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Memory efficiency is crucial in training deep learning networks on resource-restricted devices. During back-

propagation, forward tensors are used to calculate gradients. Despite the option of keeping those dependen-

cies in memory until they are reused in backpropagation, some forward tensors can be discarded and re-

computed later from saved tensors, so-called checkpoints. This allows, in particular, for resource-constrained

heterogeneous environments to make use of all available compute devices. Unfortunately, the definition of

these checkpoints is a non-trivial problem and poses a challenge to the programmer—improper or excessive

recomputations negate the benefit of checkpointing.

In this article, we present XEngine, an approach that schedules network operators to heterogeneous devices

in low memory environments by determining checkpoints and recomputations of tensors. Our approach

selects suitable resources per timestep and operator and optimizes the end-to-end time for neural networks

taking the memory limitation of each device into account. For this, we formulate a mixed-integer quadratic

program (MIQP) to schedule operators of deep learning networks on heterogeneous systems. We compare

our MIQP solver XEngine against Checkmate [12], a mixed-integer linear programming (MILP) approach

that solves recomputation on a single device. Our solver finds solutions that are up to 22.5% faster than the

fastest Checkmate schedule in which the network is computed exclusively on a single device. We also find

valid schedules for networks making use of both central processing units and graphics processing units if

memory limitations do not allow scheduling exclusively to the graphics processing unit.
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tems; • Computing methodologies→ Distributed algorithms; • Theory of computation→ Integer

programming; Scheduling algorithms;
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1 INTRODUCTION

Memory is one of the most limiting factors in training deep neural networks [3, 4, 12]. In a train-
ing step, forward activations are usually cached and reused during the backward pass. In case
of insufficient memory to cache all forward activations, some tensors can be discarded. When
needed for gradient calculation, they can be recomputed from stored tensors called checkpoints.
This way, models can fit into memory at the expense of additional compute costs. Since com-
pute performance is also often limited in low-memory environments, it is crucial to make best
use of resources. In this work, we consider all available devices and combine the idea of tensor
rematerialization with distributed computation and tensor swapping in order to get the best per-
formance. Manually assigning the operators to different devices, even without recomputation, is
hard—dependency structures can get quite complicated, especially in the backward pass. Simply
scheduling the operator on the device with highest compute performance often yields suboptimal
schedules due to high copy costs. Our approach tackles the problem of scheduling network opera-
tors to heterogeneous compute devices with different compute capabilities and different memory
limits using a mixed-integer quadratic programming (MIQP) approach.

There are various approaches in literature that address the rematerialization of tensors. Earlier
works in the field focus on rematerialization of graph segments [3, 5–8, 24]. Graph-theoretic analy-
ses achieve better results by rematerialization of individual components [1, 12, 14–16]. All of these
approaches consider only a single-device setup. As rematerialization enables training on devices
with limited memory, it can also help to address the problem of scheduling the network operators
to various heterogeneous devices.

To the best of our knowledge, there is no other work at the moment that combines rematerial-
ization with distributed computation on multiple heterogeneous devices.

We formalize the scheduling problem as an MIQP, using Checkmate [12] as a starting point for
our work. This article makes the following contributions:

• We solve the resource selection and rematerialization problem for inference and training of
neural networks on heterogeneous devices using an MIQP.
• We show that if a central processing unit (CPU) and graphics processing unit (GPU) have a

similar compute performance in a heterogeneous setting, CPU/GPU schedules can outper-
form single-device schedules.
• We achieve valid CPU/GPU schedules where computation on only the GPU device would

exceed memory limitations.
• We show how the MIQP can be extended to also consider energy efficiency.

Our experiments show that if the CPU’s performance is comparable to that of the GPU, our ap-
proach is clearly faster than computing everything only on the GPU.

We gain all relevant information from running the network operators on all devices in a first step,
followed by acquiring copy costs between the devices for all tensors. Using this simple cost model,
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we formulate the MIQP and solve it. The solution is translated into a detailed plan of computing,
saving, or freeing the output tensors of operators.

XEngine is open source and available on GitHub: https://github.com/dfki-asr/xengine.
Since all operator and network copy costs are measured beforehand in our pipeline, it is not

possible to adapt to online changes (adding or removing resources during training). All information
has to be known at compile time. We support static graphs only and do not consider dynamic graph
architectures.

2 RELATED WORK

2.1 Rematerialization and Checkpointing

Checkpointing in deep learning has its roots in Griewank’s Revolve approach [5, 6] for reverse-
mode Automatic Differentiation, where some activations in the “tape” are used to recompute other
previously discarded values. Hascoët and Pascual [8] and Siskind and Pearlmutter [24] extend
this idea to handle arbitrary control flow with policies known at compile time. Chen et al. [3]
treat neural networks as static graphs and divide them into segments to be recomputed during
backpropagation. Gruslys et al. [7] expand this segmenting approach to recurrent neural networks.

Graph-theoretic analyses [1, 15, 16] or mixed-integer linear programming (MILP) such as Check-
mate [12] achieve better bounds with rematerialization of individual activations rather than entire
segments.

Kirisame et al. [14] use heuristics in the form of a greedy online algorithm. Rematerialization is
triggered as soon as memory is exhausted and parent operators are recursively recomputed.

Beaumont et al. [2] combine rematerialization with memory offloading using dynamic
programming.

All of these approaches focus on computation on a single device rather than scheduling the
computations on multiple devices.

Hu et al. [10] present MegTaiChi, a system that is tracking fine-grained tensor accesses and fo-
cuses on dynamic tensor partitioning and memory fragmentation and defragmentation. Compared
with our approach, they use an online approach to also handle dynamic graphs, which introduces
additional overhead per iteration. They claim that their runtime overhead is less than 5% of the
runtime of each iteration. Our approach does not introduce additional online overhead since the
schedule is computed beforehand. For static graphs, an offline approach will be sufficient and an
online approach will only introduce additional overhead. For dynamic graph applications, an on-
line approach is strictly necessary since the graph changes during iterations dependent on the
input data and the runtimes cannot be acquired beforehand in an offline step. A recent work of
Liao et al. [17] proposes Mimose, an input-aware dynamic planner composed of an online collec-
tor, a regression-based memory estimator, and a memory scheduler that mainly focuses on GPU
devices. The architecture of DELTA, a system proposed by Tang et al. [25], consists of a heuristic-
based filter component, a director, and a prefetcher component, which also focuses on dynamic
graphs.

2.2 Memory Offloading, Swapping

Swapping allows training of neural networks in low-memory environments by offloading memory
from the accelerator to the host device. Huang et al. [11] use a generic algorithm to train models
up to 12 times the GPU limit by using smart swapping and still get 53% to 99% of the throughput
compared with infinite GPU memory. Capuchin [20] and Superneurons [27] combine remateri-
alization and swapping by gathering network information in a runtime system. Capuchin gath-
ers swapping cost information during a single batch run to determine where to set checkpoints.
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Fig. 1. Forward operators A, B, C with output tensors a, b, c . Backward operators A′, B′, C ′ with output
tensors ∇input , ∇a, ∇b.A andA′ are assigned to the CPU (blue), all other operators to the GPU (red). Tensor
a (blue) must be copied from the CPU to the GPU twice: once in the forward path to compute B and once
in the backward path to compute B′. ∇a must be copied from the GPU to the CPU to compute A′ (blue).

Beaumont et al. [2] use dynamic programming to solve rematerialization with memory offload-
ing. Patil et al. [19] present POET (Private Optimal Energy Training), a MILP-based system that
exploits the off-chip memory for energy-efficient paging on battery-operated edge devices. Their
work combines memory offloading with an MILP-based rematerialization approach. ZeRO-Offload,
a work of Ren et al. [21], is a CPU-GPU framework that uses a trick of “One-step Delayed Param-
eter Update (DPU)” to achieve scaling of the GPU throughput. Wen et al. [28] propose a swap-
dominated tensor regeneration strategy, called STR, to avoid negative effects of improper swap
decisions when the source of the recomputation may have been swapped out.

These approaches assume that computation exclusively takes place on the GPU and offload the
memory only to the CPU.

2.3 Distributed Computation and Computation Offloading

Offloading computations to other devices can overcome the limited memory and compute perfor-
mance issue of single devices such as mobile phones. To make offloading decisions, Liu et al. [18]
formulate a linear program while Van Le and Tham [26] use reinforcement learning. Jiang et al. [13]
combine the compute performance of smartphone devices with a cloud server to distribute the
training of neural networks.

We are not going to offload computations to remote devices; rather, we will distribute computa-
tions within only one node between the CPU and GPU.

3 REMATERIALIZATION WITH MULTIPLE DEVICES

3.1 Problem Definition

The rematerialization approach of Checkmate [12] considers computation only on the GPU device.
When the CPU and GPU have a comparable performance, it can be beneficial to consider the CPU
as a second device for computation, not only for offloading tensors.

In this work, we present XEngine, an MIQP-based rematerialization approach for multiple de-
vices in heterogeneous systems such as CPUs and GPUs. We extended the MILP of Checkmate
towards multiple heterogeneous devices by adding additional constraints and dimensions. We
evaluate our solver considering distribution and recomputation on multiple devices against the
Checkmate solver, which considers recomputation on only a single device.

We combine two aspects in our work: the distribution on devices and rematerialization of
tensors.

3.1.1 Distribution on Devices. We consider multiple devices for computation of the network
operators. Figure 1 shows the distribution aspect: a simple example network with three forward
and three backward operators (circles) is distributed on a CPU and a GPU. Operators that are
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Fig. 2. (a) Direct computation of operatorC ′ (red dotted circle), since tensors b and ∇c are in memory (solid
rectangles). (b) Computation of operator C ′ (red dotted circle) triggers recomputation of operators A and B
(dotted circles) sinceC ′ directly depends on tensor b and indirectly on tensor a, both not located in memory
(dotted rectangles).

scheduled to the CPU are marked blue and those computed on the GPU are marked red. Their
corresponding output tensors are denoted as blue (on the CPU) or red (on the GPU) rectangles. The
first forward operatorA is scheduled on the CPU device, whereas the network forward operators B
andC are scheduled on the GPU. Their corresponding backward operators B′ andC ′ are scheduled
on the GPU, whereas A′ again is put on the CPU device. Device switches at the boundaries cause
tensor copies between the devices: tensor a and ∇a have to be copied for this transition.

3.1.2 Rematerialization of Tensors. In low-memory environments, tensors can be discarded in
the forward pass and recomputed from checkpoints in the backward pass. Figure 2 shows the
recomputation mechanism: any dependent tensor that is not available in memory must be remate-
rialized. In case the tensor is located on another device, the tensor can be either copied or remateri-
alized via computation on the same device. Operators and tensors located in memory are marked
solid, whereas dotted marking denotes that the operator or tensor is not located in memory. In the
example, the point in time is depicted where operatorC ′ (red dotted markings) is computed on the
GPU to yield output tensor ∇b (red dotted markings).

Figure 2(a) shows the case without rematerialization: all direct dependencies (tensors ∇c and b)
of operator C ′ are available in memory (solid circles). Thus, no recomputation is necessary. Since
tensor b is already located on the GPU, it does not have to be copied from the CPU; it can be used
directly for computation of C ′.

Figure 2(b) shows a situation in which tensor b is not available in memory (dotted circle). It
might have been freed after computation of the forward operator C . Since C ′ directly depends on
b, operator B has to be recomputed before we can computeC ′. B itself depends on tensor a, which is
also not available and must be rematerialized as well. Tensor b can be rematerialized starting from
the input tensor (blue), which is located in CPU memory. BeforeC ′ can be computed, operators A
and B have to be recomputed on either the CPU or GPU, accounting for compute costs and copy
costs for potential device switches.

There are three different options:

• Copy input to GPU, compute A on GPU, compute B on GPU, compute C ′ on GPU
• Compute A on CPU, copy a to GPU, compute B on GPU, compute C ′ on GPU
• Compute A on CPU, compute B on CPU, copy b to GPU, compute C ′ on GPU

In order to visualize our schedules, we use a technique similar to that of Checkmate [12]. We in-
troduce two matricesR and S , each of shape |T×T |: The number of rows in each matrix corresponds
to the number of timesteps T . Since in every timestep exactly one new operator is computed, we
need T timesteps to compute every operator at least once. Therefore, T is equal to the number of
operators in the network graph.
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Fig. 3. XEngine schedule for training UNet with batch size N = 2 with 24 CPU threads and a memory budget
of 208 MiB (65%) per device for the CPU and GPU. From left to right: compute matrix on the CPUR0, compute
matrix on the GPU R1, and save matrices for the CPU S0 and GPU S1. The memory usage of this schedule
is depicted in Figure 4(b). F = forward pass, B = backward pass, T = operators.

The recompute matrix R shows operator computations (black square denotes “compute”). The
save matrix S shows whether the output of an operator is saved after computation (black square
denotes “save”).

We define the memory budget needed to save all tensors as 100%. For training a UNet with
batch size 2, 320 MiB of memory is needed when no tensor is discarded and every tensor is saved.
UNet architectures were introduced by Ronneberger et al. [22] and contain skip connections that
introduce tensor dependencies in combination with high memory demand. Figure 3 shows our
XEngine schedule for training this UNet on the CPU and GPU with a restricted memory limit of
208 MiB (65%) on each device. We show the matrices R and S for both devices: R0 (compute CPU),
R1 (compute GPU) and S0 (save CPU), S1 (save GPU).

Columns correspond to the operator index and rows to the timestep. The matrices are read from
the left to right and top to bottom: most of the operators are scheduled to the CPU (R0, first figure
on left, Figure 3). Some operators, especially at the end of the forward and start of the backward
pass, are computed on the GPU (R1, second figure from left, Figure 3). Each operator is computed
only once, either on the CPU or on the GPU. The left lower part of the diagonal does not show any
recomputation in both matrices R0 and R1. The save matrix of the CPU S0 (third figure from left,
Figure 3) shows on the left half of the matrix that many forward activations are kept in memory
until they are finally reused in the backward pass.

3.1.3 Memory Usage of Schedules. Figure 4 shows the memory usage for training a UNet with
batch size 2 for 1 iteration. We measure the total memory usage on each device after each timestep.

Three different cases are depicted:

• We visualize the memory usage for the case in which no tensor is freed during the iteration
as an orange curve in both figures (keep all tensors). This corresponds to a schedule of a
deep learning framework that does not release any intermediate memory during training
iterations.
• We show the Checkmate schedule (CPU) for 100% budget and 65% budget. The green curve

in Figure 4(a) shows the memory usage for the Checkmate schedule when the UNet is trained
on the CPU with a sufficient memory limit of 320 MiB (100%, green line). The green curve is
lower than the orange curve: some tensors in the backward pass can be freed directly after
computation since they are no longer needed by any consecutive operator in the network.
No tensor has to be recomputed. Lowering the budget to 208 MiB (65%, blue line) reduces
the required memory further, which can be seen in the blue curve in Figure 4(a).
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Fig. 4. Memory usage for training UNet with batch size N = 2. The orange curve (keep all tensors) shows the
memory usage per timestep if no tensor is freed over time during the whole iteration. (a) Checkmate schedule
on the CPU for 320 MiB (100%, green) and 208 MiB (65%, blue) memory budget. (b) XEngine schedule on CPU
(blue) and GPU (red) for 208 MiB (65%) memory budget for each device. The gray curve (CPU+GPU—65%)
shows the total memory (on CPU and GPU) per timestep (see XEngine schedule in Figure 3).

• We show the XEngine schedule (CPU, GPU) for 65% budget: Figure 4(b) shows the memory
usage for the XEngine schedule in Figure 3 at a memory budget of 208 MiB (65%) per device.
The blue curve shows the CPU memory over time, whereas the GPU memory is visualized
as a red line. Both curves meet the required memory limit of 208 MiB each. The gray curve
shows the total memory used in the system per timestep.

3.2 MIQP Formulation

Our aim is to schedule T distinct operators in T timesteps over D devices such that minimum
costs are achieved. We evaluate exactly one new operator per timestep t and optionally recompute
others. The binary matrices R, S , and F denote (re-)computations, saves, and frees of operator
outputs. U is a continuous matrix that keeps track of the occupied memory. We introduce a new
copy cost termW to model device switches, considering the costs of tensor copies between devices.
Each device d ∈ D has its own computational costs per network operator cd,i and its own memory
budget bd . The solution of the MIQP allows recomputations and copies of tensors between devices
as long as no memory budget of any device bd is exceeded. For simplicity, we consider only two
distinct devices in most of our experiments: a CPU device as d0 and a GPU device as d1. However,
we also show that the MIQP formulation can support more than two devices — for a CPU with
2 GPUs, for example.

3.2.1 The Objective. Our MIQP objective (Equation (1)) contains the linear compute costs cd,i

of operator i on device d and the new quadratic copy cost termW , which adds costs for copying
tensors when devices are switched. E is the set of all edges connecting the operators: e ∈ E with
e = (u → v ) are tensors. we,d,d ′ denotes the costs for copying tensor e = (u → v ) from device d
to d ′. These costs might be distinct from those copying the tensor back from d ′ to d . Copy costs of
tensors between devices are profiled together with computational costs on the device in an offline
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step and used in the MIQP formulation. We introduce matrix Z to define where device switches
can occur. We also extend every constraint of the Checkmate MILP by the new device dimensiond .

arg min
R,S,U ,F ,Z

D∑

d=1

T∑

t=1

T∑

i=1

cd,iRd,t,i +W

W =
T∑

t=1

E∑

e=(u→v )

D∑

d ′=1

D∑

d=1

we,d,d ′Rd ′,t,vZd,t,u

(1)

subject to Equations (2), (3), (5), (6), (7), (8), (9), (10), (11), (12), (16), (13) and (14).

3.2.2 The Compute and Save Matrices. R is the compute matrix and S the save matrix. Both
matrices have the shape |D |x |T |x |T |.

If Rd,t,i == 1, operator i is computed in timestep t on device d . Sd,t,i == 1 means that the output
of operator i is saved in timestep t on device d .

Rd,t,i , Sd,t,i ∈ {0, 1}
∀d ∈ D, ∀t ∈ T , ∀i ∈ T (2)

3.2.3 The Free Matrix. F is the free matrix of shape |D |x |T |x |E | and denotes whether tensors
are freed in a timestep. If Fd,t,e=(u→v ) == 1, tensor e = (u → v ) between two operators u and v
located on device d is freed in timestep t .

Fd,t,e=(u→v ) ∈ {0, 1}
∀d ∈ D, ∀t ∈ T , ∀e = (u → v ) ∈ E (3)

3.2.4 The Availability Matrix. Z is the availability matrix of shape |D |x |T |x |T | and denotes the
availability of an operator output. If Zd,t,i == 1, operator i is either computed or saved in timestep
t on device d . The copy costs matrixW of shape |E |x |D |x |D | defines the tensor copy costs between
two devices: we,d,d ′ denotes the costs for copying the output tensor e = (u → v ) of operator u
from device d to device d ′, since there is another operator v on device d ′ that is dependent on u.
Zd,t,u = 1 indicates that operator output u in an edge (u → v) is computed (Rd,t,u == 1) or saved
(Sd,t,u == 1) on device d , thus available for computing operator v . If the output of operator v is
computed, copy costs we,d,d ′ are non-zero if the device d of u is not equal to the device of v and
thus has to be first copied before computing v . Zd,t,u ensures that copy costs are considered only
once. Z can be derived by the logical Equation (4):

Zd,t,u =
⎧⎪⎨
⎪
⎩

1 if Rd,t,u == 1 ∨ Sd,t,u == 1

0 if Rd,t,u == 0 ∧ Sd,t,u == 0
. (4)

Zd,t,u can at maximum be 1 even if R and S are both 1 due to the fact that Z is binary. In terms of
a constraint, this can be written as Equation (5):

Zd,t,i ≤ Rd,t,i + Sd,t,i

Zd,t,i ≥ Rd,t,i

Zd,t,i ≥ Sd,t,i

Zd,t,i ∈ {0, 1}
∀d ∈ D, ∀t ∈ T , ∀i ∈ T .

(5)

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 17. Publication date: December 2022.



XEngine: Optimal Tensor Rematerialization 17:9

3.2.5 The Memory Matrix. The continuous matrix U of shape |D |x |T |x |T | keeps track of the
memory (Equation (6)). Ud,t,i denotes the amount of occupied memory at timestep t on device d
after computing operator i and must be between 0 and дcdd , where дcdd depends on the memory
budget bd and ram rd of device d .

0 ≤ Ud,t,i ≤ дcdd

дcdd = bd/rd

∀d ∈ D, ∀t ∈ T , ∀i ∈ T
(6)

3.2.6 The Constraints. The following constraints are defined in the MIQP.

• Operators are first time computed in timestep t == i .
All values in the upper right diagonal of matrix R are 0 since operator i is first time computed
in timestep t with i == t , which is the diagonal of the matrix. Recomputes of operator i for
timesteps t ′ > t during evaluation of the new operator i ′ > i are allowed only after the first
computation of i and can be located on the left lower part of the diagonal only. This can be
written as Equation (7):

D∑

d=1

T∑

t=1

T∑

i=t+1

Rd,t,i = 0 (7)

• There is one new evaluation per timestep.

Equation (8) ensures at least 1 new evaluation per timestep t on any device d ∈ D. It defines
the frontier-advancing diagonal. This constraint ensures that the new operator on the diag-
onal is evaluated on at least one device and, if necessary, allows for evaluation of the same
operator on more than one device at the same time.

D∑

d=1

Rd,t,t ≥ 1 ∀t ∈ T (8)

• All operators must be evaluated at least once.

The sum of all new evaluations must match the total number of operators (Equation (9)). Each
operator must be evaluated at least once on any device in the frontier advancing diagonal.

T∑

t=1

D∑

d=1

Rd,t,t = T (9)

Equations (8) and (9) together state that each new evaluation should be located on exactly
one device. Recomputations of tensors (lower part below the diagonal) are not restricted by
this and can occur on any device.
• No tensor can be saved before it is computed the first time.

Equation (10) ensures that no operator can be saved before it is computed for the first time.
Thus, the upper part above the frontier advancing diagonal must be all 0.

D∑

d=1

T∑

t=1

T∑

i=t

Sd,t,i = 0 (10)

• No tensor can be saved before it is available.

Equation (11) states that any operator i can be saved on device d in timestep t only if it
has been computed or saved in the previous timestep t − 1 on the exact same device d . The
constraint enforces that saving must take place on the same device as data are available. A
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tensor copy from another device to the current device followed by a save on the current
device is not allowed.

Sd,t+1,i ≤ Sd,t,i + Rd,t,i

∀d ∈ D, ∀t ∈ T , ∀i ∈ T (11)

• No operator can be computed before its dependencies are available.

Equation (12) ensures that computation of operator v on device d is possible only if any
operator u needed by v is either computed or saved on any device d ′ ∈ D. If d ′ � d , copy
costs will be added to the objective. In contrast to the previous constraint, this constraint
allows copying a tensor (u → v) from another device to the current device and to directly
use it for computation of the current operator v .

Rd,t,v ≤
D∑

d ′=1

(
Rd ′,t,u + Sd ′,t,u

)

∀d ∈ D, ∀t ∈ T , ∀(u,v ) ∈ E
(12)

• Memory initialization.

Equation (13) shows how the memory is initialized in the beginning of each timestep t .Ud,t,0

denotes the memory at the beginning of timestep t , which is initialized as the sum of all
checkpoint memory

∑
T

i=1 Sd,t,imi and the memory used to hold the output of the first oper-
ator computed in the stagem0.

D∑

d=1

Ud,t,0 =

T∑

i=1

Sd,t,imi +

D∑

d=1

Rd,t,0m0

∀t ∈ T
(13)

• Memory recurrence.

A memory recurrence constraint Equation (14) ensures that memory is allocated and freed
correctly over time. After evaluatingv ,Ud,t,v bytes of memory are in use. Before evaluating
the next operatorv +1, the memory ofv and its dependencies u ∈ P (v ) can be freed if there
are no further uses of v . If v + 1 is evaluated, new memory mv+1 to store the output tensor
of operator v + 1 has to be allocated.

D∑

d=1

Ud,t,v+1 =

D∑

d=1

Ud,t,v − f reed,t,v + Rd,t,v+1mv+1 (14)

f reed,t,v is the memory that is freed as soon as the output of operatorv is freed, including the
memory of those tensor dependencies ofv that are only needed to computev . Equation (15)
reflects this: The total freed memory whenv is deallocated is the sum of all dependent tensors
that are no longer needed afterv is calculated. Fd,t, (u→v ) == 1 indicates that tensor (u → v )
is freed in timestep t . The dependencies u ∈ P (v ) are the sources of all incoming edges
e = (u → v ) of v , which means all tensors that connect a previously computed operator u
to v .

f reed,t,v =
∑

u ∈P (v )∪{v }
Fd,t, (u→v )

∀d ∈ D, ∀t ∈ T .
(15)

• Memory limits.

Our F matrix corresponds to the Free matrix of Checkmate (but with an additional dimen-
sion D).
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Fd,t,e == 1 denotes that tensor e is freed in timestep t on device d . Our h (t ,d,u,v ) corre-
sponds to num_hazard (t ,d,u,v ) in Checkmate and is a linear function of decision variables.
The lower and upper bounds Fhmin

and Fhmax
in Equation (16) are derived via linear reformu-

lation of a polynomial constraint (see the Checkmate [12] paper for more details on how to
derive these memory limits). We used these memory limits in our MIQP as well and adapted
them to also consider the device dimension.

Fhmin
≤ Fh

Fhmax
≥ Fh

−Fh + Fhmin
≤ 0 ≤ −Fh + Fhmax

Fhmin
=

D∑

d=1

(
1 − Fd,t,e

)

Fhmax
=

D∑

d=1

(
hmax (t ,d,u,v )

(
1 − Fd,t,e

))

−Fh =

D∑

d=1

hmax (t ,d,u,v )

∀t ∈ T , ∀e = (u,v ) ∈ E

(16)

3.3 Framework

We set up a framework using Intel’s oneDNN deep learning library, which is highly optimized for
Intel hardware. The network is read in as ONNX model and device budgets are defined in a first step.
Tensor sizes and compute costs per network operator are obtained by computing each operator
on each device. We let oneDNN choose the best memory format for each operator and are able to
reorder any input tensors to the desired format of the operator, including device-to-device copies
if necessary. Since oneDNN performs reordering and device copies in a single “reorder” operator,
we do not model reorder costs explicitly, as they are already included in the copy costs. Next,
we measure copy costs between the devices in both directions, implicitly modeling differences in
reordering costs. The copy cost matrixW is of |E |x|D |x|D | dimensions, where |E | is the number of
tensor edges connecting the operator nodes.

4 EVALUATION

4.1 Setup

We use Intel’s DevCloud hardware for all experiments and request nodes with the following prop-
erties:

• node “Iris”
– Intel® Core™ i9-10920X CPU @ 3.50 GHz

with 24 compute units, 31.05 GiB global memory
– Intel® Iris® Xe MAX Graphics GPU @ 1.65 GHz

with 96 compute units, 7.53 GiB global memory
• node “Gen9”

– Intel® Xeon® E-2176G CPU @ 3.70 GHz
with 12 compute units, 50.1 GiB global memory

– Intel® UHD Graphics P630 GPU @ 1.2 GHz
with 24 compute units, 62.63 GiB global memory

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 17. Publication date: December 2022.



17:12 M. Schuler et al.

Since we request high-end CPUs, we simulate a lower compute performance by varying the num-
ber of threads. Although we do not consider any kind of model parallelization, the implementations
of the oneDNN library are using parallelization methods internally on an operator level. Thus, we
are able to achieve a lower CPU compute performance by gradually reducing the number of CPU
threads. In our experiments, we vary the number of CPU threads in steps of 4 starting from 4, 8,
12, 16, 20 up to a full 24 threads. For ResNet18 and ResNet34, we also evaluate 10 threads on the
“Gen9” setting.

We use the following software versions: oneDNN 2.5, Intel® oneAPI DPC++/C++ Compiler
2021.4.0 with SYCL and OpenCL 3.0, Gurobi 9.12, CBC/Cbc 2.9. We evaluate the following net-
works: VGG16, VGG19 [23], ResNet18, ResNet34 [9], and a UNet we defined similar to Ronneberger
et al. [22] for different batch size. Instead of increasing the batchsize until the real device limit is
reached, we consider the budget needed to save all tensors as 100%. We then artificially decrease
the memory budget per device up to only 25% (75% memory reduction) of the original budget to
see if our solver still finds feasible solutions and to which amount of additional compute costs.

We evaluate our XEngine solver with multiple devices against Checkmate with only one device.
As for being fair, we evaluate Checkmate not only on the GPU device, as proposed in their original
work, but also on the CPU device. When the budget is sufficiently large for the network and all
tensors can be saved, the Checkmate schedule is exactly the same as running every operator exactly
once in the corresponding device.

Our focus lies on the problem of resource selection and we do not apply any kind of model
parallelization. Instead, we consider only one iteration through the network. Therefore, multiple
devices do not introduce any parallelization-related benefit. In most experiments, we use one CPU
and one GPU. To show that our approach can be easily extended to more than two devices, we also
included experiments with one CPU and two GPUs. The two GPUs show similar compute costs
due to identical hardware architecture. Since parallelization on multiple devices is not our focus
in this article and the two GPUs are quite similar in runtime, we conduct most of the experiments
with a device setup of one CPU and one GPU.

We evaluate various network architectures, for example, the well-known VGG and ResNet. One
special network structure that is especially interesting for us is UNet, since it contains a lot of de-
pendency structures in the form of skip connections and is at the same time compute and memory
intensive due to the transposed convolution operator. Figure 5 depicts the main dependencies in
the forward pass of UNet. Each “block” is a sequence of network operators consisting of two con-
volutions with each leaky rectified linear unit (ReLU) and instance normalization operators. The
block outputs of the first half (encoder) are connected to blocks in the second half (decoder) via
concatenation operators. A transposed operator is located after each decoder block.

4.2 Results

We evaluate our XEngine approach on various networks with different batch sizes in training and
inference mode on two hardware platforms with varying numbers of CPU threads and 7 different
memory budgets. For many configurations, the XEngine schedule is a single-device schedule in
which all computations, including recomputations for low budgets, take place only on the fastest
device. We are mostly interested in mixed schedules, in which computations take place on both
the CPU and GPU. The (%) is the time reduction in % of the XEngine schedule relative to the fastest
Checkmate schedule that runs only on a single device. A high negative number means a high time
reduction. The best schedule varies depending on network, mode, batch size, and number of CPU
threads. When the CPU and GPU are comparably fast, the solver finds CPU/GPU schedules su-
perior to single-device schedules. The XEngine solver runtimes vary between a few seconds for
small problems (VGG16, UNet) and several hours for large problems (ResNet18). In some cases,
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Fig. 5. Structure of our UNet. A typical block consists of convolution, instance normalization, leaky ReLU,
convolution, instance normalization, leaky ReLU. If there are 2 inputs for a block, there must be a concatena-
tion operator right at the start of the block. Blocks 2, 3, and 4 also have one transposed convolution operator
at its end. Block 5 consists only of a single convolution operator and outputs the final segmentation mask o.

the performance improvement is not worth running the solver: for ResNet34 with batch size 16 in
inference mode, we gain only ≤ 2% speedup on “Gen9” compared with a single-device schedule.
Especially in inference mode and on linear model graphs, data dependencies of subsequent oper-
ators put higher restrictions on the schedule and allow less alternatives than strictly computing
each operator one after each other. If device memory is exceeded, often the minimal cut is found
where data copies are cheapest and one half is computed on the first device and the other on the
second device. For other cases, such as training our UNet at a batch size of 1, we get speedups up
to 19.2% compared with running only on the GPU.

In inference mode for linear networks such as VGG, tensors are used only once to compute the
next layer and always discarded without recomputation. Recomputation is especially triggered
for training networks at low memory budgets and can cause the model to fit into device memory.
Distributing computations also has a positive effect on inference. In all of our experiments, the
solution of our XEngine solver is either the fastest single-device schedule or a faster CPU/GPU
schedule. In the following, we show detailed results for the two evaluated hardware settings “Iris”
and “Gen9”.

4.2.1 Iris. We evaluate our system with different settings for inference and training of popular
networks. In most settings, there is a “sweet spot” of a specific number of threads in which CPU and
GPU are comparably fast and the mixed schedule is interesting: some operators are scheduled to
the GPU, whereas other operators are scheduled to the CPU. In other cases—assuming sufficient
memory—all operators are automatically scheduled to the fastest device. The evaluation of our
approach on the “Iris” setup can be found in Table 1 with Table 1(a) for ResNet18, ResNet34, and
UNet and in Table 1(b) for VGG16 and VGG19. All of the experiments in these tables are conducted
with sufficient budget, focusing on the effect of operator distribution.

For VGG16 and VGG19 in inference mode, the highest speedups are achieved for running our
XEngine-solver on a GPU and CPU with 12 threads. We gain up to 15.4% (VGG16) and 15.5%
(VGG19) speedup compared with the fastest single-device schedule on the GPU. In training mode,
12 and 24 CPU threads yield comparable improvements up to over 10% speedup for VGG16 and
VGG19.

We notice that when keeping all tensor memory, it is possible to train VGG16 and VGG19 on
the GPU device up to batch size 4 only, which needs 1.96 GiB for VGG16 and 2.08 GiB for VGG19.
For ResNet18, the maximum batch size was N = 32 for the GPU, when no tensors were freed. With
batch size 128 for training ResNet18, our XEngine solver finds a CPU/GPU schedule that is 18.1%
faster than the CPU Checkmate schedule by computing some operators on the GPU, whereas it
cannot run on the GPU exclusively due to insufficient GPU memory. Other configurations still
show the same or an improved performance compared with the fastest single-device schedule:
training ResNet34 with N = 128 yields a small speedup of around 5.9%. VGG16 can be trained with
batch sizes N = 8 to N = 32 with a speedup of up to 4.5% with a mixed schedule.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 17. Publication date: December 2022.



17:14 M. Schuler et al.

Table 1. Runtimes on “Iris” with Sufficient Budget

(a) Runtimes for ResNet18, ResNet34, and UNet on
“Iris” with sufficient budget.

time (ms)
Checkmate Checkmate XEngine budget

N # CPU GPU CPU+GPU (%) (GiB)

ResNet18 training

8 8 131.9 204.6 124.9 (−5.3) 0.61
8 12 114.0 203.1 107.3 (−5.9) 0.61
8 20 94.0 207.0 88.25 (−6.1) 0.61
8 24 106.1 209.1 99.9 (−5.8) 0.61
16 8 194.7 310.8 184.5 (−5.3) 1.13
16 12 194.3 312.3 184.2 (−5.2) 1.13
16 20 197.1 313.7 186.3 (−5.5) 1.13
16 24 191.7 314.0 181.8 (−5.2) 1.13

64 24 789.9 1052.9 655.6 (−17.0) 4.24
128 24 1595.1 2102.5 1307.2 (−18.1) 8.38
256 24 3051.2 4871.4 2691.5 (−11.8) 16.66

ResNet34 training

8 8 184.4 408.92 173.7 (−5.8) 0.96
8 12 209.7 401.7 198.9 (−5.2) 0.96
8 20 175.4 393.9 162.9 (−7.1) 0.96
8 24 182.7 395.2 172.4 (−5.7) 0.96
16 20 352.8 537.7 333.2 (−5.5) 1.75

128 24 2424.9 3112.8 2282.4 (−5.9) 12.75

UNet inference

1 12 28.25 21.7 19.8 (−8.9) 0.14
1 24 24.35 23.7 19.3 (−18.5) 0.14
2 12 52.9 40.8 37.8 (−7.4) 0.16
2 24 43.2 41.4 34.5 (−16.8) 0.16
4 12 86.5 71.1 63.3 (−11.0) 0.2
4 24 72.9 70.5 57.4 (−18.5) 0.2

UNet training

1 12 61.0 75.36 49.3 (−19.2) 0.28
1 24 55.51 75.3 45.77 (−17.6) 0.28
2 12 109.71 117.5 90.3 (−17.7) 0.32
2 24 103.95 117.19 85.8 (−17.5) 0.32
4 12 211.04 193.8 169.2 (−12.7) 0.4
4 24 187.19 192.96 155.56 (−16.9) 0.4

(b) Runtimes for VGG16 and VGG19 on “Iris” with
sufficient budget.

time (ms)
Checkmate Checkmate XEngine budget

N # CPU GPU CPU+GPU (%) (GiB)

VGG16 inference

2 12 54.8 56.6 46.4 (−15.4) 0.75
2 24 44.9 56.3 44.9 (−0) 0.75
4 12 108.8 94.1 84.6 (−10.0) 0.97
4 24 88.8 94.4 84.3 (−5.0) 0.97

VGG16 training

2 12 195.84 191.38 171.23 (−10.5) 1.51
2 24 194.9 191.77 171.04 (−10.8) 1.51
4 12 353.1 327.3 308.43 (−5.8) 1.96
4 24 343.18 327.3 307.13 (−6.2) 1.96

8 12 678.9 588.4 565.2 (−3.9) 2.86
8 24 641.4 588.6 563.5 (−4.3) 2.86
16 12 1329.4 941.3 901.3 (−4.2) 4.67
16 24 1221.5 941.2 899.3 (−4.5) 4.67
32 12 2623.5 1838.8 1765.4 (−4.0) 8.28
32 24 2349.4 1838.6 1759.0 (−4.3) 8.28

VGG19 inference

2 12 68.3 67.6 57.1 (−15.5) 0.79
2 24 54.5 67.9 54.5 (−0) 0.79
4 12 135.3 115.0 105.6 (−8.2) 1.03
4 24 109.1 114.8 104.4 (−4.3) 1.03

VGG19 training

2 12 245.13 231.7 215.65 (−6.9) 1.59
2 24 232.6 231.2 209.3 (−9.5) 1.59
4 12 413.88 398.55 378.34 (−5.1) 2.08
4 24 413.83 399.07 378.18 (−5.2) 2.08

8 12 826.5 721.3 699.0 (−3.1) 3.06
8 24 793.0 721.8 697.3 (−3.4) 3.06
16 12 1631.4 1150.3 1110.3 (−3.5) 5.0
16 24 1472.9 1151.0 1108.7 (−3.7) 5.0
32 12 3236.6 2266.2 2193.0 (−3.2) 8.96
32 24 2853.1 2254.2 2174.9 (−3.5) 8.96

N denotes the batch size. # denotes the number of CPU threads.

Our XEngine solver finds solutions to train VGG16 on the CPU and GPU for batch sizes 8
(2.86 GiB), 16 (4.67 GiB) and even 32 (8.28 GiB), when training on the GPU alone is not possi-
ble. The memory needed to train VGG19 is slightly higher than for VGG16. Even if the global
memory on the GPU is around 7.53 GiB, the real usable free memory for our application is much
smaller that that (in our experiments around 2–2.5 GiB). Figures 6(c) and 6(d) visualize the results
for VGG16 and VGG19 on the “Iris” setup.

The improvements for running our solver on ResNet in training mode are relatively low: the
speedup we gain is around 5% to 6% compared with the fastest single-device schedule. For inference
mode of ResNet, our solver schedule is as fast as the best single-device schedule. Therefore, the
results are not included in Table 1(a).

Where our XEngine solver shows higher benefit is the ability to increase the overall system
batch size, higher than the maximum possible to be trained on the smaller GPU device alone and
still achieve slightly better results than if we would train the network on the fastest device, if
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Fig. 6. Runtimes on “Iris”, N = batch size.

possible. When the network does not fit on the GPU device as a whole, we gain runtimes on the
GPU by deallocating tensor memory after each operator evaluation regardless of dependencies,
running dependent operators with dummy data.

Visualization of the results for training ResNet18 can be found in Figure 6(a). Taking a closer
look at the operator runtimes, we notice that one reason for the relatively bad GPU scaling for
training ResNet18 with batch size 256 is located in the last convolution node (277 ms on the CPU
and 1,867 ms on the GPU) as well as the last ReLU node (64 ms on the CPU and 684 ms on the
GPU). Since the last convolution is also the last operator of the network, it needs to write the
operator output back to the CPU. Additionally, the original input located on the CPU is needed
for backpropagation, requiring a costly reorder operation right before computation. The 10 times
higher compute costs on the ReLU layer on the GPU are caused by an expensive reorder operation
after the MaxPool and in the ReLU layer due to memory layout changing from 2D to 1D.

The UNet model shows great improvements in inference and training mode: our XEngine solver
on a combination of CPU and GPU shows promising results of on average 13.5% less for inference
and 17% less computational costs for training. The best speedup of 19.2% is achieved for training
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Fig. 7. Schedule for training ResNet18 with N = 8 exclusively on the CPU device (24 threads) with a lower
budget of 153.4 MiB (25% of full budget) on “Iris”.
F = forward pass, B = backward pass, T = operators. R shows 17 operator recomputations (red).

UNet with a batch size of 1 on the GPU and a CPU with 12 threads. Figure 6(b) visualizes the im-
provement of our XEngine approach for UNet in inference and training mode when using 12 CPU
threads.

In order to measure the improvement of our approach in terms of limited memory with recom-
putations, we vary the memory budget limit for all devices. We define a memory budget of 100%
as the amount needed to save all tensors in the network, including network parameters, feature
maps, and gradients.

Figure 7 shows the Checkmate CPU schedule for training ResNet18 with batch size N = 8 at
a lower budget of 25%, where recomputation is triggered. The left side of the figure shows the R
matrix. The first line from above corresponds to the first timestep; the left upper corner indicates
that operator 0 is computed in timestep 0. Starting from the top, the first half of the y axis is the
forward pass; the second half corresponds to the timesteps in the backward pass. Recomputations
of the forward activations are triggered in the backward step (red marked). For these points, white
lines in columns of the S matrix on the right side show that these operator outputs are not saved
until their recomputation.

In Table 2, the ResNet and UNet architectures are trained with full and significantly lower
budgets. Full budget refers to the policy that all network tensors are saved and nothing is freed. Re-
computation is triggered if the budget is lower than 25% of the full budget: Additional computations
occur in the backward pass as recomputation of forward activations. We compare our XEngine ap-
proach (multiple devices), denoted as CPU+GPU, against the Checkmate approach (single device)
on the CPU and GPU. The additional compute costs (overhead) are denoted after every second
column of lower budget compared with the full budget case. Decreasing the memory budget for
training ResNet34 at a batch size of 16 to 437.2 MiB (25%) results in an additional compute cost
of only 8.4 ms (+2.7%) for our XEngine schedule compared with the full budget case (307.9 ms at
1.75 GiB).

For UNet, the additional compute costs are higher than for ResNet18 and ResNet34: lowering
the budget to one-quarter leads to 8.2% to 10.3% higher computational costs.
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Table 2. Runtimes for Training ResNet and UNet on “Iris” with Full and
Lower Budget (25% of Full Budget)

time (ms) budget
Checkmate Checkmate XEngine (GiB)

N # CPU GPU CPU + GPU

ResNet18

8 24 102.1 209.6 96.1 0.61
8 24 105.8 (+3.6%) 217.1 (+3.6%) 99.8 (+3.8%) 0.15 (−75%)

16 24 193.8 315.0 182.4 1.13
16 24 198.4 (+2.4%) 324.9 (+3.2%) 187.0 (+2.6%) 0.28 (−75%)

ResNet34

8 20 182.5 390.8 170.8 0.96
8 20 188.3 (+3.2%) 406.4 (+4.0%) 176.6 (+3.4%) 0.24 (−75%)

16 20 327.7 537.6 307.9 1.75
16 20 336.1 (+2.6%) 557.5 (+3.7%) 316.3 (+2.7%) 0.44 (−75%)

UNet

2 24 101.9 116.4 84.3 0.32
2 24 110.1 (+8.1%) 123.5 (+6.14%) 92.5 (+9.7%) 0.08 (−75%)

4 24 189.7 188.8 158.1 0.4
4 24 206.0 (+8.6%) 204.2 (+8.2%) 174.5 (+10.3%) 0.1 (−75%)

N denotes the batch size. # denotes the number of CPU threads.

Table 3. Runtimes for Training of VGG19 and ResNet34 on “Iris” with Sufficient Budget
on CPU and Two GPUs

time (ms)
Checkmate Checkmate Checkmate XEngine

N # CPU GPU_0 GPU_1 CPU + GPU_0 + GPU_1 (%)

VGG19

4 12 416.8 420.7 399.8 378.7 (−5.3)

ResNet34

16 12 391.7 572.5 550.6 371.2 (−5.2)
16 20 350.6 563.2 559.4 330.1 (−5.8)
16 24 357.2 569.1 556.9 336.6 (−5.8)

N denotes the batch size. # denotes the number of CPU threads.

Table 3 shows the results when considering two GPU devices together with a CPU device for
VGG19 and ResNet34 in training mode. With a CPU+2GPU setting on “Iris,” we gain 5.8% speedup
for a ResNet34 with N = 16 and 20 CPU threads. Compared with 5.5% speedup using a CPU+GPU
setting, this does not show any great benefit for solving our problem. The same holds for training
VGG19 with a batch size of 4 on 12 CPU threads (5.1% vs. 5.3%).
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Fig. 8. Runtimes for “Gen9,” N = batch size, # = number of CPU threads.

4.2.2 Gen9. Table 4 shows results for the “Gen9” setup. Highest speedups here can be found
for VGG19 inference with up to 22.5% and VGG16 inference with up to 14.2% compared with the
fastest single-device schedule. Figure 8(a) shows the results for VGG16 on the “Gen9” setup. The
benefit of our solver decreases with increasing batch size due to a bad CPU scaling. However, we
can still see major performance improvements for smaller batch sizes.

For UNet, our XEngine approach leads to performance improvements of up to 17%. The results
for UNet on the “Gen9” setup can be seen in Figure 8(b). This network structure shows a better
scaling for the CPU than for the GPU and performance improvements are still high (16.2%) for a
batch size of 16. When trying to identify the reasons for bad scaling on the GPU for UNet on the
“Gen9” setup, we noticed that the instance normalization CPU implementation was faster than the
GPU version. The first and last compute blocks of UNet were also generally slower on the GPU,
whereas the blocks in the middle (except instance normalization layers) did not suffer from under-
performance on the GPU. The first convolution needs to read the network input data from the
CPU storage, which requires an expensive data copy. The last convolution operator needs to read
the network input data as well to compute the backpropagation and has to write the final result
back to storage on the CPU. The last concatenation layer of UNet and its very last convolution
layer were also slower on the GPU.

5 DISCUSSION

5.1 Energy Efficiency

Our MIQP approach can be extended to other limitations depending on the hardware setup. Es-
pecially on mobile devices, energy consumption is another resource limitation that needs to be
addressed. In general, we have two different ways of extending our MIQP towards this limitation.
On the one hand, we can think of energy consumption as another cost term Q that can be added
to the original objective. We could optionally control the influence of this term by weighting it
with α . When minimizing the objective, we also find solutions that minimize the overall energy
consumption but without having a guarantee of staying below a specific upper energy limit. Equa-
tion (17) shows how we could extend our MIQP with an additional weighted cost termQ . To obtain
the energy consumption qd,i of operator i on device d , we would have to acquire this information
from the operating system during the offline data acquisition process.
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Table 4. Runtimes on “Gen9” in ms

(a) Runtimes for ResNet18, ResNet34 and UNet
on “Gen9.”

Checkmate Checkmate XEngine
N CPU (#) GPU CPU + GPU (%)

ResNet18 inference

8 107.2 (10) 105.6 100.6 (−4.7)
8 104.2 (12) 106.4 100.7 (−3.4)
16 175.1 (10) 186.3 169.6 (−3.1)
32 364.2 (10) 361.1 345.7 (−4.3)
64 642.9 (10) 714.2 632.0 (−1.7)
128 1,336.5 (10) 1411.9 1313.0 (−1.8)
512 4,288.9 (10) 5642.58 4288.9 (−0)

ResNet34 inference

8 210.4 (10) 215.0 203.9 (−3.1)
16 386.1 (10) 359.6 352.7 (−1.9)
32 727.8 (10) 693.9 660.0 (−4.9)
64 1269.2 (10) 1373.0 1255.4 (−1.1)
128 2443.17 (10) 2864.9 2422.3 (−0.9)
512 8342.75 (10) 10825.0 8342.8 (−0)

UNet inference

2 122.27 (12) 121.52 102.46 (−15.7)
4 225.35 (10) 229.75 191.95 (−14.8)
4 195.28 (12) 227.75 162.07 (−17.0)
8 330.7 (12) 438.0 275.4 (−16.7)
16 639.9 (12) 832.6 536.5 (−16.2)

(b) Runtimes for VGG16 and VGG19 on “Gen9.”

Checkmate Checkmate XEngine
N CPU (#) GPU CPU + GPU (%)

VGG16 inference

2 210.5 (4) 233.9 180.7 (−14.2)
4 545.8 (4) 411.6 364.9 (−11.4)
8 1,086.5 (4) 745.5 702.6 (−5.8)
16 1,875.31 (4) 1,438.2 1,398.94 (−2.7)
32 3,742.58 (4) 2,816.64 2,786.73 (−1.0)
64 7,506.13 (4) 5,637.23 5,565.52 (−1.3)
128 7,062.03 (10) 11,161.7 7,062.03 (−0)
256 14185.1 (10) 22309.0 1,4185.1 (−0)

VGG19 inference

2 356.0 (4) 320.4 248.2 (−22.5)
4 694.8 (4) 491.0 443.6 (−9.6)
8 1,375.7 (4) 915.3 872.5 (−4.7)
16 2,372.13 (4) 1,815.23 1,776.08 (−2.2)
32 4,736.98 (4) 3,566.1 3,535.88 (−0.9)
64 9,472.19 (4) 7,129.88 7,064.3 (−0.9)
128 8,882.8 (10) 14,145.2 8,882.8 (−0)
256 17,730.4 (10) 28,341.0 17,730.4 (−0)

N denotes the batch size. # denotes the number of CPU threads.

arg min
R,S,U ,F ,Z

D∑

d=1

T∑

t=1

T∑

i=1

cd,iRd,t,i +W + αQ

W =
T∑

t=1

E∑

e=(u→v )

D∑

d ′=1

D∑

d=1

we,d,d ′Rd ′,t,vZd,t,u

Q =
D∑

d=1

T∑

t=1

T∑

i=1

qd,iRd,t,i

(17)

subject to Equations (2), (3), (5), (6), (7), (8), (9), (10), (11), (12), (16), (13), and (14).
On the other hand, we could instead realize this by a hard constraint—in a manner similar to the

upper memory limit. We can define an energy budgetQMax

d
per device d and allow those solutions

that are guaranteed to be below this energy limit at any timestep t ∈ T . Equations (18) and (19)
show how we could extend our MIQP with an energy constraint: Equation (18) ensures that the
device-specific energy limit is not exceeded at any timestep throughout the schedule. Equation (19)
ensures that the total energy costs per timestep, which also include board energy consumption,
are below a maximum power limit. This term can be further refined to also model the memory
subsystem in order to reflect the actual system configuration.
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Fig. 9. Subgraph of ResNet18 showing the third skip connection connecting the 5th ReLU operator with the
third add operator. C = Convolution layer, with p = padding and s = stride. BN = Batch normalization layer.

0 ≤ Qd,t,i ≤ QMax

d

∀d ∈ D, ∀t ∈ T , ∀i ∈ T
(18)

D∑

d=1

T∑

i=1

Qd,t,i +QBoard ≤ QMax

∀d ∈ D, ∀t ∈ T , ∀i ∈ T
(19)

Since we did not find a way to easily access power consumption information on the Intel Dev-
Cloud, our result section is lacking experiments for an extended MIQP that also optimizes energy
efficiency.

5.2 Model Parallelization

Model parallelization is often understood as dividing a network graph into groups of layers and
computing them separately on different devices in parallel. Our MIQP outputs a schedule that de-
cides on which device a layer should be computed and also considers copy costs for data transfers.
Nevertheless, we do not consider parallel execution of layers. Rather, we assume that the operators
are executed one after the other. The benefit introduced by model parallelization heavily depends
on network architecture. Linear graphs do not benefit much from model parallelization, since sub-
sequent layers depend on each other. Instead, it is better to divide the data into batches and to
make use of data parallelization. If skip connections are present—as for UNet or ResNet—one may
introduce model parallelization and compute concurrent branches in parallel. Skip connections of-
ten contain two “branches”: the inner, which is the more compute-intensive branch, and the outer
branch, often only a data dependency between two operators. In Figure 5, three outer branches
are depicted that themselves do not contain any computation at all. Figure 9 shows a ResNet18
skip connection with two branches. In the inner branch, two 3× 3 convolutions, each followed by
a batch normalization layer, are connected by a ReLU layer. The inner branch contains even more
than twice the computational demand compared with the outer branch, which contains only one
1 × 1 convolution layer followed by a batch normalization layer. The wall-clock time depends on
the branch, which, on average, takes longer to compute. Since the outer skip branches of skip con-
nections are often computationally cheap, the bottleneck is significantly more often the memory
transfer rather than the computation of the outer skip branch. Executing the branches in parallel
will not achieve notable performance speedup.

5.3 Alternative Platforms

Our experiments were conducted on Intel hardware and software since we use Intel oneDNN as
a backend. Nevertheless, the key concepts of our approach can be transferred to other platforms,
such as AMD and NVIDIA. Intel is working on an NVIDIA backend for oneDNN that is still in
experimental mode at this writing. According to the oneDNN GitHub repository, Intel will re-
structure the engine creation with the goal of integrating the NVIDIA backend more tightly into
the runtime.
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6 CONCLUSION

This article presents XEngine, an MIQP that extends the Checkmate MILP to multiple heteroge-
neous devices, combining distributed computation with checkpointing. We use additional con-
straints to hand computation over between different devices with the accompanying memory copy
costs. We find optimal schedules according to a given memory budget per device and recompute
operator outputs whenever the model does not meet memory limitations. We evaluated our ap-
proach against Checkmate on several networks—such as ResNet, VGG, and UNet—for inference
and training. In contrast to Checkmate, we also distribute the network operators between a CPU
and a GPU. This way, we gain up to 19.2% speedup for training a UNet with a CPU/GPU schedule
and a speedup of up to 22.5% for inference of a VGG19 compared with computing only on the GPU.
Moreover, we can overcome the problem that some networks cannot be exclusively computed on
the GPU by CPU/GPU schedules, such as for ResNet18 with batch size 128 on the Iris Xe MAX GPU.
Despite all of our experiments being conducted on Intel hardware, our approach can be transferred
to other platforms as well, such as AMD or NVIDIA hardware.

A APPENDIX

Figures 10 to 17 depict selected schedules of the “Iris” setup in Table 2. Figures 10 and 11 show
the schedules for ResNet18 of our XEngine approach on a CPU-GPU setup (Figure 10) in compar-
ison with CPU-Checkmate (Figure 11, left two images) and GPU-Checkmate (Figure 11, right two
images).

Fig. 10. XEngine schedule for training ResNet18 on “Iris” with N = 8. Budget: 153.4 MiB (25%), 24 CPU
threads: R0, R1, S0, S1, Table 2 line 2.

Fig. 11. Checkmate schedules for training ResNet18 on “Iris” with N = 8. Budget: 153.4 MiB (25%), 24 CPU
threads, CPU: R, S , GPU: R, S , Table 2 line 2.
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Other figures show the schedules for ResNet34 (Figures 12 and 13) and UNet (Figures 14–17).
For UNet, we selected two schedule comparisons, one for batch size 2 (Figures 14 and 15) and

one for batch size 4 (Figures 16 and 17).

Fig. 12. XEngine schedule for training ResNet34 on “Iris” with N = 8. Budget: 240.8 MiB (25%), 20 CPU
threads: R0, R1, S0, S1, Table 2 line 6.

Fig. 13. Checkmate schedules for training ResNet34 on “Iris” with N = 8. Budget: 240.8 MiB (25%), 20 CPU
threads, CPU: R, S , GPU: R, S , Table 2 line 6.

Fig. 14. XEngine schedule for training UNet on “Iris” with N = 2. Budget: 80 MiB (25%), 24 CPU threads: R0,
R1, S0, S1, Table 2 line 10.
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Fig. 15. Checkmate schedules for training UNet on “Iris” with N = 2. Budget: 80 MiB (25%), 24 CPU threads,
CPU: R, S , GPU: R, S , Table 2 line 10.

Fig. 16. XEngine schedule for training UNet on “Iris” with N = 4. Budget: 99.3 MiB (25%), 24 CPU threads:
R0, R1, S0, S1, Table 2 line 12.

Fig. 17. Checkmate schedules for training UNet on “Iris” with N = 4. Budget: 99.3 MiB (25%), 24 CPU threads,
CPU: R, S , GPU: R, S , Table 2 line 12.
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