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ARTICLE

PBPK Models for CYP3A4 and P- gp DDI Prediction: 
A Modeling Network of Rifampicin, Itraconazole, 
Clarithromycin, Midazolam, Alfentanil, and Digoxin

Nina Hanke1, Sebastian Frechen2, Daniel Moj1, Hannah Britz1, Thomas Eissing2, Thomas Wendl2 and Thorsten Lehr1,*

According to current US Food and Drug Administration (FDA) and European Medicines Agency (EMA) guidance documents, 
physiologically based pharmacokinetic (PBPK) modeling is a powerful tool to explore and quantitatively predict drug- drug 
interactions (DDIs) and may offer an alternative to dedicated clinical trials. This study provides whole- body PBPK models of 
rifampicin, itraconazole, clarithromycin, midazolam, alfentanil, and digoxin within the Open Systems Pharmacology (OSP) 
Suite. All models were built independently, coupled using reported interaction parameters, and mutually evaluated to verify 
their predictive performance by simulating published clinical DDI studies. In total, 112 studies were used for model develop-
ment and 57 studies for DDI prediction. 93% of the predicted area under the plasma concentration- time curve (AUC) ratios 
and 94% of the peak plasma concentration (Cmax) ratios are within twofold of the observed values. This study lays a corner-
stone for the qualification of the OSP platform with regard to reliable PBPK predictions of enzyme- mediated and transporter- 
mediated DDIs during model- informed drug development. All presented models are provided open- source and transparently 
documented.
CPT Pharmacometrics Syst. Pharmacol. (2018) 7, 647–659; doi:10.1002/psp4.12343; published online on 07 
September 2018.

Physiologically based pharmacokinetic (PBPK) modeling 
is a powerful tool to explore and quantitatively predict the 
pharmacokinetic (PK) of drugs and the magnitude of drug- 
drug interactions (DDIs). It is applied at increasingly early 
stages during drug development and is recommended 
by the US Food and Drug Administration (FDA) and the 
European Medicines Agency (EMA) for the design of clinical 
DDI trials and population PK studies. Furthermore, PBPK 
may even offer an alternative to dedicated clinical trials, 
to find dosing recommendations for the co- administration 

of interacting substances, or the treatment of special 
populations.1,2

To investigate and predict the DDI potential of new drugs 
with the help of PBPK, models of index perpetrator and vic-
tim drugs are needed. A library of PBPK models of recom-
mended DDI inhibitors, inducers, and substrates, evaluated 
for their application in DDI modeling, has the potential to 
accelerate the drug development process.

The aim of the presented work was to develop and care-
fully evaluate whole- body PBPK models of frequently used 
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WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
PBPK modeling is increasingly used for DDI analysis. To 
investigate and predict the DDI potential of new drugs 
with the help of PBPK, models of index perpetrator and 
victim drugs are needed.
WHAT QUESTION DID THIS STUDY ADDRESS?
The aim of this study was to provide whole- body PBPK 
models of important CYP3A4 and P- gp perpetrator and 
victim drugs that are all compatible, evaluated, and fit for 
use in PBPK DDI modeling.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
This study adds transparently built and evaluated PBPK 
models of rifampicin, itraconazole, clarithromycin, 

midazolam, alfentanil, and digoxin, integrating the current 
knowledge on the relevant pharmacokinetic mechanisms 
of these six drugs with insights gained during model 
development.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, 
DEVELOPMENT, AND/OR THERAPEUTICS?
A publicly available library, providing comprehensive 
PBPK models of the recommended DDI inhibitors, induc-
ers, and substrates, evaluated and ready to use for their 
application in DDI modeling, has the potential to foster 
open collaboration and to accelerate the drug develop-
ment process.

Study Highlights
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perpetrator and victim drugs and to provide them to the 
PBPK modeling community. Focusing on cytochrome P450 
3A4 (CYP3A4) and P- glycoprotein (P- gp) as major interaction 
pathways affecting approximately half of all drugs in use,3,4 
models of rifampicin (most prominent CYP3A4 and P- gp in-
ducer), itraconazole (competitive CYP3A4 and P- gp inhibitor), 
clarithromycin (mechanism- based CYP3A4 inactivator and 
competitive P- gp inhibitor), midazolam, alfentanil (specific 
CYP3A4 substrates), and digoxin (specific P- gp substrate) 
have been established. All selected compounds are recom-
mended by the FDA for application in clinical DDI trials.5

The perpetrator and victim drug models were developed 
independently of each other, without the use of data from 
clinical DDI studies for parameter optimization. With this ap-
proach, the prediction of co- administration studies could be 
utilized as an additional means of model evaluation. Being 
recommended by the FDA for DDI potential assessment, the 
six selected compounds have been co- administered in dif-
ferent combinations in many clinical trials, providing ample 
data for the evaluation of DDI predictions. Figure 1 shows 
the developed DDI modeling network of interacting perpe-
trator and victim drugs, assessing multiple combinations for 
mutual DDI evaluation.

Clinical DDI studies, for example, the full inhibition of an 
important metabolizing enzyme, provide valuable information 
on the fraction of victim drug that is normally eliminated via 

this pathway (“fraction metabolized”). Therefore, victim drug 
plasma concentrations during co- administration of perpetra-
tors can serve as additional information for victim drug model 
evaluation. Furthermore, correct prediction of the impact of a 
perpetrator drug on the PK of a victim drug indicates that the 
model is able to describe the perpetrator concentrations at 
the sites of inhibition or induction. This is not trivial, as drug 
concentrations are generally measured in blood plasma, but 
the interactions take place in other compartments, such as the 
intracellular space of the liver or intestine. Taken together, DDI 
studies provide additional information on both, the perpetrator 
and the victim drug PKs, and their correct prediction is a chal-
lenge for both models and a valid means of model evaluation.

The aim of this study was to establish and thoroughly eval-
uate PBPK models of relevant DDI perpetrator and victim 
drugs. The presented models are whole- body PBPK models, 
allowing for dynamic DDI assessment in all organs expressing 
the affected enzyme or transporter. Evaluations indicate that 
the models are fit for DDI prediction. The model files have been 
made publicly available as supplementary material to this 
paper (Data S1-S6) and in the Open Systems Pharmacology 
(OSP) repository (www.open-systems-pharmacology.org), as 
tools for the drug development and clinical research com-
munity to assess the DDI potential of investigational drugs, 
to inform the design of clinical trials or to be expanded for 
predictions in special populations.

Figure 1 Physiologically based pharmacokinetic drug- drug interaction network. Schematic illustration of the modeled interaction 
network of cytochrome P450 (CYP)3A4 and P- glycoprotein perpetrator (upper level: itraconazole, rifampicin, and clarithromycin) and 
victim drugs (lower level: midazolam, alfentanil, and digoxin). Green dashed lines indicate induction; red solid lines indicate inhibition.
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METHODS
Software
PBPK modeling was performed with PK- Sim and MoBi 
modeling software version 7.1.0 (part of the OSP Suite). 
The OSP Suite makes formerly commercial software tools 
PK- Sim and MoBi available as freeware under the GPLv2 
License. The software allows the modification of system 
parameters and the model structure by the (qualified) user 
and the source code is publicly available on GitHub (ac-
cessible via www.open-systems-pharmacology.org), to-
gether with published models and tutorials. Details on how 
to modify a PBPK model in PK- Sim can be found, for ex-
ample, in Kuepfer et al.,6 the PK- Sim/MoBi user manual, 
and in the user forum. Parameter optimization was accom-
plished using the Monte Carlo algorithm of the “Parameter 
Identification Toolbox” in MATLAB version R2013b (The 
MathWorks, Natick, MA) or in PK- Sim. Sensitivity analyses 
were performed within PK- Sim. Plots and PK parameter 
analyses were compiled with MATLAB.

Model development
Models of rifampicin, itraconazole, clarithromycin, mid-
azolam, alfentanil, and digoxin were built combining 
bottom- up and top- down techniques. To establish the 
models, an extensive literature search was conducted, 
collecting (i) physicochemical parameters, (ii) information 
on absorption, distribution, metabolism, and excretion 
processes, and (iii) clinical studies of intravenous and oral 
administration to healthy subjects in single- dosing and 
multiple- dosing regimens, covering the full dosing range 
published. All data used in this analysis has been taken 
from previously published human or preclinical studies.

The PBPK models were developed based on a healthy 
male European individual, 30 years of age, with a body weight 
of 73 kg, and a height of 176 cm. Physiological parameters, 
like organ volumes, blood flow rates, and surface permeabil-
ities, are provided within the software.7 Absorption, distribu-
tion, metabolism, and excretion- relevant proteins reported 
to govern the PK of a drug, such as metabolizing enzymes, 
transporters, or binding partners, were implemented into the 
models and tested. Whenever available and in accordance 
with literature protein expression, the PK- Sim expression 
database reverse transcription-polymerase chain reaction 
(RT-PCR) profiles8 were used to define the relative tissue 
distribution of these proteins. For parameters that could 
not be informed from (in vitro) experimental data, parameter 
identification based on plasma concentration- time profiles 
was performed using a subset of the available clinical stud-
ies (training dataset) for optimization. The decision of which 
studies to include into the training dataset was based on the 
number of studies available and the information contained 
in the different studies (dosing regimen, study size, sampling 
times, fraction excreted measurements, etc.).

Model selection was based on the ability of the model 
to describe (training dataset) and predict (test dataset) 
plasma concentration- time profiles from all published clin-
ical studies as well as fraction excreted unchanged to urine. 
Furthermore, physiological plausibility, precision and cova-
riance of parameter estimates, and population predictions 
were assessed.

Model evaluation
The models were evaluated by comparison of concentration- 
time profiles, area under the plasma concentration- time 
curve (AUC), and peak plasma concentration (Cmax) values 
resulting from our simulations to the values observed during 
clinical studies. As a quantitative measure of the descriptive 
and predictive performance of each model, the geometric 
mean fold error was calculated according to Eq. 1: 

with GMFE = geometric mean fold error of all AUC or Cmax 
predictions of the respective model, pred PK parame-
ter = predicted AUC or Cmax, obs PK parameter = observed 
AUC or Cmax, and n = number of studies. Furthermore, 
models were evaluated by their ability to adequately predict 
the clinical data of all DDI studies available from literature. 
For this additional evaluation, the final perpetrator models 
were coupled to victim drug models using measured values 
(from literature) to inform the different interaction processes 
without further adjustment. Successful prediction of the 
victim drug plasma concentration- time profiles during co- 
administration is interpreted as indication of the correct 
simulation of the perpetrator drug concentration at the site 
where the DDI takes effect as well as of the appropriate 
implementation of the victim drugs’ affected disposition 
pathways.

DDI network development
Mathematical implementation of the induction and inhi-
bition processes in general is specified in Section 1 of 
Appendix S1. The final rifampicin model was coupled to 
models of midazolam, alfentanil, itraconazole, and digoxin, 
to assess its DDI performance with CYP3A4 and P- gp sub-
strates. To describe the influence of rifampicin on these 
victim drugs, induction and simultaneous competitive inhi-
bition of CYP3A4 and P- gp by rifampicin have been added. 
Furthermore, inhibition of midazolam and digoxin elimina-
tion by itraconazole and by clarithromycin were modeled 
and compared to observed clinical data, evaluating the per-
formance of these two victim drug models with two different 
CYP3A4 and P- gp inhibitors. Inhibition of alfentanil metab-
olism by itraconazole or clarithromycin was not tested, as 
there are no clinical studies available to compare to.

All induction and inhibition processes were modeled using 
interaction parameter values either identified during the de-
velopment of the perpetrator models if no experimental val-
ues could be found to parameterize their auto- induction or 
auto- inhibition (using multiple- dose perpetrator studies only, 
without co- administration of victim drugs), or taken from lit-
erature without further adjustment or fitting, as a means of 
further evaluation of the perpetrator and victim drug models.

DDI network evaluation
The DDI modeling performance was assessed by com-
parison of predicted vs. observed victim drug plasma 
concentration- time profiles during co- administration, DDI 
AUC ratios (Eq. 2), and DDI Cmax ratios (Eq. 3): 

(1)GMFE=10(Σ|log10(predPKparameter∕obsPKparameter)|)∕n,

(2)
DDI AUC ratio=

AUCvictimdrugduring co−administration

AUCvictimdrug
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As a quantitative measure of the prediction accuracy of each 
DDI interaction, GMFEs of the predicted DDI AUC ratios and 
DDI Cmax ratios were calculated according to Eq. 1.

Sensitivity analysis
Sensitivity of the final models to single parameters (local 
sensitivity analysis) was calculated, measured as changes 
of the AUC extrapolated to infinity (for single- dose adminis-
tration drugs) or of the AUC of one dosing interval in steady- 
state conditions (for multiple- dose administration drugs) of 
a simulation with administration of the highest common 
dose. Parameters were included into the analysis if they 
have been optimized, if they might have a strong influence 
due to calculation methods used in the model (e.g., lipo-
philicity and fraction unbound), if they are related to opti-
mized parameters, or if they had significant impact in other 
models (e.g., solubility and blood/plasma concentration 
ratio). Sensitivity to a parameter is calculated as the ratio 
of the relative change of the simulated AUC to the relative 
variation of the parameter around the value used in the final 
model (Eq. 4): 

with S = sensitivity of the AUC to the examined model pa-
rameter, ΔAUC = change of the AUC, AUC = simulated 
AUC with the original parameter value, Δp = change of the 
examined model parameter value, and p = original model 
parameter value. A sensitivity value of +1.0 signifies that a 
10% increase of the examined parameter causes a 10% in-
crease of the simulated AUC.

Virtual population characteristics
To quantitatively predict the variability of the simulated 
plasma concentration- time profiles, virtual populations of 
100 individuals within an age range of 20–50 years were 
generated. Weight, height, and many physiological pa-
rameters, such as organ volumes, blood flow rates, and 
gastrointestinal characteristics, were varied according to 
published data7 as implemented into the software.9 In ad-
dition to the variability in drug PK that results from these 
physiological differences within the virtual populations, 
the expression levels of the implemented drug metaboliz-
ing enzymes, transporters, and protein binding partners 
were varied around their reference values. If available, 
default population variabilities for enzyme expression in 
PK- Sim were used. Otherwise, log- normal distribution 
of the protein expression level in the population was as-
sumed and variabilities were implemented as geometric 
SDs derived from literature reports. If no valid source 
could be found, log- normal distributions with a moderate 
geometric SD of 1.4 (~35% coefficient of variation) were 
assumed. Please refer to Table S7 in Appendix S1 for an 
overview.

Population simulations were generated and compared 
with observed data. Observed data were most often reported 

in terms of arithmetic means and SDs. To allow comparison 
of observed and simulated variability, simulated 68% pop-
ulation prediction intervals were plotted that correspond to 
the range span of ±1 SD around the mean assuming normal 
distribution.

RESULTS
Model development and evaluation
Of the total of 112 studies, in detail 16 studies of rifampicin, 
27 studies of itraconazole, 17 studies of clarithromycin, 7 
studies of midazolam, 7 studies of alfentanil, and 38 stud-
ies of digoxin administration, were used for model devel-
opment. The respective modeling results are presented in 
Section 2 of Appendix S1. This includes tables listing the 
clinical studies used for model development and evaluation, 
with administration protocols and study population details 
(Tables S1a, S2a, S3a, S4a, S5a, S6a in Appendix S1), 
descriptions of the final models, and tables listing the re-
spective drug- dependent parameters (Tables S1b, S2b, 
S3b, S4b, S5b, S6b in Appendix S1).

All models show accurate and precise descriptive and 
predictive performance for intravenous and oral administra-
tion. Plots of population predicted compared with observed 
plasma concentration- time profiles of all studies obtained 
from literature are shown as semilogarithmic (Figures 
S1c, S2c, S3c, S4c, S5c, S6c in Appendix S1) as well 
as linear plots (Figures S1d, S2d, S3d, S4d, S5d, S6d in 
Appendix S1). In addition, predicted compared to observed 
AUC and Cmax values with calculated GMFEs (also listed in 
Tables S1a, S2a, S3a, S4a, S5a, S6a in Appendix S1) and 
sensitivity analysis results (Figures S1e, S2e, S3e, S4e, S5e, 
S6e in Appendix S1) are presented. System- dependent pa-
rameters are given in Table S7 in Appendix S1.

DDI network modeling
Of the total of 57 studies, in detail 18 clinical studies of ri-
fampicin with midazolam, 12 studies of rifampicin with al-
fentanil, 1 study of rifampicin with itraconazole, 10 studies 
of itraconazole with midazolam, 4 studies of clarithromycin 
with midazolam, 7 studies of rifampicin with digoxin, 1 study 
of itraconazole with digoxin, and 4 studies of the interaction 
of clarithromycin with digoxin were predicted and com-
pared with observed data. Table 1 lists all modeled clinical 
DDI studies, with administration protocols and study pop-
ulation details. The parameters to model the CYP3A4 and 
P- gp induction and inhibition processes are described in 
Section 3 of  Appendix S1.

Figure 2 presents a selection of the different modeled 
CYP3A4 DDIs, showing population predicted compared 
with observed victim drug plasma concentration- time 
profiles of one study each of the rifampicin- midazolam, 
rifampicin- alfentanil, itraconazole- midazolam, and 
clarithromycin- midazolam DDIs, selected for their clinically 
relevant doses of perpetrator and victim drug. Figure 3 
presents a selection of the different modeled P- gp DDIs, 
showing population predicted compared with observed vic-
tim drug plasma concentration- time profiles of one study 
each of the rifampicin- digoxin, itraconazole- digoxin, and 
clarithromycin- digoxin DDIs, selected for their clinically rel-
evant doses of perpetrator and victim drug. Please refer to 

(3)
DDICmax ratio=

Cmaxvictimdrugduring co−administration

Cmaxvictimdrug

(4)S=

ΔAUC

AUC
⋅

p

Δp
,
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Section 3 of Appendix S1 for the results of all 57 DDI stud-
ies, shown in Figures S8a, S9a, S11a, S12a, S13a, S14a, 
S15a in Appendix S1 (semilogarithmic), Figures S8b, S9b, 
S11b, S12b, S13b, S14b, S15b in Appendix S1 (linear), and 
Table S10 in Appendix S1, demonstrating the good predic-
tive performance for all modeled DDIs.

Modeled induction and de- induction of CYP3A4 en-
zyme activity in the liver and duodenum is presented in 
Figure 4. The combination of simulated intracellular rifam-
picin concentrations and chosen induction parameters 
(half- maximal effective concentration (EC50) = 0.34 μmol/l, 
maximum effect (Emax) = 9) leads to CYP3A4 activ-
ity increases of 7.8- fold in the liver and of 6.7- fold in 

the duodenum with a 600 mg q.d. rifampicin regimen 
(Figure 4a). De- induction depends on the half- lives of 
the perpetrator and the induced protein; we implemented 
CYP3A4 with protein half- lives of 36 and 23 hours in the liver 
and intestine, respectively10,11 (see Table S7 in Appendix 
S1). De- induction kinetics were evaluated by prediction of 
midazolam PK when administered 1, 2, or 4 weeks after 
the last dose of rifampicin, as studied by Reitman et al.12 
The rifampicin- midazolam model successfully predicts the 
time course of CYP3A4 activity return to baseline after the 
last dose of rifampicin, shown by the correct simulation of 
the midazolam plasma concentration- time profiles of this 
study (Figure 4b).

Figure 2 Cytochrome P450 3A4 drug- drug interactions (DDIs). Selection of one study each of the rifampicin- midazolam (a), rifampicin- 
alfentanil (b), itraconazole- midazolam (c), and clarithromycin- midazolam (d) DDIs, presented in semilogarithmic (left panel) and linear 
plots (right panel). Shown are population predictions compared to observed victim drug concentration- time profiles before and 
during perpetrator administration. Observed data are shown as blue dots (control) or red triangles (DDI) ± SD. Population simulation 
arithmetic means are shown as solid blue lines (control) or dashed red lines (DDI); the shaded areas illustrate the respective 68% 
population prediction intervals. Details on dosing regimens, study populations, predicted and observed DDI area under the plasma 
concentration- time curve ratios and DDI peak plasma concentration ratios are summarized in Table 1.
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All victim drug plasma concentration- time profiles before 
and during co- administration with the different perpetrators 
are well predicted over the full range of administered doses 
and administration protocols. Predicted compared with 
observed DDI AUC ratios and Cmax ratios with calculated 
GMFEs for each perpetrator- victim pair are summarized in 
Table 1. Correlation of predicted to observed DDI AUC ra-
tios and Cmax ratios of all 57 modeled interaction studies, 
illustrating the performance of the entire DDI network, is pre-
sented in Figure 5.

DISCUSSION

Comprehensive whole- body PBPK models of rifampicin, 
itraconazole, clarithromycin, midazolam, alfentanil, and di-
goxin have been successfully developed, incorporating all 
current knowledge on the processes controlling the PKs 
of these drugs. All models were established using a large 
number of clinical studies and all models show a good 
performance over the full range of administered doses 

and administration protocols. Model evaluation comprised 
comparison of predicted with observed concentration- time 
profiles, AUC, and Cmax values, calculation of GMFEs as 
a measure of descriptive and predictive performance, and 
application of the independently developed models for DDI 
prediction.

Sensitivity analyses demonstrate that all models are sen-
sitive to lipophilicity, fraction unbound, and the catalytic rate 
constants of influential eliminating enzymes or transporters. 
This result is expected, as the lipophilicity values are used 
for calculation of membrane permeabilities and partition 
coefficients, fraction unbound in plasma directly controls 
the concentration of drug available for passive distribution, 
transport, and metabolization from the blood, and the cat-
alytic rate constants of the major eliminating enzymes or 
transporters naturally have a large impact on the predicted 
clearance and AUC. Experimental values were used for pa-
rameterization wherever possible. For example, fraction un-
bound was fixed to reported experimental values in five of 
the six models. For itraconazole, the attempts to set fraction 

Figure 3 P- glycoprotein drug- drug interactions (DDIs). Selection of one study each of the rifampicin- digoxin (a), itraconazole- digoxin 
(b), and clarithromycin- digoxin (c) DDIs, presented in semilogarithmic (left panel) and linear plots (right panel). Shown are population 
predictions compared to observed victim drug concentration- time profiles before and during perpetrator administration. Observed 
data are shown as green dots (control) or pink triangles (DDI) ± SD. Population simulation arithmetic means are shown as solid green 
lines (control) or dashed pink lines (DDI); the shaded areas illustrate the respective 68% population prediction intervals. Details on 
dosing regimens, study populations, predicted and observed DDI area under the plasma concentration- time curve ratios and DDI peak 
plasma concentration ratios are summarized in Table 1.
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Figure 5 Correlation of predicted to observed DDI area under the plasma concentration- time curve (AUC) ratios and DDI peak plasma 
concentration (Cmax) ratios. The upper panel illustrates the cytochrome P450 (CYP)3A4 DDI prediction performance, the lower panel 
illustrates the P- glycoprotein (P- gp) DDI prediction performance of the network. (a, d) DDI AUC ratios of intravenously administered 
victim drugs, (b, e) DDI AUC ratios of orally administered victim drugs, and (c, f) DDI Cmax ratios of orally administered victim drugs. 
The line of identity and the prediction acceptance limits proposed by Guest et al.23 are shown as solid lines. The 0.5- fold to 2.0- fold 
acceptance limits are shown as dashed lines. Induction of elimination pathways by rifampicin results in DDI ratios <1, inhibition of 
elimination pathways by itraconazole or clarithromycin results in DDI ratios >1. Study references and values of predicted and observed 
DDI AUC ratios and DDI Cmax ratios are listed in Table 1.

Figure 4 Cytochrome P450 (CYP)3A4 induction and de- induction. (a) Fold change of predicted CYP3A4 concentrations in liver (solid 
blue line) and duodenum (dashed red line) before, during, and after a 600 mg q.d. rifampicin regimen. Shown are population prediction 
arithmetic means (lines) and 68% population prediction intervals (shaded areas). (b) Population simulation arithmetic means (lines) 
and observed (squares, triangles, and dots) midazolam plasma concentration- time profiles during simultaneous administration of 
midazolam and rifampicin (red line and squares) or administration of midazolam 7 days (light blue line and triangles), 14 days (blue 
line and triangles) or 28 days (dark blue line and dots) after the last dose of a 600 mg q.d. rifampicin treatment. Observed data are 
from Reitman et al.12 Predicted and observed DDI area under the plasma concentration- time curve ratios and DDI peak plasma 
concentration ratios are given in Table 1.
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unbound in plasma to one of the widely differing literature 
values (0.2–3.6%) did not result in a satisfactory model and, 
therefore, fraction unbound was optimized within the litera-
ture range (0.6%).

The presented rifampicin model accounts for metabolism 
by the arylacetamide deacetylase (AADAC), and transport by 
organic anion- transporting polypeptide (OATP)1B1 and P- gp, 
as described in the literature. Metabolism by CYP3A4 has not 
been implemented, as currently there is no conclusive evi-
dence of rifampicin elimination via CYP3A4. Auto- induction 
of rifampicin clearance was implemented via induction of 
AADAC, OATP1B1, and P- gp expression. Furthermore, in-
duction of CYP3A4 has been incorporated, without impact 
on the PK of rifampicin itself. In addition to these induction 
processes, the DDI application of the presented model is 
extended to simultaneous dynamic competitive inhibition of 
CYP3A4 and P- gp. Several minimal or partial PBPK mod-
els of rifampicin13–16 and one full PBPK model17 have been 
published to date, but many of them do not account for 
auto- induction of rifampicin or lack the induction of P- gp. 
Induction of further CYP isoforms and transporters by rifam-
picin as well as inhibition of OATP is not yet accounted for, 
as this requires evaluation of appropriate victim drug models 
and of the DDI predictions with clinical data, which is be-
yond the scope of this study. However, the implementation of 
additional interaction parameters is technically a simple and 
straight- forward extension of the current model.

The presented itraconazole model accounts for com-
petitive inhibition of CYP3A4 by itraconazole itself and its 
three sequentially generated main metabolites. Adhering 
to the reported competitive mechanism of CYP3A4 inhibi-
tion by itraconazole and hydroxy- itraconazole,18 the strong 
observed nonlinearity and accumulation of itraconazole 
could not be adequately described using the inhibitory ef-
fects of parent drug and first metabolite, only. Therefore, 
the second and third metabolites were included, result-
ing in a model that slightly overpredicts the first dose of 
some studies, but accurately describes the steady- state 
plasma concentrations of intravenous and oral multiple- 
dose administration. The CYP3A4 inhibition constants of 
itraconazole and all three metabolites were fixed to litera-
ture values.18 Furthermore, the model correctly describes 
the strong food effects for both oral solution and capsule 
formulation, which is essential for modeling of the reported 
clinical studies.

The presented clarithromycin model is based on the 
PBPK model published by Moj et al.19 with small modifica-
tions. For DDI prediction, different compounds have to be 
coupled in one and the same individual with a specified ex-
pression of enzymes and transporters. Therefore, the clar-
ithromycin model was adapted to the CYP3A4 expression 
profile reported by Nishimura et al.20 used in the other mod-
els (see Table S7 in Appendix S1). Furthermore, transport 
by OATP1B3 was removed, according to literature,21 and the 
values for pKa, lipophilicity, fraction unbound, and CYP3A4 
KM were fixed to literature values. The adapted model pre-
cisely captures the plasma concentration- time profiles of all 
investigated studies with very low GMFEs (1.16 for AUC val-
ues and 1.11 for Cmax values; n = 15).

The presented midazolam model is a simple, very robust, 
and reliable model that has been successfully applied for 
DDI simulations with many different perpetrator models, as 
demonstrated in detail in Section 3 of  Appendix S1.

The presented alfentanil model has been established as 
a second CYP3A4 victim drug, to further evaluate the per-
formance of the rifampicin model. It shows an accurate and 
precise performance in single compound simulations as well 
as in DDI predictions. Due to the lack of clinical studies with 
other perpetrator drugs it has only been coupled to the ri-
fampicin model so far.

For the development of the presented digoxin model, 
a multitude of clinical studies (n = 38) was available in the 
literature, demonstrating the high interindividual variability 
in the PK of digoxin. A study measuring the P- gp protein 
abundance in human duodenal biopsies found considerable 
variation of more than eightfold in a group of 25 patients.22 
Considering the large interindividual differences in the ob-
served digoxin PK, the presented digoxin model shows a 
good descriptive and predictive performance. This was 
accomplished by incorporation of the drug target Na+/K+- 
ATPase as binding partner, and by increasing the relative 
P- gp expression in the intestinal mucosa, to accurately de-
scribe the plasma concentrations following intravenous as 
well as oral administration. This altered expression profile 
has been evaluated by prediction of the digoxin DDIs with 
rifampicin, itraconazole, and clarithromycin. Especially the 
prediction of the rifampicin- digoxin interaction was signifi-
cantly improved applying the higher intestinal expression of 
P- gp.

PBPK modeling is a rapidly evolving field, including contin-
uously improved software capabilities and steadily increas-
ing knowledge in systems pharmacology. There are many 
different models for the drugs investigated in this study, built 
with many different software platforms, and comparing their 
features and performance would take a study of its own.

The presented DDI modeling network demonstrates a 
very good performance of the models for DDI prediction 
over the full range of reported DDI administration protocols. 
This is illustrated by concentration- time profiles, DDI AUC 
ratios, DDI Cmax ratios, and corresponding GMFEs. In addi-
tion, some of the presented models have been applied for 
DDI prediction with currently unpublished models, which are 
either confidential or pending publication, also yielding good 
results and further increasing the confidence in their predic-
tive capacity. Now that a core of mutually evaluated models 
has been established, further models can be added to this 
DDI network and evaluated via simulation of published clin-
ical DDI studies utilizing the models provided in this study.

In summary, whole- body PBPK models of rifampicin, 
itraconazole, clarithromycin, midazolam, alfentanil, and 
digoxin have been thoroughly built, and tested by DDI 
prediction within the presented network using different 
kinds of perpetrator (induction, competitive inhibition, and 
mechanism- based inactivation) and victim drugs (CYP3A4, 
P- gp), demonstrating that they reliably predict the observed 
data of all clinical DDI studies that have been reported for 
combinations of these drugs. The presented models are 
transparently documented and provided open-source as 
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supplementary material to this paper (Data S1-S6) and in 
the OSP repository (www.open-systems-pharmacology.org) 
for the drug development community to help understand 
and characterize the DDI potential of investigational drugs 
and to inform the design of clinical trials. This study lays a 
cornerstone for the qualification of the OSP platform with 
regard to reliable PBPK predictions of enzyme- mediated 
and transporter- mediated DDIs during model- informed drug 
development.

Supporting Information

Supplementary information accompanies this paper on the CPT: 
Pharmacometrics & Systems Pharmacology website. (www.psp-journal.
com)

Appendix S1. Model information and evaluation.
Data S1. Rifampicin model file.
Data S2. Itraconazole model file.
Data S3. Clarithromycin model file.
Data S4. Midazolam model file.
Data S5. Alfentanil model file.
Data S6. Digoxin model file. 
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