
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

RESEARCH

Großmann et al. Applied Network Science (2023) 8:18
https://doi.org/10.1007/s41109-023-00542-x

Applied Network Science

Unsupervised relational inference using
masked reconstruction
Gerrit Großmann1*, Julian Zimmerlin1,2, Michael Backenköhler1 and Verena Wolf1 

Abstract 

Problem setting:  Stochastic dynamical systems in which local interactions give rise
to complex emerging phenomena are ubiquitous in nature and society. This work
explores the problem of inferring the unknown interaction structure (represented as
a graph) of such a system from measurements of its constituent agents or individual
components (represented as nodes). We consider a setting where the underlying
dynamical model is unknown and where different measurements (i.e., snapshots) may
be independent (e.g., may stem from different experiments).

Method:  Our method is based on the observation that the temporal stochastic evolu-
tion manifests itself in local patterns. We show that we can exploit these patterns to
infer the underlying graph by formulating a masked reconstruction task. Therefore, we
propose GINA (Graph Inference Network Architecture), a machine learning approach
to simultaneously learn the latent interaction graph and, conditioned on the interac-
tion graph, the prediction of the (masked) state of a node based only on adjacent
vertices. Our method is based on the hypothesis that the ground truth interaction
graph—among all other potential graphs—allows us to predict the state of a node,
given the states of its neighbors, with the highest accuracy.

Results:  We test this hypothesis and demonstrate GINA’s effectiveness on a wide
range of interaction graphs and dynamical processes. We find that our paradigm allows
to reconstruct the ground truth interaction graph in many cases and that GINA out-
performs statistical and machine learning baseline on independent snapshots as well
as on time series data.

Keywords:  Network reconstruction, Interaction learning, Masking, Link prediction,
Multi-agent system

Introduction
Stochastic dynamical systems in which local interactions give rise to complex emerg-
ing phenomena are ubiquitous in nature and society. However, their analysis remains
challenging. Traditionally, the analysis of complex systems is based on models of indi-
vidual components. This reductionist perspective reaches its limitations when the
interactions of the individual components—not the components themselves—become
the dominant force behind a system’s dynamical evolution. Inferring the functional
organization of a complex system from measurements is relevant for their analysis

*Correspondence:
gerrit.grossmann@uni-saarland.de

1 Saarland Informatics Campus,
Saarland University, Saarbrücken,
Germany
2 University of Tübingen,
Tübingen, Germany

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-023-00542-x&domain=pdf

Page 2 of 21Großmann et al. Applied Network Science (2023) 8:18

(Fornito et al. 2015; Prakash et al. 2012; Amini et al. 2016; Finn et al. 2019), design
(Zitnik et al. 2018; Hagberg and Schult 2008; Memmesheimer and Timme 2006), con-
trol (Gu et al. 2015; Großmann et al. 2020), and prediction (Kipf et al. 2018; Zhang
et al. 2019).

In this work, we focus on the internal interaction structure (i.e., graph or network)
of a complex system. We propose a machine learning approach to infer this structure
based on observational data of the nodes (i.e., components or constituent agents). We
refer to these observations as snapshots and assume that the observable states of all
components are measured simultaneously (see Fig. 1 for an overview). However, we
make no prior assumption about the relationship between snapshots. Specifically,
snapshots are not labelled with time stamps. They may be taken from different experi-
ments with varying initial conditions.

Most recent work on graph inference focuses on time series data, where observations
are time-correlated and the interaction graph is inferred from the joint time evolution of
the node-states (Zhang et al. 2019; Kipf et al. 2018). Naturally, time series data contains
more information on the system’s internal interactions than snapshot data. However, in
many cases, such data is not available: In some cases, one has to destroy a system to
access its components (e.g., slice a brain (Rossini et al. 2019), observe a quantum system
(Martínez et al. 2019), or terminate a cell (Chan et al. 2017)). Sometimes, the relevant
time scale of the system is too small (e.g., in particle physics) or too large (e.g., in evolu-
tionary dynamics) to be observed. Often, there is a trade-off between spatial and tempo-
ral resolution of a measurement (Sarraf and Sun 2016). And finally, measurements may
be temporally decoupled due to large observation intervals and thus become unsuitable
for methods that exploit correlations in time. Yet, machine learning techniques for graph
inference from independent data remain underexplored in the literature.

In contrast to many state-of-the-art approaches, our method makes no prior
assumptions about the dynamical laws. Conceptually, our analysis is founded on iden-
tifying patterns within the snapshots. These patterns are spatial manifestations of the
temporal co-evolution of neighboring nodes. Thus, they carry information about the
underlying connectivity.

We propose an approach based on ideas recently popularized for time series-based
network inference (Zhang et al. 2018; Kipf et al. 2018). It provides an elegant way
of formalizing the graph inference problem with minimal parametric assumptions on
the underlying dynamical model. The core assumption is that the interaction graph
“best describing” the observed data is the ground truth. In the time series setting, this
means that it enables time series forecasting.

Fig. 1  Schematic illustration the problem setting. We are interested in inferring the latent (unweighted and
undirected) interaction graph from observational data of the process

Page 3 of 21Großmann et al. Applied Network Science (2023) 8:18 	

Here, we assume that time series data is not available. Hence, we aim at finding the
graph that best enables us to predict a node’s state based on its direct neighborhood
within a snapshot (not at future times). This technique is commonly referred to as mask-
ing (Mishra et al. 2020). That is, we mask (i.e., erase) the state of a node and then try to
recover it by looking at its neighbors. To this end, we use a prediction model to learn a
node’s observable state (i.e., the node-state) given the joint state of all adjacent nodes.
Then we maximize the prediction accuracy by jointly optimizing the interaction graph
and the prediction model. In essence, we assume that the information shared between a
node and its complete neighborhood is higher in the ground truth graph than in other
potential graphs.

However, in a trivial implementation, the network that enables the best node-state
prediction is the complete graph because it provides all information available in a given
snapshot. This necessitates a form of regularization in which edges that are present but
not necessary reduce prediction quality. We do this using a counting neighborhood
aggregation scheme that acts as a bottleneck of information flow.

For an efficient solution to the graph inference problem, we propose GINA. GINA is
inspired by graph neural network architectures and combines a simple neighborhood
aggregation and an efficient weight-sharing mechanism between nodes with a differenti-
able graph representation. This enables the application of our methods to systems with
hundreds of nodes. GINA is both, model-free, (apart from the inductive biases from the
constituent neural networks, it can learn arbitrary patterns in snapshots) and thresh-
old-free (implicit thresholding is done during training, no arbitrary edge binarization is
needed afterwards). However, the way the dynamics is encodes is inspired by the theory
of multi-state processes. These provide a powerful description for many relevant dynam-
ical models of interacting systems (Gleeson 2011; Fennell and Gleeson 2019) (a simi-
lar model-class is studied under the name Stochastic Automata Networks (Langville and
Stewart 2004; Plateau and Stewart 2000)).

In summary, we conceptualize and test the hypothesis that network reconstruction
can be formulated as a prediction task. In this contribution (i) we propose a masking
technique to formalize the prediction problem, (ii) propose a suitable neighborhood
aggregation mechanism that automatically acts as a regularization mechanism, (iii)
develop the neural architecture GINA to efficiently solve the prediction and reconstruc-
tion task, and (iv) we test our hypothesis using synthetically generated snapshots using
various combinations of graphs and diffusion models.

Foundations and problem formulation

Notation

The goal is to find the latent interaction graph of a complex system with n agents/
nodes. A graph is represented as a binary adjacency matrix A of size n× n (with node
set {vi | 1 ≤ i ≤ n} ). An entry aij ∈ {0, 1} indicates the presence ( aij = 1 ) or absence
( aij = 0 ) of an edge between node vi and vj . We assume that A is symmetric (the graph is
undirected) and the diagonal entries are all zero (the graph has no self-loops). We use A∗
to denote the ground truth matrix.

Page 4 of 21Großmann et al. Applied Network Science (2023) 8:18

Each snapshot assigns a node-state to each node. The finite set of possible node-
states is denoted S . For convenience, we assume that the node-states are represented
using one-hot encoding. For instance, in an epidemic model a node might be sus-
ceptible or infected. Since there are two node-states, we use S = {(0, 1), (1, 0)} . Each
snapshot X ∈ {0, 1}n×|S| can then conveniently be represented as a matrix with n rows,
each row describing the corresponding one-hot encoded node-state (cf. Fig. 2 left).
We use X to denote the set of independent snapshots. We make no specific assump-
tion about the underlying distribution or process behind the snapshots or their rela-
tionship to another.

For a node vi (and fixed snapshot), we use mi ∈ Z
|S|
≥0 to denote the (element-wise)

sum of all neighboring node-states, referred to as neighborhood counting vector. Let’s
return to our previous example, where S = {(1, 0), (0, 1)} . The state mi = (10, 13) tells
us that node vi has 10 susceptible ((1, 0)) and 13 infected ((0, 1)) neighbors. Note
that the sum over mi is the degree (i.e., number of neighbors) of that node (here,
10+ 13 = 23 ). The set of all possible neighborhood counting vectors is denoted
by M ⊂ Z

|S|
≥0 . We can compute neighborhood counting vectors of all nodes using

M = AX , where the matrix M is such that its i-th row equals mi (cf. Fig. 2 center).

Idea

We feed each counting vector mi into a machine learning model that predicts (resp.
recovers) the original (masked) state of vi in that snapshot. Specifically, for each node vi ,
we learn a function Fi : M → Cat(S) , where Cat(S) denotes the set of all probability
distributions over S (in the sequel, we make the mapping to a probability distribution
explicit by adding a Softmax(·) function). To evaluate Fi(·) , we use some loss function
to quantify how well the distribution predicts the true state and minimize this predic-
tion loss. Practically, we assume that Fi(·) is implemented using a neural network. Hence,
we assume that Fi(·) is fully parameterized by node-dependent parameters θi (e.g., in a
NN, θi contains the weights and biases of all layers). For simplicity, we still write Fi(·)
instead of Fθi(·) . We also simply use θ = {θ1, . . . , θn} to denote the weights for all nodes.
We define Fθ (·) as a node-wise application of Fi(·) , that is,

Fig. 2  Schematic architecture using 4-node graph with S = {(0, 1), (1, 0)} . Nodes are color-coded,
node-states are indicated by the shape (filled: I, blank: S). First, we compute mi for each node vi (stored as M ),
then we feed each mi into a predictor that predicts the original state

Page 5 of 21Großmann et al. Applied Network Science (2023) 8:18 	

The hypothesis is that the ground truth adjacency matrix A∗ provides the best foun-
dation for Fi(·) , ultimately leading to the smallest prediction loss. Under this hypoth-
esis, we can use the loss as a surrogate for the accuracy of candidate A (compared to
the ground truth graph). The number of possible adjacency matrices of a system with n
nodes (assuming no self-loops and symmetries) is 2n(n−1)/2 . Thus, it is hopeless to simply
try all possible adjacency matrices. Hence, we additionally assume that smaller distances
between A and A∗ (we call this graph loss) lead to smaller prediction losses. This way, the
optimization becomes feasible and we can follow the surrogate loss in order to arrive at
A
∗.

Masked reconstruction

Next, we formulate the graph inference problem using a simple neural network, denoted
ψ(·) , which loosely resembles an autoencoder architecture: For each snapshot X , we pre-
dict the node-state of each node using only the neighborhood of that node. Then, we
compare the prediction with the actual (known) node-state. The model ψ(·) can be seen
as a elementary graph neural network (as discussed in the next section).

For a given adjacency matrix (graph) A ∈ {0, 1}n×n and MLP parameters θ , we define
ψ(·) , applied to a snapshot X ∈ {0, 1}n×|S| as:

where Softmax(·) and Fθ (·) are applied row-wise. Thus, ψθ ,A(X) results in a matrix
where each row corresponds to a node and models a distribution over node-states. Simi-
lar to the auto-encoder paradigm, input and output are of the same form and the net-
work learns to minimize the difference. The absence of self-loops in A is critical as it
means that the actual node-state of a node is not part of its own neighborhood aggrega-
tion (i.e., it is masked). As we want to predict a node’s state, the state itself cannot be
part of the input.

We will refer to the matrix multiplication AX as graph layer and to the application of
Softmax(Fθ (·)) as prediction layer.

Relationship to GNN architectures

The function ψ(·) can be seen as a single-layer graph neural network (GNN). GNNs are
the de-facto standard machine learning method to process graph-structured data. A
GNN can take graphs of arbitrary size as input. The output typically fulfills some form
of invariance to the node-ordering of the input (e.g., two isomorphic graphs might be
guaranteed to produce the same output). Seminal work in their development was done
by Duvenaud et al. (2015) who proposed an elementary GNN architecture to learn rep-
resentations of molecular graphs and by Kipf and Welling (2016) who provide additional
theoretical insights and an efficient solution of the graph convolution operator to learn
node representations.

(1)Fθ (m1,m2, . . . ,mn) = F1(m1), F2(m2), . . . , Fn(mn) .

(2)
ψθ ,A : {0, 1}n×|S| → R

n×|S|

ψθ ,A : X �→ Softmax
(

Fθ (AX)
)

,

Page 6 of 21Großmann et al. Applied Network Science (2023) 8:18

Most modern GNN architectures follow the message-passing scheme developed by
Gilmer et al. (2017). Each layer performs an aggregate(·) and a combine(·) step. The
aggregate(·) step computes a neighborhood embedding based on a permutation-invar-
iant function of all neighboring nodes. The combine(·) step combines this embedding
with the actual node-state. In our architecture, the aggregation-step is the element-
wise sum (given by the multiplication of the adjacency matrix and the neighborhood
counting matrix). In principle, other permutation-invariant aggregation functions like
the element-wise mean or maximum/minimum would also be possible. We choose a
sum because it corresponds to the multi-state paradigm (Gleeson 2011; Fennell and
Gleeson 2019), empirically works well, and is also more informative than compara-
ble aggregators. Importantly, the combine(·) step needs to purposely ignore the node-
state (in order for the prediction task to make sense).

We also only perform a single application of the graph layer on purpose, which
means that only information from the immediate neighborhood can be used to pre-
dict a node-state. Recall that we define the ground truth network such that interac-
tions only happen along edges. While using n-hop neighborhoods would increase the
network’s predictive power, it would be detrimental to graph reconstruction. Another
possibility to increase the accuracy of the prediction is by learning attention weights
for each individual neighbor of a node (instead of simply using a sum-aggregation).
The problem with that is that a variable interaction strength necessities an (arbitrary)
thresholding to get a binarized adjacency matrix. Using a simple sum enforces that
edges that are present, but not necessary, hurt the prediction performance because
the network cannot learn to ignore these.

It is also worth noticing that Fi(·) is specific to node vi (hurting the permutation-
equivariance that is typically guaranteed by GNNs). This is possible because the snap-
shots identify each node unambiguously. However, the aggregation function needs to
be permutation-invariant following our premise that a node’s neighbors are only dis-
tinguishable by their respective node-states.

Prediction loss

We assume a loss function L(·) that is applied independently to each snapshot:

The prediction loss L compares the input (actual node-states) and output (predicted
node-states) of ψθ ,A(·) . We define the loss on a set of independent snapshots X as the
sum over all constituent snapshots:

In our experiments, we use row-wise MSE-loss.
Note that, in the above sum, all snapshots are treated equally independent of their

corresponding initial conditions or time points at which they were made. Formally,
this is reflected in the fact that the loss function is invariant to the order of the
snapshots.

(3)L : {0, 1}n×|S| × R
n×|S| → R

(4)L
(

X ,ψθ ,A(X)
)

:=
∑

X∈X

L
(

X,ψθ ,A(X)
)

.

Page 7 of 21Großmann et al. Applied Network Science (2023) 8:18 	

Graph inference problem

We define the graph inference problem as follows: For given set of m snapshots
X = {X1, . . . ,Xm} (corresponding to n nodes), find an adjacency matrix A′ ∈ {0, 1}n×n
and MLP parameters θ ′ minimizing the prediction loss:

Thus, solving the graph inference problem requires simultaneously optimizing over a
discrete space (graphs) and a continuous space (weights). In the next section, we explain
how to achieve this by relaxing the discrete space.

Note that, in general, we cannot guarantee that A′ is equal to the ground truth matrix
A
∗ . Regarding the computational complexity, it is known that network reconstruction

for epidemic models based on time series data is NP-hard when formulated as a deci-
sion problem (Prasse and Van Mieghem 2018). We believe that this carries over to our
setting but leave a proof for future work.

Our method: GINA
As explained in the previous section, it is not possible to solve the graph inference prob-
lem by iterating over all possible graphs/weights. Hence, we propose GINA (Graph Infer-
ence Network Architecture). GINA efficiently approximates the graph inference problem
by jointly optimizing the graph A and the prediction layer weights θ using stochastic
gradient descent.

Therefore, we adopt two tricks: Firstly, we impose a relaxation on the graph adjacency
matrix representing its entries as real-valued numbers. Secondly, we use shared weights
in the weight matrices belonging to different nodes. Specifically, each node vi gets its
custom MLP, but weights of all layers, except the last one, are shared among nodes. This
allows us to simultaneously optimize the graph and the weights using back-propagation.
Note that traditional GNN architectures need to have shared weights to achieve per-
mutation invariant. Here, we can freely combine shared and note-specific weights to
achieve to balance predictive power and generalizability/efficiency. Apart from that,
we still follow the architecture from the previous section. That is, a graph layer maps a
snapshot to neighborhood counting vectors, and each neighborhood counting vector is
pushed through a node-wise MLP.

Graph layer

Internally, we store the interaction graph as a real-valued upper triangular matrix C that
can contain arbitrary values. During each forward pass, we deterministically translate C
into an adjacency matrix representing the interaction graph. Specifically, in each step,
we (i) compute B = C+ C

⊤ to enforce symmetry, (ii) compute A′ = µ(B) to enforce a
reasonable range, and (iii) set all diagonal entries of A′ to zero, yielding Â = mask(A′) .
Setting the diagonal entries to zero using mask(·) is important to ensure that no informa-
tion leaks from the node itself to the prediction of its state.

Here, µ(·) is a differential function that is applied element-wise and maps real-val-
ued entries to the interval [0, 1]. It ensures that Â approximately behaves like a binary

(5)(θ ′,A′):= arg min
θ ,A

L
(

X ,ψθ ,A(X)
)

.

Page 8 of 21Großmann et al. Applied Network Science (2023) 8:18

adjacency matrix. Thus, it can be seen as a differentiable edge binarization (the hat-nota-
tion indicates relaxation). Specifically, we use a nested Sigmoid-type function f (·) that is
parametrized by a sharpness parameter v:

where we choose f (x) = 1/(1+ exp(−x)) and increase the sharpness v over the course
of the training. Increasing the sharpness means that the entries of Â move closer and
closer to 0 or 1 during the training. Note that the masking is done implicitly if we ensure
that diagonal entries in C are zero and µ(0) = 0.

Finally, Â is multiplied with the snapshot which yields a relaxed version of the neigh-
borhood counting abstraction. The output M̂ = ÂX is a relaxed version of the neighbor-
hood counting matrix M.

In summary, for a snapshot X , the graph layer computes:

where C is optimized during training. Note that the process is differentiable and the
overall loss can be back-propagated to C (cf. Fig. 3).

For the final results (and comparison with the ground truth), we threshold the adja-
cency matrix A at 0.5. That is, we complete the differentiable thresholding of µ(·) with a
final hard cut of.

Prediction layer

We use MLPs to implement the prediction layer Fθ (·) that transforms the output of the
graph layer ( M̂ ) into a predictions of node-states. In M̂ , each row corresponds to one
node. Thus, we apply the MLPs independently to each row. We use m̂i to denote the row

(6)
µ : R → [0, 1]

µ : x �→ f
(

(

f (x)− 0.5
)

· v
)

,

(7)M̂ = ÂX = mask(µ(C+ C
⊤))X,

Fig. 3  Illustration of GINA. Snapshots are processed independently. Each input/snapshot associates each
node with a node state (blue, pink). The output is a distribution over states for each node. During training,
this distribution is optimized w.r.t the input. The output is computed based on a multiplication with the
current adjacency matrix candidate (stored as C) and the application of a node-wise MLP. Ultimately, we are
interested in a binarized version of the adjacency matrix. Color/filling indicates the state, shape identifies
nodes

Page 9 of 21Großmann et al. Applied Network Science (2023) 8:18 	

corresponding to node vi (i.e., the neighborhood counting relaxation of vi ). Let FCi,o(·)
denote a fully-connected (i.e., linear) layer with input (resp. output) dimension i (resp.
o). We use ReLu and Softmax activation functions. Each node-wise prediction layer
MLP contains four sub-layers and is given as:

In our implementation, only the last sub-layer ( o4i  ) contains node-specific weights. This
enables a node-specific shift of the probability computed in the previous layer. In other
words, the o3i already contains valid predictions for each node, but the probably distri-
bution is fine-tuned in the last layers. All other weights are shared among nodes which
results in strong regularization. Thus, Fi(·) applies the MLP of node vi . Note that we use
a comparably small dimension (i.e., 10) for internal embeddings, which has shown to be
sufficient in our experiments. The node-specific weights lead to a small, but consistent,
improvement of the graph reconstruction. All node-specific weights can be updated effi-
ciently in parallel in a single forward-backward pass.

Training

To solve the graph inference problem, we use a relaxed graph representation to com-
pute neighborhood vectors (Eq. (7)). We evaluate these using node-specific MLPs (Eq.
(8)). The loss compares the input with the output using node-wise MSE. During training,
the loss back-propagates to the graph representation and the MLP weights, which are
updated accordingly (Eq. (4)).

We empirically find that over-fitting is not a problem and therefore do not use a test
set. However, a natural approach would be to split the snapshots into a training and test
set and optimize Â and θ on the training set until the loss reaches a minimum on the test
set. Another important aspect during training is the usage of mini-batches. For ease of
notation, we ignored batches so far. In practice, mini-batches of snapshots are crucial for
fast and robust training. A mini-batch of size b, can be created by concatenating b snap-
shots (in the graph layer) and re-ordering the rows accordingly (in the prediction layer).

Limitations

There are some relevant limitations to GINA. Firstly, we can provide no guarantees that
the ground truth graph is actually the solution to the graph inference problem. In par-
ticular, simple patterns in the time domain (that enable trivial graph inference using time
series data) might correspond to highly non-linear patterns inside a single snapshot (yet,
in practice, the spatial patterns seem to be easier to recognize). Secondly, GINA is only
applicable if statistical associations among adjacent nodes manifest themselves in a way
that renders the counting abstraction meaningful. Statistical methods are more robust
in the way they can handle different types of pair-wise interactions but less powerful
regarding non-linear combined effects of the complete neighborhood. Another relevant
design decision is to use one-hot encoding which renders the forward pass extremely

(8)

o
1
i = ReLu(FC|S|,10(m̂i))

o
2
i = ReLu(FC10,10(o

1))

o
3
i
= Softmax(FC10,|S|(o

2))

o
4
i = Softmax(FC|S|,|S|(o

3)) .

Page 10 of 21Großmann et al. Applied Network Science (2023) 8:18

fast but will reach limitations when the node-state domain becomes very complex. We
also assume that all agents behave reasonably similar to another which enables weight
sharing and therefore greatly increases the efficiency of the training and reduces the
number of required samples.

Experiments
We conduct three experiments using synthetically generated snapshots. In Experiment
1, we analyze the underlying hypothesis that the ground truth graph enables the best
node-state prediction. In Experiment 2, we compare GINA to statistical baselines on
independent snapshots. In Experiment 3, we test GINA on time series data and com-
pare with machine learning baselines.

Setup.
Our prototype of GINA is implemented using PyTorch (Paszke et al. 2019) and is exe-

cuted on a standard desktop computer with 32 GB of RAM and an Intel i9-10850K CPU.
Accuracy and loss.
We quantify the performance of GINA using the graph loss and the prediction loss.

The graph loss measures the quality of an inferred graph. It is defined as the L1 (Manhat-
tan) distance of the upper triangular parts of the two adjacency matrices (i.e., the num-
ber of edges to add/remove). We always use a binarized version of inferred graph Ĉ for
comparison with the ground truth A∗ . The prediction loss measures how well GINA pre-
dicts masked node-states and follows the definition in Section Prediction loss . All results
are based on a single run of GINA, performing multiple runs and using the result with
the lower prediction loss, might further improve GINA’s performance. For more details
regarding the architecture and hyperparameters of GINA, we refer the reader to Appen-
dix A: Technical details of GINA .

Dynamical models

We study six models. A precise description of dynamics and parameters is provided in
Appendix B: Dynamical models section . We focus on stochastic processes, as proba-
bilistic decisions and interactions are essential for modeling uncertainty in real-world
systems. The models include a simple SIS-epidemic model where infected nodes can
randomly infect susceptible neighbors or become susceptible again. In this model, sus-
ceptible nodes tend to be close to other susceptible nodes and vice versa. This renders
network reconstruction comparably simple. In contrast, we also propose an Inverted
Voter model (InvVoter) where nodes tend to maximize their disagreement with their
neighborhood (influenced by the original Voter model (Campbell et al. 1954)). Nodes
hold one of two opinions (A or B) and A-nodes switch to B faster the more A-neighbors
they have and vice versa. For even more complex emerging dynamics, we study a sys-
tem loosely inspired by Conway’s Game of Life. Nodes (cells) are either dead (D) or alive
(A). Living conditions are good (i.e., nodes tend to stay alive or be born) when roughly
half of an node’s neighbors are alive. Likewise, they tend to die (or stay dead) when the
neighborhood is highly unbalanced. That is, almost all neighboring cells are either dead
(underpopulation) or alive (overpopulation). We also examine a rock-paper-scissors
(RPS) model to study evolutionary dynamics (Szabó and Fath 2007) and the well-known
Forest Fire model (Bak et al. 1990) where a node (spot) can be empty (E), occupied by a

Page 11 of 21Großmann et al. Applied Network Science (2023) 8:18 	

tree (T), or occupied by fire (F) induced by stochastic lightning. Finally, we test a deter-
ministic discrete-time dynamical model: a coupled map lattice model (CML) (Garcia
et al. 2002; Kaneko 1992; Zhang et al. 2019) to study graph inference in the presence of
chaotic behavior. As the CML model admits real node-values [0, 1], we performed dis-
cretization into 10 equally-spaced bins.

For the stochastic models, we use numerical simulations to sample from the equilib-
rium distribution. For CML, we randomly sample an initial state and simulate it for a
random time period. We do not explicitly add measurement errors but all nodes are sub-
ject to internal noise (i.e., they spontaneously flip with a small probability). Figure 4 pro-
vides visualizations of typical equilibrium samples from the dynamical models.

Experiment 1: loss landscape

For this experiment, we generated 5000 snapshots for all dynamical models on the so-
called bull graph (illustrated in Fig. 1). We then trained GINA and measured the pre-
diction loss for all potential 5× 5 adjacency matrices that represent a connected graph.
Note that the ground truth graph has a graph distance of zero. During training, we fixed
the graph layer and only optimized the prediction layer. We observe a large depend-
ency between the prediction loss of a candidate graph and the corresponding graph loss
(Fig. 5). We conclude that the hypothesis that graphs that are closer to the ground truth
yield a better predictive performance is reasonable. The Game of Life dynamical model
is the only example, where graph candidates exist that allow a better prediction than
the ground truth graph (by an extremely small amount). Interestingly, this is one of the
graph candidates that is furthest from ground truth.

Experiment 2: independent snapshots

Next, we compare GINA with statistical baselines on independent equilibrium snapshots.

Fig. 4  Examples of typical equilibrium snapshots on a 10× 10 grid graph. Different dynamics give rise to
different types of cluster formations

Page 12 of 21Großmann et al. Applied Network Science (2023) 8:18

Ground truth graphs
To generate ground truth graphs we use Erdős-Renyi (ER) ( N = 22 ), Geometric

(Geom) ( N = 50 ), and Watts-Strogatz (WS) ( N = 30 ). Moreover, we use a 2D-grid
graph with 10× 10 nodes ( N = 100 , |E| = 180 ). We use 50 thousand samples. Graphs
were generated the using networkX package (Hagberg et al. 2008) (cf. Appendix C:
Random graph generation for details).

Baselines
As statistical baselines, we use Python package netrd (Hartle et al. 2020). Specifi-

cally, we use the correlation (Corr), mutual information (MI), and partial correlation
(ParCorr) methods. The baselines only return weighted matrices. Hence, they need to
be binarized using a threshold. To find the optimal threshold, we provide netrd with
the number of edges of the ground truth graph. Notably, especially in sparse graphs,
this leads to an unfair advantage and renders the results not directly comparable. We
also tested an automated thresholding approach based on k-means clustering of the
weighted matrices. The results were quite good, but consistently worse than when the
edge count was provided (results not shown). Furthermore, netrd only accepts binary
or real-valued node-states. This is a problem for the categorical models RPS and FF.
As a solution, we simply map the three node-states to real values (1, 2, 3), breaking
statistical convention. Interestingly, the baselines handle this well and, in most cases,
identify the ground truth graph nevertheless. Results are shown in Table 1.

Prediction layer visualization
We can visualize the prediction layer for the 2-state models. It encodes the con-

ditional probability to be in a specific node-state given the 2-dimensional neighbor-
hood counting vector mi . Figure 6 illustrates this conditional probability as a map
from each possible neighborhood counting vectors. The results are given for a Watts-
Strogatz graph (where each node has approximately degree 4). The prediction layer
belonging to the same node was used for all three models. We observe that the pre-
diction layer finds conditional probability distributions that capture the specific char-
acteristics of the dynamical models. It also generalizes well (beyond degree 4).

P
re

di
ct

io
n

Lo
ss

SIS Inverted Voter Game of Life

Rock-Paper-Scissors Forest Fire CMP

Graph Distance Graph Distance Graph Distance
Fig. 5  Exp. 1: [Lower is better.] Computing the loss landscape based on all possible 5-node graphs. x-axis:
Graph distance to ground truth adjacency matrix. y-axis: Mean prediction loss of corresponding graph
candidates. Error bars denote min/max-loss

Page 13 of 21Großmann et al. Applied Network Science (2023) 8:18 	

Experiment 3: time series data

In contrast to approaches for network inference based on time series data, GINA can
be used when there is no (known) temporal relationship between snapshots. How-
ever, we can still apply GINA when time series data is available. In this experiment,
we generate a single trajectory of a stochastic process and observe it at an interval
x ( x ∈ {1, 5, 10, 20} ), e.g., x = 1 means that we observe the process after every jump
in the underlying stochastic process. The reason to test different intervals between
observations is that time series analysis methods are, in principle, sensitive to the

Table 1  Exp. 2: [Lower is better.] Results of different graph inference methods

Bold values indicate better results than other methods

Graph loss Runtime (sec)

Model Graph GINA Corr MI ParCorr GINA Corr MI ParCorr

SIS ER 19 0 0 0 890 < 1 < 1 8

Geom 50 88 141 54 1366 < 1 2 126

Grid 12 0 0 0 2131 < 1 9 1862

WS 0 0 0 0 109 < 1 1 22

InvVoter ER 1 66 24 66 96 < 1 < 1 8

Geom 0 556 38 556 167 < 1 2 125

Grid 0 360 90 360 754 < 1 10 1861

WS 0 138 2 138 110 < 1 1 21

GoL ER 44 48 20 54 599 < 1 < 1 7

Geom 0 554 104 556 152 < 1 2 132

Grid 10 360 20 360 2181 < 1 10 1901

WS 0 138 22 138 111 < 1 1 21

RPS ER 0 0 0 0 114 < 1 < 1 8

Geom 1 76 74 2 317 < 1 3 129

Grid 72 0 0 0 2445 < 1 10 1873

WS 0 4 4 0 128 < 1 1 21

Forest Fire ER 13 0 0 6 1030 < 1 < 1 8

Geom 19 320 130 326 1486 < 1 2 127

Grid 30 0 0 0 2520 < 1 9 1892

WS 0 2 0 4 131 < 1 1 22

CML ER 0 0 4 0 156 < 1 < 1 7

Geom 0 0 46 2 316 < 1 3 125

Grid 8 0 0 0 5569 < 1 11 1874

WS 0 0 4 0 192 < 1 < 1 22

SIS

N

ei
gh

bo
rs

 in
 S

Neighbors in I

Inverted Voter

N

ei
gh

bo
rs

 in
 A

Neighbors in B

Game of Life

N

ei
gh

bo
rs

 D
ea

d

Neighbors Alive

P
ro

ba
bi

lit
y

of
 S

/A
/D

ea
d

0.0

1.0

0.5

Fig. 6  Output of the prediction layer for a random node in the Watts-Strogatz network. We map
neighborhood counting vectors to the probability of the node being instate S (SIS), A (InvVoter), or D
(Game of Life)

Page 14 of 21Großmann et al. Applied Network Science (2023) 8:18

time resolution of the observations. If too many (or too few) nodes change their
state from one observation to another, this could hinder these approaches’ capability
of finding and exploiting temporal patterns. In practice, we observe little depend-
ence on the temporal resolution.

Baseline
We compare GINA with the previous statistical baselines and with the machine

learning approaches Automated Interactions and Dynamics Discovery (AIDD)
(Zhang et al. 2021) and Gumbel Graph Network (GGN) (Zhang et al. 2019) which are
both general frameworks to infer the network structure based on time series data
(cf. Related work for more details).

Setup
 We used 6000 samples (less were not possible without adapting the GGN code

further) and a simple 5× 5 grid graph (larger graphs made the GGN application too
expensive). We used binary state dynamics because we could apply the baseline code
off-the-shelf only to this format. We trained AIDD for 400 epochs and GGN for 40
epochs (we found that accuracy would not improve after that). For comparison, we
made the results of the baselines symmetric and binary.

Results
Generally, we find that GINA outperforms the methods based on time series anal-

ysis (AIDD and GGN). This is surprising as, in principle, the temporal data should
contain significantly more information on the connectivity than the individual snap-
shots. We can only speculate why GGN performs poorly, but hypothesize that the
method is conceptually unsuited for stochastic dynamics of jump processes where
only a single agent changes at a time (and not all agents at once). Less surprisingly,
we find that GINA is many orders of magnitude faster than AIDD and GGN (ca. 40 to
70 times) while still processing many more epochs (up to 5000 in GINA vs 400 and
40 in AIDD and GGN, respectively).

Moreover, we find that GINA performs slightly better than the statistical meth-
ods. Interestingly, Mutual Information is the only baseline that performs well on all
dynamical models, Corr and ParCorr fail on the InvVoter and GoL model (this hap-
pens consistently even when increasing the number of snapshots). Using automated
thresholding (instead of providing netrd with the number of edges) prevents the
“collapse” of the statistical methods, but lead a larger graph loss in general. Detailed
results are shown in Table 2.

Discussion

The results clearly show that graph inference based on independent snapshots is
possible and that GINA is a viable alternative to statistical methods. Compared to
the baselines, GINA performed best most often, even though we gave the baseline
methods the advantage of knowing the ground truth number of edges. GINA per-
formed particularly well in the challenging cases where neighboring nodes do not
tend to be in the same (or in similar) node-states. GINA even performed acceptably
in the case of CML dynamics despite the discretization and the chaotic and deter-
ministic nature of the process.

Page 15 of 21Großmann et al. Applied Network Science (2023) 8:18 	

Related work
Literature abounds with methods to infer the (latent) functional organization of com-
plex systems that is often expressed using (potentially weighted, directed, temporal,
multi-) graphs.

Most relevant for this work are previous approaches that use deep learning on time
series data to learn the interaction dynamics and the interaction structure. Natu-
rally, these approaches require consecutive snapshots but are otherwise conceptually
similar to GINA. Zhang et al. designed a two-component GNN architecture, called
Gumble Graph Network (GGN), where a graph generator network proposes interac-
tion graphs and a dynamics learner learns to predict the dynamical evolution using
the interaction graph (Zhang et al. 2019). Both components are trained alternately
which is comparably slow. The conceptually similar, but newer, AIDD (framework for
automated interaction network and dynamics discovery) (Zhang et al. 2021) scales
significantly better with the size of the network.

Similarly, Kipf et al. propose NRI (neural relational inference) to learn the dynam-
ics using an encoder-decoder architecture that is constrained by an interaction graph
which is optimized simultaneously (Kipf et al. 2018). The technique popularized
neural relational inference but is reported to scale poorly with the network size and
seems to be unsuitable for stochastic discrete dynamics (see (Zhang et al. 2021) and
literature referenced therein). Using our dynamical models from Experiment 3, NRI
failed to reconstruct any graph.

Another state-of-the-art approach for this problem, based on regression analy-
sis instead of deep learning, is the ARNI framework by Casadiego et al. (2017). This
method, however, hinges on a good choice of basis functions.

Other methods to infer interaction structures aim at specific dynamical models and
applications. Examples include epidemic contagion (Newman 2018; Di Lauro et al.
2020; Prasse and Van Mieghem 2020), gene networks (Kishan et al. 2019; Omranian

Table 2  Exp. 3: [Lower is better.] Results of different graph inference methods on time series data

Bold values indicate better results than other methods

Graph loss Runtime (sec)

Model Interval GINA AIDD GGN Corr MI ParCorr GINA AIDD GGN

SIS 1 8 42 179 4 4 2 62 2163 4382

5 0 28 179 0 0 0 62 2318 4396

10 1 29 85 0 0 0 62 2192 4432

20 1 36 83 0 0 0 62 2222 4402

InvVoter 1 0 18 73 80 22 80 44 2224 4358

5 0 28 31 80 16 80 37 2318 4395

10 0 24 66 80 16 80 37 2181 4432

20 0 27 80 80 16 80 37 2172 4419

GoL 1 13 42 199 80 52 80 62 2172 4443

5 4 42 208 80 22 80 62 2166 4353

10 4 40 190 80 26 80 61 2224 4354

20 9 42 163 80 22 80 62 2218 4391

Page 16 of 21Großmann et al. Applied Network Science (2023) 8:18

et al. 2016), functional brain network organization (de Abril et al. 2018), and protein-
protein interactions (Hashemifar et al. 2018). In contrast, our approach assumes no
prior knowledge about the laws that govern the system’s evolution.

Statistical methods provide an equally viable and often very robust alternative. These
can be based on partial correlation, mutual information, or graphical lasso (Tibshirani
1996; Friedman et al. 2008). These methods rely on pair-wise correlations among agents.
Our method takes the joint impact of all neighboring agents into account, which is nec-
essary in the presence of non-linear dynamical laws governing the system. Moreover, we
directly infer binary (i.e., unweighted) graphs in order to not rely on (often unprincipled)
threshold mechanisms.

Our method is also related to self-supervised machine learning, in particular to
masking. Masking, in the form of masked language modeling, was popularized for the
pre-training transformer-based models like Bert (Devlin et al. 2018). Masking image
patches also results in state-of-the-art pre-training for image recognition (Chen et al.
2022). Likewise, node-attribute masking was successfully used as a GNN pre-training
technique (Hu et al. 2019) and to improve the ability of a network to generalize (Mishra
et al. 2020).

Another relevant research area is optimization over discrete structures (like graphs).
While traditional methods use gradient-free techniques like greedy optimization (Netra-
palli et al. 2010), genetic (Barman and Kwon 2018), or memetic (Wu et al. 2019) algo-
rithms, SGD-based approaches gain popularity. For instance, Paulus et al. (2020) apply
the Gumble-softmax-trick, Fu et al. (2020) use iterative refinement using a differential
(GNN-based) loss function, and Bengio et al. (2021) directly predict a sample from a dis-
tribution over discrete objects that is implicitly specified by a reward signal.

Conclusions and future work
We propose a model-free and threshold-free paradigm for network reconstruction.
Based on this paradigm, we develop GINA to infer the underlying graph structure of a
dynamical system from independent observations in an efficient way. GINA is based on
the principle that local interactions among agents manifest themselves in specific spatial
patterns. These patterns can be found and exploited.

More generally, we show that the underlying hypothesis—that the ground truth graph
best describes a set of snapshots—is a promising graph inference paradigm. We also
show that node-attribute masking is a principled and practical approach to formalize
and measure what it means to “best describe” the observational data. For small graphs,
we demonstrate this by enumerating the whole search space (Experiment 1), and for
larger graphs, we demonstrate this by showing that GINA beats statistical baselines in
many cases (Experiment 2) and even beats machine learning baselines that have access
to the temporal ordering of the snapshots (Experiment 3).
GINA explores the vast space of all possible graphs by utilizing a relaxation of the

adjacency matrix. This makes the problem amenable to gradient-based methods. Other
methods (e.g., based on genetic algorithms or Gumbel-softmax-based optimization) are
also possible and worth exploring. We believe that the main challenge for future work
is to find ways of inferring graphs when the types of interaction differ largely among all

Page 17 of 21Großmann et al. Applied Network Science (2023) 8:18 	

edges. Moreover, a deeper theoretical understanding of which processes lead to mean-
ingful statistical associations, not only over time but also within snapshots, would be
desirable.

Appendix A: technical details of GINA
We start with a sharpness parameter v = 5.0 and increase v after 50 epochs by 0.3. We
train (maximally) for 5000 (1000 in Experiment 3) epochs but employ early stopping if the
underlying (binarized) graph does not change for 500 epochs (measured each 50 epochs).
Moreover, we use Pytorch’s Adam optimizer with an initial learning rate of 10^− 3.

We use a mini-batch size of 100. For an efficient forward pass, we first stack the 100
snapshots horizontally, yielding a n× 100|S| matrix. We push it through the graph layer
and get another n× 100|S| matrix. We then reshape it, yielding a 100n× |S| matrix, and
apply the prediction layer row-wise.

In Experiment 1, we use a fixed (pre-defined) binarized adjacency matrix and only
optimize the weights of the prediction layer during training.

In contrast to standard GNN software (like Pytorch Geometric), we do not use a sparse
representation of the underlying graph, because we optimize over all entries in the adja-
cency matrix. Moreover, our training set consists of snapshots rather than graphs, so we
do not use any sort of graph batching as is common in GNN training.

We did not utilize hyperparameter optimization. Using a validation set to optimize the
aforementioned parameters would likely noticeably increase the performance of GINA.

Appendix B: dynamical models
Except for the CML, we use continuous-time stochastic processes with a discrete state-
space to generate snapshots. Specifically, these models have a continuous-time Markov
chain (CTMC) semantics. Moreover, each node/agent occupies one of several node-
states (denoted S ) at each point in time. Nodes change their state stochastically accord-
ing to their neighborhood (more precisely, according to their neighborhood counting
vector). We assume that all nodes obey the same rules/local behavior. We refer the
reader to Kiss et al. (2017); Fennell and Gleeson (2019); Großmann and Bortolussi (2019)
for a detailed description of the CTMC construction in the context of epidemic spread-
ing processes.

SIS

Nodes are susceptible (S) or infected (I). Infected nodes can infect their susceptible
neighbors or spontaneously become susceptible again. In other words, I-nodes become
S-nodes with a fixed reaction rate µ and S-nodes become I-nods with a rate βm[I] ,
where m[I] denotes the number of infected neighbors of the node and β is the reaction
rate parameter. Moreover, for all models, we add a small amount of stochastic noise ǫ
to the dynamics. The noise not only mimics measurement errors but also prevents the
system from getting stuck in trap state where no rule is applicable (e.g., all nodes are
susceptible).

In the sequel, we use the corresponding notation:

Page 18 of 21Großmann et al. Applied Network Science (2023) 8:18

The reaction rate refers to the exponentially distributed residence times and a higher
rate is associated with a faster state transition. When the reaction rate is zero (e.g., when
no neighbors are infected), the state transition is impossible.

The parameterization is µ = 2.0 , β = 1.0 , and ǫ = 0.1.

Inverted voter

describes two competing opinions (A and B) while nodes always tend to maximize their
disagreement with their neighbors.

We use ǫ = 0.01.

Game of life

Nodes represent cells (resp. areas) that are either dead (D) (resp. unpopulated) or alive
(A) (resp. populated). Living conditions are good when roughly half of the neighboring
cells are alive. Otherwise, a cell tends to die due to either over- or underpopulation.

where k = m[A] +m[D] is the degree of the node. We use ǫ = 0.01.

Rock paper scissors

mimics a simple evolutionary process where three species compete and defeat each
other in a ring-like relationship.

We use ǫ = 0.01.

Forest fire

Spots/nodes are either empty (E), on fire (F), or have a tree on them (T). Trees grow with
a growth rate g. Random lightning starts a fired on tree-nodes with rate fstart . The fire on
a node goes extinct with rate fend leaving the node empty. Finally, fire spreads to neigh-
boring tree-nodes with rate fspread.

The parameterization is g = 1.0 , fstart = 0.1 , fend = 2.0 , fspread = 2.0 , and ǫ = 0.1.

Coupled map lattice

Let xi be the value of node vi at time-step i. Each node starts with a random value (uni-
form in [0, 1]). At each time step all nodes are updated based on a linear combination of
their own node-value and the node-values of neighboring nodes (Kaneko 1992):

I
µ+ǫ
−−→ SS

βm[I]+ǫ
−−−−−→ I.

A
m[A]+ǫ
−−−−→ BB

m[B]+ǫ
−−−−→ A.

A
|m[A]−m[D]|+ǫ
−−−−−−−−−→ DD

k−|m[A]−m[D]|+ǫ
−−−−−−−−−−−→ A,

R
m[P]+ǫ
−−−−→ PP

m[S]+ǫ
−−−−→ SS

m[R]+ǫ
−−−−→ R.

T
fstart+m[F]fspread+ǫ
−−−−−−−−−−−→ FF

fend+ǫ
−−−→ EE

g+ǫ
−−→ T.

Page 19 of 21Großmann et al. Applied Network Science (2023) 8:18 	

where di is the degree of vi , N(i) denotes the set of (indices of) nodes adjacent to vi , s is
the coupling strength and f is the local map. Like (Zhang et al. 2019), we use the logistic
function (May 2004):

where r modulates the complexity of the dynamics.
We use s = 0.1 and r = 3.57.

Appendix C: random graph generation
We use the Python NetworkX (Hagberg et al. 2008) package to generate a single
instance (variate) of a random graph model and test GINA and the baselines on a
large number of snapshots generated using this graph. In particular, we use Erdős-
Renyi (ER) ( N = 22 , |E| = 33 ) graph model with connection probability 0.15:

 We also use Geometric Graph ( N = 50 , |E| = 278):

 and a Watts-Strogatz graph ( N = 30 , |E| = 69 ) where each node has 4 neighbors and
the re-wiring probability is 0.15:

 After generation, the node-ids are randomly shuffled in order to guarantee that they do
not leak information about connectivity to the training model.
Acknowledgements
We thank Thilo Krüger for his helpful comments on the manuscript.

Author contributions
GG wrote the main manuscript text, developed the conceptualization, implemented GINA, and conducted the experi-
ments. JZ edited the manuscript text, implemented a previous version, supported the conceptualization of GINA, and
contributed to the literature review. MB wrote parts of the manuscript, reviewed literature, and created figures. VW wrote
parts of the manuscript. All authors reviewed the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL. This work was partially funded by the DFG project
MULTIMODE.

Availability of data and materials
Code for reproducibility is available at github.​com/​Gerri​tGr/​GINA.

Code availability
PyTorch code is available at github.​com/​Gerri​tGr/​GINA.

Declarations

Competing interests
The authors declare that they have no competing interests.

(9)xi+1 = (1.0− s)f (xi)+
s

di

∑

j∈N (i)

f (xj),

(10)f (x) = r · x · (1.0− x).

https://github.com/GerritGr/GINA
https://github.com/GerritGr/GINA

Page 20 of 21Großmann et al. Applied Network Science (2023) 8:18

Received: 15 July 2022 Accepted: 27 February 2023

References
Amini H, Cont R, Minca A (2016) Resilience to contagion in financial networks. Math Financ 26(2):329–365
Bak P, Chen K, Tang C (1990) A forest-fire model and some thoughts on turbulence. Phys Lett A 147(5–6):297–300
Barman S, Kwon Y-K (2018) A boolean network inference from time-series gene expression data using a genetic algo-

rithm. Bioinformatics 34(17):927–933
Bengio E, Jain M, Korablyov M, Precup D, Bengio Y(2021) Flow network based generative models for non-iterative diverse

candidate generation. Adv Neural Inf Process Syst 34
Campbell A, Gurin G, Miller WE (1945) The voter decides
Casadiego J, Nitzan M, Hallerberg S, Timme M (2017) Model-free inference of direct network interactions from nonlinear

collective dynamics. Nat Commun 8(1):1–10
Chan TE, Stumpf MP, Babtie AC (2017) Gene regulatory network inference from single-cell data using multivariate infor-

mation measures. Cell Syst 5(3):251–267
Chen J, Hu M, Li B, Elhoseiny M (2022) Efficient self-supervised vision pretraining with local masked reconstruction. arXiv

preprint arXiv:​2206.​00790
de Abril IM, Yoshimoto J, Doya K (2018) Connectivity inference from neural recording data: challenges, mathematical

bases and research directions. Neural Netw 102:120–137
Devlin J, Chang M-W, Lee K, Toutanova K (2018) Bert: Pre-training of deep bidirectional transformers for language under-

standing. arXiv preprint arXiv:​1810.​04805
Di Lauro F, Croix J-C, Dashti M, Berthouze L, Kiss I (2020) Network inference from population-level observation of epidem-

ics. Sci Rep 10(1):1–14
Duvenaud DK, Maclaurin D, Iparraguirre J, Bombarell R, Hirzel T, Aspuru-Guzik A, Adams RP (2015) Convolutional net-

works on graphs for learning molecular fingerprints. Adv Neural Inf Process Systems, 28
Fennell PG, Gleeson JP (2019) Multistate dynamical processes on networks: analysis through degree-based approxima-

tion frameworks. SIAM Rev 61(1):92–118
Finn KR, Silk MJ, Porter MA, Pinter-Wollman N (2019) The use of multilayer network analysis in animal behaviour. Anim

Behav 149:7–22
Fornito A, Zalesky A, Breakspear M (2015) The connectomics of brain disorders. Nat Rev Neurosci 16(3):159–172
Friedman J, Hastie T, Tibshirani R (2008) Sparse inverse covariance estimation with the graphical lasso. Biostatistics

9(3):432–441
Fu T, Xiao C, Li X, Glass LM, Sun J (2020) Mimosa: Multi-constraint molecule sampling for molecule optimization. arXiv

preprint arXiv:​2010.​02318
Garcia P, Parravano A, Cosenza M, Jiménez J, Marcano A (2002) Coupled map networks as communication schemes. Phys

Rev E 65(4):045201
Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE (2017) Neural message passing for quantum chemistry. In: Interna-

tional Conference on Machine Learning, pp 1263–1272. PMLR
Gleeson JP (2011) High-accuracy approximation of binary-state dynamics on networks. Phys Rev Lett 107(6):068701
Großmann G, Backenköhler M, Klesen J, Wolf V (2020) Learning vaccine allocation from simulations. In: International

Conference on Complex Networks and Their Applications, pp 432–443. Springer
Großmann G, Bortolussi L (2019) Reducing spreading processes on networks to markov population models. In: Interna-

tional Conference on Quantitative Evaluation of Systems, pp 292–309. Springer
Gu S, Pasqualetti F, Cieslak M, Telesford QK, Alfred BY, Kahn AE, Medaglia JD, Vettel JM, Miller MB, Grafton ST (2015) Con-

trollability of structural brain networks. Nat Commun 6(1):1–10
Hagberg A, Schult DA (2008) Rewiring networks for synchronization. Chaos Interdiscip J Nonlinear Sci 18(3):037105
Hagberg A, Swart P, S Chult D (2008) Exploring network structure, dynamics, and function using networkx. Technical

report, Los Alamos National Lab.(LANL), Los Alamos, NM (United States)
Hartle H, Klein B, McCabe S, Daniels A, St-Onge G, Murphy C, Hébert-Dufresne L (2020) Network comparison and the

within-ensemble graph distance. Proc R Soc A 476(2243):20190744
Hashemifar S, Neyshabur B, Khan AA, Xu J (2018) Predicting protein-protein interactions through sequence-based deep

learning. Bioinformatics 34(17):802–810
Hu W, Liu B, Gomes J, Zitnik M, Liang P, Pande V, Leskovec J (2019) Strategies for pre-training graph neural networks. arXiv

preprint arXiv:​1905.​12265
Kaneko K (1992) Overview of coupled map lattices. Chaos Interdiscip J Nonlinear Sci 2(3):279–282
Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:​1609.​

02907
Kipf T, Fetaya E, Wang K-C, Welling M, Zemel R (2018) Neural relational inference for interacting systems. In: International

Conference on Machine Learning, pp 2688–2697. PMLR
Kishan K, Li R, Cui F, Yu Q, Haake AR (2019) Gne: a deep learning framework for gene network inference by aggregating

biological information. BMC Syst Biol 13(2):38
Kiss IZ, Miller JC, Simon PL et al (2017)Mathematics of epidemics on networks. Cham: Springer 598
Langville AN, Stewart WJ (2004) The kronecker product and stochastic automata networks. J Comput Appl Math

167(2):429–447
Martínez JA, Cerri O, Spiropulu M, Vlimant J, Pierini M (2019) Pileup mitigation at the large hadron collider with graph

neural networks. Eur Phys J Plus 134(7):333
May RM (2004) Simple mathematical models with very complicated dynamics. Theory Chaotic Attract 85–93
Memmesheimer R-M, Timme M (2006) Designing complex networks. Physica D 224(1–2):182–201

http://arxiv.org/abs/2206.00790
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2010.02318
http://arxiv.org/abs/1905.12265
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907

Page 21 of 21Großmann et al. Applied Network Science (2023) 8:18 	

Mishra P, Piktus A, Goossen G, Silvestri F (2020) Node masking: making graph neural networks generalize and scale better.
arXiv preprint arXiv:​2001.​07524

Newman ME (2018) Estimating network structure from unreliable measurements. Phys Rev E 98(6):062321
Netrapalli P, Banerjee S, Sanghavi S, Shakkottai S (2010) Greedy learning of markov network structure. In: 2010 48th

Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp 1295–1302. IEEE
Omranian N, Eloundou-Mbebi JM, Mueller-Roeber B, Nikoloski Z (2016) Gene regulatory network inference using fused

lasso on multiple data sets. Sci Rep 6(1):1–14
Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, et al (2019) Pytorch: an

imperative style, high-performance deep learning library. arXiv preprint arXiv:​1912.​01703
Paulus M, Choi D, Tarlow D, Krause A, Maddison CJ (2020) Gradient estimation with stochastic softmax tricks. Adv Neural

Inf Process Syst 33:5691–5704
Plateau B, Stewart WJ (2000) Stochastic automata networks. In: Computational Probability, pp 113–151. Springer, ???
Prakash BA, Vreeken J, Faloutsos C (2012) Spotting culprits in epidemics: How many and which ones? In: 2012 IEEE 12th

International Conference on Data Mining, pp 11–20. IEEE
Prasse B, Van Mieghem P (2018) Maximum-likelihood network reconstruction for sis processes is np-hard. arXiv preprint

arXiv:​1807.​08630
Prasse B, Van Mieghem P (2020) Network reconstruction and prediction of epidemic outbreaks for general group-based

compartmental epidemic models. IEEE Trans Netw Sci Eng
Rossini P, Di Iorio R, Bentivoglio M, Bertini G, Ferreri F, Gerloff C, Ilmoniemi R, Miraglia F, Nitsche M, Pestilli F (2019) Meth-

ods for analysis of brain connectivity: an ifcn-sponsored review. Clin Neurophysiol 130(10):1833–1858
Sarraf S, Sun J (2016) Advances in functional brain imaging: a comprehensive survey for engineers and physical scientists.

Int J Adv Res 4(8):640–660
Szabó G, Fath G (2007) Evolutionary games on graphs. Phys Rep 446(4–6):97–216
Tibshirani R (1996) Regression shrinkage and selection via the lasso. J Roy Stat Soc Ser B 58(1):267–288
Wu K, Liu J, Chen D (2019) Network reconstruction based on time series via memetic algorithm. Knowl-Based Syst

164:404–425
Zhang H-F, Xu F, Bao Z-K, Ma C (2018) Reconstructing of networks with binary-state dynamics via generalized statistical

inference. IEEE Trans Circuits Syst I Regul Pap 66(4):1608–1619
Zhang Z, Zhao Y, Liu J, Wang S, Tao R, Xin R, Zhang J (2019) A general deep learning framework for network reconstruc-

tion and dynamics learning. Appl Netw Sci 4(1):1–17
Zhang Y, Guo Y, Zhang Z, Chen M, Wang S, Zhang J (2021) Automated discovery of interactions and dynamics for large

networked dynamical systems. arXiv preprint arXiv:​2101.​00179
Zitnik M, Agrawal M, Leskovec J (2018) Modeling polypharmacy side effects with graph convolutional networks. Bioinfor-

matics 34(13):457–466

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/2001.07524
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1807.08630
http://arxiv.org/abs/2101.00179

	Unsupervised relational inference using masked reconstruction
	Abstract
	Problem setting:
	Method:
	Results:

	Introduction
	Foundations and problem formulation
	Notation
	Idea
	Masked reconstruction
	Relationship to GNN architectures

	Prediction loss
	Graph inference problem

	Our method: GINA
	Graph layer
	Prediction layer
	Training
	Limitations

	Experiments
	Dynamical models
	Experiment 1: loss landscape
	Experiment 2: independent snapshots
	Experiment 3: time series data
	Discussion

	Related work
	Conclusions and future work
	Appendix A: technical details of GINA
	Appendix B: dynamical models
	SIS
	Inverted voter
	Game of life
	Rock paper scissors
	Forest fire
	Coupled map lattice

	Appendix C: random graph generation
	Acknowledgements
	References

