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The majority of lung cancer (LC) patients are diagnosed at a late stage,

and survival is poor. Circulating RNA molecules are known to have a role

in cancer; however, their involvement before diagnosis remains an open

question. In this study, we investigated circulating RNA dynamics in predi-

agnostic LC samples, focusing on smokers, to identify if and when disease-

related signals can be detected in serum. We sequenced small RNAs in 542

serum LC samples donated up to 10 years before diagnosis and 519

matched cancer-free controls coming from 905 individuals in the Janus

Serum Bank. This sample size provided sufficient statistical power to inde-

pendently analyze time to diagnosis, stage, and histology. The results

showed dynamic changes in differentially expressed circulating RNAs

specific to LC histology and stage. The greatest number of differentially

expressed RNAs was identified around 7 years before diagnosis for early-

stage LC and 1–4 years prior to diagnosis for locally advanced and

advanced-stage LC, regardless of LC histology. Furthermore, NSCLC and

SCLC histologies have distinct prediagnostic signals. The majority of dif-

ferentially expressed RNAs were associated with cancer-related pathways.

The dynamic RNA signals pinpointed different phases of tumor develop-

ment over time. Stage-specific RNA profiles may be associated with tumor

aggressiveness. Our results improve the molecular understanding of car-

cinogenesis. They indicate substantial opportunity for screening and

improved treatment and will guide further research on early detection of

LC. However, the dynamic nature of the RNA signals also suggests chal-

lenges for prediagnostic biomarker discovery.
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1. Introduction

Lung cancer (LC) is the leading cause of cancer deaths

worldwide (National Lung Screening Trial Research

Team et al., 2011b; Urman and Hosgood, 2016). There

are two major histologies of LC: non-small-cell lung

cancer (NSCLC), representing approximately 85% of

cases with adenocarcinomas (ADCs) and squamous cell

carcinomas as the main histological subtypes (Chen

et al., 2014; Gridelli et al., 2015; Herbst et al., 2008),

and small-cell lung cancer (SCLC), constituting about

15% of cases (Gazdar et al., 2017; Herbst et al., 2008).

Despite improvements in therapies, LC survival is poor.

Survival increases with early-stage diagnosis (Brustugun

et al., 2018; National Lung Screening Trial Research

Team et al., 2011b), but only 25% of patients are diag-

nosed at this stage (National Lung Screening Trial

Research Team et al., 2011b). Screening methods such

as low-dose computed tomography (CT) can be effec-

tive for early detection (National Lung Screening Trial

Research Team et al., 2011a) and reduce LC mortality

in high-risk groups (WCLC, 2018). However, it has a

high false-positive rate (Gopal et al., 2010), and annual

CT scans cause harmful radiation exposure (Bach et al.,

2012). High-risk groups also need to be better defined

to increase screening effectiveness (Osarogiagbon et al.,

2019). Therefore, there is a pressing need to understand

the molecular changes occurring prior to disease to be

able to develop noninvasive biomarkers of LC.

Bodily fluids, including serum, contain a rich reper-

toire of circulating RNA molecules (Fehlmann et al.,

2018; Fritz et al., 2016; Umu et al., 2018) that originate

from nonmalignant and malignant cells. RNAs play a

central role in cellular processes (Fritz et al., 2016) and

in tumor metastasis (Steenbeek et al., 2018) and have

been proposed as cancer biomarkers (Inamura and Ishi-

kawa, 2016; Zaporozhchenko et al., 2018). Among

them, microRNAs (miRNAs) have been extensively

studied as LC biomarkers (Chen et al., 2012; Inamura

and Ishikawa, 2016; Keller et al., 2011; Leidinger, Kel-

ler, and Meese, 2012; Wang et al., 2016). Other RNA

types, such as Piwi-interacting RNAs (piRNAs), iso-

miRs, tRNAs, small nucleolar RNAs (snoRNAs),

mRNAs, and long noncoding RNAs (lncRNAs), are

also found in bodily fluids (Fritz et al., 2016; Kim,

Abdelmohsen, Mustapic, Kapogiannis, and Gorospe,

2017; Umu et al., 2018), but are not as well studied, and

their functions in circulation are mostly unknown.

The biomarker promise of miRNAs has remained

largely unfulfilled (Cho, 2011; Wang et al., 2016;

Witwer, 2015). For example, from 32 studies, 143

breast cancer-related miRNA biomarkers were

reported. Of these, 100 were replicated only once, 25

had discordant expression direction, and the remainder

had low expression fold change (Witwer, 2015). One

of the reasons why very few RNA biomarkers are in

clinical use is because of the lack of reproducibility

across studies due to differences between patient

groups, sample materials, and methodologies (Keller

and Meese, 2016; Wang et al., 2016; Zaporozhchenko

et al., 2018). Moreover, traits like age, sex, smoking,

body mass, and physical activity are associated with

RNA expression and will confound the discovery and

use of RNAs as cancer biomarkers (Keller and Meese,

2016; Rounge et al., 2018).

Another reason why RNAs are not extensively used as

LC biomarkers is our limited understanding of prediag-

nostic molecular dynamics. Disease progression causes

temporal variation in RNA expression driven by cellular

mechanisms such as genetic and epigenetic changes,

angiogenesis, cellular energy consumptions, immune

activation, avoidance and growth, metastasis, and cell

death (Gutschner and Diederichs, 2012; Peng and Croce,

2016; Pichler and Calin, 2015). As a consequence, predi-

agnostic RNA levels might be histology-specific, highly

dynamic, and nonlinear (Holden et al., 2017; Lund et al.,

2016) as opposed to gradual. Such dynamic patterns

require large sample sizes, a long prediagnostic time win-

dow, and long-term follow-up to capture. Understand-

ing circulating RNA dynamics will improve our

knowledge of the molecular basis of cancer, which in

turn can improve cancer diagnosis, treatment, and pre-

vention. However, no previous LC studies have investi-

gated prediagnostic RNA expression dynamics in depth.

In this study, we measured RNA levels in 542 serum

samples from LC patients collected up to 10 years

before their diagnosis and 519 frequency-matched can-

cer-free controls from healthy donors (Fig. 1). The

samples were classified according to histology, stage,

and time to diagnosis (Fig. S1). We identified highly

dynamic prediagnostic RNA levels and enriched func-

tional pathways that clearly signal cancer progression

many years before the diagnosis. Our focus is to inves-

tigate the dynamic nature of prediagnostic RNA levels

rather than discovering LC biomarkers.

2. Materials and methods

2.1. Study design and participants

The Janus Serum Bank (JSB) cohort is a population-

based cancer research biobank containing serum sam-

ples from 318 628 Norwegians (Hjerkind et al., 2017;

Langseth et al., 2017). For inclusion of samples to the

JanusRNA study, we linked the JSB cohort to the
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Cancer Registry of Norway (Larsen et al., 2009). We

sequenced 542 prediagnostic serum samples from 391

LC patients donated up to 10 years before their diag-

nosis (Fig. S1). As controls, we sequenced 519 serum

samples from 518 donors who were cancer-free (except

from nonmelanoma skin cancer) at least 10 years after

sample collection. LC samples and controls were fre-

quency-matched on sex, age at donation, and blood

donor group (BDg). BDg is a technical cofounder

combining the effect of storage time and sample treat-

ment at donation (Rounge et al., 2018). LC samples

were stratified based on matching criteria. We ran-

domly selected controls such that the case–control
ratio was the same for each stratum.

The JanusRNA study contains a rich set of clinical

and epidemiological data enabling analyses of specific

subsets of LC. Clinical data at the time of diagnosis

were classified as NSCLC, SCLC, and ‘others’ with

less defined or multiple histologies. The LC samples

were classified using the TNM system into four stages:

early (verified localized stage—stage I), locally

advanced (clinically or pathologically verified regional

stage—stages II and III), advanced or metastatic (clini-

cally or pathologically verified distant stage—stage

IV), and unknown (unknown stage, or cases with

insufficient information) (Cancer Registry of Norway,

2018) (Table 1 and Fig. S1). LC stage at the time of

diagnosis does not necessarily reflect the tumor stage

at the time of sample donation. We used stage with

the assumption that rapidly growing tumors are more

likely diagnosed at a late stage and slower growing

tumors can be diagnosed at an early stage.

Smoking is categorized as current, former, or never

smokers (Hjerkind et al., 2017). Almost all cases with

smoking status available were current or former smok-

ers. For phase 1, all cases and controls were included

Fig. 1. Each phase adds another aspect to our design which confirms time, stage, and histology dependence of prediagnostic signals. This

chart is summarizing the different phases of the analyses with sample sizes and methodologies. In phase 1, we used an all-vs-all approach

that contains more heterogeneity in the analysis. This resulted in a weak signal (Fig. S4). In phases 2 and 3, all stages were represented

with identical number of samples in each time window to balance statistical power and contribution of each stage into the signals. In phase

4, we used a sliding window approach. Stages and histologies were analyzed separately to increase homogeneity in the analysis. For more

information about included and excluded sample numbers, see Fig. S2
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regardless of smoking status. For phases 2, 3, and 4 (see

Section 2.4 below), 11 LC samples that reported to be

never smokers or had missing data were excluded

(Fig. S2). We included only cases and controls that were

former or current smokers in these phases, resulting in a

total of 531 LC samples and 189 controls.

2.2. Serum RNA profiling

RNA was extracted from 400 µL serum using phenol–
chloroform and miRNeasy Serum/Plasma kit (Qiagen,

Valencia, CA, USA). Libraries were prepared with the

NEBNext Small RNA kit (NEB, Ipswich, MA, USA)

and sequenced on a HiSeq 2500 (Illumina, San Diego,

CA, USA) as previously described (Umu et al., 2018).

RNA profiles from the JSB healthy donor samples

show high RNA diversity, including sncRNAs and

also fragments of longer RNAs (lncRNAs and

mRNAs) (Rounge et al., 2015; Umu et al., 2018).

2.3. Bioinformatics, case–control matching, and

differential expression analyses

We compiled a comprehensive annotation set from

miRBase (v22) (Kozomara and Griffiths-Jones, 2014)

for miRNAs, piRBase for piRNAs (Zhang et al., 2014),

and GENCODE (Harrow et al., 2012) for other RNAs.

This dataset included 10 circulating RNA classes,

miRNA, miRNA hairpin, isomiR, piRNA, tRNA, tRF,

snoRNA, miscRNA, lncRNA, and mRNA. For the

RNA sequencing (RNA-seq) data, we filtered out

RNAs with fewer than 5 reads in less than 20% of the

samples. We used MINTmap for tRF (Loher et al.,

2017) and SeqBuster for isomiR profiling (Pantano

et al., 2010). Other bioinformatic details are available in

our previous study (Umu et al., 2018). The optmatch R

package (github.com/markmfredrickson/optmatch) iden-

tified LC samples and matched controls for analyses.

This tool enabled us to select optimal sets of control sam-

ples when there are enough controls to select from

(Fig. S3 shows an age matching example).

The DESEQ2 R package (v1.18.1) (Love et al., 2014) was

used for the differential expression analyses with default

settings. We performed KEGG pathway analyses for

mRNAs, miRNA targets, and isomiR targets. We used

R function kegga from the limma package. The miRNA

and isomiR targets were extracted from MIRDB (v5.0) pre-

dictions (Wong and Wang, 2015) (score cutoff > 60).

2.4. Analysis design

We analyzed RNA expression for all samples (phase

1), dependent on prediagnostic time (phase 2), stage

(phase 3), and histology (phase 4) (Fig. 1 and Fig. S2).

Prediagnostic time was divided into seven discrete

~ 17-month-long time intervals in phases 2 and 3. The

intervals were optimized for statistical power and reso-

lution of time prior to diagnosis. To make the time

windows comparable with respect to statistical power,

each window has the same number of LC samples and

controls. They also have similar proportions of stages

and histology when possible.

Table 1. Summary of sample and patient characteristics.

Control

Stage

Early (localized) Locally advanced (regional) Advanced (distant) Unknown

Histology

NSCLC – 84 101 171 11

SCLC – 9 35 76 4

Others – 10 5 32 4

Sex

Male 350 78 104 180 12

Female 169 25 37 99 7

Age at donation, years

Mean (SD) 49.9 (11.2) 54.3 (7.33) 55.0 (9.04) 53.4 (8.26) 51.8 (6.53)

Smoking

Yesa/No 189/330 102/1 139/2 271/8 19/0

Prediagnostic sampling time, years

Mean (SD) – 5.52 (2.81) 5.63 (2.78) 5.89 (2.66) 6.75 (2.18)

Age at diagnosis, years

Mean (SD) – 59.8 (7.67) 60.6 (8.84) 59.3 (8.35) 58.6 (6.05)

Total samples 519 103 141 279 19

Total individuals 905

aIncluding former and current smokers.
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For phase 1, RNA levels were analyzed using age,

sex, smoking, and BDg as confounders in the DESeq2

model. For this phase only, we assigned smoking status

‘unknown’ to samples with missing smoking informa-

tion since DESeq2 does not accept samples with missing

data (NAs). For the remaining phases, all included cases

and controls were former or current smokers. For phase

2, we selected 27 LC samples matched on stages and

135 matched controls per time window.

For phase 3, we selected 9 LC samples and 45

matched controls for early LC, 14 LC samples and 70

matched controls for locally advanced LC, and 18 LC

samples and 90 matched controls for advanced-stage

LC. For replication analysis, we randomly resampled

phase 3 samples 20 times without replacement for each

time window to bootstrap the variance of the signal.

In each iteration, we randomly selected new LC sam-

ples and rematched new controls. To further test the

robustness of the signals, we chose 2-year time inter-

vals instead of 17 months. This changes sample selec-

tion in each time frame substantially.

For phase 4, we used a sliding window approach

to analyze prediagnostic RNA expression dynamics

dependent on stage and histology. The sliding win-

dow approach is agnostic to critical time windows

since it creates a continuous RNA signal trajectory.

We chose 17-month-long windows and 2.5-month-

long step size to provide the smallest possible window

size while maintaining statistical power. Resampling

for each window is analogous to the replication in

phase 3. We did not have enough samples to analyze

early and locally advanced SCLC and ADC sepa-

rately (Fig. 1).

2.5. Ethics approval and consent

This study was approved by the Norwegian Regional

Committee for medical and health research ethics

(REC no: 2016/1290) and was based on a broad con-

sent from participants in the Janus cohort. The work

has been carried out in compliance with the standards

set by the Declaration of Helsinki.

3. Results

3.1. Small differences in RNA levels between LC

cases and controls

By using all LC samples (n = 542) vs controls

(n = 519) (Fig. 1), maximizing statistical power and

also LC sample heterogeneity, we identified 88 differ-

entially expressed RNAs (Fig. S4). The majority of

these were tRNAs (43), followed by tRNA-derived

fragments (tRFs) (23), although some of these were

likely overlapping or duplicated genes. The maximum

effect size was low (�0.85 log2FC, TMED2), suggest-

ing a weak overall signal. We did not detect significant

enrichment of known pathways.

3.2. Prediagnostic RNA dynamics unveil strong

time-dependent signals

Next, by separating LC samples according to prediag-

nostic time (still with high LC sample heterogeneity

due to stage and histology), we identified 1400 differ-

entially expressed RNAs in 7 time intervals with 27

LC samples and 135 controls in each interval (Fig. 1).

The highest represented RNA types were piRNAs

(387), tRFs (319), tRNAs (255), mRNAs (189), and

isomiRs (130). We detected differentially expressed

RNAs in every time interval with a gradually increas-

ing numbers of RNAs approaching a peak at 5 years,

followed by a steady decline until diagnosis (Fig. 2A).

A total of 289 RNAs were detected in more than one

time interval. For example, tRF-20-I8W47W1R, tRF-

21-I8W47W1R0, tRF-22-I8W47W1RN, piR-hsa-12790,

and piR-hsa-2106 were detected in 6 time intervals

spanning approximately 9 years. tRF-21-I8W47W1R0

also had the strongest effect size, �3.71 log2FC

(Table S1).

There are 84 significantly enriched pathways in total

in these time windows, with the highest number at 3-

4 years prior to diagnosis. Cancer-related pathways,

such as MAPK, RAS, and Pathways in cancer, were

among the most significantly enriched (Fig. S5 and

Table S2). We identified enriched pathways 8–10 years

before diagnosis including Endocytosis, Wnt signaling,

and Adherens junction pathway, important in cell-to-

cell communication. This time period also contained

cancer-related pathways like Adrenergic signaling and

Renal cell carcinoma.

We confirmed the robustness of dynamic RNA sig-

nals in this phase by selecting 2-year time windows.

This substantially changes sample selection in each

time window, but the results showed that the dynamic

signal is robust (Fig. S6, ‘All’ panels).

3.3. Prediagnostic RNA dynamics in patients

with early, locally advanced, and advanced LC

show stage-specific signals

We next separated LC samples in each window by

stage to reduce heterogeneity of LC. For early

stage LC, we identified 229 RNAs, using 9 LC samples

and 45 controls in each interval (Fig. 1). The highest
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represented RNA types were tRFs (61), piRNAs (46),

and mRNAs (49). The strongest signals were observed

in two time intervals spanning 7–10 years prior to

diagnosis; however, these intervals did not share any

RNAs. Four RNAs were detected in more than one

time interval of early-stage analysis. Among these,

tRF-21-I8W47W1R0 showed the strongest effect size,

�3.71 log2FC, and was downregulated in two intervals

(Fig. 2B and Table S1).

There were 12 significantly enriched pathways for

early-stage LC time intervals, and 10 of these were

significant 7–10 years before diagnosis. Axon guidance,

Cell adhesion molecules, FoxO signaling, PI3K-Akt,

and Transcriptional misregulation in cancer were

among the most significant pathways. The signal 8–
10 years before diagnosis also included Endocytosis

and Transcriptional misregulation pathways.

For locally advanced stage LC, we identified 699

RNAs, using 14 LC samples and 70 controls in each

interval. The most represented RNA types were tRFs

(214), isomiRs (143), and mRNAs (94). The strongest

differential expression signal was detected between 3
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Fig. 2. Prediagnostic RNA dynamics in patients with early, locally advanced, and advanced LC show stage- and time-dependent signals. The

volcano plots show the differential expression analyses for each time period of phases 2 and 3. The bar plots on the right side summarize

the classes of differentially expressed RNAs. The gray lines on the volcano plots show the significance cutoff (P-adjusted < 0.05), and each

dot represents a different RNA (green, upregulated; red, downregulated), while the x-axes show the effect sizes and y-axes show the

significance. (A) By combining the samples from all three stages (phase 2), we detected a strong peak at the interval 4.3–5.6 years. There

are also relatively weaker signals in other intervals. (B) The early-stage LC differential expression analysis results show two peaks in the

time periods 7.1–8.4 and 8.5–10 years. We used 9 LC samples and 45 matched controls per volcano plot for this stage. (C) The locally
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at the time period 0–1.4 years. We utilized 18 cases and 90 matched controls for this stage.
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and 4 years. Forty-six RNAs were detected in more

than one time interval. RAB21 mRNA produced the

strongest effect size (log2FC �3.43), significantly

downregulated 6–7 years before diagnosis (Fig. 2C

and Table S1).

We detected 116 significantly enriched pathways for

locally advanced LC. Almost all pathways, 112, were

enriched in the time frame 3–4 years before diagnosis.

The most significant pathways included Axon guidance,

MAPK, Pathways in cancer, mTOR signaling, ErbB

signaling, RAS, PI3K-Akt, and p53 signaling pathway.

For advanced stage LC, we identified 936 RNAs,

using 18 LC samples and 90 controls in each interval.

The highest represented RNA types were mRNAs

(219), piRNAs (211), tRNAs (199), and tRFs (193).

The strongest signals were observed in the time periods

1–3 and 3–4 years before diagnosis, and these intervals

shared 104 RNAs. A total of 205 RNAs were found in

more than one interval. An isomiR (of hsa-miR-486-

3p) had the largest effect size and was significantly

upregulated 3–4 years before diagnosis (Fig. 2D and

Table S1).

We found 101 enriched pathways for advanced-stage

LC, 47 between 1 and 3 years, and 45 between 3 and

4 years. The most significant pathways were MAPK,

Axon guidance, Proteoglycans in cancer, RAS, ErbB

signaling, Focal adhesion, and p53 signaling pathway.

We assessed consistency of the LC signal and iden-

tified 236 differentially expressed RNAs in at least

two stages at any time interval. Twenty-seven of them

were detected in all three stages, consisting mostly of

tRFs (10) and mRNAs (8). A similar trend was

observed between locally advanced and advanced

stages for 1–4 years before diagnosis. A total of 112

RNAs were shared in this time interval, consisting

mostly of tRNAs (36), tRFs (27), and mRNAs (23),

and also 66 pathways. Among these pathways, we

identified NSCLC pathway, SCLC pathway, Pathways

in cancer, Proteoglycans in cancer, Choline metabolism

in cancer, Central carbon metabolism in cancer, p53

signaling, MAPK, mTOR signaling, PI3K-Akt, etc. A

complete list of the enriched pathways and their sig-

nificance is in the supplementary material (Fig. S5

and Table S2).

The replication using bootstrapping (Fig. S7) and 2-

year time intervals confirmed the robustness of

dynamic and stage-specific signals (Fig. S6, stage pan-

els). However, we also identified minor variance in the

bootstrapping results. Early stage showed overall lower

variance, and the strongest signal around 7 years was

consistent. Locally advanced and advanced stages pro-

duced some variance of the signals. The strongest sig-

nals were consistent for both stages, while we observed

a signal around 5 years before diagnosis for advanced

stage.

3.4. Prediagnostic RNA dynamics in NSCLC and

SCLC by stage reveal histology-specific signals

Lastly, we further reduced LC sample heterogeneity by

including histology information. For early NSCLC, we

identified two strong peaks around 4 and 7 years

before diagnosis using a sliding window approach

(Fig. 1); however, the composition of these peaks was

different (Fig. 3). The peak around 7 years consisted

mostly of isomiRs, tRFs, and miRNAs, whereas the

peak around 4 years consisted mostly of piRNAs,

tRFs, isomiRs, and miRNAs. For locally advanced

NSCLC, we identified a strong peak around 2.5 years

before diagnosis that consisted mostly of isomiRs,

mRNAs, piRNAs, tRFs, and miRNAs. Another peak

was detected around 7 years before diagnosis that con-

sisted mostly of mRNAs, tRFs, isomiRs, and piRNAs

(Fig. 3).

For advanced NSCLC, we detected two signals

spanning years 0–3 and years 5–9 before diagnosis.

These signals were similar in RNA composition, con-

sisting mostly of tRFs, piRNAs, mRNAs, and iso-

miRs. However, the year 5–9 signal had more

differentially expressed miscellaneous RNAs (mis-

cRNAs) (Fig. 3). For advanced SCLC, we identified

similar signal dynamics as advanced NSCLC. Two sig-

nals covered years 0–3 and years 4–8 before diagnosis.

The year 0–3 signal contained mostly tRFs, tRNAs,

piRNAs, and mRNAs, while the year 4–8 signal con-

tained mostly isomiRs, mRNAs, and miRNAs

(Fig. 3). miRNA-hairpin structures were also detected

in the year 4–8 signal, which suggested a strong

miRNA-related RNA differential expression. For

advanced ADC, we also detected parallel signals as

advanced-NSCLC and advanced-SCLC results. We

found signals between years 0 and 4 containing mostly

isomiRs, tRFs, and piRNAs, and years between 5 and

9 containing mostly tRFs, tRNAs, and piRNAs

(Fig. 3).

4. Discussion

Our results clearly showed the dynamic nature of

serum RNA signals up to 10 years before LC diagno-

sis. To the best of our knowledge, our study is the lar-

gest available to date with up to 10 years of follow-up

time investigating the major RNA classes in serum.

This dataset has enabled us to investigate in depth

dynamic changes in circulating RNA expression and

enriched pathways with time, stage, and histology.
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It is known that RNA expression levels are dysregu-

lated at the time of a cancer diagnosis. However, there

are very few studies investigating prediagnostic blood

samples from cancer patients focusing on potential

biomarkers. Keller et al., based on a much smaller

sample size from the same cohort and measuring miR-

NAs with array technology, found the strongest LC

signal close to diagnosis. However, this study lacked

information on stage, histology, and controls within

the same cohort (Keller et al., 2011). Other studies

have shown the dynamics of protein coding mRNA

levels in prediagnostic breast cancer samples, but the

emphasis was on statistical methods (Holden et al.,

2017; Lund et al., 2016). In phase 1, we used all avail-

able samples without taking time, stage, and histology

into account. This analysis identified a few differen-

tially expressed RNAs with reasonable FCs, and no

enriched pathways. Taking prediagnostic time into

account (phase 2) substantially increased the number

of differentially expressed RNAs indicating a strong

time-to-diagnosis dependency. The dynamic prediag-

nostic RNA signals that we see probably indicate the

timing of the hallmarks of cancer (Hanahan and Wein-

berg, 2000) and periods of carcinogenesis, dormancy,
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and regression (Endo and Inoue, 2019; Massion and

Carbone, 2003; Weis and Cheresh, 2013). Supporting

this interpretation, the cancer-related pathways derived

from the dynamic RNA signals imply cancer hall-

marks. More homogeneous LC sample selection by

including stage (phase 3) and histology (phase 4) fur-

ther increased the sensitivity and specificity of the pre-

diagnostic signals. This indicates that regulation of

specific pathways differs with histologies and stages.

The clinical implications of this are that it may be pos-

sible to detect cancer early with a noninvasive screen-

ing method and improve patient survival. In addition,

potential biomarkers may also help in choosing the

best treatment options since the signals are specific

to stage and histology which can indicate tumor

aggressiveness.

The stage-dependent pathway analyses (of phase 3)

suggest that the functional signals were mostly related

to cell-to-cell communication (e.g., Endocytosis) and

cancer dormancy (e.g., TGF-beta signaling) in early-

stage LC and cell proliferation in advanced LC stage

(e.g. EGFR) (Fig. S5 and Table S2). We found specific

enrichment of signaling pathways like EGFR, MAPK,

RAS, PI3K-Akt, and p53 signaling. This is striking

since (a) most of the identified pathways were cancer-

related (Table 2), (b) the pathways were identified

based on RNAs from blood where only a small frac-

tion may originate from tumor tissue or tumor

microenvironment, (c) there were clear cancer signals

at multiple time points up to 10 years prior to diagno-

sis, and (d) some enriched pathways suggest transition

between stages.

In early stage LC, the enriched pathways at 7–
10 years before diagnosis included PI3K-Akt signaling.

Cancer cells secrete factors that inhibit PI3K-Akt dur-

ing serum deprivation (Jo et al., 2008). We found that

this pathway combined with TGF-beta signaling, previ-

ously linked to dormancy (Klein, 2011; Weis and

Cheresh, 2013), suggests an early phase of LC carcino-

genesis. Many tRFs and piRNAs were also differen-

tially expressed around 7 years prior to diagnosis;

however, their roles are unknown.

In locally advanced stage LC, we identified path-

ways mostly at 3–4 years before diagnosis. The stage-

specific pathways included VEGF signaling and TNF

signaling. VEGF is related to angiogenesis (Herbst

et al., 2008), and tumor cells secrete VEGF to ensure

adequate blood supply (Gridelli et al., 2015). TNF reg-

ulates cell proliferation in LC (Shang et al., 2017), and

it is an important therapeutic target (Ray et al., 2010).

There was a strong RNA signal around 7 years before

diagnosis of locally advanced LC consisting of tRFs.

They might point to an important event in LC pro-

gression even if their functional roles are unknown.

In advanced-stage LC, the predominant signal iden-

tified 1–5 years prior to diagnosis was similar to the

Table 2. Top 10 significantly enriched pathways in patients with early, locally advanced, and advanced-stage LC based on phase 3. A

detailed list of all significantly enriched pathways is in the supplementary material.

Pathway Stage (prediagnostic time) Adjusted P-values

Axon guidance Early (1.4–2.8) 2.83e-3

Locally advanced (2.8–4.2) 2.69e-10

Advanced (1.4–2.8), (2.8–4.2) 6.03e-4, 6.62e-7

MAPK signaling pathway Locally advanced (2.8–4.2) 4.46e-10

Advanced (1.4–2.8), (2.8–4.2) 8.4e-6, 6.62e-7

Pathways in cancer Locally advanced (2.8–4.2) 5.57e-8

Advanced (1.4–2.8), (2.8–4.2) 6.14e-3, 6.16e-3

Endocytosis Early (8.4–10) 0.03

Locally advanced (2.8–4.2) 1.90e-7

Advanced (1.4–2.8), (2.8–4.2) 0.0379, 6.16e-3

Neurotrophin signaling pathway Locally advanced (2.8–4.2) 1.17e-6

Advanced (1.4–2.8), (2.8–4.2) 0.0011, 0.018

HPV infection Locally advanced (2.8–4.2) 1.27e-6

Advanced (2.8–4.2) 0.012

Ubiquitin mediated proteolysis Locally advanced (2.8–4.2) 2.57e-6

Advanced (1.4–2.8) 0.013

mTOR signaling pathway Locally advanced (2.8–4.2) 2.67e-6

Advanced (1.4–2.8) 8.3e-4

ErbB signaling pathway Locally advanced (2.8–4.2) 7.03e-6

Advanced (1.4–2.8), (2.8–4.2), (4.2–5.6) 0.29, 0.00129.94e-5

Ras signaling pathway Locally advanced (2.8–4.2) 7.03e-6

Advanced (1.4–2.8), (2.8–4.2) 0.013, 7.97e-5
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above-mentioned locally advanced signal. However,

Hedgehog and GnRH signaling pathways were specific

to advanced LC. The Hedgehog pathway has an essen-

tial role in cell proliferation, survival, and differentia-

tion, and aberrant regulation was linked to cancer

(Yao et al., 2018), including LC (Yuan et al., 2007). It

is regulated by various factors, including miRNAs and

lncRNAs (Yao et al., 2018). GnRH signaling is linked

to LC progression, and GnRH agonists have strong

antimetastatic, antiproliferative, and anti-angiogenic

activity (Lu et al., 2015). Therefore, enrichment of

these pathways may suggest strong metastatic activity.

Our results clearly showed that RNA signaling dif-

fers with staging at diagnosis even though the samples

were collected prior to diagnosis. This indicates that

stage at diagnosis may be used as a proxy for aggres-

siveness of tumor development. Early-stage LC diag-

nosis may indicate slower progression, while locally

advanced-LC and advanced-stage-LC diagnosis may

have a faster cancer progression. Thus, the prediagnos-

tic RNA signal may indicate different disease trajecto-

ries. The bootstrapping and modifying the time

intervals showed consistent RNA signals (Figs S6 and

S7). The variation observed is likely a result of hetero-

geneous LC samples in this phase since we combined

all histologies, suggesting that the histologies have a

major effect on prediagnostic signals.

The fixed time interval (phase 3) or sliding window

(phase 4) approaches select different samples for analy-

sis but confirm the highly dynamic signals. All stage-

and histology-specific analyses showed at least two

critical time windows (peaks) where LC differs from

controls, and these were usually followed by time peri-

ods with no detectable signals. Peaks and troughs

might potentially indicate tumor progression and dor-

mancy.

The phase 4 results also contained RNA molecules

that can be linked to early and advanced carcinogene-

sis that are specific to histologies (Fig. 3). For exam-

ple, tRF-21-I8W47W1R0 was strongly downregulated

(�4.05 log2FC) around 7 years before diagnosis in

early-NSCLC samples and 2 years prior to diagnosis

in locally advanced- and advanced-NSCLC samples.

Another notable example is hsa-miR-483-5p, which

was previously found to promote metastasis of ADC

(Song et al., 2014). It was differentially expressed in

advanced ADC around 7 years prior to diagnosis.

Lastly, hsa-miR-184, also identified in phase 1, was

upregulated in advanced NSCLC around 2 years

before diagnosis and advanced ADC. hsa-miR-184

was previously proposed as a prognostic biomarker

for SCLC (Zhou et al., 2015), and it also downregu-

lates MYC mRNA (Swier et al., 2019).

Our study has multiple strengths. First, we selected

case and matched control samples from a large cohort

of serum samples with complete long-term follow-up,

and we have detailed information on LC histology and

stage. Second, extensive smoking information was

available from health surveys enabling us to include

only current or former smokers, thus reducing smok-

ing-related confounding from the LC signal. Third, we

included samples at multiple time points prior to diag-

nosis. Fourth, the deep sequencing data contained all

major RNA classes identified in serum. Finally, we

included biological and technical confounders affecting

circulating RNA levels in our dataset (Rounge et al.,

2018; Umu et al., 2018).

However, there are some potential limitations. First,

we lack completeness in the survey data, specifically from

Red Cross blood donors (~ 10% of our samples). In

analyses, when confounder information is critical (phases

2, 3, and 4), samples with missing information were

excluded (Fig. 1). Second, we have to some degree

included samples from the same individuals. However,

since they hardly appeared at the same time windows, we

considered the effect to be negligible. Third, we adjusted

P-values for multiple testing in each time window, but we

did not take into account the overall number of tests.

Fourth, some analyses were not done due to insufficient

number of samples (Fig. 3), which may have also caused

imperfect matching of controls for some analyses

(Fig. S3). This can also partly explain some of the vari-

ance. Fifth, long-term storage may degrade some unsta-

ble RNA molecules, but our previous study suggests that

this effect is limited (Umu et al., 2018). Finally, pathway

analyses only included miRNA and isomiR predicted

targets and mRNA fragments, since for other RNA

classes, there are no functional predictions available.

5. Conclusion

This study clearly shows that LC signals can be

detected in serum RNA up to 10 years prior to diag-

nosis. The highly dynamic signals are time-to-diagno-

sis-, stage-, and histology-dependent and indicate

disruption of cancer-related pathways detectable in cir-

culation. This is very promising for LC biomarker dis-

covery and indicates a substantial opportunity for

screening and improved treatment.

Acknowledgements

We would like to acknowledge Cecilie Bucher-Johan-

nessen, Marianne Lauritzen, and Magnus Leithaug for

performing laboratory and coordination tasks. We

acknowledge the Norwegian Institute of Public Health

244 Molecular Oncology 14 (2020) 235–247 ª 2019 The Authors. Published by FEBS Press and John Wiley & Sons Ltd

Prediagnostic serum RNA signal in lung carcinogenesis S. U. Umu et al.



for access to survey data in this study. The sequencing

service was provided by the Norwegian Sequencing

Centre (www.sequencing.uio.no), a national technology

platform hosted by Oslo University Hospital and the

University of Oslo supported by the Research Council

of Norway and the Southeastern Regional Health

Authority. This work was supported by the Research

Council of Norway’s program ‘Human Biobanks and

Health Data’ [229621/H10, 248791/H10].

Conflict of interest

The authors declare no conflict of interest.

Data accessibility

The datasets generated and analyzed during the cur-

rent study are not publicly available since individual

privacy could be compromised, but are available from

the corresponding author on reasonable request and

with appropriate approvals.

Author contributions

HL and TBR devised the project and gathered the

samples. RL and TBR designed and coordinated labo-

ratory work and sequencing. SUU performed analyses

and drafted the manuscript. SUU, TBR, RL, and HL

wrote the article in consultation with AK, �AH, and

EM. All authors provided critical feedback and helped

to shape the article.

References

Bach PB, Mirkin JN, Oliver TK, Azzoli CG, Berry DA,

Brawley OW, Byers T, Colditz GA, Gould MK, Jett

JR et al. (2012) Benefits and harms of CT screening for

lung cancer: a systematic review. JAMA 307,

2418–2429.
Brustugun OT, Grønberg BH, Fjellbirkeland L,

Helbekkmo N, Aanerud M, Grimsrud TK, Helland �A,

Møller B, Nilssen Y, Strand TE et al. (2018)

Substantial nation-wide improvement in lung cancer

relative survival in Norway from 2000 to 2016. Lung

Cancer 122, 138–145.
Cancer Registry of Norway (2018) Cancer in Norway 2017

– Cancer Incidence, Mortality, Survival and Prevalence

in Norway. Cancer Registry of Norway, Oslo.

Chen X, Hu Z, Wang W, Ba Y, Ma L, Zhang C, Wang C,

Ren Z, Zhao Y, Wu S et al. (2012) Identification of

ten serum microRNAs from a genome-wide serum

microRNA expression profile as novel noninvasive

biomarkers for nonsmall cell lung cancer diagnosis. Int

J Cancer 130, 1620–1628.
Chen Z, Fillmore CM, Hammerman PS, Kim CF and

Wong K-K (2014) Non-small-cell lung cancers: a

heterogeneous set of diseases. Nat Rev Cancer 14,

535–546.
Cho WCS (2011) Promises and challenges in developing

miRNA as a molecular diagnostic tool for lung cancer.

Expert Rev Mol Diagn 11, 763–766.
Endo H and Inoue M (2019) Dormancy in cancer. Cancer

Sci 110, 474–480.
Fehlmann T, Backes C, Alles J, Fischer U, Hart M, Kern

F, Langseth H, Rounge T, Umu SU, Kahraman M

et al. (2018) A high-resolution map of the human small

non-coding transcriptome. Bioinformatics 34,

1621–1628.
Fritz JV, Heintz-Buschart A, Ghosal A, Wampach L,

Etheridge A, Galas D and Wilmes P (2016) Sources

and functions of extracellular small RNAs in human

circulation. Annu Rev Nutr 36, 301–336.
Gazdar AF, Bunn PA and Minna JD (2017) Small-cell

lung cancer: what we know, what we need to know

and the path forward. Nat Rev Cancer 17, 725–737.
Gopal M, Abdullah SE, Grady JJ and Goodwin JS (2010)

Screening for lung cancer with low-dose computed

tomography: a systematic review and meta-analysis of

the baseline findings of randomized controlled trials. J

Thorac Oncol 5, 1233–1239.
Gridelli C, Rossi A, Carbone DP, Guarize J, Karachaliou

N, Mok T, Petrella F, Spaggiari L and Rosell R (2015)

Non-small-cell lung cancer. Nat Rev Dis Primers 1,

15009.

Gutschner T and Diederichs S (2012) The hallmarks of

cancer: a long non-coding RNA point of view. RNA

Biol 9, 703–719.
Hanahan D and Weinberg RA (2000) The hallmarks of

cancer. Cell 100, 57–70.
Harrow J, Frankish A, Gonzalez JM, Tapanari E,

Diekhans M, Kokocinski F, Aken BL, Barrell D,

Zadissa A, Searle S et al. (2012) GENCODE: the

reference human genome annotation for The

ENCODE Project. Genome Res 22, 1760–1774.
Herbst RS, Heymach JV and Lippman SM (2008) Lung

cancer. N Engl J Med 359, 1367–1380.
Hjerkind KV, Gislefoss RE, Tretli S, Nystad W, Bjørge T,

Engeland A, Meyer HE, Holvik K, Ursin G and

Langseth H (2017) Cohort profile update: the Janus

Serum Bank Cohort in Norway. Int J Epidemiol 46,

1101–1102.
Holden M, Holden L, Olsen KS and Lund E (2017) Local

in time statistics for detecting weak gene expression

signals in blood – illustrated for prediction of

metastases in breast cancer in the NOWAC Post-

genome Cohort. AGG 7, 11–28.

245Molecular Oncology 14 (2020) 235–247 ª 2019 The Authors. Published by FEBS Press and John Wiley & Sons Ltd

S. U. Umu et al. Prediagnostic serum RNA signal in lung carcinogenesis

http://www.sequencing.uio.no


Inamura K and Ishikawa Y (2016) MicroRNA in lung

cancer: novel biomarkers and potential tools for

treatment. J Clin Med Res 5, 1–13.
Jo H, Jia Y, Subramanian KK, Hattori H and Luo HR

(2008) Cancer cell-derived clusterin modulates the

phosphatidylinositol 3’-kinase-Akt pathway through

attenuation of insulin-like growth factor 1 during

serum deprivation. Mol Cell Biol 28, 4285–4299.
Keller A, Leidinger P, Gislefoss R, Haugen A, Langseth H,

Staehler P, Lenhof HP and Meese E (2011) Stable

serum miRNA profiles as potential tool for non-

invasive lung cancer diagnosis. RNA Biol 8, 506–516.
Keller A and Meese E (2016) Can circulating miRNAs live

up to the promise of being minimal invasive

biomarkers in clinical settings? Wiley Interdiscip Rev

RNA 7, 148–156.
Kim KM, Abdelmohsen K, Mustapic M, Kapogiannis D

and Gorospe M (2017) RNA in extracellular vesicles.

Wiley Interdiscip Rev RNA, 8, 1–20.
Klein CA (2011) Framework models of tumor dormancy

from patient-derived observations. Curr Opin Genet

Dev 21, 42–49.
Kozomara A and Griffiths-Jones S (2014) miRBase:

annotating high confidence microRNAs using deep

sequencing data. Nucleic Acids Res. 42, D68–73.
Langseth H, Gislefoss RE, Martinsen JI, Dillner J and

Ursin G (2017) Cohort profile: the Janus Serum Bank

Cohort in Norway. Int J Epidemiol 46, 403–404.
Larsen IK, Sm�astuen M, Johannesen TB, Langmark F,

Parkin DM, Bray F and Møller B (2009) Data quality

at the Cancer Registry of Norway: an overview of

comparability, completeness, validity and timeliness.

Eur J Cancer 45, 1218–1231.
Leidinger P, Keller A and Meese E (2012) MicroRNAs –

important molecules in lung cancer research. Front

Genet 2, 1–22.
Loher P, Telonis AG and Rigoutsos I (2017) MINTmap:

fast and exhaustive profiling of nuclear and

mitochondrial tRNA fragments from short RNA-seq

data. Sci Rep 7, 41184.

Love MI, Huber W and Anders S (2014) Moderated

estimation of fold change and dispersion for RNA-seq

data with DESeq2. Genome Biol 15, 550.

Lu C, Huang T, Chen W and Lu H (2015) GnRH

participates in the self-renewal of A549-derived lung

cancer stem-like cells through upregulation of the JNK

signaling pathway. Oncol Rep 34, 244–250.
Lund E, Holden L, Bøvelstad H, Plancade S, Mode N,

G€unther CC, Nuel G, Thalabard JC and Holden M

(2016) A new statistical method for curve group

analysis of longitudinal gene expression data illustrated

for breast cancer in the NOWAC postgenome cohort

as a proof of principle. BMC Med Res Methodol 16,

28.

Massion PP and Carbone DP (2003) The molecular basis

of lung cancer: molecular abnormalities and

therapeutic implications. Respir Res 4, 12.

National Lung Screening Trial Research Team, Aberle DR,

Adams AM, Berg CD, Black WC, Clapp JD,

Fagerstrom RM, Gareen IF, Gatsonis C, Marcus PM

and et al. (2011a) Reduced lung-cancer mortality with

low-dose computed tomographic screening. N Engl J

Med 365, 395–409.
National Lung Screening Trial Research Team, Aberle DR,

Berg CD, Black WC, Church TR, Fagerstrom RM,

Galen B, Gareen IF, Gatsonis C, Goldin J et al.

(2011b) The National Lung Screening Trial: overview

and study design. Radiology 258, 243–253.
Osarogiagbon RU, Veronesi G, Fang W, Ekman S, Suda

K, Aerts JG and Donington J (2019) Early-stage

NSCLC: advances in thoracic oncology 2018. J Thorac

Oncol 14, 968–978.
Pantano L, Estivill X and Mart�ı E (2010) SeqBuster, a

bioinformatic tool for the processing and analysis of

small RNAs datasets, reveals ubiquitous miRNA

modifications in human embryonic cells. Nucleic Acids

Res 38, e34.

Peng Y and Croce CM (2016) The role of MicroRNAs in

human cancer. Signal Transduct Target Ther 1, 15004.

Pichler M and Calin GA (2015) MicroRNAs in cancer:

from developmental genes in worms to their clinical

application in patients. Br J Cancer 113, 569–573.
Ray MR, Jablons D and He B (2010) Lung cancer

therapeutics that target signaling pathways: an update.

Expert Rev Respir Med 4, 631–645.
Rounge TB, Lauritzen M, Langseth H, Enerly E, Lyle R

and Gislefoss RE (2015) microRNA biomarker

discovery and high-throughput DNA sequencing are

possible using long-term archived serum samples.

Cancer Epidemiol Biomarkers Prev 24, 1381–1387.
Rounge TB, Umu SU, Keller A, Meese E, Ursin G, Tretli

S, Lyle R and Langseth H (2018) Circulating small

non-coding RNAs associated with age, sex, smoking,

body mass and physical activity. Sci Rep 8, 1760.

Shang G-S, Liu L and Qin Y-W (2017) IL-6 and TNF-a
promote metastasis of lung cancer by inducing

epithelial-mesenchymal transition. Oncol Lett 13, 4657–
4660.

Song Q, Xu Y, Yang C, Chen Z, Jia C, Chen J, Zhang Y,

Lai P, Fan X, Zhou X et al. (2014) miR-483-5p

promotes invasion and metastasis of lung

adenocarcinoma by targeting RhoGDI1 and ALCAM.

Cancer Res 74, 3031–3042.
Steenbeek SC, Pham TV, de Ligt J, Zomer A, Knol JC,

Piersma SR, Schelfhorst T, Huisjes R, Schiffelers RM,

Cuppen E et al. (2018) Cancer cells copy migratory

behavior and exchange signaling networks via

extracellular vesicles. EMBO J 37, 1–20.

246 Molecular Oncology 14 (2020) 235–247 ª 2019 The Authors. Published by FEBS Press and John Wiley & Sons Ltd

Prediagnostic serum RNA signal in lung carcinogenesis S. U. Umu et al.



Swier LJYM, Dzikiewicz-Krawczyk A, Winkle M, van den

Berg A and Kluiver J (2019) Intricate crosstalk

between MYC and non-coding RNAs regulates

hallmarks of cancer. Mol Oncol 13, 26–45.
Umu SU, Langseth H, Bucher-Johannessen C, Fromm B,

Keller A, Meese E, Lauritzen M, Leithaug M, Lyle R

and Rounge TB (2018) A comprehensive profile of

circulating RNAs in human serum. RNA Biol 15,

242–250.
Urman A and Hosgood HD (2016) Curbing the burden of

lung cancer. Front Med 10, 228–232.
Wang J, Chen J and Sen S (2016) MicroRNA as

biomarkers and diagnostics. J Cell Physiol 231, 25–30.
WCLC (2018) NELSON Study Shows CT Screening for

Nodule Volume Management Reduces Lung Cancer

Mortality by 26 Percent in Men. Retrieved November

11, 2019, from https://wclc2018.iaslc.org/media/2018%

20WCLC%20Press%20Program%20Press%20Release

%20De%20Koning%209.25%20FINAL%20.pdf.

Weis SM and Cheresh DA (2013) A wake-up call for

hibernating tumour cells. Nat Cell Biol, 15, 721–723.
Witwer KW (2015) Circulating microRNA biomarker

studies: pitfalls and potential solutions. Clin Chem 61,

56–63.
Wong N and Wang X (2015) miRDB: an online resource

for microRNA target prediction and functional

annotations. Nucleic Acids Res 43, D146–D152.

Yao Z, Han L, Chen Y, He F, Sun B, Kamar S, Zhang Y,

Yang Y, Wang C and Yang Z (2018) Hedgehog

signalling in the tumourigenesis and metastasis of

osteosarcoma, and its potential value in the clinical

therapy of osteosarcoma. Cell Death Dis 9, 701.

Yuan Z, Goetz JA, Singh S, Ogden SK, Petty WJ, Black

CC, Memoli VA, Dmitrovsky E and Robbins DJ

(2007) Frequent requirement of hedgehog signaling in

non-small cell lung carcinoma. Oncogene 26,

1046–1055.
Zaporozhchenko IA, Ponomaryova AA, Rykova EY and

Laktionov PP (2018) The potential of circulating cell-

free RNA as a cancer biomarker: challenges and

opportunities. Expert Rev Mol Diagn 18, 133–145.
Zhang P, Si X, Skogerbø G, Wang J, Cui D, Li Y, Sun X,

Liu L, Sun B, Chen R et al. (2014) piRBase: a web

resource assisting piRNA functional study. Database

2014, bau110.

Zhou R, Zhou X, Yin Z, Guo J, Hu T, Jiang S, Liu L,

Dong X, Zhang S and Wu G (2015) Tumor invasion

and metastasis regulated by microRNA-184 and

microRNA-574-5p in small-cell lung cancer. Oncotarget

6, 44609–44622.

Supporting information

Additional supporting information may be found

online in the Supporting Information section at the end

of the article.
Fig. S1. The distribution of LC case samples based on

stage, histology, and prediagnostic time.

Fig. S2. Consort figure.

Fig. S3. Age of individuals.

Fig. S4. Phase 1 results and the volcano plot.

Fig. S5. Enriched pathways.

Fig. S6. Comparison of two different time intervals.

Fig. S7. Bootstrapping analysis for phase 3.

Table S1. RNAs over time and stage.

Table S2. Table of enriched pathways.

247Molecular Oncology 14 (2020) 235–247 ª 2019 The Authors. Published by FEBS Press and John Wiley & Sons Ltd

S. U. Umu et al. Prediagnostic serum RNA signal in lung carcinogenesis

https://wclc2018.iaslc.org/media/2018%2520WCLC%2520Press%2520Program%2520Press%2520Release%2520De%2520Koning%25209.25%2520FINAL%2520.pdf
https://wclc2018.iaslc.org/media/2018%2520WCLC%2520Press%2520Program%2520Press%2520Release%2520De%2520Koning%25209.25%2520FINAL%2520.pdf
https://wclc2018.iaslc.org/media/2018%2520WCLC%2520Press%2520Program%2520Press%2520Release%2520De%2520Koning%25209.25%2520FINAL%2520.pdf

	Outline placeholder
	mol212620-aff-0001
	mol212620-aff-0002
	mol212620-aff-0003
	mol212620-aff-0004
	mol212620-aff-0005
	mol212620-aff-0006
	mol212620-aff-0007
	mol212620-aff-0008
	mol212620-aff-0009
	mol212620-aff-0010
	mol212620-fig-0001
	mol212620-tbl-0001
	mol212620-fig-0002
	mol212620-fig-0003
	mol212620-tbl-0002
	mol212620-bib-0001
	mol212620-bib-0002
	mol212620-bib-0003
	mol212620-bib-0004
	mol212620-bib-0005
	mol212620-bib-0006
	mol212620-bib-0007
	mol212620-bib-0008
	mol212620-bib-0009
	mol212620-bib-0010
	mol212620-bib-0011
	mol212620-bib-0012
	mol212620-bib-0013
	mol212620-bib-0014
	mol212620-bib-0015
	mol212620-bib-0016
	mol212620-bib-0017
	mol212620-bib-0018
	mol212620-bib-0019
	mol212620-bib-0020
	mol212620-bib-0021
	mol212620-bib-0022
	mol212620-bib-0023
	mol212620-bib-0024
	mol212620-bib-0025
	mol212620-bib-0026
	mol212620-bib-0027
	mol212620-bib-0028
	mol212620-bib-0029
	mol212620-bib-0030
	mol212620-bib-0031
	mol212620-bib-0032
	mol212620-bib-0033
	mol212620-bib-0034
	mol212620-bib-0035
	mol212620-bib-0036
	mol212620-bib-0037
	mol212620-bib-0038
	mol212620-bib-0039
	mol212620-bib-0040
	mol212620-bib-0041
	mol212620-bib-0042
	mol212620-bib-0043
	mol212620-bib-0044
	mol212620-bib-0045
	mol212620-bib-0046
	mol212620-bib-0047
	mol212620-bib-0048
	mol212620-bib-0049
	mol212620-bib-0050
	mol212620-bib-0051
	mol212620-bib-0052
	mol212620-bib-0053
	mol212620-bib-0054
	mol212620-bib-0055
	mol212620-bib-0056
	mol212620-bib-0057
	mol212620-bib-0058


