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Abstract
Background Drug–drug interactions (DDIs) and drug–gene interactions (DGIs) pose a serious health risk that can be avoided 
by dose adaptation. These interactions are investigated in strictly controlled setups, quantifying the effect of one perpetrator 
drug or polymorphism at a time, but in real life patients frequently take more than two medications and are very heterogenous 
regarding their genetic background.
Objectives The first objective of this study was to provide whole-body physiologically based pharmacokinetic (PBPK) mod-
els of important cytochrome P450 (CYP) 2C8 perpetrator and victim drugs, built and evaluated for DDI and DGI studies. 
The second objective was to apply these models to describe complex interactions with more than two interacting partners.
Methods PBPK models of the CYP2C8 and organic-anion-transporting polypeptide (OATP) 1B1 perpetrator drug gemfi-
brozil (parent–metabolite model) and the CYP2C8 victim drugs repaglinide (also an OATP1B1 substrate) and pioglitazone 
were developed using a total of 103 clinical studies. For evaluation, these models were applied to predict 34 different DDI 
studies, establishing a CYP2C8 and OATP1B1 PBPK DDI modeling network.
Results The newly developed models show a good performance, accurately describing plasma concentration–time profiles, 
area under the plasma concentration–time curve (AUC) and maximum plasma concentration (Cmax) values, DDI studies as 
well as DGI studies. All 34 of the modeled DDI AUC ratios (AUC during DDI/AUC control) and DDI Cmax ratios (Cmax 
during DDI/Cmax control) are within twofold of the observed values.
Conclusions Whole-body PBPK models of gemfibrozil, repaglinide, and pioglitazone have been built and qualified for DDI 
and DGI prediction. PBPK modeling is applicable to investigate complex interactions between multiple drugs and genetic 
polymorphisms.
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1 Introduction

From epidemiological data, it is estimated that 5–20% of 
adverse drug events resulting in hospital admission are 
caused by drug–drug interactions (DDIs), with an espe-
cially high risk for elderly patients due to polypharmacy 
[1]. Indeed, data show that in the USA, 67% of the adults 
older than 62 years take more than five medications. As a 
result, about one in six older adults may be at risk for a 
major DDI [2] resulting in decreased efficacy, increased risk 
for adverse drug reactions, and increased healthcare costs. 
A second important aspect is that genetic polymorphisms 
in drug transporters or metabolizing enzymes may result 
in drug–gene interactions (DGIs). Similarly to DDIs, these 
DGIs can result in significantly altered drug exposure. In 
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Key Points 

Whole-body physiologically based pharmacokinetic 
(PBPK) models of gemfibrozil, repaglinide, and piogl-
itazone have been successfully built and evaluated for 
the prediction of drug–drug interactions (DDIs). The 
final models integrate state-of-the-art knowledge on the 
absorption, distribution, metabolism, and excretion of 
the three drugs with insights gained during the PBPK 
model development.

These models were applied to predict DDIs in a network 
of cytochrome P450 (CYP) 2C8 perpetrator and victim 
drugs and to describe and predict drug–gene interactions 
(DGIs) caused by genetic polymorphisms of CYP2C8 
and solute carrier organic anion transporter family mem-
ber (SLCO) 1B1 (organic-anion-transporting polypeptide 
[OATP] 1B1) Furthermore, the existence of physico-
chemical DDIs was proposed: coadministration of poorly 
soluble drugs such as itraconazole and pioglitazone 
might further decrease their solubility in the gut, leading 
to decreased absorption and lower drug exposure.

This study demonstrates the applicability of PBPK to 
investigate the DDI or DGI potential of drugs, predict 
complex interaction scenarios (e.g., drug–drug–drug–
gene interactions), and develop potential dose adapta-
tions for patients.

of alternative dosing regimens for patients. The interest in 
PBPK modeling is continuously rising in academia and the 
pharmaceutical industry. Regulatory agencies (European 
Medicines Agency [EMA], U.S. Food and Drug Adminis-
tration [FDA]) recommend PBPK modeling for the assess-
ment of DDI potential, the development of alternative dosing 
regimens, and, in some cases, even to waive clinical studies 
[5, 6]. To project the reality of patients, complex DDI net-
works and thoroughly developed PBPK models are required. 
Even though many perpetrator and victim drug models have 
been developed and published so far [7], there is still a need 
for further models and more comprehensive DDI networks.

The main focus of the presented work is the description of 
cytochrome P450 (CYP) 2C8- and organic-anion-transporting 
polypeptide (OATP) 1B1-based DDIs, using PBPK models of 
the perpetrator drug gemfibrozil (strong CYP2C8 index inhib-
itor and inhibitor of OATP1B1) and of the two victim drugs 
repaglinide (sensitive CYP2C8 index substrate and substrate 
of OATP1B1) and pioglitazone (moderate sensitive CYP2C8 
substrate) [6, 8]. Gemfibrozil, repaglinide, and pioglitazone 
are all recommended by the FDA for use in clinical DDI 
studies [8]. As clinically relevant genetic polymorphisms of 
CYP2C8 and solute carrier organic anion transporter family 
member (SLCO) 1B1 (OATP1B1) are reported to impact the 
pharmacokinetics of repaglinide and pioglitazone, the effects 
of the CYP2C8*3 and SLCO1B1 521T>C alleles were con-
sidered and implemented into the respective models.

The aims of this study were (1) to develop a PBPK DDI 
network [9] for CYP2C8 and thereby to expand the library 
of publicly available models for DDI prediction with verified 
whole-body PBPK models of gemfibrozil, repaglinide, and 
pioglitazone, and to apply these models to (2) describe and 
predict DDIs including complex DDIs with more than two 
drugs, (3) describe and predict DGIs with two or more drugs, 
and (4) exemplarily develop victim drug dose adaptations for 
patients with genetic polymorphisms and coadministration 
of two perpetrator drugs. The supplementary document to 
this paper (Electronic Supplementary Material [ESM]) is 
compiled as a transparent and comprehensive documentation 
and reference manual, providing detailed information on all 
PBPK models and modeled DDI studies. Model files are 
freely available in the Open Systems Pharmacology (OSP) 
repository (https ://www.open-syste ms-pharm acolo gy.org).

2  Methods

2.1  Software

PBPK models were developed using PK-Sim® and  MoBi® 
modeling software (version 7.3.0, part of the OSP suite). 
Parameter optimizations (Monte-Carlo-algorithm) and sensi-
tivity analyses were performed with PK-Sim®. Clinical study 

current clinical practice, DDIs and DGIs are considered sep-
arate entities. However, they are interconnected and ignor-
ing drug–drug–gene interactions (DDGIs) can jeopardize 
patient safety. Ideally, guidelines on how to manage DDIs 
and DDGIs should be based on results from clinical trials.

However, in reality, most DDGIs cannot be investigated 
in clinical trials for many reasons, including ethical and fea-
sibility restrictions due to their complexity. Usually, clas-
sic DDI studies are performed as typical phase I studies 
in healthy volunteers using so-called index substances to 
characterize a certain DDI potential. The study participants 
are mostly young, healthy, take only two drugs at the same 
time, and are genetically homogenous, and, consequently, 
they do not mimic real-life multimorbid patients with poly-
pharmacy and genetic polymorphisms [3]. Thus, there is a 
translational challenge to assess and manage complex mul-
tifactorial DDGIs in real-life patients.

One possibility to loosen this Gordian knot might be the 
application of whole-body physiologically based pharma-
cokinetic (PBPK) modeling. PBPK models are increas-
ingly used to evaluate the effects of patient factors on drug 
exposure [4] and they are excellent tools to predict the 
DDGI potential of drugs in silico and allow development 

https://www.open-systems-pharmacology.org
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data was digitized using GetData Graph Digitizer (version 
2.26.0.20 ©, S. Fedorov). Pharmacokinetic parameter analy-
ses were performed and plots were created with R (version 
3.4.4, R Foundation for Statistical Computing, Vienna, Aus-
tria) and R Studio (version 1.1.423, RStudio, Inc., Boston, 
MA, USA).

2.2  Physiologically Based Pharmacokinetic (PBPK) 
Model Building

PBPK model building was started with an extensive litera-
ture search to gain information on the physicochemical prop-
erties and absorption, distribution, metabolism, and excre-
tion (ADME) processes of the drugs of interest as well as to 
obtain clinical studies (healthy individuals) of intravenous 
and oral administration in single and multiple doses. The 
plasma concentration–time profiles of the clinical studies 
were digitized and divided into an internal dataset used for 
model building and parameter optimization, and an external 
dataset used for model evaluation. Parameters that could not 
be informed from the literature were optimized, fitting the 
model simultaneously to the observed data of all studies 
assigned to the internal dataset.

The mean individuals used to simulate the different stud-
ies were modeled according to the respective study reports, 
with corresponding age, weight, height, sex, and ethnicity. If 
no information on these demographics was found, a 30-year-
old male European was assumed, with the mean weight and 
height characteristics given in the PK-Sim® database. The 
creation of virtual populations to compare predicted and 
observed population plasma concentration–time profiles is 
described in the ESM (Sect. 3.9).

Protein expression of enzymes and transporters was 
implemented according to the literature, using the PK-Sim® 
database [10]. For more details, see ESM Table S3.9.1.

2.3  PBPK Model Evaluation

The PBPK models were evaluated by comparison of pre-
dicted population plasma concentration–time profiles to 
observed data. The observed data were mostly reported as 
arithmetic or geometric mean plasma concentration–time 
profiles with standard deviations. To compare the variability 
of predicted to observed profiles, 68% population prediction 
intervals were plotted, as this interval corresponds to the 
range of ± 1 standard deviation around the mean if normal 
distribution is assumed.

Furthermore, the predicted plasma concentration val-
ues were compared to their respective observed values in 
goodness-of-fit plots and the model performance was evalu-
ated by comparison of predicted to observed area under the 
plasma concentration–time curve (AUC), maximum plasma 
concentration (Cmax), apparent oral clearance (CL/F), and 

half-life values. For model evaluation, all AUC values were 
calculated from time zero to infinity (AUC ∞).

As quantitative measures of the model performance, 
mean relative deviations (MRDs) of the predicted plasma 
concentrations (see ESM Eq. 3.1) and geometric mean fold 
errors (GMFEs) of the AUC ∞, Cmax, CL/F, and half-life val-
ues (see ESM Eq. 3.2) were calculated.

2.4  Drug–Drug Interaction (DDI) Network Modeling

In addition to the evaluation methods described in Sect. 2.3, 
a CYP2C8 DDI network was built to evaluate the DDI per-
formance of the developed models (Fig. 1). Gemfibrozil 
with its metabolite gemfibrozil 1-O-β-glucuronide was 
used as the CYP2C8 and OATP1B1 inhibitor, repaglinide 
as the CYP2C8 and OATP1B1 victim, and pioglitazone as 
the CYP2C8 victim drug. In addition, repaglinide is also a 
substrate of CYP3A4 and OATP1B3, adding DDI potential 
during coadministration of CYP3A4 and OATP1B3 perpe-
trators, such as itraconazole, clarithromycin, and rifampicin. 
Rifampicin was used as the inducer and competitive inhibitor 
of CYP2C8, CYP3A4, OATP1B1, and OATP1B3, interact-
ing with repaglinide and pioglitazone. Interaction processes 
are modeled using the equations given in the ESM (Sect. 1).

2.5  DDI Network Evaluation

The quality of the DDI modeling was evaluated by compari-
son of predicted to observed victim drug plasma concen-
tration–time profiles when administered alone and during 
coadministration, DDI AUC ratios (Eq. 1) and DDI Cmax 
ratios (Eq. 2). For DDI evaluation, all AUC values were 
calculated from time zero to the time of the last concentra-
tion measurement (AUC last).

To assess the DDI modeling performance, the GMFEs 
of the predicted DDI AUC ratios and DDI Cmax ratios were 
calculated according to ESM Eq. 3.2.

2.6  Sensitivity Analysis

Sensitivity analyses were performed on the gemfibrozil, rep-
aglinide, and pioglitazone models to investigate the impact 
of single model parameters on the predicted AUC at steady 
state given the highest recommended dose. Parameters were 
included into the analysis if they have been optimized, if 

(1)
DDI AUC ratio

=

AUClast victim drug during perpetrator coadministration

AUClast victim drug control

(2)
DDI Cmax ratio

=

Cmax victim drug during perpetrator coadministration

Cmax victim drug control
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they could have a strong influence on the pharmacokinetics 
due to their use in calculation of permeabilities or parti-
tion coefficients (e.g., fraction unbound), or if they had sig-
nificant impact in formerly developed models (e.g., blood/
plasma concentration ratio).

Sensitivity is calculated as the ratio of the relative change 
of the simulated AUC to the relative variation of the tested 
parameter around the parameter value used in the model, 
according to Eq. 3:

where S is the sensitivity of the AUC to the tested model 
parameter, ΔAUC is the change of the AUC, AUC is the 
AUC calculated with the original model parameter value, p 
is the original model parameter value, and Δp is the change 
of the tested model parameter value.

Sensitivity analyses were performed using a relative per-
turbation of 100%. The threshold value for sensitivity was 
set at 0.5. A sensitivity value of + 0.5 indicates that a 100% 
increase of the model parameter value causes a 50% increase 
of the predicted AUC. In addition, the parameters were var-
ied within a 0.03- to 30-fold range and the resulting fold 
changes of AUC were investigated in spider plots.

(3)S =
ΔAUC

AUC
×

p

Δp

3  Results

3.1  PBPK Model Building and Evaluation

Whole-body PBPK models of gemfibrozil with gemfibrozil 
1-O-β-glucuronide (parent–metabolite model), repaglinide, 
and pioglitazone have been successfully developed. A total 
number of 103 studies showing plasma concentration–time 
profiles were used for model building and evaluation; all of 
these are presented in the ESM.

A detailed description of each model, including Tables 
listing the drug-dependent parameters, is given in ESM 
Sects. 3.3 (gemfibrozil and gemfibrozil 1-O-β-glucuronide 
model), 3.4 (repaglinide model), and 3.5 (pioglitazone 
model). System-dependent parameters were taken directly 
from the PK-Sim® database or, if not available, they 
were gathered from literature, as summarized in ESM 
Table S3.9.1. The good model performance for both inter-
nal and external datasets is demonstrated by comparison 
of population predicted to observed plasma concentra-
tion–time profiles in Fig. 2 (representative studies for each 
compound) and in ESM Figs. S3.3.1, S3.3.2, S3.3.3, S3.3.4, 
S3.4.1, S3.4.2, S3.4.3, S3.4.4, S3.5.1, and S3.5.2 (all stud-
ies, semilogarithmic and linear plots). Goodness-of-fit plots 

Fig. 1  The developed drug–drug interaction (DDI) network with 
gemfibrozil and gemfibrozil 1-O-β-glucuronide as cytochrome P450 
(CYP) 2C8 and organic-anion-transporting polypeptide (OATP) 1B1, 
itraconazole as CYP3A4, OATP1B1, and OATP1B3, rifampicin 
as CYP2C8, CYP3A4, OATP1B1, and OATP1B3, and clarithro-
mycin as CYP3A4, OATP1B1, and OATP1B3 perpetrator drugs 
(upper part); and repaglinide as CYP2C8, CYP3A4, OATP1B1, and 
OATP1B3 and pioglitazone as CYP2C8 victim drugs (lower part). 

Physiologically based pharmacokinetic models of itraconazole, 
rifampicin and clarithromycin were adopted from Hanke et  al. [9]. 
Metabolism and transport are illustrated as black arrows. Solid red 
lines indicate reversible inhibition processes, dashed bold red lines 
indicate mechanism-based inactivation. Dashed violet lines indicate 
interaction processes by rifampicin consisting of inhibition as well as 
induction processes. The postulated physicochemical interactions are 
shown as dotted black lines
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are presented in ESM Figs. S3.3.5, S3.4.5, and S3.5.3 and 
MRD values for all studies are given in ESM Tables S3.3.3, 
S3.4.3, and S3.5.3. Correlation of predicted to observed 
AUC and Cmax values is presented in ESM Figs. S3.3.6, 
S3.4.6, and S3.5.4, and the corresponding values are given 
in ESM Tables S3.3.4, S3.4.4, and S3.5.4, including cal-
culated model GMFE values. Correlation of predicted to 
observed CL/F and half-life values is shown in ESM Figs. 
S3.3.7, S3.4.7, and S3.5.5 and the corresponding values are 
given in ESM Tables S3.3.5, S3.4.5, and S3.5.5. The results 
of sensitivity analyses are described in ESM Sects. 3.3, 3.4, 
and 3.5 and Figs. S3.3.8, S3.3.9, S3.3.10, S3.4.8, S3.4.9, 
S3.5.6, and S3.5.7.

For the development of the gemfibrozil parent–metabo-
lite PBPK model, plasma concentration–time profiles of 23 
studies (oral administration), including ten studies show-
ing gemfibrozil 1-O-β-glucuronide concentrations (after 
oral administration of gemfibrozil) were used. Gemfibrozil 
1-O-β-glucuronide was incorporated into the model because 
it is the major circulating metabolite of gemfibrozil and a 
mechanism-based inactivator of CYP2C8 [11], contribut-
ing significantly to the strong CYP2C8 inhibition by gemfi-
brozil. The gemfibrozil model applies an unspecified active 
uptake of gemfibrozil into hepatocytes [12], metabolism 
by uridine 5ʹ-diphospho-glucuronosyltransferase (UGT) 
2B7 to form gemfibrozil 1-O-β-glucuronide and glomeru-
lar filtration. The metabolite model applies a hepatic uptake 
transport by OATP1B1 [12], an efflux transport into bile 
via multidrug resistance-associated protein (MRP) 2 and 
glomerular filtration.

For the development of the repaglinide model, plasma 
concentration–time profiles of 56 studies (intravenous and 
oral administration) as well as the fraction metabolized 
via CYP2C8 information were used. The model applies 
hepatic uptake via OATP1B1 and OATP1B3, metabolism 
by CYP2C8 and CYP3A4, and glomerular filtration. An 
unbound Michaelis-Menten contant (KM) value determined 
for repaglinide uptake into untransfected primary human 
hepatocytes was used as the KM value for the OATP1B1 
and OATP1B3 transport processes [13]. For the metabolism 
via CYP2C8, a fraction metabolized of 89% was assumed, 
according to a clinical DDI study with gemfibrozil [14]. The 
remaining repaglinide is metabolized via CYP3A4 [15]. The 
model slightly overpredicts the low repaglinide plasma con-
centrations at later times after dosing (ESM Figs. S3.4.1, 
S3.4.2, and S3.4.5). This could be due to a misspecification 
of the CYP2C8 or OATP1B1/1B3 KM values taken from 
the literature, or to an unknown mechanism that impacts the 
pharmacokinetics of repaglinide but is missing in the model. 
This limitation of the model affects the prediction of low 
repaglinide plasma concentrations, but Cmax and AUC values 
are well-predicted (ESM Fig S3.4.6). For the investigation of 
DGIs, the model adequately describes the pharmacokinetics 

of repaglinide in carriers of the CYP2C8*3, SLCO1B1 521C 
and SLCO1B1 –11187A alleles. The implementation of 
polymorphic CYP2C8 and OATP1B1 is described in ESM 
Sects. 2.2, 2.3, and 3.4.

For the development of the pioglitazone model, plasma 
concentration–time profiles of 13 studies (oral adminis-
tration), one study describing the fraction of pioglitazone 
excreted to urine, as well as the fraction metabolized via 
CYP2C8 information were used. Pioglitazone is reported 
to be predominantly metabolized by CYP2C8 [16], with no 
consistent information on the identity of other metabolic 
enzymes involved. Therefore, the model applies metabolism 
by CYP2C8, an unspecific hepatic clearance and glomerular 
filtration. For the metabolism via CYP2C8, a fraction metab-
olized of 70–75% was assumed [17]. For the investigation 
of DGIs, the model adequately describes the pharmacoki-
netics of pioglitazone in carriers of the CYP2C8*3 allele. 
The implementation of polymorphic CYP2C8 is described 
in ESM Sects. 2.2 and 3.5.

3.2  DDI Network Modeling

For the DDI network modeling, a total number of 34 DDI 
studies were available in literature and used to evalu-
ate the modeled interactions (Fig. 1). Thereof, 23 studies 
describe the gemfibrozil–repaglinide DDI, four the gemfi-
brozil–pioglitazone DDI, and one study each the itracona-
zole–repaglinide DDI, the itraconazole–pioglitazone DDI, 
the gemfibrozil–itraconazole–repaglinide DDI, the gemfi-
brozil–itraconazole–pioglitazone DDI, the rifampicin–rep-
aglinide DDI, the rifampicin–pioglitazone DDI, and the 
clarithromycin–repaglinide DDI. The previously developed 
models of itraconazole, rifampicin, and clarithromycin [9] 
were used without changes other than the addition of interac-
tion parameters to model the CYP2C8 and OATP1B1/1B3 
DDIs. A full description of the DDI modeling is given in 
ESM Sect. 4, including all interaction parameters, adminis-
tration protocols, and study population demographics.

All DDI victim drug plasma concentration–time profiles 
are well-predicted using interaction parameters taken from 
the literature (listed in ESM Tables S3.3.2, S3.6.1, S3.7.1, 
and S3.8.1 summarizing the drug-dependent parameters of 
the perpetrator drugs), except for the hydroxy-itraconazole 
OATP1B1 and OATP1B3 inhibitory constant (Ki) values, 
which had to be optimized. To describe the DDIs with itra-
conazole, the solubility value of the previously developed 
itraconazole model was adjusted (see ESM Figs. S3.6.1 
and S3.6.2). Itraconazole is a poorly soluble compound 
(8.0 mg/L in fasted state simulated intestinal fluid [18]), 
leading to variable absorption and, therefore, to large inter-
individual differences in itraconazole plasma concentra-
tion–time profiles. In the gemfibrozil–itraconazole–pioglita-
zone interaction study [19], itraconazole concentration–time 
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profiles before and during gemfibrozil coadministration are 
reported, in addition to the DDI victim drug concentra-
tions. For itraconazole and hydroxy-itraconazole, a reduc-
tion of the AUCs is described if gemfibrozil is added to the 

itraconazole–pioglitazone DDI. Possible explanations for 
these finding proposed by Jaakkola et al. [19] and Niemi 
et al. [20] are the displacement of itraconazole from plasma 
proteins or a reduction of itraconazole bioavailability by 

Fig. 2  Gemfibrozil (a, b), gemfibrozil 1-O-β-glucuronide (gemfi-glu) 
(a, b), repaglinide (c–f), and pioglitazone (g–i) plasma concentra-
tion–time profiles. Observed data are shown as triangles ± standard 
deviation [29–37]. Population simulation arithmetic means or geo-
metric means (a) are shown as black (gemfibrozil), red (gemfibrozil 
1-O-β-glucuronide), green (repaglinide), or blue (pioglitazone) lines. 
The shaded areas represent the respective 68% population prediction 
intervals. Detailed information about dosing regimens and study pop-

ulations is given in Electronic Supplementary Material (ESM) Tables 
S3.3.1, S3.4.1, and S3.5.1. Predicted and observed area under the 
plasma concentration–time curve (AUC) and maximum plasma con-
centration (Cmax) values are compared in ESM Tables S3.3.4, S3.4.4, 
and S3.5.4. b.i.d. twice daily, conc concentration, CYP cytochrome 
P450, po oral, q.d. once daily, s.d. single dose, SLCO solute carrier 
organic anion transporter family member, t.i.d. three times daily
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gemfibrozil. Both hypotheses were tested with the models by 
either increasing the fraction unbound of itraconazole during 
the DDI or by reducing its solubility (to describe reduced 
bioavailability). The observed plasma concentration–time 
profiles of itraconazole and hydroxy-itraconazole could 
not be described properly by a change in fraction unbound, 
but the change of itraconazole solubility resulted in a good 
description of the observed data. To accurately model the 
observed itraconazole plasma concentrations of the gem-
fibrozil–itraconazole–pioglitazone interaction study [19], 
the solubility of itraconazole (capsule formulation, fasted 

state) was optimized to 14.5 mg/L at pH 6.5 in the absence 
of gemfibrozil and to 0.69 mg/L at pH 6.5 in the presence of 
gemfibrozil (shown in ESM Sect. 3.6), indicating a physico-
chemical DDI between gemfibrozil and itraconazole.

The second assumed physicochemical DDI affects piogl-
itazone during coadministration of both gemfibrozil and 
itraconazole (see Figs. 3c and ESM Fig. S4.7.1). Like itra-
conazole, pioglitazone is poorly soluble, with a reported 
solubility of 16.8  mg/L at pH 6.5 [21]. To accurately 
describe the pioglitazone plasma concentrations during 

Fig. 3  Pioglitazone plasma concentration–time profiles during the 
gemfibrozil–pioglitazone (a), itraconazole–pioglitazone (b), gemfi-
brozil–itraconazole–pioglitazone (c), and rifampicin–pioglitazone 
(d) drug–drug interaction (DDI). Observed data are shown as trian-
gles ± standard deviation (dark blue: control, light blue: with perpe-
trator drug) [19, 38]. Pioglitazone population simulation arithmetic 
means are shown as lines (dark blue: control, light blue: with per-
petrator drug), the dashed line (c) shows the prediction of the gem-
fibrozil–itraconazole–pioglitazone without pioglitazone solubility 

adjustment. The shaded areas represent the respective 68% popula-
tion prediction intervals. Detailed information about dosing regi-
mens and study populations is given in Electronic Supplementary 
Material (ESM) Tables S4.3.1, S4.5.1, S4.7.1, and S4.9.1. Predicted 
and observed DDI area under the plasma concentration–time curve 
(AUC) ratios and DDI maximum plasma concentration (Cmax) ratios 
are compared in ESM Tables S4.3.2, S4.5.2, S4.7.2, and S4.9.2. b.i.d. 
twice daily, conc concentration, po oral, q.d. once daily, s.d. single 
dose
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gemfibrozil–itraconazole–pioglitazone coadministration, 
pioglitazone solubility was adjusted to 1.59 mg/L at pH 6.5 
(shown in ESM Sect. 4.7).

The good DDI performance of the models is demon-
strated in predicted compared to observed victim drug 
plasma concentration–time profiles before and during 
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perpetrator drug coadministration in Figs. 3 and 4 (repre-
sentative studies for each DDI) and in ESM Figs. S4.2.1, 
S4.2.2, S4.2.3, S4.2.4, S4.2.5, S4.2.6, S4.3.1, S4.3.2, 
S4.4.1, S4.5.1, S4.6.1, S4.7.1, S4.8.1, S4.9.1, and S4.10.1 
(all studies, semilogarithmic and linear plots). For the gem-
fibrozil–repaglinide DDI, the time-dependency (Fig. 4 and 
ESM Figs. S4.2.3 and S4.2.4) and dose-dependency (ESM 
Figs. S4.2.5 and S4.2.6) of the interaction were also mod-
eled and compared to clinical data.

As further evaluation of the performance of the entire 
DDI network, the correlation of predicted to observed DDI 
AUC ratios and DDI Cmax ratios of all modeled DDI studies 
is shown in Fig. 5. The corresponding values are listed in 
ESM Tables S4.2.2, S4.3.2, S4.4.2, S4.5.2, S4.6.2, S4.7.2, 
S4.8.2, S4.9.2, and S4.10.2, including GMFE values calcu-
lated for each perpetrator–victim drug combination.

3.3  Dose Adaptation Considerations

To show the utility of the models to individualize and 
improve drug therapy, dose adaptations for different DGI 
scenarios were calculated. Exemplarily, victim drug plasma 
concentration–time profiles in subjects with polymorphisms, 
and with polymorphisms during perpetrator drug coadminis-
tration, were simulated and compared to those of a CYP2C8 
and SLCO1B1 wild-type individual without DDI (control). 
Then, potential dose adaptations were calculated, aiming to 
match control exposure (i.e., AUC in steady state). Figure 6 
shows the different simulated scenarios, the extrapolated 
iso-exposure doses (% of control), simulations of plasma 
concentration–time profiles with the same dose for all indi-
viduals, and simulations of plasma concentration–time pro-
files with the extrapolated adjusted doses.

As expected, the worst-case scenario is the repaglinide 
administration to a patient carrying the CYP2C8 wild-type 
sequence and simultaneously homozygously the SLCO1B1 
521C allele who is co-medicated with gemfibrozil and itra-
conazole, leading to a 49-fold increase in the repaglinide 

steady state AUC. According to the simulations, a repagli-
nide dose reduction by nearly 98% would be necessary to 
produce the same drug exposure in this individual as in the 
control person given the normal dose. A dose adjustment to 
simultaneously match both AUC and Cmax values to the con-
trol profiles was not possible, as the drug half-life is changed 
due to the polymorphisms and the DDIs. The safety and 
efficacy of increased or decreased Cmax values or the drug 
half-life following dose adaptations that were calculated to 
match the AUC in steady state cannot be predicted from the 
models.

4  Discussion

In this study, whole-body PBPK models of gemfibrozil 
(parent–metabolite model of gemfibrozil and gemfibro-
zil 1-O-β-glucuronide), repaglinide, and pioglitazone for 
the investigation and prediction of DDIs and DGIs have 
been successfully built and evaluated. All models reliably 
describe and predict plasma concentration–time profiles 
over a broad dosing range and for single- and multiple-dose 
administration. Their good performance has been demon-
strated by (1) comparison of predicted to observed plasma 
concentration–time profiles; (2) goodness-of-fit plots; (3) 
the calculation of MRD values; (4) the comparison of pre-
dicted to observed AUC and Cmax values; (5) the calculation 
of model GMFEs; and (6) their good predictions within a 
CYP2C8 PBPK DDI modeling network.

The itraconazole, rifampicin, and clarithromycin PBPK 
models applied in this study have been evaluated in a previ-
ously described CYP3A4 DDI network [9, 22]. This net-
work has now been expanded with the presented gemfibrozil, 
repaglinide, and pioglitazone models and their interactions 
via CYP2C8, OATP1B1, OATP1B3, and CYP3A4. To use 
the previously established itraconazole, rifampicin, and 
clarithromycin models for CYP2C8 and OATP1B1/1B3 DDI 
modeling, interaction constants describing their induction 
and inhibition of CYP2C8, OATP1B1, and OATP1B3 have 
been added, but otherwise no drug- or system-dependent 
parameters have been changed. To model the induction of 
CYP2C8 by rifampicin, the maximum effect value (Emax 
CYP2C8 = 3.2, ESM Table S3.7.1) was taken from lit-
erature [23]. Concerning the induction of OATP1B1 and 
OATP1B3 by rifampicin, only a modest and variable induc-
tion was found in primary human hepatocytes [24, 25]. 
The Emax OATP1B1 = 0.38 (≙ 1.38-fold) identified during 
the rifampicin model development [9] was assumed to be 
adequate to model the induction of both OATP1B1 and 
OATP1B3. Except for the hydroxy-itraconazole OATP1B1 
and OATP1B3 Ki values (optimized, see ESM Sect. 4.4), 
all interaction parameter values were taken from previous 
experimental or modeling studies.

Fig. 4  Repaglinide plasma concentration–time profiles during the 
gemfibrozil–repaglinide (a), itraconazole–repaglinide (b), gemfi-
brozil–itraconazole–repaglinide (c), rifampicin–repaglinide (d), 
and clarithromycin–repaglinide (e) drug–drug interaction (DDI). 
Observed data are shown as triangles, crosses, or stars ± standard 
deviation (dark green: control, light green: with perpetrator drug) 
[20, 31, 39, 40]. Repaglinide population simulation arithmetic means 
are shown as lines (dark green: control, light green: with perpetra-
tor drug). The shaded areas represent the respective 68% population 
prediction intervals. Detailed information about dosing regimens 
and study populations is given in Electronic Supplementary Mate-
rial (ESM) Tables S4.2.1, S4.4.1, S4.6.1, S4.8.1, and S4.10.1. Pre-
dicted and observed DDI area under the plasma concentration–time 
curve (AUC) ratios and DDI maximum plasma concentration (Cmax) 
ratios are compared in ESM Tables S4.2.2, S4.4.2, S4.6.2, S4.8.2, 
and S4.10.2. b.i.d. twice daily, conc concentration, po oral, q.d. once 
daily, s.d. single dose

◂
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During the modeling of the complex DDIs with simul-
taneous administration of the two perpetrator drugs gemfi-
brozil and itraconazole, the clinical data show effects that 

cannot be explained with the expected CYP enzyme or 
drug transporter inhibition [19]. First, a reduction of itra-
conazole and hydroxy-itraconazole AUCs was described 

Fig. 5  Correlation of predicted and observed drug–drug interaction 
(DDI) area under the plasma concentration–time curve (AUC) ratios 
and DDI maximum plasma concentration (Cmax) ratios of all stud-
ies. The upper panel illustrates DDI AUC ratios (a) and DDI Cmax 
ratios (b) of the gemfibrozil–repaglinide, itraconazole–repaglinide, 
gemfibrozil–itraconazole–repaglinide, rifampicin–repaglinide, or 
clarithromycin–repaglinide DDIs. The lower panel illustrates DDI 
AUC ratios (c) and DDI Cmax ratios (d) of the gemfibrozil–pioglita-
zone, itraconazole–pioglitazone, gemfibrozil–itraconazole–pioglita-
zone, or rifampicin–pioglitazone DDIs. The colors represent different 

perpetrator drugs and the symbols the victim drugs repaglinide (dots) 
and pioglitazone (triangles). The straight black line marks the line of 
identity. Light grey lines indicate 0.8- to 1.25-fold and dark grey lines 
indicate 0.5- to 2-fold acceptance limits. The curved black lines show 
the prediction success limits suggested by Guest et al. [41]. Detailed 
information about dosing regimens and study populations is given 
in Electronic Supplementary Material (ESM) Tables S4.2.1, S4.3.1, 
S4.4.1, S4.5.1, S4.6.1, S4.7.1, S4.8.1, S4.9.1, and S4.10.1. The plot-
ted DDI AUC ratios and Cmax ratios are listed in ESM Tables S4.2.2, 
S4.3.2, S4.4.2, S4.5.2, S4.6.2, S4.7.2, S4.8.2, S4.9.2, and S4.10.2
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during coadministration of itraconazole and pioglitazone if 
gemfibrozil is added to this regimen as the third drug [19]. 
As itraconazole and hydroxy-itraconazole are both solely 
metabolized by CYP3A4 and gemfibrozil is not reported 
to affect CYP3A4, we propose the possibility of a phys-
icochemical DDI between gemfibrozil and itraconazole. 
Simultaneous administration of gemfibrozil might further 
decrease the poor solubility of itraconazole, causing a 
decrease in absorption and thereby a decrease of the plasma 
concentrations of itraconazole and hydroxy-itraconazole. 
To test this hypothesis with the PBPK models, a reduction 
of itraconazole solubility during gemfibrozil coadminis-
tration was performed (from 14.5 to 0.69 mg/L), leading 
to a good description of the itraconazole exposure of this 
study (ESM Figs. S3.6.1 and S3.6.2). The phenomenon of 
decreased itraconazole plasma concentrations during co-
treatment with gemfibrozil has been discussed by Jaakkola 
et al. [19] and Niemi et al. [20]. They proposed a displace-
ment of itraconazole from plasma proteins by gemfibrozil 
as a possible explanation, which was also tested with our 
models but did not describe the observed effects, or an 
effect of gemfibrozil on itraconazole bioavailability, which 
is in full agreement with our hypothesis of reduced itra-
conazole solubility. This example demonstrates the great 
value of perpetrator drug plasma concentration assessment 
in clinical DDI studies.

Furthermore, a reduction of the pioglitazone AUC 
was observed during coadministration of gemfibrozil and 

pioglitazone if itraconazole was added to this regimen as 
the third drug [19]. As itraconazole alone has no effect on 
the pioglitazone pharmacokinetics (ESM Fig. S4.5.1), the 
effect of the combination of gemfibrozil and itraconazole 
on the pioglitazone plasma concentrations is expected to be 
similar to the effect of gemfibrozil alone (2.5-fold increase 
of AUC, no change of Cmax). Surprisingly, during the combi-
nation of all three drugs, the pioglitazone AUC is increased 
only 2.2-fold and the Cmax is reduced to 75% of the Cmax in 
control conditions. To explain the considerable decrease of 
the pioglitazone Cmax, we again postulate a physicochemical 
DDI decreasing the solubility of pioglitazone and thereby its 
absorption and plasma concentrations. To test this hypoth-
esis applying the PBPK models, a reduction of pioglitazone 
solubility during gemfibrozil plus itraconazole coadminis-
tration was performed (from 16.8 to 1.59 mg/L), leading 
to a good description of the pioglitazone exposure during 
this complex DDI (ESM Fig. S4.7.1). These two examples 
illustrate that PBPK modeling is a valuable tool to develop 
and test hypotheses for unexpected clinical findings. Further-
more, they certainly raised our awareness of the possibility of 
solubility interactions in the gut, given the great number of 
poorly soluble drugs. These solubility interactions could be 
mediated either by the coadministered drugs themselves or by 
coadministered solubilizing agents that are used in the mar-
keted formulations of Biopharmaceutics Classification Sys-
tem (BCS) class II drugs. However, these hypotheses need 
to be further investigated experimentally to verify or reject 

Fig. 6  Dose adjustments developed with the physiologically based 
pharmacokinetic models for repaglinide (upper panel) and pioglita-
zone (lower panel). Predicted plasma concentration–time profiles are 
shown for European male CYP2C8 and SLCO1B1 wild-type individu-
als (red lines) as well as for CYP2C8*3/*3 or SLCO1B1 521CC indi-
viduals (repaglinide: green lines, pioglitazone: blue lines) before or 

during perpetrator drug coadministration. The left-hand plots show 
predicted plasma concentrations without dose adjustment; the right-
hand plots show predicted plasma concentrations with dose adjust-
ment. conc concentration, CYP cytochrome P450, n.a. not applicable, 
SLCO solute carrier organic anion transporter family member
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them. Additionally, inhibition of transporters or enzymes by 
excipients has been described in literature [26]. A change in 
bioavailability due to such an interaction cannot be excluded.

In addition to prediction of DDIs, the presented PBPK 
models of repaglinide and pioglitazone adequately describe 
the effects of the CYP2C8*3 and SLCO1B1 521C alleles 
on repaglinide pharmacokinetics and the effect of the 
CYP2C8*3 allele on pioglitazone pharmacokinetics. Con-
sidering the 13% frequency of the CYP2C8*3 allele [27] and 
14.3% frequency of the SLCO1B1 521T>C SNP in Cauca-
sians [28], these polymorphisms are clinically relevant. With 
our models, a dose adjustment in case of complex DDGIs 
and drug–drug–drug–gene interactions was exemplarily per-
formed to show how PBPK modeling could support drug 
therapy and labeling for complex scenarios.

5  Conclusion

In summary, comprehensive whole-body PBPK models of 
gemfibrozil (parent–metabolite model), repaglinide, and 
pioglitazone have been carefully built and evaluated in a 
CYP2C8 DDI network. The network described in this study 
represents an extension of a previously developed network 
of CYP3A4-interacting drugs [9], and the new models were 
challenged and verified in DDI predictions with different 
perpetrator and victim drugs, causing different kinds of 
interactions such as competitive inhibition, mechanism-
based inactivation, and induction. Furthermore, the pre-
sented models are able to describe DGIs of repaglinide and 
pioglitazone, complex DDIs during coadministration of 
more than two interacting drugs, and were used to postulate 
DDIs on a physicochemical level. All models are transpar-
ently documented and model files are available in the OSP 
repository. They can be applied to investigate the DDI or 
DGI potential of drugs, inform the design of clinical trials, or 
simulate complex interactions (e.g., drug–drug–drug–gene 
interactions).
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