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Abstract

Background

Ventilated preterm infants frequently develop bronchopulmonary dysplasia (BPD) which is

associated with elevated inflammatory mediators in their tracheal aspirates (TA). In animal

models of BPD, inhaled nitric oxide (iNO) has been shown to reduce lung inflammation, but

data for human preterm infants is missing.

Methods

Within a European multicenter trial of NO inhalation for preterm infants to prevent BPD

(EUNO), TA was collected to determine the effects of iNO on pulmonary inflammation. TA

was collected from 43 premature infants randomly assigned to receive either iNO or placebo

gas (birth weight 530–1230 g, median 800 g, gestational age 24 to 28 2/7 weeks, median 26

weeks). Interleukin (IL)-1β, IL-6, IL-8, transforming growth factor (TGF)-β1, interferon γ-
induced protein 10 (IP-10), macrophage inflammatory protein (MIP)-1α, acid sphingomyeli-

nase (ASM), neuropeptide Y and leukotriene B4 were measured in serial TA samples from

postnatal day 2 to 14. Furthermore, TA levels of nitrotyrosine and nitrite were determined

under iNO therapy.

Results

The TA levels of IP-10, IL-6, IL-8, MIP-1α, IL-1β, ASM and albumin increased with advanc-

ing postnatal age in critically ill preterm infants, whereas nitrotyrosine TA levels declined in

both, iNO-treated and placebo-treated infants. The iNO treatment generally increased nitrite

TA levels, whereas nitrotyrosine TA levels were not affected by iNO treatment. Furthermore,

iNO treatment transiently reduced early inflammatory and fibrotic markers associated with
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BPD development including TGF-β1, IP-10 and IL-8, but induced a delayed increase of

ASM TA levels.

Conclusion

Treatment with iNO may have played a role in reducing several inflammatory and fibrotic

mediators in TA of preterm infants compared to placebo-treated infants. However, survival

without BPD was not affected in the main EUNO trial.

Trial registration

NCT00551642

Introduction

Survival of preterm infants is frequently associated with a chronic lung disease called broncho-

pulmonary dysplasia (BPD). Infants who develop BPD often require long-term oxygen supple-

mentation [1,2] and frequent re-admissions to hospitals [3,4], resulting in high health care

costs [5]. Quality of life may be reduced, especially since pulmonary function abnormalities

may persist into adulthood [6,7].

Lung injury induced by mechanical ventilation and oxygen supplementation triggers pro-

inflammatory responses and repair processes [8–10]. Cytokines can be measured in tracheal

aspirates (TA) and reflect the extent of inflammatory reactions [11,12]. It was reported that

interleukin (IL)-1, IL-6, IL-8, intercellular adhesion molecule-1 (ICAM-1), macrophage

inflammatory protein (MIP)-1α, transforming growth factor (TGF)-β1 and leukotriene B4

(LTB4) were increased within the first 10 days of life in the bronchoalveolar lavage (BAL) fluid

of preterm infants who later developed BPD as compared to those who did not [13–19]. In a

multicenter high frequency oscillatory ventilation trial [20], the outcome of the trial was pre-

dicted by IL-8 and LTB4 TA levels [21]. One further important chemokine in lung injury that

is critical for leukocyte activation is CXCL10 (IP-10) [22]. Another potentially interesting

mediator is neuropeptide Y (NPY), because it may be involved in the so-called neuro-immune

axis [23]. In addition, increased levels of glycolipids, such as ceramide, were found in the BAL

fluid of patients with respiratory distress syndrome (RDS) [24] and in an ovine BPD model

[25]. Furthermore, acid sphingomyelinase (ASM), an enzyme generating ceramide, was

increased in ovine BPD [25] and in septic patients, where it correlated with their mortality

[26]. These findings are remarkable, because the ASM pathway is critical for edema formation

in many models of acute lung injury [27] including neonatal piglet models [28,29] and may

also promote apoptosis in lung epithelial cells [30,31].

Nitric oxide (NO) is a gaseous mediator that–apart from its vasodilatatory properties–has

various effects on inflammation [32,33] and vascular endothelial growth factor (VEGF)-medi-

ated tissue remodeling [34], both possibly modifying the development of BPD. In animal mod-

els of BPD, inhaled NO (iNO) has been shown to reduce lung inflammation, apoptosis and

oxidative stress, to maintain surfactant activity, and to improve lung structure and alveolariza-

tion [33,35–41]. In humans, a randomized trial demonstrated that iNO reduced the incidence

of BPD without increasing the risk of intracranial bleeding in mechanically ventilated preterm

infants [42]. However, subsequent studies did not observe similar beneficial effects [43–45].

Aside from possible benefits, NO is a free radical, potentially capable of causing oxidative
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tissue damage. Furthermore, it might combine with superoxide to form peroxynitrite, a pow-

erful nitrating and tissue damaging substance [46]. Reactive oxygen and nitrogen species, such

as peroxynitrite, also participate in lung injury [47,48]. Although they cannot be measured

directly because of their instability, peroxynitrite formation can be estimated from the result-

ing nitration products, especially nitrated tyrosine residues on various proteins including sur-

factant protein A [49,50]. On the other hand, iNO may alleviate free radical toxicity, as NO has

been shown to decrease lipid peroxidation and spare α-tocopherol by scavenging peroxy radi-

cals [51,52].

Within a European multicenter trial of NO inhalation for preterm infants to prevent BPD

(EUNO trial) [45], TA were collected at two study centers to determine the effects of iNO on

pulmonary inflammation. We hypothesized that iNO reduces pro-inflammatory and pro-

fibrotic cytokines and ASM in TA. Furthermore, we hypothesized that iNO may be associated

with a higher amount of nitrite and nitrotyrosine possibly indicating increased peroxynitrite

formation.

Materials and Methods

The EUNO trial

In brief, infants with a gestational age between 24 and 28 2/7 weeks were enrolled if they weighed

at least 500 g and required surfactant or continuous positive airway pressure for RDS within 24 h

of birth. Treatment was initiated within 2 h of enrollment, but not later than 26 h of life. Infants

were randomized to receive either iNO (5 parts per million [ppm]) or placebo gas (nitrogen gas)

for a minimum of 7 days and a maximum of 21 days in a double-blind fashion [45]. BPD at 36

weeks’ postmenstrual age was defined by the physiological criteria of Walsh and colleagues

[53,54]. Infants enrolled at two of the study centers (Marburg and Ulm, Germany) were eligible

for TA sampling if they were endotracheally intubated for mechanical ventilation.

Tracheal aspirate sampling

This sub-study was specifically approved by the institutional review board (INOT27, reference

number 220/2004, Ulm, Germany) which also oversaw the main trial. Written informed paren-

tal permission was obtained specifically for the sub-study (collection of TA samples), in addition

to permission for enrollment in the study. After initiation of iNO or placebo gas treatment TA

was collected during normal medically indicated endotracheal suctioning procedures on post-

natal days (PD) 2, 4, 7, 14 and 21, unless the infant was extubated earlier. By protocol, infants

also received the randomized gas at least until they were weaned off of ventilatory support or

reached PD21. Herein, we report the TA data obtained between PD2 and PD14, since increas-

ing numbers of infants were extubated within the study period resulting in a low statistical

power for data obtained on PD21. If less than 4 specimens per sampling day were obtained, fur-

ther specimen were collected on the following day. No samples were collected within 4 hours of

a surfactant instillation. A standardized procedure was used. For sampling, a sterile mucus trap

was inserted in the suctioning system, and 1 ml/kg birth weight of normal saline was instilled

into the endotracheal tube, and the ventilator briefly reconnected (3–5 breaths). The suction

catheter was then flushed with 0.5 ml normal saline. TA was transferred to an appropriate tube

and immediately centrifuged with 140 x g at 4˚C for 10 minutes. The supernatant was trans-

ferred to cryotubes and frozen immediately below -20˚C. Within 72 hours, cryotubes were

transferred to a -80˚C freezer and held at -80˚C until ready for shipment to the laboratory,

which was done on dry ice.
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Tracheal aspirate analyses

All analyses were performed at the Institute of Pharmacology and Toxicology of the RWTH

Aachen (Aachen, Germany). For the parameters IL-1β, IL-6, IL-8, IP-10 and MIP-1α a Bio-

Plex Cytokine assay (Bio-Rad Laboratories, Munich Germany) was used [55]. Enzyme-linked

immunosorbent assays (ELISA) were used for albumin (# EA2201-1; AssayPro; St. Charles,

USA), nitrotyrosine (# HK501; Cell Sciences; Canton, USA), and TGF-β1 (# DB100B; R&D

Systems GmbH, Wiesbaden-Nordenstadt, Germany). Furthermore, competitive binding

assays were employed for LTB4 (# KGE006B; R&D Systems GmbH) and NPY (# EK-049-03;

Phoenix Europe GmbH, Karlsruhe, Germany). Nitrite concentration was analyzed using a

Griess reaction assay (# KGE001; R&D Systems GmbH). All assays were performed according

to the manufacturer’s recommendations. For ASM, a proprietary assay was used [56]. Samples

from the same patient and day were pooled to increase the amount and decrease variations of

dilution. No attempt to normalize data was made since no uniformly accepted standard is cur-

rently available. We expressed the data per milliliter of TA as recommended by the European

Respiratory Task Force on Bronchoalveolar Lavage in children [57,58] and reported by others

[59,60].

Statistical analyses

Demographic and clinical outcome data were compared between iNO- and placebo-treated

groups by Mann Whitney U test or Fisher’s Exact test as appropriate using GraphPad Prism

(version 6.05; GraphPad Software, Inc, San Diego, CA, USA). Measured TA concentrations

were compared by mixed model two-way (factors being time and treatment) analyses of vari-

ance (ANOVA) with a heterogeneous first-order autoregressive covariance structure using

SAS software 9.4 (GLIMMIX procedure, SAS Institute, Cary, NC). Post-tests were performed

for the treatment effect on each day and p-values were adjusted for multiple comparisons by

the simulated Shaffer procedure. In the figures, the effect of time is denoted below the x-axis,

the overall effect of treatment to the right of the graphs, and the treatment effects on each sin-

gle day at the respective time points.

Results

During the recruitment period from the years 2006–2008, 67 infants were enrolled in the origi-

nal EUNO trial in the two study centers. Of these 67 infants, 49 infants were recruited for this

sub-study. No TA could be obtained from 6 infants, because of extubation within the first 24 h

of life in 4 infants and missing parental consent for TA sampling in 2 infants, resulting in 43

infants available for TA sampling. Of these 43 infants, 25 received iNO and 18 placebo gas.

Demographic data were similar between the iNO- and placebo treated groups (Table 1). Clini-

cal sepsis was defined by the maximal C-reactive protein (CrP) exceeding 20 mg/L within the

first 72 h of life. Blood cultures were negative for all infants. Mean airway pressures and FiO2

represent maximum values observed before initiation of iNO or placebo gas treatment.

TA levels were compared by mixed model ANOVA (Table 2) determining the effect of iNO

treatment and postnatal age on the analyzed variables. Furthermore, the effect of iNO treatment

was analyzed for each measured time point from PD2 to PD14. Nitrite levels in TA samples of

iNO-treated infants were significantly higher over the complete study period (p<0.01; Fig 1A).

In particular, nitrite TA levels were significantly elevated by iNO on PD2 (iNO: 4.26 ± 4.52 μM

[mean ± SD] versus control: 1.14 ± 1.18 μM; p<0.05), PD4 (iNO: 2.66 ± 1.87 μM versus control:

1.0 ± 0.79 μM; p<0.01) and PD14 (iNO: 3.16 ± 1.54 μM versus control: 1.39 ± 2.46 μM; p<0.05).

Postnatal age did not affect nitrite TA levels which were constant over the study period. In con-

trast, nitrotyrosine TA concentrations were not different between iNO-treated infants and the
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placebo-treated control group, whereas nitrotyrosine levels decreased significantly over the

study period in both groups (p<0.05; Fig 1B). On PD7 and PD14 the majority of TA samples

were negative for nitrotyrosine in both groups.

TGF-β1 TA concentrations were significantly decreased by iNO on PD2 (iNO: 193 ± 116

pg/ml versus control: 466 ± 353 pg/ml; p<0.05; Fig 2A). Furthermore, TGF-β1 levels were

Table 1. Demographic characteristics of the infants.

iNO Control p-values

Number of patients 25 18

Gestational age (weeks)* 26 (24 1/7-28 2/7) 26 1/7 (24–28 2/7) 0.812

Birth weight (g)* 800 (530–990) 815 (630–1230) 0.142

Male 14 (56.0%) 11 (61.1%) 0.765

Race (white) 25 (100%) 18 (100%) 1.000

Prenatal steroids 24 (96%) 18 (100%) 1.000

Apgar score 5-min* 8 (2–10) 9 (3–10) 0.633

Apgar score 10-min* 9 (7–10) 10 (5–10) 0.400

Surfactant replacement therapy 20 (80%) 16 (88%) 0.680

Death 1 (4%) 1 (6%) 1.000

BPD 5 (20.8%) 2 (11.8%) 0.679

Duration of ventilation (days)* 47 (9–141) 39 (17–82) 0.209

Therapy duration (days)* 21 (8–22) 21 (11–22) 0.605

Maternal chorioamnionitis 11 (44.0%) 11 (64.7%) 0.223

PPROM 5 (20.0%) 5 (29.4%) 0.717

Duration of PPROM (h)* 133 (23–600) 148 (38–878) 0.841

Mean airway pressures* 7.5 (0.8–26) 9 (5–28) 0.081

Sepsis 3 (12%) 5 (29.4%) 0.247

FiO2* 0.6 (0.31–1) 0.6 (0.28–1) 0.820

*Median (minimum-maximum), Mann Whitney U test; all others: Fisher’s exact test.

PPROM: preterm prolonged rupture of membrane; FiO2: fraction of inspired oxygen.

doi:10.1371/journal.pone.0169352.t001

Table 2. Mixed model ANOVA (p-values).

iNO treatment Postnatal age

Nitrotyrosine p = 0.6468 p = 0.0312

Nitrite p = 0.0028 p = 0.9801

ASM p = 0.1117 p<0.0001

TGF-β1 p = 0.0224 p = 0.0575

IP-10 p = 0.3126 p<0.0001

IL-1β p = 0.8465 p<0.0001

IL-8 p = 0.352 p = 0.0202

IL-6 p = 0.9856 p = 0.0407

MIP-1α p = 0.7646 p<0.0001

Albumin p = 0.9069 p = 0.0073

LTB4 p = 0.9153 p = 0.3528

NPY p = 0.5156 p = 0.8368

P-values of the main factor of the two-way ANOVA: treatment and time (postnatal age). None of the

interaction effects was significant.

doi:10.1371/journal.pone.0169352.t002
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lower in iNO-treated infants over the entire study period (p<0.05; Fig 2A). Postnatal age did

not significantly affect TGF-β1 TA levels. IL-1β TA levels were not significantly affected by

iNO treatment (Fig 2B). However, postnatal age strongly affected IL-1β TA levels, which sig-

nificantly increased from PD2 to PD14 in both groups (p<0.001; Fig 2B). IL-6 TA concentra-

tions were not affected by iNO treatment, but significantly increased with advancing postnatal

age in both groups (p<0.05; Fig 2C). NPY levels, in contrast were altered neither by postnatal

age nor by iNO treatment (Fig 2D).

Among the chemokines, IP-10 TA levels were significantly decreased by iNO treatment on

PD2 (iNO: 892 ± 1,028 pg/ml versus control: 1,940 ± 1,501 pg/ml; p<0.01; Fig 3A). On PD4,

PD7 and PD14 no differences for IP-10 were observed between the study groups. Postnatal age

strongly affected IP-10 TA levels which significantly increased from PD2 to PD14 (p<0.001).

In addition to TGF-β1 and IP-10, IL-8 TA concentrations were significantly reduced by iNO

on PD2 with 3,485 ± 2,140 pg/ml in the iNO group compared to 14,262 ± 22,931 pg/ml in the

placebo-treated control group (p<0.05; Fig 3B). No difference for IL-8 was observed on PD4,

PD7 and PD14 between iNO-treated infants and the placebo-treated control group. Further-

more, IL-8 TA levels significantly increased from PD2 to PD14 in both groups (p<0.05). MIP-

1α TA levels were not significantly affected by iNO, but strongly increased in both, iNO- and

placebo-treated infants from PD2 to PD14 (p<0.001, Fig 3C). In contrast, LTB4 TA levels were

neither affected by postnatal age nor by iNO treatment (Fig 3D).

ASM TA concentrations were similar between iNO- and placebo-treated infants on PD2,

PD4 and PD7, but the iNO group showed elevated ASM activities on PD14 with

11,631 ± 6,822 pM/mg/h compared to the placebo-treated control group with 5,589 ± 1,713

pM/mg/h (p<0.05; Fig 4A). Moreover, ASM TA levels strongly increased over the study

Fig 1. Nitrite and nitrotyrosine TA concentrations in infants treated with iNO compared to placebo-treated controls. Serial TA

samples were obtained from PD2 to PD14. Data are displayed as the mean of TA levels and SD on a logarithmic scale. A: Nitrite TA levels

were overall increased by iNO treatment (??, p<0.01) and specifically elevated on PD2 (?, p<0.05), PD4 (??, p<0.01) and PD14 (?, p<0.05)

in iNO-treated infants. B: Nitrotyrosine TA levels were not altered by iNO treatment and decreased with increasing postnatal age of the

infants from PD2 to PD14 (#, p<0.05). PD: postnatal day.

doi:10.1371/journal.pone.0169352.g001
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period from PD2 to PD14 in both groups (p<0.001). Finally, albumin TA levels were not

affected by iNO treatment as no significant differences were observed between the study

groups at PD2 to PD14, but advancing postnatal age significantly elevated albumin TA levels

over the study period (p<0.01; Fig 4B).

In conclusion, iNO treatment increased the nitrite and ASM concentrations in TA samples

of preterm infants at individual time points, but had no effect on nitrotyrosine TA levels. Fur-

thermore, TGF-β1 TA levels were generally lower in iNO-treated infants, and IP-10 and IL-8

TA concentrations were transiently reduced by iNO treatment on PD2. Postnatal age, affected

almost every analyzed TA variable, demonstrated by significant effects on nitrotyrosine, ASM,

IP-10, IL-1β, IL-8, IL-6, albumin and MIP-1α concentrations.

Fig 2. Cytokine TA concentrations in infants treated with iNO compared to placebo-treated controls. Serial TA samples were

obtained from PD2 to PD14. Data are displayed as the mean of TA levels and SD on a logarithmic scale. A: TGF-β1 TA levels were overall

decreased by iNO treatment (?, p<0.05) and specifically decreased on PD2 (?, p<0.05) in iNO-treated infants. B: IL-1β TA levels were not

significantly affected in iNO-treated infants and increased with advancing postnatal age from PD2 to PD14 in both groups (###, p<0.001). C:

IL-6 TA levels were not altered by iNO treatment and increased with advancing postnatal age from PD2 to PD14 in both groups (#, p<0.05).

D: NPY TA levels were not altered by iNO treatment or postnatal age. PD: postnatal day.

doi:10.1371/journal.pone.0169352.g002
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Discussion

Inflammation is crucially involved in the development of BPD and results from an imbalance

between pro- and anti-inflammatory mediators [61]. Mechanical ventilation triggers the pul-

monary influx of neutrophils and macrophages that produce a variety of cytokines and other

signalling molecules [61]. Herein, we sought to determine the effect of iNO treatment on pul-

monary inflammatory mediators in TA of preterm infants as part of the EUNO trial [45]. Our

study showed that iNO treatment of preterm infants significantly reduced early TA levels of

TGF-β1, IP-10 and IL-8. While the effect of iNO on TGF-β1 persisted throughout the study,

the effects on IP-10 and IL-8 were transient only. Furthermore, nitrite TA levels were

Fig 3. Chemokine TA concentrations in infants treated with iNO compared to placebo-treated controls. Serial TA samples were

obtained from PD2 to PD14. Data are displayed as the mean of TA levels and SD on a logarithmic scale. A: IP-10 TA levels were significantly

decreased on PD2 in iNO-treated infants (??, p<0.01) and increased with advancing postnatal age from PD2 to PD14 in both groups (###,

p<0.001). B: IL-8 TA levels were significantly decreased on PD2 in iNO-treated infants (?, p<0.05) and increased with advancing postnatal

age from PD2 to PD14 in both groups (#, p<0.05). C: MIP-1α TA levels were not affected by iNO treatment and increased with advancing

postnatal age from PD2 to PD14 in both groups (###, p<0.001). D: LTB4 TA levels were not altered by iNO treatment or postnatal age. PD:

postnatal day.

doi:10.1371/journal.pone.0169352.g003
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increased by iNO treatment throughout the study period and ASM levels were increased after

2 weeks. To our knowledge, only one study has analyzed the impact of iNO treatment on pul-

monary inflammatory mediators in preterm infants. In contrast to our results, this study

found no significant changes in TA concentrations of IL-8, IL-1β or TGF-β1 induced by iNO

[62]. These discrepancies might be due to the different study design, since we started iNO

treatment within the first 24 h of life, employing low-dose iNO, whereas the study of Truog

and colleagues started iNO treatment at PD7 with 20 ppm iNO. Most iNO effects observed in

our study occurred early and transiently at PD2 and might not be detectable once the inflam-

matory response is already established.

NO is rapidly oxidized in vivo and the concentration of its metabolites, mainly nitrite and

nitrate serve as biomarkers for NO [63]. Hence, iNO has been shown to dose-dependently affect

nitrite and nitrate concentrations in TA and plasma, thereby demonstrating an effective delivery

of iNO to the lung and the systemic circulation [64]. In line with this, we observed elevated TA

levels of nitrite at PD2 and PD4, which remained elevated until PD14. In the presence of super-

oxide, NO may form peroxynitrite, which nitrates the phenolic residues of tyrosine, forming

nitrotyrosine. We did not observe an increased nitrotyrosine TA concentration in the iNO

group, and nitrotyrosine levels similarly decreased in both groups during the study period,

which may be related to the diminishing exposure to supplemental oxygen with increasing post-

natal age. A previous study showed that plasma nitrotyrosine concentrations were elevated dur-

ing the first month of life in infants who developed BPD [65]. Another study on the therapeutic

effects of iNO demonstrated that preterm infants whose nitrotyrosine levels decreased within

the first 72 h of life were more likely to wean off of mechanical ventilation [66]. In agreement,

another trial using iNO for preterm infants did not detect any changes of plasma nitrotyrosine

Fig 4. ASM and albumin TA concentrations in infants treated with iNO compared to placebo-treated controls. Serial TA samples

were obtained from PD2 to PD14. Data are displayed as the mean of TA levels and SD on a logarithmic scale A: ASM TA levels were

significantly elevated on PD14 in iNO-treated infants (?, p<0.05) and increased with advancing postnatal age from PD2 to PD14 in both

groups (###, p<0.001). B: Albumin TA levels were not altered by iNO treatment and increased with advancing postnatal age from PD2 to

PD14 in both groups (##, p<0.01). PD: postnatal day.

doi:10.1371/journal.pone.0169352.g004
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levels induced by iNO, nor was the nitrotyrosine concentration altered in infants with BPD

compared to infants without BPD [67,68].

Early increases of pro-fibrotic TGF-β1 in TA have been demonstrated in preterm infants

that subsequently developed BPD [14], which was most pronounced on PD2 to PD4 [14,60].

Therefore, an increase of TGF-β1 may represent an early event in the process leading to BPD

that precedes abnormalities in lung function due to tissue remodeling and fibrosis (see review

[69]). We demonstrated significantly lower TGF-β1 TA levels in iNO-treated infants from PD2

on. Most important for the preterm lung, TGF-β1 has been shown to inhibit epithelial cell matu-

ration and the synthesis of phospholipids and surfactant proteins A, B and C in human fetal

lung explants [70]. In agreement, one study demonstrated a transiently improved surfactant

function in preterm infants undergoing iNO treatment [71]. TGF-β1 activates fibroblast differ-

entiation into myofibroblasts [72] and induces alveolar and bronchial epithelial cells to undergo

epithelial-mesenchymal-transition [73,74], which contributes to interstitial thickening and

fibrosis in vivo [75]. Notably, exogenous NO has been shown to attenuate epithelial-mesenchy-

mal-transition induced by TGF-β1 in alveolar epithelial cells [76] and iNO therapy has been

shown to reduce hyperoxia-induced fibrin deposition and septal thickening in rat pups [77].

Interestingly, TGF-β1 has recently been shown to inhibit β2-adrenergic receptor-mediated fluid

transport across rat alveolar type II cell monolayers and alveolar fluid clearance (AFC) in vivo
by down-regulation of β2-adrenergic receptors [78,79]. AFC is crucially involved in resolution

of pulmonary fluid at birth and a TGF-β1-mediated AFC reduction possibly contributes to pro-

longed ventilator dependence of preterm infants leading to the development of BPD. Therefore,

a reduction of early TGF-β1 levels in preterm infants at risk of developing BPD by iNO treat-

ment might suggest a beneficial clinical outcome.

Our study further showed that iNO treatment reduced the TA levels of different pro-inflam-

matory cytokines. First, the downstream target of IFN-γ, the chemokine IP-10 showed increas-

ing TA concentrations during the study period in both groups, yet iNO treatment significantly

reduced IP-10 levels at PD2, compared to the placebo-treated group. In a study of ventilated pre-

term infants, the IFN-γ and IP-10 TA levels were higher within the first 48 h of life in infants

that developed BPD or died [80,81], suggesting that increases in IFN-γ and IP-10 levels precede

neutrophil infiltration and could therefore represent critical early response molecules in the

development of BPD [82], similar to what has been suggested for ARDS [22]. Thus, the early

reduction of IP-10 levels by iNO might indicate a diminished inflammatory status in those

infants that might be accompanied by a reduced recruitment of inflammatory cells to the lung.

This is supported by an experimental BPD model of mechanically ventilated premature lambs in

which low-dose iNO (5 ppm) decreased early lung neutrophil recruitment and accumulation

[33]. However, the effect of iNO on IP-10 levels was transient. In addition, increased IL-8 TA lev-

els have been described on PD1 and PD3 in preterm infants who subsequently developed BPD,

preceding the neutrophil infiltration [83–85]; however, elevated TA IL-8 levels also seem to be

associated with BPD development in older infants [13,86]. Here we found a rise of IL-8 TA con-

centrations during the study period and iNO treatment significantly reduced IL-8 TA levels at

PD2. Since early IL-8 TA elevations supposedly precede neutrophil infiltrations in BPD risk

infants [83], an early reduction induced by iNO might reduce neutrophil recruitment to the

lung. In agreement with our results, iNO treatment has been shown to reduce BAL IL-8 concen-

trations and neutrophil infiltration in a pig model of lung injury [87] and human patients with

ARDS [88]. Similar to IP-10, the effect of iNO on IL-8 levels was transient. The reason for this

observation is currently unknown, but decreasing NO absorption or an elevated first-pass effect

seems unlikely, since nitrite TA levels were relatively stable over the study period. Because infants

are extubated as soon as possible, thus limiting TA sampling, a selection towards the more seri-

ous cases or patients in which iNO treatment failed to improve inflammatory mediator levels
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possibly contributes to the early transient effects of iNO. Another possible reason for the tran-

sient effect of iNO might be due to the development of tolerance to the clinical and physiological

effects of NO upon continuous administration [89]. The mechanism of tolerance to NO donors

has been thoroughly investigated, especially in the treatment of cardiovascular diseases, but

remains mainly elusive and highly debated. Notably, tolerance to nitrovasodilators generally

begins to develop within 24 to 48 h of continuous application [89], and could thus be an explana-

tion for the early transient effects of iNO observed in our study. Next-generation NO donors

with improved pharmacokinetic properties might be able to prolong the anti-inflammatory

effects of NO treatment in critically ill preterm infants.

We further observed increased ASM TA activities in iNO-treated infants on PD14. Although

the function of circulating ASM is presently unknown, elevated ASM levels were found in differ-

ent respiratory disorders (see reviews [27,90]), and we demonstrated increasing ASM activities

throughout the current study in critically ill infants of both groups. Currently, it is unknown if

BPD development in preterm infants is associated with ASM activity or ceramide levels. Many

agonists, including tumor necrosis factor (TNF)-α and platelet activating factor (PAF) stimulate

ceramide production [90] and PAF-induced pulmonary edema is partly mediated by ASM and

ceramide [56]. On the other hand, inhibition of the ASM pathway as well as the de novo synthesis

pathway of ceramide was shown to elevate IL-8 production in TNF-α stimulated respiratory epi-

thelial cells, suggesting that ASM and ceramide may be involved in terminating an ongoing IL-8

production [91]. By contrast, ceramide has been shown to trigger IL-1β release in a mouse model

of acute lung injury [92]. Yet, IL-1β TA levels were not elevated by iNO at PD14, suggesting that

the up-regulation of ASM TA activities did not elevate the level of inflammatory mediators ana-

lyzed in our study. Finally, IL-6, albumin, LTB4 and NPY TA levels were not significantly altered

by iNO treatment compared to placebo-treated infants, but in contrast to LTB4 and NPY, IL-6

and albumin TA levels increased throughout the study in both groups.

Several clinical trials have evaluated whether iNO reduces the mortality or the incidence of

BPD in preterm infants with sometimes contradictory results [42,67]. The EUNO trial demon-

strated that the early use of low-dose iNO (5 ppm) in very premature infants did not improve

survival without BPD [45]. Inconsistencies between different iNO trials may be due to differ-

ences in dose, duration, age at treatment initiation, study population and/or other factors [93].

Therefore, results of these clinical trials are not conclusive and the use of iNO treatment for

preterm infants to prevent BPD is currently not recommended [94]. Notably, a multicenter,

randomized trial comparing high-frequency oscillatory ventilation with conventional ventila-

tion in the early treatment of respiratory disease in very preterm infants showed no difference

for the primary endpoint death or BPD incidence [95]. However, the follow-up of this trial

demonstrated superior lung function at 11 to 14 years of age in former infants assigned to

high-frequency oscillatory ventilation [96]. This suggests a beneficial outcome, although BPD

incidence did not differ in the initial trial. With regard to this long term outcome, follow-up

results for iNO therapy are currently awaited and BPD incidence possibly constitutes an

imprecise endpoint to predict clinical benefits.

A limitation of this study was the small sample size, increasing the likelihood of statisti-

cal errors. Moreover, because in clinical practice infants are extubated as soon as feasible to

limit potential damage from continuing ventilation, the number of infants of whom TA

could be obtained declined with increasing postnatal age. This results in fewer TA samples

and hence lower statistical power for TA analyses of infants older than one week. Further-

more, because of the limited sample size not all mediators could be measured from each

TA sample. Therefore, subsequent trials with larger groups are required to confirm these

results. We further did not include clinical characteristics such as maternal chorioamnioni-

tis, PPROM, ventilator parameters, FiO2 requirements or sepsis as confounding variables
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in our analyses, which may play a role in release of inflammatory mediators. In addition, it

is controversial whether TA should be corrected for dilution, using techniques such as

albumin content, urea or secretory immunoglobulin A concentrations. Currently, no uni-

formly accepted correction factor to normalize cytokine TA levels exists, which impedes

comparison of results obtained by different normalization procedures. As recommended

by the European Respiratory Task Force on Bronchoalveolar Lavage in children [57,58], we

did not correct our results for the dilution during TA sampling, and expressed our data per

milliliter of TA.

Conclusions

In conclusion, the study showed that the TA levels of IP-10, IL-6, IL-8, MIP-1α, IL-1β, ASM

and albumin increased with advancing postnatal age in critically ill preterm infants, whereas

nitrotyrosine TA levels declined in both iNO-treated and placebo-treated infants. Further-

more, iNO treatment strongly increased nitrite TA levels throughout the study period. Besides,

a delayed increase of ASM TA levels induced by iNO was detected. A beneficial effect of iNO

was demonstrated on early inflammatory/fibrotic markers including TGF-β1, IP-10 and IL-8.

Whether the demonstrated reduction of early inflammatory mediators possibly improves

long-term lung function has to be determined in follow-up studies, since BPD incidence was

not affected by iNO treatment in the EUNO trial [45].

Acknowledgments

The authors wish to thank iNO Therapeutics for financial support. We want to thank Nadine

Ruske for excellent technical assistance. Furthermore, we thank the staff of the Ulm and Mar-

burg NICU for collecting and centrifuging samples, and infants and their parents for

participating.

Author Contributions

Conceptualization: UHT HDH SU J-CM.

Data curation: ML EA.

Formal analysis: SU.

Funding acquisition: UHT HDH J-CM.

Investigation: EA UU YY SU.

Methodology: UHT SU.

Project administration: UHT HDH.

Resources: HWF MZ RFM UU SU UHT HDH.

Supervision: UHT.

Validation: UU.

Visualization: ML SU.

Writing – original draft: ML UHT SU.

Writing – review & editing: ML EA UU YY HWF MZ J-CM RFM HDH SU UHT.

Pulmonary Inflammatory Mediators during iNO Therapy

PLOS ONE | DOI:10.1371/journal.pone.0169352 January 3, 2017 12 / 17



References
1. Monin P, Vert P. The management of bronchopulmonary dysplasia. Clin Perinatol. 1987; 14: 531–49.

PMID: 3311538

2. Nickerson BG. Bronchopulmonary dysplasia. Chronic pulmonary disease following neonatal respiratory

failure. Chest. 1985; 87: 528–35. PMID: 3884289

3. Katz R, McWilliams B. Bronchopulmonary dysplasia in the pediatric intensive care unit. Crit Care Clin.

1988; 4: 755–87. PMID: 3052708

4. Horst PS. Bronchiolitis. Am Fam Physician. 1994; 49: 1449–53, 1456. PMID: 8172042

5. Meissner HC. Economic impact of viral respiratory disease in children. J Pediatr. 1994; 124: 17–21.

6. Hakulinen AL, Jarvenpaa AL, Turpeinen M, Sovijarvi A. Diffusing capacity of the lung in school-aged

children born very preterm, with and without bronchopulmonary dysplasia. Pediatr Pulmonol. 1996; 21:

353–60. doi: 10.1002/(SICI)1099-0496(199606)21:6<353::AID-PPUL2>3.0.CO;2-M PMID: 8927461

7. Koumbourlis AC, Motoyama EK, Mutich RL, Mallory GB, Walczak SA, Fertal K. Longitudinal follow-up

of lung function from childhood to adolescence in prematurely born patients with neonatal chronic lung

disease. Pediatr Pulmonol. 1996; 21: 28–34. doi: 10.1002/(SICI)1099-0496(199601)21:1<28::AID-

PPUL5>3.0.CO;2-M PMID: 8776263

8. Finkelstein JN, Horowitz S, Sinkin RA, Ryan RM. Cellular and molecular responses to lung injury in rela-

tion to induction of tissue repair and fibrosis. Clin Perinatol. 1992; 19: 603–20. PMID: 1526074

9. Zimmerman JJ. Bronchoalveolar inflammatory pathophysiology of bronchopulmonary dysplasia. Clin

Perinatol. 1995; 22: 429–56. PMID: 7671546

10. Zimmerman JJ, Farrell PM. Advances and issues in bronchopulmonary dysplasia. Curr Probl Pediatr.

1994; 24: 159–70. PMID: 7915224

11. Kotecha S. Cytokines in chronic lung disease of prematurity. Eur J Pediatr. 1996; 155 Suppl 2: 14–7.

12. Groneck P, Speer CP. Inflammatory mediators and bronchopulmonary dysplasia. Arch Dis Child Fetal

Neonatal Ed. 1995; 73: F1–3. PMID: 7552588

13. Kotecha S, Chan B, Azam N, Silverman M, Shaw RJ. Increase in interleukin-8 and soluble intercellular

adhesion molecule-1 in bronchoalveolar lavage fluid from premature infants who develop chronic lung

disease. Arch Dis Child Fetal Neonatal Ed. 1995; 72: F90–6. PMID: 7712280

14. Kotecha S, Wangoo A, Silverman M, Shaw RJ. Increase in the concentration of transforming growth

factor beta-1 in bronchoalveolar lavage fluid before development of chronic lung disease of prematurity.

J Pediatr. 1996; 128: 464–9. PMID: 8618178

15. Kotecha S, Wilson L, Wangoo A, Silverman M, Shaw RJ. Increase in interleukin (IL)-1 beta and IL-6 in

bronchoalveolar lavage fluid obtained from infants with chronic lung disease of prematurity. Pediatr

Res. 1996; 40: 250–6. doi: 10.1203/00006450-199608000-00010 PMID: 8827773

16. Murch SH, Costeloe K, Klein NJ, MacDonald TT. Early production of macrophage inflammatory protein-

1 alpha occurs in respiratory distress syndrome and is associated with poor outcome. Pediatr Res.

1996; 40: 490–7. doi: 10.1203/00006450-199609000-00020 PMID: 8865289

17. Little S, Dean T, Bevin S, Hall M, Ashton M, Church M, et al. Role of elevated plasma soluble ICAM-1

and bronchial lavage fluid IL-8 levels as markers of chronic lung disease in premature infants. Thorax.

1995; 50: 1073–9. PMID: 7491556

18. Bagchi A, Viscardi RM, Taciak V, Ensor JE, McCrea KA, Hasday JD. Increased activity of interleukin-6

but not tumor necrosis factor-alpha in lung lavage of premature infants is associated with the develop-

ment of bronchopulmonary dysplasia. Pediatr Res. 1994; 36: 244–52. doi: 10.1203/00006450-

199408000-00017 PMID: 7970941

19. Groneck P, Gotze-Speer B, Oppermann M, Eiffert H, Speer CP. Association of pulmonary inflammation

and increased microvascular permeability during the development of bronchopulmonary dysplasia: a

sequential analysis of inflammatory mediators in respiratory fluids of high-risk preterm neonates. Pedi-

atrics. 1994; 93: 712–8. PMID: 8165067

20. Thome U, Kossel H, Lipowsky G, Porz F, Furste HO, Genzel-Boroviczeny O, et al. Randomized com-

parison of high-frequency ventilation with high-rate intermittent positive pressure ventilation in preterm

infants with respiratory failure. J Pediatr. 1999; 135: 39–46. PMID: 10393602

21. Thome U, Gotze-Speer B, Speer CP, Pohlandt F. Comparison of pulmonary inflammatory mediators in

preterm infants treated with intermittent positive pressure ventilation or high frequency oscillatory venti-

lation. Pediatr Res. 1998; 44: 330–7. doi: 10.1203/00006450-199809000-00011 PMID: 9727709

22. Ichikawa A, Kuba K, Morita M, Chida S, Tezuka H, Hara H, et al. CXCL10-CXCR3 enhances the devel-

opment of neutrophil-mediated fulminant lung injury of viral and nonviral origin. Am J Respir Crit Care

Med. 2013; 187: 65–77. doi: 10.1164/rccm.201203-0508OC PMID: 23144331

Pulmonary Inflammatory Mediators during iNO Therapy

PLOS ONE | DOI:10.1371/journal.pone.0169352 January 3, 2017 13 / 17

http://www.ncbi.nlm.nih.gov/pubmed/3311538
http://www.ncbi.nlm.nih.gov/pubmed/3884289
http://www.ncbi.nlm.nih.gov/pubmed/3052708
http://www.ncbi.nlm.nih.gov/pubmed/8172042
http://dx.doi.org/10.1002/(SICI)1099-0496(199606)21:6&lt;353::AID-PPUL2&gt;3.0.CO;2-M
http://www.ncbi.nlm.nih.gov/pubmed/8927461
http://dx.doi.org/10.1002/(SICI)1099-0496(199601)21:1&lt;28::AID-PPUL5&gt;3.0.CO;2-M
http://dx.doi.org/10.1002/(SICI)1099-0496(199601)21:1&lt;28::AID-PPUL5&gt;3.0.CO;2-M
http://www.ncbi.nlm.nih.gov/pubmed/8776263
http://www.ncbi.nlm.nih.gov/pubmed/1526074
http://www.ncbi.nlm.nih.gov/pubmed/7671546
http://www.ncbi.nlm.nih.gov/pubmed/7915224
http://www.ncbi.nlm.nih.gov/pubmed/7552588
http://www.ncbi.nlm.nih.gov/pubmed/7712280
http://www.ncbi.nlm.nih.gov/pubmed/8618178
http://dx.doi.org/10.1203/00006450-199608000-00010
http://www.ncbi.nlm.nih.gov/pubmed/8827773
http://dx.doi.org/10.1203/00006450-199609000-00020
http://www.ncbi.nlm.nih.gov/pubmed/8865289
http://www.ncbi.nlm.nih.gov/pubmed/7491556
http://dx.doi.org/10.1203/00006450-199408000-00017
http://dx.doi.org/10.1203/00006450-199408000-00017
http://www.ncbi.nlm.nih.gov/pubmed/7970941
http://www.ncbi.nlm.nih.gov/pubmed/8165067
http://www.ncbi.nlm.nih.gov/pubmed/10393602
http://dx.doi.org/10.1203/00006450-199809000-00011
http://www.ncbi.nlm.nih.gov/pubmed/9727709
http://dx.doi.org/10.1164/rccm.201203-0508OC
http://www.ncbi.nlm.nih.gov/pubmed/23144331


23. Lex D, Kuba K, Uhlig S, Imai Y. NPY-Mediated Neuro-Immune Cross Talk In The Pathogenesis Of The

Influenza Virus Infection. In: B32. VIRAL INFECTION OF THE AIRWAY: American Thoracic Society;

2014. p. A2738.

24. Rauvala H, Hallman M. Glycolipid accumulation in bronchoalveolar space in adult respiratory distress

syndrome. J Lipid Res. 1984; 25: 1257–62. PMID: 6520545

25. Kunzmann S, Collins JJP, Yang Y, Uhlig S, Kallapur SG, Speer CP, et al. Antenatal inflammation

reduces expression of caveolin-1 and influences multiple signaling pathways in preterm fetal lungs. Am

J Respir Cell Mol Biol. 2011; 45: 969–76. doi: 10.1165/rcmb.2010-0519OC PMID: 21562314

26. Claus RA, Bunck AC, Bockmeyer CL, Brunkhorst FM, Lösche W, Kinscherf R, et al. Role of increased
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