycling at moderate intensity, or 
while sitting. Recall of the corresponding German words 
was assessed after every third learning session. Participants 
of the cycling group showed higher performance in the 
vocabulary test compared to the sitting group. In addition, 
the authors measured a larger N 400 effect in event-related 
potentials (ERP) in the physically active group, indicating 
exercise-induced changes in cortical plasticity.

There are two effects described in the literature that could 
be related to the observed memory benefits: “synaptic tag-
ging” and the “associativity effect” (Frey & Morris, 1997; Li 
et al., 2014; Sajikumar & Frey, 2004). Both effects describe 
the co-occurrence of a weak (e.g. vocabulary) and a strong 
input (exercise). Exercise can induce a high action poten-
tial (associativity) or trigger plasticity-related proteins that 
are captured by the memory stimulus (synaptic tagging), 
increasing LTP of the memory stimulus (Loprinzi et al., 
2018a).

In a later study, Schmidt-Kassow et al. (2013) asked 
participants to learn word-pairs in different exercise condi-
tions. While one group bicycled before learning, one bicy-
cled during learning, and a third group did not exercise. 
Again, the memory performance of the group that exercised 
during learning was improved compared to the sedentary 
group. Elevated heart rates during exercise and increased 
releases of memory enhancing neurotransmitters may have 
optimized the physiological arousal during the encoding 
process, facilitating LTP. However, the authors did not find 
any correlations of BDNF in serum, or of BDNF genotype, 
with memory performance. This may be explained by the 
low intensity of the exercise, as earlier studies have shown 
that BDNF increases with rising exercise intensity (Hötting 
et al., 2016; Knaepen et al., 2010; Winter et al., 2007).

In another study, Schmidt-Kassow et al. (2014) tested 
young adults in a within-subject design. In one session, 
participants learned word pairs while walking at preferred 
speed, and in the other session while sitting. Results showed 
that even a low-intensity activity like walking can improve 
memory performance compared to no exercise. The muscle 
spindle pathway described by Loprinzi et al. (2018a) may 
offer a possible explanation. In particular, walking leads to 
the contraction of various muscles of the leg. These contract-
ing muscle spindles may create action potentials that are 
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transmitted from the spinal cord to the brain stem and from 
there to the nucleus tractus solitarii (NTS). The activation of 
the NTS then stimulates the production of neurotransmitters 
in the locus coeruleus (LC), which has connections to mul-
tiple hippocampal structures, that may enhance the memory 
process (Loprinzi et al., 2018a).

Effects of Acute Resistance Exercise on Episodic 
Memory

The studies by Schmidt-Kassow and colleagues used aero-
bic exercises like walking and cycling, with exercise inten-
sities that were low to moderate. So far, the literature has 
mainly focused on cardiovascular exercise, but there is a 
growing interest in positive effects of acute resistance exer-
cise on cognition (Chang & Etnier, 2009a, 2009b; Chang 
et al., 2012a; Harveson et al., 2016; Landrigan et al., 2019; 
Wilke et al., 2019), and particularly on memory (Cuttler 
et al., 2018; Weinberg et al., 2014). In addition, both types of 
exercise affect memory through distinct molecular pathways, 
indicating that aerobic exercise modulates the BDNF and 
β-CaMKII (calcium/calmodulin-dependent kinase II) while 
resistance training influences the IGF-1 and AKT (protein 
kinase B) pathway (Cassilhas et al., 2012).

In this context, Weinberg et al. (2014) tested 46 young 
adults in an emotional episodic memory task in a between-
subject design. On day 1, participants encoded 90 images 
(30 negative, 30 positive, 30 neutral). Directly after memory 
encoding, they either performed 2 sets of a one-leg knee 
extension/flexion exercise (exercise group) or remained 
seated while their leg was passively moved by the experi-
menter (control group). On day 2, participants had to recog-
nize the previously seen images while 90 new images were 
added to the recall task. To assess the physiological reac-
tion to the exercise, salivary alpha amylase (a biomarker 
of norepinephrine), heart rate, and blood pressure were 
measured. Results showed higher accuracy rates for the 
exercise group in the recognition task. Furthermore, within 
the exercise group, participants that showed a high physi-
ological response to the exercise had a lower performance 
in recognizing neutral images, but not in recognizing posi-
tive or negative pictures, compared to participants with a 
lower physiological response to the exercise. The authors 
conclude that an acute resistance exercise can facilitate epi-
sodic memory and may be particularly beneficial for emo-
tional memory. As far as we know, the current study will be 
the first to investigate the effects of a concurrent resistance 
exercise on episodic memory performance.

Hypotheses of the Current Study

The current study investigates the effects of resistance exer-
cise on memory encoding in university sports students. Each 

participant was instructed and trained in the method of loci 
as a memory strategy (Amico & Schaefer, 2019). Over the 
course of a seminar, participants learned two new lists of 20 
words per session, while they either remained seated (sitting 
condition), performed one squat every second word (slow-
squat-condition), or one squat every word (fast-squat-con-
dition). Squats are a resistance exercise, comprised of slow, 
easy, and rhythmic movements. Squats do not create much 
acoustic noise when performed in a group, reducing distrac-
tions as much as possible. Participants performed three ses-
sions for each condition. Based on previous studies showing 
a positive effect of acute aerobic exercise during memory 
encoding (Schmidt-Kassow et al., 2010, 2013, 2014) and 
the study by Weinberg et al. (2014) showing that an acute 
resistance exercise can benefit episodic memory, we hypoth-
esized that students will remember more words with increas-
ing intensity in the exercise conditions (fast-squat > slow-
squat > sitting). Note that exercise intensity remains between 
a low and medium level in the current study. This hypothesis 
is further grounded on the acute effects of physical exercise 
on LTP (Loprinzi et al., 2017, 2018a; McMorris, 2016) and 
by optimizing neuronal excitability and resource allocation 
(Audiffren et al., 2008; Loprinzi et al., 2018a; McMorris & 
Graydon, 2000). We measured heart rates throughout the 
testing phase as an indicator of exercise-induced arousal. 
Lastly, we predicted that participants would show perfor-
mance improvements with practice of the MoL task over 
the course of the study. For exploratory reasons, we also 
assessed whether the expected benefits occur when three 
lists (60 words) are tested in immediate succession in the 
last session of the study (e.g., testing-the-limits paradigm 
by Kliegl et al., 1989). The current study has been preregis-
tered under the following link: https:// aspre dicted. org/ blind. 
php?x= wi2dk7.

Methods and Materials

Participants

Fifty-eight sport students from the Saarland University 
participated in the study in exchange for course credit (see 
Table 1 for descriptives). All participants had normal or 
corrected-to-normal vision and hearing and gave informed 
consent to the study. Participants enrolled in one of three 
seminar groups, in which the same content was taught. The 
seminar sessions took place on different days. Fifteen par-
ticipants enrolled in the Monday seminar group, n = 13 in 
the Wednesday seminar group, and n = 30 in the Thursday 
seminar group. Please note that it is unlikely that the selec-
tion of a specific seminar group is related in any meaningful 
way to cognitive performances, and that the only difference 
between groups was the order of experimental conditions 

https://aspredicted.org/blind.php?x=wi2dk7
https://aspredicted.org/blind.php?x=wi2dk7
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over the course of the study (see Procedure section). To 
have similar samples sizes across groups, the Monday and 
Wednesday groups were combined before data collection 
started. The study was approved by the Ethics committee of 
Saarland University.

Method of Loci Task

The Method of Loci task (MoL) is a well-established mem-
ory strategy to encode word lists (Amico & Schaefer, 2019; 
Kliegl et al., 1990; Li et al., 2001; Schaefer et al., 2008). 
To start with, participants learned a sequence of location 
cues. In the current study, the cues corresponded to 20 loca-
tions that are part of every apartment (e.g., bed, window, 
table, chair). The to-be-learned words were taken from 
Brehmer et al. (2004) and consisted of concrete German 
nouns that can be easily imagined, like objects, animals or 
professions. Participants heard lists of 20 words, read out 
by the experimenter with an inter-stimulus-interval of 2.5 s. 
The instruction was to encode the to-be-learned word by 
combining it with the respective location cue via mental 
imagery. Participants were encouraged to include object 
size, sound, touch, emotions, or movement depending on 
their personal preferences. For example, when encoding the 
word “spider” at the location “table”, a participant could 
imagine a huge hairy spider crawling over the table. Dur-
ing encoding and recall, participants did not have access 
to the list of locations. Immediately after the last word was 

presented, participants wrote down the remembered words 
in the correct order on their answer sheets. There was no 
time limit for recall. At the start of each seminar session, 
two lists were administered except for the first two sessions, 
in which only one list was presented. Altogether, 28 MoL 
lists had been constructed and were distributed randomly 
across the experimental sessions for each seminar group, 
to control for potential differences in the task-difficulty of 
individual lists. The dependent variable for MoL was the 
sum of correctly remembered words at the correct location. 
To encourage learning of the location cues, participants were 
asked to reconstruct the list of 20 locations at the beginning 
of each session, by writing them down on a sheet of paper. 
To sustain motivation over the course of the semester, the ten 
candidates of each seminar who scored highest in the MoL 
task received monetary rewards (Place 1: 15 Euro, Place 2: 
10 Euro, Place 3 to 10: 5 Euro) at the end of the semester.

In order to investigate the effect of acute resistance exer-
cises on episodic memory performance, participants either 
performed one squat for every word presented (fast squat 
condition), one squat for every second word presented (slow 
squat condition), or stayed seated during memory encoding 
(sitting condition). The order of the exercise conditions was 
counterbalanced across the groups. In the squat conditions, 
participants began to do squats 9 s before the lists started, to 
get a feeling for the rhythm of the respective condition. An 
auditory signal indicated when a squat had to be performed. 
Please note that the distribution of participants across the 
room was the same as for the maximum performance squat 
task (see below). After presentation of the to-be-learned 
words, participants stopped the exercise and recalled the 
words by writing them down.

Covariates

Heart Rate Heart rate was measured during the presentation 
of each word list in the MoL task and during the maximum 
performance squats test (see below) with hardware and soft-
ware from Polar  Team2. The mean heart rate during this 
time interval was converted from beats per minute [bpm] to 
percent of maximum heart rate [%HRmax]. Maximum heart 
rate was estimated using the formula 220 – age.

Maximum Performance Squat Task In the first and the last 
session, all participants performed a “maximum perfor-
mance” squat test. The test was administered to assess poten-
tial individual performance limitations in the squats task, 
and to estimate how physically demanding the squats are. 
During the squats, participants stood with their feet approx-
imately shoulder-width apart. Participants were spaced 
equally across the room with a distance of roughly one meter 
between them, to further limit possible distractions. Partici-
pants were also not facing each other, to avoid non-verbal 

Table 1  Descriptive statistics of the variables

The n may differ slightly for some variables due to missing data

Characteristic Participants
(N = 58)

Age in years (SD) M = 23.05 (2.11)
Gender (n) 26 women, 32 men
Digit Symbol (SD) M = 63.69 (11.39)
Fitness variables
Max. Squats pretest [%] 86.3 reached max score
Max. Squats posttest [%] 73.2 reached max score
HR max. Squats pretest [%HRmax] (SD) M = 72.67 (9.27)
HR max. Squats posttest [%HRmax] (SD) M = 64.54 (10.13)
MoL task variables
Location cues [%] 77.6 reached max score
Heart rate [%HRmax]
Sitting (SD) M = 41.40 (5.56)
Slow squats (SD) M = 52.97 (6.82)
Fast squats (SD) M = 57.78 (7.01)
Memory score
Sitting (SD) M = 13.53 (4.39)
Slow squats (SD) M = 10.27 (4.13)
Fast squats (SD) M = 12.12 (4.29)
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communication. Their feet were externally rotated about 0° 
to 5° degrees, and knees were aligned over the tip of the toes. 
The instruction was to flex the knee between 100° to 130° 
degrees (see Fig. 1). Typical errors of movement execution 
were corrected in the first session (curved back, excessive 
forward lean of the torso, looking at the ground, etc.). The 
squats were performed in the rhythm of the fast-squat condi-
tion (one squat every 2.5 s). For the maximum performance 
squat task, the upper limit of squats that could be reached 
was 256. Participants were instructed to do as many squats as 
possible, either until exhaustion forces them to stop, or until 
the end of the test was reached. Heart rates were assessed 
throughout the test. The vast majority of participants reached 
the maximum possible score, therefore the maximum perfor-
mance squats was assessed dichotomously with 1 indicating 
the maximum number of squats was reached (see Table 1).

Location Cues Before the MoL Task, each participant had 
to recall the list of the 20 location cues for the MoL task, by 
writing them down on a sheet of paper. Each correct loca-
tion scored 1 point. Participants were instructed to use the 
same locations in every trial of the MoL task. The overall 
performance in retrieving the location cues was very high, 
therefore we assessed the location cues dichotomously with 
1 indicating maximum score was reached (see Table 1).

Digit Symbol Substitution Test Perceptual speed was meas-
ured with the Digit-Symbol Substitution task (Wechsler, 
1981) as a covariate in the main analysis, and as a back-
ground variable. For this paper-and-pencil-test, participants 
fill in blank spaces underneath numbers with the correspond-
ing abstract symbol as quickly as possible. Scores can range 
between zero and 93. An ANOVA with seminar group as 
between-subjects factor showed no differences in perceptual 
speed across the three groups, F (2,55) = 0.066, p = 0.936. In 
addition, Digit Symbol scores corresponded well to young 
adult samples of other representative studies (see Amico & 
Schaefer, 2019) (see Table 1).

Procedure

The study consisted of 3 preparation sessions and 12 test-
ing sessions for each group, with one session per week per 
group. Table 2 presents an overview of the testing regime. 
The first three sessions form the preparation phase. In the 
first preparation session, participants completed a demo-
graphic questionnaire, the Digit-Symbol Substitution test 
and one trial of a memory task that was similar to the MoL 
task explained above, except that no instructions of any 
memory strategy and no location cues were given. In the 
second preparation session, MoL was explained as a mem-
ory strategy and the importance of individual preferences 
for specific aspects of the strategy (e.g., size, movement, 
emotions) was emphasized. Then the list with 20 locations 
was presented and the participants were asked to mentally 

Fig. 1  Schematic illustration of the performance of a squat

Table 2  Experimental procedure by seminar group and session

Session number Group 1 Group 2

Preparation 1 Demographics Demographics
Preparation 2 Instruction Instruction
Preparation 3 MoL familiarization MoL familiarization
1 Baseline Pretest,

Max-Performance 
Squats

Baseline Pretest,
Max-Performance Squats

2 Sitting Fast squats
3 Slow squats Slow squats
4 Fast squats Sitting
5 Sitting Fast squats
6 Slow squats Slow squats
7 Fast squats Sitting
8 Sitting Fast squats
9 Slow squats Slow squats
10 Fast squats Sitting
11 Baseline Posttest,

Max-Performance 
Squats

Baseline Posttest,
Max-Performance Squats

12 Testing the limits (sit-
ting)

Testing the limits (fast 
squats)
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visualize these places in their home. MoL was trained with 
one trial, by constructing examples of mental images with 
the help of the experimenter. In the third preparation session, 
participants were asked to draw a sketch of their apartment 
and to mentalize the location cues. After that, the Mol task 
was practiced with two more lists to familiarize participants 
with the task. Session 1 provided the data for the baseline 
pretest assessment of the MoL task. Then the maximum per-
formance squat test was carried out. In each of the following 
9 sessions, participants completed two trials of the MoL 
task, with one out of the three conditions described above 
(sitting, slow squats, fast squats). The order of these condi-
tions was counterbalanced, using a 2 × 3 Latin square design 
(see Table 2). In session 11, participants completed two tri-
als of the MoL task without any additional task (baseline 
posttest), and a second trial of the maximum performance 
squats task. In session 12, the MoL task was performed with 
three lists being presented nonstop (altogether 60 words), as 
an exploratory testing-the-limits situation. Group 1 stayed 
seated and group 2 performed fast squats. The lists used were 
newly constructed lists of words that had already been tested 
previously. Session 12 enabled us to compare the effect of an 
acute physical resistance exercise to a non-exercising group 
for a particularly challenging memory task.

Analyses

The data displayed a hierarchical data structure with meas-
urements (Level 1) being nested in individuals (Level 2). 
Accordingly, we applied a multilevel approach (Raudenbush 
& Bryk, 2002; Snijders & Bosker, 2004), which allows us to 
compare means and investigate associations while control-
ling for the dependencies in the dataset. We conducted a 
step-wise multilevel analysis to test our hypotheses. Our first 
research question investigated whether participants achieve 
higher scores in the MoL task during the exercise conditions, 
namely slow squats and fast squats, compared to the sitting 
condition. The second research question tested whether the 
heart rate during memory encoding is associated with scores 
in the MoL task. Thirdly, we predicted that performance in 
the MoL task would increase over the course of the semi-
nar. To this end, in Model 1.1 the score in the memory task 
was regressed on the dummy coded condition and grand-
mean centered heart rate. The analysis was controlled for 
the number of the sessions, grand-mean centered percent of 
maximum heart rate [%HRmax] when testing maximum per-
formance squats in the pretest and score in the Digit Symbol 
Substitution test, as well as dichotomous number of squats in 
the maximum performance squat pretest and score on the list 
of locations cues. In a second step, an interaction between 
number of sessions and condition was added to the model, 
in order to explore whether participants improved differently 
over time within the different conditions (Model 1.2).

As a manipulation check, heart rate during the MoL task 
was also regressed on number of sessions and dummy coded 
condition (Model 2). This allowed to test whether the differ-
ent conditions lead to different heart rate levels as assumed. 
An interaction of heart rate and condition did not improve 
the model and was therefore not further analyzed. A final 
follow-up analysis explored whether the conditions would 
also differ in the testing the limits session. Therefore, the 
score on the testing the limits test was regressed on dummy 
coded number of list (1 vs. 2 vs. 3) and dichotomous condi-
tion (sitting vs. fast squat, Model 3).

All analyses were conducted using lme4 (Bates et al., 
2015) and lmerTest (Kuznetsova et al., 2015), packages for 
multilevel analysis in R.

Results

Descriptive Analyses of the Fitness Variables

To describe the participants’ fitness level and the exercise 
intensities of the MoL task conditions, descriptive statistics 
are presented below.

Maximum performance squats

The vast majority of participants of the current study were 
able to perform 256 squats in a row (see Table 1). 44 out 
of 51 participants finished all 256 squats in the pretest, and 
30 out of 41 participants finished all 256 squats in the post-
test. The few participants who did not succeed in finish-
ing all squats performed at least 111 squats in the pretest 
or 75 squats in the posttest (lowest performances observed 
throughout all participants). This indicates that perform-
ing 20 squats in a row while encoding the word lists (or 60 
squats in the testing-the-limits session) was not a physical 
challenge to our participants.

Heart rate during the maximum performance squats 
and the MoL task

As expected, the heart rates [%HRmax] during the maximum 
performance squat pre- and posttest are far from being an 
intensive cardiovascular strain for this age group (Physical 
Activity Guidelines Advisory Committee, 2008). Although 
heart rates seem to decrease from pre- to posttest, this does 
not indicate training effects, but rather represents a correla-
tion with the higher number of participants who stopped 
the maximum performance squat posttest compared to the 
pretest (see Table 1). In addition, the heart rates during the 
exercise conditions (slow squats, fast squats) show that heart 
rates were comparable to other studies testing acute effects 
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of exercise during memory encoding (Schmidt-Kassow 
et al., 2010, 2014).

MoL Task Performance

To test the amount of variance proportions at both levels of 
analyses (between measurements and between individuals), 
we estimated an unconditional model of MoL task perfor-
mance, to examine the distribution of between-person and 
within-person variation. An intraclass correlation of 0.48 
for MoL task performance suggests that roughly 50 per-
cent of the total variation of MoL task performance can be 
explained by the between-person portion of total variation. 
Thus, a substantial amount of variation existed between ses-
sion numbers (Level 1) and between individuals (Level 2).

Results of the first set of multilevel analyses are sum-
marized in Table 3. As predicted, participant’s performance 
in the MoL task increased over the course of the sessions 
(see Model 1.1). However, contrary to the predictions of 
our first hypothesis, memory performance in the MoL task 
was better in the sitting condition compared to the slow- 
and the fast-squat condition. In addition, performance in the 
fast-squat condition was better compared to the slow-squat 

condition (Est. = -2.01, SE = 0.31, p < 0.001). Contrary to 
our second hypothesis, heart rate during the MoL task did 
not significantly affect MoL task performance. Regarding 
the measured covariates, only the Digit Symbol test par-
tially explained performance in the MoL task, indicating that 
higher performance in the Digit Symbol task is associated 
with higher performance in the MoL task. As an exploratory 
analysis, an interaction between number of sessions and con-
dition was added to the model (Model 1.2). The MoL perfor-
mance in all three conditions increased over the course of the 
sessions. In addition, the performance in the sitting and the 
fast squat condition increased parallel over time while the 
performance in the slow squat condition showed a steeper 
increase compared to both other conditions (see Fig. 2 for 
the pattern of results).

Manipulation Check: Heart RATE DURING the MoL 
Task

To test the amount of variance proportions at both levels 
of analyses (between measurements and between individu-
als), we estimated an unconditional model of the heart 
rate during the MoL task, to examine the distribution of 

Table 3  Score in the MoL task 
by condition and heart rate 
during MoL

The models are two-level models with 872 observations on level 1 and 47 individuals on level 2. ** 
p < 0.001; * p < 0.05

Model 1.1 Model 1.2

Ref: Sitting Ref.: Sitting Ref.: Fast squats

Est SE Est SE Est SE

Fixed effects
Intercept 9.92** 1.13 10.13** 1.12 8.39** 1.24
Session 0.43** 0.05 0.32 ** 0.06 0.36** 0.09
Heart rate during MoL -0.24 0.25 -0.24 0.25 -0.24 0.25
Condition
Sitting vs Fast squat -1.51* 0.48 -1.74* 0.74 1.74* 0.74
Sitting vs Slow squat -3.53** 0.41 -6.68** 0.68
Fast vs Slow squat -4.93** 0.75
Condition X Session
Sitting vs Fast squat 0.04 0.09 -0.04 0.09
Sitting vs Slow squat 0.54** 0.09
Fast vs Slow squat 0.50** 0.12
Digit Symbol 1.45* 0.52 1.41* 0.52 1.41* 0.52
Max Squats (1 = max reached) 1.10 1.07 1.06 1.06 1.06 1.06
HR during max squats 0.37 0.52 0.35 0.51 0.35 0.51
Location cues (1 = all correct) 0.76 0.79 1.21 0.78 1.21 0.78
Random effects Var SD Var SD Var SD
Intercept 13.95 3.74 13.87 3.72 13.87 3.72
Session 0.05 0.23 0.05 0.23 0.05 0.23
Residual 10.44 3.23 10.00 3.16 10.00 3.16
Model fit
AIC 4713.6 4684.1 4684.1
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between-person and within-person variation. An intraclass 
correlation of 0.29 for heart rate during MoL task suggests 
that roughly one third of the total variation of the heart rate 
can be explained by the between-person portion of total 
variation. Therefore, a substantial amount of variation lies 
between session numbers (Level 1) and between individuals 
(Level 2).

Results of the second set of multilevel analyses are sum-
marized in Table 4 (Model 2). As predicted, participant’s 

heart rate differed significantly between all the three con-
ditions, indicating that participant’s cardiovascular activity 
was highest during fast squats, second highest during slow 
squats, and lowest during the sitting condition. Although 
there was a statistically significant change in heart rate 
over the sessions (decrease in heart rate of 0.011% per 
session), this result has no further practical implication 
for the pattern of results, as it describes an overall change 
in heart rate of roughly 1% over the total eleven sessions.

Exploratory Analysis: Testing the Limits Session

To test the amount of variance proportions at both levels 
of analyses (between measurements and between individu-
als), we estimated an unconditional model of the memory 
score in the testing the limits session, to examine the dis-
tribution of between-person and within-person variation. 
An intraclass correlation of 0.22 for memory performance 
suggests that roughly one fifth of the total variation of 
memory performance can be explained by the between-
person portion of total variation.

Results of the multilevel analysis are summarized in 
Table 5 (Model 3). Results show the best recall perfor-
mance for list 1, followed by list 3, and worst performance 
for words of list 2, indicating primacy and recency effects. 
Contrary to our predictions, memory performance in the 
sitting condition was better compared to the fast squat con-
dition in the testing the limits session.

Fig. 2  Results of the MoL task 
for the three conditions, sitting, 
fast squats, and slow squats over 
the course of the seminar ses-
sions. Note. Every participant 
took part in every condition. 
The order of conditions across 
sessions is shown in Table 2

Table 4  Heart rate during the MoL task by condition

The models are two-level models with 1027 observations on level 1 
and 55 individuals on level 2. ** p < 0.001; * p < 0.05

Model 2

Ref.: Sitting Ref.: Fast squat

Est SE Est SE

Fixed effects
Intercept 2.40** 0.04 1.70** 0.04
Session 0.01** 0.00 0.01** 0.00
Condition
Sitting vs Fast squat -0.70** 0.02 0.70** 0.02
Sitting vs Slow squat -0.54** 0.01
Fast vs Slow squat 0.16** 0.02
Random effects Var SD Var SD
Intercept 0.06 0.25 0.06 0.25
Session 0.00 0.02 0.00 0.02
Residual 0.04 0.19 0.04 0.19
Model fit
AIC -213 -213
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Discussion

The current study examined whether acute resistance exer-
cise with low to moderate intensity can enhance memory 
encoding and thus facilitate the learning of word lists. Meas-
ures of heart rate clearly showed that the physical arousal 
increased with the intensity level of the exercise. However, 
contrary to our predictions, memory performance was best 
when participants remained seated during encoding com-
pared to when participants performed squats for every word 
(fast squat condition) or for every second word (slow squat 
condition). Memory performance increased over the course 
of the study, indicating that participants further familiarized 
with the squat movement and the MoL task. Furthermore, an 
interaction of time and condition showed that participants’ 
memory performance in the slow squat condition increased 
faster over the course of the study, although it only reached 
the performance level of the fast squat condition. Perfor-
mance differences between the sitting and the fast squat con-
dition persisted in the last testing-the-limits session, which 
used an even more difficult version of the memory task, with 
60 instead of 20 to-be-encoded items.

Reasons for the Exercise‑Induced Performance 
Deteriorations

Why did the acute resistance exercise impair memory encod-
ing? It is possible that the timing of the exercise played the 
crucial role. In the current study, participants performed 
squats while constructing mental images. One squat had 

to be performed for each to-be-encoded word (fast squats), 
or for every second to-be-encoded word (slow squats). The 
need to execute the squat in the correct time window may 
have created a dual-task situation, drawing attention away 
from the memory task. Cognitive-motor dual-task situations 
have often been shown to elicit performance decrements, 
since resources have to be shared between two domains 
(Kahneman, 1973; Navon & Gopher, 1979; Schaefer, 2014; 
Wickens, 1991). The temporal coupling of the two actions, 
performing the squat and creating the mental image, was 
high in the current study. Nevertheless, doing squats in a 
certain rhythm is not an automatized task, since each squat 
has to be initiated in the correct time-window. Triggering 
the physical movement therefore required some attention, 
and the attentional demands were even higher in the slow-
squat condition. We assume that inhibiting the squat for 
every second word was particularly attention-demanding 
for our participants. The experimenters could observe this 
when testing, since there were several participants who per-
formed squats “out of sequence” in the slow squat condition, 
especially when first encountering this type of task.

Studies that have combined the MoL memory task with a 
secondary motor task have often found performance decre-
ments in memory performances (Amico & Schaefer, 2019; 
Li et al., 2001; Lindenberger et al., 2000; Schaefer et al., 
2008). Motor tasks in these studies were continuous, like 
keeping one’s balance on an unstable surface (Schaefer et al., 
2008), walking on a narrow track (Li et al., 2001; Linden-
berger et al., 2000), or fidgeting, doodling, and drawing 
(Amico & Schaefer, 2019). However, in the study by Amico 
and Schaefer (2019), kneading a stressball while encoding 
the MoL word lists did not lead to performance decre-
ments in young adults. This indicates that the attentional 
requirements of the parallel motor task need to be taken into 
account when searching for exercise-induced performance 
enhancements in cognition. Future research should include 
conditions in which participants can perform the motor task 
in a self-initiated manner.

The differences between the three conditions (sitting, 
slow squats, fast squats) decreased with increasing practice 
in the current study. This indicates that participants required 
some practice to familiarize themselves with the rhythm of 
the slow squats. Several theories on motor skill learning 
(Adams, 1971; Gentile, 1972; Fitts & Posner, 1967; Mei-
nel, 1960) predict that the initial stages of skill acquisition 
require more cognitive resources/ attention than later stages. 
Accordingly, once participants had gotten used to the tem-
poral requirements of combining the memory encoding and 
the slow squat task, their dual-task costs in memory became 
smaller. Therefore, future studies should invest enough time 
to familiarize participants with the motor task, especially 
when participants have less motor experience than sport 
students.

Table 5  Score in the testing the limits session by list number and 
condition

The model is a two-level model with 123 observations on level 1 and 
41 individuals on level 2. ** p < 0.001; * p < 0.05

Model 3

Ref.: list 2 Ref.: list 1

Est SE Est SE

Fixed effects
Intercept 4.29** 0.79 8.68** 0.79
List number
list 1 vs list 2 4.39** 0.76 -4.39** 0.76
list 1 vs list 3 -2.41* 0.76
list 2 vs list 3 1.98* 0.76
Condition
Sitting vs Fast squat -2.40* 0.93 -2.40* 0.93
Random effects Var SD Var SD
Intercept 4.97 2.23 4.97 2.23
Residual 11.81 3.44 11.81 3.44
Model fit
AIC 698.2 698.2
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The squatting conditions in the current study represent 
a resistance exercise with a rather low weight, but multiple 
repetitions. Performing between 20 and 40 squats during 
a testing session can be seen as a combination of an aero-
bic and a resistance exercise. Therefore, it is important to 
interpret the results of the current study in light of previous 
resistance exercise but also aerobic exercise studies, and to 
compare both exercise types regarding their effects on epi-
sodic memory.

The studies by Schmidt-Kassow and colleagues (Schmidt-
Kassow et al., 2010, Schmidt-Kassow et al., 2013, Schmidt-
Kassow et al., 2014) used preferred-speed treadmill walking 
or ergometer cycling as acute exercise activities. Their par-
ticipants were more successful in learning new vocabulary 
while moving as opposed to sitting. It is possible that the 
continuous exercises of moderate intensities were better 
suited than our paradigm to elicit positive effects on mem-
ory. A recent study by Amico and Schaefer (2020) neither 
found performance benefits nor decreases in young adults 
who were running while encoding vocabulary (as opposed 
to sitting). However, teenagers profited from the running 
condition, and outperformed their peers who encoded the 
words while standing or while dribbling a basketball.

In the current study, all participants were instructed to 
use the MoL memory strategy. This controls for the use of 
other mnemonic strategies (like rehearsal or elaboration), 
and tends to eliminate floor or ceiling effects in list learning 
paradigms. The MoL requires participants to create men-
tal images and thus involves brain structures that process 
visual input. Although squats are an easy and slow move-
ment, watching the movement of others may have disturbed 
focus and attention on the memory task. To counteract this 
possible influence, future studies should consider using indi-
vidualized testing sessions instead of group sessions.

The Timing of the Exercise Bout

It is possible that acute exercise is more favorable when per-
formed as an active break. Then, exercise would not inter-
fere with cognitive resources required for memory encoding. 
Several studies and reviews conclude that exercise before 
or after memory encoding is most effective in enhancing 
memory function (Chang et al., 2012b; Frith et al., 2017; 
Loprinzi et al., 2019a; Roig et al., 2013). In addition, Roig 
et al. (2016) argue that acute exercise before memory encod-
ing can affect the encoding and consolidation process while 
an acute bout of exercise after memory encoding may only 
affect memory consolidation. More research is needed to 
determine how the timing of the exercise affects each step 
of the memory process, and whether there are differences 
between aerobic and resistance exercises in this respect.

In the current study, we only measured immediate mem-
ory performance. We did not assess memory performance 

after several hours or days. Possibly beneficial effects of 
exercise would have become visible at a later time, after 
the memory formation processes is completed (Roig et al., 
2013). In this context, studies have shown performance gains 
when memory was measured 24 h or 7 days after encoding, 
but not when measured after 1 h (Roig et al., 2012; Skriver 
et al., 2014). However, our results indicate that the encoding 
process was disturbed by the exercise, making it unlikely 
that consolidation takes place for information that could not 
be encoded previously. Nevertheless, assessing memory per-
formances at later points in time is an interesting issue for 
future research.

Exercise Intensity

Another subject worth discussing is the exercise intensity. 
A number of studies that have shown strong effects of acute 
exercise on memory have used much more intense exer-
cise protocols than we did (Roig et al., 2012; Skriver et al., 
2014; Sng et al., 2018; Winter et al., 2007). However, there 
are also studies that have shown positive effects of low to 
medium exercise intensities (Schmidt-Kassow et al., 2010, 
2013, 2014). We do not expect the chosen exercise intensi-
ties to be the reason for the non-beneficial effects found, as 
we can show that heart rates during slow squats (mean = 53% 
 HRmax) and during fast squats (mean = 58%  HRmax) are 
well comparable with heart rates measured in other studies 
that found beneficial effects (Schmidt-Kassow et al., 2010, 
2014). Exercise intensities may need to be interpreted dif-
ferently between aerobic and resistance exercises. However, 
the maximum performance squat assessments show that our 
participants were far from performing at their physical limits 
when doing the squats during encoding. Inadequate execu-
tion of the squat technique may reduce the intensity of the 
exercise and may increase the maximum number of possible 
repetitions before muscle exhaustion. A closer and individu-
alized monitoring of movement quality should therefore be 
implemented in future research with this paradigm.

Neuropsychological Mechanisms

We still do not know much about the acute effects of resist-
ance exercise on memory function. So far most studies 
have focused on aerobic exercise programs (Loprinzi et al., 
2018b). Evidence from animal studies suggests that resist-
ance and aerobic exercise affect memory via distinct molecu-
lar pathways. More specifically, aerobic exercise facilitates 
BDNF related processes, while resistance exercise triggers 
changes in IGF-1 related processes (Cassilhas et al., 2012). 
Future studies should further compare both types of exercise 
and investigate how they affect memory.

Regarding the underlying mechanisms, we expected that 
physiological arousal would increase to a moderate level 
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when doing the squats, which in turn should increase the 
capacity of the cognitive system. In addition, we assumed 
that participants’ optimized level of arousal would improve 
resource allocation, enabling the participants to focus on 
memory encoding (Audiffren et al., 2008; Loprinzi et al., 
2018a; McMorris & Graydon, 2000). Although we found 
that heart rates increased with rising intensity, there was 
no systematic relationship between heart rates and memory 
performance. The current study was limited in measuring 
other relevant neurobiological markers like BDNF or IGF-
1, which would have given more insight into the underlying 
processes. However, results from earlier studies indicate that 
BDNF and IGF-1 show larger effects after high intensity 
exercise (Knaepen et al., 2010; Skriver et al., 2014; Winter 
et al., 2007), while studies with lower intensity levels did not 
find correlations between BDNF and memory performance 
(Schmidt-Kassow et al., 2013, 2014). Interesting candidate 
substances that may mediate acute exercise effects on mem-
ory encoding are the neurotransmitters norepinephrine (NE) 
and dopamine (DA), due to their characteristic of regulat-
ing attention and filtering incoming signals (Finlay et al., 
1995). In addition, it would have been interesting to analyze 
cortisol levels during the MoL task, as research has shown 
that increased levels of cortisol are associated with improve-
ments in emotional memory (Buchanan & Lovallo, 2001; 
Kuhlmann & Wolf, 2006; Preuß et al., 2009). Participants 
in the MoL are instructed to use emotions and other sensory 
impressions when creating their mental image. Therefore, 
cortisol would be an interesting marker to investigate during 
the MoL task.

Besides the neurobiological substrates involved in the 
memory process, it is still unclear which physiological 
structures and signal pathways are affected by acute exer-
cise. A recent review by Loprinzi et al (2018a) has described 
various reaction chains that can explain exercise-induced 
effects on LTP. We can only speculate about the underlying 
processes in the current study. One of them may involve 
action potentials induced by the contraction of the muscle 
spindles, which are transmitted via nerve pathways until the 
locus coeruleus (LC) is activated, affecting the hippocam-
pus and prefrontal cortex. Future studies should be aware 
of body structures involved in the memory process (e.g. the 
vagus nerve, the LC, the NTS). We suggest to systematically 
evaluate how physical exercise may affect them.

Conclusion

In conclusion, the current study used a within-subjects 
design to investigate the influence of acute resistance exer-
cise (fast and slow squats) on a memory task. Participants 
were sport students who had been instructed in a memory 
strategy to encode word lists. Contrary to our predictions, 

performing squats led to decreases instead of increases in 
performance, compared to encoding while sitting. Differ-
ences in memory performance between the three conditions 
decreased with increasing practice of the motor tasks. We 
conclude that the current study created a dual-task situation, 
leading to costs. These costs can be alleviated with increas-
ing practice of the motor task, and with increasing levels of 
experience in the temporal coupling of the MoL stimuli and 
the squats.
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