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Abstract

Most natural language processing (NLP) learning algorithms require labeled
data. While this is given for a select number of (mostly English) tasks, the
availability of labeled data is sparse or non-existent for the vast majority of
use-cases. To alleviate this, unsupervised learning and a wide array of data
augmentation techniques have been developed (Hedderich et al., 2021a). How-
ever, unsupervised learning often requires massive amounts of unlabeled data
and also fails to perform in difficult (low-resource) data settings, i.e., if there is
an increased distance between the source and target data distributions (Kim
et al., 2020). This distributional distance can be the case if there is a domain
drift or large linguistic distance between the source and target data. Unsu-
pervised learning in itself does not exploit the highly informative (labeled)
supervisory signals hidden in unlabeled data.

In this dissertation, we show that by combining the right unsupervised aux-
iliary task (e.g., sentence pair extraction) with an appropriate primary task
(e.g., machine translation), self-supervised learning can exploit these hid-
den supervisory signals more efficiently than purely unsupervised approaches,
while functioning on less labeled data than supervised approaches. Our self-
supervised learning approach can be used to learn NLP tasks in an efficient
manner, even when the amount of training data is sparse or the data comes
with strong differences in its underlying distribution, e.g., stemming from un-
related languages. For our general approach, we applied unsupervised learn-
ing as an auxiliary task to learn a supervised primary task. Concretely, we
have focused on the auxiliary task of sentence pair extraction for sequence-to-
sequence primary tasks (i.e., machine translation and style transfer) as well
as language modeling, clustering, subspace learning and knowledge integra-
tion for primary classification tasks (i.e., hate speech detection and sentiment
analysis).

For sequence-to-sequence tasks, we show that self-supervised neural ma-
chine translation (NMT) achieves competitive results on high-resource lan-
guage pairs in comparison to unsupervised NMT while requiring less data.
Further combining self-supervised NMT with unsupervised NMT-inspired aug-
mentation techniques makes the learning of low-resource (similar, distant and
unrelated) language pairs possible. Further, using our self-supervised ap-
proach, we show how style transfer can be learned without the need for paral-
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lel data, generating stylistic rephrasings of highest overall performance on all
tested tasks.

For sequence-to-label tasks, we underline the benefit of auxiliary task-based
augmentation over primary task augmentation. An auxiliary task that showed
to be especially beneficial to the primary task performance was subspace learn-
ing, which led to impressive gains in (cross-lingual) zero-shot classification
performance on similar or distant target tasks, also on similar, distant and
unrelated languages.
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Zusammenfassung

Die meisten Lernalgorithmen der Computerlingistik (CL) benötigen gelabelte
Daten. Diese sind zwar für eine Auswahl an (hautpsächlich Englischen)
Aufgaben verfügbar, für den Großteil aller Anwendungsfälle sind gelabelte
Daten jedoch nur spärrlich bis gar nicht vorhanden. Um dem gegenzus-
teuern, wurde eine große Auswahl an Techniken entwickelt, welche sich das
unüberwachte Lernen oder Datenaugmentierung zu eigen machen (Hedderich
et al., 2021a). Unüberwachtes Lernen benötigt jedoch massive Mengen an
ungelabelten Daten und versagt, wenn es mit schwierigen (resourcenarmen)
Datensituationen konfrontiert wird, d.h. wenn eine größere Distanz zwischen
der Quellen- und Zieldatendistributionen vorhanden ist (Kim et al., 2020).
Eine distributionelle Distanz kann zum Beispiel der Fall sein, wenn ein Domä-
nenunterschied oder eine größere sprachliche Distanz zwischen der Quellen-
und Zieldaten besteht. Unüberwachtes Lernen selbst nutzt die hochinforma-
tiven (gelabelten) Überwachungssignale, welche sich in ungelabelte Daten ver-
stecken, nicht aus.

In dieser Dissertation zeigen wir, dass selbstüberwachtes Lernen, durch
die Kombination der richtigen unüberwachten Hilfsaufgabe (z.B. Satzpaarex-
traktion) mit einer passenden Hauptaufgabe (z.B. maschinelle Übersetzung),
diese versteckten Überwachsungssignale effizienter ausnutzen kann als pure
unüberwachte Lernalgorithmen, und dabei auch noch weniger gelabelte Daten
benötigen als überwachte Lernalgorithmen. Unser selbstüberwachter Ler-
nansatz erlaubt es uns, CL Aufgaben effizient zu lernen, selbst wenn die Train-
ingsdatenmenge spärrlich ist oder die Daten mit starken distributionellen Dif-
ferenzen einher gehen, z.B. weil die Daten von zwei nicht verwandten Sprachen
stammen. Im Generellen haben wir unüberwachtes Lernen als Hilfsaufgabe
angewandt um eine überwachte Hauptaufgabe zu erlernen. Konkret haben
wir uns auf Satzpaarextraktion als Hilfsaufgabe für Sequenz-zu-Sequenz Haup-
taufgaben (z.B. maschinelle Übersetzung und Stilübertragung) konzentriert
sowohl als auch Sprachmodelierung, Clustern, Teilraumlernen und Wissensin-
tegration zum erlernen von Klassifikationsaufgaben (z.B. Hassredenidentifika-
tion und Sentimentanalyse).

Für Sequenz-zu-Sequenz Aufgaben zeigen wir, dass selbstüberwachte
maschinelle Übersetzung (MÜ) im Vergleich zur unüberwachten MÜ wet-
tbewerbsfähige Ergebnisse auf resourcenreichen Sprachpaaren erreicht und
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währenddessen weniger Daten zum Lernen benötigt. Wenn selbstüberwachte
MÜ mit Augmentationstechniken, inspiriert durch unüberwachte MÜ, kom-
biniert wird, wird auch das Lernen von resourcenarmen (ähnlichen, entfernt
verwandten und nicht verwandten) Sprachpaaren möglich. Außerdem zeigen
wir, wie unser selbsüberwachter Lernansatz es ermöglicht Stilübertragung
ohne parallele Daten zu erlernen und dabei stylistische Umformulierungen von
höchster Qualität auf allen geprüften Aufgaben zu erlangen.

Für Sequenz-zu-Label Aufgaben unterstreichen wir den Vorteil, welchen hil-
fsaufgabenseitige Augmentierung über hauptaufgabenseitige Augmentierung
hat. Eine Hilfsaufgabe welche sich als besonders hilfreich für die Qualität der
Hauptaufgabe herausstellte ist das Teilraumlernen, welches zu beeindruck-
enden Leistungssteigerungen für (sprachübergreifende) zero-shot Klassifika-
tion ähnlicher und entfernter Zielaufgaben (auch für ähnliche, entfernt ver-
wandte und nicht verwandte Sprachen) führt.
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1 Introduction

Natural language processing (NLP) algorithms are nowadays able to
model a wide array of use-cases related to human language. Underlying most
NLP tasks is the input sequence, i.e., (human-generated) text. Depending
on the task at hand, an input sequence is converted into an output sequence
(sequence-to-sequence) or is assigned a label (sequence-to-label).

Typical examples of sequence-to-sequence (seq2seq) tasks are machine
translation (MT) and style transfer (ST). In MT, the text of a source language
is translated into a target language. Until recently, learning MT required par-
allel data (Tan et al., 2020), i.e., corpora, where each source sequence is aligned
together with its corresponding target sequence. While MT is a cross-lingual
task, ST is mostly learned monolingually. Concretely, the goal of ST is to
modify the stylistic attributes of a text while maintaining its original mean-
ing. In its essence, ST can be considered a type of MT, where the source and
target languages are dialects, sociolects, idiolects or other variants of the same
general language. Analogous to MT, learning ST usually requires parallel data
(Xu et al., 2012; Jhamtani et al., 2017).

Next to regression, text classification is a very common sequence-to-label
task, where an input sequence is assigned a class based on previously defined
class definitions. Similar to the amount of possible language/style combina-
tions in MT or ST, class definitions used in classification tasks are innumerable.
This means that for most NLP tasks, high-quality labeled (e.g., parallel) data
is scarce or simply not available (Haddow et al., 2021). Overcoming this con-
straint by making unlabeled and non-parallel data sources exploitable for NLP
models is crucial for broadening their applicability to a much larger number
of use cases.

For seq2seq tasks, unsupervised MT (UMT) (Lample et al., 2018b; Ren
et al., 2019; Artetxe et al., 2019) focuses on exploiting large amounts of un-
aligned data, which are used to generate synthetic bitext training data via
various augmentation techniques such as back-translation or denoising. How-
ever, unsupervised MT comes with several limitations (Kim et al., 2020). It
does not exploit alignable sentences in unaligned data and thus relies on very
large data sizes (≥ 106 sentences) for both source and target sides, which makes
it ineffective for low-resource data settings, which constitutes most language
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1 Introduction

combinations in MT. Further, domain mismatch on the source and target sides
leads to decayed results in UMT, which is a big drawback for seq2seq tasks
such as ST, which are based on modeling domain differences.

In this dissertation, we propose and explore an effective method to train
seq2seq models without a priori parallel corpora. Our premise is that seq2seq
systems —either models with RNNs, transformers, or any architecture based
on encoder-decoder models— already learn strong enough representations of
words and sentences to judge online if an input sentence pair is useful or
not. Our approach resembles self-supervised learning (Raina et al., 2007;
Bengio et al., 2013), i.e. learning a primary task where labelled data is not
directly available but where the data itself provides a supervision signal for
another auxiliary task which lets the network learn the primary one. In our
case this comes with a twist: we find cross-lingually close sentences as an aux-
iliary task for learning MT and learning MT as an auxiliary task for finding
cross-lingually close sentences in a mutually self-supervised loop: in effect a
doubly virtuous circle.

Our approach is also related to unsupervised MT but differs in important
aspects: It is able to exploit highly informative alignable pairs in unaligned
data, which makes it more data-efficient and enables the learning of lower-
resourced seq2seq tasks.

Apart from developing and analyzing the effect of self-supervision for seq2seq
tasks, we also explore various auxiliary tasks for self-supervised classification.
These auxiliary tasks include language modeling, clustering, subspace learn-
ing and knowledge integration. Using self-supervision, we are able to learn
low- and zero-resource classification effectively, especially when working with
subspace learning as our auxiliary task.

1.1 Structure and Contributions

This dissertation covers various aspects of self-supervision in natural language
processing. It is therefore not always to be read completely linearly, as chap-
ters have different dependencies to each other. In Figure 1.1, we show the
dependencies that exist between the different chapters, with chapters higher
in the hierarchy being prerequisites to their children.

Further, the main contributions of this dissertation are:

• Further development of a self-supervised technique∗ to make un-
aligned data exploitable for a large variety of seq2seq tasks (Chapter
3).
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1.1 Structure and Contributions
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Figure 1.1: Dependencies between the chapters of this dissertation.

• Discussion of different sentence pair extraction methods for self-
supervised MT, identifying a dual-representation approach in combina-
tion with margin-based scoring to be the best choice for all subsequent
self-supervised seq2seq experiments∗ (Section 4.2).

• Evaluation of high-∗ and low-resource self-supervised MT translation
performance, which at the time of development reached state-of-the-art
(SOTA) translation performance on several (English-{French, Ger-
man, Spanish}) language combinations in comparison to unsupervised
MT (Section 4.3).

• Evaluation of self-supervised MT extraction performance, finding
that both precision and recall reach high levels (95 ∼ 99) throughout
the course of training∗ (Section 4.4).

• Identification and analysis of the self-induced curriculum learn-
ing behavior within self-supervised MT extractions, showing that self-
supervised MT extracts sentence pairs of growing similarity and com-

∗ These parts of the dissertation are (partially) based on my work presented in (Ruiter
et al., 2019a), which emerged from my 2019 master thesis Online Parallel Data Extrac-
tion with Neural Machine Translation (www.clubs-project.eu/assets/publications/
other/MSc_Thesis_Ruiter.pdf).
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1 Introduction

plexity while reducing noisy samples. We also show the importance of
homographs at the beginning of training (Section 4.5).

• Combining self-supervised MT methods with unsupervised MT data
augmentation techniques to significantly improve the translation qual-
ity of low-resource (related and unrelated) language pairs (English-
{Afrikaans, Burmese, Kannada, Nepali, Swahili, Yorùbá } (Section 4.6).

• Exploring self-supervised seq2seq in combination with unsupervised data
augmentation on two established (formality transfer, polarity manipu-
lation) and one novel (civil rephrasing) style transfer task. Showing
in our automatic and human evaluation that our method significantly
outperforms other supervised and unsupervised style transfer models on
averaged performance and style transfer success rate. As part of our
error analysis. we also identify current flaws in the data distribution of
the novel civil rephrasing task (Section 5).

• Exploration of various auxiliary tasks (language modeling, clustering,
subspsace learning, knowledge integration) in self-supervised classifica-
tion (Sections 6.1–6.4).

• Application of primary and auxiliary task augmentation techniques
to hate speech classification, showing that auxiliary task augmentation
is more practicable (i.e. fewer prerequisites must be fulfilled to have
a beneficial effect) for complex (multi-label) tasks than primary task
augmentation (Section 6.1).

• Identification of unsupervised (K-Means) clustering and single emoji
prediction to be best-practice auxiliary tasks in combination with
sentiment-related primary classification tasks (Section 6.2).

• Development of subspace learning as an auxiliary task for profanity-
related primary classification tasks, showing that subspace-based rep-
resentations significantly improve (cross-lingual) zero-shot classification
performance on both similar and distant target tasks in comparison to
standard (multilingual) language model representations (Section 6.3).

• Development of a completely data-driven approach to knowledge
graph construction, resulting in an easily extendible knowledge graph
of cultural knowledge and stereotypes. We use knowledge integration
to apply the resulting knowledge graph to a primary classification task,
i.e., hate speech detection, showing that knowledge integration can have
beneficial effects on the classification performance of knowledge-crucial
samples (Section 6.4).

4



1.2 Publications

1.2 Publications

The following publications are the base of this dissertation and my Ph.D. stud-
ies. For each one of them, (co-)authors, conference and abstract are reported
together with my contributions. If the paper is included in the dissertation, the
derived sections of the dissertation are also listed. The * character stands for
equal contribution. The publications are listed in chronological order and di-
vided into two sections based on whether they are included (main publications)
in the dissertation or not (side publications). Side publications are usually pa-
pers that are only related to my field of expertise, e.g., hate speech research
or machine translation, but do not use self-supervision and are thus excluded
from the dissertation. These are usually in collaboration with students I have
supervised or other Ph.D. students with whom I have collaborated. Main pub-
lications, on the other hand, are usually research endeavors in which I have
been strongly involved and which make up the cornerstones of my research in
self-supervision for natural language processing.

1.2.1 Main Publications

Self-Supervised Machine Translation (Ruiter et al., 2019a) 1 Dana
Ruiter, Cristina España-Bonet and Josef van Genabith. Annual Meeting
of the Association for Computational Linguistics (ACL) 2019 (Short Paper).
Abstract: We present a simple new method where an emergent NMT sys-
tem is used for simultaneously selecting training data and learning internal
NMT representations. This is done in a self-supervised way without parallel
data, in such a way that both tasks enhance each other during training. The
method is language-independent, introduces no additional hyper-parameters,
and achieves BLEU scores of 29.21 (en2fr) and 27.36 (fr2en) on newstest2014
using English and French Wikipedia data for training. Contribution: I im-
plemented the whole framework and developed the intersection-based filtering
that uses two types of representations, as well as identified the margin-based
scoring function to be fitting to our approach. I ran all experiments and did
the analytical work. Sections: 3, 4.1, 4.2.

LSV-UdS at HASOC 2019: The Problem of Defining Hate (Ruiter et al.,
2019b) Dana Ruiter, Md. Ataur Rahman and Dietrich Klakow. Forum

1This publication is based on my master thesis work supervised by the co-authors of
this publication, under the title Online Parallel Data Extraction with Neural Ma-
chine Translation (https://www.clubs-project.eu/assets/publications/other/MSc_
Thesis_Ruiter.pdf). This publication is included in this list of main publications since
it makes up the foundation of my research in self-supervised learning.
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1 Introduction

for Information Retrieval Evaluation 2019 (System Description Paper). Ab-
stract: We describe our English, German and Hindi SVM and BERT-based
hate speech classifiers, which include the top-performing model for the Ger-
man sub-task B. A special focus is laid on the exploration of various external
corpora, the lack of mutual compatibility and the conclusions that arise from
this. Contribution: I developed our model training and submission strat-
egy, trained all BERT-based classifiers and wrote the paper to a large extent.
Sections: 6.1.

Self-Induced Curriculum Learning in Self-Supervised Neural Machine
Translation (Ruiter et al., 2020) Dana Ruiter, Josef van Genabith and
Cristina España-Bonet. Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP) 2020 (Long Paper). Abstract: Self-supervised
neural machine translation (SSNMT) jointly learns to identify and select suit-
able training data from comparable (rather than parallel) corpora and to trans-
late, in a way that the two tasks support each other in a virtuous circle. In this
study, we provide an in-depth analysis of the sampling choices the SSNMT
model makes during training. We show how, without it having been told to do
so, the model self-selects samples of increasing (i) complexity and (ii) task rele-
vance in combination with (iii) performing a denoising curriculum. We observe
that the dynamics of the mutual-supervision signals of both system-internal
representation types are vital for the extraction and translation performance.
We show that in terms of the Gunning-Fog Readability index, SSNMT starts
extracting and learning from Wikipedia data suitable for high school students
and quickly moves towards content suitable for first-year undergraduate stu-
dents. Contribution: I was involved in the experimental design, ran all
experiments and did the plotting and analytical work. Sections: 4.1, 4.3,
4.4, 4.5.

HUMAN: Hierarchical Universal Modular ANnotator (Wolf et al., 2020a)
Moritz Wolf*, Dana Ruiter*, Ashwin Geet d’Sa, Liane Reiners, Jan Alexan-
dersson and Dietrich Klakow. EMNLP 2020 (Demo Paper). Abstract: A
lot of real-world phenomena are complex and cannot be captured by single
task annotations. This causes a need for subsequent annotations, with inter-
dependent questions and answers describing the nature of the subject at hand.
Even in the case that a phenomenon is easily captured by a single task, the
high specialization of most annotation tools can result in having to switch to
another tool if the task only slightly changes. We introduce HUMAN, a novel
web-based annotation tool that addresses the above problems by a) covering a
variety of annotation tasks on both textual and image data, and b) the usage
of an internal deterministic state machine, allowing the researcher to chain dif-
ferent annotation tasks in an interdependent manner. Further, the modular
nature of the tool makes it easy to define new annotation tasks and integrate
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machine learning algorithms e.g., for active learning. HUMAN comes with
an easy-to-use graphical user interface that simplifies the annotation task and
management. Contributions: I had the original idea of a versatile annota-
tion tool that relies on an underlying state machine. I managed Moritz and
Ashwin in the implementation of the back- and front-end respectively. I was
responsible for programming the annotation protocol parser and other, mostly
back-end, functions. I wrote the paper in collaboration with Moritz and Liane.
Sections: 6.1.3 (not in detail).

Modeling Profanity and Hate Speech in Social Media with Semantic Sub-
spaces (Hahn et al., 2021) Vanessa Hahn, Dana Ruiter, Thomas Klein-
bauer and Dietrich Klakow. Workshop on Online Abuse and Harms (WOAH)
2021 (Long Paper). Abstract: Hate speech and profanity detection suffer
from data sparsity, especially for languages other than English, due to the
subjective nature of the tasks and the resulting annotation incompatibility of
existing corpora. In this study, we identify profane subspaces in word and sen-
tence representations and explore their generalization capability on a variety
of similar and distant target tasks in a zero-shot setting. This is done mono-
lingually (German) and cross-lingually to closely-related (English), distantly-
related (French) and non-related (Arabic) tasks. We observe that, on both
similar and distant target tasks and across all languages, the subspace-based
representations transfer more effectively than standard BERT representations
in the zero-shot setting, with improvements between F1 +10.9 and F1 +42.9
over the baselines across all tested monolingual and cross-lingual scenarios.
Contribution: Research direction and experimental design was my idea. I
supervised Vanessa through the process of running experiments and wrote the
paper. Sections: 6.4.

Integrating Unsupervised Data Generation into Self-Supervised Neural Ma-
chine Translation for Low-Resource Languages (Ruiter et al., 2021) Dana
Ruiter, Dietrich Klakow, Josef van Genabith, and Cristina España-Bonet.
MT-Summit (Research Track). Abstract: For most language combinations
and parallel data is either scarce or simply unavailable. To address this and un-
supervised machine translation (UMT) exploits large amounts of monolingual
data by using synthetic data generation techniques such as back-translation
and noising and while self-supervised NMT (SSNMT) identifies parallel sen-
tences in smaller comparable data and trains on them. To this date and the
inclusion of UMT data generation techniques in SSNMT has not been inves-
tigated. We show that including UMT techniques into SSNMT significantly
outperforms SSNMT (up to +4.3 BLEU and af2en) as well as statistical (+50.8
BLEU) and hybrid UMT (+51.5 BLEU) baselines on related and distantly-
related and unrelated language pairs. Contribution: I implemented the
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back-translation framework, ran all experiments, did the analytical work and
wrote most parts of the paper. Sections: 3.3, 4.1, 4.3.2, 4.6.

The Effect of Domain and Diacritics in Yoruba–English Neural Machine
Translation (Adelani et al., 2021) David Adelani, Dana Ruiter, Jesujoba
Alabi, Damilola Adebonojo, Adesina Ayeni, Mofe Adeyemi, Ayodele Esther
Awokoya and Cristina España-Bonet. MT-Summit (Research Track). Ab-
stract: Massively multilingual machine translation (MT) has shown impres-
sive capabilities and including zero and few-shot translation between low-
resource language pairs. However and these models are often evaluated on
high-resource languages with the assumption that they generalize to low-
resource ones. The difficulty of evaluating MT models on low-resource pairs
is often due to lack of standardized evaluation datasets. In this paper and we
present MENYO-20k and the first multi-domain parallel corpus with a spe-
cially curated orthography for Yoruba–English with standardized train-test
splits for benchmarking. We provide several neural MT benchmarks and com-
pare them to the performance of popular pretrained (massively multilingual)
MT models both for the heterogeneous test set and its subdomains. Since
these pretrained models use huge amounts of data with uncertain quality and
we also analyze the effect of diacritics and a major characteristic of Yoruba
and in the training data. We investigate how and when this training condition
affects the final quality of a translation and its understandability. Our models
outperform massively multilingual models such as Google (+8.7 BLEU) and
Facebook M2M (+9.1) when translating to Yoruba and setting a high-quality
benchmark for future research. Contribution: Helping in experimental de-
sign. Training and benchmarking Yorùbá diacritization system. Assisting in
writing paper. Sections: 4.1.1 (not in detail).

Emoji-Based Transfer Learning for Sentiment Tasks (Boy et al., 2021) Su-
sann Boy, Dana Ruiter and Dietrich Klakow. Student Research Workshop at
the Conference of the European Chapter of the Association for Computational
Linguistics (EACL) 2021 (Research Paper). Abstract: Sentiment tasks such
as hate speech detection and sentiment analysis, especially when performed on
languages other than English, are often low-resource. In this study, we exploit
the emotional information encoded in emojis to enhance the performance on
a variety of sentiment tasks. This is done using a transfer learning approach,
where the parameters learned by an emoji-based source task are transferred
to a sentiment target task. We analyze the efficacy of the transfer under three
conditions, i.e. i) the emoji content and ii) label distribution of the target task
as well as iii) the difference between monolingually and multilingually learned
source tasks. We find i.a. that the transfer is most beneficial if the target task
is balanced with high emoji content. Monolingually learned source tasks have
the benefit of taking into account the culturally specific use of emojis and gain
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up to F1 +0.280 over the baseline. Contribution: Research direction and
experimental design was my idea. I supervised Susann through the process of
running experiments and wrote the paper. Sections: 6.2.

Placing M-Phasis on the Plurality of Hate: A Feature-Based Corpus of
Hate Online (Ruiter et al., 2022b) Dana Ruiter*, Liane Reiners*, Ash-
win Geet D’Sa, Thomas Kleinbauer, Dominique Fohr, Irina Illina, Dietrich
Klakow, Christian Schemer and Angeliki Monnier. The International Con-
ference on Language Resources and Evaluation (LREC) 2022 (Long Paper).
Abstract: Even though hate speech (HS) online has been an important ob-
ject of research in the last decade, most HS-related corpora over-simplify the
phenomenon of hate by attempting to label user comments as hate or neutral.
This ignores the complex and subjective nature of HS, which limits the real-life
applicability of classifiers trained on these corpora. In this study, we present
the M-Phasis corpus, a corpus of ∼ 9k German and French user comments col-
lected from migration-related news articles. It goes beyond the hate-neutral
dichotomy and is instead annotated with 23 features, which in combination
become descriptors of various types of speech, ranging from critical comments
to implicit and explicit expressions of hate. The annotations are performed
by 4 native speakers per language and achieve high (0.77 ≤ κ ≤ 1) inter-
annotator agreements. Besides describing the corpus creation and presenting
insights from a content, error and domain analysis, we explore its data char-
acteristics by training several classification baselines. Contribution: I was
part of the annotation protocol development by participating in discussions as
well as inter-annotator agreement evaluations throughout the project. I did
the data cleaning and formatting. I ran all experiments and analyses in the
paper. The paper was to a large extent written by me. Sections: 6.1.3.

Exploiting Social Media Content for Self-Supervised Style Transfer (Ruiter
et al., 2022a) Dana Ruiter, Thomas Kleinbauer, Cristina España-Bonet,
Josef van Genabith and Dietrich Klakow. Workshop on Natural Language Pro-
cessing for Social Media (SocialNLP) 2022 (Long Paper). Abstract: Recent
research on style transfer takes inspiration from unsupervised neural machine
translation (UNMT), learning from large amounts of non-parallel data by ex-
ploiting cycle consistency loss, back-translation, and denoising autoencoders.
By contrast, the use of self-supervised NMT (SSNMT), which leverages (near)
parallel instances hidden in non-parallel data more efficiently than UNMT, has
not yet been explored for style transfer. In this paper, we present a novel Self-
Supervised Style Transfer (3ST) model, which augments SSNMT with UNMT
methods in order to identify and efficiently exploit supervisory signals in non-
parallel social media posts. We compare 3ST with state-of-the-art (SOTA)
style transfer models across civil rephrasing, formality and polarity tasks. We
show that 3ST is able to balance the three major objectives (fluency, con-
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tent preservation, attribute transfer accuracy) the best, outperforming SOTA
models on averaged performance across their tested tasks in automatic and
human evaluation. Contribution: I developed the experimental design, did
all data preparation, ran all experiments and did the analytical work. The
paper was to a large extent written by me. Sections: 5.

StereoKG: Data-Driven Knowledge Graph Construction for Cultural Knowl-
edge and Stereotypes (Deshpande et al., 2022) Awantee Deshpande,
Dana Ruiter, Marius Mosbach and Dietrich Klakow. WOAH 2022 (Long
Paper). Abstract: Analyzing ethnic or religious bias is important for improv-
ing fairness, accountability, and transparency of natural language processing
models. However, many techniques rely on human-compiled lists of bias terms,
which are expensive to create and are limited in coverage. In this study, we
present a fully data-driven pipeline for generating a knowledge graph (KG)
of cultural knowledge and stereotypes. Our resulting KG covers 5 religious
groups and 5 nationalities and can easily be extended to more entities. Our
human evaluation shows that the majority (59.2%) of non-singleton entries are
coherent and complete stereotypes. We further show that performing interme-
diate masked language model training on the verbalized KG leads to a higher
level of cultural awareness in the model and has the potential to increase clas-
sification performance on knowledge-crucial samples on a related task, i.e.,
hate speech detection. Contribution: I came up with the original idea and
guided Awantee through the implementation process. The human evaluation,
analysis and knowledge integration experiment based on stereotype subsets
was either guided or designed by me and implemented by Awantee. Awantee
designed the knowledge graph creation pipeline. Marius also guided the design
of the knowledge integration experiments. The paper was to a large extent
written by me. Sections: 6.4.

1.2.2 Side Publications

UdS-DFKI@WMT20: Unsupervised MT and Very Low Resource Super-
vised MT for German-Upper Sorbian (Dutta et al., 2020) Sourav Dutta,
Jesujoba Alabi, Saptarashmi Bandyopadhyay, Dana Ruiter and Josef van
Genabith. Conference on Machine Translation (WMT) 2020 (System Descrip-
tion Paper). Abstract: This paper describes the UdS-DFKI submission to the
shared task for unsupervised machine translation (MT) and very low-resource
supervised MT between German (de) and Upper Sorbian (hsb) at the Fifth
Conference of Machine Translation (WMT20). We submit systems for both
the supervised and unsupervised tracks. Apart from various experimental ap-
proaches like bitext mining, model pretraining, and iterative back-translation,
we employ a factored machine translation approach on a small BPE vocab-
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ulary. Contribution: I was responsible for developing the model training
strategy for our submission and delegating tasks to the respective students. I
guided the students in writing the paper and gave feedback.

Label Propagation-Based Semi-Supervised Learning for Hate Speech Clas-
sification (D’Sa et al., 2020) Ashwin Geet d’Sa, Irina Illina, Dominique
Fohr, Dietrich Klakow and Dana Ruiter. Insights from Negative Results
Workshop 2020 (Short Paper). Abstract: Research on hate speech classifi-
cation has received increased attention. In real-life scenarios, a small amount
of labeled hate speech data is available to train a reliable classifier. Semi-
supervised learning takes advantage of a small amount of labeled data and a
large amount of unlabeled data. In this paper, label propagation-based semi-
supervised learning is explored for the task of hate speech classification. The
quality of labeling the unlabeled set depends on the input representations.
In this work, we show that pretrained representations are label agnostic, and
when used with label propagation yield poor results. Neural network-based
finetuning can be adopted to learn task-specific representations using a small
amount of labeled data. We show that fully finetuned representations may
not always be the best representations for the label propagation and interme-
diate representations may perform better in a semi-supervised setup. Con-
tribution: Guiding Ashwin’s work during biweekly meetings together with
Dietrich. Giving feedback on the paper.

Exploring Conditional Language Model-Based Data Augmentation Ap-
proaches for Hate Speech Classification (D’Sa et al., 2021) Ashwin Geet
d’Sa, Irina Illina, Dominique Fohr, Dietrich Klakow and Dana Ruiter. In-
ternational Conference on Text, Speech, and Dialogue 2021 (Short Paper).
Abstract: Deep Neural Network (DNN) based classifiers have gained in-
creased attention in hate speech classification. However, the performance of
DNN classifiers increases with the quantity of available training data and in
reality, hate speech datasets consist of only a small amount of labeled data.
To counter this, Data Augmentation (DA) techniques are often used to in-
crease the number of labeled samples and therefore, improve the classifier’s
performance. In this article, we explore augmentation of training samples
using a conditional language model. Our approach uses a single class con-
ditioned Generative Pre-Trained Transformer-2 (GPT-2) language model for
DA, avoiding the need for multiple class-specific GPT-2 models. We study
the effect of increasing the quantity of the augmented data and show that
adding a few hundred samples significantly improves the classifier’s perfor-
mance. Furthermore, we evaluate the effect of filtering the generated data
used for DA. Our approach demonstrates up to 7.3% and up to 25.0% of
relative improvements in macro-averaged F1 on two widely used hate speech
corpora. Contribution: Guiding Ashwin’s work during biweekly meetings
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together with Dietrich, suggesting additional analysis for the ablation. Giving
feedback on the paper.

EdinSaar@WMT21: North-Germanic Low-Resource Multilingual NMT
(Tchistiakova et al., 2021) Svetlana Tchistiakova, Jesujoba Alabi, Koel
Dutta Chowdhury, Sourav Dutta and Dana Ruiter. WMT 2021 (System
Description Paper). Abstract: We describe the EdinSaar submission to the
shared task of Multilingual Low-Resource Translation for North Germanic
Languages at the Sixth Conference on Machine Translation (WMT2021). We
submit multilingual translation models for translations to/from Icelandic (is),
Norwegian-Bokmal (nb), and Swedish (sv). We employ various experimental
approaches, including multilingual pretraining, back-translation, finetuning,
and ensembling. In most translation directions, our models outperform other
submitted systems. Contribution: I was guiding the model training strategy
proposed by students and delegating tasks to the respective students. I gave
feedback on the paper written by the students.

A Few Thousand Translations Go a Long Way! Leveraging Pretrained
Models for African News Translation (Adelani et al., 2022) David Ifeoluwa
Adelani, Jesujoba Oluwadara Alabi, Angela Fan, Julia Kreutzer, Xiaoyu Shen,
Machel Reid, Dana Ruiter, Dietrich Klakow, and more. Conference of the
North American Chapter of the Association for Computational Linguistics
- Human Language Technologies (NAACL) 2022 (Long Paper). Abstract:
Recent advances in the pretraining for language models leverage large-scale
datasets to create multilingual models. However, low-resource languages are
mostly left out in these datasets. This is primarily because many widely spoken
languages that are not well represented on the web and therefore excluded from
the large-scale crawls for datasets. Furthermore, downstream users of these
models are restricted to the selection of languages originally chosen for pre-
training. This work investigates how to optimally leverage existing pretrained
models to create low-resource translation systems for 16 African languages. We
focus on two questions: 1) How can pretrained models be used for languages
not included in the initial pretraining? and 2) How can the resulting transla-
tion models effectively transfer to new domains? To answer these questions,
we create a novel African news corpus covering 16 languages, of which eight
languages are not part of any existing evaluation dataset. We demonstrate
that the most effective strategy for transferring both additional languages and
additional domains is to leverage small quantities of high-quality translation
data to finetune large pretrained models. Contribution: I suggested the ex-
periment shown in Figure 2 as well as other model runs that completed the
experimental design of the paper. I assisted in paper writing, worked on plots
and gave feedback.
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An Association Analysis of COVID-19-Related Hate Speech (Anegundi
et al., 2022) Aishwarya Anegundi, Dana Ruiter, Angeliki Monnier and
Dietrich Klakow. In Progress. Abstract: The COVID-19 (Cov19) pandemic
has been the object of social media research over the last two years. While
the rise of sinophobic content with the emergence of Cov19 has been widely
studied, most of these studies focus their analysis on data identified using
China-related keywords. In this study, we reverse this approach: focusing on
hateful Cov19-related tweets, we identify linguistic features (vocabulary, hash-
tags) that are strongly associated with Cov19 hate. We show that sinophobic
content makes up the very early stage of the pandemic, while this trend is
quickly taken over by politically-oriented hate. Further, we analyze the trans-
media flow and identify characteristics of users with high levels of authored
hateful content, showing that external content eliciting hate in the masses
tends to be sensationalist and politically diverse. Contribution: I came
up with the original idea and guided Aishwarya through the implementation
process. The paper was written by me.

1.3 Code and Data Repositories

Throughout the course of this dissertation, several code bases and datasets
have been created, which have been made publicly available:

• Self-supervised seq2seq code (Ruiter et al., 2019a, 2020, 2021, 2022a)
(Chapters 3–5) under https://github.com/ruitedk6/comparableNMT.
2

• Style transfer model predictions (Ruiter et al., 2022a) (Chapter 5) under
https://github.com/uds-lsv/3ST.

• M-Phasis corpus data (Ruiter et al., 2022b) (used in Section 6.1.3) under
https://github.com/uds-lsv/mphasis.

• Annotation tool developed to annotate M-Phasis corpus (Wolf et al.,
2020b) under https://github.com/uds-lsv/human.

• Code for clustering (Boy et al., 2021) (Chapters 6.2.2.3) under https:
//github.com/uds-lsv/emoji-transfer.

• Code for subspace learning (Hahn et al., 2021) (Chapters 6.3) under
https://github.com/uds-lsv/profane_subspaces.

2The foundation of this code base was developed during the course of my master thesis
work and was first cited in Ruiter et al. (2019a). It has been continuously developed on
during the course of this PhD.
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• Code for knowledge graph creation, resulting knowledge graph and
trained knowledge integration models (Deshpande et al., 2022) (Chap-
ters 6.4) under https://github.com/uds-lsv/StereoKG.
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2 Related Work

This chapter1 provides a brief discussion of previous work relevant to the topics
of self-supervised learning (Section 2.1), sequence-to-sequence and sequence-to-
label tasks (Sections 2.2 and 2.3 respectively).

2.1 Self-Supervised Learning

2.1.1 Types of Learning

Machine learning (ML) algorithms typically learn to map an input space X
into an output space Y. There are two major types of learning to achieve this
mapping: supervised and unsupervised learning.

In supervised learning, our training data Dt = (xi, yi)
N
i=1 is composed of N

paired inputs xi ∈ X and outputs yi ∈ Y, and the goal is to select the function
f : X −→ Y from a set of possible functions F = {f |f : X −→ Y}. Supervised
learning is then defined as Dt −→ F . Typical examples of supervised learning
include classification (Y is discrete and finite) and regression (Y = R). While
supervised learning approaches can lead to great performance in many tasks,
they rely on human annotations, which are time and money consuming.

In unsupervised learning, only N input points (xi)
N
i=1 are available. The

learning objective differs across tasks. Typical examples of unsupervised lean-
ing are clustering, where input points (xi)

N
i=1 are grouped into k clusters of

similar points, or dimensionality reduction, where a mapping {f : X −→ Rm}
is learned, where m is smaller than the dimensionality of X .

Further, semi-supervised learning is a combination of both, where we are
given a set of labeled pairs L = (xi, yi)

N
i=1 and a set of unlabeled input points

1This chapter is based on my study of related work presented in all of my main publications
cited under Section 1.2. Concretely, the related work presented in (Ruiter et al., 2019a,
2020, 2021; Adelani et al., 2021; Ruiter et al., 2022a) is synthesized into Section 2.2, while
(Ruiter et al., 2019b; Wolf et al., 2020a; Hahn et al., 2021; Boy et al., 2021; Ruiter et al.,
2022b; Deshpande et al., 2022) is the foundation for the related work presented in Section
2.3.
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U = (xi)
N
i=1. Similar to supervised learning, the semi-supervised learning

algorithm is then defined as the selection of a function in F given inputs L
and U , namely L× U −→ F .

Self-supervised learning is a special case of mixing unsupervised and su-
pervised learning. Self-supervised learning relies on the interaction between
an (unsupervised) auxiliary task and a (supervised) primary task (Ericsson
et al., 2022). Concretely, given training dataset Dt = (xi)

N
i=1, the auxiliary

task Ta exploits supervisory signals hidden in the unlabeled data and gener-
ates a pseudo-labeled dataset Dt = (xi, zi)

M
i=1. This pseudo-labeled data can

then be used to select function f from F = {f |f : X −→ Z} to learn the
primary task Tp. Often, both tasks interact in a loop, such that the auxil-
iary and primary tasks take turns. Ta enables the learning of Tp through the
provision of labeled data. And as Ta often depends on the changing feature
space of Tp, it is iteratively re-estimated. This makes self-supervised learning
similar to unsupervised learning, as no pre-existing labeled dataset is required
for the learning. However, while typical unsupervised learning algorithms are
based on reconstruction or density estimation, self-supervised learning focuses
on the interaction of the auxiliary and primary tasks.

Alternatively, self-supervised learning can describe a learning scenario similar
to semi-supervised learning, i.e., where some labeled data is available for train-
ing. In this case, the learning of the unsupervised auxiliary task assists the
learning of a supervised primary task for which labeled data is already given.
Here the difference between semi-supervised learning and self-supervised learn-
ing lies within the order of the learning procedure. That is, if a supervisedly
learned model is augmented with unlabeled data, this is a semi-supervised ap-
proach (supervised → unsupervised). However, if a model is initialized using
an unsupervised approach that aids in the learning of the following supervised
primary task (unsupervised → supervised), this can be considered a type of
self-supervision.

2.1.2 Auxiliary Tasks in Self-Supervised Learning

Auxiliary tasks (or pretext tasks) in ML are manifold and can be roughly
categorized into masked prediction, transformation prediction, instance dis-
crimination (e.g., contrastive learning) and clustering as by Ericsson et al.
(2022).

A very common type of auxiliary task in NLP is masked prediction, where
portions of the original input (xi)

N
i=1 are masked to generate (x̂i)

N
i=1 and the

goal is to recover the original input as X̂ −→ X . In NLP, this traditionally
corresponds to specific word embedding algorithms based on distibutional se-
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mantics (Mikolov et al., 2013), where a word is predicted based on its con-
text (continuous bag of words) or vice versa (skip-gram). Another common
masked prediction task in NLP is autoencoding in modern transformer-based
(Vaswani et al., 2017) language models. One very common example is the
masked language modeling objective (e.g., as used in BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), XLM (Lample and Conneau, 2019)),
where the task is to restore tokens that are masked in the input sequence.
However, denoising autoencoding (BART (Lewis et al., 2020)) and causal lan-
guage modeling (XLM, GPT-2 (Radford et al., 2019)) can also be considered
masked prediction auxiliary tasks. Causal language modeling is similar to
masked language modeling, however, in this case, the sequence is generated
sequentially, thus only the left context of the next word to be predicted is
available. In the case of denoising autoencoding, the masking is more subtle
in the sense that the model has to identify itself which tokens need to be re-
placed since the input sequence does not contain dedicated masking tokens.
Instead, random words in the input are swapped with alternative words and
the task is then to restore the original sequence.

Depending on the noising function applied to the input, denoising autoencod-
ing can also fall into a second category of auxiliary task, namely transforma-
tion prediction, where the original sequence is permuted and the task is to
predict the sequence in its original order. In fact, the noising function used to
generate training data for BART uses both word deletion and insertion (i.e.,
masked prediction) as well as sequence permutation (i.e., transformation pre-
diction) thus presenting a hybrid of two types of auxiliary tasks. While BART
uses transformation prediction on the word level, sentence-level permutations
have been used to learn discourse-level representations (Lee et al., 2020).

Contrastive learning is another type of auxiliary task, where the task is to
predict whether two samples from the data stem from the same class or not.
In general, this requires comparing input x with a positive sample x+, which
is essentially some transform of x, as well as a negative (unrelated) sample x−.
In NLP, this has been used to train transformer-based language models by pre-
dicting whether two sentences are similar (positive) vs. dissimilar (negative).
Here, the positive samples are usually two instances that stem from the same
original instance but have been noised, e.g., via dropout (Gao et al., 2021),
token shuffling or removal (Yan et al., 2021). The task is then to identify
these positive samples as being the same while identifying negative samples as
dissimilar. Apart from language modeling, contrastive learning has been used
in NLP for a large variety of applications, including text classification (Choi
et al., 2022) and machine translation (Pan et al., 2021). For text classification
and machine translation alike, a contrastive objective minimizes the distance
between positive samples (e.g., translations), while maximizing the distance
of negative samples (e.g., non-translations).
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Other auxiliary tasks exist which can be learned in an unsupervised fashion
and which benefit the learning of the primary task. This includes, but is
not limited to, clustering and dimensionality reduction. These will be
discussed in more detail in Section 2.3.

2.2 Sequence-to-Sequence Tasks

Sequence-to-sequence tasks take a sequence x as an input, which is then to be
transformed into another sequence y. Machine translation is the most promi-
nent seq2seq transformation, where a sequence of one language is transformed
into a sequence of another language, both of equivalent meaning. Many other
seq2seq tasks exist, including style transfer, text summarization or chatbots.
Our work focuses on both machine translation and style transfer. In the fol-
lowing, we discuss the relevant background and related work.

2.2.1 Machine Translation

Machine translation has undergone major developments since first patents of
mechanical dictionaries came to be in the 1930’s (Hutchins, 2004): from rule-
based machine translation (King and Wieselman, 1956), over word (Brown
et al., 1990) and phrase-based (Koehn et al., 2003) statistical machine trans-
lation to neural machine translation (NMT) (Bahdanau et al., 2014). NMT
models are encoder-decoder architectures, where the encoder transforms the
source sequence into a semantic representation, which is then decoded into the
target sequence by the decoder. Earlier NMT models used vanilla recurrent
neural network (RNN) (Kalchbrenner and Blunsom, 2013), which suffer from
vanishing gradients. To overcome this, later models use long short-term mem-
ory (LSTM) (Sutskever et al., 2014) or gated recurrent unit cells (Cho et al.,
2014) within the RNN-based encoder-decoder architecture. In recent years,
the transformer architecture (Vaswani et al., 2017) has taken the place of RNN-
based encoders and decoders, as its multi-layer self-attention mechanism has
the powerful advantage of modeling both long and short-term dependencies
of a sequence.

Focusing on the sub-topics relevant to this thesis, we will first present the
different types of supervision in MT2 (Section 2.2.1.1), followed by curriculum

2The sub-section on unsupervised and self-supervised NMT are mostly composed of the
related work sections in (Ruiter et al., 2020, 2021).
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leaning in MT3 (Section 2.2.1.2). We end this section by presenting recent
trends in low-resource MT4 (Section 2.2.1.3).

2.2.1.1 Supervision in Machine Translation

Supervised Machine Translation In order to learn machine translation, we
generally require parallel data, i.e., (ideally human-written) translations. The
source and target language sentence pairs are then used as input and out-
put data respectively to train and evaluate the MT model. Supervised NMT
Cho et al. (2014); Bahdanau et al. (2014); Vaswani et al. (2017) nowadays
achieves strong results in translation performance, especially on high-resource
language combinations where massive amounts of parallel data are available
(Barrault et al., 2019). While there have been several claims of achieving
human parity on such high-resource language pairs (Wu et al., 2016; Hassan
et al., 2018), these have not been left uncriticized (Läubli et al., 2018; Graham
et al., 2020). Especially on under-resourced domains and language combina-
tions, the translation performance of supervised NMT is lacking. However,
massive amounts of monolingual, i.e., non-parallel, data is available for many
of the world’s languages and domains, which purely supervised NMT does not
make use of. As opposed to supervised NMT, semi-supervised, unsupervised
and self-supervised NMT add to their pool of available training data by also
considering monolingual data sources.

Semi-Supervised Machine Translation Nowadays, semi-supervised NMT is
a broad term pointing toward any combination of supervised MT with un-
supervised or self-supervised MT. One example is to first train a supervised
NMT system on a (potentially low-resource) language pair to gain decently
cross-lingual internal representations. Once the system is converged, addi-
tional non-parallel data can be exploited by continuing the training using
the self-supervised (or unsupervised) NMT setup (España-Bonet and Ruiter,
2019). Alternatively, many monolingual data augmentation techniques used
in SOTA MT systems can be considered to be semi-supervised. A prominent
example of a data augmentation technique is back-translation (Sennrich et al.,
2016a), where a monolingual source sentence is machine translated to the tar-
get language to generate an artificial target → source training instance. If no
mature NMT system exists to generate the back-translations, back-translation
can also be applied iteratively (Dutta et al., 2020), i.e., the current state of
a bidirectional NMT system is taken to generate back-translations, which are
then used to continue the training of the model on new data. This process
can be iterated until convergence. While these semi-supervised systems with

3This section stems from the related work section in (Ruiter et al., 2020).
4Based on the related work section in (Ruiter et al., 2021).
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back-translation achieve impressive results (Edunov et al., 2018), these still
rely on the existence of an MT model which is already able to perform the
translation task with sufficient quality.

While the above approaches mostly focused on methods where supervised
training is followed by unsupervised or self-supervised techniques, the oppo-
site can also be the case. NMT models can be initialized using denoising
autoencoding (Liu et al., 2020), MLM or causal language modeling (Lam-
ple and Conneau, 2019), which improves the models’ target language fluency
and, when learned multilingually, improves MT initialization by providing a
pre-existing cross-lingual space for the internal representations. This combi-
nation of pretraining in combination with supervised MT training leads to
top results and is the current standard in MT modeling (Akhbardeh et al.,
2021). Further, Adelani et al. (2022) show that training a massively multilin-
gual pretrained model on a few thousand parallel sentences can already lead
to impressive translation results, even when one of the languages in the pair is
not included in the pretraining data and merely related to another language
that was included during pretraining.

While the combination of supervised followed by unsupervised methods can
be considered to be strictly semi-supervised, the opposite direction of (unsu-
pervised) pretraining followed by supervised training can also be considered
as a type of self-supervision. Here, the auxiliary task is language modeling
(pretraining), which enhances the learning of the primary task (MT).

Unsupervised Machine Translation Supervised NMT relies on the availabil-
ity of large amounts of parallel data, and semi-supervised NMT also relies
on enough parallel data to generate a sufficiently cross-lingual space to ini-
tialize its unsupervised component (supervised → unsupervised) or to learn
MT (unsupervised → supervised). To overcome the need for labeled data,
unsupervised neural machine translation (Lample et al., 2018a; Artetxe et al.,
2018b; Yang et al., 2018) focuses on the exploitation of very large amounts of
monolingual sentences by combining denoising autoencoders with bidirectional
back-translation and multilingual encoders. This can be done multilingually
across several languages by using language-specific decoders (Sen et al., 2019),
or by using additional parallel data for a related pivot language pair (Li et al.,
2020). Further combining these with phrase tables from statistical machine
translation leads to impressive results (Lample et al., 2018b; Artetxe et al.,
2018a; Ren et al., 2019; Artetxe et al., 2019). UMT can be combined with
large multilingual pretrained language models (LMs) (Lample and Conneau,
2019; Song et al., 2019; Liu et al., 2020), which further improves the transla-
tion quality, also on lower-resourced languages due to the cross-lingual transfer
between language directions. Brown et al. (2020) train a very large LM on
billions of monolingual sentences which allows them to perform NMT in a
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few-shot setting. However, unsupervised systems fail to learn when trained
on small amounts of monolingual data (Guzmán et al., 2019; Marchisio et al.,
2020), when there is a domain mismatch between the two datasets (Kim et al.,
2020) or when the languages in a pair are distant (Koneru et al., 2021).

Self-Supervised Machine Translation Self-supervised learning is defined as
being composed of an auxiliary task that enables or aids a model to learn a
primary task. The primary task being MT, there are two major auxiliary tasks
that aid and enable MT learning: language modeling and parallel sentence
extraction.

As mentioned above, semi-supervised learning, where language modeling is
used to initialize a supervised or unsupervised MT system can be considered
as a type of self-supervision in MT. Here, the auxiliary task is language mod-
eling. However, the combination of pretraining with unsupervised MT still
requires large amounts of monolingual data to be available to achieve a decent
translation performance. This is not given for most low-resource language
combinations, which may have (close to) no parallel data available and only
limited amounts of (potentially noisy) monolingual data.

Focusing on an alternative auxiliary task, namely online parallel sentence
extraction, we are able to train MT on smaller amounts of comparable data.
Concretely, this approach allows us to exploit highly informative parallel sam-
ples hidden in non-parallel corpora which are not used to their full potential
in unsupervised MT. This is one of the major contributions of this dissertation
(and my master thesis work, which laid the foundation for this dissertation)
and will be presented and discussed in detail in Chapters 3 and 4. Our par-
allel sentence extraction approach exploits the similarities estimated from the
NMT representations directly. The strength of NMT embeddings as semantic
representations was first shown qualitatively in Sutskever et al. (2014); Ha
et al. (2016) and Johnson et al. (2017). In a systematic study, España-Bonet
et al. (2017) show that cosine similarities between context vectors discriminate
between parallel and non-parallel sentences already in the first stages of train-
ing. While we use the sum over the encoder outputs, other approaches per-
form max-pooling over encoder outputs (Schwenk, 2018; Artetxe and Schwenk,
2019a) or calculate the mean of word embeddings (Bouamor and Sajjad, 2018)
to extract pairs. Overall, sentence representations obtained from NMT sys-
tems or tailored architectures are achieving SOTA results in parallel sentence
extraction and filtering (Grégoire and Langlais, 2018; Artetxe and Schwenk,
2019a; Hangya and Fraser, 2019; Chaudhary et al., 2019). Using a highly mul-
tilingual sentence encoder, Schwenk et al. (2021) scored Wikipedia sentence
pairs across various language combinations, which has become an important
baseline for parallel sentence extraction research. Note that parallel data ex-
traction in itself does not pose a self-supervised approach. Only when combin-
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ing parallel data extraction as an auxiliary task to achieve a primary task (e.g.,
MT) it becomes part of a self-supervised system. Similar to our work, Tran
et al. (2020) perform data extraction and MT in a loop. However, they only
perform extraction once per training iteration over the whole dataset, while
our approach focuses on batch-wise extraction. In this work, self-supervised
NMT (SSNMT) is used as a synonym for this batch-wise parallel data extrac-
tion and MT training framework.

2.2.1.2 Curriculum Learning in Machine Translation

Self-supervised NMT selects its own parallel training data from non-parallel
sources. This data selection in SSNMT is directly related to curriculum
learning, i.e., the idea of presenting training samples in a meaningful order
to benefit learning, e.g. in the form of faster convergence or improved perfor-
mance (Bengio et al., 2009). Inspired by human learners, Elman (1993) argues
that a neural network’s optimization can be accelerated by providing samples
in order of increasing complexity. While sample difficulty is an intuitive
measure on which to base a learning schedule, some curricula focus on other
metrics such as task-relevance or noise.

To date, curriculum learning in NMT has had a strong focus on the
relevance of training samples to a given translation task, e.g. in domain adap-
tation. For example, van der Wees et al. (2017) train on increasingly relevant
samples while gradually excluding irrelevant ones. They observed an increase
in BLEU over a static NMT baseline and a significant speed-up in training
as the data size is incrementally reduced. Zhang et al. (2019) adapt an NMT
model to a domain by introducing increasingly domain-distant (difficult) sam-
ples. This seemingly contradictory behavior of benefiting from both increas-
ingly difficult (domain-distant) and easy (domain-relevant) samples has been
analyzed by Weinshall et al. (2018), showing that the initial phases of training
benefit from easy samples with respect to a hypothetical competent model
(target hypothesis), while also being boosted (Freund and Schapire, 1996) by
samples that are difficult with respect to the current state of the model (Haco-
hen and Weinshall, 2019). In Wang et al. (2019), both domain-relevance and
denoising are combined into a single curriculum.

The denoising curriculum for NMT proposed by Wang et al. (2018) is related
to our approach in that they also use online data selection to build the cur-
riculum based on the current state of the model. However, the noise scores
for the dataset at each training step depend on finetuning the model on a
small selection of clean data, which comes with a high computational cost.
To alleviate this cost, Kumar et al. (2019) use reinforcement learning on the
pre-scored noisy corpus to jointly learn the denoising curriculum with NMT.
In Section 4.5 we show that our model exploits its self-supervised nature to
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perform denoising by selecting parallel pairs with increasing accuracy, without
the need for additional noise metrics.

Difficulty-based curricula for NMT that take into account sentence length
and vocabulary frequency have been shown to improve translation quality
when samples are presented in increasing complexity (Kocmi and Bojar, 2017).
Platanios et al. (2019) link the introduction of difficult samples with the NMT
models’ competence. Other difficulty-orderings have been explored extensively
in Zhang et al. (2018), showing that they, too, can speed-up training without
a loss in translation performance.

2.2.1.3 Low-Resource Machine Translation

While MT already achieves impressive translation performance on high-
resource languages, the quality of MT on low-resource language combina-
tions is still very limited. This is especially grave given the fact that the
vast majority of language combinations suffer from data sparsity. In recent
years, low-resource MT has been the subject of increased interest in both
MT research (Haddow et al., 2021) as well as native speaker communities ∀
et al. (2020). In order to make MT available for a broader range of linguis-
tic communities, recent years have seen an effort in creating new parallel
corpora for low-resource language pairs. FLORES (Guzmán et al., 2019)
provides novel supervised, semi-supervised and unsupervised benchmarks for
Indo-Aryan languages {Sinhala,Nepali}–English on an evaluation set of pro-
fessionally translated sentences sourced from the Sinhala, Nepali and English
Wikipedias. For African languages, we have developed corpora for English-
Yorùbá (Adelani et al., 2021) and 16 other languages spoken in Africa (Bam-
bara, Ghomálá, Éwé, Fon, Hausa, Igbo, Luganda, Luo, Mossi, Naija, Swahili,
Setswana, Twi, Wolof, Yorùbá, isiZulu) (Adelani et al., 2022). Other than
these, parallel corpora focusing on African languages cover South African lan-
guages ({Afrikaans, isiZulu, Northern Sotho, Setswana, Xitsonga}–English)
(Groenewald and Fourie, 2009) with MT benchmarks evaluated in Martinus
and Abbott (2019), as well as multidomain (News, Wikipedia, Twitter, Con-
versational) Amharic–English (Hadgu et al., 2020) and multidomain (Govern-
ment, Wikipedia, News, etc.) Igbo–English (Ezeani et al., 2020). Further, the
LORELEI project (Strassel and Tracey, 2016) has created parallel corpora for
a variety of low-resource language pairs, including a number of Niger-Congo
languages such as {isiZulu, Twi, Wolof, Yorùbá }–English. However, these are
not open-access.

While creating parallel resources for low-resource language pairs is one ap-
proach to increasing the number of linguistic communities covered by MT,
this does not scale to the sheer amount of possible language combinations.
Another research line focuses on low-resource MT from the modeling side,
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developing methods that allow an MT system to learn the translation task
with smaller amounts of supervisory signals. This is done by exploiting the
weaker supervisory signals in larger amounts of available monolingual data,
e.g. by identifying parallel sentences in monolingual or noisy corpora in a pre-
processing step (Artetxe and Schwenk, 2019a; Chaudhary et al., 2019; Schwenk
et al., 2021) and also by leveraging monolingual data into supervised NMT
e.g. by including autoencoding (Currey et al., 2017) or language modeling
tasks (Gulcehre et al., 2015; Ramachandran et al., 2017). Low-resource NMT
models can benefit from high-resource languages through transfer learning
(Zoph et al., 2016), e.g. in a zero-shot setting (Johnson et al., 2017), by using
multilingual pretrained language models (Lample and Conneau, 2019; Tang
et al., 2020; Kuwanto et al., 2021), massively multilingual training (Aharoni
et al., 2019; Fan et al., 2021), or finding an optimal path for pivoting through
related languages (Leng et al., 2019). Massively multilingual training is espe-
cially effective and outperforms bilingual baselines for low-resource languages
(Birch et al., 2021; Lee et al., 2022) and the translation quality is further
improved when combining multilingual training with multilingual pretraining
(Reid et al., 2021; Emezue and Dossou, 2021). When not resorting to high
levels of multilinguality and pretraining, the choice of hyperparameters is es-
pecially important when training a low-resource MT system (Sennrich and
Zhang, 2019).

2.2.2 Style-Transfer

Style transfer5 is a highly versatile task in natural language processing, where
the goal is to modify the stylistic attributes of a text while maintaining its
original meaning. A broad variety of stylistic attributes has been considered,
including formality (Rao and Tetreault, 2018), gender (Prabhumoye et al.,
2018), polarity (Shen et al., 2017) and civility (Laugier et al., 2021). Potential
industrial applications are manifold and range from simplifying professional
language to be intelligible to laypersons (Cao et al., 2020), the generation of
more compelling news headlines (Jin et al., 2020), to related tasks such as text
simplification for children and people with disabilities (Martin et al., 2020a).

Data-driven style transfer methods can be classified according to the kind of
supervision used: supervised or unsupervised (Jin et al., 2022). Style transfer
can be treated as a supervised translation task between two styles by using
dedicated parallel corpora (Jhamtani et al., 2017). However, for most style
transfer tasks, parallel data is scarcely available. To learn style transfer in an
unsupervised fashion without parallel data, prior research has focused on
exploiting larger amounts of monostylistic data in combination with a smaller
amount of style-labeled data. One such approach is using variational autoen-

5This section is based on the related work section in (Ruiter et al., 2022a).
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coders and disentangled latent spaces (Fu et al., 2018), which can be further
incentivized towards generating fluent or style-relevant content by fusing them
with adversarial (Shen et al., 2017) or style-enforcing (Hu et al., 2017) discrim-
inators. Chawla and Yang (2020) use a language model as the discriminator,
leading to a more informative signal to the generator during training and thus
more fluent and stable results. Li et al. (2018) argue that adversarially learned
outputs tend to be low-quality and that most sentiment modification is based
on simple deletion and replacement of relevant words.

The above approaches focus on separating content and style, either in latent
space or surface form, however this separation is difficult to achieve (Gonen
and Goldberg, 2019). Dai et al. (2019) instead train a transformer together
with a discriminator, without disentangling the style features before decoding.
To learn style transfer on non-parallel monostylistic corpora only, current ap-
proaches take inspiration from unsupervised neural machine translation (Lam-
ple et al., 2018a), while exploiting the cycle consistency loss (Lample et al.,
2019). Jin et al. (2019) create pseudo-parallel corpora by extracting similar
sentences offline from two monostylistic corpora to train an initial encoder-
decoder model which is then iteratively improved using back-translation. Luo
et al. (2019) use a reinforcement approach to further improve sentence fluency.
Laugier et al. (2021) improve fluency without the need for any style-specific
classifiers, giving their model a head start by initializing it on a pretrained
transformer model. Wang et al. (2020) argue that standard NMT training
cannot account for the small differences between informal and formal style
transfer, and apply style-specific decoder heads to enforce style differences.
Our approach differs from the two-step approach of Jin et al. (2019), who first
extract similar sentences from style corpora offline and then initialize their
system by training on them. In Section 4.5, we show that joint online learn-
ing to extract and translate in self-supervised NMT leads to higher recall and
precision of the extracted data. Following this observation, we learn similar
sentence extraction and style transfer online with a single model in a loop.

2.3 Sequence-to-Label Tasks

2.3.1 Hate Speech Detection

Throughout our sequence-to-label sections, we will mostly focus on hate speech
detection.6 Hate speech classifiers that detect abusive content online and flag
it for human moderation or automatic deletion are the most common compu-
tational approach to counter hate speech (HS) online (Jurgens et al., 2019).
Classifiers trained to perform HS detection are furthermore important research

6This subsection is based on the related work section in (Ruiter et al., 2022b).
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tools, e.g., to explore the dynamics of specific types of HS online (Johnson
et al., 2019b; Uyheng and Carley, 2021) or to identify common targets of
abuse that require special protection (Silva et al., 2021).

The concrete realization of the hate speech detection task depends on the
underlying label definitions, which vary across corpora. Most HS corpora
focus on a binary classification, whose underlying meaning varies across cor-
pora based on their annotation protocols, e.g., hate/none Alakrot et al. (2018);
Basile et al. (2019), offense/other (Wiegand et al., 2019b) or harmful/none
(Ogrodniczuk and Łukasz Kobyliński, 2019). Depending on the focus of the
HS corpus, the annotated classes vary greatly (Vidgen and Derczynski, 2021),
ranging from: person-directed abuse (e.g., cyber bullying) (Wulczyn et al.,
2017; Sprugnoli et al., 2018) to group-directed abuse such as sexism (Jha and
Mamidi, 2017) or racism (Waseem and Hovy, 2016; Sigurbergsson and Der-
czynski, 2020). As shown in Section 6.1.2 and in Bose et al. (2021), this
diversity of class definitions makes it difficult to effectively combine corpora
to train classifiers that generalize well across similar HS tasks. Further, the
binarization (e.g., sexist/not-sexist) of HS phenomena often leads to classifiers
that are unreliable and/or biased (Wiegand et al., 2019a). More recent cor-
pora try to overcome this limitation by creating tasks of higher granularity,
focusing on multi-class tasks which may describe the target type (group vs.
individual) or intensity of the abuse (Ousidhoum et al., 2019). Basile et al.
(2019) also annotate the aggressiveness of the abuse, focusing on migrants and
women. Overall there is a trend towards more complex annotations, but most
approaches (including Basile et al. (2019)) still attempt to make judgments
about what constitutes hate, which stands in contrast to the complex and
subjective nature of HS.

Due to the comparatively large amount of neography in user comments,
word-level features quickly lead to sparsity in HS classifiers. Instead, sub-word
features such as character n-grams (Waseem and Hovy, 2016) or comment em-
beddings (Djuric et al., 2015) greatly improve classification results. In Ruiter
et al. (2019b), we used subword units, which allows the model to have a high
vocabulary coverage despite the noisy orthography of many input instances.

While most features used for training hate speech classifiers focus on (subword-
encoded) textual data, there is a recent interest in features that go beyond
sequence classification by including user information via embedded user
graphs (Mishra et al., 2018, 2019). However, approaches that go beyond treat-
ing hate online as a classification task are still rare. In Salminen et al. (2018),
hateful parts are removed from comments with the intention of keeping the
semantics of the original content intact. This is closely related to civil rephras-
ing, a type of style transfer task, where a pejorative comment is converted
into a more neutral tone while still maintaining the original meaning (Laugier
et al., 2021). We also explore civil rephrasing in Section 5. Instead of deleting
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hate from comments, Chung et al. (2019) suggest a system that automatically
provides counterarguments to hateful speech.

In social sciences, the focus of HS research lies on the analysis of the man-
ifestation of hate, its dynamics and its role in society. A common approach
is quantitative content analysis. It focuses on the investigation of manifest
media content in a systematic, objective and quantitative fashion (Berelson,
1952). Therefore, an extensive annotation protocol is developed. These anno-
tations are more extensive than those typically performed in computer science,
and often also take into account the context. Social science distinguishes be-
tween different forms of impolite, uncivil or intolerant communication (Coe
et al., 2014; Su et al., 2018; Rossini, 2022); more fine-grained than the binary
distinction commonly used in corpora used for HS detection. What distin-
guishes HS particularly from other concepts is that the hateful expression is
group-oriented (Erjavec and Kovačič, 2012). Often content analyses treat HS
as a special form of incivility (Ziegele et al., 2018) or harmful speech (Robert
et al., 2016) without investigating it further. But there exist also exclusive HS
content analyses focusing on e.g., racist speech (Harlow, 2015), gendered HS
(Döring and Mohseni, 2020) or HS targeting refugees and immigrants (Paasch-
Colberg et al., 2021).

2.3.2 Supervision in Classification

Moving from the concrete case of hate speech detection to the general case of
classification as a sequence-to-label task, we briefly present its major types of
supervision.7

Supervised Classification Most learning algorithms for sequence classifica-
tion are supervised. That is, given a dataset of sequences X ∈ X and their
corresponding labels Y ∈ Y, we learn the classifier f : X → Y, which maps
a sequence to its corresponding label. A large variety of supervised learn-
ing algorithms exist. Focusing on the task of hate speech detection, recent
years have seen learning approaches using statistical methods such as naive
Bayes (Saleem et al., 2016), logistic regression (Waseem and Hovy, 2016; Wul-
czyn et al., 2017; Davidson et al., 2017) and support vector machines (SVM)
(Saleem et al., 2016; Park and Fung, 2017), as well as neural approaches such
as feedforward layers over an LSTM-based RNN (Jha and Mamidi, 2017),
the representations of large LMs (Yang et al., 2019), or hybrid convolutional
neural networks (Park and Fung, 2017). LM-based classifiers can be used

7The subsection on semi-supervised classification is based on (Boy et al., 2021), while the
subsection on self-supervised classification is a composition of both (Boy et al., 2021)
(transfer learning) and (Hahn et al., 2021) (zero-shot transfer).
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to perform transfer learning or multitask learning, e.g., Plaza-Del-Arco et al.
(2021) have used BERT representations to learn hate speech detection and
sentiment analysis together in a multi-task setup. Note that pretrained LMs
in combination with a supervised classification task can be considered a type
of self-supervision as described in the relevant paragraph below.

Semi-Supervised Classification Analogous to sequence-to-sequence tasks,
semi-supervised learning can be differentiated from self-supervised learning
by the order of supervision used. Supervised → unsupervised is a type of semi-
supervised learning, where a decently competent model is further improved
by adding additional data, often generated via data augmentation or distant
supervision techniques. On the other hand, unsupervised → supervised indi-
cates a type of self-supervision, as the learning of the unsupervised auxiliary
task aids to learn the supervised primary task.

Data augmentation is a typical example of semi-supervised learning when
used to add additional data to a (fully or partially) trained target task classi-
fier. This can be done by performing transformations to the existing training
data, while still maintaining the label definitions. On the word-level, the most
common transformation is synonym replacement (Wei and Zou, 2019; Rizos
et al., 2019). Some models also take into account the underlying word embed-
ding and its context when performing word replacements (Wang and Yang,
2015; Wu et al., 2019). On the sentence level, back-translation using existing
MT models can be used to generate more related training data (Aroyehun
and Gelbukh, 2018; Xie et al., 2020). Similarly, (label) conditioned language
modeling can be used to generate additional training data (Kumar et al., 2020;
D’Sa et al., 2021).

Another common technique to collect additional labeled data for training is
distant supervision. In this case, unlabeled data is automatically annotated
using some heuristic. For our work, emoji-based heuristics are the most rele-
vant, as this is what we explore in Section 6.2. In the past, emojis have been
used as a type of distant supervision. In this case, user comments are used
as training instances and their labels are the emojis they contain. Concretely,
given an emoji-stripped user comment, the task is to predict the emoji (class)
that was originally included in the comment. This type of distant supervision
is especially useful for sentiment-related tasks. To cluster emojis into sentiment
classes used for distant supervision, previous work has focused on pre-defined
emotion classes based on psychological models (Suttles and Ide, 2013), binary
(positive/negative) classes (Deriu et al., 2016) or a set of single emojis (Felbo
et al., 2017). However, such pre-defined emoji classes often do not account for
the culturally diverse use of emojis (Park et al., 2012; Kaneko et al., 2019).
In contrast, our work does not pre-define the emotion classes found in emo-
jis and instead learns these classes, or clusters, from the data itself. Note
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again, that the order of supervision is relevant for differentiating between a
semi-supervised and self-supervised classification approach. In the case where
additional labeled data gained via distant supervision is added after or during
supervised training of the target task, the method is semi-supervised. How-
ever, if additional labeled data stemming from distant supervision are used
to pretrain a source model which is then transferred to the supervised target
task, the method is self-supervised.

Self-Supervised Classification Similar to sequence-to-sequence tasks, using
language modeling to initialize the model representations can be considered a
type of self-supervision. In this case, the language modeling task is the aux-
iliary task, which enhances the performance of the (supervised) primary clas-
sification task. When data is sparse, encoders that have undergone language
model pretraining, e.g., BERT or XLM-R (Conneau et al., 2020), are espe-
cially powerful, also since they allow us to perform transfer learning. When
learning a source task on these models, the representations in the encoder
change to become informative to the task at hand. In a parameter transfer
setting, a new but related target task then profits from the learned representa-
tions in the encoder. Transfer learning has been applied to sentiment analysis
(SA) using parameter transfer methods such as pretrained sentiment embed-
dings (Dong and de Melo, 2018) or machine translation-based context vectors
(McCann et al., 2017). Zero-shot transfer, where a model trained on a set
of tasks is evaluated on a previously unseen task, has recently gained a lot
of traction in NLP. One example is sentence classification trained on a (high-
resource) language being transferred into another (low-resource) language (Hu
et al., 2020). As discussed above, if the source task during transfer is learned
in an unsupervised fashion (e.g., via distant supervision heuristics) which then
aids the performance of the target task, this, too, can be considered a type
of self-supervision, where the source task is the auxiliary, and the target task
the primary task.

In Section 6.2, we learn emoji-based clusters also in an unsupervised fashion,
which are then used to train a LM-based classifier for emoji (cluster) predic-
tion. In that case, emoji (cluster) prediction is the auxiliary source task, and
the target sentiment classification is the primary task.

Apart from language modeling and cluster-based transfer learning, (dense)
subspace learning has been shown to be a powerful unsupervised (auxil-
iary) task to enhance the performance of primary classification tasks (Rothe
et al., 2016). These dense subspaces usually capture semantic features that
are relevant to the performance of the primary task. Most work-related to
semantic subspaces has focused on identifying gender (Bolukbasi et al., 2016)
or multiclass ethnic and religious (Manzini et al., 2019) bias in word repre-
sentations. Liang et al. (2020) identify multiclass (gender, religious) bias in
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sentence representations. Similarly, Niu and Carpuat (2017) identify a stylis-
tic subspace that captures the degree of formality in a word representation.
This is done using a list of minimal-pairs, i.e., pairs of words or sentences that
only differ in the semantic feature of interest over which they perform princi-
pal component analysis (PCA). We take the same general approach in Section
6.3. However, instead of using subspaces to debias word or sentence-level rep-
resentations, we use subspace learning as an auxiliary task. The resulting
semantic subspace is then used to generate sequence representations, used to
learn classification as a primary task.
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3 Self-Supervised Learning for
Sequence-to-Sequence Tasks

We give an overview of the general method (Section 3.1) of our self-supervised
learning approach for seq2seq tasks. This is followed by an explanation of the
data input possibilities (Section 3.2) and optional data augmentation tech-
niques (Section 3.3) that can be added to the general method and which are
explored in detail in Section 4.6.

3.1 General Method

A language L is an infinite set of sequences s composed of words w following a
language-specific vocabulary and grammar. In practice, L can be a language
as a whole (i.e. German) or any language variant, such as a dialect (i.e.
Saarland German), a sociolect (i.e. male middle-class German), idiolect (i.e.
Hans speaking German), or style (i.e. formal German).

To describe our general method, we use the model definition as described in
(Ruiter et al., 2019a).1 We consider a multidirectional sequence-to-sequence
system L → L between a set of languages L = {L1, ..., LN} where the encoder
and decoder have the information of all languages L ∈ L. Two dimensions de-
termine our architectures: (i) the specific representation of an input sentence,
and (ii) the similarity or score function for an input sentence pair.

We focus on two different embedding spaces in the encoder to build semantic
sentence representations: the sum of word embeddings (Ce) and the hidden
states of an RNN or the encoder outputs of a transformer (Ch). We define:

Ce =

T∑
t=1

et, Ch =

T∑
t=1

ht, (3.1)

1The content of this general method section is composed of the methodology section in
(Ruiter et al., 2019a), which in itself is based on my master thesis Online Parallel Data
Extraction with Neural Machine Translation (https://www.clubs-project.eu/assets/
publications/other/MSc_Thesis_Ruiter.pdf).
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3 Self-Supervised Learning for Sequence-to-Sequence Tasks

where et is the word embedding at time step t and ht its hidden state (RNN)
or encoder output (transformer). In case ht is an RNN hidden state, it is
further defined by the concatenation of its forward and backward component
hRNNt = [

−→
h t;
←−
h t].

These representations are used to score input sentence pairs. We study two
functions for sentence selection with the aim of exploring whether a threshold-
free selection method is viable.

Let SL1 and SL2 be the vector representations for each sentence of a pair
(either Ce or Ch). The cosine similarity of a sentence pair is calculated as
the dot product of their representations:

sim(SL1, SL2) =
SL1 · SL2
∥SL1∥ ∥SL2∥

, (3.2)

which is bounded in the [-1, 1] range. However, the threshold to decide when
to accept a pair is not straightforward and might depend on the language
pair and the corpus (España-Bonet et al., 2017; Artetxe and Schwenk, 2019a).
Further, as dimensionality increases, hubs, i.e., points that are similar to many
other points, emerge (Radovanović; et al., 2010). In our case, this hubness
problem leads to some semantic sentence representations being similar to many
other semantic sentence representations. This makes using cosine similarity
for similar sentence pair extraction less useful. To solve this, Artetxe and
Schwenk (2019a) proposed a margin-based function:

margin(SL1, SL2) =
sim(SL1, SL2)

avrkNN(SL1)/2 + avrkNN(SL2)/2
, (3.3)

where avrkNN(X) corresponds to the average similarity between a sentence
representation X and kNN(X), its k nearest neighbors Yk in the other lan-
guage:

avrkNN(X) =
∑

Y ∈kNN(X)

sim(X,Y )

k
. (3.4)

This scoring method penalizes sentences that have a generally high cosine
similarity with several candidates. Following Artetxe and Schwenk (2019a),
we use k = 4 in our experiments.

In the sentence pair extraction (SPE) process that follows, we explore
the following strategies (Section 4.2). In all of them, sim(SL1, SL2) and
margin(SL1, SL2) can be used for scoring.

(i) Threshold dependent. We find the highest scoring target sentence for
each source sentence (pair i) as well as the highest-scoring source for each
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target sentence (pair j) for either representation S=Ch or S=Ce (systems H
and E respectively). Since often i ̸= j, the process is not symmetric and only
pairs that have been matched during selection in both language directions are
accepted to the candidate list. A threshold is empirically determined to filter
out false positives.

(ii) High precision (System P ). We apply the same methodology as before,
but we use both representations S=Ch and S=Ce. Only pairs that have been
matched during selection in both language directions and both representation
types are accepted to the candidate list. Ch and Ce turn out to be comple-
mentary and this further restriction allows us to get rid of the threshold, and
the sentence selection becomes parameter-free.

(iii) High recall (System R). The combination of representations is a key
point for a threshold-free method, but the final selection may be restrictive.
In order to increase recall, we are more permissive with the way we select
pairs and instead of taking only the highest scoring target sentence for each
source sentence, we take the top-n (n=2 in our experiments). We still use
both representations and extend the number of candidates considered only for
S=Ch, which is the most restrictive factor at the beginning of training.

All of the above can be regarded as the general self-supervised architecture we
use for seq2seq tasks such as machine translation or style transfer. However,
throughout this dissertation, we also explore different data inputs (comparable
vs. monolingual) and the addition of various data augmentation techniques
(back-translation, word-translation and noising). These are introduced in the
following two sections.

3.2 Data Input

The data can be either comparable or monolingual, which comes with different
levels of computational complexity:2

1. Comparable: The models are trained on L1–L2 comparable documents
directly, this avoids the n × m explosion of possible combinations of
sentences, where n is the number of sentences in L1 and m in L2. In
our approach, we input

∑
article ni × mj sentence pairs, that is, only

all possible source–target sentence combinations within two documents.

2The content of this subsection is composed of both (Ruiter et al., 2022a) (Paragraph
Monolingual) and (Ruiter et al., 2019a) (rest).
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Delicious cake.Disgusting cake.

Decoder

SPE

accepted

rejected
rejected BT

filter

train

discard
generate BT

filter

Encoder

Figure 3.1: The general self-supervised architecture augmented with back-
translations: Two sentences are read into the encoder and then fil-
tered by sentence pair extraction SPE. If they are accepted, the model
trains on the pair. If they are rejected, they are used to generate back
translations (BTs), which are then filtered again before being used for
training. Rejected BTs are discarded.

Hence we miss the parallel sentences in non-linked documents but we
win in speed.

Articles are input in lots3. Sentence pairs accepted by SPE within a lot
are extracted.

2. Monolingual: Most language corpora (especially for style transfer
tasks) usually consist of large collections of (unaligned) sequences, which
forces the exploration of the full n ×m space. Improving over the one-
by-one comparison of vector representations, we index4 our monolingual
data using FAISS (Johnson et al., 2019a).

Whenever enough extracted parallel sentences are available to create a train-
ing batch, a training step is performed. Model parameters are modified by
back-propagation and the next comparable or monolingual document is pro-
cessed with the improved representations. Notice that the extracted pairs may
therefore differ through iterations since it is the sentence representation at the
specific training step that is responsible for the selection.
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3.3 Data Augmentation

For many seq2seq tasks, training data is sparse, i.e. for low-resource languages,
domains, or styles.5 We therefore investigate in Section 4.6 and Chapter 5
how our general self-supervised architecture can be adapted to function with
smaller amounts of available data by exploring various types of data augmen-
tation techniques:

Back-translation (BT): Given a rejected sentence sL1, we use the current
state of the seq2seq system to backtranslate it into sBT

L2 . The synthetic pair in
the opposite direction sBT

L2 → sL1 is added to the batch for further training. We
perform the same filtering process as for SPE so that only good quality back-
translations are added (Figure 3.1). We apply the same to source sentences in
L2.

Word-translation (WT): When using BT, a lot of monolingual data is still
rejected from training, especially at the beginning when BT quality is low. In
order to provide these rejected sentences for training without breaking the self-
supervisory cycle, we can perform word-by-word translation. Given a rejected
sentence sL1 with tokens wL1 ∈ L1, we replace each token with its nearest
neighbor wL2 ∈ L2 in the bilingual word embedding layer of the model to
obtain sWT

L2 . We then train on the synthetic pair in the opposite direction
sWT
L2 → sL1. As with BT, this is applied to both language directions. To
ensure a sufficient volume of synthetic data, WT data is trained on without
SPE filtering.

Noise (N): To increase robustness and variance in the training data, we
can add noise, i.e. token deletion, substitution and permutation, to copies
of source sentences (Edunov et al., 2018) in parallel pairs identified via SPE,
back translation and word-translated sentences and, as with word-translation,
we use these without additional filtering. That is, next to training on clean
parallel pairs (via SPE, BT or WT), we also train on noisy parallel pairs
generated from the clean pairs, i.e., where the source side is noised and the
target side stays clean.

3Since margin(SL1, SL2) takes into account the k-nearest neighbors of each sentence, small
input lots lead to scarce information when selecting pairs. Considering lots with more
than 15 sentences avoids the problem.

4As our internal representations change during the course of training, we re-index at each
iteration over the data.

5This subsection is based on (Ruiter et al., 2021).
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Machine translation is often thought of as the prime example of a seq2seq task,
as the learning task itself is versatile and can vary greatly in difficulty. That is,
high-resource translation of two related languages (e.g., Spanish to Catalan) is
easier to learn than low-resource translation of two unrelated languages (e.g.,
Swahili to Nepali). This leaves a lot of room for exploring the capabilities
and limitations of seq2seq learning approaches. In this chapter, we apply our
self-supervised seq2seq method to the machine translation task. We refer to
this specific setup as self-supervised neural machine translation (SSNMT) and
explore its various properties throughout various experiments.

After defining the general experimental setup (data, model specifications, eval-
uation) in Section 4.1, we explore the different sentence pair extraction meth-
ods (Systems E, H, P, R) in Section 4.2. We then choose the best performing
sentence pair extraction method for all follow-up experiments. These include
evaluating the translation performance on high and low-resource languages
(Section 4.3) as well as the data extraction quality (Section 4.4) and investi-
gating the nature of the extraction process that arises (Section 4.5). Later, we
add augmentation techniques (i.e., back-translation, word-translation, noising
etc.) to the basic self-supervised seq2seq method and analyze their effects on
the MT task learned on various low-resource language combinations (Section
4.6). Findings across experiments are discussed in Section 4.7.

4.1 Experimental Setup

All our MT experiments follow a standardized setup, which is defined in this
section. This includes the data and its preprocessing (Section 4.1.1), model
specifications (Section 4.1.2) and the automatic evaluation (Section 4.1.3).1

1This section is composed of (Ruiter et al., 2019a, 2020, 2021).
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Comparable Monolingual

L1 L2 L1 L2

L1–L2 #Sent #Tok ⊘ #Sent #Tok ⊘ #Sent #Tok #Sent #Tok

en–de[2019] 37 987 29 30 752 24 117 2,693 51 1,081
en–es[2019] 35 937 32 20 572 17 117 2,693 27 691
en–fr[2015] 12 318 28 8 207 16 92 2,247 27 652
en–fr[2019] 42 1,205 28 25 644 16 117 2,693 38 710

Table 4.1: Millions of sentences (#Sent) and tokens (#Tok) of the high resource
comparable and monolingual WPs downloaded in [year]. Average number
of sentences per article (⊘) given for each comparable WP.

Comparable Monolingual

#Sent (k) #Tok (k) #Sent (k) #Tok (k)

L1–L2 #Art (k) VO (%) L1 L2 L1 L2 L1/L2 L1 L2

de–hsb[2020] 11 4.9 833 76 17,627 1,159 621 16,095 10,507
en–af [2021] 73 7.1 4,589 780 189,990 27,640 1,034 34,759 31,858
en–kn[2021] 18 1.4 1,739 764 95,481 30,003 1,058 47,136 35,534
en–my[2021] 19 2.1 1,505 477 82,537 15,313 997 43,752 24,094
en–ne[2021] 20 0.6 1,526 207 83,524 7,518 296 13,149 9,229
en–sw[2021] 34 6.5 2,375 244 122,593 8,774 329 13,957 9,937
en–yo[2021] 19 5.7 1,314 34 82,674 1,536 547 17,953 19,370
hi–ne[2020] 11 6.2 300 111 6,293 1,888 3,833 65,904 53,140

Table 4.2: Thousands of sentences (#Sent) and tokens (#Tok) in the compara-
ble and monolingual datasets for low-resource languages, all collected
in [year]. For comparable datasets only, we also report the number of
articles (#Art) and percentage of vocabulary overlap (VO) between the
two languages in a pair.

4.1.1 Data

We use Wikipedia as a comparable corpus for training SSNMT in most of
our experiments (Section 4.1.1.1). However, solely for the purpose of eval-
uating the extraction performance of SSNMT, we use a pseudo-comparable
corpus based on Europarl (Section 4.1.1.2). Validation and test data varies
across language pairs (Section 4.1.1.3) and we use a standardized preprocessing
pipeline across all experiments (Section 4.1.1.4).

4.1.1.1 Wikipedia

We use Wikipedia (WP) dumps2 to initialize and train our SSNMT system.
We use complete monolingual WPs to initialize our SSNMT systems via learn-
ing word-embeddings or denoising autoencoding. We use comparable WPs,
i.e., article-aligned WPs, between two languages to train SSNMT. Our high-
resource languages are: German (de), English (en), Spanish (es) and French

2https://dumps.wikimedia.org/
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(fr). The dumps for en and fr are downloaded in January 2015 ([2015]) and
again in January 2019 ([2019]) together with de and es. We downloaded a first
mixture of high and low-resource language WP dumps in March 2020 ([2020]),
i.e., for German, Hindi (hi), Upper Sorbian (hsb) and Nepali (ne). In February
2021 ([2021]), we downloaded and processed another set of WP dumps for en as
well as several low(er)-resource languages, i.e. Afrikaans (af ), Kannada (kn),
Burmese (my), Nepali, Swahili (sw) and Yorùbá (yo). For each monolingual
low-resource data pair in en–{af,kn,my,ne,sw,yo}, the large English monolin-
gual WP is downsampled to its low(er)-resource counterpart before using the
data. All WP dumps are sentence tokenized using NLTK (Bird, 2006) (af 3, de,
en, fr, es) or using a simple rule-based splitting (kn, my, ne, sw, yo) exploiting
the language-specific sentence delimiters.

WP dumps are used for different purposes in our systems:

• Initialization: We train multilingual word embeddings or denoising
autoencoders using the complete monolingual WP editions in order to
initialize our SSNMT system. For Yorùbá whose monolingual WP
is specially small (65 k sentences), we use the yo side of JW300 (Agić
and Vulić, 2019) as additional monolingual initialization data. Simi-
larly, we use all Upper Sorbian data from the WMT 2020 low-resource
task (Fraser, 2020), CommonCrawl4 for Nepali and the IITB corpus
(Kunchukuttan et al., 2018) for Hindi as additional monolingual data
for initialization.

• MT Training: We train our SSNMT systems on comparable data based
on WP. That is an article on a given topic in language L1 is aligned on
the article level with its L2 counterpart. To generate the comparable
corpora, we select only the subset of articles that can be linked among
languages using Wikipedia’s langlinks, i.e., we only take an article if
there is an equivalent article in the other language. These are then the
resulting comparable WPs.

We report the number of sentences and tokens in each of the comparable and
monolingual WPs of high (Table 4.1) and low-resource (Table 4.2) languages
together with relevant statistics, e.g., average number of sentences per article,
number of articles and vocabulary overlap.
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L1 L2
#Sent (M) #Tok (M) #Sent (M) #Tok (M)

L1–L2 true false true false true false true false
en–de 1 9 25 180 1 7 26 192
en–es 1 7 24 84 1 4 26 91
en–fr 1 6 25 80 1 3 27 87

Table 4.3: Millions of sentences (#Sent) and tokens (#Tok) of the pseudo-
comparable Europarl corpus with true and false splits.

4.1.1.2 Europarl

As a control experiment and purely in order to analyze the quality of the SS-
NMT data selection, we use the Europarl (EP) corpus (Koehn, 2005). The
corpus is preprocessed in the same way as WP, and we create a synthetic
comparable corpus from it. After setting aside 1M parallel pairs as true sam-
ples to evaluate SSNMT data extraction performance, all remaining pairs in
EP are scrambled to create non-parallel samples (false). In order to keep the
synthetic comparable corpora close to the statistics of the original comparable
Wikipedias, we control the EP true:false (parallel:non-parallel) sentence pair
ratio to mimic the ratios we observe in our extractions from WP. We assume
that all WP sentences accepted by SSNMT in Section 4.3.1 are true (parallel)
examples, and that the number of false examples (non-parallel) are the re-
jected ones. With this, we estimate base true:false ratios of 1:4 for en–{fr,es}
and 1:8 for en–de.5 The false samples created from EP are oversampled in
order to meet this ratio given that there are 1M true samples. Further, we
calculate the average article length of the comparable WPs (Table 4.1) and
split the synthetic comparable samples into pseudo-articles with this length.

The number of sentences and tokens in each of the pseudo-comparable EPs is
given in Table 4.3

4.1.1.3 Validation and Testing

We use a variety of validation and test sets across the different language com-
binations:

3We use the Dutch sentence tokenizer, as Dutch and Afrikaans are closely related.
4https://www.statmt.org/wmt19/parallel-corpus-filtering.html
5In a manual evaluation annotating 10 randomly sampled WP articles for L1 and L2 in
en–{fr,es,de} each, the true:false ratios resulted 3:8 for en–fr, 1:4 for en–es and 1:8 for
en–de which validate the assumption.
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• de–hsb: validation and devtest splits from WMT20206 (WMT20)
(Fraser, 2020).

• en–af : test data7 from McKellar and Puttkammer (2020). As this
dataset does not have a development split, we additionally sample 1k
sentences from CCAligned8 (El-Kishky et al., 2020) to use as en–af de-
velopment data.

• en–de: newstest 20129 (NT12) for validation, newstest2014 (NT14) or
newstest 2016 (NT16) for testing.

• en–es: NT12 for validation, newstest2013 (NT13) for testing.

• en–fr: NT12 for validation, NT14 or NT16 for testing.

• en–kn: workshop on Asian translation 202110 (WAT21) for valitation
and testing.

• en–my: workshop on Asian translation 202011 (WAT20) (ShweSin et al.,
2018) for validation and testing.

• en–ne: FLoRes12 dataset (Guzmán et al., 2019) for validation and test-
ing.

• en–sw: validation and test data13 from Lakew et al. (2021). The test
set is divided into several sub-domains, and we only evaluate on the
TED talks domain, since the other domains, e.g., localization or religious
corpora, are noisy.

• en–yo: MENYO-20k14 (Adelani et al., 2021) test and validation data.

• hi–ne: validation and test splits from WMT201915 (WMT19) (Barrault
et al., 2019).

6https://www.statmt.org/wmt20/unsup_and_very_low_res/
7https://repo.sadilar.org/handle/20.500.12185/506
8https://opus.nlpl.eu/CCAligned.php
9https://opus.nlpl.eu/WMT-News.php

10https://lotus.kuee.kyoto-u.ac.jp/WAT/indic-multilingual/index.html
11http://lotus.kuee.kyoto-u.ac.jp/WAT/my-en-data/
12https://github.com/facebookresearch/flores
13https://github.com/surafelml/Afro-NMT
14https://github.com/dadelani/menyo-20k_MT
15https://www.statmt.org/wmt19/similar.html
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4.1.1.4 Preprocessing

Our preprocessing pipeline consists of the following steps: punctuation nor-
malization (PN), tokenization (TOK) and truecasing (TC) using standard Moses
scripts (Koehn et al., 2007), deduplication (DEDUP), byte-pair encoding16 (Sen-
nrich et al., 2016b) of Nk merge operations (BPEN ) or sentence-piece encod-
ing17 (Kudo and Richardson, 2018) with vocabulary size Nk (SPN ), insertion
of target language tokens (e.g. <de>) (LT) as by Johnson et al. (2017) and
removal of sequences longer (MAXTOKSN ) or shorter (MINTOKSN ) than N to-
kens. For Yorùbá only, we perform automatic diacritic restoration (Diacritic
Restoration), which is described further below.

The preprocessing for the different languages is as follows:

• Afrikaans (af ): PN→ TC→ SP16 → LT→ MAXTOKS100 → MINTOKS6

• Burmese (my): SP4 → LT→ MAXTOKS100 → MINTOKS6

• English (en): PN→ (TOK→)18 TC→ DEDUP→ BPE∗/SP∗ → LT→ MAX-
TOKS∗19 → MINTOKS6

• French (fr): PN→ TOK→ TC→ DEDUP→ BPE100 → LT→ MAXTOKS50 →
MINTOKS6

• German (de): PN→ TOK→ TC→ DEDUP→ BPE∗20 → LT→ MAXTOKS∗21
→ MINTOKS6

• Hindi (hi): SP6 → LT→ MAXTOKS100 → MINTOKS6

• Upper Sorbian (hsb): PN→ TOK→ TC→ DEDUP→ BPE5 → LT→ MAX-
TOKS100 → MINTOKS6

• Kannada (kn): SP4 → LT→ MAXTOKS100 → MINTOKS6

• Nepali (ne): SP∗22 → LT→ MAXTOKS100 → MINTOKS6

16https://github.com/rsennrich/subword-nmt
17https://github.com/google/sentencepiece
18In combination with low-resource languages {af,my,kn,ne,sw,yo} no tokenization is used.
19BPE or sentence-piece encoding that matches the encoding of its corresponding L2. Max-

imum token length also chosen to match corresponding L2.
20BPE of 100k merge operations when paired with English, 5k when paired with Upper

Sorbian.
2150 when paired with English, 100 when paired with Upper Sorbian.
22Sentence piece encoding of 4k when paired with English, 6k when paired with Hindi.
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• Spanish (es): PN→ TOK→ TC→ DEDUP→ BPE100 → LT→ MAXTOKS50 →
MINTOKS6

• Swahili (sw): PN→ TC→ SP4 → LT→ MAXTOKS100 → MINTOKS6

• Yorùbá (yo): PN→ TC→ Diacritic Restoration → SP2 → LT→ MAX-
TOKS100 → MINTOKS6

Automatic Diacritic Restoration As acknowledged before (Alabi et al.,
2020), the Yorùbá Wikipedia is a noisy source of data without clean diacriti-
zation. In order to automatically diacritize it, we train an automatic diacritic
restoration system using a supervised NMT setup. For training the system we
use the Yorùbá side of the Menyo-20k and JW300 training data, which were
shown by the same authors to use consistent diacritization. We apply a small
BPE of 2 k merge operations to the data. We apply noise on the diacritics by
i) randomly removing a diacritic with p = 0.3 and ii) randomly replacing a
diacritic with another diacritic with p = 0.3. We split the resulting corpus into
train (458 k sentences), test (517 sentences) and dev (500 sentences) portions.
The corrupted version of the corpus is used as the source data, and the NMT
model is trained to reconstruct the original diacritics. On the test set, where
the corrupted source has a BLEU (precision) of 19.0 (29.8), reconstructing the
diacritics using our system lead to a BLEU (precision) of 87.0 (97.1), thus a
major increase of +68.0 (+67.3) respectively.

4.1.2 Model Specifications

We describe the details of our NMT architectures (Section 4.1.2.1) and ini-
tialization (Section 4.1.2.2) techniques used throughout all experiments in this
chapter.

4.1.2.1 NMT Architectures

We implemented23 the architecture described in Section 3 within the Open-
NMT toolkit (Klein et al., 2017) both for RNN and transformer encoders. The
hyperparameters of both architectures are as follows:

LSTM: 1-layer bidirectional encoder with LSTM units, additive attention,
512-dim word embeddings and hidden states, and an initial learning rate (λ)
of 0.5 with stochastic gradient descent.

23https://github.com/ruitedk6/comparableNMT
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Transformer: Transformer base as defined in Vaswani et al. (2017) with
6-layer encoder–decoder with 8-head self-attention, 512-dim word embed-
dings and a 2048-dim hidden feed-forward. Adam optimisation with λ=2 and
beta2=0.998; noam λ decay with 8000 warm-up steps. Labels are smoothed
(ϵ=0.1) and a dropout mask (p=0.1) is applied.

All systems are trained on a single GPU GTX TITAN using a batch size of
64 (LSTM) or 50 (transformer) sentences.

4.1.2.2 Initializations

We use the monolingual WPs to initialize our models. However, as the mono-
lingual Wikipedia for Yorùbá is specially small (65k sentences), we use the
Yorùbá side of JW300 as additional monolingual initialization data. Similarly,
we use all Upper Sorbian data from WMT 2020 as well as the IITB corpus to
initialize Upper Sorbian and Hindi respectively. For all low-resource language
pairs in en–{af,kn,my,ne,sw,yo}, the large English monolingual corpus is down-
sampled to its low(er)-resource counterpart before using it for initialization.
We explore different initialization techniques for our NMT systems:

• Random (RAND): Random initialization for all model parameters.

• Word Embeddings (WE): Initialization of tied source and target
side word embedding layers only via pretrained cross-lingual word em-
beddings while randomly initializing all other layers. For the word
embedding-based initialization, we learn continuous bag of words word
embeddings using word2vec24 (Mikolov et al., 2013), which are then pro-
jected into a common multilingual space via vecmap25 (Artetxe et al.,
2017). These are used to initialize the NMT word embeddings (Ce).

– WE with numerals (WENUM ): We project the word embeddings
into a common multilingual space using weakly supervised vecmap,
which is initialized using a seed dictionary of numerals automati-
cally extracted from our monolingual Wikipedia editions.

– WE with Swadesh lists (WESWAD): To enhance the weak super-
vision of the bilingual mapping process, we use the list of numbers
used in WENUM and augment it with 200 Swadesh list26 entries for
the low-resource experiments in Section 4.6. Note that some entries
in the Swadesh lists will not be in the SSNMT models subword-

24https://github.com/tmikolov/word2vec
25https://github.com/artetxem/vecmap
26https://en.wiktionary.org/wiki/Appendix:Swadesh_lists
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4.1 Experimental Setup

based vocabulary, thus the number of entries in the Swadesh lists
actually used for initialization of vecmap is smaller.

• Denoising Autoencoding (DAE): Initialization of all layers via de-
noising autoencoding, using BART-style noising (Lewis et al., 2020; Liu
et al., 2020). We set aside 5k sentences from the monolingual initializa-
tion data for testing and development each. We use BART-style noise
with λ = 3.5 and p = 0.35 for word sequence masking. We add one
random mask insertion per sequence and perform a sequence permuta-
tion. The MT models are trained on DAE until the perplexity on the
development set is close to convergence.

– Bilingual DAE (DAEBL): Learn DAE jointly on L1 and L2 mono-
lingual data.

– Multilingual DAE (DAEML): Learn DAE jointly on all languages
supported by a model.

4.1.3 Automatic Evaluation

We use different metrics to evaluate the translation performance of NMT mod-
els:

• Bilingual Evaluation Understudy (BLEU): MT evaluation metric
as defined by Papineni et al. (2002). Confidence intervals (p = 95%) are
calculated using bootstrap resampling (Koehn, 2004) as implemented in
multeval27 (Clark et al., 2011).

– Untokenized BLEU: BLEU is calculated between original un-
tokenized references and detokenized model outputs using multi-
bleu.perl (Moses). This is our default setting when using BLEU.

– SacreBLEU: We also use SacreBLEU28,29 (Post, 2018). However,
if not stated otherwise, the default is untokenized BLEU as above.

• Metric for Evaluation of Translation with Explicit ORdering
(METEOR): Metric as defined by Lavie and Agarwal (2007) using the
scoring30 package which also provides confidence intervals (p = 95%).
It is calculated on untokenized data.

27https://github.com/jhclark/multeval
28https://github.com/mjpost/sacrebleu
29BLEU+case.mixed+numrefs.4+smooth.exp+tok.intl+version.1.4.9
30https://kheafield.com/code/scoring.tar.gz
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4 Machine Translation

• Translation Error Rate (TER): Translation error rate as defined
by Snover et al. (2006), calculated on untokenized data. We use the
implementation as provided in the scoring package.

4.2 Sentence Pair Extraction Methods

In Section 3.1, we introduced four possible sentence pair extraction methods
(Systems E, H, P and R). In this Section, we train and evaluate SSNMT mod-
els on the same English–French translation task, comparing the translation
performance across all extraction configurations.31 By the end of this section,
we will have identified the best performing sentence pair extraction method,
which will be used as the default for the rest of this dissertation.

4.2.1 Parameters Explored

We explore the following four setups:

System P: Ce and Ch are both used as representations in the high precision
mode32 and margin(SL1, SL2) as scoring function. No threshold is used.

System R: The same as System P but Ce and Ch are used in the high recall
mode. No threshold is used.

System H: The same as System P with Ch as the only representation. A
hard threshold of 1.0 is used.

System E: The same as System P with Ce as the only representation. A hard
threshold of 1.2 is used.

The four model setups are tested on both LSTM and Transformer architec-
tures, resulting in 8 NMT systems.

In order to train the 8 NMT systems, we initialize the word embeddings using
the WENUM initialization. We use the comparable en–fr WP[2015] for NMT
training, as well as the corresponding monolingual WP[2015]s for the word
embedding (WENUM ) initialization. We use NT12 for validation and NT14
for testing. We report untokenized BLEU using multi-bleu.perl.
31This section is based on (Ruiter et al., 2019a), which again is based on the findings of my

master thesis Online Parallel Data Extraction with Neural Machine Translation https:
//www.clubs-project.eu/assets/publications/other/MSc_Thesis_Ruiter.pdf.

32See Section 3.1 for a reminder on the different high precision or recall modes, representation
types and scoring functions.
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4.2 Sentence Pair Extraction Methods

Corpus, BLEU
Reference en+fr sent. en2fr fr2en

(in millions)
Unsupervised NMT
Artetxe et al. (2018b) NCr13, 99+32 15.13 15.56
Lample et al. (2018a) WMT, 16+16 15.05 14.31
Yang et al. (2018) WMT, 16+16 16.97 15.58
Self-supervised NMT
LSTME WP, 12+8 13.71 14.26
LSTMH WP, 12+8 21.50 20.84
LSTMP WP, 12+8 23.64 22.95
LSTMR WP, 12+8 20.05 19.45
TransformerE WP, 12+8 27.33 25.87
TransformerH WP, 12+8 24.45 23.83
TransformerP WP, 12+8 29.21 27.36
TransformerR WP, 12+8 28.01 26.78
Unsupervised NMT+SMT
Artetxe et al. (2018a) NCr13, 99+32 26.22 25.87
Lample et al. (2018b) NCr17,358+69 28.10 27.20

Table 4.4: BLEU scores achieved on NT14. Training corpora differ by various
authors: News Crawl 2007–2013 (NCr13), 2007–2017 (NCr17), the full
WMT data and Wikipedia (WP).

4.2.2 Translation Performance

Table 4.4 summarizes the final performance of our 8 systems according to
BLEU. Single representation models systems E and H (only word embed-
dings or encoder outputs) are 2–10 BLEU points below systems that combine
both representations (systems P and R). It should be noted that such single
representation systems can perform comparatively well (see TransformerH) if
the threshold is optimally set. However, this is not guaranteed even with
a preceding exploration of the threshold parameter. For systems P and R,
the combinations of representations do not need such hyper-parameters and
achieve the best translation quality. The best system, TransformerP, focuses
on extracting parallel sentences with high precision and obtains BLEU scores
of 29.21 (en2fr) and 27.36 (fr2en) with a total of 2.4M selected unique sen-
tence pairs.

When favoring recall (system R), too few new parallel sentences are gained
as compared to the new false positives to improve the final translation, and
TransformerR and LSTMR are ∼1–3 BLEU points below their high precision
(system P) counterparts.

Table 4.4 also presents a comparison with related work on unsupervised NMT.
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Figure 4.1: Number of unique accepted sentence pairs over the first 6 epochs for
both system P models. Points are labeled with the difference between
the average margin scores of accepted and rejected pairs.

The comparison is delicate because training corpora and methodology differ.
If we compare the final performance, we observe that we achieve similar results
with fewer data (us vs. Lample et al. (2018b)); and when the same order of
magnitude of sentences is used we obtain significantly better results (us vs.
Lample et al. (2018a) and Yang et al. (2018)). The crucial difference here is
that in one case one needs monolingual data, whereas we are using comparable
corpora.

4.2.3 Extraction Behavior

Figure 4.1 shows the number of unique sentence pairs extracted during the
first six epochs of training for both LSTMP and TransformerP. The number
of accepted sentences increases throughout the epochs, and so does the num-
ber of unique sentences used in training. Especially the first iteration over
the data set is vital for improving and adapting the representations to the
data itself. This quadruples the number of unique sentences accepted in the
second pass over the data. While sentences are still able to pass from rejected
to accepted as training advances, the two distributions are pushed apart and
the gap in average margin scores between the two distributions (∆) increases
as the representations get better at discriminating. We observe curriculum
learning in the process: at the beginning (epoch 1) simple sentences with an-
chors (mostly homographs such as numbers, named entities, acronyms, etc.)
are selected but as training progresses, complex semantically equivalent sen-
tences are extracted too. Curriculum learning is important since once the
capacity of a neural architecture is exhausted, more data does not improve
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Figure 4.2: BLEU scores of TransformerP on NT14 as training progresses.

the performance. This self-supervised architecture not only selects the data
but it does it in the most useful way for the learning.

These trends are common to all our models with small nuances due to the
concrete architectures. Transformers generally accumulate more unique pairs
before convergence than their LSTM counterparts for example, but other than
this the behavior is the same. The major increment in data through training
leads to a higher translation quality as measured by BLEU, so extraction and
training in a loop enhance each other’s performance. Figure 4.2 shows the
progressive improvement in translation performance throughout the training
process of system TransformerP and, again, the trend is general.

4.3 Translation Quality

In the previous section, we have explored several sentence pair extraction
methods and have identified System P to be the best performing one. All
following experiments will focus around the TransformerP (from here on SS-
NMT) architecture using the WENUM initialization. To further quantify the
translation performance of an SSNMT model, we validate its performance on
3 high-resource33 related language pairs (en–{de,es,fr}) and 2 low-resource
related (hi–ne) and unrelated (de–hsb) languages pairs.

49



4 Machine Translation

SSNMT SOTA
L1 →L2 BLEU TER METEOR BLEU
en→de 15.2±.5 68.5±.7 30.3±.5 37.9/17.2/28.3
de→en 21.2±.6 62.8±.9 25.4±.4 –/21.0/35.2
en→es 28.6±.7 52.6±.7 47.8±.7 –/–/–
es→en 28.4±.7 54.1±.7 30.5±.4 –/–/–
en→fr 29.5±.6 51.9±.6 46.4±.6 45.6/25.1/37.5
fr→en 27.7±.6 53.4±.7 30.3±.4 –/24.2/34.9

Table 4.5: Automatic evaluation of SSNMT on NT14 (fr) NT16 (de) NT13 (es).
Most right columns show the comparison with three SOTA systems for
supervised NMT (Edunov et al., 2018) / UMT (Lample et al., 2018b) /
pretrained+LM UMT (Song et al., 2019).

4.3.1 High-Resource Translation Quality

Translation Performance SSNMT translation performance training on the
en–{fr, de, es}[2019] comparable Wikipedia data is reported in Table 4.5 to-
gether with a comparison to the current SOTA in supervised and (pretrained)
unsupervised NMT. SSNMT is on par with the current SOTA in UMT, out-
performing it by 3–4 BLEU points in en–fr with lower performance on en–de
(∼3 BLEU). Note that unsupervised systems such as Lample et al. (2018b)
use more than 400M monolingual sentences for training while SSNMT uses
an order of magnitude less by exploiting comparable corpora. However, once
unsupervised NMT is combined with LM pretraining, it outperforms SSNMT
by large margins, i.e. around 7 BLEU points for en–fr and 13 BLEU for
en–de.

Example Translations In order to give an idea of the qualitative limita-
tions of the SSNMT predictions for high-resource language combinations en–
{de,es,fr}, we present a small selection of typical erroneous predictions and
analyze the error types (Table 4.6).

Literal translations are the most common prediction error across all tested
languages (Examples 4–6) and resemble extreme manifestations of transla-
tionese artifacts (Baker, 1993). In Example 5, the meaning of used to as a
pointer to a past habit is ignored and the phrase as much gas as they used
to was erroneously translated to autant de gaz qu’ils ont utilisé[as much gas
as they have used]. This most likely has to do with the domain drift between
the Wikipedia training domain, which is rather formal and scientific in writ-
ing, and the tested news domain, which allows more colloquialisms (e.g., used

33The subsection on High-Resource Translation Quality is based on (Ruiter et al., 2020).
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SRC Yesterday, Gutacht’s Mayor gave a clear answer to this question.
en2de (1) PRDDas Bild, ←−−−−−−−−−−−→Gutacht’s Mayor gab eine deutliche Antwort auf diese Frage.

REF Diese Frage hat Gutachs Bürgermeister gestern klar beantwortet.

SRC Der Umbau könne demnach Haftungsstreitigkeiten nach sich ziehen.
de2en (2) PRDThe ..... . . . . . . .conversion can thus bring up the ...tax..... .. . .disputes.

REF The reconstruction could therefore result in liability disputes.

SRC These restrictions are not without consequence.
en2es (3) PRDEstas restricciones no son consecuencia.

REF Estas restricciones tienen consecuencias.

SRC Ahora bien, ¿qué ”pueden aportar” todas esas investigaciones?,
pregunta la Señora Plamondon.

es2en (4) PRDNow well, what can ”bring” all these investigations?,
asks Mrs. Plamondon.

REF Now, what is it that all this research ”can bring”? asks Ms Plamondon.

SRC Americans don’t buy as much gas as they used to.
en2fr (5) PRDLes Américains n’ont pas acheté autant de gaz qu’ils ont utilisé.

REF Les Américains n’achètent plus autant d’essence qu’avant.

SRC Ils sont de 1,8 milliard pour l’exercice financier en cours.
fr2en (6) PRDThey are 1.8 billion for financial exercise in progress.

REF Its revenue stands at CAD 1,800 million for the current financial year.

Table 4.6: Source (SRC), reference (REF) and SSNMT predictions (PRD) of the
NT14 (en–{de,fr}) and NT13 (en–es) test sets, with adequate predic-
tions, errors in structure and .. . . . . . . . . . . . .terminology, literal or←−−−−−−−−−−−−−→missing translations,
and hallucinations marked.

to). Similarly, the French term exercise financier[financial year] was unknown
to the system and was then translated literally to financial exercise (Ex-6).
This is also related to the terminology error type, where a technical term is
mistranslated to a similar but erroneous term in the target language. For
example, the German term Haftungsstreitigkeiten[liability disputes] (Ex-2) was
erroneously translated to a similar technical term, i.e., tax disputes. In a more
subtle fashion, Umbau[reconstruction] was translated to conversion, which is a
very similar term but does not fit the nuance of reconstructing a building. This
is in part due to a lack of context, but may also be connected to the rareness
of specific terms in the training data. We further observe some grammati-
cal or structural errors, e.g., where negation is misinterpreted (Ex-3) or the
subject of the source sentence is not placed correctly in the predicted target
sentence (Ex-4). When the casing does not follow standard rules, e.g., in some
newspaper headlines or named entities (e.g., Gutacht’s Mayor), this can lead
to missing translations (Ex-1). In rare cases, we also observe hallucinations,
which may be triggered by surprising/rare content in the source sentence, e.g.,
due to non-standard casing. Making the system more robust to non-standard
casing (e.g., via casing noise insertion on the source side during training) or
via training on lowercased data and treating recasing as a postprocessing step
might mitigate the problem of non-translations and hallucinations, but also
carries the risk of introducing new errors: casing noise during training may
lead to more erroneous casing in the target while treating casing as a post-
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System ne2hi hi2ne hsb2de de2hsb
Self-Supervised and Unsupervised
SSNMT 6.5±.4 4.2±.3 0.0±.0 0.0±.0
U(SMT) 4.2±.2 2.3±.1 5.8±.4 8.6±.5
U(SMT+NMT) 5.8±.2 2.9±.1 0.7±.2 1.2±.2
Semi-Supervised TSTs
TST 12.1 11.5 33.1 40.8

Table 4.7: SacreBLEU for SSNMT trained on comparable WP and unsupervised
systems trained on the monolingual data are shown for comparison.
Confidence intervals (p = 95%) are calculated using bootstrap resam-
pling (Koehn, 2004). WMT top scoring teams (TSTs) for comparison.

processing step is completely dependent on the quality of the postprocessing
pipeline.

4.3.2 Low-Resource Translation Quality

We evaluate the translation performance of SSNMT in comparison to unsu-
pervised NMT frameworks and the current semi-supervised SOTAs on low-
resource hi–ne (closely related) and de–hsb (distantly related) language pairs.
For the evaluation we use SacreBLEU.

Translation Performance We compare with unsupervised system Monoses
(Artetxe et al., 2019) in its purely statistical (SMT) and hybrid (SMT+NMT)
versions using default hyperparameters. Both systems were trained on our hi–
ne/de–hsb monolingual data after passing through the Monoses preprocessing
pipeline. SSNMT outperforms both UMT systems for ne2hi and hi2ne, with
a translation performance of 6.5 (+0.7) (ne2hi) and 4.2 (+1.3) (hi2ne) Sacre-
BLEU points (Table 4.7). This gain in performance underlines that exploiting
the parallel signals hidden in smaller (111–300k sentences in hi–ne) compara-
ble corpora can lead to better results than exploiting larger (3.833k) amounts
of monolingual signals. However, SSNMT for de–hsb, which was trained on
a similar amount of data as for hi–ne, is not able to translate at all. The
reason might be the distance between the two languages and the fact that
the training corpus is noisy (language contamination). In this case, statistical
UMT performs better. However, once the neural component (SMT+NMT) is
added, the UMT model also fails to learn the translation task, as can be seen
by the SacreBLEU values close to 0 and 1.

We also compare with the relevant top scoring teams (TSTs) from WMT19
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SRC Informationen zur Arbeit der Jugendfeuerwehr finden Sie ebenfalls
im Internet.
[Information on the work of the youth fire brigade can also be found
on the Internet.]

de2hsb (1) PRD ←−−−−−−−−−−−−→Informationen zur dźěło ←−−−−−−−−−−−→Jugendfeuerwehr namakaja so ←→Sie tohorunja w
←−−−−→Internet.

REF Informacije wo dźěle młodźinskeje wohnjoweje wobory namakaće
tohorunja w interneće.

SRC Rěčny kurs serbšćiny za předšulske dźěći njewotměje so lětsa w
Miłoćicach.
[The Sorbian language course for pre-school kids is not taking place
in Militz this year.]

hsb2de (2) PRD Die Sprachkurze sorbische Sprache ist ein Vorschullehrer in Sachsen.
REF Der Sorbischsprachkurs für Vorschulkinder findet dieses Jahr nicht in

Miltitz statt.

SRC फन्ट पɝरवार सेɞटङ पɝरवतर्न गनर् यो जाँच बाकस सक्षम पानुर्होस् । @ info: tooltip
[Phanṭa parivāra sēṭiṅa parivartana garna yō jām�ca bākasa sakṣama
pārnuhōs. @ Info: Tooltip]
[Enable this checkbox to change the font family setting. @ info: tooltip]

ne2hi (3) PRD फंट पɝरवार सेɞटङ पɝरवतर्न करना यह जाँच बाकस के सफल पाɝरए ज्ञात info: toltipp
[phant parivaar setin parivartan karana yah jaanch boks ke saphal paarie
gyaat info: toltipp]

REF इस चेक बक्से को फ़ॉन्ट पɝरवार ɟवन्यास में बदलाव के ɡलए सक्षम करें. @ info: tooltip
[is chek bakse ko font parivaar vinyaas mein badalaav ke lie
saksham karen. @ info: tooltip]

Table 4.8: Source (SRC), reference (REF) and SSNMT predictions (PRD) of the
WMT20 (de–hsb) devtest and WMT19 (hi–ne) test sets, with ad-
equate predictions, errors in structure and .. . . . . . . . . . . . .terminology, literal or
←−−−−−−−−−−−−−→missing translations, and hallucinations marked.

(ne–hi)34 (Barrault et al., 2019) and WMT20 (de–hsb). For ne–hi, our ap-
proach is about 6–7 BLEU below TST; unsurprising, as TST uses 65k parallel
and up to 7M monolingual data points. For de–hsb, TST WMT20 (Li et al.,
2020) uses additional parallel data from a high-resource pair (en–de), resulting
in much higher scores.

Example Translations Analogous to the high-resource setting, we showcase
example predictions of the SSNMT system on the low-resource similar lan-
guage pair hi–ne and the unrelated language pair de–hsb in order to present
common translation errors (Table 4.8).

For the unrelated low-resource language pair de–hsb, we observe many non-
translations when translating from de to hsb (Ex-1). Less frequently, this issue
is also observed when translating in the opposite direction. When translating
to de, we frequently see literal translations that lead to unnatural expressions,
e.g. Sprachkurze sorbische Sprache, which is the literal translation of Rěčny
kurs serbšćiny and would usually be expressed in German via the compound

34Ignoring a submission that relies on Google Translate.
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word Sorbischsprachkurs (Ex-2). In both directions we observe related hal-
lucinations, i.e., content that is not a translation of the SRC but which is
related topic-wise to the SRC, e.g., ist ein Vorschullehrer in Sachsen [is a
preschool teacher in Saxony] is related to předšulske dźěći [preschool children] and
Miłoćicac (place in Saxony). Lastly, both de and hsb predictions show gram-
matical (predicted dźělo vs. correct dźěle) and orthographic (Sprachkurze vs.
Sprachkurse) structural errors. As these errors appear in close to all predicted
words, the resulting translation performance is null. Nevertheless, the fact
that literal translations, related hallucinations and correct word translations
with structural mistakes are prevalent throughout all predictions, also shows
that the model already has a basic understanding of the de–hsb translation
task. Giving the SSNMT model a better understanding of the linguistic struc-
ture of de and hsb respectively via a more elaborate initialization technique
such as denoising autoencoding is likely to help mitigate structural errors as
well as literal translations. This concept is further explored in Section 4.6.

Due to a lack of Nepali competencies, we leave the discussion of the related
low-resource language pair hi–ne (Ex-3) mostly up to the competent reader.
However, it seems that there is a strong level of literal or even missing trans-
lations in the predictions. That is, almost all words in the Hindi source have
their one-on-one equivalent in the predicted Nepali target, which becomes
evident when observing the transliterations: Phanṭa (phant) parivāra (pari-
vaar) sēṭiṅa (setin) parivartana (parivartan) garna (karana) yō (yah) jām�ca
(jaanch) bākasa (boks ke) sakṣama (saphal[?]) pārnuhōs (paarie). The actual
Nepali reference is quite different from the Hindi source, thus indicating that
the predicted translations are merely adding some Nepali-style noise to the
Hindi text, without generating genuine Nepali translations, which explains
the low BLEU scores on this language pair.

4.4 Data Extraction Quality

In the previous section, we have evaluated the translation performance of SS-
NMT on a variety of language pairs. In this section, we focus on evaluating
the extraction quality of SSNMT’s SPE module.35 We thus use the same
high-resource language pairs en–{de,es,fr} from the previous section and train
SSNMT on a pseudo-comparable corpus where the underlying true parallel
pairs are known to us. We then evaluate the precision and recall of the sen-
tence pairs extracted by the SSNMT (Section 4.4.1). Lastly, we compare the
extraction performance of SSNMT to an existing parallel sentence extraction
baseline, i.e. WikiMatrix (Schwenk et al., 2021) (Section 4.4.2).

35This section is based on (Ruiter et al., 2020).
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Figure 4.3: Accumulated (ac) and epoch-wise (ep) precision and recall on the en–fr
EP-based synthetic comparable data.

4.4.1 Precision and Recall

To get an idea of the data extraction performance of SSNMT, we perform
control experiments on synthetic comparable corpora, as there is no underlying
ground truth to Wikipedia. For these purposes, we use the en–{fr,de,es}
pseudo-comparable EP corpus.

The pairs SSNMT extracts from the pseudo-comparable EP articles at each
epoch are compared to the 1M ground truth pairs to calculate epoch-wise
extraction precision (P) and recall (R). Further, we also take the concatenation
of all extracted sentences from the very beginning up to a certain epoch in
training in order to report accumulated P and R. As we are interested in the
final extraction decision based on the intersection of both representations Ce

and Ch (dual), but also in the decisions of each single representation (Ce, Ch),
we report the performance for all three representation combinations on EPenfr

in Figure 4.3. Similar curves are observed for EPende and EPenes, which are
considered in the discussion below.

At the beginning of training, the extraction precision of each representation
itself is fairly low with P∈[0.45,0.66] for Ce and P∈[0.14,0.40] for Ch. The fact
that Ce is initialized using pretrained embeddings, while Ch is not, leads to the
large difference in initial precision between the two. As both representations
are combined via their intersections, the final decision of the model is high pre-
cision already at the beginning of training with values between 0.78–0.87. As
training progresses and the internal representations are adapted to the task,
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Model en–fr en–de en–es
#P → ← #P → ← #P → ←

SSNMT 5.38M 29.5±.6 27.7±.6 2.21M 14.4±.6 18.1±.6 5.41M 28.6±.7 28.4±.7
WM 2.76M 33.5±.6 30.1±.6 1.57M 13.2±.5 12.2±.5 3.38M 29.6±.7 26.9±.8

Table 4.9: BLEU scores of SSNMT as well as an supervised NMT system trained
on WikiMatrix (WM) and tested on NT13/NT14. Total number of
unique extracted pairs (#P) extracted per system and language pair.

the precision of Ch is greatly improved, leading to an overall high precision
extraction which converges at 0.96–0.99. This development of extracting par-
allel pairs with increasing precision is in fact an instantiation of a denoising
curriculum as described by Wang et al. (2018). That is, we observe that
as training progresses, the percentage of noisy pairs, i.e., non-translations,
decreases.

The recall of the model, being bounded by the performance of the weakest
representation, is very low at the beginning of training (R∈ [0.03,0.04]) due
to the lack of task knowledge in Ch. However, as training progresses and Ch

improves, the accumulated extraction recall of the model rises to high values of
0.95–0.98. Interestingly, the epoch-wise recall is much lower than the accumu-
lated recall, which provides evidence for the hypothesis that SSNMT models
extracts different relevant samples at different points in training, such that it
has identified most of the relevant samples at some point during training, but
not at every epoch.

It should be stressed that the successful extraction of increasingly precise
pairs in combination with high recall is the result of the dynamics of both
internal representations Ce and Ch. As Ch is less informative at the beginning
of training, Ce guides the final decision at such early stages to ensure high
precision; and as Ce is high in recall throughout training, Ch ensures a gentle
growth in final recall by setting a good lower bound. The intersection of both
ensures that errors committed by one can be caught by the other; effectively
a mutual supervision between representations. The results in Figure 4.3 show
that SSNMT is able to identify parallel data in comparable data with high
precision and recall.

4.4.2 Comparison to WikiMatrix

Because of the close similarity with our WP data, we compare on the en–
{fr, de, es} corpora in WikiMatrix, which we preprocess using the same pre-
processing pipeline as used for the WP data to train SSNMT. As the Wiki-
Matrix data sets consist of preselected mined sentence pairs together with
their similarity scores, a manual threshold θ needs to be set to extract sen-

56
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tence pairs for training supervised NMT. We run the extraction script using
θ = 1.04, which has been recommended as a good choice for most language
pairs, and use the resulting data to train a supervised NMT system.

The results are summarized in Table 4.9. For en–fr, the supervised system
trained on WikiMatrix outperforms SSNMT trained on WP by 3–4 BLEU
points, while the opposite is the case for en–de, where SSNMT achieves 1–5
BLEU points more. For en–es, both approaches are not statistically signifi-
cantly different. The variable performance of the two approaches may be due
to the varying appropriateness of the extraction threshold θ in WikiMatrix.
For each language and corpus, a new optimal threshold needs to be found;
a problem that SSNMT avoids by its use of two representation types that
complement each other during extraction without the need of a manually set
threshold. The results show that SSNMT’s self-induced extraction and train-
ing curriculum is able to deliver translation quality on a par with supervised
NMT trained on externally preselected parallel data (WikiMatrix).

4.5 Self-Induced Curricula

In the previous section, we have observed that the sentence pairs extracted
during the course of training change over the epochs and have identified first
signs of a denoising curriculum. That is, as SSNMT training progresses, the
extracted sentence pairs more often constitute clean parallel pairs, which is
reflected in the increasing extraction precision of the model over time. In this
section, we further explore the nature of the self-induced curriculum, focusing
on the task similarity (Section 4.5.1), sentence complexity (Section 4.5.2),
and their correlation (Section 4.5.3).36 Throughout this section, we use the
extractions of the high-resource SSNMT models trained on en–{de,es,fr} WP
data (Section 4.3.1) for our analysis.

4.5.1 Order & Closeness to the MT Task

As a first indicator of the existence of a preferred choice in the order of the ex-
tracted sentence pairs, we compare the performance of SSNMT with different
supervised NMT models trained on the WP data extracted by SSNMT at dif-
ferent points in training. We consider specific per-epoch data sets extracted in
the first, intermediate and final epochs of training, as well as cumulative data
of all unique sentence pairs extracted over all epochs. We then train four su-
pervised NMT systems (NMTinit, NMTmid, NMTend, NMTall) on these data
sets. The difference in the translation quality using only the data selected
36This section is based on (Ruiter et al., 2020).
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Model en–fr en–de en–es
#P → ← #P → ← #P → ←

NMTinit 2.14M 21.8±.6 21.1±.5 0.32M 3.4±.3 4.7±.3 2.51M 27.0±.7 25.0±.7
NMTmid 3.14M 29.0±.6 26.6±.6 1.13M 11.2±.4 15.0±.6 3.96M 28.3±.7 26.1±.7
NMTend 3.17M 28.8±.6 26.5±.6 1.18M 11.9±.5 15.3±.5 3.99M 28.3±.7 26.2±.7
NMTall 5.38M 26.8±.7 25.2±.6 2.21M 11.6±.5 15.0±.6 5.41M 27.9±.6 25.9±.8

SSNMT 5.38M 29.5±.6 27.7±.6 2.21M 14.4±.6 18.1±.6 5.41M 28.6±.7 28.4±.7

Table 4.10: BLEU scores of a supervised NMT system trained on the unique
pairs collected by SSNMT in the first (NMTinit), intermediate
(NMTmid), final (NMTend) and all (NMTall) epochs of training tested
on NT13/NT14. Number of unique extracted pairs (#P) extracted
per system and language pair.

at different epochs reflects the evolving closeness of the data to the final trans-
lation task: we expect data extracted in later epochs of the SSNMT training
to include more sentences that are parallel, as demanded by a translation task,
and therefore to achieve a higher translation quality.

For each language pair and system, the first four rows in Table 4.10 show the
number of sentence pairs extracted for training and the untokenized BLEU
scores achieved. The evolving SSNMT training curriculum outperforms all
supervised versions across all tested languages. Notably, performance is 1–
3 BLEU points above the supervised system trained on all extracted data,
despite the fact that the SSNMT system is able to extract only a small amount
of data in its first epochs, compared to the fully supervised NMTall, that, at
every epoch, has access to all data that was ever extracted at any of the
epochs. This suggests that the SSNMT system is able to exclude previously
accepted false positives in later epochs, while training supervised NMT on the
complete data extracted by SSNMT leads to a recurring visitation at each
epoch of the same erroneous samples. Similar to a denoising curriculum,
the quality and quantity of the extracted data grow as training continues for all
languages, as the concatenation of the data extracted across epochs (NMTall)
is always outperformed by the last and thus largest epoch (NMTend), despite
the data for NMTall being much larger in size.

An indicator of the closeness of the curriculum to the final task is the
similarity between the selected sentence pairs during training. We estimate
similarity between pairs by their margin-based scores (Artetxe and Schwenk,
2019a) during training. At the beginning of training, the average similarity
between extracted pairs is low, but it quickly rises within the first 100 k train-
ing steps to values close to margin 1.07 (en–fr) and margin 1.12 (en–{de,es}).
This evolution is depicted in Figure 4.4. The increase in mean similarity of
the accepted pairs provides empirical evidence for our hypothesis that internal
representations of translations grow closer in the cross-lingual space, and the
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Figure 4.4: Average similarity scores of accepted pairs in en–{de,es,fr} within the
first 200 k steps.
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Figure 4.5: Perplexities given by the KenLM language model (left) on the English
data extracted by SSNMT during the first 40 k steps.

system is able to exploit this by extracting increasingly similar and accurate
pairs.

4.5.2 Order & Complexity

Establishing the complexity of a sentence is a complex task by itself. Com-
plexity can be estimated by the loss of an instance with respect to the target.
In our self-supervised approach, there is no target for the sentence extraction
task, so we try to infer complexity by other means.

First, we study the behavior of the average perplexity throughout training.
Perplexities of the extracted data are estimated using an LM trained with
KenLM (Heafield, 2011) on the monolingual WPs for the four languages in
our study. We observe the same behavior in the four cases illustrated by the
English curves plotted in Figure 4.5 (top). Perplexity drops heavily within
the first 10 k steps for all languages and models. This indicates that the data
extracted in the first epoch includes more outliers, and the distribution of
extracted sentences moves closer to the average observed in the monolingual
WPs as training advances. The larger number of outliers at the beginning
of training can be attributed to the larger number of homographs (bottom
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Figure 4.6: Gunning Fog Index (top) and percentage of homographs (bottom) of
extracted English data seen during the first 40 k steps in training.

Figure 4.6) and short sentences at the beginning of training, leading to a
skewed distribution of selected sentences.

The presence of homographs is vital for the self-supervised system in its
initialization phase. At the beginning of training, only word embeddings, and
therefore Ce, are initialized with pretrained data, while Ch is randomly ini-
tialized. Thus, words that have the same index in the shared vocabulary,
homographs, play an important role in identifying similar sentences using Ch,
making up around 1/3 of all tokens observed in the first epoch. As train-
ing progresses, and both Ce and Ch are adapted to the training data, the
prevalence of homographs drops and the extraction is now less dependent on a
shared vocabulary. The importance of homographs for the initialization raises
questions on how SSNMT performs on languages that do not share a script.
This is further explored in Section 4.6.

Finally, we analyze the complexity of the sentences that an SSNMT system se-
lects at different points of training by measuring their readability. For this,
we apply a modified version of the Gunning Fog Index (GF) (Gunning,
1952), which is a measure predicting the years of schooling needed to under-
stand a written text given the complexity of its sentences and vocabulary. It
is defined as:

GF = 0.4
[(w

s

)
+ 100

( c

w

)]
(4.1)

where w and s are the numbers of words and sentences in a text. c is the
number of complex words, which are defined as words containing more than
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Figure 4.7: Kernel density estimated Gunning Fog distributions and box plots over
extracted en (en–de) sentences at different points in training (left) and
over the monolingual Wikipedias (right).

2 syllables. The original formula excluded several linguistic phenomena from
the complex word definition such as compound words, inflectional suffixes, or
familiar jargon; we do not apply all the language-dependent linguistic analy-
sis.

Since our training data is based on Wikipedia articles, the diversity in the
complexity of the sentences is limited to the range of complexities observed
in Wikipedia. Figure 4.7 (right) shows the per-sentence GF distributions over
the sentences found in the monolingual WPs. We plot the probability density
function for the sentence-level GF Index for the four WP editions estimated via
a kernel density estimation. Each distribution is made up of two overlapping
distributions: one at the lower end of the sentence complexity scale containing
short article titles and headers, and one with higher average complexity and
larger standard deviation containing content sentences.

To study the behavior during training, we compare the Gunning Fog distri-
butions of the English data extracted at the beginning, middle and end of
training SSNMTende with that of the original WPen. In the extracted data,
we observe that compared with WP the overlapping distributions are less pro-
nounced and that there is no trail of highly complex sentences. This is due to
(i) the preprocessing of the input data, which removes sentences containing
less than 6 tokens, thus removing most WP titles and short sentences, and
(ii) the length accepted in our batches, which is constrained to 50 tokens per
sentence, removing highly complex strings. Apart from this, the distributions
in the middle and the end of training come close to the underlying one, but
we observe a large number of very simple sentences in the first epoch. This
shows that the system extracts mostly simple content at the beginning of
training but soon moves towards complex sentences that were previously not
yet identifiable as parallel.

A more detailed evolution is depicted in Figure 4.6 (top). We collect extracted
sentences for each 1 k training steps and report their “text”-level GF scores.37

37Note that GF is a text level score. In Figure 4.7 we show sentence level GF distributions,
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Figure 4.8: Margin-based similarity, homograph ratio and Gunning Fog index for
the first 10 k extracted sentences in the first (top) and last (bottom)
epoch of en–fr training. The solid blue line shows a second order
polynomial regression between the homograph ratio and similarity.

Here we observe how the complexity of the sentences extracted rises strongly
within the first 20k steps of training. For English, most models start with
text that is suitable for high school students (grade 10–11) and quickly turn
to more complex sentences suited for first-year undergraduate students (∼13
years of schooling); a curriculum of growing complexity. The GF mean
of the full set of sentences in the English Wikipedia is ∼12, which corresponds
to a high school senior. For all other languages, a similar trend of growing
sentence complexity is observed.

4.5.3 Correlation Analysis

So far, the variables under study, similarity and complexity (i.e., GF and ho-
mograph ratio), have been observed as a function of the training steps. In
order to uncover the correlations between the variables themselves, we cal-
culate the Pearson correlation coefficient (ρ) between them on the extracted
pairs of the en–fr SSNMT model during its first and last epoch. As seen in the
previous sections, most differences appear in the first epoch and the behavior
across languages is comparable.

At the beginning of training (Figure 4.8, top) there is a positive correlation
(ρ = 0.43) between homograph ratio and similarity; naturally pointing to the

while in Figure 4.6 (top) we show GF scores for “texts” consisting of sentences extracted
over a 1 k training step period.
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importance of homographs for identifying similar pairs at the beginning of
training. This is backed by a weak negative correlation between GF and ho-
mograph ratio (ρ = −0.28), indicating that sentences with more homographs
tend to be less complex. While there is no significant correlation between GF
and similarity in the first epoch (ρ = −0.07), by the last epoch of training
(Figure 4.8, bottom), there is a moderate positive relationship indicating that
more complex pairs tend to come with a higher similarity (ρ = 0.30) and vice
versa. At this point, homographs become less important for the extraction
and sentences without homographs are now also extracted in large numbers,
which is observed in a weaker positive correlation between the homograph ra-
tio and the similarity (ρ = 0.25). The relationship between the homograph
ratio and the GF stays stable (ρ = −0.27), as can be expected since the two
values are not dependent on the MT model state (Ce and Ch), as opposed to
the similarity score.

4.5.4 Synopsis

Self-supervised NMT jointly learns the MT model and how to find its super-
vision signal in comparable data; i.e. how to identify and select similar sen-
tences. This association makes the system naturally and internally evolve its
own curriculum without it having been externally enforced. We observe that
the dynamics of mutual supervision of both system-internal representations,
Ce and Ch, is imperative to the high recall and precision parallel data extrac-
tion of SSNMT. Their combination for data selection over time instantiates
a denoising curriculum (Section 4.4) in that the percentage of imprecise
pairs, i.e. non-translations, decreases from 18% to 2%, with an especially fast
descent at the beginning of training.

Even if the quality of extraction increases over time, lower-similarity sentences
used at the beginning of training are still relevant for the development of the
translation engine. We analyze the translation quality of a supervised NMT
system trained on the epoch-wise data extracted by SSNMT and observe a con-
tinuous increase in BLEU. Analogously, we also analyze the similarity scores
of extracted sentences and see that they also increase over time. As extracted
pairs are increasingly similar, and precise, the extraction itself instantiates a
secondary curriculum of growing task-relevance, where the task at hand
is NMT learning with parallel sentences.

A tertiary curriculum of increased sample complexity is observed via
an analysis of the extracted data’s Gunning Fog indexes. Here, the system
starts with sentences suitable for initial high school students and quickly moves
towards content suitable for first-year undergraduate students; an overachiever
indeed as the norm over the complete WP is end of high school level.
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Lastly, by estimating the perplexity with an external LM trained on WP, we
observe a steep decrease at the beginning of training with fast convergence.
This indicates that the extracted data quickly starts to resemble the under-
lying distribution of all WP data, with a larger amount of outliers at the
beginning. These outliers can be accounted for by the importance of homo-
graphs at that point. This raises the question of how SSNMT will perform on
really distant languages (fewer homographs) or when using smaller BPE sizes
(more homographs), which is further discussed in the following Section 4.6.

4.6 Augmentation Techniques

In Section 4.3, we have seen that SSNMT works well on high-resource lan-
guages when large amounts of comparable data are available. However, when
the amount of available comparable data is low, the translation performance
drops significantly.

While SSNMT relies on exploiting supervisory signals of parallel sentences
within comparable data sources, unsupervised MT (Lample et al., 2018b; Ren
et al., 2019; Artetxe et al., 2019) focuses on exploiting large amounts of mono-
lingual data, which are used to generate synthetic bitext training data via
various techniques such as back-translation or denoising. Currently, both
UMT and SSNMT approaches often do not scale to truly low-resource lan-
guages, for which neither monolingual nor comparable data are available in
sufficient quantity (Guzmán et al., 2019; Marchisio et al., 2020). A point that
particularly drives the data sparsity problem for self-supervised NMT is the
fact that comparable corpora only consist of translations by a small fraction
and thus most sentences will be left unused during training; i.e., SSNMT does
not exploit non-parallel sentences. Conversely, UMT does not exploit parallel
sentences within non-parallel corpora effectively.

Given the contrasting short-comings and benefits of UMT and SSNMT, it
is clear that both approaches can benefit from each other, as (i) SSNMT
can exploit parallel sentence pairs within non-parallel data more efficiently
than UMT and (ii) has strong internal quality checks on the data it admits
for training, which can be of use to filter low-quality synthetic data, while
(iii) UMT data augmentation techniques make monolingual data available for
SSNMT.

In this section38 we explore and test the effect of combining UMT data aug-
mentation with SSNMT on different data sizes, ranging from very low-resource
(∼ 66k non-parallel sentences) to high-resource (∼ 20M sentences). This is

38This section is based on (Ruiter et al., 2021).
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Figure 4.9: UMT-Enhanced SSNMT architecture: Two sentences are encoded one
by one in the encoder. The pair is filtered via sentence pair extraction
(SPE). If the pair is accepted, the model trains on it. If it is rejected, the
sentences in the pair are used to generate back-translations (BT), which
are again filtered by SPE. If these are accepted, the model trains on
them. Otherwise, the sentences are used to generate word translations
(WT) which the model then uses for training.

done on a common high-resource language pair (en–fr), which we downsample
while keeping all other parameters identical. We then proceed to evaluate the
different augmentation techniques on different truly low-resource similar and
distant language pairs, that are chosen based on their differences in typology
(analytic, fusional, agglutinative), word order (SVO, SOV ) and writing system
(Latin, Brahmic), i.e., en–{af,kn,my,ne,sw,yo}. We also explore the effect of
different initialization techniques (RAND, WE, DAE) for SSNMT.

4.6.1 Methods

Throughout this section, we investigate several augmentation and initialization
techniques, as well as bilingual finetuning, as described below.

Augmentation: We explore the effects of adding UMT-inspired augmenta-
tion techniques back-translation (BT), word translation (WT) and noising (N)
to SSNMT as described in detail in Section 3.3. In short, if a sentence in lan-
guage L1 of the comparable corpus is not matched with any sentence in L2
during sentence pair extraction (SPE), then it is back-translated. Before using
a back-translated sample for training, it undergoes the same SPE filtering as
non-back-translated sentences, as to assure that the quality of the pair is suf-
ficient. If the pair is accepted during SPE, the SSNMT trains on it, otherwise
the rejected back-translated sentence quality was too low and it is word trans-
lated and then trained on without any additional SPE filtering (Figure 4.9).
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All training samples, whether extracted parallel sentences, back-translations
or word translations, can be duplicated with added noise on the source side in
order to increase training volume and variance in the training data.

Initialization: When languages are related and large amounts of training data
is available, the initialization of SSNMT is not important. However, similarly
to UMT, initialization becomes crucial in the low-resource setting (Edman
et al., 2020). Apart from the standard random initialization (RAND), we ex-
plore different initialization techniques that make use of information embed-
ded in pretrained word embeddings initialized using Swadesh lists (WESWAD)
as well as bilingual (DAEBL) and multilingual (DAEML) denoising autoen-
coders.

Finetuning (F): When training base models on larger amounts of out-of-
domain or multilingual data, MT models may not perform optimally on the
target domain or language. Specifically, in the multilingual case, the perfor-
mance of the individual languages can be limited by the curse of multilinguality
(Conneau et al., 2020), where multilingual training leads to improvements on
low-resource languages up to a certain point after which it decays. To alleviate
this, we finetune converged multilingual SSNMT models bilingually on a given
language pair L1–L2.

4.6.2 Exploration of Corpus Sizes (en–fr)

To explore which augmentation technique works best with varying data sizes,
and to compare with the high-resource SSNMT setting in Section 4.3.1, we
train SSNMT on en–fr [2019], with different combinations of techniques (+BT,
+WT, +N) over decreasingly small corpus sizes. The base (B) model is a
simple SSNMT model with SPE and RAND initialization.

Figure 4.10 (left) shows that translation quality as measured by untokenized
BLEU is very low in the low-resource setting. For experiments with only 4k
comparable articles (similar to the corpus size available for en–yo), BLEU is
close to zero with base (B) and B+BT models. Only when WT is applied to
rejected back-translated pairs does training become possible, and is further
improved by adding noise, yielding BLEUs of 3.3839 (en2fr) and 3.58 (fr2en).
The maximum gain in performance obtained by WT is at 31k comparable

39Note that such low BLEU scores should be taken with a grain of salt: While there is an
automatically measurable improvement in translation quality, a human judge would not
see a meaningful improvement between different systems with low BLEU scores.
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Figure 4.10: Left: BLEU scores (en2fr) of different techniques (+BT,+WT,+N)
added to the base (B) SSNMT model when trained on increasingly
large numbers en–fr WP articles (# Articles).
Right: Number of extracted (SPE) or generated (BT,WT) sentence
pairs (k) per technique of the B+BT+WT model trained on 4k com-
parable WP articles. Number of extracted sentence pairs by the base
model B is shown for comparison as a dotted line.

articles, where it adds ∼ 9 BLEU over the B+BT performance. While the ad-
ditional supervisory signal provided by WT is useful in the low and medium
resource settings, up until ∼ 125k articles, its benefits are overcome by the
noise it introduces in the high-resource scenario, leading to a drop in trans-
lation quality. Similarly, the utility of adding noise varies with corpus size.
Only BT constantly adds a slight gain in performance of ∼1–2 over all base
models, where training is possible. In the high resource case, the difference
between B and B+BT is not significant, with BLEU 29.64 (en2fr) and 28.56
(fr2en) for B+BT, which also leads to a small, yet statistically insignificant
gain over the en–fr SSNMT model in Section 4.3.1, i.e. +0.1 (en2fr) and +0.9
(fr2en) BLEU.

At the beginning of training, the number of extracted sentence pairs (SPE)
of the B+BT+WT+N model trained on the most extreme low-resource setting
(4k articles), is low (Figure 4.10, right), with 4k sentence pairs extracted
in the first epoch. This number drops further to 2k extracted pairs in the
second epoch, but then continually rises up to 13k extracted pairs in the final
epoch. This is not the case for the base (B) model, which starts with a similar
amount of extracted parallel data but then continually extracts less as training
progresses. The difference between the two models is due to the added BT
and WT techniques. At the beginning of training, B+BT+WT is not able
to generate back-translations of decent quality, with only a few (196) back-
translations accepted for training. Rejected back-translations are passed into
WT, which leads to large numbers of WT sentence pairs up to the second
epoch (56k). These make all the difference: through WT, the system is able
to gain noisy supervisory signals from the data, which leads to the internal
representations becoming more informative for SPE, thus leading to more and
better extractions. Then, BT and SPE enhance each other, as SPE ensures
original (clean) parallel sentences to be extracted, which improves translation
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English Afrikaans Nepali Kannada Yorùbá Swahili Burmese

Typology fusional fusional fusional agglutinative analytic agglutinative analytic
Order SVO SOV,SVO SOV SOV SOV,SVO SVO SOV
Script Latin Latin Brahmic Brahmic Latin Latin Brahmic

sim(L–en) 1.000 0.822 0.605 0.602 0.599 0.456 0.419

Table 4.11: Classification (typology, word order, script) of the languages L to-
gether with their cosine similarity (sim) to English based on lexical
and syntactic URIEL features.

accuracy, and hence more and better back-translations (e.g. up to 20k around
epoch 15) are accepted.

4.6.3 Exploration of Language Distance

BT, WT and N data augmentation techniques are especially useful for the
low- and mid-resource settings of related language pairs such as English and
French (both Indo-European). To apply the approach to truly low-resource
language pairs, and to verify which language-specific characteristics impact
the effectiveness of the different augmentation techniques, we train and test
our model on a selected number of languages (Table 4.11) based on their ty-
pological and graphemic distance from English (fusional→analytic40, SVO,
Latin script). Focusing on similarities on the lexical and syntactic level,41 we
retrieve the URIEL (Littell et al., 2017) representations of the languages us-
ing lang2vec42 and calculate their cosine similarity to English. Afrikaans is
the most similar language to English, with a similarity of 0.822, and pre-BPE
vocabulary (token) overlap of 7.1% (Table 4.2), which is due to its similar ty-
pology (fusional→analytic) and comparatively large vocabulary overlap (both
languages belong to the West-Germanic language branch). The most distant
language is Burmese (sim 0.419, vocabulary overlap 2.1%), which belongs to
the Sino-Tibetan language family and uses its own (Brahmic) script.

We train SSNMT with combinations of BT, WT, N on the low-resource lan-
guage combinations en–{af,kn,my,ne,sw,yo} using the four different types of
model initialization (RAND, WESWAD , DAEBL , DAEML). All reported BLEU
scores reported on the low-resource languages combinations are calculated us-
ing SacreBLEU43.

40English and Afrikaans are traditionally categorized as fusional languages. However, due
to their small morpheme-word ratio, both English and Afrikaans are nowadays often
categorized as analytic languages.

41This corresponds to lang2vec features syntax_average and inventory_average.
42https://pypi.org/project/lang2vec/
43BLEU+case.mixed+numrefs.4+smooth.exp+tok.intl+version.1.4.9
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4.6.3.1 Intrinsic Parameter Analysis

We focus on the intrinsic initialization and data augmentation technique pa-
rameters. The difference between RAND and WESWAD initialization is
barely significant across all language pairs and techniques (Figure 4.11). For
all language pairs, except en–af, DAEML initialization tends to be the best
choice, with major gains of +4.2 BLEU (yo2en, B+BT) and +5.3 BLEU
(kn2en, B+BT) over their WE-initialized counterparts. This is natural since
pretraining on DAE allows the SSNMT model to learn how to generate fluent
sentences. By performing DAE, the model also learns to denoise noisy inputs,
resulting in a big improvement in translation performance (e.g. +37.3 BLEU,
af2en, DAEBL) on the en–af and en–sw B+BT+WT models in comparison to
their WE-initialized counterparts. Without DAE pretraining, the noisy word
translations lead to very low BLEU scores. Adding an additional denoising
task, either via DAE initialization or via adding the +N data augmentation
technique, lets the model also learn from noisy word translations with im-
proved results. For en–af only, the WE initialization generally performs best,
with BLEU scores of 52.2 (af2en) and 51.2 (en2af ). For language pairs using
different scripts, i.e. Latin–Brahmic (en–{kn,my,ne}), the gain by performing
DAEBL pretraining is negligible, as results are generally low. These languages
also have a different word order (SOV) than English (SVO), which may fur-
ther increase the difficulty of the translation task (Banerjee et al., 2019; Kim
et al., 2020). However, once the pretraining and MT learning is multilin-
gual (DAEML), the different language directions benefit from one another and
an internal mapping of the languages into a shared space is achieved. This
leads to BLEU scores of 1.7 (my2en), 3.3 (ne2en) and 5.3 (kn2en) using the
B+BT technique. The method is also beneficial when translating into the
low-resource languages, with en2kn reaching BLEU 3.3 (B).

B+BT+WT seems to be the best data augmentation technique when the
amount of data is very small, as is the case for en–yo, with gains of +2.4 BLEU
on en2yo over the baseline B. This underlines the findings in Section 4.6.2, that
WT serves as a crutch to start the extraction and training of SSNMT. Further
adding noise (+N) tends to adversely impact on results on this language pair.
On languages with more data available (en–{af,kn,my,ne,sw}), +BT tends to
be the best choice, with top BLEUs on en–sw of 7.4 (en2sw, DAEML) and 7.9
(sw2en, DAEML). This is due to these models being able to sufficiently learn
on B (+BT) only (Figure 4.12), thus not needing +WT as a crutch to start
the extraction and MT learning process. Adding +WT to the system only
adds additional noise and thus makes results worse.
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Figure 4.11: BLEU scores of SSNMT Base (B) with added techniques
(+BT,+WT,+N) on low-resource language combinations en2L and
L2en, with L = {af, kn,my, ne, sw, yo}.

4.6.3.2 Extrinsic Parameter Analysis

We focus on the extrinsic parameters linguistic distance and data size. Our
model is able to learn MT also on distant language pairs such as en–sw (sim
0.456), with top BLEUs of 7.7 (en2sw, B+BT+W+N) and 7.9 (sw2en, B+BT).
Despite being typologically closer, training SSNMT on en–ne (sim 0.605) only
yields BLEUs above 1 in the multilingual setting (BLEU 3.3 ne2en). This
is the case for all languages using a different script than English (kn,my,ne),
underlining the fact that achieving a cross-lingual representation, i.e. via
multilingual (pre-)training or a decent overlap in the (BPE) vocabulary (as
in en–{af,sw,yo}) of the two languages, is vital for identifying good similar
sentence pairs at the beginning of training and thus makes training possible.
For en–my the DAEML approach was only beneficial in the my2en direction
but had no effect on en2my, which may be due to the fact that my is the
most distant language from en (sim 0.419) and, contrary to the other low-
resource languages we explore, does not have any related language44 in our
experimental setup, which makes it difficult to leverage supervisory signals
from a related language.

When the amount of data is small (en–yo), the model does not achieve
BLEUs above 1 without the WT technique or without DAE initialization,

44Both Nepali and Kannada share influences from Sanskrit. Swahili and Yorùbá are both
Niger-Congo languages, while English and Afrikaans are both Indo-European.
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Figure 4.12: Number of extracted (SPE) or generated (BT,WT) sentence pairs
(k) per technique of the best performing SSNMT model (en2L) per
language L. Number of extracted sentence pairs by the base model
(B) are shown for comparison as a dotted line.

since the extraction recall of a simple SSNMT system is low at the beginning
of training (Section 4.4.1) and thus SPE fails to identify sufficient parallel
sentences to improve the internal representations, which would then improve
SPE recall. This is analogous to the observations on the en-fr base model B
trained on 4 k WP articles (Figure 4.10). Interestingly, the differences between
RAND/WE and DAE initialization are minimized when using WT as a data
augmentation technique, showing that it is an effective method that makes
pretraining unnecessary when only small amounts of data are available. For
larger data sizes (en–{af,sw}), the opposite is the case: the models sufficiently
learn SPE and MT without WT, and thus WT just adds additional noise.

4.6.3.3 Extraction and Generation

We inspect the number of extracted and generated sentence pairs by the best-
performing models of each language pair. The SPE extraction and BT/WT
generation curves (Figure 4.12) for en–af (B+BT, WE) are similar to those on
en–fr (Figure 4.10, right). At the beginning of training, not many pairs (32 k)
are extracted, but as training progresses, the model-internal representations
are improved and it starts extracting more and more parallel data, up to 252 k
in the last epoch. Simultaneously, translation quality improves and the number
of back-translations generated increases drastically from 2 k up to 156 k per
epoch. However, as the amount of data for en–af is large, the base model B has
a similar extraction curve. Nevertheless, translation quality is improved by the
additional back-translations (+3.1 BLEU). For en–sw (B+BT+WT+N, WE),
the curves are similar to those of en–fr, where the added word translations
serve as a crutch to make SPE and BT possible, thus showing a gap between
the number of extracted sentences (SPE) (∼ 5.5 k) of the best model and those
of the baseline (B) (∼1–2 k). For en–yo (B+BT+WT, WE), the amount of
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en–af en–kn en–my en–ne en–sw en–yo
→ ← → ← → ← → ← → ← → ←

Best* 51.2 52.2 0.3 0.9 0.1 0.7 0.3 0.5 7.7 6.8 2.9 3.1
DAEML 42.5 42.5 3.1 5.3 0.1 1.7 1.0 3.3 7.4 7.9 1.5 4.7

DAEML+F 46.3 50.2 5.0 9.0 0.2 2.8 2.3 5.7 11.6 11.2 2.9 5.8

Table 4.12: BLEU scores on the en2L (→) and L2en (←) directions of top perform-
ing SSNMT model without finetuning and without DAEML (Best*)
and SSNMT using DAEML initialization and B+BT technique with
(DAEML+F) and without finetuning (DAEML).

extracted data is very small (∼ 0.5 k) for both the baseline and the best
model. Here, WT fails to serve as a crutch as the number of extractions does
not increase, but instead is overwhelmed by the number of word translations.
For en–{kn,ne} (DAEML), the extraction and BT curves also rise over time.
For en–my, where all training setups show similar translation performance in
the en2my direction, we show the extraction and BT curves for B+BT with
WE initialization. We observe that, as opposed to all other models, both lines
are flat, underlining the fact that due to the lack of sufficiently cross-lingual
model-internal representations, the model does not enter the self-supervisory
cycle common to SSNMT.

4.6.3.4 Bilingual Finetuning

The overall trend shows that DAEML pretraining with multilingual SSNMT
training in combination with back-translation (B+BT) leads to top results
for low-resource similar and distant language combinations. For en–af only,
which has more comparable data available for training and is a very similar
language pair, the multilingual setup is less beneficial. The model attains
enough supervisory signals when training bilingually on en–af, thus the ad-
ditional languages in the multilingual setup are simply noise for the system.
While the DAEML setup with multilingual MT training makes it possible to
map distant languages into a shared space and learn MT, we suspect that the
final MT performance on the individual language directions is ultimately being
held back due to the multilingual noise of other language combinations. To
verify this, we use the converged DAEML B+BT model and finetune it using
the B+BT approach on the different en–{af,...,yo} combinations individually
(Table 4.12).

In all cases, the bilingual finetuning improves the multilingual model, with a
major increase of +4.2 BLEU for en–sw resulting in a BLEU score of 11.6. The
finetuned models almost always produce the best performing model, showing
that the process of i) multilingual pretraining (DAEML) to achieve a cross-
lingual representation, ii) SSNMT online data extraction (SPE) with online
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Pair Init. Config. Best Base USMT +UNMT Laser TSS #P (k)

en2af WE B+BT 51.2±.9 48.1±.9 27.9±.8 44.2±.9 52.1±1.0 35.3 37
af2en WE B+BT 52.2±.9 47.9±.9 1.4±.1 0.7±.1 52.9±.9 – –

en2kn DAEML B+BT+F 5.0±.2 0.0±.0 0.0±.0 0.0±.0 – 21.3 397
kn2en DAEML B+BT+F 9.0±.2 0.0±.0 0.0±.0 0.0±.0 – 40.3 397

en2my DAEML B+BT+F 0.2±.0 0.0±.0 0.1±.0 0.0±.0 0.0±.0 39.3 223
my2en DAEML B+BT+F 2.8±.1 0.0±.0 0.0±.0 0.0±.0 0.1±.0 38.6 223

en2ne DAEML B+BT+F 2.3±.1 0.0±.0 0.1±.0 0.0±.0 0.5±.1 8.8 –
ne2en DAEML B+BT+F 5.7±.2 0.0±.0 0.0±.0 0.0±.0 0.2±.0 21.5 –

en2sw DAEML B+BT+F 11.6±.3 4.2±.2 3.6±.2 0.2±.0 10.0±.3 14.8 995
sw2en DAEML B+BT+F 11.2±.3 3.6±.2 0.3±.0 0.0±.0 8.4±.3 19.7 995

en2yo DAEML B+BT+F 2.9±.1 0.3±.1 1.0±.1 0.3±.1 – 12.3 501
yo2en DAEML B+BT+F 5.8±.1 0.5±.1 0.6±.0 0.0±.0 – 22.4 501

Table 4.13: BLEU scores of the best SSNMT configuration (columns 2-4) com-
pared with SSNMT base, USMT(+UNMT) and a supervised NMT
system trained on Laser extractions (columns 5-8). Top scoring sys-
tems (TSS) per test set and the number of parallel training sentences
(#P) available for reference (columns 9-10).

back-translation (B+BT) to obtain increasing quantities of supervisory signals
from the data, followed by iii) focused bilingual finetuning to remove multi-
lingual noise is key to learning low-resource MT also on distant languages
without the need of any parallel data.

4.6.4 Comparison to other NMT Architectures

We compare the best SSNMT model configuration per language pair with the
SSNMT baseline system, and with Monoses (Artetxe et al., 2019), an un-
supervised machine translation model in its statistical (USMT) and hybrid
(USMT+UNMT) version (Table 4.13). Over all languages, SSNMT with data
augmentation outperforms both the SSNMT baseline and UMT models.

We also compare our results with a supervised NMT system trained on
WP parallel sentences extracted by Laser45 (Artetxe and Schwenk, 2019b)
(en–{af,my}) in a preprocessing data extraction step with the recommended
extraction threshold of 1.04. We use the pre-extracted and similarity-ranked
WikiMatrix (Schwenk et al., 2021) corpus, which uses Laser to extract paral-
lel sentences, for en–{ne,sw}. Laser is not trained on kn and yo, thus these
languages are not included in the analysis. For en–af, our model and the su-
pervised model trained on Laser extractions perform equally well. In all other
cases, our model statistically significantly outperforms the supervised Laser
model, which is surprising, given the fact that the underlying Laser model

45https://github.com/facebookresearch/LASER
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was trained on parallel data in a highly multilingual setup (93 languages),
while our DAEML setup does not use any parallel data and was trained on the
monolingual data of much fewer language directions (7 languages) only. This
again underlines the effectiveness of joining SSNMT with BT, multilingual
pretraining and bilingual finetuning.

For reference, we also report the top-scoring system (TSS) per language
direction based on top results reported on the relevant test sets together with
the amount of parallel training data available to TSS systems. In the case of
language pairs whose test set is part of ongoing shared tasks (en–{kn,my}), we
report the most recent results reported on the shared task web pages (Section
4.1.1). The amount of parallel data available for these TSS varies greatly
across languages, from 37 k (en–af ) to 995 k (often noisy) sentences. In general,
TSS systems perform much better than any of the SSNMT configurations or
unsupervised models. This is natural, as TSS systems are mostly supervised
(Martinus and Abbott, 2019; Adelani et al., 2021), semi-supervised (Lakew
et al., 2021) or multilingual models with parallel pivot language pairs (Guzmán
et al., 2019), none of which is used in the UMT and SSNMT models. For
en2af only, our best configuration and the supervised NMT model trained on
Laser extractions outperform the current TSS, with a gain in BLEU of +16.9
(B+BT), which may be due to the small amount of parallel data the TSS was
trained on (37 k parallel sentences).

4.6.5 Example Translations

Analogous to Section 4.3, we present a small set of sample predictions (Table
4.14) to discuss common errors in the model. For this we focus on predictions
generated by the best performing SSNMT model per language (Table 4.13,
columns 2+3).

As in the previous error analysis on high- and low-resource language pairs,
one very common error source across all language directions are words and
phrases with non-standard casing, which lead to non-translations. This is
especially true for words that are usually written in lower-case and suddenly
appear capitalized as a proper noun or after instance-internal punctuation,
e.g., Domestic Violence Act (Ex-1), Smart Cities Mission (Ex-3) and Why
(Ex-8). Note that when words are commonly capitalized, e.g., Prime Minister
(Ex-3) and Sanskrit (Ex-6) a non-translation error is not caused. While true-
casing was one of the preprocessing steps, it only true-cases the first token
in the sequence to reduce the complexity. True-casing all words would help
to mitigate non-translation errors, but it would add the additional complex-
ity of recasing words to their original casing (e.g., enforcing capitalized proper
nouns) in the prediction as a postprocessing step, which is not straight-forward.
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SRC The Domestic Violence Act makes provision for the establishment of shelters.
en2af (1) PRD Die

←−−−−−−−−−−−−−−−−→
Domestic Violence Act maak voorsiening vir die vestiging van skuilings.

REF Die Wet op Gesinsgeweld bepaal dat skuilings gevestig word.

SRC Ons sal probeer om u navraag op te los binne 21 werksdae.
af2en (2) PRD We will try to solve you in 21 ....jobs.

REF We will try to resolve your query within 21 business days.

SRC The Prime Minister also reviewed the progress of the Smart Cities Mission.
en2kn (3) PRD ಪರ್�ಾನ ಮಂÚರ್

←−−−−−−−−−−−−−−−→Smart Cities Mission ಯಪರ್ಗÚಯನುನ್ ಸಹ ಪåéೕæëದರು.
[Pradhāna mantri Smart Cities Missionya pragatiyannu saha pariśīlisidaru.]

REF ಪರ್�ಾನಮಂÚರ್ಯವರು, £ಾಮ್ಟ್‍ರ್ ëÕ ಅâ�ಾನದ ಪರ್ಗÚಯನೂನ್ ಪåéೕæëದರು.
[Pradhānamantriyavaru, smārṭ siṭi abhiyānada pragatiyannū pariśīlisidaru.]

SRC 2022ರĎೂÚತ್ñ 300 ದಶಲಕಷ್ ತಲುಪēವēದು ಅರ ಗುå�ಾÏþ.
[2022rahottige 300 daśalakṣa talupuvudu ara guriyāgide.]

kn2en (4) PRD It is a target that reaches over 300 million to 2022.
REF Their target is to reach 300 million under-privileged people by 2022.

SRC At least three people were killed, at least fifteen injured.
en2my (5) PRD သားသမီး ေြခက်ေယာက်အနက် အြကီဆံုြဖစ်သည်။

[Sarrsamee hkyayat youtaanaat a kye sone hpyitsai.]
REF အနည်းဆံု လူ သံု ေယာက် ေသဆံု ခ့ဲ ြပီ ၊ အနည်းဆံု ဆယ့်ငါး ဦး ထိခုိက် ဒဏ်ရာ

ရ ခ့ဲ သည် ။
[aanaeesone luu sone yout saysone hkae pye, aanaeesone s y ngarr u
htihkite danrar r hkae sai.]

SRC There is a definite way of quoting and noting Sanskrit texts.
en2ne (6) PRD भारतका संस्कृत ग्रȜहरूमा उल्लेखनीय छन् ।

[Bhāratakā sanskr�ta granthaharūmā ullēkhanīya chan.]
REF संस्कृत ग्रȜहरुको उद्धरण र ɞटप्पणी ɞदने मौɡलक तɝरका छ ।

[Sanskr�ta granthaharukō ud’dharaṇa ra ṭippaṇī dinē maulika tarikā cha.]

SRC धेरै उदाहरणहरूमा, यस उत्पɝरवतर्नको कारण घोडाहरूको गɟतमा न्यूनता पɟन आउन सक्छ ।
[Dhērai udāharaṇaharūmā, yasa utparivartanakō kāraṇa ghōḍ’�āharūkō
gatimā n’yūnatā pani ā’una sakcha.]

ne2en (7) PRD In many instances, this is due to the loss of horses in New Zealand.
REF Among many examples, this mutation can also reduce horses’ speeds.

SRC Back to my question: Why did I stay?
en2sw (8) PRD Kurudi kwa .....suala langu: ←−→Why hajawahi kukaa?

REF Kurudia swali langu: Kwa nini nilibaki?

SRC Unahitaji kulipa wanajeshi na polisi kulinda usalama.
sw2en (9) PRD It requires troops and police to protect security.

REF You have to pay the army and the police to show law and order.

SRC That was why he now met his old mother with a dazzling natural smile...
en2yo (10) PRD Kò p tí ó m pẹ̀lú ìyá r tí ←−−−−−−−−−−−−−−−−−−→a dazzling natural smile..

REF Ìdí nìyí tí ó fi fi ẹ̀rín músẹ́ tó rí yan-ran yan-ran kọ mọ̀nà pàdé ìyá rẹ̀...

SRC Ó sáré wọ yàrá kan nínú iyẹwù tirẹ̀.
yo2en (11) PRD He then placed the house in the garden.

REF He rushed inside an inner room in his own Apartment.

Table 4.14: Source (SRC), reference (REF) and predictions (PRD) of the best per-
forming SSNMT model on the corresponding en–{af,kn,my,ne,sw,yo}
test sets, with errors in structure and .. . . . . . . . . . . .terminology, literal or
←−−−−−−−−−−−−−→missing translations, and hallucinations marked.

A supervised MT model, with a character or small sub-word vocabulary size
and which simply learns the recasing task of a language, could be applied to
perform this more complex recasing step.

Another common error stems from the generally rare occurrence of many
(specialized) terms as defined by the Zipfian distribution of word occurrences in
natural languages. Given that our training data itself is a small sample of the
true distribution of a given language, this phenomenon is intensified and many
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L2 af kn my ne sw yo
#Translations 9 7 4 6 8 5
#Related 1 2 3 2 2 1
#Unrelated 0 1 3 2 0 4

Table 4.15: Number of translations, related and unrelated pairs within a random
sample of size 10 from the extractions performed during the last epoch
of training by the best-performing SSNMT model for each language
combination en–L2.

terms are never seen during training. This often leads to the model ignoring
the unknown term, which then often leads to erroneous sentence structures.
In Example 2, the word navraag [query] was seemingly unknown and led to a
structural error in the prediction, i.e., solve you in vs. correct resolve your
query within. Similarly, we see terminology errors, where the less-frequent
word werksdae [business days] is erroneously simplified to jobs. Note that the
missing term under-privileged in Example 4 is not caused by ignoring the term
in the source, instead, it was not included in the source sentence and is thus
missing in the prediction.

Translationese artifacts in the predictions are common. These include subtle
literal translations such as protect security (from kulinda usalama) vs. more
natural show law and order (Ex-9) or maak voorsiening vir die vestiging van
skuilings (from makes provision for the establishment of shelters) vs. more
natural bepaal dat skuilings gevestig word [determine that shelters will be built]
(Ex-1). In some cases, literal translations can cause structural errors when
the sentence structure from the source language is partially copied (Ex-4).

Lastly, in those languages with generally low translation quality, related hal-
lucinations, i.e., hallucinations that maintain the topic of the source sentence,
are very common. For example, At least three people were killed, at least fifteen
injured. becomes သားသမီး ေြခက်ေယာက်အနက် အြကီဆံုြဖစ်သည်။ [He is the eldest
of six children.], i.e., the concept of counting people is maintained. The fact
that the hallucination talks about the family background of a person is not
surprising, as these types of sentences often appear in the Wikipedia corpus
when introducing a human subject. Example 6 also constitutes a related hal-
lucination, where There is a definite way of quoting and noting Sanskrit texts.
becomes भारतका संस्कृत ग्रȜहरूमा उल्लेखनीय छन् । [Notable among the Sanskrit texts
of India.] which is only related to the source via the concept of Sanskrit texts.
Further hallucinations are observed across all languages with very low BLEU
scores (Examples 7, 10, 11).

While hallucinations correlate with low BLEU scores, the cause of the lower
translation quality on en–{my,ne,yo} particularly is most likely caused by
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the smaller number of extracted parallel pairs. Higher-performing en–sw and
en–kn both count 38k and 46k unique extracted pairs respectively during train-
ing, while the number of extractions is much lower for en–my (16k), en–ne
(15k) and en–yo (4k). This also raises the question of whether the quality of
the extractions on en–{my,ne,yo} is generally lower than for en–{af,kn,sw}.
We check this hypothesis by randomly sampling 10 sentence pairs from the
last epoch of the best performing model for each language combination en–
{af,kn,my,ne,sw,yo} and annotating them as either translations, related or un-
related extractions (Table 4.15). Note that the sample size is very small and
thus we can expect a large error bound. Nevertheless, even with small sample
size, the results are coherent with previous findings regarding the translation
quality and the number of extractions. We can observe that for almost all
language combinations, even those with low BLEUs, the number of transla-
tions in each sample constitutes at least half of the extractions, with en–af
unsurprisingly having the highest share of extracted translations (9) and low-
performing en–{my,ne,yo} having only 4-6 extracted translations in the sam-
ple. It is also unsurprising that en–my is the only language pair with less than
half of the extractions being translations, as this is also the only language pair
that does not enter the self-supervisory cycle as noted in Section 4.6.3.3. This
may be an indicator that the cross-lingual mapping between English, Burmese,
Nepali and Yoruba is weaker and thus causes related non-translations to be
extracted and trained on, which then causes the related hallucinations dur-
ing inference. The reason for the weaker mapping cannot be fully explained
by language distance, as higher-performing sw is further away from en (sim
0.456) than low-performing yo (sim 0.599) and ne (sim 0.605). It can also
not be fully explained by data size, since the number of available sentences in
the my Wikipedia is larger (477k sentences) than the sw Wikipedia (244k).
Most likely a mixture of the two factors is more explanatory. However, a more
large-scale study, taking into account the different linguistic (typology, script,
language family, homographs, etc.) as well as data-driven factors (data size,
domain drift from test data), would be required to give a deeper explanation
of the reasons for the differences of the cross-lingual mapping quality.

4.7 Discussion

We have explored different representation and sentence pair extraction meth-
ods for SSNMT (Section 4.2). After having identified system P as the best-
performing SPE method, we have evaluated the translation performance of
this setup on both high-resource and low-resource languages (Section 4.3).
Similarly, we also evaluated the data extraction quality (Section 4.4), where
we identified a trend towards the extraction of higher-quality pairs as training
progresses. Taking into account also the complexity of the extracted sentence
pairs, we identified a self-induced curriculum of increasing complexity and
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quality regarding the order of the extracted pairs over time (Section 4.5). We
note that while the translation quality is high for data-rich language pairs, the
performance is low when the available data is small. To this end, we explored
various data augmentation techniques to use the available data more effec-
tively (Section 4.6). We have identified the combination of multilingual DAE
initialization followed by first multilingual then bilingual SSNMT training with
back-translation to yield top results. While SSNMT with data augmentation
and multilingual DAE pretraining is able to learn MT even on a low-resource
distant language pair such as English–Kannada, it can fail when a language
does not have any relation to other languages included in the multilingual pre-
training, which was the case for Burmese in our setup. This can be overcome
by being conscientious of the importance of language distance and including
related languages during DAEML pretraining and SSNMT training (Ruiter
et al., 2021). Further, throughout this chapter, we have performed qualitative
analysis on the SSNMT predictions on both high- and low-resource language
combinations and have found the main causes of errors to be caused by i)
non-standard casings in Latin-script source sentences, ii) domain drift and
iii) language distance and data size. While the latter is difficult to control,
domain drift can be mitigated by in-domain finetuning. Non-standard casing
is a question of handling the data and can be mitigated by performing true-
casing on all tokens during preprocessing and a more elaborate recasing during
postprocessing.

While the first step towards low-resource SSNMT for distant language pairs
has been done, the major problem to date is the weak cross-lingual embeddings
space between specific (distant) language combinations. Further research into
the improvement of transformer-based cross-lingual embeddings is thus nec-
essary to further improve not only low-resource SSNMT but also NMT in
general.
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5.1 Introduction

Style transfer is a highly versatile task in natural language processing, where
the goal is to modify the stylistic attributes of a text while maintaining its
original meaning.1 A broad variety of stylistic attributes has been considered,
including, but not limited to, formality (Rao and Tetreault, 2018), gender
(Prabhumoye et al., 2018), polarity (Shen et al., 2017) and civility (Laugier
et al., 2021). Potential industrial applications are manifold and range from
simplifying professional language to be intelligible to laypersons (Cao et al.,
2020), the generation of more compelling news headlines (Jin et al., 2020), to
related tasks such as text simplification for children and people with disabilities
(Martin et al., 2020a).

Data-driven style transfer methods can be classified according to the kind of
data they use: parallel or non-parallel corpora in the two styles (Jin et al.,
2022). To learn style transfer on non-parallel monostylistic corpora, current
approaches take inspiration from UNMT (Lample et al., 2018a), by exploiting
cycle consistency loss (Lample et al., 2019), iterative back-translation (Jin
et al., 2019) and DAE (Laugier et al., 2021). As these approaches are similar to
UNMT they suffer from the same limitations, i.e., a poor performance relative
to supervised NMT systems when the amount of UNMT training data is small
and/or exhibits a domain mismatch (Kim et al., 2020). Unfortunately, this is
the case for most existing style transfer corpora.

In this chapter, we propose an alternative approach using our self-supervised
sequence-to-sequence learning setup with augmentation (as initially explored
in Section 4.6 for MT), which jointly learns online SPE, BT and style transfer
in a loop. The goal is to identify and exploit supervisory signals present
in limited amounts of (possibly domain-mismatched) non-parallel data more
effectively. We refer to our self-supervised setup for learning style transfer as
Self-Supervised Style Transfer (3ST). Analogous to SSNMT it implements
an online self-supervisory cycle, where learning SPE enables us to learn style
transfer on extracted parallel data, which iteratively improves SPE and BT
quality, and thereby style transfer learning, in a virtuous circle.

1This chapter is based on (Ruiter et al., 2022a).
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We evaluate and compare 3ST to current SOTA style transfer models on two
established tasks: formality and polarity style transfer. To gain insights into
the performance of 3ST on an under-explored task, we also focus on the civil
rephrasing task, which is interesting as i) it has been explored only twice
before (Nogueira dos Santos et al., 2018; Laugier et al., 2021) and ii) it makes
an important societal contribution in order to tackle hateful content online.
We focus on performance and qualitative analysis of 3ST predictions on this
task’s test set and identify shortcomings of the currently available data setup
for civil rephrasing.

Our contribution in this chapter is threefold:

• Efficient detection and exploitation of the supervisory signals in non-
parallel style transfer corpora via jointly-learning online SPE and BT,
outperforming SOTA models on averaged performance across their
tested tasks in automatic and human evaluation (∆ in Tables 5.3 and
5.4).

• Simple end-to-end training of a single online model without the need for
additional external style-classifiers or SPE, enabling the initialization
of the network on a DAE task, which leads to SOTA-matching fluency
scores during human evaluation.

• A qualitative analysis that identifies flaws in the current data, empha-
sizing the need for a high-quality civil rephrasing corpus.

5.2 Experimental Setup

After introducing the data used to train and evaluate the 3ST models (Section
5.2.1), we define their hyperparameters (Section 5.2.2) and our evaluation
setup for the style-transfer tasks (Section 5.2.3).

5.2.1 Data

Formality For the formality task, we use the test and development (dev)
splits of Grammarly’s Yahoo Answers Formality Corpus (GYAFC) corpus
(Rao and Tetreault, 2018), which is based on the Yahoo Answers L62 cor-
pus. However, as GYAFC is a parallel corpus and we want to evaluate our
models in a setup where only monostylistic data is available, we follow Rao
and Tetreault (2018) and recreate the training split without downsampling

2https://www.webscope.sandbox.yahoo.com/catalog.php?datatype=l
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Corpus Train Dev Test ∅

CivCo-Neutral 136,618 500 – –
CivCo-Toxic 399,691 500 4,878 14.9
Yahoo-Formal 1,737,043 4,603 2,100 12.7
Yahoo-Informal 3,148,351 5,665 2,741 12.4
Yelp-Pos 266,041 2,000 500 9.9
Yelp-Neg 177,218 2,000 500 10.7

Table 5.1: Number of sentences of the different tasks train, dev and test splits, as
well as average number of tokens per sequence (∅) of the tokenized test
sets. Splits with target references available are underlined.

and without creating parallel reference sentences. For this, we extract all an-
swers from the Entertainment & Music and Family & Relationships domains
in the Yahoo Answers L6 corpus. We use a BERT classifier finetuned on the
GYAFC training split to classify sentences as either informal or formal. This
leaves us with a much (46×) larger training split than the parallel GYAFC
corpus, although consisting of non-parallel data where a single instance is less
informative than a parallel one. We remove sentences from our training data
that are matched with a sentence in the official test-dev splits. We dedupli-
cate the test-dev splits to match those used by Jin et al. (2019). For DAE
pretraining, we sample sentences from Yahoo Answers L6.

Polarity We use the standard train-dev-test splits3 of the Yelp sentiment
transfer task (Shen et al., 2017). This dataset is already tokenized and lower-
cased. Therefore, as opposed to the civility and formality tasks, we do not
perform any additional preprocessing on this corpus. For DAE pretraining,
we sample sentences from a generic Yelp corpus4 and process them to fit
the preprocessing of the Yelp sentiment transfer task, i.e. we lowercase and
perform sentence and word tokenization using the natural language toolkit
(NLTK) (Bird, 2006).

Civility The civil rephrasing task is rooted in the broader domain of hate
speech research, which commonly focuses on the detection of hateful, offensive,
or profane contents Yang et al. (2019). Besides deletion, moderation, and
generating counter-speech (Tekiroğlu et al., 2020), which are reactive measures
after the abuse has already happened, there is a need for proactive ways of
dealing with hateful contents to prevent harm (Jurgens et al., 2019). Civil
rephrasing is a novel approach to fight abusive or profane content by suggesting
civil rephrasings to authors before their comments are published. So far, civil
rephrasing has been explored twice before (Nogueira dos Santos et al., 2018;

3https://www.github.com/shentianxiao/language-style-transfer
4https://www.yelp.com/dataset
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Laugier et al., 2021). However, their datasets are not publicly available. In
order to compare the works, we reproduce the data sets used in Laugier et al.
(2021). We follow their approach and create our own train and dev splits on
the Civil Comments5 (CivCo) dataset. Style transfer learning requires distinct
distributions in the two opposing style corpora. To increase the distinction
between our toxic and neutral datasets, we filter them using a list of slurs6
such that the toxic portion contains only sentences with at least one slur, and
the neutral portion does not contain any slurs in the list. Laugier et al. (2021)
kindly provided us with the original test set used in their study. We removed
sentences contained in the test set from our corpus and split the remaining
sentences into train and dev. To initialize 3ST on DAE with data related to
the civility task domain, i.e. user comments, we sample sentences from generic
7 Reddit comments crawled with praw 8.

Preprocessing On all datasets, excluding the polarity task data which is al-
ready preprocessed, we performed sentence tokenization using NLTK as well as
punctuation normalization, tokenization and truecasing using standard Moses
scripts (Koehn et al., 2007). Following Rao and Tetreault (2018), we remove
sentences containing URLs as well as those containing less than 5 or more
than 25 words. For the civility task only, we allow longer sequences of up to
30 words due to the higher average sequence length in this task (Laugier et al.,
2021). We perform deduplication and language identification using polyglot9.
We apply a byte-pair encoding (Sennrich et al., 2016b) of 8k merge-operations
and a vocabulary threshold of 20. We add target style labels (e.g. <pos>) to
the beginning of each sequence. Table 5.1 summarizes all train, dev and test
splits.

5.2.2 Model Specifications

We follow the same best-performing augmentation setup as in Section 4.6,
namely self-supervised learning using SPE and BT with a monolingual DAE
initialization. We use a transformer-base with standard parameters, a batch
size of 50 sentences and a maximum sequence length of 100 sub-word units. All
models are trained until the attribute transfer accuracy on the development
set has converged. Each model is trained on a single Titan X GPU, which
takes around 2–5 days for a 3ST model.

For DAE pretraining, we use the task-specific DAE data split into 20M train
5https://www..tensorflow.org/datasets/catalog/civil_comments
6https://www..cs.cmu.edu/~biglou/resources/bad-words.txt
7We do not sample from any specific subreddit, thus keeping the content diverse.
8https://www..praw.readthedocs.io/en/latest/
9https://www..github.com/aboSamoor/polyglot
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sentences and 5k dev and test sentences each. To create the noisy source-side
data, we apply BART-style noise with λ = 3.5 and p = 0.35 for word sequence
masking. We also add one random mask insertion per sequence and perform
a sequence permutation.

For BERT classifiers, which we use to automatically evaluate the attribute
transfer accuracy, we finetune a bert-base-cased model on the relevant clas-
sification task using early stopping with δ = 0.01 and patience 5.

5.2.3 Evaluation

5.2.3.1 Automatic Evaluation

While 3ST can perform style transfer bidirectionally, we only evaluate on the
toxic→neutral direction of the civility task, as the other direction, i.e. gener-
ation of toxic content, would pose a harmful application of our system. Sim-
ilarly, the formality task is only evaluated for the informal→formal direction
as this is the most common use-case (Rao and Tetreault, 2018). The polarity
task is evaluated in both directions. We compare our model against current
SOTA models: multi-class (MUL) and conditional (CON) style transformers
by Dai et al. (2019), unsupervised machine translation (UMT) (Lample et al.,
2019)10 as well as models by Li et al. (2018) (DAR), Jin et al. (2019) (IMT),
Laugier et al. (2021) (CAE), He et al. (2020) (DLA) and Shen et al. (2017)
(SCA).

Our automatic evaluation focuses on four main aspects:

Content Preservation (CP) In style transfer, the aim is to change the style of
a source sentence into a target style without changing the underlying meaning
of the sentence.

To evaluate CP, BLEU is a common choice, despite its inability to account
for paraphrases (Wieting et al., 2019), which are at the core of style transfer.
Instead, we use Siamese Sentence Transformers 11 12 to embed the source and
prediction and then calculate the cosine similarity.

Attribute Transfer Accuracy (ATA) We want to transfer the style of the
source sentence to the target style or attributes. Whether this transfer was
10Model outputs provided by He et al. (2020).
11Model paraphrase-mpnet-base-v2
12https://www.sbert.net/index.html
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successful is calculated using a BERT classification model. We train and eval-
uate our classifiers on the same data splits as the style-transfer models. This
yields classifiers with Macro-F1 scores of 93.2 (formality), 87.4 (civility) and
97.1 (polarity) on the task-specific development sets. ATA is the percentage of
generated target sentences that were labeled as belonging to the target style
by the task-specific classifier.

Fluency (FLU) As generated sentences should be intelligible and natural-
sounding to a reader, we take their fluency into consideration during eval-
uation. The perplexity of a language model is often used to evaluate this
(Krishna et al., 2020). However, perplexity is unbounded and therefore dif-
ficult to interpret, and has the limitation of favoring potentially unnatural
sentences containing frequent words (Mir et al., 2019). We therefore use a
RoBERTa (Liu et al., 2019) model13 trained on the Corpus of Language Ac-
ceptability (CoLA) (Warstadt et al., 2019) to label model predictions as either
grammatical or ungrammatical.

Aggregation (AGG) CP, ATA and FLU are important dimensions of style-
transfer evaluation. A good style transfer model should be able to perform
well across all three metrics. To compare overall style-transfer performance,
it is possible to aggregate these metrics into a single value (Li et al., 2018).
Krishna et al. (2020) show that corpus-level aggregation is less indicative of
the overall performance of a system and we thus apply their sentence-level
aggregation score, which ensures that each predicted sentence performs well
across all measures while penalizing predictions that are poor in at least one
of the metrics. We also report the average AGG difference of a model to 3ST
across all tasks that the model was tested on (∆).

5.2.3.2 Human Evaluation

We compare the performance of 3ST with each of the two strongest baseline
systems per task, chosen based on their aggregated scores achieved in the
automatic evaluation. These are: CAE and IMT for comparison in the polarity
task, DAR and IMT for the formality task and CAE for the civility task. Due
to the large number of models in the polarity task, we also include CON
and MUL in the human evaluation, as they are strongest on ATA and CP
respectively.

For each task, we sample 100 data points from the original test set and the
corresponding predictions of the different models. We randomly duplicate 5 of
13https://www.huggingface.co/textattack/roberta-base-CoLA
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Task Krippendorff-α
CP FLU ATA

Civility 0.744 0.579 0.688
Formality 0.751 0.718 0.352
Polarity 0.426 0.705 0.837

Table 5.2: Inter-rater agreement calculated using Krippendorff-α across the differ-
ent tasks and metrics.

the data points to calculate intra-rater agreement, resulting in a total of 105
evaluation sentences per system. Three fluent English speakers were asked to
rate the content preservation, fluency and attribute transfer accuracy of the
predictions on a 5-point Likert scale. Raters were paid around 10 Euros per
hour of work. In order to aggregate the different evaluation metrics, analogous
to the automatic evaluation, we consider the transfer to be successful when a
prediction was rated with a 4 or 5 across all three metrics (Li et al., 2018).
The success rate (SR) is then defined as the ratio of successfully transferred in-
stances over all instances. We also report the cross-task average SR difference
of a model to 3ST (∆).

All inter-rater agreements (Table 5.2), calculated using Krippendorff-α (Krip-
pendorff, 2004), lie above 0.7, except for cases where most samples were anno-
tated repeatedly with the same justified rating (e.g. a continuous FLU rating
of 4) due to the underlying data distribution, which is sanctioned by the Krip-
pendorff measure. For the intra-rater agreement estimated from 40 duplicated
sentences per rater, we obtain values of 0.988 (Rater-1), 0.869 (Rater-2) and
0.927 (Rater-3).

For the ratings themselves, we calculate pair-wise statistical significance be-
tween SOTA models and 3ST using the Wilcoxon T-test (p < 0.05).

5.3 Evaluation and Analysis

We focus on the three style-transfer tasks Civility, Formality and Polarity in
English. We first train 3ST on the monolingual DAE task using the task-
specific DAE training data described in Section 5.2.1. After pretraining, each
3ST model is trained on the respective task training data using SPE and BT
in a loop.

We automatically evaluating our 3ST models and comparing them with other
SOTAmethods (Section 5.3.1), we perform a human evaluation (Section 5.3.2).
Focusing on the less-explored Civility task, we then analyze common errors
in the model predictions (Section 5.3.3). Further, we present the model per-
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Task Model CP FLU ATA AGG ∆

Civility CAE *64.2 *80.6 *81.9 39.8 -2.9
3ST 60.5 75.3 89.7 39.0 0.0

Formality DAR *64.5 *27.9 *66.0 *14.2 -30.0
IMT *71.5 *73.1 *79.2 *45.2 -7.6
SCA *54.4 *14.7 *27.4 *4.0 -40.3
3ST 75.6 83.1 84.9 54.7 0.0

Polarity CAE *48.3 *76.4 *84.3 *28.7 -2.9
CON *57.5 *32.5 *91.3 *17.3 -18.0
DAR *50.4 *32.7 *87.8 *15.8 -30.0
DLS *50.9 *50.4 85.3 *20.1 -15.2
IMT *42.5 *84.4 *84.6 *29.6 -7.6
MUL *62.6 *42.3 *82.5 *20.4 -14.9
SCA *36.7 *19.5 *73.2 *5.5 -40.3
UMT *54.8 *55.7 85.4 *24.2 -11.1
3ST 55.7 81.0 85.4 35.3 0.0

Table 5.3: Automatic scores for CP, FLU, ATA and their aggregated score (AGG)
of SOTA models and our approach (3ST). Cross-task average AGG dif-
ference to 3ST under ∆. Best values per task in bold and models
selected for human evaluation underlined. Values statistically signifi-
cantly different (p < 0.05) from 3ST are marked with *.

formance during training (Section 5.3.4) and discuss the importance of the
different 3ST components in an ablation study (Section 5.3.5).

5.3.1 Automatic Evaluation Results

Table 5.3 provides an overview of the CP, FLU, ATA and AGG results of all
compared models across the three tasks.

Civility On attribute transfer accuracy, 3ST improves by +7.8 points over
CAE, while CAE is stronger in content preservation (+3.7) and fluency (+5.3).
There is, however, no statistically significant difference in the overall aggre-
gated performance of the models, indicating that they are equivalent in per-
formance.

Formality 3ST substantially outperforms SOTA models in all four categories,
with an overall performance (AGG) that surpasses the top-scoring SOTA
model (IMT) by +9.5 points. This is indicative, as IMT was trained on a
shuffled version of the parallel GYAFC corpus, which contains highly infor-
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mative human written paraphrases, as opposed to 3ST which was trained on
a truly non-parallel corpus.

Polarity The polarity task has more recent SOTAs to compare to, and the
results show that no single model is best in all three categories. While MUL
is strongest in content preservation (62.6), its fluency is low and outperformed
by 3ST by +38.7 points, leading to a much lower overall performance (AGG)
in comparison to 3ST (+14.9). Similarly, CON is strongest in attribute trans-
fer accuracy (91.3) but has a low fluency (32.5), leading to a lower aggregated
score than 3ST (+18). IMT is the strongest SOTA model with an overall
performance (AGG) of 29.6 and the highest fluency score (84.4). Neverthe-
less, it is outperformed by 3ST by +5.7 points on overall performance (AGG),
which is due to the comparatively better performance in content preservation
(+13.2) of 3ST. Interestingly, unsupervised NMT (UMT) performs equally
well on attribute transfer accuracy, while being slightly outperformed by 3ST
in content preservation (+0.9). This may be due to the information-rich par-
allel instances automatically found in training by the SPE module. Further,
3ST has a much higher fluency than UMT (+25.3), which is due to its DAE
pretraining. Overall, while 3ST is not top-performing in any of the three met-
rics CP, FLU and ATA, its top-scoring overall performance (AGG) shows that
it is the most balanced model.

Overall Trends Table 5.3 shows that 3ST outperforms each of the SOTA
models fielded in a single task (CON, DLS, MUL, UMT) by the respective
AGG ∆, and all other models (CAE, DAR, IMT, SCA) on average AGG ∆14.
Further, 3ST achieves high levels of FLU, with ATA in the medium to high
80’s, clear testimony to successful style transfer.

5.3.2 Human Evaluation Results

Human evaluation shows that 3ST has a high level of fluency, as it either
outperforms or is on par with current SOTA models across all three tasks
(Table 5.4), with ratings between 4.05 (civility) and 4.58 (polarity), and gains
of up to +1.42 (DAR, formality) points. According to the annotation protocol,
a rating of 4 and 5 is to describe content written by native speakers, thus
annotators deemed most generated sentences to have been written by a native
speaker of English.

For content preservation and attribute transfer, there seems to be a
trade-off. In the formality task, 3ST outperforms or is on par with current
14e.g. ∆(DAR, 3ST) = 14.2+15.8

2
− 54.7+35.3

2
= −30 across Formality and Polarity.
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Task Model CP FLU ATA SR ∆

Civility CAE 2.97 4.01 *2.50 17.0 -8.5
3ST 2.80 4.05 3.03 21.0 0.0

Formality DAR *2.75 *2.87 2.72 3.0 -8.0
IMT 3.49 4.10 2.83 5.0 -13.0
3ST 3.75 4.29 2.82 11.0 0.0

Polarity CAE *3.64 4.46 3.90 54.0 -8.5
CON 4.20 *3.47 3.97 44.0 -23.0
IMT *3.54 4.68 3.84 47.0 -13.0
MUL *4.34 *3.66 3.68 41.0 -26.0
3ST 3.99 4.58 4.03 67.0 0.0

Table 5.4: Average human ratings of CP, FLU, ATA and success rate (SR) on
the three transfer tasks. Cross-task average SR difference to 3ST (∆).
Best values per task in bold. Values statistically significantly different
(p < 0.05) from 3ST are marked with *.

SOTAs on CP with gains between +0.26 (IMT) and +1.0 (DAR) points, and
ATA is on par with the SOTA (−0.01, IMT). Note that for all models tested
on the formality task, the success rate is low. This is due to the nature of
the training data, where many sentences in the formal portion of the dataset
tend to be rather neutral, i.e. neither formal nor informal, rather than truly
formal sentences. For the civility task, on the other hand, 3ST outperforms
the current SOTA on ATA with gains of +0.53 (CAE) while being on par on
CP (−0.17). For the polarity task, the CP is slightly below the best model
(−0.35, MUL).

While some models are strong on single values, 3ST has the highest success rate
(SR) across all tasks. 3ST outperforms each of the single-task models (DAR,
CON, MUL) on SR by ∆ and each of the multitask models (CAE, IMT) by
average cross-task SR ∆, again highlighting that it balances best between the
three capabilities CP, FLU and ATA, which leads to best-performing style
transfer predictions.

5.3.3 Qualitative Analysis

For our qualitative analysis, we focus on the civility task as this is a challeng-
ing, novel task and we want to understand its limitations. We analyze the
same subset of the test set used for human evaluation and annotate common
mistakes. Common errors in the neutral counterparts generated by 3ST can
be classified into four classes. We observe fluency or structural errors (11%
of sentences), e.g. a subject becoming a direct form of address (Table 5.5,
Ex-1). Attribute errors (14%) (Ex-2), where toxic content was not success-
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SRC What our ignorant PM, Mad McCallum and stupid Liberal politicians going to say?
(1) CAEwhat our pm, trudeau and his liberals are going to do about this?... ... .. .. .. ..

3ST Mad McCallum, what are our politicians going to say?

SRC Dear Hipster Jackass- Go to Bend.
(2) CAE dear hippie - go to hawaiian to get around........

3ST Dear Hipster Jackass- Go to Bend.

SRC Trump’s a liar.
(3) CAE trump’s a liar.

3ST Trump’s a ←−−−−−→good man.

SRC Says the idiot on perpetual welfare.
(4) CAE says the author on the daily basis, on the basis of perpetual welfare.

3ST Says the guy on perpetual welfare.

SRC A muslim racist.
(5) CAE a muslim ←−−−−→minority.

3ST Not a democrat.

SRC Quit trying to justify what this jackass did.
(6) CAE quit trying to justify what this jackass did.

3ST Quit trying to justify what he did.

SRC There was no consensus, 1 idiot and everyone else in the situation let him know he
was in the wrong.

(7) CAE there was no consensus, no one in the room and everyone in the room knew he
was in the wrong place.

3ST No, there was no consensus in the past, and everyone else knew he was
in the wrong place.

Table 5.5: 3ST and SOTAmodel (CAE) predictions on the CivCo test set, with ad-
equate predictions, error in structure, target attribute,←−−−−−−−−−→stance reversal,
and hallucinations marked.

fully removed, are another common source of error. Similarly to Laugier et al.
(2021), we observe stance reversal (14%), i.e. where a usually negative opinion
in the original source sentence is reversed to a positive polarity (Ex-3). This
is due to a negativity bias on the toxic side of the CivCo corpus, while the
neutral side contains more positive sentences, thus introducing an incentive
to translate negative sentiment to positive sentiment. Unlike Laugier et al.
(2021), we do not observe that hallucinations are most frequent at the end of a
sequence (supererogation). Rather, related hallucinations, where unnecessary
content is mixed with words from the original source sentence, are found at
arbitrary positions (23%, Ex-4, CAE). We observe a few hallucinations where
a prediction has no relation with the source (4%, Ex-5).

Phenomena such as hallucinations can become amplified through back-
translation (Raunak et al., 2021). However, as they are more prevalent in the
civility task than in the polarity and formality tasks, hallucinations, in this
case, are likely originally triggered by long source sentences that i) overwhelm
the current models’ capacity, and ii) add additional noise to the training. It
is less likely that a complex sentence has a perfect rephrasing to match with
and therefore instead it will match with a similar rephrasing that introduces
additional content, i.e. noise. For reference, the average length of source sen-
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Figure 5.1: FLU, CP and ATA of generated back-translations (BTs) during training
of 3ST on the three transfer tasks.

tences that triggered hallucinations was 21.9 words, while for fully adequate
re-writings (39%), it was 8 words. Note that we capped sentence lengths to
30 words in the training data while the test data contained sentences with up
to 85 words.

Successful rephrasings are usually due to one of two factors. 3ST either re-
places profane words by their neutral counterparts (Ex-{4,6}) or removes them
(Ex-7).

5.3.4 Performance Analysis

The back-translations that 3ST generates during training give us a direct
insight into the changing state of the model throughout the training process.
We thus automatically evaluate ATA, FLU and CP on the back-translations
over time.

BT fluency (Figure 5.1, top) on all three tasks is strong already at the begin-
ning of training, due to the DAE pretraining. For the formality task, the high
level of FLU remains stable (∼ 80) throughout training, while for the other
tasks it slightly drops. This may be due to the nature of the CoLA dataset
used to train the FLU classifier, which focuses on grammatically correct lan-
guage. This aligns with the objective of the formality task, where formal and
thus grammatically correct language is expected in the generations. By con-
trast, the language of the civility and polarity task domains tends to be more
informal and less grammatical.

For all tasks, content preservation between the generated BTs and the
source sentences is already high at the beginning of training. This is due to
the DAE pretraining which taught the models to copy and denoise inputs.
At first, CP rises slightly, indicating the models are adapting to the new
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Task Model CP FLU ATA AGG
Civility 3ST 60.5 75.3 89.7 39.0

-SPE *89.5 *39.4 *12.1 *3.7
-BT *44.4 *59.4 90.3 *22.8
-DAE *36.8 *43.3 *97.5 *15.7
-BT-DAE *37.8 *43.8 *95.3 *16.4

Formality 3ST 75.6 83.1 84.9 54.7
-SPE *99.3 *73.4 *17.7 *14.8
-BT *66.4 *85.1 *92.6 *52.8
-DAE *55.7 *64.2 *93.1 *35.1
-BT-DAE *57.8 *79.5 *94.0 *44.5

Polarity 3ST 55.7 81.0 85.4 35.3
-SPE *100.0 *80.5 *2.9 *1.9
-BT *44.0 *79.0 *88.3 *29.2
-DAE *29.8 *43.6 *89.7 *11.6
-BT-DAE *38.0 *63.3 *91.1 *21.5

Table 5.6: 3ST Ablation. CP, FLU and ATA with SPE, BT, DAE removed. Best
values per task in bold.

domains, allowing them to copy inputs more precisely. After reaching a brief
peak, all of the models decay, showing that they are slowly diverging from
merely copying inputs. CP scores of the formality and the polarity tasks are
close to convergence at around 1M train steps, while the scores of the civility
task keep on decaying. This may be due to the complexity of the data of the
toxicity task, which contains longer sequences than the other two. This can
lead to hallucinations when supervisory signals are lacking.

As back-translation CP decays, attribute transfer accuracy increases dra-
matically. Especially on the civility task, where the initial accuracy is low
(8.2%) but grows to ATA ∼82% starting around 1.3M generated BTs. For
the other two tasks, the curves are less steep, and most of the transfer is
learned at the beginning, within the first 300k generated BTs, after which
they converge with ATA ∼95% (formality) and ∼88% (polarity). This shows
the trade-off between attribute accuracy and content preservation: the higher
the ATA, the lower the CP score. Nevertheless, as ATA converges earlier than
CP (for formality and polarity tasks), an earlier training stop can easily ben-
efit content preservation while having little impact on the already converged
ATA.

5.3.5 Ablation Study

To analyze the contribution of the three main components (SPE, BT and
DAE) of 3ST, we remove them individually from the original architecture and
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observe the performance of the resulting models on the three different tasks
(Table 5.6). Without SPE, the model merely copies source sentences without
performing style transfer, resulting in a large drop in overall performance
(AGG). This shows in the low ATA scores (1.9–14.8), which are in direct
correlation with the extremely high scores in CP (89.5–100.0) achieved by this
model. This underlines that SPE is vital to the style-transfer capabilities of
3ST, as it retrieves similar paraphrases from the style corpora and lets 3ST
train on these. This pushes the system to generate back-translations which
themselves are paraphrases that fulfill the style-transfer task. At the same
time, BT and DAE are integral parts of 3ST, too, that improve over the
underlying self-supervised neural machine translation (-BT-DAE) approach.
This can be seen in the drastic drops in CP and FLU scores when BT and
DAE techniques are removed. Especially DAE is important for the fluency of
the model. The gains in CP and FLU through BT and DAE come at a minor
drop in ATA.

5.3.6 Sample Predictions

For each of the three tasks, Civility, Formality and Polarity, we randomly sam-
ple 4 source sentences from the respective test sets. In Table 5.7 we present
these source sentences together with the corresponding prediction of 3ST and
the two best-scoring SOTA models with respect to the AGG score per task,
namely CAE for Civility, DAR and IMT for Formality and CAE and IMT for
Polarity. In contrast to our qualitative error analysis, we leave these predic-
tions uncommented, simply such that the interested reader can observe some
additional model predictions and their differences.

5.4 Discussion

Self-supervised style transfer efficiently uses the supervisory signals present in
non-parallel data, by i) jointly learning style transfer and similar sentence ex-
traction during training, ii) using online back-translation and iii) DAE-based
initialization. 3ST gains strong results on all three metrics FLU, ATA and CP,
outperforming SOTA models on averaged performance (∆) across their tested
tasks in automatic (AGG) and human (SR) evaluation. We present one of the
first studies on automatic civil rephrasing and, importantly, identify current
weaknesses in the data, which lead to limitations in 3ST and other SOTA
models on the civil rephrasing task, i.e., stance reversal and hallucinations.
This is due to long, noisy sequences and a polarity bias inherent in the data.
If civil rephrasing is to become an established task not only for style transfer
benchmarking, but also for the development of solutions against hate speech,
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Civility
SRC It is time to impeach this idiot judge.
CAE it is time to impeach this judge.
3ST It is time to impeach this judge.

SRC This is classic example of collective corporate stupidity and individual managerial malice.
CAE this is classic case of corporate welfare and collective bargaining.
3ST This is classic example of collective corporate greed and individual managerial malice.

SRC You silly goose!
CAE you mean the goose, right?
3ST You forgot the goose!

SRC Afraid of how idiotic social engineering makes people look?
CAE imagine how socially acceptable some of the people make?
3ST Afraid of how social engineering works.

Formality
SRC haha julesac is funny, but mean.
DAR is funny , but I understand what you mean .
IMT That is funny . Those silly people annoy me !
3ST Julesac is very funny.

SRC DON’T LET HER RULE YOUR LIFE, SHE WILL JUST HAVE TO LEARN TO DEAL WITH IT.
DAR LET HER BE , SHE WILL LEARN TO DEAL WITH IT .
IMT TELL HER YOUR TRUE FEELINGS , IT MAY SHOCK HER BUT WILL WORK .
3ST Do NOT LET HER RUN WITH YOU, SHE WILL NEVER HAVE TO WORK.

SRC cause it’s buy one take one.
DAR I can not wait to buy one take one .
IMT Because it is buy one take one .
3ST You can buy one.

SRC All my votes are going to Taylor Hicks though...
DAR All my votes are , and I am going to Hicks
IMT All my votes are going to Taylor .
3ST All my votes are going to be Taylor Hicks.

Polarity
SRC even if i was insanely drunk , i could n’t force this pizza down .
CAE even if i was n’t in the mood , i loved this place .
IMT honestly , i could n’t stop eating it because it was so good !
3ST even if i was drunk , i could still force myself .

SRC i will definitely return often !
CAE i will not return often ! ! ! !
IMT i will definitely not return !
3ST i will not return often !

SRC no massage with my manicure or pedicure .
CAE great massage with great pedicure and manicure .
IMT awesome relaxation and massage with my pedicure .
3ST great massage with my manicure and pedicure .

SRC excellent knowledgeable dentist and staff !
CAE excellent dentist and dental hygienist ! ! ! !
IMT not very knowledgeable staff !
3ST horrible dentist and staff !

Table 5.7: Examples of 3ST and SOTA model predictions.

the creation of a freely available civil rephrasing corpus without polarity bias,
and which has undergone human quality checks, is required.
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6 Self-Supervised Learning for
Sequence-to-Label Tasks

For sequence-to-sequence tasks, our auxiliary task was (unsupervised) sentence
pair extraction, which enabled us to learn a (supervised) machine translation
or style transfer primary task. For sequence-to-label tasks, we focus on sen-
timent and hate speech classification as our (supervised) primary task and
explore several (unsupervised) auxiliary tasks to enhance the primary task
performance. Our explored auxiliary tasks are language modeling (Section
6.1), clustering (Section 6.2), subspace learning (Section 6.3) and knowledge
integration (Section 6.4).

6.1 Auxiliary Task: Language Modeling

Language modeling, where an encoder is pretrained to learn about the prob-
ability distributions of words within a language, is a type of self-supervision
when combined with a downstream task. The pretraining objective is usually
a task that can be learned from massive amounts of unlabeled data using re-
construction tasks such as masked language modeling (MLM), next sentence
prediction (Devlin et al., 2019), causal language modeling (Lample and Con-
neau, 2019) or denoising (Lewis et al., 2020). This constitutes the auxiliary
task in the self-supervision framework, and the subsequent finetuning on a
primary downstream task (e.g., classification) then benefits from the repre-
sentations learned during pretraining.

In this chapter, we explore how language modeling as an auxiliary task affects
a primary classification task. For this, we focus on hate speech detection, as
it is a challenging task that suffers from data sparsity in most languages. We
outline our used language modeling techniques in Section 6.1.1, followed by
the primary (Section 6.1.2) and auxiliary task augmentation (Section 6.1.3)
experiments.
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6.1.1 Language Modeling Techniques

We focus on two applications of language modeling to our downstream task:
primary and auxiliary task augmentation.

Primary Task Augmentation We explore how language modeling affects our
downstream primary task performance with or without additional task-related
data during finetuning. For this, we use a pretrained BERT (Devlin et al.,
2019) model, finetuned on MLM and next sentence prediction, as our auxiliary
component. The finetuning is then performed on our primary task data and
then evaluated on the primary data test set. To verify whether additional task-
related data can be easily integrated into the model’s representations, we also
perform finetuning on the primary (=target)1 task data in concatenation with
similar datasets (i.e., other hate speech corpora) and validate and test on the
target data only. This is done using a monolingual and multilingual pretrained
model to further assess how multilinguality can affect this process.

Auxiliary Task Augmentation We focus on the effect on the downstream
primary task performance when the language model pretraining is followed by
an additional task-based intermediate MLM training, also called task adaptive
pretraining, before learning the downstream task. Specifically, we again use
a pretrained BERT model as our auxiliary component. Instead of now aug-
menting the primary task with additional task-related data, we augment the
auxiliary task using an intermediate training step using the MLM objective
on the primary task training data. This allows the model to learn about the
target domain before learning the actual downstream primary classification
task and has been previously shown to be effective also on smaller amounts of
available target training data (Gururangan et al., 2020). After the intermedi-
ate MLM training, we finetune and evaluate the model on the primary task
using the classification objective.

1There is an overlap between the two concepts primary and target task in this experimen-
tal setup. Primary task points to the main task whose performance we are interested in
within the self-supervisory learning setup (primary vs. auxiliary task, i.e., hate speech
detection on the HASOC dataset vs. language modeling). The term target task is the
main task whose performance we are interested in within a data augmentation or trans-
fer learning setup (here: target task vs. similar or additional tasks, i.e., hate speech
detection on HASOC dataset vs. hate speech detection on other related corpora). As
this section uses both concepts of self-supervision and data augmentation, we use these
terms interchangeably.
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6.1 Auxiliary Task: Language Modeling

Language Dataset Labels Train Test
de HASOC-A NOT/HOF 3,412/407 714/136
de HASOC-B PRFN/OFFN/HATE 86/210/111 18/77/41
en HASOC-A NOT/HOF 3,591/2,261 865/288
en HASOC-B PRFN/OFFN/HATE 667/451/1,143 93/71/124
hi HASOC-A NOT/HOF 2,196/2,469 713/605
hi HASOC-B PRFN/OFFN/HATE 1,237/676/556 218/197/190

Table 6.1: HASOC target data with their train and test label distributions.

6.1.2 Primary Task Augmentation

In this section, we explore how the performance of our primary classification
task is affected by the addition of task-related corpora during finetuning.2 Af-
ter describing the experimental setup (Section 6.1.2.1), we present the results
(Section 6.1.2.2) and discuss open questions (Section 6.1.2.3).

6.1.2.1 Experimental Setup

Data We explore various external hate speech corpora and their effect on the
classification performance on a target data set. Focusing on hate speech and
offensive content identification in Indo-European languages3 (HASOC) 2019
(Mandl et al., 2019), we use the binary (NOT [neutral]/HOF [hate]) HASOC-
A and ternary (PRFN [profane]/OFFN [offense]/HATE [hate]) HASOC-B
tasks (English, German and Hindi) as our target data sets. We report the
label distribution for the train, dev and test sets in Table 6.1.

For the downstream primary task data augmentation in English, we use four
different external corpora. The Kaggle4 (KA) (van Aken et al., 2018) corpus
is a large corpus of Wikipedia comments and includes several hate-related
non-exclusive labels ranging from toxic, severe toxic and obscene to threat,
insult and identity hate. The Davidson5 (DA) (Davidson et al., 2017) and
Founta6 (FO) (Founta et al., 2018) corpora are both twitter corpora focusing
on hate as well as offensive speech. We also use the trolling, aggression and
cyberbullying7 (TR) (Kumar et al., 2018) corpus, focusing on overtly and
covertly aggressive Facebook comments. Note that we also used the Hindi
version of this dataset for the augmentation of the Hindi HASOC datasets.

2This section is based on (Ruiter et al., 2019b).
3https://hasocfire.github.io/hasoc/2019/dataset.html
4https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data
5https://github.com/t-davidson/hate-speech-and-offensive-language
6https://github.com/ENCASEH2020/hatespeech-twitter
7https://sites.google.com/view/trac1/shared-task
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Cor La Source Task A Task B Mappings (A) Mappings (B)

KA en Wikipedia 143.3/16.2 0.3/14.5/1.4 ∀c = 0 →NOT obsc →PRFN
∃c = 1 →HOF id.hate →HATE

rest →OFFN
DA en Twitter 2.5/12.3 0/11.5/0.8 none →NOT offn →OFFN

hate, off →HOF hate →HATE
FO en Twitter 53.9/32.1 0/27.2/5.0 none →NOT offn →OFFN

hate, off →HOF hate →HATE
TR en Facebook 7.4/9.8 – none →NOT –

aggr →HOF
TR hi Facebook 3.4/13.8 – none →NOT –

aggr →HOF
GE de Twitter 3.3/1.7 0.1/0.6/1.0 none →NOT prfn →PRFN

hate →HOF ins →OFFN
hate →HATE

Table 6.2: La(nguage) and source of the comments collected for each of the exter-
nal cor(pora) explored. The resulting distribution of labels for task A
(NOT/HOF) and task B (PRFN/OFFN/HATE) are reported in thou-
sands. The mappings between original labels {obscene (obs), identity
hate (id.hate), none, offense (offn), hate, other, overtly/covertly agres-
sive (aggr), profane (prfn), insult (ins)} to HASOC compatible labels
is given.

For German, we explore GermEval8 2018 (GE) (Wiegand et al., 2019b) as
additional data.

However, as most of these corpora focus on different facets of hate, a one-to-
one correspondence of labels to HASOC-A and B is not always given. In such
cases, a mapping between similar labels was performed, which is described in
Table 6.2 along with the resulting class distributions for tasks (HASOC-)A
and B for each corpus.

Most of the external corpora have unbalanced classes. For task A, the NOT
class is often over-represented, which in its extremes leads to a ratio of 1:8,835
hate to neutral labels in the case of KA. However, for DA and TR, this un-
balance is reversed, where more samples are marked as hateful than not. This
unbalance is also present in task B, where PRFN is heavily under-represented,
followed by HATE for most corpora except GE. This unbalance, which can
also be observed in the HASOC training data, leads to special difficulties when
training a classifier on these datasets.

Model Specifications We use pretrained BERT (Devlin et al., 2019) models
to encode a tweet into a single vector. For this, we use monolingual cased

8https://github.com/uds-lsv/GermEval-2018-Data
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6.1 Auxiliary Task: Language Modeling

Task A Task B
Lang. Model Data F1 Macro F1 Macro

en BERTen HSen 74/54 64 71/31/75 59
+ KA 76/56 66 69/36/73 59
+ DA 73/54 64 68/36/73 59
+ FO 75/55 65 68/34/74 59
+ TRen 73/56 65 – –

BERTmulti HSen 72/53 62 72/37/75 61
HSen+de+hi 73/54 63 71/36/74 60

de BERTde HSde 95/27 61 40/69/38 49
+ GE 94/40 67 39/61/47 49

BERTmulti HSde 94/23 59 12/65/27 35
HSen+de+hi 94/30 62 38/61/38 46

hi BERTmulti HShi 79/81 80 76/50/39 55
HSen+de+hi 79/81 80 82/49/47 59

Table 6.3: F1 for HASOC Task A (NOT/HOF) and B (PRFN/OFFN/HATE) la-
bels as well as Macro F1 scores for several corpus combinations and
models. Top scores are in bold.

BERT-base for English9 (BERTen) and German10 (BERTde) as well as mul-
tilingual cased BERT11 (BERTmulti). The classifier is a linear layer of depth
1, mapping the encoded tweets to labels. These models are trained on the
concatenation of target HASOC data and different combinations of external
corpora. To deal with the unbalanced nature of the resulting training data,
we perform randomized weighted re-sampling of the data at each epoch such
that the resulting label distribution during training is balanced. Since there
is no validation set available for the HASOC datasets, we use 10-fold cross-
validation over the HASOC training data only. All models are trained using
early stopping (δ = 0.01, patience = 5). We report the average Macro F1 over
the 10 runs of cross-validation training on the target data.

6.1.2.2 Results

When high-quality monolingual pretrained models are available, these gen-
erally yield better results than their multilingual counterparts, i.e. F1 +2 for
HSen and HSde in task A, with the biggest gain in Macro F1 being +14 in
the case of the monolingual HSde as opposed to its multilingual counterpart
in task B (Table 6.3). This comes to show that if language model training
data is available in abundance, high-quality monolingual models can lead to

9https://storage.googleapis.com/bert_models/2018_10_18/cased_L-12_H-768_A-12.
zip

10https://deepset.ai/german-bert
11https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_

H-768_A-12.zip
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great improvements over multilingual baselines. In fact, the usage of a high-
quality monolingual pretrained model applied to the severely low-resourced
task B, yielded top results for German. which is Analogous to the findings in
Section 4.6, this is due to the curse of multilinguality (Conneau et al., 2020),
which limits multilingual models in their modeling capacity of resource-rich
languages. Nevertheless, for HSen, we observe a slightly better performance of
the multilingual model in task B. One reason for this may be due to the na-
ture of the training data, which contains India-related content as well as some
Hinglish and code-switched sentences, which might attain better coverage in
the multilingual model. This, together with the general enforced data sparsity
in task B, might have led to the slight gain in Macro F1 for the multilingual
model.

For task A, adding external data either lead to slightly improved or un-
changed results. For English, adding KA yielded an improvement of F1 +2,
which given the large size of the KA corpus is a modest increase. For German,
we observe a large increase in Macro F1 (+6) when adding GE. This is most
likely due to the larger amount of HOF-labeled data in the otherwise very sim-
ilarly defined GE corpus. In general, the simplicity of the binary decision task
still allows for external data to be of use, or at least not destructive, for the
target task. However, when moving to the more complex task of identifying
different shades of hate, external data quickly becomes reduced to additional
noise during training, leading to either decayed or unchanged results for all
external data in task B. This is especially interesting for GE, which has a very
similar three-class corpus design (profane, insult and abuse). This comes to
show that, as definitions of hate and its sub-classes differ, and final annota-
tions depend not only on the definitions provided but also on the subjective
choices of the annotators, different hate speech corpora become incompatible,
thus enforcing the data sparsity in this field.

6.1.2.3 Discussion

Similar to the seq2seq experiments, we observe that multilingual language
modeling is less beneficial than monolingual language modeling for the per-
formance of high-resource language primary tasks. Further, we observe that
complex primary tasks do not benefit from training on additional external
data due to the incompatibility between different label definitions, reducing
external resources to added noise during training. The subjective nature of our
primary task of interest, i.e., hate speech detection, further enforces the data
sparsity, also for higher-resourced languages with several corpora available.
We therefore want to underline the importance of two research directions: a)
a special focus on low-resource text classification for improved results despite
the lack of large amounts of mutually compatible labeled data (Chapters 6.2
and 6.3) and b) creating corpora of hate speech which go beyond ambiguously
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Lang. Split E-1 E-2 E-3a E-3b E-3c
de Train 2,806 1,931 1,931 1,794 1,078
de Dev 500 351 351 320 184
de Test 1,000 681 681 632 365
de DKL 0.363 0.072 0.205 0.259 0.366

fr Train 2,178 1,741 1,741 1,584 1,323
fr Dev 500 409 409 382 206
fr Test 1,000 795 795 719 607
fr DKL 0.483 0.072 0.245 0.199 0.366

Table 6.4: Number of instances within each subtask (E) in the train, dev and test
splits of the German (de) and French (fr) lang(uage) corpora. The
class imbalance per subtask is given via the Kullback-Leibler divergence
(DKL) between the subtask class distribution of c classes and a perfectly
balanced class distribution.

defined sub-categories of hate. For the latter, we created a corpus that focuses
on identifying different objective features within a comment (e.g., the targets
of a sentiment or pragmatic cues such as the existence of an accusation or
swear words, etc.) which in their sum help to identify hateful content based
on different subsets of such features, but which is out of the scope of this
dissertation (Ruiter et al., 2022b).

6.1.3 Auxiliary Task Augmentation

Primary task augmentation for hate speech detection is only beneficial if the
external task-related data has a very strong overlap with the target class def-
initions. However, as the class definitions most often vary between corpora,
and the domains of different corpora may mismatch, a beneficial primary task
augmentation is difficult to achieve. In this section, we explore the impact of
auxiliary task augmentation as task-specific pretraining in a mono- and mul-
tilingual setting on both simple binary and complex multi-class classification
tasks.12

6.1.3.1 Experimental Setup

Data We train and evaluate our models on the different subtasks of the Ger-
man and French parts of the M-Phasis dataset13 (Ruiter et al., 2022b) and

12This section is based on (Ruiter et al., 2022b).
13https://github.com/uds-lsv/mphasis
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analyze their performance and limitations. Concretely, we focus on a hierar-
chical classification task, namely task E (i.e., Evaluation of agents), which is
divided into 5 subtasks. It is divided into E-1 (Does the comment contain a
negative or positive evaluation?), E-2 (Is the evaluation implicit or explicit?),
E-3a (Who is the target of the evaluation?), E-3b (What is the behavior of the
target?) and E-3c (Who is the victim of the behavior?).

For each subtask, the number of instances of the de/fr train-dev-test splits
and the number of classes are given in Table 6.4. To give insight into the
class imbalance per subtask, we also report the Kullback-Leibler divergence
(DKL) between the class distribution of a subtask and a perfectly balanced
class distribution. A rather balanced class distribution would thus lead to a
DKL close to 0.

Model Specifications and Evaluation Our baseline models (B) are
transformer-based classifiers as implemented in the transformers library.14
Specifically, we use bert-base-german-cased (de) and camembert-base
(Martin et al., 2020b) (fr). To explore whether domain knowledge can be
inserted into the models via intermediate MLM training, we also finetune
both language models on their respective de or fr task-specific training data
for 20 epochs using the MLM objective to obtain task-tuned language models
(B+T). We also explore whether the annotations in the German and French
data are sufficiently consistent among each other to enable bilingual learning
that improves the classification performance in comparison to a monolingual
model. Therefore, analogous to B+T, we finetune a multilingual model
bert-base-multilingual-cased on the concatenation of the German and
French training data using the MLM objective (M+T) and then learn classifi-
cation jointly (M+T(J)) or separately (M+T(S)) on the German and French
subtasks. All classification models are run over 10 seeded runs with early
stopping (δ = 0.01, patience = 5) and we report their average Macro F1 on
the test set together with standard mean error. For the domain analysis we
use the multilingual universal sentence encoder (Yang et al., 2020) to embed
user comments, as it works well on semantic similarity tasks (Cer et al.,
2018).

6.1.3.2 Results

Performing task-based intermediate MLM finetuning (B+T) leads to lim-
ited improvements over the monolingual baselines (B), with improvements up
to +2.4 (de, E-3a) on the German data (Table 6.5). All improvements are
seen on the target-victim subtasks {E|A}-3{a|b|c}. Task domain knowledge

14https://github.com/huggingface/transformers
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LA CM E-1 E-2 E-3a E-3b E-3c
de B 55.6±.5 58.7±.4 49.2±.4 27.8±.9 35.2±.4
de B+T 55.0±.2 58.6±.4 51.6±.6 29.9±.8 35.4±.3
de M+T(S) 48.3±.5 52.4±2 45.9±.5 23.4±.4 32.1±2
de M+T(J) 49.0±1 48.1±4 47.5±.4 23.6±.4 34.9±.7
fr B 59.3±.7 63.3±.4 54.1±.5 32.9±.3 39.0±.3
fr B+T 59.6±.3 63.4±.3 53.4±.4 33.5±.3 37.1±.6
fr M+T(S) 50.3±1 58.8±.5 44.3±.6 23.1±3 32.7±.4
fr M+T(J) 49.2±.8 49.0±3 45.3±.6 28.0±.4 33.5±.4

Table 6.5: Average Macro F1 of different classification models CM for language LA
on the relevant subtasks (E,A) test sets. Standard mean errors given
as bounds. Top scores outside of the error bounds of other models in
bold.

acquired by the intermediate MLM training is thus mostly useful for the lower-
resourced subtasks. For French, most tasks show no significant difference.

Similarly to the experiments in Section 6.1.2, the multilingual baselines
(M+T) are by far outperformed by their monolingual (B+T) counterparts.
The training on both the French and German data jointly (M+T(J)) leads
to some significant improvements on the more complex E-3{a|b|c} subtasks in
comparison to the multilingual model which was trained on French or German
separately (M+T(S)), indicating that there is sufficient overlap in the French
and German annotations such that the lower-resourced subtasks benefit from
the joint learning; the gain of additional samples outweighing the loss obtained
by a few noisy samples.

Overall, we observe low F1 scores across all tasks. This underlines the diffi-
culty of the tasks, which is mostly due to the small number of samples and
sparseness of minority classes, especially for the more complex subtasks. Meth-
ods focusing on low-resource classification (Hedderich et al., 2021a) should be
explored to overcome the sparsity in the corpus. We give a more detailed
account of the error sources in the following Section 6.1.3.3.

6.1.3.3 Qualitative Error Analysis

To identify the shortcomings of the models, we perform a qualitative error
analysis. We focus on the two best models in DE (B) and FR (B+T) on
task E-1, as this task focuses on positive/negative evaluations of agents and is
thus not far from the popular sentiment analysis task. To this end, we have
sampled 100 instances from the DE and FR test set predictions and annotated
specific error types (Table 6.6).
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EX Instance Type

1 Es gibt die ersten Verdachtsfälle in Äthiopien. [...] ∅ → N
[There are some first suspected cases in Ehtiopia. [...]]

2 Der Berufswunsch dieses jungen Mannes: Politiker! ∅ → N
Mehr ist dazu nicht zu sagen. [The career aspiration
of this young lad: politician! Nothing more to say about this.]

3 Man muss sie registrieren (eindeutig, Fingerabdrücke etc!), N → ∅
und Versorgung/Sozialleistungen gibt’s nur am registrierten Ort. Punkt.
[They need to be registered (unambiguously, finger prints etc!),
and aid/social benefits only at the registered location. Done.]

4 Chouette 2 de moins. [Cool 2 less.] N → ∅

Table 6.6: Example instances (EX) from the DE and FR task E-1 test set with the
error type (reference → predicted) of the best performing classification
models in DE (B) and FR (B+T). Classes: none (∅), negative (N).

On the German side, the most common error stems from comments without an
evaluation but which were classified as containing a negative evaluation (i.e.,
over-blacklisting), which was prevalent in 18% of instances. The most common
causes for over-blacklisting are i) naming of countries or places (5%; EX-1),
ii) naming of people (especially politicians; 3%) or iii) other trigger words
(e.g., Nazi, Politiker [politician]; 4%; EX-2). This is due to the topical bias
in the M-Phasis corpus. Its focus is on the topic of migration, which is ensured
by selecting news articles based on migration-related keywords. This enables
the inclusion of comments containing implicit and explicit forms of hate, as
well as positive sentiments. However, due to this topical focus, politicians are
frequent recipients of negative evaluations, and thus the classifier mistakenly
learned to equate the appearance of political actors with a negative sentiment.
While topical bias is not uncommon in HS corpora (Wiegand et al., 2019a), it
should be taken into account when using this data to train models, especially
those going into production.

A negative evaluation being ignored by the classifier (i.e., classified as no eval-
uation) is the second most common error (6%). Mistakes in the annotations
are one reason, e.g., in cases where a negative action recommendation was
mistakenly annotated as a negative evaluation (EX-3). Denoising or similar
techniques can be used to mitigate the effects of noise in the annotations.
Another source of error stems from the models, which only allow attributing a
single label to each instance. However, in some cases, several actors are anno-
tated in the original M-Phasis corpus with varying evaluations. Amulti-label
classifier could be used to model this complexity. Lastly, when the negative
evaluation is too implicit or dependent on context, the classifier was not
able to detect it (2%; EX-4). The annotators were always shown the context
of a given comment (e.g., the article or comment to which the current instance
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is referring), which was ignored by our classifiers. Including this contextual
information may improve the classification of implicit evaluations.

On the French side, we observe much fewer cases of over-blacklisting (2%),
while the prevalence of ignoring negative evaluations is the same as for the
German model (6%). The reduced prevalence of over-blacklisting might be due
to the larger proportion of fringe media content in the French corpus (44.5%
vs. 22.8% in Germany), thus reducing the amount of neutral/informative
content to be mistakenly black-listed.

6.1.4 Discussion

In both the primary task augmentation and auxiliary task augmentation ex-
periments, we observe that monolingual pretrained models provide better rep-
resentations for the target task learning, which is observed in their higher
downstream task performance. This can be attributed to the curse of mul-
tilinguality, stating that higher-resourced languages do not benefit from the
joint pretraining in a multilingual setting, as the other languages end up as
additional noise in the representations as compared to a monolingual model.
It is unclear how multilingual training will affect medium to lower-resourced
languages and their downstream task performance. Similarly to our study on
multilingual self-supervised NMT (Chapter 4.6), such a study would need to
take into account the types of languages included during pretraining and the
type of downstream primary task (semantic tasks vs. structural tasks) and is
thus left for future work.

Further, we have observed that primary task augmentation is only beneficial
when target and augmentation data class definitions strongly overlap and the
task itself is simple (i.e., binary), otherwise, the chances of a class definition
overlap is low and additional data gets reduced to noise in the model with no
beneficial effects on target task performance. Contrary, when we use the pri-
mary task data to augment the auxiliary task via intermediate MLM training,
we see limited improvements for more complex (i.e., multi-class) tasks due to
their increased sparsity, which benefits from the additional task adaptation.
Thus, while primary task augmentation relies on the availability of similar data
sets and is beneficial for simple classification tasks, auxiliary task augmenta-
tion is to be preferred for sparse, and thus potentially complex, tasks. This
is related to Longpre et al. (2020), who have shown that in most cases, pri-
mary task augmentation is inconsistent and rarely beneficial if auxiliary task
augmentation is available, i.e., via a pretrained language model. A follow-up
study focusing on extending task-based intermediate MLM training to related
tasks (e.g., training on other related hate speech corpora) would be interest-
ing, as in this case the underlying class definitions can be ignored, and thus
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the related samples could still be beneficial to the final target task. This in
combination with primary task augmentation could be a winning combination
and is left for future work.

The above methods still rely on the availability of task-related data, i.e., re-
lated hate speech corpora, which are not available for all tasks or languages.
More research into methods that can exploit small amounts of available la-
beled data in an efficient manner is needed in order to improve low-resource
classification performance on a wider range of tasks and languages without
the need for heavy data exploration and selection. For this, we propose two
methods during the course of the following Chapters 6.2 and 6.3.

6.2 Auxiliary Task: Clustering

In the previous section, we explored language modeling in combination with
auxiliary and primary task augmentation. However, especially primary task
augmentation requires the existence of labeled corpora with similar class def-
initions, which are not available for most tasks and languages. In order to
overcome this, we explore clustering as an auxiliary task.15 That is, instead of
relying on pre-existing labeled corpora, we learn artificial labels via clustering
as an auxiliary task. These artificial labels are similar to our target tasks’ label
definitions and are learned on large amounts of unlabeled data. The resulting
artificially labeled corpus can then be used to finetune a transformer-based
classifier. We hypothesize that through this process the models’ encoder rep-
resentations become prepared for the downstream task and will thus have a
beneficial effect on its final classification performance. We verify this by per-
forming transfer learning on the finetuned transformer encoder using a new
classification head which is finetuned on the target task only and then evalu-
ated.

In the following, we explain our clustering and transfer learning technique
(Section 6.2.1). After giving details on our experimental setup (Section 6.2.2),
we present our results (Section 6.2.3) and discuss (Section 6.2.4).

6.2.1 Clustering Techniques

For our parameter transfer, we rely on a single transformer-based LM which
is shared among different tasks. A sequence x ∈ X is featurized by reading it
into the encoder of the LM and retrieving its last hidden state. A linear layer
is then used as a predictive function f : X → Y to predict labels y ∈ Y . A
15This section is based on (Boy et al., 2021).
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task T = {Y, f(x)} is then a set of labels Y and the predictive function f over
the instances in X.

We follow a transfer learning approach, where the source task TS is an emoji-
based classification task, i.e. given a sequence, predict the emoji (class) that
it originally contained. Target task TT is a downstream task such as sentiment
analysis (SA) or hate speech (HS) (Section 6.2.2.1). Each task has its own set
of instancesX, labels Y and predictive function f , while the feature-generating
LM stays the same. The error of predictor f is backpropagated to the LM,
which allows us to transfer learned parameters from TS to TT .

6.2.1.1 Source Tasks (ST)

We focus on 5 different emoji-based STs, that can be divided into two types,
emoji prediction (EP) and emoji cluster prediction. To sample emojis for EP
or create clusters, we rely on a large collection of user-generated comments.
Emoji prediction is a multi-class prediction task over the 64 most common
emojis identified in the collection of comments. Concretely, given a tweet with
all emojis removed, the classifier has to predict which of the 64 emojis was
originally contained within it.

The emoji cluster prediction tasks can be supervised (PMI-
{Target,Swear}) or unsupervised (KMeans-{2,3}). In this case, the task
is simplified: Given a tweet with all emojis removed, predict the cluster to
which the emoji originally contained in the tweet belonged.

Unsupervised Clusters In order to account for the cultural differences in the
use of emojis, we learn emoji clusters directly from the user-generated data.
We generate 50-dimensional vector representations over the tokens in the col-
lection of user comments using the continuous bag of words (Mikolov et al.,
2013) approach. We then perform k-means clustering with 6 target clusters on
the representations of emojis that occurred ≥ 1000 times. These clusters are
manually merged into 2 (positive/negative) and 3 (positive/negative/neutral)
clusters to create the binary KMeans-2 and ternary KMeans-3 emoji clus-
ter prediction STs respectively. Below a comment to be classified as positive
according to the KMeans-{2,3} tasks, as it originally contained an emoji that
belonged to the positive cluster:

So beautiful and great advice →positive
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Supervised Clusters As an alternative to the completely unsupervised clus-
ters, we exploit the mutual information between emojis and swear words as a
type of distant supervision for HS tasks. We calculate the pointwise mutual
information (PMI) between comments in our collection of user content (not)
containing slurs and the emojis that appear. An emoji is in the slur cluster
if its PMI is highest with comments containing swearwords, otherwise, it is in
the neutral cluster. PMI-Swear is then a binary classification task based on
the resulting slur/neutral emoji clusters.

While the unsupervised emoji cluster prediction STs and PMI-Swear are
source-oriented, i.e. learned on user-generated content, we also explore target-
oriented clusters that rely on the shared information between emojis and the
labels in each of the target tasks (TTs). Concretely, we calculate the PMI
between the label of an instance in the respective TT training data and the
emojis it contains. The emoji is placed into the cluster of the label to which
its PMI value is the largest. PMI-Target is the ST based on these target-
oriented emoji clusters.

6.2.1.2 Target Tasks (TT)

Once the classifier has been fully trained on the ST and thus has adapted the
underlying LMs representations to fit the ST at hand, we discard it and train
a new classifier on top of the enriched LM to predict the TT. We evaluate
this transfer from the various STs on two main categories of TTs, namely hate
speech detection and sentiment analysis. Given a user-generated comment,
hate speech detection is the task of classifying the comment as either hate or
none. Note, however, that concrete label names (e.g. offense, hate, harmful)
may differ across specific HS tasks. Below an example of a comment to be
classified as hate, taken from the HatEval 2019 (Basile et al., 2019) task:

I’d say electrify the water but that would kill wildlife. #SendThem-
Back
→ hate

While HS in our case is a binary classification task, sentiment analysis is a
ternary classification task which takes as input a user generated comment and
classifies it as either positive, neutral or negative. In the following an example
from the Sentiment Analysis in Twitter (Rosenthal et al., 2017) task:

Finally starting the 5th season of Dexter. See ya later, weekend!
→ positive

Both HS and SA are sentiment-based tasks, e.g. hate towards a group of peo-
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Corpus Train Dev Test Emojis

Target Tasks (TT)
HS-DE 1,158/2,439 129/269 970/2,061 853 (7.2%)
HS-ES 1,857/2,643 222/278 660/940 957 (14.5%)
HS-PL 812/8,726 39/464 134/866 1,733 (13.7%)
SA-AR 653/1,022/1,336 36/120/126 1,514/2,222/2,364 2,126 (22.5%)
SA-DE 1,346/900/3,676 69/36/225 83/49/197 166 (2%)
SA-EN 18,481/7,551/21,542 2,103/890/2,315 2,375/3,972/5,937 1,211 (1.9%)

Source Tasks (ST)
TW-AR 183M – – 56M (20%)
TW-DE 16M – – 3M (10%)
TW-EN 323M – – 82M (17%)
TW-ES 320M – – 43M (9%)
TW-PL 7M – – 1M (12%)

Table 6.7: Number of train, dev and test instances (for TT) and collected (for
ST) tweets as well as number of (non-unique) emojis contained in
each corpus. Percentage of training tweets containing emojis in brack-
ets. TTs with label distribution for HS (hate/none) and SA (posi-
tive/negative/neutral) tasks.

ple or positive sentiment towards a product, etc. We therefore take these two
types of tasks to have the potential to benefit from the emotional informa-
tion encoded in emojis. In the following sections, we explore the conditions
under which the transfer from an emoji-based ST to a sentiment-based TT is
beneficial for the TT.

6.2.2 Experimental Setup

We describe the data used for the STs and TTs respectively (Section 6.2.2.1),
followed by the specifications of the encoding LM (Section 6.2.2.2) and the
emoji cluster creation (Section 6.2.2.3).

6.2.2.1 Data

Source Tasks We use a collection16 of tweets that has been collected from the
Twitter stream between 2011 and 2019 as our corpus needed to sample emojis
and create emoji clusters for the STs. We perform language identification using
the polyglot17 library over the tweets to create a corpus for German, English,
Spanish, Polish and Arabic (TW-{AR,DE,EN,ES,PL}) respectively.

To automatically identify swear words for PMI-Swear, we use a German and

16www.archive.org/details/twitterstream
17www.github.com/aboSamoor/polyglot
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a multilingual swear word collection, namely WoltLab18 and Hatebase19. In
total, we collected 785 slurs for German, and 1531, 140, 306, 79 for English,
Spanish, Polish and Arabic respectively.

Target Tasks We work with 6 target tasks in total, 3 HS and 3 SA tasks,
taking into account their emoji content, class (im)balance and language.

For German, we use GermEval 2018 (Wiegand et al., 2019b) Task
1 (offense/other) (HS-DE) and SB10k (Cieliebak et al., 2017) (posi-
tive/negative/neutral) (SA-DE). For English, we use Sentiment Analysis
in Twitter (Rosenthal et al., 2017) (positive/negative/neutral) (SA-EN). Sen-
timent Analysis in Twitter is also used for Arabic (SA-AR). For Spanish we
use HatEval (Basile et al., 2019) (hate/none) (HS-ES) and for Polish, we use
PolEval (Ogrodniczuk and Łukasz Kobyliński, 2019) Task 6 (harmful/none)
(HS-PL). For all of the above, we use the original train/test splits. While the
HA tasks have different label names, we normalize these to be hate/none across
all tasks. For all SA, the labels to be predicted are positive/negative/neutral.

In Table 6.7, we report the label distribution across all TT training, devel-
opment and test sets, as well as ST Twitter corpora sizes. For both ST and
TT corpora, we also report the percentage as well as total number of tweets
containing emojis.

Preprocessing All data sets undergo the same preprocessing. Tweets are
tokenized using the NLTK (Bird, 2006) TweetTokenizer and user mentions,
retweets and punctuation are removed. Repeated characters are shortened.
We use token frequencies to determine the standard orthography of a word
(e.g. coooool → cool instead of col).

6.2.2.2 Model Specifications

For the monolingual (German) experiments, we use the German BERT20

(BERT-DE) and for multilingual experiments, we use Bert-Base-
Multilingual-Cased (BERT-M) as the LM to encode the tweets. We
base our code21 on the simpletransformers22 sequence classification im-
plementations of the above models. Each classification task is trained for a
maximum of 10 epochs using early stopping over the validation accuracy with
18www.woltlab.com/attachment/3615-schimpfwortliste-txt/
19www.hatebase.org/
20www.deepset.ai/german-bert
21https://github.com/uds-lsv/emoji-transfer
22www.github.com/ThilinaRajapakse/simpletransformers
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Figure 6.1: Happy (left) and unhappy (right) emoji clusters obtained by KMeans
on TW-DE.

δ = 0.01 and patience 3. Training was performed on a single Titan-X GPU,
which took between 1 and 6 hours depending on the data size. We evaluate
the resulting classifiers using the Macro F1 measure.

6.2.2.3 Clusters

We describe the creation of the emoji clusters used for the emoji cluster STs.

Unsupervised The unsupervised clusters (Section 6.2.1) were trained on TW-
DE and the concatenation of TW-{AR,DE,EN,ES,PL} for the mono- and mul-
tilingual experiments respectively. In both cases, this yielded clusters that can
be manually categorized as happy, love, fun, nature, unhappy, other (Figure
6.1). For KMeans-3, {happy, fun, love} were merged to positive, {other, na-
ture} to neutral and {unhappy} was used as the negative class. For KMeans-2,
the neutral class is ignored.

Supervised The PMI-Target clusters are trained on the respective TT train-
ing data. The slur lists are used to identify the slurs in the twitter cor-
pora. PMI-Swear is then trained on TW-DE and the concatenation of
TW-{AR,DE,EN,ES,PL} for the mono- and multilingual experiments respec-
tively.
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Figure 6.2: Macro F1 of the HS and SA target tasks transferred from monolingual
(left) and multilingual (right) STs.

6.2.3 Results

We train each model over 10 seeded runs and report the averaged Macro F1
with standard error (Figure 6.2). For each TT, we train a baseline, which is
the same pretrained BERT-{DE,M} model that is now finetuned directly on
the TT classification task at hand, without prior training on a ST. We compare
these baselines with those models that have undergone a transfer from ST to
TT. We use the term equivalent to signify that two models lie within each
other’s error bounds.

6.2.3.1 Condition 1: Emoji Content

We evaluate the effect that STs have on TTs with different amounts of emoji
content. We focus on the TTs with the lowest and the highest amount of emoji
content, namely SA-EN (1.9% emoji content) and SA-AR (22.5%). This is the
multilingual case. For the monolingual case, we evaluate the effect on SA-DE
(2%) and HS-DE (7.2%). All of these TTs are unbalanced, i.e. the minority
class makes up 15.2–32.2% of the training data.

The monolingual, low emoji content SA-DE task does not profit from the
transfer. Rather, the training on most STs leads to a slight drop in F1-Macro
compared to the baseline (F1 60.0). On the other hand, high emoji content
HS-DE greatly benefits from the transfer, with PMI-Swear (F1 73.0) being
especially beneficial for the performance on the TT, yielding a gain of F1
+28.0 over the baseline. This shows that the shared information in emojis
and slurs is relevant to the HS task at hand. Also beneficial are EP (F1 70.5),
and the unsupervised KMeans-3 (F1 69.0) and KMeans-2 (F1 62.9) cluster
prediction tasks. Only the supervised PMI-Target (F1 40.5) does not seem to
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be beneficial for the performance on the TT, leading to a drop in performance,
which is due to the unbalanced nature of the TT (Section 6.2.3.2).

The multilingual case shows a slightly mixed trend. Low emoji content SA-
EN does not benefit from the transfer, but unlike in the monolingual setting, it
is not harmed by it either. All STs lead to a TT performance that is equivalent
to the baseline (F1 57.8). High emoji content SA-AR only barely profits from
the transfer, with EP (F1 50.9) leading to a small gain of F1 (+3.4) over the
baseline (F1 47.5), while all other STs lead to an equivalent performance to the
baseline. The overall trend is similar to the monolingual case but the positive
and negative effects are dimmed down, which may be due to the multilingual
aspect (Section 6.2.3.3).

The general trend shows that a decent amount of emoji content in the TT
training data is crucial for the transfer to be beneficial.

6.2.3.2 Condition 2: Label Distribution

To analyze the effect that the STs have on differently (un)balanced TTs, we
focus on HS-PL (the minority class makes up 8.5% of training data) and HS-ES
(41.3%), as they are the two most (un)balanced TTs, while being comparable
in terms of emoji content (13.7% and 14.5% respectively).

For unbalanced HS-PL, EP (F1 61.7) and unsupervised KMeans-2 (F1 52.2)
lead to an improvement of F1 +13.4 and F1 +3.9 over the baseline, respec-
tively. All other STs are equivalent to the baseline. Balanced HS-ES benefits
from all TTs, with EP (F1 70.8) leading to a gain of F1 +26.1 over the base-
line (F1 44.7), followed by PMI-Swear (F1 69.0) and PMI-Target (F1 64.3).
The unsupervised clusters are beneficial but less effective, with F1 60.2 and
F1 47.5 for KMeans-3 and KMeans-2 respectively, which likely stems from the
multilingual aspect (Section 6.2.3.3).

PMI-Target performs poorly on unbalanced HS-PL (and HS-DE etc.) due
to its use of mutual information between emojis and the TT labels. This leads
to it reproducing the class imbalance, making it less effective on unbalanced
TTs.

The difference in impact of PMI-Swear on HS-PL (none) and HS-ES (and
HS-DE) (gain) can be explained by the composition of the ST dataset. TW-
PL is the smallest corpus in the multilingual collection of user comments, and
this sparsity is further driven by the morphological complexity of Polish, such
that the 306 slurs from the Polish slur list only resulted in 65k Polish training
samples in PMI-Swear, as opposed to 1.8M and 3M for German and Spanish
respectively.
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Overall, if the label distribution in TT is balanced, the TT easily benefits
from the transfer. Otherwise, other conditions such as the multilinguality or
emoji content become more relevant.

6.2.3.3 Condition 3: Multilinguality

We analyze the effectiveness of the transfer in a monolingual and multilingual
setting. For this, we focus on the effect that the monolingually and multi-
lingually learned STs have on HS-DE and SA-DE. Both TTs are unbalanced,
while HS-DE has a high emoji content and SA-DE has a low emoji content.

The different effects of the emoji-content in HS-DE and SA-DE have been
discussed in Section 6.2.3.1, showing that in the monolingual setting, high
emoji content HS-DE benefits from the transfer, while low emoji content SA-
DE does not. In the multilingual case, we see a similar, but dimmed trend.
SA-DE does not benefit from the transfer, with all TTs leading to an equivalent
performance as the baseline (F1 56.6), except KMeans-2 (F1 43.9) which is
below the baseline. The STs have a similar performance on HS-DE, being
equivalent or below the baseline (F1 66.3). Only PMI-Swear (F1 67.8) is
beneficial for the TT performance.

The effect of ST-oriented clusters KMeans-{2,3} was beneficial in the monolin-
gual case (HS-DE), but this benefit is lost in the multilingual setting. This un-
derlines our original idea that ST-oriented unsupervised emoji clusters learned
on large amounts of user-generated text have the advantage of accounting for
cultural differences in the usage of emojis. When learned multilingually,
this advantage is lost. An example of the culturally diverse use of emojis is

, which is rather infrequent in Europe and might be used to point towards
the importance of recycling. In TW-AR, this emoji is among the top 5 most
frequent emojis, and is used to motivate other users to share their content.

The overall trend thus shows that monolingually learned STs are more bene-
ficial than multilingual STs. However, if the training data of a TT is balanced,
this effect is less pronounced.

6.2.3.4 Comparison to Benchmark Results

To put the results into a broader perspective, we compare to state-of-the-art
(SOTA) models for each of the shared-tasks/datasets that our TTs are based
on (Table 6.8). For two of the hate speech benchmarks, the performance of
our transfer approach is close to the SOTA, namely with a difference of F1
-3.8 (HS-DE) and F1 -3.0 (HS-ES). For HS-PL, we were able to achieve a gain
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TT Method F1 SOTA
HS-DE PMI-Swear (monolingual) 73.0 76.8
HS-ES EP 70.8 73.0
HS-PL EP 61.7 58.6
SA-DE Baseline (monolingual) 60.0 65.1
SA-EN KMeans-3 61.1 67.7
SA-AR EP 50.9 61.0

Table 6.8: Macro F1 comparison of top-scoring transfer method (F1) with SOTA
results on the different TT test sets. Best scores in bold. See (Montani
and Schüller, 2018) (HS-DE), (Basile et al., 2019) (HS-ES), (Ogrod-
niczuk and Łukasz Kobyliński, 2019) (HS-PL), (Cieliebak et al., 2017)
(SA-DE) and (Rosenthal et al., 2017) (HS-{AR,EN}) for SOTA method
descriptions.

of +3.1 over the SOTA. Across all three sentiment analysis benchmarks,
our models are below the SOTA. This indicates that SA, in general, is a more
difficult task for our transfer approach than HS, possibly due to its ternary,
rather than binary, classification objective. This is another factor causing
the transfer to be overall more beneficial for HS rather than SA, next to the
unbalanced (SA-{AR,EN}) and low-emoji content (SA-DE) nature of the SA
tasks.

6.2.4 Discussion

We have evaluated and identified conditions under which emoji clustering as
an auxiliary task is beneficial to a sentiment-related primary task. In other
words, we analyzed whether the transfer from an emoji-based source task is
beneficial for a sentiment target task. In the experiments in Section 6.2.3
we observed three major trends, namely i) TTs with high amounts of emoji
content benefit more from the transfer, ii) PMI-Target tends to be detri-
mental to unbalanced TTs as it enforces the problem of class imbalance and
iii) monolingually learned STs tend to perform better than their multilingual
counterparts, due to their improved representation of culturally unique emoji
usages. The latter underlines the importance of taking into account cultural
differences when exploiting the information encoded in emojis. Further, we
saw generally more beneficial effects on HS tasks, which may be due to their
simpler binary nature, whereas SA tasks were more complex ternary tasks.
This goes in line with the experimental results in Section 6.1.2, where primary
task augmentation was only beneficial for simpler binary tasks. This again
is due to the reduced probability of having an overlapping class distribution
between target and auxiliary (here: cluster- or emoji-based source task) tasks
when there are more classes. However, this overlap is crucial for the transfer
to be successful.
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From these results, we can draw conclusions about the conditions under which
a given emoji-based ST is beneficial. Due to the shared information between
emojis and slurs, PMI-Swear is beneficial to HS tasks when the data that can
be generated from the swear word list is decently large. PMI-Target is bene-
ficial when the TT is balanced, otherwise it replicates the already existing class
imbalance. UnsupervisedKMeans-{2,3} should be learned monolingually to
be beneficial and EP is a safe choice for TTs with high emoji content.

6.3 Auxiliary Task: Subspace Learning

In the previous section, we have seen that clustering as an auxiliary task can
improve the classification performance of the target task. While it overcomes
the need for the availability of labeled corpora with class definitions similar to
the target task (Section 6.1.2), it is only beneficial to the target task perfor-
mance under certain conditions, as summarized in Section 6.2.4. All methods
explored in the previous sections of this chapter relied on augmenting the
LMs encoder representations in order to achieve a gain in performance on the
target task, either through additional primary task data or auxiliary MLM
training.

In this section, we explore an alternative approach, which does not rely on
any additional classification or MLM training to augment the representations,
and which manipulates the representations directly to make them more suited
for performing the primary task at hand.23 For this, we focus on subspace
learning as an auxiliary task. Concretely, given a primary (=target)24 task,
e.g., hate speech or profanity detection, and pre-existing word or sentence-level
semantic representations, we learn a subspace of the semantic representation
that concentrates on the feature related to our target task, e.g., profanity.
We then explore the effect that training a target task classifier on this target
task-specific semantic subspace has on the classification performance.

After explaining our subspace learning approach in Section 6.3.1, we detail our
experimental setup (Section 6.3.2). We then present our experimental results
on the word (Section 6.3.3) and sentence level (Section 6.3.4) and discuss
(Section 6.3.5).

23This section is based on (Hahn et al., 2021).
24Analogous to Section 6.1.2, we use the terms primary and target tasks interchangeably.
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w (profane) ŵ (neutral)
Arschloch [asshole] Mann [man]
Fotze [cunt] Frau [woman]
Hackfresse [shitface] Mensch [human]

Table 6.9: Examples of word-level minimal pairs.

6.3.1 Semantic Subspaces

A common way to represent word-level semantic subspaces is based on a set
P of so-called minimal pairs, i.e., N pairs of words (w, ŵ) that differ only in
the semantic dimension of interest (Bolukbasi et al., 2016; Niu and Carpuat,
2017). Table 6.9 displays some examples of such word pairs for the profanity
domain. Each word w is encoded as a word embedding e(w):

P = {(e(w1), e(ŵ1)), . . . , (e(wN ), e(ŵN ))}

Then, each pair is normalized by a mean-shift:

P̄ = {(e(wi)− µi, e(ŵi)− µi)|1 ≤ i ≤ N}

where each µi =
1
2(e(wi) + e(ŵi)).

Finally, PCA is performed on the set P̄ and the most significant principal
component (PC) is used as a representation of the semantic subspace.

We diverge from this approach in four ways:

Normalization We note that there is no convincing justification for the nor-
malization step. As our experiments in the following sections show, we find
that the profanity subspace is better represented by P than by P̄ . For our
experiments, we thus distinguish three different types of representations:

• BASE: The raw featurized representation r.

• PCA-RAW: Featurized representation r projected onto the non-
normalized subspace S(P ).

• PCA-NORM: Featurized representation r projected onto the normal-
ized subspace S(P̄ ).

Here, projecting a vector representation r onto a subspace is defined as the
dot product r · S(P ).
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Number of Principal Components c The use of just a single PC as the
best representation of the semantic subspace is not well motivated. This
is recognized by Niu and Carpuat (2017) who experiment on the first c =
1, 2, 4, . . . , 512 PC and report results on their downstream-task directly. How-
ever, a downside of their method for determining a good value for c is the
requirement of a task-specific validation set that runs orthogonal to the as-
sumption that a good semantic subspace should generalize well to many related
tasks.

Instead, we propose the use of an intrinsic evaluation that requires no addi-
tional data to estimate a good value for c. Rothe et al. (2016) have shown
that semantic subspaces are especially useful for classification tasks related
to the semantic feature encoded in the subspace. Here, we argue the inverse:
if a semantic subspace with c components yields the best performance on a
related classification task, c should be an appropriate number of components
to encode the semantic feature.

More specifically, we apply a classifier function f(x) = y, which learns to map
a subspace-based representation x = e ·S(P ) to a label y ∈ {profane,neutral}.
We learn f(x) on the same set P used to learn the subspace. In order to
evaluate on previously unseen entities, we employ 5-fold cross-validation over
the available list of minimal pairs P and evaluate Macro F1 on the held-out
fold. Due to the simplicity of this intrinsic evaluation, the experiment can be
performed for all values of c and the c yielding the highest average Macro F1
is selected as the final value. The above holds for P and P̄ equally.

Sentence-Level Minimal Pairs We move the word-level approach to the sen-
tence level. In this case, minimal pairs are made up of vector representations
of sentences (e(s), e(ŝ)).

In order to standardize the approach and to focus the variation in the sen-
tence representations on the profanity feature, sentence-level minimal pairs
are constructed by keeping all words contained equivalent except for signifi-
cant words that in themselves are minimal pairs for the semantic feature of
interest. For instance, a sentence-level minimal pair for the profanity feature
with significant words:

The food here is shitty.
The food here is disgusting.

Zero-Shot Transfer In order to evaluate how well profanity is encoded in
the resulting word- and sentence-level subspaces, we test their generalization
capabilities in a zero-shot classification setup. Given a subspace S(P ) (or
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S(P̄ )), we train a classifier f(x) = y to classify subspace-based representations
x = e · S(P ) as belonging to class y ∈ {profane|neutral}. The x used to train
the classifier are the same entities in the minimal pairs used to learn S(P ).
This classification task is the source task T = {x, y}. As the classifier is learned
on subspace-based representations, it should be able to generalize significantly
better to previously unseen profanity-related tasks than a classifier learned on
generic representations x = e (Rothe et al., 2016). Given a previously unseen
task T̄ = {x̄, ȳ}, we follow a zero-shot transfer approach and let classifier
f , learned on source task T only, predict the new labels ȳ given instances
x̄ without training it on data from T̄ . The zero-shot generalization can be
quantified by calculating the accuracy of the predicted labels ˆ̄y given the gold
labels ȳ. The extend of this zero-shot generalization capability can be tested
by performing zero-shot classification on a variety of unseen tasks T̄ with
variable task distances T̄ ⇔ T .

6.3.2 Experimental Setup

6.3.2.1 Data

Word Lists The minimal-pairs used in our experiments are derived from a
German slur collection25.

Fine-Tuning We use the Arabic, German, English and French portions of a
large collection of tweets26 collected between 2013–2018 to finetune BERT. For
the German BERT model, all available German tweets are used, while the mul-
tilingual BERT is finetuned on a balanced corpus of 5M tweets per language.
For validation during finetuning, we set aside 1k tweets per language.

Target Tasks We test our sentence-level representations, which are used to
train a neutral/profane classifier on a subset of minimal pairs, on several hate
speech benchmarks. For all four languages, we focus on a distant task DT
(neutral/hate). For German, English and Arabic we additionally evaluate on
a similar task ST (neutral/profane), for which we removed additional classes
(insult, abuse etc.) from the original finer-grained data labels and downsam-
pled to the minority class (profane).

For German (DE), we use the test sets of GermEval-2019 (Struß et al., 2019)
Subtask 1 (Other/Offense) and Subtask 2 (Other/Profanity) for DT and ST

25www.hyperhero.com/de/insults.htm
26www.archive.org/details/twitterstream
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Corpus # Sentences # Tokens
Fine-Tuning
Twitter-DE 5(9)M 45(85)M
Twitter-EN 5M 44M
Twitter-FR 5M 58M
Twitter-AR 5M 75M
Target Tasks
DE-ST 111/111 1,509/1,404
DE-DT 2,061/970 14,187/9,333
EN-ST 93/93 1,409/1,313
EN-DT 288/865 8,032/3,647
AR-ST 12/12 164/84
AR-DT 46/54 592/506
FR-DT 5,822/302 49,654/2,660

Table 6.10: Number of sentences and tokens of the data used for finetuning BERT
for the sentence-level experiments. Target task test sets are reported
with their respective neutral/hate (DT) and neutral/profane (ST) dis-
tributions.

respectively. For English (EN), we use the HASOC (Mandl et al., 2019) Sub-
task A (NOT/HOF) and Subtask B (NOT/PRFN) for DT and ST respec-
tively. French (FR) is tested on the hate speech portion (None/Hate) of the
corpus created by Charitidis et al. (2020) for DT only, while Arabic (AR)
is tested on Mubarak et al. (2017) for DT (Clean/Obscene+Offense) and ST
(Clean/Obscene). As AR has no official train/test splits, we use the last 100
samples for testing. The training data of these corpora is not used.

Table 6.10 summarizes the data used for finetuning as well as testing.

Preprocessing The Twitter corpora for finetuning were preprocessed by fil-
tering out incompletely loaded tweets and duplicates. We also applied lan-
guage detection using spacy to further remove tweets that consisted of mainly
emojis or tweets that were written in other languages.

6.3.2.2 Model Specifications

To achieve good coverage of profane language, we use 300-dimensional German
FastText embeddings27 (Deriu et al., 2017) trained on 50M German tweets for
the word-level experiments in Section 6.3.3.

27https://github.com/spinningbytes/deep-mlsa
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Figure 6.3: Projections of profane and neutral words from TL-1 (left), TL-2 (mid-
dle) and TL-3 (right) onto a word-level profane subspace learned by
PCA-NORM on 10 minimal pairs (
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Neutral).

The BERT models used in Section 6.3.4 are Bert-Base-German-Cased28 and
Bert-Base-Multilingual-Cased for the monolingual and multilingual exper-
iments respectively, since they pose strong baselines. We finetune on the Twit-
ter data (Section 6.3.2.1) using the masked language modeling objective and
early stopping over the validation loss (δ = 0, patience = 3). All classification
experiments use Linear Discriminant Analysis (LDA) as the classifier.

6.3.3 Word-Level Subspaces

Before moving to the lesser explored sentence-level subspaces, we first verify
whether word-level semantic subspaces can also capture complex semantic
features such as profanity.

6.3.3.1 Minimal Pairs

Staying within the general low-resource setting prevalent in hate speech and
profanity domains, and to keep manual annotation effort low, we randomly
sample a small number of words from the German slur lists, namely 100, and
manually map these to their neutral counterparts (Table 6.9). We focus this
list on nouns describing humans.

Each word in our minimal pairs is featurized using its word embedding, this
is our BASE representation. We learn PCA-RAW and PCA-NORM represen-
tations on the embedded minimal pairs.

6.3.3.2 Classification

We evaluate how well the resulting representations BASE, PCA-RAW and
PCA-NORM encode information about the profanity of a word by focusing
28www.deepset.ai/german-bert
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on a related word classification task where unseen words are classified as neu-
tral or profane. To evaluate how efficiently the subspaces can be learned
in a low-resource setting, we downsample the list of minimal pairs to learn
the subspace-based representations and the classification task to 10–100 word
pairs. After the preliminary exploration of the number of principal compo-
nents (PC) required to represent profanity, the number of PC for the final
representations lies within a range of 15–111. Each experiment is run over 5
seeded runs and we report the average F1 Macro with standard error. As each
seeded run resamples the training and test data, the standard error is also
a good indicator of the variability of the method when trained on different
subsets of minimal pairs.

Test Lists For this evaluation, we create three test lists (TL-{1,2,3}) of pro-
fane and neutral words. The contents of the three TLs are defined by their
decreasing relatedness to the list of minimal pairs used for learning the sub-
space, which are nouns describing humans. TL-1 is thus also a list of nouns
describing humans, TL-2 contains random nouns not describing humans, and
TL-3 contains verbs and adjectives. The three TLs are created by randomly
sampling from the word embeddings that underlie the subspace representa-
tions and adding matching words to TL-{1,2,3} until they each contain 25
profane and 25 neutral words, i.e., 150 in total.

Projecting the TLs onto the first and second PC of the PCA-NORM subspace
learned on 10 minimal pairs suggests that a separation of profane and neutral
words can be achieved for nouns describing humans (TL-1), while it is more
difficult for less related words (TL-{2,3}) (Figure 6.3).

Results Across all TLs, the subspace-based representations outperform the
generalist BASE representations (Figure 6.4), with PCA-NORM reaching F1-
Macro scores of up to 96.0 (TL-1), 89.9 (TL-2) and 100 (TL-3) when trained
on 90 word pairs. This suggests that they generalize well to unseen nouns
describing humans as well as verbs and adjectives while generalizing less to
nouns not describing humans (TL-2). This may be due to TL-2 consisting
of some less frequent compounds (e.g., Großmaul [big mouth]). PCA-NORM
and PCA-RAW perform equally on TL-1 and TL-3, while PCA-NORM is
slightly stronger in the mid-resource (50-90 pairs) range on TL-2. This sug-
gests that the normalization step when constructing the profane subspace is
only marginally beneficial. Even when the training data is very limited (10–40
pairs), the standard errors are decently small (F1 ±1–5), indicating that the
choice of minimal pairs has only a small impact on the downstream model per-
formance. When more training data is available (80–100 pairs), the influence
of a single minimal pair becomes less pronounced and thus the standard error
decreases significantly.
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Figure 6.4: Macro F1 of the LDA models, using BASE or PCA-{RAW,NORM}

representations on the word classification task based on 10 to 100 train-
ing word pairs (
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Word w NN(w) NN(ŵ)

Scheisse
[shit]

Scheiße, Scheissse, Scheissse04, Scheißee schrecklich, augenscheinlich, schwerlich,
schwesterlich
[horrible, evidently, hardly, sisterly]

Spast
[dumbass]

Kackspsst, Spasti, Vollspast, Dummerspast Mann, Mensch, Familienmensch, Menschn
[man, person, family person, people]

Bitch x6bitch, bitchs, bitchin, bitchhh Frau, Afrikanerin, Mann, Amerikanerin
[woman, african, man, american]

Arschloch
[asshole]

Narschloch, Arschlochs, Arschloc,
learschloch

Mann, Frau, Lebenspartnerin, Menschwesen
[man, woman, significant other, human creature]

Fresse
[cakehole]

Fresser, Schnauze, Kackfufresse,
Schnauzefresse

Frau, Mann, Lebensgefährtin, Rentnerin
[woman, man, significant other, retiree]

Table 6.11: Profane words w with top 4 NNs before (NN(w)) and after (NN(ŵ))
removal of the profane subspace.

6.3.3.3 Substitution

Word embeddings allow us to perform simple arithmetics in order to verify
the relationship between different words in the embedding space. In order
to verify the quality of our resulting subspace, we analyze the behavior of a
word embedding when removing our identified profane subspace. Intuitively,
given a profane word and its embedding, removing a (well-encoded) profane
subspace from this embedding should ideally yield the profane word’s neutral
counterpart. This profane → neutral substitution approach thus constitutes
a quality check of how well our resulting subspace encodes the concept of
profanity.

Concretely, We use the profane subspace Sprf to substitute a profane word w
with a neutral counterpart ŵ. We do this by removing Sprf from w,

ŵ =
w − Sprf
||w − Sprf||

(6.1)

and replacing it by its new nearest neighbor NN(ŵ) in the word embeddings.
Here, we focus on the PCA-NORM subspace learned on 10 minimal pairs only.
We use this subspace to substitute all profane words in TL-{1,2,3}.
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Human Evaluation To analyze the similarity and profanity of the substitu-
tions, we perform a small human evaluation. Four annotators were asked to
rate the similarity of profane words and their substitutions, and also to give a
profanity score between 1 (not similar/profane) and 10 (very similar/profane)
to words from a mixed list of slurs and substitutions.

Original profane words were rated with an average of 6.1 on the profanity
scale, while substitutions were rated significantly lower, with an average rating
of 1.9. Minor differences exist across TL splits, with TL-1 dropping from 6.8
to 1.3, TL-2 from 6.1 to 3.1 and TL-3 from 5.4 to 2.1.

The average similarity rating between profane words and their substitution
differs strongly across different TLs. TL-1 has the lowest average rating of 2.8,
while TL-2 has a rating of 3.3 and TL-3 has a rating of 5.1. This is surprising
since the subspaces generalized well to TL-1 on the classification task.

Qualitative Analysis To understand the quality of the substitutions, espe-
cially on TL-1, which has obtained the lowest similarity score in the human
evaluation, we perform a small qualitative analysis on 3 words sampled from
TL-1 (Spast, Bitch, Arschloch) and 1 word sampled from TL-2 (Fresse) and
TL-3 (Scheiss) each. Before removal, the nearest neighbors (NNs, Table
6.11) of the sampled offensive words were mostly orthographic variations (e.g.,
Scheisse [shit] vs. Scheiße) or compounds of the same word (e.g., Spast [dumb-
ass] vs. Vollspast [complete dumbass]). After removal, the NNs are still negative
but not profane (e.g., Scheisse →schrecklich [horrible]). While the first NNs are
decent counterparts, later NNs introduce other (gender, ethnic, etc.) biases,
possibly stemming from the word embeddings or from the minimal pairs used
to learn the subspace. The counterparts to Scheisse [shit] seem to focus around
the phonetics of the word (all words contain sch), which may also be due to
the poor representation of adjectives in embedding spaces. Fresse [cakehole] is
ambiguous29, thus the subspace does not entirely capture it and the new NNs
are neutral, but unrelated words.

While human similarity ratings on TL-1 were low, qualitative analysis shows
that these can still be reasonable. The low rating on TL-1 may be due to
annotators’ reluctance to equate human-referencing slurs to neutral counter-
parts.

The ability to automatically find neutral alternatives to slurs may lead to
practical applications such as the suggestion of alternative wordings.

29Fresse can mean shut up, as well as being a pejorative for face and eating.
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6.3.4 Sentence-Level Subspaces

In Section 6.3.3, we identified profane subspaces on the word-level. However,
abuse mostly happens on the sentence and discourse level and is not limited
to the use of isolated profane words. Therefore, we move this method to the
sentence level, exploring the two subspace-based representation types PCA-
RAW and PCA-NORM. Concretely, we learn sentence-level profane subspaces
that allow a context-sensitive representation and thus go beyond isolated pro-
fane words, and verify their efficacy to represent profanity. Similarly to the
word-level experiments, we focus our analysis on the ability of the subspaces
to generalize to similar (neutral/profane) and distant (neutral/hate) tasks.
We compare their performance with a BERT-encoded BASE representation,
which does not use a semantic subspace.

6.3.4.1 Minimal Pairs

Using the German slur collection, we identify tweets in Twitter-DE containing
swearwords, from which we then take 100 random samples. We create a neutral
counterpart by manually replacing significant words, i.e., swearwords, with a
neutral variation while keeping the rest of the tweet as-is:

a) ich darf das nicht verkacken!!!
[I must not fuck this up!!!]

b) ich darf das nicht vermasseln!!!
[I must not mess this up!!!]

6.3.4.2 Monolingual Zero-Shot Transfer

We validate the generalization of the German sentence-level subspaces to a
similar (profane) and distant (hate) domain by zero-shot transferring them to
unseen German target tasks and analyzing their performance.

Representation Types We finetune Bert-Base-German-Cased on Twitter-
DE (9M Tweets). Each sentence in our list of minimal pairs is then en-
coded using the finetuned German BERT and its sentence representation
s = mean({h1, ..., hT }) is the mean over the T encoder hidden states h. This is
our BASE representation. We further train PCA-RAW and PCA-NORM on
a subset of our minimal pairs. We chose 14–96 PCs for PCA-RAW and 9–94
PCs for PCA-NORM depending on the size of the subset of minimal pairs
used to generate the subspace.
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Results We train the PCA-RAW and PCA-NORM representations on sub-
sets of increasing size (10, 20, . . . , 100 minimal pairs). For each subset and rep-
resentation type (BASE, PCA-RAW, PCA-NORM), we train an LDA model
to identify whether a sentence in the subset of minimal pairs is neutral or pro-
fane. These models are zero-shot transferred to the German similar task ST
(neutral/profane) and distant task DT (neutral/hate). We report the average
F1-Macro and standard error over 5 seeded runs, where each run resamples
its train and test data.

ST: Similar Task Despite the fact that the LDAmodels were never trained on
the target task data, the PCA-RAW and PCA-NORM representations yield
high peaks in F1 when trained on 50 (F1 68.9, PCA-RAW) minimal pairs
and tested on DE-ST (Figure 6.5). PCA-RAW outperforms PCA-NORM for
almost all data sizes. PCA-RAW outperforms the BERT (BASE) representa-
tions especially on the very low-resource setting (10–60 pairs), with an increase
of F1 +14.2 at 40 pairs. Once the training size reaches 70 pairs, the differ-
ences in F1 become smaller. The subspace-based representations are especially
useful for the low-resource scenario.

DT: Distant Task For the distant task DT, the general F1 scores are lower
than for the similar task ST. However, PCA-RAW still reaches a Macro-F1 of
63.5 at 50 pairs for DE-DT. This indicates that the profane subspace found
by PCA-RAW partially generalizes to a broader, offensive subspace. Similar
to ST, the projected PCA-RAW representations are especially useful in the
low-resource case of up to 50 sentences. The F1 of the BERT baseline is well
below the PCA-RAW representations when data is sparse, with a major gap
of F1 +10.9 at 30 pairs for DE-DT. The classifier using BASE representations
stays around F1 53.0 (DE-DT) and does not benefit from more data, indicating
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resentations, zero-shot transferred to the similar (bottom) and distant
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that these representations do not generalize to the target tasks. However, once
normalization (PCA-NORM) is added, the generalization is also lost and we
see a drop in performance around or below the baseline. As for ST, all three
representation types level out once higher amounts of data (70–80 pairs) are
reached.

The standard errors show a similar trend to those in the word-level experi-
ments: we observe a small standard error when training data is sparse (10–40
pairs), indicating that the choice of minimal pairs has a small impact on the
subspace quality, which decreases further when more minimal pairs are avail-
able for training (50–100 pairs).

6.3.4.3 Zero-Shot Cross-Lingual Transfer

To verify whether the subspaces also generalize to other languages, we zero-
shot transfer and test the German BASE, PCA-RAW and PCA-NORM rep-
resentations on the similar and distant tasks of closely-related (English),
distantly-related (French) and non-related (Arabic) languages. For French,
we only test on DT due to a lack of data for ST.

Representation Types The setup is the same as in Section 6.3.4.2, except for
using Bert-Base-Multilingual-Cased and finetuning it on a corpus consist-
ing of the 5M {AR,DE,EN,FR} tweets. The resulting model is used to gen-
erate the hidden representations needed to construct the BASE, PCA-RAW
and PCA-NORM representations. After performing 5-fold cross-validation,
the optimal number of PC is determined. Depending on the number of min-
imal pairs, the resulting subspace sizes lie between 8–67 (PCA-RAW) and
10–44 (PCA-NORM).

127



6 Self-Supervised Learning for Sequence-to-Label Tasks

Results As in Section 6.3.4.2, we train on increasingly large subsets of the
German minimal pairs.

ST: Similar Task We test the generalization of the German representations
on the similar (neutral/profane) task on EN-ST and AR-ST as well as DE-
ST for reference. Note that the LDA classifiers were trained on the German
minimal pairs only, without access to target task data.

The trends on the three test sets are very similar to each other (Figure 6.6,
bottom), indicating that the German profane subspaces transfer not only to
the closely-related English but also to the unrelated Arabic data. For all three
languages, the PCA-{RAW,NORM} methods tend to grow in performance
with increasing data until around 40 sentence pairs when the method seems to
converge. This yields a performance of F1 66.1 on DE-ST at 80 pairs, F1 74.9
on EN-ST at 100 pairs and F1 68.4 on AR-ST at 70 pairs for PCA-RAW.

Overall, larger amounts of pairs are needed to reach top performance in com-
parison to the monolingual case. This trend is also present when testing on
DE-ST, leading us to posit that it is caused not by the cross-lingual transfer
itself, but by the different underlying BERT models used to generate the initial
representations. The differences in F1 between PCA-RAW and PCA-NORM
are mere fluctuations between the two methods. The BASE representations
are favorable only at 10 training pairs, with more data they overfit on the
source task and are outperformed by the subspace representations, with dif-
ferences of F1 +20.6 at 100 sentence pairs (PCA-RAW) on EN-ST, and F1
+22.4 at 100 sentence pairs (PCA-NORM) on AR-ST.

DT: Distant Task Similar trends to ST are observed on the distant (neu-
tral/hate) tasks (Figure 6.6, top). While the BASE representations are
strongest at 10 sentence pairs, they are outperformed by the subspace-based
representations at around 30 pairs. PCA-RAW outperforms PCA-NORM and
peaks at F1 59.6 (60 pairs), F1 65.6 (60 pairs), F1 66.2 (70 pairs) and F1 56.1
(30 pairs) for the German, English, Arabic and French test sets respectively.

We conclude that the German profane subspaces are transferable not only
monolingually or to closely-related languages (English) but also to distantly-
related (French) and non-related languages (Arabic), making a zero-shot trans-
fer possible on both similar (neutral/profane) and distant tasks (neutral/hate).
The BERT embeddings, on the other hand, were not able to perform the initial
transfer, i.e., from minimal-pair training to similar and distant target tasks,
thus making the transfer to other languages futile. Subspace-based represen-
tations are a powerful tool to fill this gap, especially for classifiers trained on
small amounts of target data and zero-shot transfer to related tasks.
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External Comparison The transfer capabilities of our subspace-based models
can be set into perspective by comparing them to state-of-the-art classification
models that were trained directly on our target tasks. ForDT, the top-scoring
team on EN-DT reaches higher levels of F1 (75.6) (Mandl et al., 2019) than our
best PCA-RAW representations (F1 65.6). Similarly, the top-scoring model on
CHS-FR (Charitidis et al., 2020) lies at F1 82.0 and thus F1 +25.9 over PCA-
RAW. However, PCA-RAW outperforms the best-performing model reported
in Mubarak et al. (2017) (F1 60.0) by F1 +6.2. Note, however, that this
comparison is vague, as there is no standard train-test split for AR. For ST,
no direct comparison to SOTA models can be made, since the profane-neutral
classification task is usually part of a larger multi-class classification task.
Nevertheless, the success of simple subspace-based LDA models, trained on
very small amounts of task-distant German data, at cross-lingually zero-shot
transferring to various tasks underlines the generalization capability of our
approach.

6.3.4.4 Qualitative Analysis

A qualitative per-task analysis of the errors of the best performing models
(PCA-RAW) reveals that some of the gold labels are debatable. The sub-
jectivity of hate speech is a well-known issue for automatic detection tasks.
Here, it is especially observable for EN, AR and FR, where arguably offensive
comments were annotated as neutral but classified as offensive by our model:

C’est toi la pute. Va voir ta mère
[You are the whore. Go see your mom]

We find that the models tend to over-blacklist tweets across languages as
most errors stem from classifying neutrally-labeled tweets as offensive. This is
triggered by negative words, e.g., crime, as well as words related to religion,
race and politics, e.g.,:

No Good Friday agreement, no deals with Trump.

6.3.5 Discussion

In this section, we have used subspace learning as an auxiliary task in order to
improve the classification performance on similar and distant target (primary)
tasks. We have shown that a complex feature such as profanity can be encoded
using semantic subspaces on the word and sentence level.
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On the word-level, we found that the subspace-based representations are
able to generalize to previously unseen words. Using the profane subspace, we
were able to substitute previously unseen profane words with neutral counter-
parts.

On the sentence-level, we have tested the generalization of our subspace-
based representations (PCA-RAW, PCA-NORM) against raw BERT rep-
resentations (BASE) in a zero-shot transfer setting on both similar (neu-
tral/profane) and distant (neutral/hate) tasks. While the BASE represen-
tations failed to zero-shot transfer to the target tasks, the subspace-based
representations were able to perform the transfer to both similar and dis-
tant tasks, not only monolingually, but also to the closely-related (English),
distantly-related (French) and non-related (Arabic) language tasks. We ob-
serve major improvements between F1 +10.9 (PCA-RAW on DE-DT) and F1
+42.9 (PCA-NORM on FR-DT) over the BASE representations in all scenar-
ios. Our experiments have shown that the commonly used mean-shift nor-
malization is not required, which is why conducting further experiments using
unaligned significant words/sentences could pose an interesting direction for
future research.

Overall, subspace learning as an auxiliary task has shown to be very benefi-
cial to our primary classification task(s). In comparison to language modeling
and clustering as auxiliary tasks, it requires a lot fewer prerequisites (vs. pri-
mary task augmentation and clustering) while leading to strong generalization
capabilities for similar and distant target tasks (vs. generic LM representa-
tions).

6.4 Auxiliary Task: Knowledge Integration

In the previous sections, we have seen how auxiliary tasks such as language
modeling, clustering and subspace learning can affect the downstream primary
task performance. These techniques often relied on expert knowledge to create
the right data setting, i.e., choosing similar corpora to the target task during
downstream augmentation, generating relevant emoji-subsets for clustering, or
creating lists of minimal pairs for subspace learning. In this section, we set our
focus on this expert knowledge precisely, by investigating how task-relevant
knowledge is integrated into an LM-based classifier. Following all previous
sections, we focus on the primary task of hate speech detection. Concretely,
we perform intermediate language modeling on structured and unstructured
knowledge samples taken from a knowledge graph of cultural stereotypes.30
We deem stereotypical knowledge to be relevant to the task of (ethnic) hate

30This section is based on (Deshpande et al., 2022).
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Figure 6.7: From noisy social media content to structured knowledge graph: the
creation pipeline of StereoKG.

speech detection and evaluate the impact the knowledge integration has on the
target task. In this case, the knowledge integration is our auxiliary task and
the knowledge graph (KG) creation that precedes this integration is completely
data-driven and performed by us. As our resulting knowledge graph focuses
on cultural and stereotype knowledge, we call it StereoKG.

In the following, we will explain our data-driven knowledge graph creation
(Section 6.4.1) and evaluate the resulting knowledge graph (Section 6.4.2).
We then present our knowledge graph integration experiments (Section 6.4.3)
and discuss (Section 6.4.4).

6.4.1 Knowledge Graph Construction

We focus our data-driven cultural KG on 5 religious (Atheism, Christianity,
Hinduism, Islam, Judaism) and 5 national (American, Chinese, French, Ger-
man, Indian) entities. Previous work on automatic KG creation depended
on external algorithms, i.e., autocompletion of search engine queries (Romero
et al., 2019; Choenni et al., 2021; Baker and Potts, 2013). This dependency is
limiting, as external providers may filter31 outputs of their autocomplete algo-
rithm, especially on sensitive topics such as culture and identity. Instead, we
keep control over the whole KG creation process. The entire KG construction
pipeline is illustrated in Figure 6.7.

Using statement and question mining, cultural knowledge and stereotypes
regarding our entities of interest are collected from two social media platforms,
Reddit and Twitter. For Reddit, we limit our search to subreddits relevant for
the respective subjects (e.g. r/germany for Germans) together with common
question-answering subreddits (e.g., r/AskReddit) using the PRAW32 library.
The complete list of queried subreddits is given in Table 6.12. Similar to the
commonsense mining approach by Romero et al. (2019) and Choenni et al.
(2021), we use fixed question and statement templates (Table 6.13) to iden-
tify potential sentences containing cultural knowledge with the assumption

31In its battle against biased or hateful content, Google has imposed filters on its autocom-
plete predictions for targeted questions.

32https://github.com/praw-dev/praw
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Entity Subject-specific Generic

Atheist r/TrueAtheism, r/religion,
r/DebateReligion, r/atheism

r/explainlikeimfive, r/AskReddit,
r/TooAfraidToAsk,
r/NoStupidQuestions

Christian r/religion, r/DebateReligion,
r/TrueChristian, r/DebateAChristian,
r/AskAChristian, r/atheism,
r/Christianity, r/Christian,
r/Christianmarriage, r/Bible

r/AskReddit,
r/NoStupidQuestions,
r/explainlikeimfive

Hindu r/India, r/hindusim, r/librandu,
r/IndiaSpeaks, r/awakened, r/IAmA,
r/atheismindia, r/india, r/AskHistorians

r/explainlikeimfive, r/AskReddit,
r/TooAfraidToAsk,
r/NoStupidQuestions

Jewish r/Judaism, r/AskHistorians, r/religion,
r/DebateReligion, r/AskSocialScience

r/explainlikeimfive, r/AskReddit,
r/TooAfraidToAsk,
r/NoStupidQuestions,
r/Discussion

Muslim r/religion, r/DebateReligion,
r/TraditionalMuslims,
r/progressive_islam, r/atheism, r/islam,
r/exmuslim, r/Hijabis, r/indianmuslims,
r/AskSocialScience

r/AskReddit,
r/NoStupidQuestions,
r/explainlikeimfive, r/ask

American r/AskAnAmerican r/explainlikeimfive,
r/OutOfTheLoop,
r/TooAfraidToAsk, r/offmychest,
r/NoStupidQuestions,
r/linguistics, r/AskReddit

Chinese r/shanghai, r/China, r/asianamerican,
r/HongKong, r/Sino

r/explainlikeimfive, r/AskReddit,
r/TooAfraidToAsk,
r/NoStupidQuestions

French r/French, r/france, r/AskAFrench,
r/AskEurope

r/explainlikeimfive, r/AskReddit,
r/NoStupidQuestions

German r/germany, r/German, r/europe,
r/AskGermany, r/AskAGerman

r/explainlikeimfive, r/AskReddit,
r/offmychest, r/TooAfraidToAsk,
r/NoStupidQuestions

Indian r/India, r/india, r/indiadiscussion,
r/IndianFood, r/indianpeoplefacebook,
r/ABCDesis

r/explainlikeimfive,
r/retailhell,r/AskReddit,
r/TooAfraidToAsk,
r/NoStupidQuestions

Table 6.12: Subreddits used for Reddit extraction.

that questions posted about various national and religious entities act as cues
for underlying stereotypical notions about them. This results in 11,259 mined
questions and statements. The questions are then also converted into state-
ments using Quasimodo33 (Romero et al., 2019), as OpenIE does not process
interrogative sentences.

To reduce redundancies in the KG, we cluster the mined sentences with sim-
ilar content together using the fast clustering method implemented in Sen-
tenceTransformers34 (Reimers and Gurevych, 2019) using the model all-
MiniLM-L6-v2. This step results in 6,993 singletons and 610 clusters with
more than one instance. We hypothesize that clusters are better representa-
tives of cultural knowledge and stereotypes, as these are based on questions
that have been asked by several users, while singletons may be based on unique
thoughts which do not represent a popular stereotype or cultural reality. The
qualitative difference between singletons and clusters is evaluated in Section
6.4.2.

33https://github.com/Aunsiels/CSK
34https://www.sbert.net/examples/applications/clustering/README.html
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Query Templates

Why is <SUB>
Why isn’t <SUB>
Why are <SUB>

Why aren’t <SUB>
Why can <SUB>
Why can’t <SUB>
Why do <SUB>

Why don’t <SUB>
Why doesn’t <SUB>

How is <SUB>
How do <SUB>

What makes <SUB>
Why does <SUB> culture

<SUB> are so
<SUB> is such a

Table 6.13: Question-based (top) and statement-based (bottom) query templates.

All assertions are then converted into triples using OpenIE (Mausam, 2016).
As OpenIE outputs multiple triples which may be noisy or irrelevant, they are
filtered using the following heuristics:

• Eliminate triples containing personal pronouns, e.g., I, he.
• Eliminate triples not containing the original subject entity.
• Remove colloquialisms (e.g, lol) and modalities (e.g., really) from triples.

While most triples are singletons, many are part of a cluster. In order to select
the triple to represent a cluster in the final KG, triples within a cluster are
converted into sentences via concatenation of their subject-predicate-object
terms. These are ranked on their grammaticality using a binary classifica-
tion model35 trained on the corpus of linguistic acceptability (Warstadt et al.,
2019). The rank of a sentence is given by the model’s score given to the
grammatical class, and the triple with the highest score is chosen as the rep-
resentative for the entire cluster.

6.4.2 Knowledge Graph Evaluation

Understanding the quality of our resulting KG is a prerequisite for understand-
ing the effect of knowledge integration on our primary task. In the following
section, we therefore analyze the content encoded in our KG in a qualitative
and quantitative fashion.
35https://huggingface.co/textattack/distilbert-base-uncased-CoLA
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6.4.2.1 KG Statistics

Our KG consists of 4,722 entries, with Americans being the largest represented
group (1,071 entries) and Jews (43) the smallest. To gain insights into the
sentiments and overall distribution of descriptive predicates, we evaluate the
KG on the following two criteria.

Sentiment Analysis We perform a ternary (positive, neutral, negative) sen-
timent analysis over the KG triples by verbalizing them into sentences. We
use a sentiment classification model36 (Barbieri et al., 2020) for this task. To
mitigate religious/ethnic bias37 in the sentiment classifier, we mask the sub-
ject entities with their type, e.g. “islam seems to be conservative” → “religion
seems to be conservative” and “french culture is pure” → “nation culture is
pure”, and then perform classification.

Pointwise Mutual Information (PMI) PMI π(x, y) measures the association
of two events. We calculate π between entities E = e1, ..., en and their co-
occurring predicate and object tokens w as:

π(e, w) = log p(e, w)

p(e)p(w)
(6.2)

Infrequent tokens co-occurring with a single entity will have higher PMI scores
with the said entity. To focus our analysis on common tokens co-occurring with
one entity while maintaining low co-occurrence with other entities, we use the
following PMI-based association metric α:

α(e, w) = (π(e, w)− π(e, w)) · f(e, w) (6.3)

Where f(e, w) is the frequency of w among all tokens co-occurring with e
and

π =
∑

ei∈E \{e}

π(ei, w) (6.4)

36https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment
37If subjects are not masked, we observe effects where a given subject, e.g., atheist, is

more likely to be negatively evaluated than without masking, simply due to bias in the
sentiment analysis classifier.
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Figure 6.8: Percentage of POSitive, NEUtral and NEGatively evaluated triples per
religious (top) and nationality (bottom) entity.

Intuitively, Equation 6.3 mitigates the effect of infrequent tokens in the PMI
calculation and gives a relative score across all the entities. We calculate
α between entities and their co-occurring predicates and objects to identify
trends in the contents of the triples.

Results Figure 6.8 shows the results of the sentiment classification. Over-
all, positively evaluated instances are rare across all entities, with most being
neutral or negatively evaluated. The results of the association analysis are
highlighted in Table 6.14. The most positively (4.7%) and least negatively
(37.2%) evaluated religious group are Jews, where positive stereotypes include
strong for Jewish women (α = 5.19). Most (58.1%) instances about Judaism
are neutral reports of cultural practices, e.g., about circumcision (α = 6.78).
Hindus have the smallest proportion of positive stereotypes (2.9%) and Athe-
ists have the largest amount of negative evaluations (51.0%) which often in-
clude strong negative actions and emotions such as attack (α = 2.04), angry
(α = 1.37) and obnoxious (α = 2.69). Nationalities tend to be more frequently
positively evaluated than religious groups, with Germans being the most pos-
itively evaluated (9.5%) and the least negatively evaluated (21.0%) with most
instances being neutral mentions of the countries role during ww2 (α = 3.76).
Chinese (6.7%) have the lowest proportion of positive stereotypes, however
neutral sentiments are most common (63.9%) and are often about topics such
as Chinese food (α = 2.77). The nationality with the largest proportion of
negative stereotypes are the French (49.3%), which are mostly described with
negative traits such as elitist (α = 5.09) or vulgar (α = 5.09), while neutral
and positive mentions are often related to food, e.g., croissants (α = 5.09).

Since most stereotypical questions asked online have more negative connota-
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Entity # Top Tokens (α)

Atheist 731 god, christians, annoying, believe, theists, obsessed, attack, vocal, angry,
argue, troll, hate

Christian 823 obsessed, follow, bible, weird, hate, jesus, abortion, afraid, jewish, covid,
non-christians

Hindu 102 men, india, hindustan, uc, muslim, caste, tolerant, babas, shameless, fool,
jihads,marrying

Jewish 43 jew,wear, israel, circumcisions, conversion, discourage, evangelize,
progressive, shiksas, leftist

Muslim 842 hate, countries, allowed, ex-muslims, obsessed, quran, eat, laws, allah,
islamophobia, sharia

American 1,071 culture, call, obsessed, pronounce, different, countries, afraid, healthcare,
hate, british, soccer

Chinese 277 restaurants, companies, citizens, food, workers, students, tourists,
menus, consumers

French 138 eat, speak, obsession, call, egg, pretty, croissants, depicted, proud, culture,
exaggerate, elitist

German 262 obsessed, pronounce, words, ww2, water, war, nazi, prepare, berlin, love,
disciplined, manual

Indian 431 culture, obsessed, hate, pakistanis, pictures, marriages, heads, defensive,
afraid, stare, army

Total 4,722

Table 6.14: Number of instances (#) per entity and predicate/object tokens with
highest association score α to entity.

tions than positive ones, it confirms the premise that stereotypes are related
to prejudicial opinions of different cultural groups.

6.4.2.2 Human Evaluation

We perform a human evaluation to gain insights into the quality of
StereoKG. We focus on three quality metrics, namely coherence (COH), com-
pleteness (COM), and domain (DOM) evaluated on a nominal 3-point scale for
negation (0), ambiguity (1), and affirmation (2) respectively. COH measures
the semantic logicality of a triple, while COM measures if the grammatical
valency of the predicate is fulfilled. DOM measures whether the triple belongs
to our domain of interest, i.e., whether it can be considered a stereotype or
cultural knowledge. We also measure two subjective credibility measures CR1
and CR2, where CR1 is a binary measure asking whether the annotator has
heard of this stereotype/knowledge before, and CR2 asks whether they believe
the information to be true on a scale of 0-4. To evaluate the overall quality
of triples, we calculate the success rate (SUC), where a triple is considered
successful if it achieves an above average (> 1) rating across all three quality
metrics COH, COM, and DOM. The evaluation is performed on a total of
100 unique triples from the KG, where 50 triples each were randomly sampled
from the subset of triples stemming from singleton and non-singleton clusters
respectively. Each sample was annotated by 3 annotators, all of whom are
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COH COM DOM CR1 CR2 SUC
(0-2) (0-2) (0-2) (0-1) (0-4) (%)

SD 1.55 1.11 0.97 0.13 1.17 44.0
CD 1.70 1.42 1.18 0.29 1.56 59.2
All 1.63 1.26 1.07 0.21 1.36 51.5
OA 0.82 0.74 0.59 0.81 0.39

Table 6.15: Human annotated COHerence, COMpleteness, DOMain and CRed-
ibility metrics and SUCcess rate over the complete KG test sample
(All) as well as its singleton-derived (SD) and cluster-derived (CD)
subsamples. Average overall agreement (OA) given for each metric.

students with different cultural backgrounds (German (irreligious), Indian
(Hindu), and Iranian (Muslim)).

We assess inter-annotator agreement using the average overall agreement
(OA), showing high levels of agreement for both quality measures COH (0.82)
and COM (0.74), while OA for DOM is lower (0.59) due to the subjective na-
ture of what constitutes a stereotype (Table 6.15). Similarly, OA for subjective
measures CR{1,2} is mixed, as can be expected. To measure intra-annotator
agreement, we duplicated 10 samples randomly. Intra-annotator agreement is
high across all annotators (0.79, 0.95, 1.00).

The COH quality metric of the KG is high for both singleton (1.55)
and non-singleton-derived entries (1.70), and COM is slightly lower (average
COM=1.26). That indicates that the vast majority of entities are meaning-
ful (COH), with some missing relevant information (COM). Overall, DOM is
close to 1, suggesting that it was often not clear to annotators whether an
entity can be considered a stereotype, which is also reflected in the overall
lower inter-annotator agreement on this metric. Entities stemming from non-
singleton clusters have a high success rate of 59.2, meaning that the majority
of non-singleton-derived entities lean positive across all three quality metrics
COH, COM, and DOM. Overall, non-singleton entities are of higher quality
than singleton-derived entities (SUC +15.2), underlining the initial hypoth-
esis that multiple occurrences of questions online are better indicators of a
stereotype than unique questions. Moreover, stereotypical knowledge in non-
singleton entities is more likely to be known (CR1 +0.16) and believed to be
true (CR2 +0.39) by annotators.

6.4.3 Knowledge Integration Experiments

We explore how knowledge integration as an auxiliary task affects the perfor-
mance on a relevant primary task. For this, we perform intermediate masked
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Corpus Train Dev Test
OLID 3504/7088 894/1752 242/620
WSF 830/6662 105/965 261/1880

Table 6.16: Number of hate/neutral instances in the train, dev and test set of
downstream tasks.

language modeling (MLM) on StereoKG in its structured (verbalized triple)
and unstructured (sentence) form. The unstructured knowledge is more ex-
pressive and verbose, while the structured knowledge from triples is less noisy
as compared to the unstructured data. We then train and evaluate the model
performance on our primary task, i.e., hate speech detection, a task for which
we esteem stereotype knowledge to be of use.

6.4.3.1 Experimental Setup

Data We experiment with the effect of intermediate pretraining on two kinds
of downstream datasets: one of the same domain as the pretraining corpus
(Twitter), and another which is outside the domain data. We use the Twitter-
based OLID (Zampieri et al., 2019) dataset as our in-domain dataset and the
White Supremacy Forum (WSF) dataset (de Gibert et al., 2018) as our out-
of-domain dataset. Both tasks are binary hate/neutral classification tasks. As
OLID does not have an official validation set, we split off 20% of samples
from the training data for validation. Similarly, WSF is randomly split into
70-10-20 splits for training, validation, and testing respectively. We observe
9 and 33 samples in the dev and test splits of OLID and WSF respectively,
containing both a subject entity of interest and cultural knowledge or a stereo-
type. To analyze the effect of cultural knowledge integration on these samples,
particularly without breaking the exclusivity between validation and testing,
we remove these samples from the validation splits. We give the final data
statistics in Table 6.16.

Our unstructured knowledge (UK) comprises the original sentences from the
clusters from which the triples are formed. Since pretraining requires a sen-
tence format, we create our structured knowledge (SK) by verbalizing the
triples from the KG with a T5-based (Raffel et al., 2020) triple-to-text con-
version model.

Triple Verbalization The triple verbalization technique takes inspiration
from KELM (Agarwal et al., 2021). We use the WebNLG 2020 (Colin et al.,
2016) corpus to finetune a T5-base38 model for 5 epochs and then apply it
38https://huggingface.co/t5-base
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to triples in StereoKG. It results in a corpus of verbalized triples in sentence
form, e.g.,

<jewish men, get, circumcisions> → Jewish men get circumci-
sions.
<american culture, obsessed with, novelty> → The American cul-
ture is obsessed with novelty.

These sentences constitute the structured knowledge and are used for inter-
mediate MLM pretraining of the baseline models.

Models For the knowledge integration experiments, we use the se-
quence classification pipeline in the simpletransformers39 library. Us-
ing the task-specific training data, we finetune two models: general-domain
(BASE) RoBERTa40(Liu et al., 2019) and domain-trained (DT) Twitter
RoBERTa41(Barbieri et al., 2020). We continue MLM training of the baseline
models using i) unstructured (+UK) KG knowledge and ii) structured (+SK)
verbalized triples to investigate the impact of stereotypical knowledge.

All models are finetuned with early stopping (δ=0.01, patience=3) using the
validation F1 score as the stopping criterion. We finetune 10 models for each
configuration, each having a different random seed and report their averaged
Macro-F1 with standard errors.

6.4.3.2 Knowledge vs. Domain

We finetune the BASE(+UK/SK) and DT(+UK/SK) RoBERTa models on
the in-domain (OLID) and out-of-domain (WSF) training data and report
Macro-F1 on the complete test set. To quantify the impact of injecting stereo-
types, we also segregate instances from the test set that contain our subject
entities in a cultural or stereotypical context and report the scores on these
examples as well. Results are shown in Table 6.17.

For the complete test set, knowledge integration does not seem to have a
significant effect, with most model variations being within the error bounds
of each other. Only domain training positively affects the classification per-
formance, with all DT models outperforming their BASE counterparts on the
OLID dataset with gains of up to F1 +1.5. As expected, domain training does
not have an effect on the performance for the out-of-domain WSF data.

39https://simpletransformers.ai/docs/classification-models/
40https://huggingface.co/roberta-base
41https://huggingface.co/cardiffnlp/twitter-roberta-base
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Model OLID (F1) WSF (F1)
Complete Stereotype Complete Stereotype

BASE 69.7±.7 65.1±2.3 60.5±.6 73.3±1.7
BASE+UK 70.6±.4 67.9±2.6 60.7±.5 72.7±1.3
BASE+SK 70.4±.6 66.9±2.0 59.5±1.2 67.5±3.2
DT 70.5±.4 72.5±1.7 60.8±.6 77.7±1.6
DT+UK 70.6±.4 73.4±3.4 61.4±.4 77.0±2.9
DT+SK 71.2±.2 73.8±1.8 60.6±.5 75.6±1.8

Table 6.17: Averaged Macro-F1 and standard errors of BASE and domain trained
(DT) models with intermediate MLM training on unstructured (UK)
and structured (SK) knowledge tested on OLID and WSF. Top results
in bold.

Model ACC@5 (%) Example Pred (top 3)

BASE 37 Muslims are turning away [science]. too, now, again
BASE+UK 48 Americans don’t have free [healthcare]. healthcare, lunch, tuition
BASE+SK 45 Americans are voting for [Trump]. freedom, democracy, them

DT 37 Atheists unilaterally support [abortion]. fascism, abortion, terrorism
DT+UK 49 Muslims compare apostasy to [treason] treason, sin, genocide
DT+SK 41 Chinese toilets are [dirty]. disgusting, awful, shit

Table 6.18: Cultural MLM prediction accuracy at 5 (ACC@5) of different models
together with example instances with masked [gold standard] token
and the top 3 predictions of the model.

While the effect of cultural knowledge integration is not significant on the
full test sets, its effect becomes clearer when focusing only on the subset of
instances that contain stereotypes. Firstly, domain training has a larger
effect on these samples, with the DT model showing an increase of F1 +7.4 over
BASE on OLID. When the DT model has additionally undergone intermediate
MLM training on cultural knowledge, we observe further improvements in F1
for +UK and +SK respectively. While these improvements are within each
other’s error bounds, this suggests that the training on cultural knowledge
can increase downstream task performance on knowledge-crucial samples, i.e.,
in our case, those that require cultural or stereotypical knowledge. A larger
stereotype-containing test set is required to further verify this hypothesis by
reducing error bounds. On the out-of-domain WSF data, we do not observe
these trends, similar to the BASE model on OLID. This suggests that domain
training is a prerequisite for effective knowledge integration.

6.4.3.3 Cultural Knowledge Prediction

To further quantify the degree to which cultural and stereotype knowledge
is encoded in the models, we compare their MLM predictions on masked
stereotypes. We manually collected 100 sentences from the verbalized KG
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and masked tokens which require either cultural or stereotype knowledge to
be completed. By taking into account the top 5 predictions and comparing
them to the masked gold standard, we calculate the prediction accuracy at 5
(ACC@5) and analyze common trends.

Our results in Table 6.18 show that both, the generic BASE and Twitter-based
DT models have the same low level of cultural awareness (ACC@5=37%),
with most predictions being vague e.g, he, this, that. However, adding 4,895
unstructured knowledge instances as intermediate MLM training data drasti-
cally improves results to 48% (BASE+UK) and 49% (DT+UK). Both +UK
models show higher sensitivity to cultural correlations e.g., Americans and
their struggle with healthcare, or Muslims and reading the Quran, which was
not displayed by the baseline models. Further, adjective predictions about mi-
norities tend to be more positive, e.g. Jewish women are [strong] →beautiful.
The structured knowledge also improves cultural sensitivity to a large margin,
i.e., +7% points (BASE+SK) and +4% points (DT+SK). However, their pre-
dictions are often more generic and less culture-specific than the +UK models,
which may be due to the lack of variable context in which these stereotypes
are seen due to the denoising factor of using SK.

6.4.4 Discussion

In this section, we have focused on knowledge graph creation, which we then
used to analyze the effect of knowledge integration as an auxiliary task on a
relevant primary task, i.e., hate speech detection.

We create an automated pipeline to extract cultural and stereotypical knowl-
edge from the internet in the form of queries. While this overcomes the lim-
itations and expenses of crowdsourcing and is easily extendable to a large
number of entities, several shortcomings still need to be resolved. Automated
extraction results in irrelevant and noisy data, which is augmented by erro-
neous outputs during triple creation. This is also evidenced in the human
evaluation that corroborates the existence of many incomplete triples in the
resultant KG, which could also be due to the noisy OpenIE outputs. Other
stages in the analysis, such as statement conversion, fast clustering, and triple
verbalization give sufficiently good approximations.

As the current version of StereoKG does not differentiate between (true) cul-
tural knowledge, which should be represented in language models, and (untrue
or stigmatizing) stereotypes which should not be present in a language model,
future research should focus on differentiating between these two cases. How-
ever, this is not easy to achieve, due to the fuzzy boundaries between stereo-
types and cultural knowledge.
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While our experiments suggest that performing knowledge integration as an
auxiliary task can improve the classification performance on knowledge-crucial
samples of the target task, a more extensive dedicated hate speech test set
focusing on stereotype entities is required to reduce error margins and ver-
ify results. Our experiments are limited to intermediate MLM training and
we leave the exploration of other knowledge integration techniques for future
work.

6.5 Discussion

In this chapter, we have explored different auxiliary tasks, i.e., language mod-
eling, clustering, subspace learning and knowledge integration, and their effect
on classification primary tasks.

As for language modeling as an auxiliary task, we have observed that mono-
lingually learned models generally outperform multilingual models for high-
resource language primary tasks. Further, auxiliary task augmentation can
more easily have a positive effect on the performance of the primary task
than directly performing primary task augmentation, due to it not relying
on overlapping label definitions. Note that our approach to knowledge inte-
gration also overlaps with our language modeling experiments, since we inte-
grate the collected knowledge into the model via intermediate MLM training.
In its essence, this setup also constitutes a type of auxiliary augmentation,
however here the augmentation was performed on small amounts of targeted
(knowledge-relevant) content vs. massive amounts of general or task-specific
content. Our experiments on knowledge integration thus indicated that aux-
iliary task augmentation via language modeling as a primary task can be
beneficial to knowledge crucial samples. This is interesting since it suggests
that if the knowledge domains of our primary task are known, a smaller and
dedicated sample of knowledge-relevant data can be used to improve the per-
formance of specific types of data points in our primary task.

While knowledge integration, language modeling and clustering all required
additional data, subspace learning was performed using a (small) curated
list of minimal pairs only. Even more, our experiments suggest that the cu-
ration of minimal pairs may not be necessary and the subspace can also be
learned without them. However, this needs to be further explored in a dedi-
cated experimental setup exploring different subspace learning techniques with
and without minimal pairs. Nevertheless, we have shown that subspace learn-
ing holds powerful generalization capabilities and significantly improves the
performance of (related and distant) primary classification tasks in compari-
son to using language modeling only. However, our work only concentrated on
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one semantic feature (i.e., profanity), thus more work on the general potential
and challenges of subspace learning as an auxiliary task is needed.
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Most NLP learning algorithms require labeled data. While this is given for
a select number of (mostly English) tasks, the availability of labeled data is
sparse or non-existent for the vast majority of use-cases. To alleviate this,
unsupervised learning and a wide array of data augmentation techniques have
been developed (Hedderich et al., 2021a). However, unsupervised learning
often requires massive amounts of unlabeled data and also fails to perform
in difficult (low-resource) data settings, i.e., if there is an increased distance
between the source and target data distributions (e.g., regarding domain or
language distance) or when the data is noisy or simply sparse (Kim et al.,
2020). Unsupervised learning in itself does not exploit the highly informative
(labeled) supervisory signals hidden in unlabeled data. In this dissertation, we
show that by combining the right unsupervised auxiliary task (e.g., sentence
pair extraction) with an appropriate primary task (e.g., machine translation),
self-supervised learning can exploit these hidden supervisory signals more ef-
ficiently than purely unsupervised approaches. Our self-supervised learning
approach can be used to learn NLP tasks in an efficient manner, even when
the amount of training data is sparse or the data comes with strong differences
in its underlying distribution, e.g., stemming from unrelated languages. For
our general approach, we applied unsupervised learning as an auxiliary task to
learn a supervised primary task. Concretely, we have focused on the auxiliary
task of sentence pair extraction for seq2seq primary tasks (e.g., machine trans-
lation and style transfer) as well as language modeling, clustering, subspace
learning and knowledge integration for primary classification tasks (e.g., hate
speech detection and sentiment analysis).

7.1 Summary of Dissertation

This dissertation can be considered to contain two main parts, namely self-
supervised learning for sequence-to-sequence and for sequence-to-label tasks.
The two parts can be roughly summarized as follows.

We developed a self-supervised technique for sequence-to-sequence tasks
(Section 3), which uses similar sentence pair extraction as an auxiliary task to
a sequence-generating primary task, e.g., machine translation or style trans-
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fer. For MT, the method generates competitive results on high-resource similar
language pairs in comparison to unsupervised MT (Section 4.3. We have found
that the sentence pair extraction auxiliary task develops high levels of preci-
sion and recall during the course of MT training (Section 4.4) and that the
extraction and training process resembles a self-induced curriculum of increas-
ing sample similarity and complexity (Section 4.5). Further, by combining
self-supervised MT with unsupervised data augmentation techniques, we were
able to significantly improve the translation performance of low-resource sim-
ilar, distant and unrelated language pairs (Section 4.6). Lastly, this approach
was also applied to style transfer, where our method showed to produce top-
quality stylistic rephrasings across all tested tasks according to our automatic
and human evaluation (Section 5).

On the sequence-to-label side, we have explored a large variety of auxiliary
tasks, including language modeling, clustering, subspace learning and knowl-
edge integration to aid in the learning of a primary classification task. We
have found that auxiliary task augmentation is more practicable (i.e. fewer
prerequisites must be fulfilled to have a beneficial effect) than primary task
augmentation, and that both types of augmentation benefit from monolin-
gually learned representations (for high-resource languages) (Section 6.1). Fur-
ther, we have shown that unsupervised clusters tend to be a good choice for
clustering-based auxiliary tasks applied to sentiment-related primary classifi-
cation tasks, as they do not propagate potentially pre-existing label imbalances
from the primary task (Section 6.2). Subspace learning is another powerful
auxiliary task and we show how subspace-based representations significantly
outperform generic representations when performing (cross-lingual) zero-shot
transfer to similar and distant target tasks for same, related and unrelated
languages (Section 6.3). Lastly, we show how freely available knowledge from
the web can be used to create a fully data-driven knowledge graph, which can
then be used to perform knowledge integration as an auxiliary task to learn
a related primary task, showing that this setup is beneficial from knowledge-
crucial samples in the test set (Section 6.4).

7.2 Challenges

This dissertation has approached many different research questions. However,
as research questions are answered, they also shed light on many new open
questions. While it is infeasible to name all of them, this section intends to
mention some of the major open questions and challenges that arose from this
dissertation.

When working with self-supervised NMT it is evident that it requires parallel
pairs to be present in the non-parallel training data, since these need to be
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extracted in order to provide supervisory signals to the supervised primary MT
task. However, how does unsupervised MT deal with this? In previous works,
it has been shown that unsupervised MT fails to be learned when the data
distributions between source and target are very different (e.g., domain-drift
or distant language pairs in source and target).

Is unsupervised MT equally dependent on parallel data hidden in
its non-parallel data sources as self-supervised MT?

This could be easily answered by manipulating the training data used for an
unsupervised MT system, i.e., removing or adding parallel samples into the
non-parallel training data. This can then be compared to a self-supervised
MT system. Here, it may make sense to also include language distance as an
independent variable in the experimental design, to verify whether this has an
effect on the outcome.

We have also shown how the similar sentence pair extraction auxiliary task in
self-supervised NMT shows high levels of precision and recall on high-resource
related language pairs.

How is the precision and recall of sentence pair extraction affected
when performed on low-resource and/or distant to unrelated lan-
guage pairs?

To answer this question, one would simply need to run the same experiment as
in Section 4.4 on pseudo-comparable datasets of low-resourced as well as dis-
tant or unrelated language pairs and then evaluate. However, Section 4.6.3.3
indicates that these numbers may be lower than on high-resource related lan-
guage pairs.

We have shown that many style transfer tasks are learnable using our self-
supervised approach. However, this requires a clean and unbiased data distri-
bution. This became evident during the qualitative error analysis of the civil
rephrasing task (Section 5.3.3), where we observed stance reversal errors due
to a polarity bias in the data, i.e., the civil data portion was leaning towards
a positive sentiment while the hateful data portion was leaning negative. This
means that the training data must be stripped of any unwanted bias before
learning self-supervised style transfer. This is not always easy, since data can
contain any type of bias unknown to us prior to training.

Can we find a (semi-)automatic way of ensuring a clean and un-
biased distribution of our non-parallel style transfer training data?

This is a very open research question, but it is crucial for making self-
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supervised style transfer more practicable for a large set of style transfer tasks.
One imaginable approach could be to perform dimensionality reduction (e.g.,
PCA) on the data to identify major latent variables hidden in the data (e.g.,
across the top n principal components). If there is a strong difference between
the source and target data on a dimension other than the dimension expressing
our feature of interest (e.g., profanity in the case of the civil rephrasing task),
we have identified a bias that should be removed from the data. Neverthe-
less, this approach assumes that PCA will be able to linearly map semantic
dimensions relevant to us (e.g., profanity), which is not necessarily the case.
Further, this still requires human intervention and expert analysis of the PCA
dimensions to identify the bias to then debias the dataset based on that.

We have shown that primary task augmentation can be beneficial if there is
sufficient overlap in the label definitions of the additional and target training
data and the task is simple (e.g., binary). However, training all combinations
of possibly compatible datasets is not feasible for many tasks. For example,
there currently exist more than 50 hate speech datasets for English1 but only
a very small subset will have decently overlapping label definitions.

Can we automatically identify (subsets of) datasets which are ben-
eficial for the training of our target classification task?

This is highly related to the noisy labeling approach, where massive amounts
of automatically labeled instances are filtered before being used to train a tar-
get task classifier (Jia et al., 2019; Hedderich et al., 2021b). In our specific
use case, noise filtering or modeling could be used to mitigate the noise in-
troduced from training on (several) external datasets. This would then save
time and resources used to attempt the combination of different datasets and
an automatic selection of instances from various datasets becomes feasible.

We have further shown that dimensionality reduction is a powerful auxil-
iary task that leads to impressive performance gains on (cross-lingual) zero-
shot classification of similar and distant tasks in comparison to generic non-
subspace-based sentence representations. During our experiments in Section
6.3.4, we have observed that normalization of semantic minimal pairs is not
needed to obtain beneficial subspace-based representations. This means that
the whole process of creating minimal pairs for the semantic feature of interest
(e.g., profanity in our case) is not needed.

Can we effectively learn semantic subspaces modeling our feature
of interest without the need of minimal pairs?

To answer this question, a similar zero-shot classification-oriented experimen-
1According to https://hatespeechdata.com (May 2022).
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tal design as used in Section 6.3.4 could be used. Instead of using matched
minimal-pair-based data, we can test different levels of unmatched data. For
an approach requiring some expert knowledge, we can simply learn the sub-
space on words that stem from the two opposing ends of the semantic spectrum
of interest (e.g., profane vs. neutral) with a balanced or unbalanced distribu-
tion of the two extrema. For no expert knowledge, these can then be compared
with semantic representations learned on the target task training data (e.g.,
hate vs. neutral sentences) in a balanced or unbalanced fashion. Evaluat-
ing the generalization capabilities of the resulting semantic subspace should
give insight into their effect on the primary classification task, which helps us
understand their capability of encoding the semantic feature of interest.

These being just a small selection of research questions left for future work, I
hope that my dissertation has sparked some interest in pursuing research in
self-supervision in NLP. This goes especially for research in self-supervision for
lower-resourced languages to make NLP technology available to more linguistic
communities.
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List of Abbreviations

3ST self-supervised style transfer

af Afrikaans

AGG aggregated score

AR Arabic

ATA attribute transfer accuracy

B basemodel

BLEU bilingual evaluation understudy

BPEN byte-pair encoding of Nk merge operations

BT back-translation

B+T baseline with task-based intermediate MLM training

c number of principal components

CAE conditional autoencoder by Laugier et al. (2021)

Ce semantic sentence representation based on word embeddings

Ch semantic sentence representation based on the hidden states
(RNN) or encoder outputs (transformer)

CivCo civil comments data set

COH coherence

CoLA corpus of linguistic acceptability

COM completeness
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CON conditional style transformer by Dai et al. (2019)

CP content preservation

CR credibility (also as CR1, CR2)

DA Davidson corpus (Davidson et al., 2017)

DAE denoising autoencoding

DAEBL bilingual denoising autoencoding

DAEML multilingual denoising autoencoding

DAR delete and retrieve model by Li et al. (2018)

de or DE German

DEDUP deduplication

dev development

DLA style transfer model by He et al. (2020)

DOM domain

DT distant task or domain trained

e embedding or entity

et word embedding at time step t

en or EN English

es or ES Spanish

f classifier function or frequency

F finetuning

FLU fluency

FO Founta corpus (Founta et al., 2018)

fr or FR French
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GE germeval 2018 (Wiegand et al., 2019b)

GF gunning fog index

GYAFC Grammarly’s yahoo answers formality corpus

HASOC hate speech and offensive content identification in Indo-
European languages corpus (Mandl et al., 2019)

hi Hindi

ht hidden state (RNN) or encoder output (transformer) at time
step t

HS hate speech

HS-DE German hate speech corpus (Wiegand et al., 2019b)

HS-ES Spanish hate speech corpus (Basile et al., 2019)

HS-PL Polish hate speech corpus (Ogrodniczuk and Łukasz
Kobyliński, 2019)

hsb Upper Sorbian

IMT iterative matching and translation model by (Jin et al., 2019)

KA kaggle corpus (van Aken et al., 2018)

KG knowledge graph

kn Kannada

L language

L set of languages {L1, ..., LN}

LDA linear discriminant analysis

LM language model

LSTM long short-term memory

LT language tokens
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M multilingual baseline

MAXTOKSN maximum token count of N

METEOR metric for evaluation of translation with explicit ordering

MLM masked language modeling

MUL multi-class transformer by Dai et al. (2019)

my Burmese

M+T multilingual baseline with task-based intermediate MLM
training

M+T(J) multilingual baseline with task-based intermediate MLM
training and then jointly trained on the de/fr target task

M+T(S) multilingual baseline with task-based intermediate MLM
training and then trained on either de or fr separately

N noise

NCr13 news crawl 2007-2013

NCr17 news crawl 2007-2017

ne Nepali

NLTK natural language toolkit

NMT neural machine translation

NT12 newstest 2012

NT13 newstest 2013

NT14 newstest 2014

NT16 newstest 2016

OLID offensive language identification dataset (Zampieri et al.,
2019)

P precision
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P a set of minimal pairs

P̄ a set of normalized minimal pairs

PC principal component

PCA principal component analysis

PL Polish

PMI pointwise mutual information

PN punctuation normalization

PRD prediction

r vector representation

R recall

RAND random initialization

REF reference

RNN recurrent neural network

S subspace

Sprf profane subspace

s sequence

SA sentiment analysis

SA-AR Arabic sentiment analysis corpus (Rosenthal et al., 2017)

SA-DE German sentiment analysis corpus (Cieliebak et al., 2017)

SA-EN English sentiment analysis corpus (Rosenthal et al., 2017)

SCA style transfer through cross-alignment model by Shen et al.
(2017)

SK structured knowledge
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sBT
L2 back-translated sequence in L2

SL1 semantic sentence representation of a sentence from lan-
guage L1.

SOTA state-of-the-art

SPN sentence-piece encoding with vocabulary size Nk

SPE sentence pair extraction

SR success rate

SRC source

SSNMT self-supervised neural machine translation

ST similar task or source task

seq2seq sequence-to-sequence

SUC success rate

sw Swahili

System E SPE using sentence representations Ce

System H SPE using sentence representations Ch

System P SPE using both Ce and Ch

System R SPE using both Ce and Ch, taking top n candidates

T task

T̄ previously unseen task

TS source task

TT or TT target task

TC truecasing

TER translation error rate
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TL test list

TOK tokenization

TR trolling, aggression and cyberbullying corpus (Kumar et al.,
2018)

TSS top-scoring system

TW twitter corpus

TW-AR Arabic twitter corpus

TW-DE German twitter corpus

TW-EN English twitter corpus

TW-ES Spanish twitter corpus

TW-PL Polish twitter corpus

UK unstructured knowledge

UMT unsupervised machine translation

UNMT unsupervised neural machine translation

USMT unsupervised statistical machine translation

w word

ŵ word that differs from another word w only on a single se-
mantic dimension

wL1 word of language L1

WAT21 workshop on Asian translation 2020

WAT21 workshop on Asian translation 2021

WE word embedding-based inititalization

WENUM word embedding-based inititalization using weak supervi-
sion via a list of numbers
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WESWAD word embedding-based inititalization using weak supervi-
sion via Swadesh lists

WMT workshop on machine translation

WMT19 workshop on machine translation 2019

WMT20 workshop on machine translation 2020

WP wikipedia

WSF white supremacist forum (de Gibert et al., 2018)

WT word-translation

X input data

x input instance

x̄ previously unseen input instance

Y output data

y output instance

ȳ previously unseen output instance

yo Yorùbá

α association metric

µ mean

π pointwise mutual information
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