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Abstract: Alzheimer’s disease is one of the most common neurodegenerative diseases in the western
population. The incidence of this disease increases with age. Rising life expectancy and the resulting
increase in the ratio of elderly in the population are likely to exacerbate socioeconomic problems.
Alzheimer’s disease is a multifactorial disease. In addition to amyloidogenic processing leading to
plaques, and tau pathology, but also other molecular causes such as oxidative stress or inflammation
play a crucial role. We summarize the molecular mechanisms leading to Alzheimer’s disease and
which potential interventions are known to interfere with these mechanisms, focusing on nutritional
approaches and physical activity but also the beneficial effects of cognition-oriented treatments with
a focus on language and communication. Interestingly, recent findings also suggest a causal link
between oral conditions, such as periodontitis or edentulism, and Alzheimer’s disease, raising the
question of whether dental intervention in Alzheimer’s patients can be beneficial as well. Unfortu-
nately, all previous single-domain interventions have been shown to have limited benefit to patients.
However, the latest studies indicate that combining these efforts into multidomain approaches may
have increased preventive or therapeutic potential. Therefore, as another emphasis in this review,
we provide an overview of current literature dealing with studies combining the above-mentioned
approaches and discuss potential advantages compared to monotherapies. Considering current
literature and intervention options, we also propose a multidomain interdisciplinary approach for
the treatment of Alzheimer’s disease patients that synergistically links the individual approaches. In
conclusion, this review highlights the need to combine different approaches in an interdisciplinary
manner, to address the future challenges of Alzheimer’s disease.

Keywords: Alzheimer’s disease; nutritional approaches; physical activity; socioeconomic factors;
cognition-oriented treatment; communication; oral health; interdisciplinary approaches; multimodal
intervention; multidomain intervention
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1. Introduction

Alzheimer’s disease (AD) is the most prevalent form of dementia and is characterized
by behavioral and cognitive impairments. It results in a loss of memory and acquired
skills, as well as a decrease in participation in daily activities, communication skills, so-
cial interactions and quality of life leading to an increasing burden on caregivers [1,2].
The main histopathological hallmarks of AD are the severe accumulation of amyloid-β
in extracellular neuritic plaques as well as intracellular neurofibrillary tangles (NFTs) in
vulnerable brain regions such as the hippocampus and cortex [3]. Based on the onset of
symptoms and pathological changes in the cortex and hippocampus, clinical AD stages can
be classified into at least four phases. The pre-symptomatic/pre-clinical stage is asymp-
tomatic despite early pathological changes in the cortex and hippocampal formation [4–6],
followed by mild cognitive impairment (MCI). MCI shows limitations in some cognitive
domains on functional examination without restrictions in the ability to cope with everyday
life [7–9] but definite laboratory evidence, including biomarkers such as low amyloid-β
and increased tau proteins in the cerebrospinal fluid [5]. Mild/early dementia due to AD is
characterized by symptoms such as spatial and temporal disorientation, loss of memory
and concentration, word-finding difficulties, and the development of depression. In the
moderate stage of AD, increased memory loss, impairment of visuospatial abilities leading
to difficulties in recognizing family members and friends, and problems with language
and communication occur [5,6,10]. The final stage of AD, severe/late AD, is associated
with severe accumulation of NTFs and senile plaques in the entire cortex area, resulting in
advanced functional and cognitive impairment, incontinence, dysphagia, and complete
dependence on caregivers [5].

Currently (2020), AD is estimated to affect 55 million people worldwide. Global
AD prevalence is predicted to increase to 139 million people living with AD by 2050
due to the aging population, making AD a major public health concern. Yet, to date,
there are only two classes of approved drugs to treat persons with Alzheimer’s disease
(PwAD): Cholinesterase enzyme inhibitors and N-methyl-D-aspartate (NMDA) inhibitors.
Acetylcholine-producing cells are destroyed in AD by different physiological processes.
Treatment with acetylcholinesterase inhibitors such as donepezil, galantamine and rivastig-
mine blocks the catabolism of acetylcholine, increasing acetylcholine concentration in the
synaptic cleft and thus cholinergic transmission in the brain [5,11–13]. Overactivation of
NMDA-receptors leads to increased intracellular calcium levels, promoting cell death and
synaptic dysfunction. The use of partial NMDA antagonists such as memantine, which
can be taken in combination with cholinesterase inhibitors, prevents NMDA-receptor over-
activation and restores its normal activity [14,15]. However, these medications are only
temporary effective in treating the symptoms of AD by improving quality of life but do not
cure or prevent the disease.

Most AD cases occur sporadically (known as sporadic Alzheimer’s disease, SAD) with
the age of onset above 65 years. Less than 10% of AD cases are caused by genetic familial
mutations leading to earlier disease onset, usually between the age of 30 and 60 (known
as early onset Alzheimer’s disease, EOAD or familial Alzheimer’s disease, FAD). AD is
considered a multifactorial disease as it is characterized by impairments in multiple cellular
processes. In addition to cholinergic dysfunction and the well-known Abeta (Aβ) and Tau
pathology of AD, inflammation, oxidative stress, as well as, e.g., alterations in lipid and
energy metabolism are also involved in the pathogenesis of AD.

The Lancet Commission on dementia prevention, intervention and care [16] recently
identified 12 potentially modifiable risk factors for dementia that account for around
40% of dementia cases worldwide. These include, among others, physical inactivity, low
social contact, obesity, and associated diabetes. Frequent physical activity, promotion
of communication to maintain social interactions, and a healthy diet to avoid the risks
of obesity and diabetes may therefore affect neuropathological damage and cognitive
reserve [16] and contribute to the prevention or delay of dementia. According to current
literature, the intraoral condition could also represent such a modifiable risk factor [17–19].
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Reducing modifiable risk factors, in addition to pharmacological interventions, is
an important approach in dementia treatment. According to Spector and Orrell’s biopsy-
chosocial (BPS) model [20], dementia is a multifactorial disease in which psychosocial and
biological processes are interrelated. Both domains include fixed, non-modifiable factors
(e.g., age; education) and tractable, modifiable factors (e.g., physical health; social inter-
action, mental stimulation). Treatment plans should be tailored to the individual’s needs.
Factors amenable to change are identified with the aim of influencing them through medi-
cal and non-pharmacological interventions [20,21]. In recent years, non-pharmacological
interventions have become increasingly important in the management of dementia and in
the effort to improve living with dementia and maintain quality of life [1,7,22–24]. Non-
pharmacological interventions include evidence-based psychological, bodily, nutritional,
digital or basic methods and approaches, that are individually selected and adjusted to
the persons’ needs in their courses of disease [7,24]. Among these, cognition-oriented
treatments (COT) [1,24,25], physical activity [26], and diet [27] form an integral part.

1.1. Aim of This Review

To date, there is no pharmaceutical or antibody-based causal therapy for the treatment
of AD. As demographics change, alternative treatments for this devasting neurodegenera-
tive disease will be needed. In this review, we summarize different nutritional approaches
and their underlying mechanisms, the effect of physical activity, cognition-oriented treat-
ments with a focus on communication, and the potential advantages of socioenvironmental
factors in relation to AD. In addition, the current literature suggests that oral status, partic-
ularly periodontitis and edentulism, are also mechanistically linked to AD. This represents
another interesting new approach in the treatment of AD. However, any of the aforemen-
tioned treatment approaches applied individually show limited benefits in treating PwAD.
Therefore, recent efforts are focused on combining different approaches as multidisciplinary
interventions. In the second part of our review, we summarize the results of the first mul-
tidomain interventions. Finally, we propose a multidisciplinary, individualized treatment,
based on an even stronger integration of the different disciplines and already existing
treatment methods.

1.2. Molecular Mechanisms Involved in AD Pathogenesis

The amyloid pathology of AD is caused by sequential proteolytic cleavage of the
amyloid precursor protein (APP), resulting in Aβmonomers, that aggregate to oligomeric
Aβ, discussed as the most neurotoxic form, and finally to Aβ fibrils and plaques [28,29].
The type-I transmembrane protein APP belongs to an evolutionarily conserved protein
family and is ubiquitously expressed in mammals [30,31]. However, the function of APP
is still debated, with the discussion that it plays a role in cell health, growth, gene tran-
scription and lipid homeostasis [32]. The release of Aβ peptides out of APP is a physi-
ological process, that occurs throughout life and depends on whether APP is primarily
processed in the non-amyloidogenic or amyloidogenic pathway. The non-amyloidogenic
pathway prevents the release of Aβ peptides out of APP and thus the formation of Aβ
plaques. The initial ectodomain shedding of APP in the non-amyloidogenic pathway is
realized by α-secretases, cleaving APP within the Aβ domain. The activity of the identified
α-secretases ADAM9, ADAM10 and ADAM17 [33,34], belonging to the ADAM family
(a disintegrin and metalloprotease), generates soluble α-secreted APP (sAPPα) and the
membrane-tethered C-terminal fragment αCTF, further processed by γ-secretase, leading to
the non-toxic peptide p3. Furthermore, sAPPα has neuroprotective and memory-enhancing
effects [35–37]. In the amyloidogenic pathway, APP is first cleaved by β-secretase, gen-
erating the N-terminus of Aβ. The membrane-bound aspartyl protease BACE 1 (β-site
APP cleaving enzyme) has been identified as the main β-secretase [38], mainly found in
intracellular compartments with an acidic pH such as late Golgi-compartments and endo-
somes [39,40]. Similar to α-secretase cleavage of APP, BACE-cleavage leads to the release
of a soluble fragment, β-secreted APP (sAPPβ), and a C-terminal membrane-embedded
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fragment called βCTF [39,41]. Subsequent cleavage of βCTF by γ-secretase within the
transmembrane domain results in the generation of Aβ peptides varying in their length
at the C-terminus [42,43]. Aβ40 peptides have been found to be the most abundant Aβ
peptides (80–90% of Aβ peptides) whereas the more hydrophobic Aβ42 peptides represent
only approximately 10% of Aβ peptides. The heterotetrameric protein complex leading
to γ-secretase activity includes the transmembrane proteins presenilin1 (PS1) or prese-
nilin 2 (PS2), identified as the catalytically active components, anterior pharynx defective
1 (APH-1), presenilin enhancer 2 (PEN-2) and nicastrin (NCT) [44,45]. All components of
the γ-secretase complex as well as β-secretase BACE1 have been found in lipid rafts, small
membrane microdomains enriched in sphingolipids and cholesterol [46,47]. Vice versa,
non-amyloidogenic α-secretase processing of APP was reported to be localized in non-raft
membrane domains, indicating that APP processing is highly dependent on membrane
lipid composition.

In addition to amyloid plaques, neurofibrillary tangles (NFTs) are considered a key
pathological feature of AD. Intraneuronal NFTs are composed of hyperphosphorylated
tau proteins aggregated as insoluble paired helical fragments inside neurons [48–50]. Tau
proteins that can bind to tubulin monomers are mainly expressed in neurons [51,52] and
are important to stabilize the neuronal microtubule network, being essential for maintain-
ing cell shape and transport along axons. Tau activity and tau function are regulated by
phosphorylation, involving protein kinases and protein phosphatases [53,54]. Activation
of kinases and/or a decrease in the activity of phosphatases are discussed to result in Tau
hyperphosphorylation in AD. Several kinases involved in Tau hyperphosphorylation and
tangle-like filament morphology have been identified, including, e.g., glycogen synthase
kinase-3β (GSK3β), protein kinase A (PKA), the calcium and calmodulin-dependent pro-
tein kinase-II (CaMKII) as well as cyclin-dependent kinase 5 (CDK5) [55]. Furthermore,
mitogen-activated protein (MAP) kinases have been reported to result in tau hyperphospho-
rylation, e.g., ERK1 and ERK2, p38, c-Jun N-terminal kinase (JNK) and p70S6 kinase [55].
Tau dephosphorylation has been found to be catalyzed by the protein phosphatases PP1,
PP2A, PP2B and PP5 in vitro and in vivo [56]. Among these phosphatases, PP2A is dis-
cussed as one of the main enzymes preventing hyperphosphorylation of tau in AD [57,58].
Interestingly, the activity of the tau kinases ERK1 and ERK2, PKA, CaMKII and p70S6 is
regulated by PP2A, which has been found to be reduced in AD brains, emphasizing the
role of PP2A in tau hyperphosphorylation in AD.

In addition to the Aβ and tau pathology, the occurrence of a continuous immune
response in the brain is considered a third core pathology of AD [59]. Acute inflammation
by activated microglia and other immune cells in the brain serves to defend against tox-
ins, brain injury and infections and plays a neuroprotective role during the acute-phase
response. In early AD pathogenesis, the enhanced immune response leads to the clearance
of Aβ by activated microglia and has been shown to have beneficial effects on AD-related
pathologies in several animal models [60,61]. When there is an imbalance between pro-
inflammatory and anti-inflammatory signaling, as reported in AD, chronic neuroinflamma-
tion occurs [62,63], leading to the release of pro-inflammatory and toxic products, including
reactive oxidative species (ROS), nitric oxide and cytokines, e.g., interleukin-1 (IL-1), inter-
leukin 1β (IL-1β), and tumor necrosis factor-α (TNFα). Sustained activation of microglia
has been shown to exacerbate both Aβ and Tau pathology, thus linking neuroinflammation
to the other two core pathologies. For example, IL-1 has been reported to be responsible
for elevated APP production and Aβ load [64], whereas interleukin-1β increases levels of
interleukin-6, which is known to stimulate CDK5, a well-known kinase involved in Tau
hyperphosphorylation [65].
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Similar to the imbalance between pro-inflammatory and anti-inflammatory signaling,
the imbalance between the generation and detoxification of ROS leading to oxidative stress
is also closely linked to the pathogenesis of AD [66]. This delicate balance between the
rate of ROS generation and ROS clearance is warranted by antioxidants and related en-
zymes. Elevated levels of ROS, resulting from either increased ROS production or impaired
antioxidative system, lead to oxidative damage of different biomolecules, including lipid
peroxidation, protein oxidation and oxidation of nucleic acids. The important role of oxida-
tive stress in AD is also supported by the findings that oxidative imbalance is an early event
in AD pathogenesis. In individuals suffering from MCI, significant oxidative imbalance,
increased total protein peroxidation, and oxidative modification of specific proteins have
been found in the hippocampus and superior and middle temporal gyri [67–69]. Further-
more, significantly decreased levels of non-enzymatic antioxidants, such as vitamin C,
vitamin A, vitamin E, and lutein, as well as decreased levels of antioxidant enzymes, such
as superoxide dismutase, glutathione peroxidase, and glutathione reductase were found in
MCI [67,69]. Additionally, structurally, and functionally damaged mitochondria, which
produce ROS more efficiently and ATP less efficiently, were found to be an early and
prominent feature of AD [70,71].

2. Individual Approaches
2.1. Nutritional Approaches: Molecular Mechanisms of Dietary Fatty Acids and Vitamins in the
Development of Alzheimer’s Disease

As mentioned above, diet is discussed as an AD risk factor. Dietary interventions to
prevent or delay AD, including various vitamins, dietary fatty acids (FA) and herbal ingre-
dients are mainly associated with Aβ and Tau pathology of AD and affect inflammation
and oxidative stress, including mitochondrial damage [72–75].

Importantly, the brain is highly enriched in lipids, accounting for at least 50% of dry
brain weight [76]. Lipids, as basic structural components of neuronal cell membranes, play
an important role in human health and brain function. Disruption of lipid homeostasis
is closely associated with neurological disorders and neurodegenerative diseases such
as AD. Moreover, aging in general is associated with changes in cerebral lipid content
and composition. For example, it has been shown, that ethanolamine plasmalogens are
decreased until the age of 70 and sphingomyelin levels were reduced by around 20% until
the age of 100 years. Additionally, a progressive decline in polyunsaturated fatty acids
(PUFAs) during aging in particular in DHA has been reported. Importantly, a decrease in
plasmalogens, PUFA and sphingomyelins has been additionally discussed to be associated
with an increased risk of Alzheimer’s disease [76–78].

The brain is particularly rich in long-chain polyunsaturated fatty acids (PUFAs) do-
cosahexaenoic acid (DHA; 22:6 n-3) and arachidonic acid (AA; 20:4 n-6), representing
precursors for the biosynthesis of lipid mediators that control the inflammatory response.
The omega-6 PUFAs such as AA represent precursors of pro-inflammatory eicosanoids,
whereas the n-3 PUFA DHA exerts anti-inflammatory, antioxidant and neuroprotective
effects [79]. Besides the involvement of lipid membrane composition in brain function and
disease, vitamins are discussed to modulate AD progression due to their antioxidative
properties and important role in the homocysteine/methionine cycle [80,81].

2.1.1. Effect on Aβ Pathology
Non-Amyloidogenic α-Secretase Processing of APP

Dietary interventions modulating the Aβ-preventing α-secretase cleavage of APP are
a promising target for the treatment of AD (Figure 1).
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Figure 1. Influence of nutritional components on Aβ pathology. PUFA: polyunsaturated fatty
acid. DHA: docosahexaenoic acid. EPA: eicosapentaenoic acid. AA: arachidonic acid. MCFA:
medium-chain saturated fatty acids. OA: oleic acid. DA: decanoic acid. LA: lauric acid. EGCG:
epigallocatechin gallate.

DHA is the most abundant n-3 PUFA in all brain regions [82]. It is discussed as
one of the most important FAs for the treatment or prevention of AD. It was found that
α-secretase processing of APP, which reduces Aβ formation is stimulated in DHA-treated
cellular models of AD, including neuroblastoma cells overexpressing APP695wildtype or
APP695 with the Swedish double mutation (K670N, M671L) or both the Swedish and the
Arctic (E693G) mutations as well as APP695 transfected HEK cells [83–85]. The molecular
mechanisms leading to increased α-secretase processing of APP in the presence of DHA are
due to increased ADAM17 gene expression and increased ADAM17 protein stability [84].
Notably, small amounts of oxidized DHA reversed the protective effect of DHA, decreasing
the α-secretase processing of APP [86]. Besides DHA, both the n-3 PUFA eicosapentaenoic
acid (EPA) and the n-6 PUFA AA increased α-secreted APP (sAPPα) in differentiated
human neuroblastoma SH-SY5Y cells [87]. Increased levels of sAPPα have been also found
in an early onset AD transgenic (Tg) mouse model fed with a low-fat, cholesterol-free
diet enriched with the n-9 PUFA oleic acid (OA) [88]. The α-secretase stimulating effect
is not limited to PUFAs, as phospholipids containing medium-chain saturated fatty acids
(MCFAs)—decanoic acid (10:0) and lauric acid (12:0)—also increase α-secretase activity
in human neuroblastoma cells [89]. In addition, calcifediol (25OH vitamin D3) has been
shown to increase α-secretase activity promoting the non-amyloidogenic processing of
APP [90]. In contrast, trans-fatty acids, whose consumption has increased in the 20th
century since the first successful hydrogenation of oils [91], have been found to decrease
non-amyloidogenic processing of APP by decreasing ADAM10 gene expression, resulting
in elevated production of Aβ [92]. This effect is mediated by a decrease in ADAM10 gene
expression and ADAM10 protein levels. Furthermore, high concentrations of trans fatty
acids have been reported to decrease brain DHA in a 3xTg-AD mouse model of AD [93].
However, no significant effect on major brain neuropathological hallmarks of AD, including
levels of Aβ40 and Aβ42 levels, was found in this study.

It has been reported that, in addition to FA and vitamins, dietary phytochemicals
reduce the Aβ generation by increasing the α-secretase processing of APP. The polyphe-
nol epigallocatechin-3-gallate (EGCG), a major catechin present in green tea, has been
shown to decrease Aβ generation in neurons overexpressing APP695 and to decrease Aβ
levels and plaques in Tg2576 AD mice, expressing the Swedish mutant of APP [94,95].
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The EGCG-induced reduction in Aβ was attributed to an elevation in α-secretase APP
cleavage, leading to an increase in α-CTF generation and sAPPα release, caused by a
significant increase in the expression of ADAM10 and TNF-α converting enzyme, a further
α-secretase candidate [94,96]. EGCG also significantly decreased brain Aβ production and
plaque burden by increasing the levels of α-secretase ADAM10 in high-fat-fed transgenic
APPswe/PSdE9 mice [97]. In vivo, intraperitoneal treatment of transgenic APPswedish
Tg2576 mice with EGCG for 2 months significantly decreased Aβ levels [95]. Catalpol,
an iridoid glycoside extracted from Rehmannia glutinosa roots, elevated the expression of
α-secretase, promoting non-amyloidogenic APP processing in neuronal N2a cells overex-
pressing the Swedish mutant of APP [98]. An increase in protein stability of the α-secretase
ADAM10 was identified as the molecular mechanism underlying the α-secretase stimu-
lating effect in cell cultures, treated with methylxanthines, including caffeine, a natural
alkaloid stimulant of coffee beans [99].

Amyloidogenic Processing of APP by β-Site Cleaving Enzyme BACE1 and γ-Secretase

Besides the beneficial property of DHA to increase the α-secretase processing of APP,
DHA was found to decrease the amyloidogenic processing of APP byβ- and γ-secretase [84]
(Figure 1). In 15-month-old APP/PS1 mice, DHA supplementation also decreased Aβ
deposition. This suggests that a DHA-enriched diet can diminish AD-like pathology [100].
DHA reduces amyloidogenic β-site cleavage of APP by a direct effect on β-secretase
activity and by impairing internalization of BACE1 into the endosomal system [84]. Aβ-
releasing γ-secretase activity is also directly affected by DHA. Furthermore, DHA reduces
γ-secretase processing of APP in lipid rafts by causing a shift of PS1 (and cholesterol) and
thus γ-secretase activity from the raft to non-raft fractions of the membrane. The potential of
DHA for the treatment or prevention of AD is further underlined by its cholesterol-lowering
effect, which further reduces Aβ generation. DHA reduces cholesterol de novo synthesis by
directly inhibiting HMGCR activity, the rate-limiting step in cholesterol de novo synthesis,
and by disturbing lipid raft integrity. This directs cholesterol out of these membrane
microdomains [84,101,102]. These identified molecular mechanisms result in significant
reductions in total Aβ levels and Aβ accumulation in DHA-supplemented cell culture
experiments or in animal studies [100,103–106]. Besides DHA, the n-9 PUFA oleic acid (OA),
the most abundant dietary FA, exerts anti-amyloidogenic properties. Transgenic AD mice
expressing the Swedish double mutation and Indiana mutation fed a low-fat, cholesterol-
free diet enriched with OA exhibited reduced levels of β-site APP cleaving enzyme (BACE)
and reduced presenilin levels along with reduced amyloid plaques in the brain [88]. The
potency of OA to reduce Aβ levels has been also found in APP695 transfected COS7 cells.
Supplementation with OA resulted in reduced secreted Aβ levels [88].

It is discussed that the n-6 PUFA AA, in contrast to the n-3 PUFA DHA, elevates
γ-secretase processing of APP, since SP-C99 transfected COS7 cells exposed to AA secreted
significantly more Aβ40 and Aβ42 peptides [107]. In cells cultured with 0.1 mM or 0.2 mM
linoleic acid (18:2), the precursor of AA, elevated levels of the N-terminal fragment of
the γ-secretase component PS1 were found along with increased Aβ levels [108]. In line,
an early onset AD transgenic mouse model expressing the Swedish double mutation
(K670N/M671L) and Indiana mutation (V717F) revealed higher levels of Aβ and amyloid
plaques in brains when mice were fed a diet supplemented with 2% AA [107]. Beside AA,
trans fatty acids enhance the amyloidogenic processing of APP leading to elevated Aβ levels
in cell culture experiments [92]. Compared with the corresponding cis conformation, trans
fatty acids directly affect enzyme activities of β- and γ-secretase. Additionally, trans fatty
acids significantly increase BACE1 gene expression and gene transcription of all γ-secretase
components. Notably, the protective effect of DHA is reverted in presence of oxidized DHA.
In cell culture experiments, using human neuroblastoma cells and mouse mixed cortical
neurons, five different oxidized DHA derivatives and the lipid peroxidation products
of n-3 and n-6 PUFAs, HNE and 4-hydroxy-hexenal, revealed elevated Aβ and soluble
β-secreted APP levels [86]. The molecular mechanisms leading to higher Aβ levels in
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presence of oxidized lipids were identified as an increase in gene expression of BACE1 and
the γ-secretase components PS1, Nicastrin and Aph1b, leading to amyloidogenic processing
of APP. Additionally, oxidized lipids had a direct stimulating effect on β-secretase activity.
Importantly, as little as 1% oxidized DHA was sufficient to reverse the protective effects of
DHA and significantly increase Aβ generation [86]. It is therefore necessary, to prevent the
oxidation of DHA in dietary approaches or supplements. Supplementation of PUFA must
be implemented under conditions that protect from unintentional oxidation.

Due to the anti-oxidative property of vitamin E protecting lipids from oxidation, sup-
plementation with vitamin E is discussed to be beneficial in AD. Additionally, vitamin E has
neuroprotective, anti-inflammatory and hypocholesterolemic properties [109]. However,
the effect of vitamin E on Aβ generation is still not completely understood and evidence of
the beneficial role of vitamin E for the treatment of AD remains inconclusive [110]. While
vitamin E supplementation led to reduced cerebral Aβ content and amyloid deposition
in young AD transgenic mice, this effect was not observed in aged APP transgenic mice,
that received the vitamin E-supplemented diet at an older age [111]. Reduced cerebral
levels of Aβ oligomers have been also found in APP/PS1 double transgenic mice fed with
α-tocopherol quinine, an oxidative metabolite of α-tocopherol [112]. In contrast, cell culture
experiments suggest amyloidogenic potential of different members of the vitamin E family,
including α-, γ- and δ-Tocopherol [113]. All tocopherols increased Aβ generation in human
neuroblastoma cells by an elevation in gene expression as well as protein level of BACE1
and the components of the γ-secretase complex. In line with the Aβ increasing effect of toco-
pherols, α-tocotrienol also elevated Aβ levels in human neuroblastoma SH-SY5Y wildtype
cells as well as APP695 expressing SH-SY5Y cells. α-Tocotrienol has a direct stimulating
effect on the enzyme activities of β- and γ-secretase. Beside these unfavorable properties
of members of the vitamin E family with respect to Aβ generation, both tocopherols and
α-tocotrienol reduced cholesterol levels, a well-known risk factor for AD [114–116]. Due
to the partially opposable effects of vitamin E with respect to the molecular mechanisms
involved in AD, a recommendation without restriction for the treatment or prevention
of AD should be reconsidered. Several epidemiological studies as well as animal studies
and cell culture studies show that high cholesterol is linked to elevated Aβ generation
and AD pathology [117–120]. High cholesterol levels have been found to increase β- and
γ-secretase activity, especially in cholesterol-rich lipid raft membrane microdomains. In
contrast to the E-vitamins, vitamin D has been reported to exert anti-amyloidogenic po-
tential. APP695 transfected SH-SY5Y cells treated with 25(OH) vitamin D3 (calcifediol) or
different vitamin D3- and vitamin D2-analogues showed significantly reduced total Aβ
levels [90]. Vitamin D3 and its analogues decrease β-secretase activity due to a reduction in
BACE1 gene expression along with a decrease in BACE1 protein level. A 24% reduction in
BACE1 protein level was also found in aged rats that received a subcutaneous injection
of 1,α25-dihydroxyvitamin D3 (42 I.U./kg for 21 days) [121]. In line with these findings,
Aβ40 and Aβ42 levels are elevated in hypovitaminosis D mouse brains caused by an
elevated BACE1 protein level resulting in elevated β-secretase activity in these mice [122].
Vitamin D3 and its analogues also decrease gene expression of the γ-secretase component
nicastrin, leading to reduced γ-secretase activity [90]. In addition to these molecular mech-
anisms, another study has found that APP promoter activity is suppressed in presence of
1,α25-dihydroxyvitamin D, indicating that Aβ secretion might be reduced after vitamin
D3 treatment due to a diminished gene expression of the Aβ-precursor APP [123]. APP
transgenic mice fed with a vitamin D3 enriched diet for five months, starting immediately
after weaning, also revealed a decrease in the number of amyloid plaques and a reduction
in Aβ peptides, further underlining the anti-amyloidogenic potential of vitamin D [124].
However, a recent study reports that vitamin D supplementation worsens the progression of
AD [125]. In this study, vitamin D supplementation increased Aβ level and amyloid burden
along with elevated BACE1 protein level in the hippocampus of APP/PS1 transgenic mice.
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Several cell culture and animal studies dealing with vitamin B supplementation or vita-
min B deficiency strongly indicate that B-vitamins exert protective effects with respect to Aβ
pathology [126–130]. Tg2576 transgenic mice overexpressing the APP Swedish (APPswe)
mutation, resulting in elevated β-secretase processing of APP and therefore Aβ levels, fed
with a folate (vitamin B9), vitamin B6 and vitamin B12 deficient diet for 7 months, showed
significantly increased levels of Aβ peptides in the hippocampus compared to Tg2576
mice fed with the control diet [126]. In line, elevated Aβ deposition has been reported for
TgCRND8 mice (expressing the Indiana mutation in addition to the APPswe mutation),
fed with a diet deficient in vitamin B6, vitamin B12 and folate compared to the control
diet [127]. In this study elevated Aβ deposition was caused by an increase in PS1 and BACE
expression. Besides the identification of alterations in BACE1 and PS1 gene expression in
presence of vitamin B deficiency, leading to elevated Aβ levels, Aβ levels are increased
caused by an elevation in cholesterol de novo synthesis. Human adipocytes cultured in
media containing low vitamin B12 or no vitamin B12 revealed significantly increased choles-
terol levels caused by an increase in gene expression of genes involved in cholesterol de
novo synthesis, including the rate-limiting enzyme HMGCR (3-hydroxy-3-methylglutarly
CoA reductase) [131] compared to cells cultured with adequate vitamin B12 levels. Fur-
thermore, low vitamin B12 increased gene expression of sterol regulatory element-binding
proteins, SREBP1 and SREBP2, and the sterol regulatory element-binding transcription
factors, SREBF1 and SREBF2, which are involved in the regulation of cholesterol synthesis
and low-density lipoprotein receptor (LDLR) gene expression. Again, hypomethylation of
the promoter regions is discussed to play a crucial role in the increase in cholesterol biosyn-
thesis under vitamin B12 deficient conditions [131], leading to elevated Aβ levels. Based on
these studies B-vitamins are discussed to reduce amyloid pathology by decreasing BACE1
and PS1 gene expression and decreasing cholesterol de novo synthesis [81]. This protective
effect of B-vitamins is further underlined by several clinical randomized controlled trials
showing the beneficial effects of B-vitamins in persons affected by MCI or AD [81,132–135].

Among phytochemicals, EGCG is discussed to reduce the amyloidogenic processing
of APP by inhibiting β-secretase activity in a cell-free system [136]. In vivo, prolonged ad-
ministration of EGCG to mice has been shown to down-regulate APP in the hippocampus,
suggesting that EGCG might reduce Aβ levels additionally by impairing APP gene expres-
sion [96]. Resveratrol, derived from a subclass of non-flavonoid polyphenols termed stil-
benes (mainly found in red grapes and red wine), is reported to possess anti-amyloidogenic
activity, reducing secreted and intracellular Aβ peptide levels in several cell lines express-
ing the APPswedish mutation [137]. The anti-amyloidogenic activity of resveratrol is
discussed to be attributed to an inhibitory effect on the activity of β-secretase as well as by
modulating the proteasome [137–139]. Furthermore, in vivo studies have demonstrated
that resveratrol decreases amyloid plaque formation, Aβ42 levels, BACE1 and APP levels
in Tg6799 mice expressing five familial AD mutations (5xFAD mice) [140] and decreases
the amount of insoluble Aβ in the hippocampus of AD rats [141]. Genistein, a naturally
occurring isoflavone primarily present in legumes, green peas, soybeans, and peanuts,
has been found to inhibit BACE1 through reversible non-competitive mechanism, thus
reducing Aβ generation [142]. Recently, Genipin, an aglycone isolated from the extract of
Gardenia jasminoides Ellis fruit, has been reported to decrease Aβ production by inhibiting
BACE1 expression in N2a cells expressing the Swedish mutant of APP [143]. Furthermore,
Lepidine B and E from Lepidium sativum have been suggested as potent inhibitors of
β-secretase BACE1 in a recent study [144]. Caffeine, that, like DHA, resulted in elevated
α-secretase activity, also decreased amyloidogenic APP processing by down-regulating
BACE1 gene expression and directly affecting β-secretase activity [99].
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Aβ Degradation

Total Aβ level is not only determined by the production of Aβ out of its precursor
APP but also strongly depends on its degradation by Aβ-degrading enzymes. An insulin-
degrading enzyme (IDE), a zink-metalloprotease, as well as neprilysin (NEP) have been
identified as the main enzymes involved in Aβ catabolism [145,146]. Several micronutrients,
including PUFAs, DHA, and EPA as well as medium-chain length fatty acids (MCFAs),
have been found to enhance Aβ degradation by affecting IDE [147,148] (Figure 1). DHA
has been reported to elevate the exosome release of IDE and to directly stimulate IDE
activity, leading to an increased Aβ degradation in the extracellular space [147]. EPA
also directly stimulates IDE activity, besides elevating gene expression of IDE. MCFAs
also directly elevate the activity of recombinant IDE and increase extracellular IDE levels,
whereas longer-chain length FAs resulted in an inhibited IDE activity [148]. Calcifediol
(25(OH) vitamin D3) as well as D3- and D2-analogous have been reported to elevate Aβ
degradation in mouse neuroblastoma cells [90]. The increase in Aβ degradation in presence
of vitamin D3 or analogous could be mainly attributed to an elevated expression of NEP
along with an increase in NEP activity. Calcifediol also elevated the protein level of
IDE [122]. In line with an increase in NEP expression and NEP activity in vitamin D-
supplemented cell culture experiments, a significant decrease in NEP expression and NEP
activity is reported for hypovitaminosis D mouse brains [122]. Vitamin D supplementation
(1,α25-dihydroxyvitamin D3, 42 I.U./kg for 21 days) also resulted in significantly elevated
NEP protein levels in aged rats [121]. In contrast, members of the vitamin E family,
tocopherols as well as tocotrienols, have been found to decrease Aβ degradation by affecting
IDE, leading to elevated Aβ levels [149,150].

The monoterpene Geniposide, a major iridoid glycoside of Gardenia jasminoides, has
been reported to elevate Aβ degradation. The intragastric administration of Geniposide
in streptozotocin-induced diabetic rats increased the expression of IDE and decreased
Aβ1-42 levels [151]. Similarly, Catalpol increased IDE expression and reduced Aβ levels in
mice injected with Aβ and D-galactose [152]. In addition, it has been shown that Catalpol
alleviates fibrillar Aβ1-42 induced disruption of the blood–brain barrier and enhances
soluble Aβ clearance [153].

Aβ Oligomerization, Aβ Aggregation and Aβ Fibrillogenesis

DHA as well as OA were identified as excellent inhibitors of Aβ40 and Aβ42 fib-
rillogenesis (~81–84% inhibition) in vitro by the use of fluorescence-based aggregation
kinetic experiments, transmission electron microscopy and molecular docking studies [154]
(Figure 1). EPA, α-linolenic acid (ALA) and AA also exhibit anti-aggregation properties,
although to a much lesser extent than DHA and OA [154]. Accordingly, DHA and AA at
micellar concentrations stabilized soluble Aβ42 wild-type protofibrils, preventing their
conversion to insoluble fibrils [155]. In contrast, fluorescence thioflavin-T-based assay and
electron microscopy studies found that trans fatty acids, which already elevate amyloido-
genic processing of APP, increase oligomerization and aggregation of Aβ in cell culture
studies [92]. B-vitamins, in addition to reducing amyloid pathology by decreasing PS1
and BACE1 gene expression and cholesterol de novo synthesis, have promising benefi-
cial properties in relation to Aβ fibrillogenesis and aggregation. Vitamin B12 inhibited
Aβ42 aggregation in a dose-dependent manner, significantly prevented the conversion
of Aβ42 from random coil to the β-sheet formation and reduced the hydrophobicity of
Aβ fibrils as well as the site of the aggregates [81,156]. A recent study further supports
the inhibitory effect of vitamin B12 on Aβ fibrillation. Vitamin B12 has been found to
significantly reduce Aβ fibril content by reducing the transition of Aβ oligomers to mature
fibrils [157]. Furthermore, in presence of synthetic neuronal membranes vitamin B12 has
been found to disaggregate preformed fibrils [157]. Besides vitamin B12, vitamin A and
provitamin A (β-carotene) inhibit oligomerization of Aβ and destabilize preformed Aβ
fibrils [158]. Using fluorescence spectroscopy with Thioflavin T and electron microscopy,
it was shown that vitamin A and β-carotene inhibited the formation of fibrillar Aβ from
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fresh Aβ and its extension in vitro in a dose-dependent manner [159]. In addition, retinoic
acid (vitamin A) decreased cellular toxicity by inhibition of Aβ42 oligomerization [160].
In vivo, retinoic acid attenuates Aβ deposition and rescues memory deficits in a transgenic
mouse model of AD [161]. A recent study by Joshi et al. further underlines the protec-
tive effect of vitamin A with respect to Aβ aggregation in vitro and in vivo [162]. The
authors found that vitamin A delayed Aβ42 aggregation in an in vitro screen based on
Thioflavin T, whereas α-tocopherol, a vitamin E metabolite, promotes the aggregation of
Aβ42. Combining vitamin A and vitamin E has no effect on Aβ42 aggregation. Transmis-
sion electron microscopy also revealed a reduction in Aβ42 fibrils in presence of retinoic
acid and an increase in Aβ42 fibrils in presence of α-tocopherol. As discussed in the section
on Aβ pathology, vitamin E, including α-tocopherol, must be considered an ambiguous
player in AD pathology. In animal models, protective effects could be found in relation to
Aβ pathology, whereas cell culture studies or in vitro studies revealed potential negative
properties [113,162]. However, the study by Joshi et al. further shows that vitamin A, as
well as vitamin E, have protective effects in a Caenorhabditis elegans model of AD. In this
AD model, Aβ42 is expressed in the body wall muscle cells, where it aggregates and results
in age-progressive paralysis. Upon treatment with vitamin A and vitamin E, a decrease in
Aβ42 aggregates/fibrils along with an increase in the total fitness of the worms compared
to untreated worms was detected [162]. Orally administered α-tocopherol also decreased
levels of Aβ oligomers in brains of APPswedish/PS1dE9 transgenic mice [112].

Several in vitro and in vivo studies indicate that curcumin, a yellow pigment in the
rhizome of turmeric (Curcuma longa) has anti-amyloidogenic properties [163]. In vitro stud-
ies have demonstrated that curcumin inhibits the formation and extension of neurotoxic
Aβ1-40 and Aβ1-42 fibrils from fresh Aβ in a dose-dependent manner and destabilizes
preformed fibrils to regenerate Aβmonomers [164–166]. Several molecular mechanisms
of the anti-amyloidogenic property of curcumin are discussed: (1) curcumin with its two
3,4-methoxyhydroxyphenyl rings connected by a short carbohydrate chain might be able
to specifically bind free Aβ and subsequently inhibit the polymerization of Aβ into Aβ
fibrils [164]; (2) curcumin might specifically bind to Aβ fibrils and might destabilize the
β-sheet-rich conformation of Aβ in Aβ fibrils [164]; (3) curcumin is able to bind to the
N-terminus (residues 5–20) of Aβ42 monomers and low molecular weight oligomers [167]
and to induce major structural changes in the Aβ1-42 aggregates [168]; (4) curcumin
molecules intercalate among the Aβ chains in the first step of Aβ aggregation and bind
tightly to them by hydrogen bonds and hydrophobic interactions, leading to less flexible
and more disordered amyloid structures [169]. In vivo, systemic treatment with curcumin
reduces pre-existing plaques in ~8-month-old APPswe/PS1dE9 mice, suggesting the ability
of curcumin to disaggregate Aβ deposits [170]. Besides stimulating α-secretase activity,
EGCG interferes with Aβ aggregation. EGCG binds weakly and non-specifically to Aβ
monomers, whereas it exhibits higher affinity to oligomers [171]. Electron microscopy
revealed that ECGC interferes with the early step of Aβ aggregation by forming spherical,
off-pathway aggregates, thus inhibiting secondary nucleation of Aβ [171,172]. Recently, it
has been shown, that EGCG is also able to disassemble preformed Aβ fibrils. ECGC has
been reported to disrupt Aβ protofibrils by forming π-π and hydrogen bonding interac-
tions [173,174]. Additionally, a recent meta-analysis of 17 studies in AD animal models
showed that EGCG can reduce Aβ pathology through anti-aggregating activity in combina-
tion with anti-inflammatory and antioxidant properties [175]. The isoflavone genistein also
prevents the formation of Aβ aggregates by directly binding to Aβ25-35 fragments [176].
Antifibrillogenic activity has been also reported for Gingko biloba. The standardized extract
from the leaves of Gingko biloba tree, EGb761, prevented β-amyloid fibril formation in solu-
tion in vitro as well as in the conditioned medium of neuroblastoma cells stably expressing
the Swedish mutant APP and the exon-9 deletion mutant PS1 [177].
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2.1.2. Tau Pathology

Besides the described protective properties of B-vitamins with respect to Aβ pathology,
B-vitamins also improve Tau pathology through various molecular mechanisms (Figure 2).
Homocysteine-induced changes in Tau hyperphosphorylation could be reduced by simulta-
neous supplementation of folate and vitamin B12 in rats [129]. In line, supplementation of
folate and vitamin B12 alleviates hyperhomocysteinemia-induced Alzheimer-like patholo-
gies, including Tau hyperphosphorylation, in the rat retina [130]. In this context, it has to be
mentioned that in the retina, an outgrowth of the developing brain, tau hyperphosphoryla-
tion as well as Aβ accumulation are observed in early AD stages [178]. The homocysteine-
induced Tau hyperphosphorylation in the hippocampi of rat brains could be ascribed to
an inhibition of protein phosphatase 2A (PP2A) involved in Tau dephosphorylation [179].
Tau hyperphosphorylation and PP2A inhibition could be significantly antagonized by the
simultaneous supplementation of folate and vitamin B12, indicating that B-vitamins elevate
PP2A activity, leading to Tau dephosphorylation [129,179]. Furthermore, B-vitamins are
discussed to inhibit several kinases involved in Tau phosphorylation, including glycogen
synthase-3β (GSK-3β), cyclin-dependent kinase-5, C-jun N-terminal kinase, extracellular
signal-regulated kinase and p38MAPK [129]. In addition, Tau polymerization in presence
of vitamin B12 is inhibited by the direct binding of vitamin B12 to cysteine residues of
Tau [180]. DHA has also been found to reduce Tau hyperphosphorylation by inhibition of
kinases involved in Tau phosphorylation. DHA suppressed traumatic brain injury-induced
tau hyperphosphorylation by inhibiting c-jun N-terminal kinases, improving neurological
function [181]. The influence of PUFAs on c-jun N-terminal kinase could also be shown by
the dietary treatment of 3xTg AD mice [104]. Dietary DHA treatment significantly reduced
the steady state level of Tau protein after three months. After six months somatodendritic
tau accumulation was significantly reduced in 3xTg AD mice, fed with a diet containing
DHA alone or in combination with the n-6 PUFA docosapentaenoic acid (DPA). Mice fed
the DHA-DPA diet revealed a reduction in phosphorylated c-Jun N-terminal kinase which
correlated with reduced levels of early stage phosphor-tau epitopes. The n-3 PUFA DHA
also inhibited c-Jun N-terminal kinase and phosphorylation of Tau in cultured hippocampal
neurons and in 3xTg AD mice [182]. Treatment of 3xTg AD mice on a high-fat diet with fish
oil or curcumin or a combination of both for 4 months reduced phosphorylated JNK and
phosphorylated Tau. Furthermore, DHA-containing phosphatidylcholine showed a reduc-
tion in phosphorylated Tau in Aβ25-35-induced AD rats [183]. DHA has also been reported
to inhibit GSK-3β phosphorylation and the phosphorylation of Tau proteins in APP/PS1
wildtype mice fed with DHA (400 mg/kg once daily for 2 months), thus inhibiting tau
protein neurofibrillary tangle formation in the hippocampi of these mice [184]. Moreover,
DHA treatment attenuated increased levels of hippocampal tau phosphorylation in rats
fed with a high-fat diet, suggesting that DHA protects against the neurotoxic effects of
phosphorylated Tau [185]. Notably, a recent study by Zussy et al. shows that the intranasal
administration of nanovectorized DHA decreases the phosphorylation of Tau and restores
cognitive functions in two complementary AD murine models, paving the way for the
development of new approaches to prevent or treat AD [186].

Besides DHA, recent findings propose beneficial properties of vitamin D or vitamin D
analogues with respect to tau pathology. Activation of the vitamin D receptor (VDR) by
paricalcitol, a specific agonist of the VDR, reduced phosphorylation of Tau at Ser396 and
Thr181 sites via inhibiting GSK-3β phosphorylation in APP/PS1 transgenic mice [187].
Maxacalcitol, an active vitamin D analogue, significantly decreased hyperphosphorylation
of MAPK-38, ERK1/2 and tau proteins in experimental AD in rats [188]. In addition to the
repressive effect of vitamin D on kinases involved in Tau phosphorylation subcutaneous
injection of vitamin D (1,α25-dihydroxyvitamin D3) for 21 days in rats resulted in a 29% in-
crease in PP2A activity in hippocampal tissue [189]. In line with the elevated PP2A activity,
Tau phosphorylation in the hippocampus was reduced in aged rats after vitamin D adminis-
tration, including pre-neurofibrillary tangle phospho-tau protein (pThr231), intraneuronal
neurofibrillary tangle phospho-tau protein (pSer214), and extracellular neurofibrillary
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tangle phospho-tau protein (pSer404). 1,25(OH)2D3 also alleviates Aβ25-35-induced Tau
hyperphosphorylation in SH-SY5Y cells [190]. Notably, a recent cross-sectional, explo-
rative study investigating possible associations of vitamin D in CSF with biomarkers for
AD, including tau protein and phosphorylated tau protein, revealed that higher levels of
25(OH) vitamin D were significantly associated with lower levels of tau protein as well as
phosphorylated tau protein [191].

Biomedicines 2022, 10, x FOR PEER REVIEW 14 of 58 
 

 

Figure 2. Influence of nutritional components on tau pathology. PUFA: polyunsaturated fatty acid. 

DHA: docosahexaenoic acid. 

2.1.3. Oxidative Stress 

Oxidative stress, which can be defined as an imbalance between the formation of ox-

idant species and insufficient antioxidant defense [202], appears to be another hallmark 

of AD pathology. For example, a study analyzing human postmortem brain samples 

demonstrated that compared to non-demented control individuals, oxidized lipid and 4-

hydroxy-nonenal (HNE) levels were significantly increased in brain samples from PwAD. 

This negatively affected Aβ levels [86]. Moreover, the levels of hydrogen peroxide, a major 

reactive oxygen species (ROS), were detected to be increased in the brains of PwAD com-

pared to healthy controls and can be influenced by Aβ peptides [203-205]. It is discussed 

that the overproduction of ROS due to mitochondrial damage occurs earlier than the Aβ 

pathology or clinical symptoms [206]. Oligodendrocytes are the cells in the central nerv-

ous system that may contribute to oxidative stress due to their reduced glutathione levels 

compared to other brain cells [207]. Oligodendrocytes are the exclusive location for mye-

lin-formation in the central nervous system. Impaired function of this cell type, e.g., due 

to oxidative stress, can lead to demyelination. This, in turn, reduces the action potential 

time of neurons and thereby worsens the cognitive decline in PwAD [208]. 

The before-mentioned mechanisms are representative reasons why antioxidants, 

which prevent and reduce free radical-mediated damage in neuronal cells, are important 

for the prevention and treatment of AD. Based on this, different pharmacological thera-

pies are currently discussed [209]. In the following paragraph, some antioxidants from 

food sources and their potential impact on AD pathology due to oxidative stress are pre-

sented (Figure 3). One important antioxidant is vitamin E, which might also have benefi-

cial effects on AD pathology due to its neuroprotective properties [210]. Vitamin E occurs 

in various forms in natural food (four tocopherols and four tocotrienols), of which α-to-

copherol represents the most abundant and bioavailable antioxidant in humans [211]. 

Foods rich in vitamin E are for example vegetable oils, various nuts, seeds, or green leafy 

vegetables. On a molecular level, vitamin E can be classified as a lipophilic antioxidant 

Figure 2. Influence of nutritional components on tau pathology. PUFA: polyunsaturated fatty acid.
DHA: docosahexaenoic acid.

Vitamin E also exerts protective effects with respect to Tau pathology. Primary cul-
tures of rat cortical neurons incubated with 5 µM β-amyloid peptide cause an oxidative-
stress-induced activation of p38 MAPK, leading to tau hyperphosphorylation [192]. The
Aβ-induced effects were prevented when neurons were co-incubated with Trolox, the
water-soluble analog of vitamin E. Furthermore, high level of phosphorylated p38 MAPK
in the hippocampus of APP/PS1 transgenic mice could be prevented by feeding mice
with a diet supplemented with vitamin E [192]. Vice versa, dietary deficiency in vitamin E
and folate under conditions of oxidative stress increased phospho-tau levels in mice ex-
pressing human apolipoprotein E4 (associated with increased risk of AD) [193]. A recent
study investigated the effects of vitamin D and E on an insulin-resistant model induced in
SK-N-SH neuronal cells, hypothesizing that treatment with vitamin D and E would reverse
the effects of AD and improve insulin signaling [194]. Besides the improvement of the
insulin signaling pathway upon vitamin D treatment, vitamin D significantly decreased
GSK3β and Tau expression levels. Vitamin E alone as well as the combination of vitamin D
and E also reduced GSK3β and Tau. In contrast to the proposed beneficial properties
of DHA, vitamin B12, vitamin D and vitamin E, vitamin A (retinol) supplementation to
human neuroblastoma cells elevated tau phosphorylation at Ser396 [195].

The polyphenol EGCG also exerts potential protective effects in respect to Tau pathol-
ogy in addition to its protective effects regarding Aβ pathology. EGCG reduces sarkosyl-
soluble phosphotau isoforms in TG2576 mice [196]. It is therefore discussed to decrease
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phospho-tau by direct binding and inhibition of heat shock protein 90 (HSP90), reported to
be involved in the phosphorylation status of Tau [197]. Furthermore, Geniposide attenuated
Tau hyperphosphorylation by reducing GSK-3 enzyme activity in streptozotocin-treated
rats and mice [198,199]. Beside affecting GSK-3 geniposide has been reported to decrease
Tau hyperphosphorylation and Aβ42 generation due to increased leptin signaling [200,201].
A recent study further demonstrates the potential beneficial effect of Genipin with respect
to tau hyperphosphorylation and Tau fibril formation [143]. In this study, Genipin has
been found to bind to Tau and to protect against heparin-induced Tau fibril formation.
Additionally, Genipin downregulates the expression of the Tau-kinases CDK5 and GSK-3β
in Tau-overexpressing cells.

2.1.3. Oxidative Stress

Oxidative stress, which can be defined as an imbalance between the formation of
oxidant species and insufficient antioxidant defense [202], appears to be another hallmark
of AD pathology. For example, a study analyzing human postmortem brain samples
demonstrated that compared to non-demented control individuals, oxidized lipid and
4-hydroxy-nonenal (HNE) levels were significantly increased in brain samples from PwAD.
This negatively affected Aβ levels [86]. Moreover, the levels of hydrogen peroxide, a
major reactive oxygen species (ROS), were detected to be increased in the brains of PwAD
compared to healthy controls and can be influenced by Aβ peptides [203–205]. It is dis-
cussed that the overproduction of ROS due to mitochondrial damage occurs earlier than
the Aβ pathology or clinical symptoms [206]. Oligodendrocytes are the cells in the central
nervous system that may contribute to oxidative stress due to their reduced glutathione
levels compared to other brain cells [207]. Oligodendrocytes are the exclusive location
for myelin-formation in the central nervous system. Impaired function of this cell type,
e.g., due to oxidative stress, can lead to demyelination. This, in turn, reduces the action
potential time of neurons and thereby worsens the cognitive decline in PwAD [208].

The before-mentioned mechanisms are representative reasons why antioxidants, which
prevent and reduce free radical-mediated damage in neuronal cells, are important for the
prevention and treatment of AD. Based on this, different pharmacological therapies are
currently discussed [209]. In the following paragraph, some antioxidants from food sources
and their potential impact on AD pathology due to oxidative stress are presented (Figure 3).
One important antioxidant is vitamin E, which might also have beneficial effects on AD
pathology due to its neuroprotective properties [210]. Vitamin E occurs in various forms in
natural food (four tocopherols and four tocotrienols), of which α-tocopherol represents the
most abundant and bioavailable antioxidant in humans [211]. Foods rich in vitamin E are
for example vegetable oils, various nuts, seeds, or green leafy vegetables. On a molecular
level, vitamin E can be classified as a lipophilic antioxidant that protects membranes from
free radical-mediated oxidative damage [212]. The antioxidative properties of vitamin E are
based on a hydroxyl group in its phenolic group on the chromanol ring, which can donate a
hydrogen atom to neutralize free radicals, including ROS [213]. Besides α-tocopherol, also
for α-tocotrienol, the most abundant form of the tocotrienol family, which is characterized
by the unsaturated side chain, a reducing influence on the generation of ROS could be
detected in human neuroblastoma cells [150]. Furthermore, in an animal study using a
transgenic AD model, vitamin E was able to reduce lipid peroxidation [111]. Regarding
human clinical or epidemiological studies there are only limited and inconsistent data
available analyzing the role of vitamin E alone regarding oxidative stress [210]. Moreover,
most of these kinds of studies used a combination of different nutrients or antioxidants,
which will be discussed later.
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A further fat-soluble vitamin with antioxidative properties is vitamin D. This secos-
teroid might mediate its beneficial influence on oxidative stress via transcriptional regula-
tion involving the intracellular vitamin D receptor. It is reported that Vitamin D prevents
oxidative stress-related oxidation of proteins and lipids as well as DNA damage by the facil-
itation of balanced mitochondrial activities [214]. On a cellular level, it was shown recently
that the active form of vitamin D (1,25(OH)2 vitamin D3) can modulate Aβ-induced ROS by
scavenging intracellular ROS [190]. Moreover, similar findings regarding the antioxidant
potential of vitamin D were obtained in animal studies [215]. In line with this, increased
oxidative stress was reported in an AD mouse model fed with a vitamin D-deficient diet
for 13 weeks. Along with this, enzymes such as superoxide dismutase 1 (SOD1), glu-
tathione peroxidase 4 (GPx4) or cystine/glutamate exchanger (xCT) were reported to be
downregulated under these conditions [216].
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In addition to fat-soluble vitamins, a positive influence on oxidative stress has also
been reported for water-soluble vitamins. For example, vitamin B12 was recently shown
to protect against the ROS-mediated oxidation of lipids in a cell model. Especially plas-
malogens were protected from hydrogen peroxide-induced oxidative stress in the presence
of vitamin B12. This was mediated by an increased expression of superoxide-dismutase
(SOD) and catalase (CAT), two ROS-degrading enzymes. Furthermore, the transcription of
alkylglycerone phosphate synthase (AGPS) and choline phosphotransferase 1 (CHPT1), two
enzymes involved in the plasmalogen synthesis, was also elevated under oxidative stress
conditions in the presence of vitamin B12 [217]. Besides vitamin B12, a recent study re-
ported that vitamin C decreased oxidative stress and DNA damage caused by brain surgery
(laparotomy) in an APP mouse model [218]. Vitamin C is known to have antioxidant
effects [73]. On a structural level, this could be explained by its vulnerability to providing
an electron for oxidizing radicals [219]. Moreover, Vitamin C has synergistic effects with
vitamin E in the protection of low-density lipoprotein from oxidative damage [220]. In line
with this, a study using a mouse model with a knockout of a neuronal vitamin C transporter
to generate a vitamin C deficiency reported elevated oxidative stress in the brain cortex and
reduced total glutathione in comparison to wild-type mice [221]. Moreover, supplementa-
tion of vitamin C (3.3 g/l) was able to prevent abnormal mitochondrial morphology found
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in vitamin C deficient 5x FAD mice [222]. Along with these findings in animal studies, a
meta-analysis found a lowered relative risk (0.83 with 95% CI 0.72 to 0.94) for AD when
vitamin C was consumed in the diet [223].

Regarding plasmalogens, it should be mentioned that this lipid class has an impact on
the generation and caused damage to oxidative stress itself. This is due to characteristic
moieties in their unique chemical structure: plasmalogens have a vinyl-ether bond at the
sn-1 position of the glycerol-backbone, which makes them highly susceptible to oxidation.
Furthermore, they have bound PUFAs at the sn-2 position frequently, which are also vulner-
able to oxidative stress [224]. Analysis of cerebral cortex homogenates of rats under induced
oxidative stress confirmed that plasmalogens are highly sensitive to oxidative stress. This
was demonstrated, for example, by the 70% decrease in plasmalogens after 90 min of UV
irradiation [225]. These and other findings suggest plasmalogens as antioxidant molecules,
as the vinyl ether bond could be the first target for newly formed radicals.

Moreover, the beneficial effects of ginger, which has numerous medical properties, and
its biologically active components including, among others, gingerols, shogaols, paradols,
and zingerone, regarding AD were reported. It was reported in vitro, for example, that
ginger extracts were able to prevent lipid peroxidation in rat brains [226]. In neuroblastoma
cells, pretreatment with [227]-gingerol prevented the Aβ25-35-induced disruption of the
mitochondrial membrane potential and effectively inhibited the accumulation of ROS
by restoring endogenous antioxidant glutathione levels and upregulating the expression
of antioxidative enzymes [228]. Moreover, also for [6]-shogaol it could be shown, that
this component of ginger could recover an increased ROS production induced by H2O2
treatment in vitro [229].

Another nutritional factor with anti-oxidative properties is flavonoids. For example,
for the natural isoflavone puerarin, an alleviation in oxidative stress was reported in an
AD mouse model [230]. It seems to be unlikely that flavonoids represent direct ROS
scavengers due to their low circulating concentrations in the brain [231]. More likely is
the modulation of pathways, that include for example pro-survival signaling molecules
such as Akt/protein kinase B, p38 mitogen-activated protein kinase or c-jun N-terminal
kinase [232]. An additional mechanism of action was described in vitro and comprises the
activation of transcription factors, such as Nrf2 or PPARγ [233].

Oxidative stress can, among others, lead to inflammation by the activation of microglia
and astrocytes, which results in the release of pro-inflammatory cytokines. Inflammation,
along with Aβ- and tau-pathology is a further hallmark of multifactorial AD and may also
contribute to and exacerbate this neurodegenerative disorder. Due to this, the following
paragraph is going to present the influence of nutritional components on inflammatory
processes related to AD.

2.1.4. Inflammation

A further contributor to the development and exacerbation of AD is inflammation,
which is mediated by astrocytes and microglia in the brain. Microglia are considered the
major source of pro-inflammatory cytokines such as IL-6, IL-1β or TNF-α. These cytokines
are important for the regulation and initiation of the inflammation process including the
migration of leukocytes and immune cells.

In the study mentioned above, it was found in the mouse model that, due to vitamin D
malnutrition, increased inflammatory stress in form of promoted glial activation and signif-
icantly increased secretion of inflammatory factors (IL-1β, IL-6, and TNFα) developed [216]
(Figure 4). Another recent study, using vitamin D-deficient mouse brains for genomics
analysis, reported a significantly increased expression of Casp4, a gene encoding caspase-4,
which is part of the innate immune response [234]. Microglial caspase-4 expression is
suggested to contribute to cognitive impairments in AD, such as hippocampal synaptic
plasticity [235]. On a molecular level, it could be shown in human neuroblastoma cells
that a supplementation of vitamin D and its analogues is able to tendentially decrease the
levels of IL-1β [90]. Moreover, for acitretin, a derivate of the fat-soluble vitamin A, which is
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known to mediate anti-inflammatory properties [236], an immune stimulatory effect was
shown in the 5xFAD mouse model and human CSF [237].

With respect to water-soluble vitamins, a randomized controlled trial reported de-
creased inflammation due to the supplementation of folic acid (vitamin B9). In a study
including 120 people, a six-month treatment with 1.25 mg folic acid per day resulted in
significantly lowered levels of TNF-α mRNA in participants of the intervention group
compared to those of the control group. Based on these findings, the authors suggested
inflammation as an essential player in the association between folic acid and AD [238].
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Similar findings were obtained for plasmalogens on the cellular level recently. Pretreat-
ment of human neuroblastoma cells with eicosapentaenoic acid-enriched ethanolamine
plasmalogen in a neuroinflammation model, generated with help of conditioned medium
from lipopolysaccharides-induced BV2 cells, resulted in the reversal of increased nitric
oxide and TNF-α levels as well as of the reduced IL-10 levels [239]. Regarding lipids and
fatty acids, a study found new evidence for the molecular mechanisms through whichω-3
fatty acids, EPA and DHA, may exert their known anti-inflammatory and neuroprotective
properties [240]. A pre-treatment of human hippocampal progenitor cells with EPA or
DHA prevented the decrease in neurogenesis and the increase in apoptosis, which both
were induced by treatment with IL-1β, IL-6 and interferon-α (IFN-α) [241]. Moreover, a
further study indicates another possible underlying mechanism since ω-3 PUFAs were
found to attenuate the inflammation-induced hyperactivity of the immunoproteasomes
in astrocytes [242]. In a rat model, the supplementation of EPA was able to normalize
the IL-1β-induced elevation in TNF-α expression and thereby mediate beneficial effects
regarding inflammatory processes [243].
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Additionally, for some bioactive components of ginger beneficial effects regarding
neuroinflammation were reported. For example, it could be shown that [6]-shogaol exerts
anti-inflammatory influences by inhibiting the microglia-mediated production of proin-
flammatory cytokines (IL-1β, TNF-α) in vitro [244]. Similar findings were obtained in the
brain of animal models of dementia, where treatment with [6]-shogaol was reported to
play a role in inhibiting glial cell activation [245]. Moreover, ginger extract can inhibit
Aβ-induced expression of proinflammatory genes, including TNF-α, COX-2, or IL-1β in a
human monocytic cell line sharing properties with human microglial cells [246].

Regarding the numerous beneficial effects of flavonoids on neuroinflammation [247], it
was for example recently reported, that genistein, an isoflavone abundant in soy, mediates
its inhibitory effects on LPS-induced expression of TNF-α, IL-1β or IL-6 via the activation
of a G protein-coupled estrogen receptor (GPER) [248]. Animal studies found the natural
flavonoid eriodictyol, to regulate inflammatory mediators and cytokines via the NF-κb and
MAPK pathways [249].

In the context of potential neuroprotective agents, phytochemicals should not be
disregarded as they have, for example, beneficial effects on the neuroinflammatory cas-
cade. With regard to AD pathology, alkaloidal phytochemicals, such as caffeine, berberine,
huperzine A, galantamine, sophocarpidine, or nicotine, are of interest, among others, be-
cause of their neuroinflammatory properties, as recently reviewed [250]. Besides these
nutritional approaches, the gut microbiota has become a new potential target to alleviate
neuroinflammatory processes in AD, in recent years [251].

2.1.5. Multicomponent Nutritional Interventions

Regarding nutritional interventions, more and more evidence arises that combined
dietary components show synergistic beneficial actions with respect to AD pathology.
For example, it could be shown in an AD mouse model that the dietary vitamin E status
influences the benefits of fish oil supplementation. With respect to oxidative stress, a dose-
dependent attenuation was observed, expressed as modulatory effects on the antioxidant
system [252]. A recent in vitro study found a preventive effect of the Fortasyn Connect
multi-nutrient combination on reactive astrogliosis. This combination of DHA, EPA, uri-
dine monophosphate, choline, phospholipids, folic acid, vitamins B12, B6, C, and E, and
selenium, was able to prevent the reactive astrogliosis typical molecular and morphological
changes that were induced by pro-inflammatory cytokines TNF-α and IFN-γ [253]. More-
over, in another study, various transcriptional patterns were detected in blood samples of
participants having a diet supplemented with olives (olive oil), nuts (MUFA, PUFA, fibers,
vitamin E), or fish (ω-3 fatty acids) according to the Mediterranean diet. Compared to
controls, several genes were found to be differentially expressed and those were associated
with inflammation, as for example IL-8, STK17B, or RGS1 [254]. In summary, the current
literature suggests a combination of vitamins (vitamin D, vitamin B complex), fatty acids
(the ω-3 fatty acids DHA and EPA), flavonoids (e.g., resveratrol), alkaloids (e.g., caffeine),
and polyphenols (e.g., curcuminoids) as nutritional supplements for PwAD [255].

Based on the before presented findings regarding the beneficial potential of some
nutritional components in the context of AD, clinical studies were performed, using the
daily medical food Souvenaid (Nutricia Advanced Medical Nutrition), which contains a
combination of DHA, EPA, phospholipids, choline, uridine monophosphate, folic acid,
selenium, and the vitamins B12, B6, C, and E (Fortasyn Connect) [256]. For example, using
APPswe/PS1DE9 transgenic mice, it has been demonstrated that diet can be considered a
modifiable risk factor for prodromal and early AD. A 3-week intervention of a diet with
Fortasyn was able to elevate markers of cholinergic synapses and to improve muscarinic
neurotransmission in this transgenic AD mouse model [257]. Based on these promising
findings, the first non-pharmacological intervention study, the LipiDiDiet trial, was per-
formed. This double-blind and multicenter RCT was designed to analyze the influence
of Fortasyn Connect on cognitive performance in prodromal PwAD. The readout was
assessed using a neuropsychological test battery [258]. In 2021, the results of the 36-month



Biomedicines 2022, 10, 2922 19 of 51

intervention from 81 (36 control and 45 active) participants at the prodromal stage of AD
from eleven study sites in Sweden, Finland, the Netherlands, and Germany were published.
They reported significant reductions in the decline in cognition, memory, brain atrophy and
AD progression. In summary, these findings indicate that the duration of the intervention
as well as their starting point regarding the disease stage are crucial for their success [259].

Indications for the beneficial role of the combined intervention strategies regarding
the progression of AD are also given by animal studies. For example, a recent study using
a rat model, in which AD was induced by administering 70 mg/kg aluminum chloride
via intraperitoneal injection for five weeks, reported that natural antioxidants enhance the
effect of mental and physical activities. This was evident from the fact that the weekly
expose to physical and mental activities combined with a treatment of 10 mg/kg EGCG
(intraperitoneal injection), 400 mg/kg Vitamin C (per os), 100 mg/kg Vitamin E (per
mouth) and 1 mg/kg selenium (per os) elevated the levels of total antioxidant capacity,
superoxide dismutase (SOD), brain monoamines as well as the brain-derived neurotrophic
factor (BDNF). Moreover, Aβ-, tau- or β-secretase levels were found to be reduced under
these intervention conditions [260].

2.2. Physical (in)Activity and Alzheimer’s Disease

The extent, volume and intensity of physical (in)activity are closely related to health
or illness, well-being and quality of life.

Physical inactivity has become one of the leading health risk factors globally, long
underestimated, ranking among the frontrunners both in terms of attributable contribution
to total deaths and DALY burden (DALY: disability-adjusted life years) [261]. Physical
inactivity leads to a significant reduction in life expectancy and quality of life, as well as a
marked increase in the likelihood of occurrence of many non-communicable diseases such
as cardiovascular disease, type 2 diabetes mellitus and cancer [262,263]. Among the risk
factors linked to dementia or AD, lack of physical activity plays a key role in increasing the
prevalence of the disease [264].

In order to counteract the negative consequences of an inactive lifestyle, targeted
promotion of physical activity is therefore of great importance for the physical health of
PwAD, moreover, it has a positive effect on mental health and cognitive function [26].
Understanding the mechanisms behind the beneficial effects of physical activity and how
physical activity can exert neuroprotective actions on the central nervous system are goals
that have not yet been achieved. Rody et al. (2022) reiterate that the disease must be treated
in the early stages, before symptoms appear, and that the combination of multiple healthy
lifestyle factors can be a promising strategy. The same authors warn that physical activity
in patients with cognitive decline or AD is a challenge and becomes more challenging
when mobility problems are associated. In this case, the adherence and engagement of
these individuals to long-term treatments can be, for example, maximized with virtual
reality-based physical activity with exergames. However, more studies are needed to
indicate the benefits of this type of treatment.

A meta-analysis by Aarsland et al. (2010), which included a total of 24 longitudinal
studies involving 1378 people with vascular dementia, showed a significantly reduced
risk of 0.62 (95% CI 0.42 to 0.92) for developing vascular dementia in physically active
individuals [227].

Further studies have also found a preventive effect of regular physical activity in
relation to the development of AD (summarized by Pedersen and Saltin, 2015 [265]). These
findings are indirectly supported by a study by Nyberg et al. (2014), which found that
low cardiovascular fitness was associated with an up to a 7-fold increased risk (HR 7.34,
95% CI 5.08 to 10.58) for early onset dementia. The greatest risks for early onset dementia
and cognitive impairment were found in individuals with low cardiovascular fitness and
low cognitive performance [266].

Several studies also investigated the effectiveness of regular physical activity in people
with dementia or AD. A Cochrane review by Forbes et al. (2015) found evidence of the ben-
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efit of physical activity in improving cognitive performance in people with dementia [267].
The mean difference between the intervention and control groups was 0.43 (95% CI −0.05
to 0.92, p = 0.08). Positive significant effects of physical activity were found in relation
to the performance of activities of daily living (ADL) in people with dementia. The pre-
dictable standardized mean difference between the control and intervention groups was
0.68 (95% CI 0.08 to 1.27, p-value 0.02). Furthermore, a reduction in burden was found for
caregivers monitoring the participation of a family member with dementia in a physical
activity program. The mean difference between the control and intervention groups was
−15.30 (95% CI −24.73 to −5.87; p = 0.001).

A study by Kemoun et al. (2010) found an improvement in cognitive function in older
people with dementia who participated in physical training for 15 weeks [268]. In contrast,
participants in the control group experienced a decline in cognitive function. A similar
result was seen regarding walking ability (walking speed and step length), which also
improved in the intervention group, while it deteriorated in the control group. Positive
effects of physical activity in relation to physical functions in older people with dementia
were also found by Rolland et al. (2007) [269] and Steinberg et al. (2009) [270].

Furthermore, there is evidence that physical activity also has a positive effect on
cognitive function in people with cognitive impairment but without dementia [271,272].
Erickson et al. (2011) also found a positive effect of physical activity on hippocampal
volume [273].

Overall, it can be stated that there is good evidence for the effectiveness of the physical
activity, especially regarding the prevention of dementia. The same applies to the effects of
physical activity in people with dementia in relation to physical functions such as walking
ability [265]. Physical activity might also have positive effects on the general function of
PwAD [274].

Physical activity appears to have a direct positive impact on brain structures as well as
indirectly reducing the risk of dementia via improved cardiometabolic functions. Another
major advantage of physical activity is that virtually no risks or side effects have been
identified and that individually adapted physical activities can be performed safely and
with low risk [265,275].

The homeostasis of mitochondrial function appears to be linked to neural plasticity and
the effects of physical activity. Sun et al. (2022) summarized the evidence in a review study
where they point out that preventive physical activity for psychiatric and neurodegenerative
disorders is efficient due to its effect on mitochondrial and neurogenic functions [276]. The
effects of physical activity on neural and metabolic properties are not yet fully understood,
but there is strong evidence that physical activity might decrease the inflammatory process,
strength the neurogenesis and induce neuroprotective effects [276,277].

Against this background, physical activity also ranks highly in the World Health
Organization (WHO) recommendations for dementia prevention [278] and is strongly
recommended. Besides physical activity, there is only a strong recommendation for tobacco
cessation. Conditional recommendations include a Mediterranean-like diet, interventions
to treat alcohol use disorders, cognitive training, weight management, management of
hypertension, management of diabetes and management of dyslipidemia (Table 1). Interdis-
ciplinary cooperation is essential for progress in this field. As evidence, Chen et al. (2022)
found that most publications that study physical activity and AD involve neuroscience,
geriatrics, sports sciences, psychology, and rehabilitation [279].
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Table 1. WHO recommendations for risk reduction in cognitive decline and dementia (source: own
illustration according to World Health Organization, 2019).

WHO Recommendations

Strong recommendation
- Physical activity (aerobic, resistance training or multicomponent
physical activity)
- Tobacco cessation

Conditional
recommendation

- Mediterranean-like diet
- Interventions to treat alcohol use disorders
- Cognitive training
- Weight management
- Management of hypertension
- Management of diabetes
- Management of dyslipidaemia

In fact, several authors confirm that there is no sufficient evidence regarding the dif-
ferent types of physical activity, the different intensities, durations and frequencies, or the
related mechanisms [26,279]. Nevertheless, different types of physical activities are recom-
mended, including single strength and endurance training, but also multidomain training
programs [280–283]. Endurance training might be particularly effective and produces
greater effects than strength training. However, the optimal dose or specific dose–response
relationships are still poorly understood and thus not well defined or derivable. Good
randomized controlled trials should be conducted to define these parameters and assess
the effects at different stages of the disease.

According to the current activity recommendations of the WHO (2020) for adults
(aged 18–64 years) and for older adults (65 years and older), suggesting moderate-intensity
aerobic physical activity for at least 150–300 min or 75–150 min of vigorous-intensity aerobic
physical activity or a comparable combination of moderate- and vigorous-intensity activity
throughout the week, would be necessary to bring substantial health benefits. Further,
they recommend that muscle-strengthening activities should be practiced at moderate or
greater intensity, including all major muscle groups on two or more days a week. In order
to enhance functional capacity and prevent falls in older adults (65 years and older), it is
recommended to incorporate in the lifestyle a diverse multicomponent physical activity
on three or more days a week that emphasizes functional balance and strength training
at moderate or greater intensity [284]. A recent review suggests that combined muscle
strength, balance and motor function training can improve postural stability in older adults
with AD and reduce cases of falls [285]. However, this type of training does not seem to
be different for elderly people without AD. More studies should be carried out to identify
whether these individuals have different physiological and biomechanical dysfunctions
related to falls compared to healthy elderly people.

Although many steps have been taken in this field, there are still many open questions
regarding physical activity and AD. Multidisciplinary work should be encouraged and
treatment and prevention strategies should be designed considering the multidomain
aspect of the disease.

2.3. Cognition-Oriented Treatments

COT are aimed at improving and/or maintaining cognitive processes of daily life
functions to warrant participation as long as possible [7,22,286]. COT comprise three
components, differing in the addressed focus of intervention: cognitive training, cogni-
tive stimulation, and cognitive rehabilitation. While cognitive training (CT) is directed at
restoring specific cognitive abilities such as memory, attention or problem solving through
repeated practice of standardized tasks [7,25,286], cognitive stimulation (CST) can be re-
garded as a psychosocial intervention, mostly organized in group sessions [24,286,287].
Cognitive skills (language, memory, executive functions) are implicitly addressed in non-
specific tasks to trigger executive functions, language, and social interaction [7,24,287–290].
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Cognitive rehabilitation (CR) is a person-centered approach, focusing on individual needs
and goals to manage everyday activities and is mostly offered as an individual intervention.
Characteristically, people with dementia are involved in goal setting and support for carers
is offered [1,2,7,24,25,291,292]. The underlying mechanisms of effective COT are ascribed to
the use of cognitive reserve, enabling people with AD to maintain functions despite evident
disease pathology [2,293–297]. Results of an functional magnetic resonance imaging study
confirmed that despite a significant reduction in grey matter volume CST led in comparison
to usual treatment to an increase in resting-state default mode network connectivity in the
posterior cingulate cortex and bilateral parietal cortices in PwAD [295].

Thus far, numerous reviews on the topic of COT with varying focus but promising
results to maintain cognitive health in dementia were published [1,7,25,286,290,298]. In
a recently issued overview of 46 systematic reviews on the effectiveness of COT in older
adults on cognitive and non-cognitive outcomes, 23 reviews referred to MCI and the
dementia population [25]. Overall, CT was associated with small mean effect size estimates
on cognition in MCI (n = 5; Hedges’ g = 0.40) and dementia (n = 7; 0.38). No general
statement could be made about the effectiveness of a computerized CT, compared to
active or inactive controls, on cognitive function in adults with MCI [293]. In terms of
psychosocial outcomes, there were heterogeneous results for MCI and no benefits for
dementia. CST in dementia led to small mean effect size estimates on cognition (n = 5; 0.32)
and on psychosocial outcomes (n = 4; 0.26). Compared to CT and CST, there are only
few studies that focus on CR since achieving personalized daily living goals is difficult to
assess in RCTs. Nevertheless, some trials exist. They demonstrated, for example, significant
improvements in participants’ and informants’ ratings of attaining personally relevant
everyday goals in early stage dementia [299] as well as reduced functional decline and delay
in institutionalization [300]. Since there is an urgent need for approaches targeting daily
functioning and its assessment, CR has recently gained increasing attention [2,299,301].

All in all, the included studies exhibited high heterogeneity in reported results and low
to moderate methodological quality. Thus far, functional ability and caregiver outcomes
have been poorly addressed [25].

2.3.1. Speech and Language Therapy within the Scope of Cognition-Oriented Treatments

Communication as a function of cognitive processes is already affected in the early
stages of AD disease. In disease progression, reduced communication can form a major bur-
den for PwAD and caregivers [302,303]. Therefore, it is astonishing that there is a lack of stud-
ies on communication-based interventions in dementia [297,304]. Language and/or commu-
nication functions are rarely assessed as specific outcome parameters [25,288,290,305–307]
or rather represent higher cognitive functions as fluency tasks [306,308]. Table 2 pro-
vides an overview of cognitive language and communication difficulties and resources as
AD progresses.

2.3.2. Effects on Language and Communication after Cognitive Stimulation

The systematic review by Lobbia et al. [290] showed moderate evidence for CST
on language production and comprehension, communication skills and quality of life
for people with mild to moderate AD, partly even with long-term-effects in studies pub-
lished after this review [305,306]. These beneficial effects can possibly be attributed to the
focus of CST on language activities and communicative interaction between group par-
ticipants [290,309]. Even with moderate-severe AD communication-based group settings,
independent of their format (e.g., CST, conversation therapy, reminiscence therapy [310,311]
or treatments that combine social interaction with procedural tasks as described in the
“breakfast club” [312] seem to maintain functional communication skills and improve
language impairments [297].
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2.3.3. Effects on Language and Communication after Cognitive Training and
Cognitive Rehabilitation

Language therapy-specific research mostly includes studies of CT and CR approaches
or a mix of both. More recently, a person-centered approach with individually determined
goals has become prevalent in speech and language therapy to maximize communication
success and quality of life [297,311,313]. Thus far, language therapy research is rarely con-
sidered in reviews dealing with COT, mostly due to small sample sizes and low evidence
levels [24,286,290,304]. However, unlike RCTs, single-case research designs allow the eval-
uation of personalized daily living goals, which are a central component of CR [23,314]. A
review of interventions focused on language and communication outcomes for people with
AD [304] described, that lexical-semantic training approaches showed the greatest evidence
for naming and word fluency tasks with mixed effects in terms of maintenance [315–317].
Furthermore, techniques such as spaced retrieval principles, memory-based approaches
and errorless learning [304,318–323] are used to reduce the cognitive load in the lexical
retrieval process. However, studies also indicate that especially in the early stage of AD
errorless and trial-and-error tasks benefit comparably [2,299,324,325]. Beales et al. [326]
see potential in strategy-based approaches, to achieve generalizations in lexical retrieval
and connected speech. They achieved significant improvements in naming trained and
untrained items in four participants with AD, directly after intervention and in a 6-week
follow-up assessment. No change was found in communicative informativeness and effi-
ciency. Nevertheless, the authors suggest that the chosen outcome parameters should be
critically considered in order to successfully evaluate communication functions [326].

2.3.4. Dyadic Intervention Approaches and Communication Success

Studies emphasize communication partner engagement in dementia interventions as a
potentially relevant factor in communication success and confidence [299,303,313,327,328].
Nguyen et al. (2019) demonstrated in a review and meta-analysis that caregiver support
intervention groups, addressing educational and psychosocial needs, skills and commu-
nication training [299,320,329], achieved significant improvements in daily interactions in
dementia care compared with control groups (95% CI 0.56 to 1.22; p < 0.001) [303]. Im-
proved communication skills could even be maintained months after interventions (95% CI
0.67 to 1.05; p < 0.001). However, heterogeneity between studies was evident [303].

2.3.5. Non-Pharmacological Interventions and Functional Outcomes

To date, evidence regarding functional outcomes/ADL is sparse. According to a
systematic review by Scott et al. [301] on non-pharmacological interventions to reduce the
functional decline in PwAD living at home, only individually delivered interventions such
as CR and tailored physical activity had an effect on functional abilities. These interventions
ideally involve the PwAD and their caregivers, whereby structured guidance is critical to
achieve personally relevant goals [299].
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Table 2. Characteristics of cognitive language and communication difficulties in Alzheimer’s disease [330–332].

Language and Communication Cognition

Impairments Resources Impairments Resources

Mild Stage

Reception
- Comprehension of abstract language/complex
conversation

- Comprehension of simple sentences
- Reading comprehension

- Declarative/explicit memory
- Inconsistent problems with orientation
- Visuospatial skills
- Divided/selective attention
- Inconsistent problems with instrumental
activities of daily living (IADL)

- Nondeclarative/sensory memory
- Awareness of language and memory lapses
- Sustained attention
- ConcentrationProduction

- Word retrieval for names, objects, locations
- Semantic paraphasias
- Irrelevant/vague comments
- Reduced content/error repairs in discourse

- Grammatical correct sentences
- Phonology/articulation
- Oral reading/writing

Moderate Stage

Reception
- Comprehending complexinstructions/tasks
- Reading comprehension

- Reading comprehension for familiar
words/phrases

- Declarative memory
- Orientation
- Executive functions
- Attention in all domains
- Visuospatial skills

- Nondeclarative/sensory memory

Production
- Word retrieval
- Increase in circumlocutions/word
repetition/paraphasias
- Disrupted conversation flow
- Decline in sentence length/ grammatical
complexity/propositional content
- Increase in the use of pronouns/vague terms
- Lack of content in conversation
- Pragmatic abilities: maintain topics of
conversation/knowledge of conversation
perspectives/irrelevant content/inaccurate
utterances

- Phonology
- Syntax
- Oral reading of simple texts
- Nonverbal conversation

Severe Stage

Reception
- Auditory and reading comprehension

- Comprehension/interpretation of
emotional state via facial
expression/gestures/eye
contact/prosody/voice tone

- Memory
- Attention
- Fluctuated alertness

- Affective response to sensory stimuli/music
- Basic needs for
attention/communication/touch present

Production
- Production of single words/short phrases
- Often inappropriate verbal/vocal production
- Repetitive vocal/physical behavior
- Mutism in the end stage

- Communication via facial
expressions/gestures/eye contact
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2.4. Oral Health and Alzheimer’s Disease

There is rising evidence for an association between intraoral inflammatory conditions
and AD [17–19]. More than 50% of all people over the age of 35 worldwide are affected by
periodontitis, and approximately 10–15% suffer from a severe form of the disease which can
lead to the loss of dentition [333]. In particular, people over the age of 65 are at increased
risk for periodontitis.

Periodontitis is a chronic, bacterial, host-dependent inflammation of tooth-supporting
tissues that ultimately leads to loss of the periodontal attachment and, in continuum,
to tooth loss through the activation of host proteinases [334,335]. While gingival in-
flammation that precedes periodontitis is generally triggered by the presence of biofilm,
the development and progression of periodontal inflammation depend on the presence
of oral dysbiosis [336]. Local degradation products and inflammation-induced milieu
changes provide a selection advantage to specific periodontal pathogens such as the Gram-
negative anaerobic species known as the “red complex” [337]. These pathogens include
Porphyromonas gingivalis (P. gingivalis), Tannerella forsythia (T. forsysthia), and Treponema den-
ticola (T. denticola). Additional risk factors, such as smoking, can exacerbate dysbiotic
changes [338,339].

In this process, the dysbiotic biofilm causes not only a local inflammatory response
but also a systemic inflammatory response, which is related to various noncommunicable
diseases and can influence their development and progression [340].

Such a relationship is also discussed for dementia, especially AD, and the intraoral
condition, which may be bidirectional: on the one hand, the reduction in memory capacity
caused by AD is certainly causal for the decrease in personal oral hygiene ability and thus ul-
timately for the increase in the risk for the development of caries and periodontitis [341,342].
On the other hand, there is evidence that periodontitis itself and the associated microbial
colonization and inflammatory response is associated with AD [18,19,343,344].

While the systematic reviews that included cross-sectional studies failed to assume
a causal relationship between the presence of periodontal disease and the development
of AD [344,345], a more recent systematic review that included only longitudinal data
from observational studies came to the conclusion that causality was evident and that,
considering the adjusted pooled risk ratio for dementia related to the periodontal disease
of 1.38 (1.01 to 1.90), a fictive 75% reduction in the prevalence of severe periodontitis would
have the potential to prevent far more than 1 million people worldwide from developing
dementia such as AD [346].

Thus far, the underlying mechanisms in the involvement of periodontitis in AD have
not been conclusively elucidated. Systemic inflammation, as described above, is one ap-
proach. Among others, increased IL-1, TNF-α, and IL-6 plasma levels play an important
role, resulting in an increase in microglial activation [347]. The involvement of oral microor-
ganisms and their metabolites is another frequently discussed aspect in the development
and progression of dementia. The presence of the bacterium T. denticola associated with
periodontitis was discovered in brain biopsies from deceased PwAD as early as 20 years
ago [348]. The increased presence of antibodies against periodontal pathogens in the
blood of persons suffering from dementia also suggested that these pathogens may play
an important role in the etiopathogenesis of cognitive diseases [349–351]. The bacterium
P. gingivalis plays a key role in this context because of its virulence factors [352]. This repre-
sentative of the “red complex” was also recently shown to be increased in brain biopsies
from PwAD [353]. P. gingivalis uses membrane lipopolysaccharides and special proteases,
so-called gingipains, to bypass host defenses and degrade brain tissue. Gingipains in par-
ticular are thought to be highly relevant with regard to the initiation of the AD process and
have therefore also led to the development of a new drug therapy approach—a gingipain
inhibitor [353]. However, such a compound (COR388), which was later clinically tested in
a phase II/III trial, failed to lead to therapeutic success and was discontinued—also due to
side effects [354,355].
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Even though the mechanism of involvement or even causality of periodontitis in AD
has not yet been fully clarified, it is obvious to pay attention to early periodontitis diagnosis
and its prevention or therapy in the attempt at AD prevention. Nevertheless, there are
only few reliable clinical data available to date that deal with a possible improvement of
AD through a therapy of periodontal diseases. Regarding the impact of dental and peri-
odontal treatment on cognitive function before and after dental treatment, a longitudinal
observational study has previously found that oral restoration of PwAD has the potential
to improve cognitive function [356]. Another longitudinal study also demonstrated that
regular oral home care had a positive effect on cognitive status [357]. For this purpose, cur-
rent guidelines recommend brushing with a manual or electric toothbrush twice a day for
at least two minutes, in combination with interdental care using interdental brushes [358].
In addition, the application of fluoridated toothpaste and mouth rinses based on Chlorhex-
amed or essential oils is effective [359]. As dementia progresses, this default can usually not
be achieved by the persons themselves at some point, so professional support in-home care
becomes necessary to maintain intraoral health as long as possible [360]. Recent data show
that a dental nurse who professionally brushed the teeth of nursing home residents every
2 weeks after an initial professional dental cleaning in addition to daily care by relatives or
caregivers could contribute to the reduction in intraoral inflammation and minimization of
oral problems, such as root caries or tooth loss [361].

In summary, given the potential links between periodontal inflammation and AD,
minimizing intraoral biofilm, and consequently reducing the inflammatory response is
most likely to be beneficial with respect to the development and progression of demen-
tia. For other chronic diseases, such as cardiovascular disease, this benefit has already
been adequately demonstrated: For example, a recent systematic review with meta-
analysis concluded that professional and home-based management of oral biofilm as
a non-pharmacological intervention reduced systemic inflammation to an extent equivalent
to that achieved by drug interventions to treat residual cardiovascular risk [340].

Thus, the goal should be to assess intraoral status soon after AD diagnosis and, if
necessary, to remove any initial supra- and subgingival plaque by mechanical debridement
with or without adjunctive use of antiseptics or antibiotics, followed by long-term individ-
ualized professional follow-up in combination with instructions on home oral hygiene for
the person himself or a family or professional caregiver, optionally supported by a dental
nurse to ensure the longest possible maintenance of oral health [362,363].

In addition to the possible mechanisms described above in the association of periodon-
titis and AD, tooth loss itself, which may result from periodontitis, also plays an important
role as a risk factor for the development and progression of dementia (Figure 5). Reduced
masticatory function due to tooth loss affects cerebral blood flow and nutrition [364] and
led to a decrease in acetylcholine levels and the number of pyramidal cells in the hip-
pocampus when studied in animals, which was associated with a disturbance in learning
memory [365]. A recent systematic review, reporting on further animal studies, shows that
the main mechanisms in the association of tooth loss and AD may be accelerated neurode-
generation caused by the loss of masticatory function and the accompanying decreased
nerve stimulation, as well as a chronic systemic inflammatory stress state [366].
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A further recent systematic review of case–control studies shows, in addition to aspects
of the systemic effects of underlying diseases such as periodontitis, that tooth loss itself has
an impact on the prognosis of dementia and is therefore a fundamental starting point in the
planning of dental therapy for elderly persons: The goal should be, if possible, to maintain
masticatory function through long-term functional tooth preservation, as this not only has
a positive effect on cerebral blood flow and the consequent oxygenation of the brain but
also allows for a favorable dementia-protective diet [367]. One possible therapy could be
the provision of the missing support zones resulting from tooth loss by means of prosthetic
replacement. It has been shown that the swallowing disorders and dysphagia associated
with tooth loss could be improved by the use of prostheses, which had an effect not only on
the nutritional status but also on the ability to perform ADL [368]. Further improvement
of masticatory function was achieved by the additional support of such prostheses on
implants placed in the jawbone, resulting in the need for intensive professional follow-up
to protect the patients from possible future peri-implant infection [369]. Improvement of
mastication by the provision of prosthesis and the therapy of oral complaints led to an
increase in the social activity of patients [370]. The provision of dentures was also shown to
be beneficial in terms of cognitive function [371].

The influence of individual oral processes and conditions on the oral health-related
quality of life of people with AD has been demonstrated recently [372] as well as the long-
known assumption that intraoral problems lead to pain and functional limitations resulting
in a disease-promoting deterioration of physical, psychological, and social condition [373].
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The ideal control of problems associated with tooth loss and oral diseases is the main-
tenance of oral health and the prevention of tooth loss long before the risk of developing
dementia increases. It has already been successfully demonstrated that almost complete
tooth preservation can be achieved through a lifelong, individualized and needs-oriented
prevention program that begins in adolescence and includes regular check-ups, dental
cleanings and instructions on oral hygiene provided by dental hygienists [374].

Although the current evidence suggests a bidirectional relationship between oral
status and AD, there are so far only initial clinical studies on the effect of dental treatment
of AD status. These are usually observational studies with small numbers of subjects, but
they show promising initial results. Currently, initial intervention studies are in preparation,
which already considers a first multidomain approach.

3. Multidomain Interventions

According to the BPS model [20], dementia is a complex condition, that involves
interrelated tractable and fixed risk factors. Acting on several modifiable risk factors
simultaneously seems to be particularly promising to influence the brain and cognitive
reserve and maintain functioning [16,375,376]. Therefore, multidomain approaches, includ-
ing psychosocial and educational support are of growing interest to delay the decline in
dementia [16,314,377–380]. Figure 6 provides an overview of the interrelationships and
interactions of individual interventions in AD.
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Two recent reviews on multidomain interventions are of particular interest. The meta-
analysis of Salzmann et al. (2022) on 28 studies directly compared multi- and single-domain
interventions in MCI. The authors found greater pooled effect sizes in multidomain inter-
vention groups for MCI compared to single-domain intervention groups in global cognition
(SMD, 0.41; 95% CI 0.23 to 0.59; p < 0.001), executive function (SMD, 0.20; 95% CI 0.04 to
0.36; p = 0.01), memory (SMD, 0.29; 95% CI 0.14 to 0.45; p < 0.001) and verbal fluency (SMD,
0.30; 95% CI 0.12 to 0.49; p = 0.001) [379]. The systematic review of Chalfont et al. (2021) on
multidomain interventions in dementia included 26 studies, of which 92% demonstrated
improvement, maintenance, or delayed decline of cognitive functioning. Both reviews
comprised, among other modes, cognitive, physical, and nutritional interventions, and
educational support. Therefore, it is reasonable to combine these approaches, whereby cog-
nition and physical training is up to date the most common combination [314,379,381,382].
A review of 17 studies found greater improvement in older adults with MCI on global
cognition (SMD = 0.83, 95% CI 0.41 to 1.25; p = 0.0001) for combined cognitive and physical
intervention compared with intervention in a single domain [381].

However, according to the review of Chalfont et al. (2020), to improve cognition,
at least three modalities should be combined and one of them should have a cognitive
approach. Moreover, the greatest effect sizes were identified in studies with individually
tailored multidomain approaches [314]. Thus, interventions should be adapted to the
individual’s needs and preferences to maintain motivation for active participation in
therapy [314,383,384] and to reduce functional decline [301]. Caregiver involvement also
seems to be crucial in multidomain interventions [314], especially when it comprises
targeted caregiver components [385]. Astonishingly, the severity and length of intervention
were not determinants of treatment in the review of Chalfont et al. (2020). However,
continuous treatment could be crucial for maintaining functional abilities [386] or physical
health [383] in PwAD. The multidomain activation therapy study Motor Stimulation,
Activities of daily living, and Cognitive and Social Functioning (MAKS) led to stable
results in ADL and cognition of persons with moderate dementia during a 12-month
intervention period, whereas an increase in impairment for both measures was found in the
control group. In a 10-month follow-up test scores of both groups deteriorated significantly,
but scores in ADL remained significantly higher in the intervention group compared to
the control group [386]. Prick et al. [383] considered too low therapy intensity crucial
for missing therapy effects in mood, behavior and physical health after a multidomain
intervention.

As indicated in the before mentioned studies, multidomain lifestyle intervention
strategies could be beneficial regarding AD pathology and have therefore been the subject
of different clinical trials [387]. A recent RCT with 67 participants over 60 years without
any cognitive dysfunction reported improved cognitive functions after combined aerobic
and memory training and the supplementation of the functional food soy peptide in form
of a commercial drink for 90 days [388].

With reference to study participants, three large prevention trials were performed
in the past years, namely preDIVA, MAPT, and FINGER. The preDIVA (Prevention of
Dementia by Intensive Vascular Care) study was a cluster-randomized controlled trial in
more than 3400 community-dwelling older individuals (aged 70–78 years), examining the
effectiveness of a six-year multidomain vascular care intervention to prevent dementia.
The intervention included the assessment of cardiovascular risk factors every four months
and individually tailored lifestyle advice. No differences in the outcome cumulative
incidence of dementia or incident cardiovascular disease between the intervention (more
than 1890 participants) and control group (1636 participants), which obtained usual care,
was found. One possible reason for the obtained results is seen in the high standards of
usual care and a modest baseline cardiovascular risk. However, importantly, as a secondary
outcome in the intervention group, a significantly reduced risk of non-AD dementia could
be detected [389].
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The Multidomain Alzheimer Preventive Trial (MAPT) included more than 1500 partic-
ipants and was conducted over three years. In a randomized, placebo-controlled design
the intervention took place in more than 40 group sessions with the content of nutrition,
COT, physical activity as well as three preventive consultations. As a specific compound,
some of the non-demented community-dwelling participants received ω-3 PUFAs. No
significant differences were found in cognition between the intervention groups. However,
in comparison to the placebo group, there was a significantly less cognitive decline in the
multidomain + PUFA group [390].

The randomized controlled Finnish Geriatric Intervention Study to Prevent Cognitive
Impairment and Disability (FINGER) ran for two years and included more than 1200
at-risk elderly people. Interventions were conducted in group and individual sessions
comprising diet, COT, physical exercise, and vascular risk monitoring. The control group
received usual health care. Results revealed a significant between-group difference in
the change in cognition [378] and were not modified by parameters such as cognition,
socioeconomic status, cardiovascular factors, or sociodemographic status [391]. Thus,
the findings underline the potential benefit of FINGER in a large elderly population to
maintain or improve cognitive functioning [378,391]. Based on these results, the current step
is to expand the FINGER-type trials to a World-Wide FINGERS (WW-FINGERS) network,
facilitating not only international collaborations but also the opportunity to elaborate
globally implementable and effective preventive approaches [392,393].

Multidomain lifestyle interventions are a current research topic. Among others, the
Multimodal Preventive Trial for Alzheimer’s Disease (MIND-ADmini) also examines the
potential effects of multidomain interventions in individuals with prodromal AD. Up to
date more than 90 participants were randomized and enrolled for the multidomain lifestyle
intervention alone or in combination with medical food (Fortasyn Connect) in comparison
to regular health advice/care in the control group [394].

The ongoing randomized controlled Japan-Multimodal Intervention Trial (J-MINT)
uses original outcome parameters as cognitive changes at 18-month follow-up, changes in
ADL, frailty status, blood markers, dementia-related blood bio-makers, and neuroimaging
to verify whether the multidomain intervention could prevent the progression of cognitive
decline among older adults with MCI [395]. The intervention consists of the management of
vascular risk factors, group-based physical activity and self-monitoring of physical activity,
nutritional counseling, and COT.

The first approach of interdisciplinary cooperation of dental hygiene and physiother-
apy can be found in the planned study of Jockusch et al. (2022) aiming to activate the
masticatory function to improve cognition in AD [396].

Comparable to single-domain interventions, communication-based interventions and
outcomes have rarely been considered in multidomain approaches so far. A combination
of stimulative walking activity and conversation did not result in a significant decrease in
nonredundant information in connected speech compared to a structured conversation-only
group [384], among others probably because of limited mobility in the combined group,
which may have led to an overload of cognitive capacity [384]. The Language-Enriched
Exercise Plus Socialization (LEEPS) Program combined language stimulation with physical
activity in older adults with AD and related disorders, leading to stability in cognition,
mood, and physical performance over 11 months and in a small group even over 20 months.
However, there was a high dropout rate, mainly due to entry into long-term care, worsening
health or death [377]. While language abilities were not specifically tested in the study
of La Rue et al. (2015), Arkin and Mahendra (2001) used communication-based outcome
measures in a similar approach. Although experimental and control groups did not differ in
the Arizona Battery for Communication Disorders of Dementia (ABCD) [397], the specific
analysis showed a significantly more differentiated use of nouns in the experimental group.
However, results were based on case series [398].
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4. Discussion

A large-scale meta-analysis and systematic review of more than 150 RCTs and more
than 240 observational prospective studies identified evidence-based modifiable factors
for the prevention of AD [399]. The Lancet Commission also recommends addressing
risk factors that favor the development of dementia across the lifespan, as this can affect
cognitive reserve and delay neuropathological developments [16,314]. Physical activity
and cognitive activities stimulate cerebral blood flow and the production of neurotrophic
factors that influence hippocampal neuroplasticity [314,382,400]. In particular, physical
activity and dietary interventions are known to address similar mechanisms involved in
AD. For example, a reduction in oxidative stress or effects on mitochondria, in general,
are known to be involved in both disciplines [401]. In this context, the effect of PGC-1α,
a mitochondrial super-regulator, has been reported to be affected by AD and might be
an interesting target for further studies [402]. Moreover, dietary interventions influence
cellular energy metabolism and can therefore have an impact on synaptic plasticity [314], a
parameter, which highly correlates with cognitive reserve and cognitive activity in general.
Synaptic plasticity is further influenced by different lipids [403]. E.g., plasmalogens or
phosphatidyl-choline in combination with choline/UMP-choline or DHA have been shown
or are at least discussed to increase several synaptic markers such as synaptophysin or
PSD95 [404,405]. Interventions in the prodromal and early stages of AD may correct the
deficiency of key nutritional elements that could otherwise lead to the loss of synapses and
neurons [256].

Obviously, both physical activity and dietary interventions elevate cerebral blood flow,
another important factor necessary for cognitive activity. These are only a few examples
that combine different approaches to adjust the dysregulated metabolic homeostasis in
AD synergistically from different angles, resulting in an elevated beneficial potential with
respect to AD compared to approaches based on a single intervention. A further important
aspect is the multifactorial component of AD: as reviewed above, AD can be caused by
several different molecular mechanisms. Apparently, addressing only one mechanism has
been proven to be not sufficient to deal with AD up to now, making a multidisciplinary
approach, addressing these different risk factors or molecular mechanisms involved in AD,
even more attractive.

In line with this argumentation, multidomain interventions have already been shown
to be effective in stimulating modifiable risk factors in parallel to delay the progression of
dementia [314,379,382], even with existing structural changes in the brain [295,400,406]. To
improve cognition, multidomain interventions should comprise at least three modalities,
one of which is a cognitive approach [314]. Up to now, cognition and physical training is
the most common combination of the multidomain approaches [314,379,381,382] whereby
nutritional interventions and educational support play an important role in supporting and
counseling PwAD and their families throughout the course of the disease [378,385,407,408].
The success of psychoeducational interventions depends on clear communication of theoret-
ical contents and the active involvement of carers in practice sequences to implement new
skills [303,385]. Support of oral hygiene and health, prevention and diagnosis of periodontal
disease are promising approaches in dementia care that have not yet been addressed in mul-
tidomain interventions but should receive more attention in the future [363,367,371,409]. In
this context, diabetes mellitus, recently identified as an additional risk factor for the develop-
ment of AD [410], should also be mentioned, even though the underlying mechanisms have
not yet been clarified [411]. It is known that there is a bidirectional relationship between
the presence of intraoral inflammation, especially periodontitis, and diabetes mellitus [412].
Thus, an improvement of the intraoral condition also fulfills the previously formulated
need to implement a diabetes mellitus-protective lifestyle for AD prevention [399].

Person-centered approaches are a characteristic feature of CR [23,292,299] and simi-
larly, multidomain interventions with individualized contents achieve the greatest effect
sizes [314].
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Regarding nutritional interventions, more and more evidence arises that combined di-
etary components show synergistic beneficial actions with respect to AD pathology [255,256].
Multidomain interventions that target preventive, or early stage disease show potential
for delaying the onset of dementia [259,378,389,390]. Dietary modifications combined with
aerobic physical activity also led to cognitive improvements in participants with elevated
blood pressure [413]. Since high blood pressure is also a risk factor for the onset and
progression of AD, combined nutritional approaches with specific physical activity are
promising for AD.

Table 3. Nutritional Intervention: A suggested 6-step program for nutritional counselors.

6-Step Program

Step Involved
Disciplines Content Clarification and Coordination

1 Oral health/dentist

- Potential risk factors that interfere with food intake?
- Dental status sufficient that food intake is not perceived as unpleasant?
- Xerostomia, dysphagia present?
- Problems present in the mechanical comminution of food?
- Current antibiotic treatment due to periodontitis etc.?

2 Speech and language
therapy

- Clarification of existing dysphagia/dysphagia intervention
- Language/reading comprehension present?
- What to consider when communicating?
- Participation in social/communication groups?

3 Sport science and
physiotherapy

- Age corrected grip strength test to estimate malnutrition available?
- WHO recommended sports load possible? (How many times/duration per
week)
- Sport practice preferably under sunlight?
- Participation in regular sport activity groups?
- Short individual sport program for home available?

4 Medical performance

- Signs of malnutrition present based on blood test (albumin, vitamin D,
selene, vitamin B12)?
- Any antibiotic treatments? (e.g., antibiotics and calcium; vitamin K and
anticoagulant drugs)
- Any medication that interferes with drug-degrading enzymes? (such as Cyp)
- Any redocumentations that interfere with vitamin uptake or uptake of
essential fatty acid? (proton-pump inhibitors)

5 Relatives/professional
caregivers

- Any food intolerances or personal preferences such as vegetarian diets?
- Regular food intake helps to structure the daily routine
- Feeding or food intake should be done in an upright position and not lying
down to avoid aspiration pneumonias
- Utilize food intake, cooking classes, cooking in general to prevent social
isolation
- Use (of liked) foods to create sensory stimuli
- Participation in social groups? E.g., regular meetings for a joint breakfast?

6 Nutritional advice

- Adjust caloric intake to achieve an age-appropriate normal weight
- Avoid unintentional weight loss
- When dental health affects food intake, additive use of liquid food might be
necessary
- Explain the Mediterranean diet: rich in antioxidants, vitamins, PUFA,
polyphenols, phytochemicals, and vegetables in general
- Explain potential beneficial use of medium chain fatty acids (coconut oil)
- Supplementation of vitamin B12, vitamin D
- Consider LipiDiDiet-based supplementation
- Ensure sufficient intake of omega 3 fatty acids such as DHA (e.g., two
times/week fatty sea fish)
- Avoid trans fatty acid and highly processed food in general
- In case of antibiotic treatment: make sure that the microbiome is built up
afterwards through nutrition (increase fiber intake, probiotics if necessary)
- Consider further phytochemicals as supplementation such as EGCG (or
green tea extract), Ginseng, Gingko, resveratrol, etc.
- Moderate coffee consumption

In many studies, cognition is the primary outcome used to test the effectiveness of
the intervention. Unfortunately, most of the chosen assessments or outcomes have little
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relation to the demands of daily living [314,326], but rather measure higher cognitive
functions [308]. This is all the more astonishing because impairments in communication
already occur in the early phase of the disease. Future work should therefore consider
communication skills as an outcome measure. Corresponding parameters would be, for
example, the proportion of topic-related utterances and empty utterances or the global
coherence in the discourse of people with dementia [288,305].

Although there is a growing interest in the effects of dental therapy on the occurrence
and progression of AD, dentistry still has a minor role in the multidisciplinary context.
Despite interrelated biochemical processes in intraoral inflammation and AD [349,355],
there are few clinical studies investigating the effectiveness of oral treatment approaches
in AD. Difficulties in recruitment include ethical issues, the health status of people with
disabilities, lack of compliance, required involvement of relatives, treatment limitations,
and economic issues [351,396,414]. However, oral treatment approaches are very promising
to be integrated into a multidomain approach. In particular, approaches to nutrition, oral
hygiene, mobility and masticatory function can be optimally coordinated and adapted to
individual needs, which overall contributes to an improvement in the quality of life of
PwAD. Sessions can take place in groups as well as individually and thus promote social
activities, as is also recommended in this context [16].

Future research should address the feasibility of multidomain approaches in clinical
practice. To establish this approach, orientation sheets can be developed and evaluated.
A proposal for an interdisciplinary approach to nutrition therapy/counseling is outlined
below (Table 3).

5. Conclusions

Pleiotropic mechanisms are known to result in AD. Although these molecular mecha-
nisms are well-known and can be addressed by pharmaceutical and non-pharmaceutical
approaches, including nutrition, physical activity or increasing the cognitive reserve, ben-
eficial effects for PwAD are not sufficient to cope with the disease. However, treatments
based on multicomponent or even multidisciplinary approaches revealed more pronounced
benefits. Unfortunately, the number of studies and the different included disciplines are
limited. For example, oral health, which obviously interferes with nutritional status but
also many other factors reviewed above, is mostly neglected. Therefore, we suggest a
tight interlink between different treatment strategies resulting in an interdisciplinary ap-
proach, covering in particular nutritional counseling, supervised physical training, oral
health, and cognitive-oriented communication training to maintain quality of life in AD
(Figure 7). Importantly, all of these single approaches are already available now and the
required interlink between these approaches seems to be feasible and associated with only
a moderate additional effort. As an example, a simple route card for PwAD or nutritional
counselors, caregivers, or relatives addressing these interlinks is suggested, helping to
individualize and adopt treatment. Due to the synergistic action of these interventions,
a significantly greater benefit for the PwAD might be expected. Even before the onset of
AD, the approaches listed could potentially be considered preventive approaches. The
awareness of the presented correlations and the possible preventive effectiveness should
also be discussed with patients who do not yet suffer from AD. Although the reviewed
literature is promising, further studies addressing these interdisciplinary aims are needed
to prove effectiveness.
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