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Abstract
This paper aims at clarifying the questions regarding the effects of the scaling method on the 
discrepancy function of the metric measurement invariance model. We provide examples and a 
formal account showing that neither the choice of the scaling method in general nor the choice of 
a particular referent indicator affects the value of the discrepancy function. Thus, the test statistic 
is not affected by the scaling method, either. The results rely on an appropriate application of the 
scaling restrictions, which can be phrased as a simple rule: "Apply the scaling restriction in one 
group only!" We develop formulas to calculate the degrees of freedom of χ²-difference tests 
comparing metric models to the corresponding configural model. Our findings show that it is 
impossible to test the invariance of the estimated loading of exactly one indicator, because metric 
MI models aimed at doing so are actually equivalent to the configural model.

Keywords
metric measurement invariance, partial measurement invariance, scaling methods, referent indicator, 
equivalence

Measurement invariance analysis has become a widely used tool in many areas of ap­
plied research, e.g., psychology, sociology, and organizational research, and has received 
a lot of attention in methodological research, e.g., Davidov et al. (2018), Greiff and 
Scherer (2018), Millsap (2011), and van de Schoot et al. (2015); see Leitgöb et al. (2023) for 
a recent overview of measurement invariance analysis in the social sciences. The goal of 
measurement invariance (MI) analysis is to investigate whether measurement properties 
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of a latent variable’s indicators are the same across two or more groups. MI analysis 
has many facets, e.g., which method is the best when looking for invariant indicators. 
However, each of these methods requires the application of a certain scaling method. 
Without scaling, the respective models could not be uniquely estimated. The focus of 
this paper is on this specific requirement of each MI investigation, i.e. how to set scaling 
restrictions appropriately when investigating the invariance of factor loadings.

There are several levels of MI that are investigated consecutively (e.g., Brown, 2015, 
pp. 242–243). The lowest level is configural MI, where the factor structure is the same 
in all groups. At the next level, metric MI, the invariance condition states additionally 
that the loadings are equal across groups. The third level is scalar MI, which means that 
the intercepts are invariant across groups1 . In this paper, we focus on the metric MI 
model and elaborate on the question of how to scale this model. In general, we examine 
whether the scaling method affects the discrepancy function, and in turn the resulting 
test statistic of a model. In particular, we examine whether the selection of a particular 
referent indicator or, more generally, the selection of certain scaling method affects the 
discrepancy function, and in turn the resulting test statistic, for the metric MI model.

The test statistics of both the configural and metric MI model are assumed to be 
χ2-distributed with df  degrees of freedom under the corresponding null hypothesis. The 
test statistic’s numeric value results from the estimation process, in which a discrepancy 
function F is minimized. According to the procedure in Vandenberg and Lance (2000, p. 
56), testing for metric MI requires the following steps: In the first step, the configural 
model is tested. In the second step, the metric model is tested. If the test statistics 
indicate in both steps that the model fits the data, then a χ2-difference test is conducted 
in the third step. This last test evaluates whether the metric MI conditions hold. Thus, MI 
analysis draws on testing single models as well as on testing nested models.

In addition to the level of MI analysis, there is also a distinction between full and 
partial metric MI models. In the full MI model, all loadings are assumed to be invariant 
across groups, while in partial MI models, one or more loadings are free to vary between 
the groups.

As a metric MI model entails latent variables, it is a well known fact that scaling 
restrictions must be placed, otherwise the model would not be identified. In this paper, 
we use the term scaling restriction to refer to the fixation of a certain parameter to 
a given value imposed by the application of a certain scaling method and use the 
term invariance condition to refer to the imposed equality of the loadings in a metric 
MI model. This distinction follows Wu and Estabrook (2016) who introduced a similar 
distinction between scaling restriction and invariance conditions. Finally, we use the 
term constraints to refer to both, i.e., the combination of the invariance conditions and 

1) Sometimes, the terms weak, strong, and strict MI are used instead of configural, metric, and scalar MI (e.g., Kline, 
2016, p. 396).
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the scaling restriction in a model. The Fixed Marker (FM) scaling (cf. Kline, 2016, pp. 
199–200) is the most commonly applied scaling method and it is the de facto standard 
in most structural equation software. According to Raykov et al. (2012, p. 968), the FM
method restricts one of the estimated loadings of each latent variable to 1 in each group. 
The respective manifest variable is then called the referent indicator (RI). From that 
description, it is obvious that the FM scaling method has as many different variants as 
there are indicators for a latent variable. For instance, when there are 6 indicators, then 
each of these indicators’ estimated loadings can be restricted to 1. In this paper, if the 
first indicator is the RI, we use the abbreviation FM1. If the second indicator is the RI, we 
write FM2, and so on.2 Usually, it is suggested that the indicator that best represents the 
latent variable should be the RI (e.g., Brown, 2015, pp. 242–243).

In the context of metric MI analysis, the use of the FM method has been critically 
discussed in textbooks.3 According to Brown (2015, p. 271; cf., Cheung and Rensvold, 
1999, pp. 8–9), there may be difficulties in multiple group settings regarding the selection 
of an RI. For instance, Brown (2015) mentions that non-invariance of the RI may not 
be detected in a metric MI setting, because it is restricted to 1 in every group, and as 
a consequence thereof, there is the implicit assumption that the RI is invariant across 
groups. Similarly, Kline (2016, p. 405) argues that the selection of an RI is arbitrary 
and that the fixation of the RI to 1 over the groups is tantamount to an assumption of 
invariance of the RI. Furthermore, Kline argues that the RI is excluded from the test of 
metric MI, but the RI choice should not affect the overall model fit most of the time. 
Raykov et al. (2020) provide an example in which a metric MI model is estimated using 
an non-invariant RI. In a Monte Carlo simulation, the metric MI model failed to reveal 
the non-invariance of the RI by means of the test statistic most of the time. However, the 
authors did not consider choosing an invariant RI.

Johnson et al. (2009, p. 654) found in a Monte Carlo simulation for the full metric MI 
model that when RIs are non-invariant, this non-invariance does not distort the results 
of metric MI tests. The authors state that differences between groups on the RIs were 
transferred to other indicators via the constraints on the RI to be equal to 1 in both 
groups, which in turn affected the estimated loadings of all other indicators by setting 
a scale. Furthermore, the authors summarize that, in general, the tests of the full metric 
MI model were accurate in detecting non-invariance when the RI differed across groups, 
regardless of whether or not other indicators also differed. Given these results, Johnson 
et al. (2009, p. 644) argue that all estimated loadings are rescaled relative to the RI, by 
a magnitude of 1/λRI (where λRI denotes the “true” loading of the RI) and although the 
RI is non-invariant across groups, the parameter estimates will be adjusted by different 

2) In this paper, we assume that for all latent variables in a model, the same indicator is used as a RI.

3) In the following, we concentrate the citations mostly on established and contemporary textbooks, because they 
reflect a synthesis of the current literature on the topic.
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scaling constants and the loadings are expressed in two different metrics (Johnson et al., 
2009, p. 644). This kind of rescaling is also mentioned by Raykov et al. (2012, Appendix 
A). These authors state that setting the RI to 1 yields a rescaling of the remaining 
loadings.

The concerns and findings mentioned above were in the context of the full metric 
MI model. For partial metric MI, Johnson et al. (2009) found simulation evidence that 
the choice of the RI affects the test results.4 Vandenberg and Lance (2000, pp. 46–47) 
state that in partial metric MI settings, problems may arise when an RI is in reality 
non-invariant because that yields different metrics for a latent variable over the groups 
(cf., Brown, 2015).

Up to here, we have only considered the choice of the RI in the FM scaling method, 
but there are two other methods of scaling latent variables in multiple group settings 
with metric MI conditions (cf. Kline, 2016, pp. 199–200). These are the Effects Coding 
(EC) method and the Reference Group (RG) method.

The EC method (Little et al., 2006) restricts the estimated loadings by enforcing that 
their sum equals the number of indicators. This restriction is equivalent to the restriction 
that the average of the estimated loadings of a latent variable equals 1.

The RG method (cf., Kline, 2016, p. 393, Lee et al., 2011, p. 60, Raykov et al., 2012, p. 
961, Wu & Estabrook, 2016), which is the multiple group version of the Fixed Factor (FF) 
scaling, restricts the variances of the latent variables to 1 in the reference group only, 
while being freely estimated in the remaining groups. As noted by Raykov et al. (2012, p. 
969), the identification of this model is achieved by the imposed equality constraints of 
the estimated loadings in the remaining groups. Put differently, the metric MI conditions 
propagate the scaling to the other groups. This is in contrast to the FM method, in which 
an RI is set to 1 in each group (see above).

Obviously, due to the lack of an RI, neither EC nor RG contain any similar invariance 
assumption. Additionally, the FM scaling method only provides estimated loadings for 
all indicators but not the RI, whereas the EC or RG provide estimated loadings for all 
indicators. Indeed, van de Schoot et al. (2012, p. 489) recommend using the RG method 
when the goal is to compare factor loadings across groups.

In a nutshell, what was said above provides an inconsistent picture on the issues 
involved in scaling (partial) metric MI models. These inconsistencies can be summed up 
in the following four questions:

1. Does it matter which indicator serves as RI or is the result of an MI analysis in sense 
of the model fit of the metric MI model independent of the RI choice?

2. More generally, does the choice of the scaling method in general affect the results of 
an MI analysis or do all scaling methods provide the same result?

4) Johnson et al. (2009) use the term ‘scale level’ to refer to a full metric MI setting, whereas they use the term 
‘item-level’ for a partial metric MI model in which they intend to test the invariance of exactly one loading.
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3. Do the same considerations apply in full and partial metric MI models or do we have 
to tell apart these settings?

4. Can the FM scaling method be applied by only restricting the RI in one group and 
propagating the scaling restriction via the MI condition like the RG method?

The fundamental topic of the first two questions is if there are any effects of the scaling 
method on the value of the discrepancy function F. All four questions are not only of 
interest for methodological considerations, but also for applied researchers who wish to 
conduct a MI analysis. This paper aims at clarifying these questions and thus aims to 
bring consistency into the literature concerning the choice of RIs in particular or the 
choice of a scaling method in general. The general approach of the paper is to present 
examples to empirically demonstrate some basic facts and ideas, and then to turn to 
formal considerations. However, the formal part is kept at the minimal required level.

In the following section, we provide the general setup and notations used in this 
paper. Then, we first present an example showing that neither the scaling method in 
general nor the choice of an RI in particular affects the discrepancy function of the full 
metric MI model. We also use the example to introduce the concept of change of scale, 
which we make use of in the following section to provide a formal proof of the equiva­
lence of all scaling methods for the full metric MI model. Additionally, we derive some 
corollaries about the resulting test statistic and other fit indices, showing that these are 
also unaffected by the scaling methods. Furthermore, we also provide a corollary about 
the degrees of freedom for the χ2-difference test between the configural and the full 
metric MI model, which we then extend to partial metric MI models. As a consequence, 
we find that a partial metric MI model with only one invariance condition per latent 
variable is equivalent to the configural model. Thus, it is impossible to test the invariance 
of only one indicator (Steenkamp & Baumgartner, 1998). In the following section, we 
provide a further example, in which we firstly empirically demonstrate these corollaries. 
Again, the example illustrates that neither the scaling method in general nor the choice 
of an RI in particular affect the discrepancy function of the partial metric MI model. 
Afterwards, we provide a formal account for the partial MI model. In particular, we 
explain why the (non-)invariance of an RI, or more generally the data generating process, 
does not affect tests of either full or partial metric MI. Afterward, in the conclusion 
we elaborate on the results obtained in the paper and provide the answers to the four 
questions. Supplementary materials containing additional information and R scripts for 
the examples are available in Klopp and Klößner (2022) and referred to in the appropriate 
places in the text.
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Setup
In this section, we introduce the notation we use throughout this article. Basically, we 
consider measurement models or confirmatory factor analysis models in multiple group 
settings of the form

Xg = Λgξg + δg . (1)

Let p and m be the number of manifest and latent variables, resp., and let g ∈ 1, …, G be 
an index of the group membership. Then Xg is a p × 1 vector of manifest variables, Λg is 
a p × m loading matrix, ξg is a m × 1 vector of latent variables, and δg is a p × 1 vector of 
measurement residuals. Additionally, λj, i, g represents the loading of the j-th indicator on 
the i-th latent variable in group g. The other model parameters are indexed analogously.

Under the standard assumptions for confirmatory factor analysis models (e.g., Bollen, 
1989, pp. 233–234), this measurement model yields the following model-implied p × p
covariance matrix for Xg:

Σg = ΛgΦgΛg′ + Θg, (2)

where Φg is the m × m covariance matrix of the latent variables ξg and Θg is the p × p
covariance matrix of the measurement residuals δg, which is assumed to be a diagonal 
matrix containing the manifest residual variances. We collect the parameter matrices in 
the parameter vector θ = Λ1, …, ΛG, Φ1, …, ΦG, Θ1, …, ΘG . To simplify our considerations, 
we assume a fully saturated model for the mean structure.

As is common in statistics, we distinguish between population models and estimated 
models (cf., Klopp & Klößner, 2021, pp. 185–187, Figure 4). In particular, we refer to 
a model in the form of Equation (1) as the population model that contains the data 
generating process (dgp). If the relation

Λg1 = Λg2 ∀g1 ≠ g2 ∈ 1, …, G (3)

holds within a dgp, then this dgp fulfills full metric invariance. In contrast, a dgp fulfills 
partial metric MI if

λj, i, g1 = λj, i, g2 (4)

for all groups g1 ≠ g2 and for some combinations of indicator j and latent variable i
for which the corresponding nonzero loadings are invariant across groups, while some 
loadings are allowed to be non-invariant. We call the dgp either a full or a partial metric 
MI dgp.

Following the above-mentioned distinction between population and estimated mod­
els, the estimated model is stipulated by a researcher. We assume that the estimated 
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model is also a confirmatory factor analysis model of the same structure. The estimated 
model implied-covariance matrix is

Σg = ΛgΦgΛg′ + Θg . (5)

The parameter vector θ = Λ1, …, ΛG, Φ1, …, ΦG, Θ1, …, ΘG  collects the model matrices of 
the estimated model.

The invariance condition for full metric MI on the estimated loadings is

Λg1 = Λg2 ∀g1 ≠ g2 ∈ 1, …, G . (6)

For partial metric MI, these invariance conditions are replaced by the less restrictive 
invariance conditions

λj, i, g1 = λj, i, g2 (7)

for all groups g1 ≠ g2 and all combinations of indicator j and latent variable i for which 
the corresponding estimated nonzero loadings are assumed to be invariant across groups.

In the following, we will always explicitly use either the term full metric MI model 
or partial metric MI model. If we want to make assertions that refer to both types of 
models, we use the term metric MI model. Moreover, we call a model such as in Equation 
(5) in combination with invariance conditions as in Equation (6) or as in Equation (7) the 
unscaled model, cf. Klopp and Klößner (2021, pp. 185–187), as no scaling restrictions have 
been added yet.

To actually estimate the model, we have to apply a scaling method. It is important 
to note that the restrictions of the various scaling methods are applied to the estimated 
model (Klopp & Klößner, 2021, p. 185), but not to the dgp. We collect the scaling methods 
in the set

S = {FM1, …, FMp, EC, RG} . (8)

To refer to any of the elements of S, we use the generic notation S. The estimated 
model-implied covariance matrix then is

Σg
S = Λg

SΦg
SΛg

S′ + Θg . (9)

We call a model as in Equation (9) a scaled model. Please notice that the estimated 
manifest residual variances Θg in the scaled model do not have a superscript indicating 
the scaling method. This is because in order to estimate residual variances, no scaling 
method needs to be applied and estimated residual variances do not depend on the 
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scaling method employed, i.e., the estimated values are identical for all scaling methods S 
(Klößner and Klopp, 2019, p. 148; Klopp and Klößner, 2021, p. 185).

In the following, when estimating a metric MI model, we assume that configural 
invariance is given. Furthermore, we assume that the scaled model is estimated by mini­
mizing a discrepancy function F(Sg, Σg

S). The discrepancy function is based on a sample 
covariance matrix Sg and the model implied matrix Σg

S
. To keep the notation simple we 

write F(θ) (cf., Bollen, 1989, p. 106, for the properties of a discrepancy function).
As the distinction between a dgp as well as unscaled and scaled estimated models is 

not common in the literature, we want to explain the relations between these models 
with the help of Figure 1 (cf., Klopp & Klößner, 2021, p. 186). Firstly, in the upper 
left corner, there is a dgp that functions in a population and from which a random 
sample of observations is drawn. The observations are collected in a data set that is 
later used in the estimation process, which is depicted on the right side of the figure. 
Secondly, in the lower left corner, there is a researcher who has a substantial theory 
about the metric MI in the population and is interested in answering the substantial 
hypothesis “Does metric MI hold in the population?” Importantly, the dgp is unknown to 
the researcher. To answer the question, the researcher specifies a statistical model like 
the one given in Eequation (5), with metric MI conditions of the form given in equation 
(6) or equation (7), i.e., the researcher specifies an unscaled model. This represents the 
researcher’s statistical hypothesis. To actually estimate the model, the researcher has to 
apply scaling restrictions, i.e., the researcher creates a scaled model. This can be done 
with any one of the available scaling methods, of which the two possibilities S1 and S2
are depicted in the figure. With the scaled model, the statistical hypothesis of whether 
the metric MI model fits to the data is tested5 and afterward, the researcher arrives at a 
conclusion about the substantial hypothesis. The figure illustrates two issues: Firstly, the 
model used by the researcher is a distinct entity from the dgp. Secondly, the researcher 
starts with invariance conditions in the unscaled model, to which the scaling methods 
are then added. Thus, the scaling of the model is not related to the dgp. We will now 
move on to our first example.

5) With this, we mean the sequence of tests as outlined in the introduction.
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Figure 1

Relation Between the dgp, the Estimated Model and the Various Scaling Methods

Full Metric Measurement Invariance: An 
Example

In the following example, we present a simple two-group case which demonstrates that 
regardless of the scaling method, the same value of the discrepancy function results 
when a full metric MI model is estimated. The aim of this section is to provide an 
intuitive and heuristic understanding, both of the equivalence of the scaling methods for 
the full metric MI model and of the concept of change of scale. A change of scale allows 
to convert the estimates obtained under a certain scaling method to those obtained under 
any other scaling method, without re-estimating the model. This concept is vital to the 
more formal account in the next section.

We consider a model with only one latent variable with six indicators in two groups, 
g0 = 1 indicates the reference group and g = 2 indicates the focal group (cf., Holland & 
Thayer, 1988). The example’s dgp is given by (see also Figure 2 for a graphical display of 
the dgp):
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Λ1 = (0.4, 0.6, 0.5, 0.3, 0.6, 0.5)′,
Λ2 = (0.4, 0.6, 0.5, 0.3, 0.8, 0.9)′,
ϕ1, 1, 1 = 1.0,
ϕ1, 1, 2 = 2.0,
θj, j, g = 0.2, 1 ≤ j ≤ 6, g = 1, 2

(10)

Figure 2

CFA Model Depicting the dgp From Equation 10

Note. The loadings printed in bold are non-invariant in the dgp.
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This is a partial metric MI dgp. The loadings of the last two indicators are non-invariant. 
Especially, both loadings differ to a different extent. If the concerns about non-invariant 
RIs in the FM scaling methods were justified, then the estimated values of the discrepan­
cy function (on which the test statistic rests) would differ.

We now take the role of the researcher from Figure 1 and set up our unscaled model 
as in Equation (5) and with the full metric invariance condition Λg1 = Λg2. In detail, this 
invariance condition entails the following set of invariance conditions:

λ1, 1, 1 = λ1, 1, 2
λ2, 1, 1 = λ2, 1, 2
λ3, 1, 1 = λ3, 1, 2
λ4, 1, 1 = λ4, 1, 2
λ5, 1, 1 = λ5, 1, 2
λ6, 1, 1 = λ6, 1, 2

(11)

To scale the model, we apply each scaling method from the set S and start with the FM
scaling method, using the first indicator as RI6 , i.e., FM1. The FM1 scaling restriction is 
λ1, 1, 1 = 1. Considering the other indicators as RI, we can express all variants of the FM
scaling method as

λj, 1, 1 = 1 for 1 ≤ j ≤ 6. (12)

Notably, the invariance condition in Equations (11) yields λj, 1, 2 = 1 and we see that the 
invariance condition propagates the FM scaling restriction from the reference to the focal 
group.

For the EC scaling method, the scaling restriction we set in the reference group is

λ1, 1, 1 + λ2, 1, 1 + λ3, 1, 1 + λ4, 1, 1 + λ5, 1, 1 + λ6, 1, 1 = 6. (13)

As stated in the introduction, this scaling restriction is equivalent to the restriction that 
the average of the estimated loadings equals 1, i.e.,

A(λ ∙ , 1, 1) :=
λ1, 1, 1 + λ2, 1, 1 + λ3, 1, 1 + λ4, 1, 1 + λ5, 1, 1 + λ6, 1, 1

6 = 1. (14)

6) We only consider the case when the scaling restrictions are set in the reference group. The case when the scaling 
restrictions are set in the focal group, which means a role swap of both groups, can be easily implemented in the R 
code.
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Again, the invariance conditions cause the propagation of the scaling restriction to the 
focal group.

The most important observation from these scaling examples is that the scaling 
restrictions are applied in one group only. As we have seen, a common feature of all 
scaling methods is the propagation of the scaling restrictions into the focal group via the 
invariance conditions. Because of its importance, we want to set up this rule in colloquial 
terms, which is Apply the scaling restriction in one group only, the invariance conditions do 
the rest!

Finally, for the RG scaling method, the scaling restriction in the reference group is

ϕ1, 1, 1 = 1. (15)

In contrast to the previous scaling methods, this restriction does not directly propagate 
to the focal group. However, the restriction on the estimated variance in the reference 
group scales the estimated loadings in this group indirectly. Due to the invariance 
conditions, this restriction is then propagated to the focal group, thus overall acting as a 
scaling restriction.

We now estimate the full metric MI model for ten different generated samples, using 
all scaling methods, i.e., the six different variants of the FM scaling as well as the EC and 
RG scaling method. We use the ML estimator. The sample size per group is N = 300, thus 
N = 600 in total. We chose this sample size because it reflects a number often achieved in 
real studies. All calculations for the data generation and model estimation were done in 
R (R Core Team, 2022), using the packages MASS (Venables and Ripley, 2002) and lavaan 
(Rosseel, 2012).

Regarding the degrees of freedom, there are p(p + 1)/2 unique entries in the cova­
riance matrix in each group, i.e., with p = 6 manifest variables there are 21 unique 
entries in each group and thus 42 unique pieces of information in total. In each group, 
we have to estimate 6 loadings, 6 manifest residual variances and 1 latent variance, i.e., 
13 parameters per group and 26 parameters in total. Because we have a full metric MI 
model, there are 6 invariance conditions (see Equation 11). Additionally, there is 1 scaling 
restriction, regardless of the scaling method; see Equations (12), (13), and (15). Thus, 
there are 7 restrictions in total, which gives 26 − 7 = 19 free parameters. This results in 
df = 42 − 19 = 23 degrees of freedom.

The results are presented in Tables 1 and 2. Table 1 shows the values of the ML 
discrepancy function resulting from the estimation, multiplied by the factor 106, while 
Table 2 shows the estimated loadings and latent variances for the first generated sample. 
In each sample, the value of the ML discrepancy function is the same regardless of the 
scaling methods. In summary, we can state as a first observation that neither the specific 
choice of an RI nor in general the choice of the scaling method affect the full metric MI 
model’s resulting value of the discrepancy function. Consequently, the test statistic and 
all fit indices derived from the test statistic are also identical.
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This result is in line with Johnson et al. (2009) and demonstrates empirically that 
any concerns about truly non-invariant RIs are unwarranted, at least in this example. 
Considering the distinction between population and specified models explains this find­
ing. The non-invariance is in the dgp, not in the specified, scaled model, in which an 
invariance condition is set by the researcher. This restriction represents an invariance 
assumption that applies to the estimates only, it is used to test if this restriction mirrors 
the invariance properties of the dgp.

Table 1

Values of the Discrepancy Function Multiplied by the Factor 106 for Each Scaling Method in the Full Metric MI 
Example

Sample FM1 FM2 FM3 FM4 FM5 FM6 EC RG

1 58978 58978 58978 58978 58978 58978 58978 58978
2 94356 94356 94356 94356 94356 94356 94356 94356
3 62417 62417 62417 62417 62417 62417 62417 62417
4 72264 72264 72264 72264 72264 72264 72264 72264
5 66726 66726 66726 66726 66726 66726 66726 66726
6 85389 85389 85389 85389 85389 85389 85389 85389
7 58682 58682 58682 58682 58682 58682 58682 58682
8 59634 59634 59634 59634 59634 59634 59634 59634
9 116513 116513 116513 116513 116513 116513 116513 116513
10 75311 75311 75311 75311 75311 75311 75311 75311

Table 2

Estimated Loadings and Latent Variances for the First Sample in the Full Metric MI Example; g = 1, 2, 
S ∈ {FM1, …, FM6, EC, RG}.

Loadings FM1 FM2 FM3 FM4 FM5 FM6 EC RG

λ1, 1, g
S 1.000 0.688 0.829 1.329 0.550 0.534 0.740 0.323

λ2, 1, g
S 1.453 1.000 1.204 1.931 0.799 0.775 1.076 0.470

λ3, 1, g
S 1.207 0.831 1.000 1.604 0.664 0.644 0.893 0.390

λ4, 1, g
S 0.752 0.518 0.623 1.000 0.414 0.401 0.557 0.243

λ5, 1, g
S 1.818 1.251 1.506 2.417 1.000 0.970 1.346 0.588

λ6, 1, g
S 1.874 1.290 1.553 2.492 1.031 1.000 1.388 0.606

ϕ1, 1, 1
S 0.104 0.220 0.152 0.059 0.345 0.367 0.191 1.000

ϕ1, 1, 2
S 0.345 0.728 0.502 0.195 1.140 1.211 0.629 3.302
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Now, we turn to a second observation: Parameters estimated under one scaling method 
can be converted to those estimated under another scaling method (Klopp and Klößner, 
2021, Proposition 2; Newsom, 2015, p. 4). We illustrate this conversion and convert the 
estimated parameters under FM1 scaling to those obtained under RG and EC scaling for 
the first out of the ten generated samples. The estimated parameters under FM1 scaling 
are:

Λg
FM1 = (1.000, 1.453, 1.207, 0.752, 1.818, 1.874)′ for g = 1, 2,

ϕ1, 1, 1
FM1 = 0.104,

ϕ1, 1, 2
FM1 = 0.345,

(16)

and those estimated under RG scaling are:

Λg
RG = (0.323, 0.470, 0.390, 0.243, 0.588, 0.606)′ for g = 1, 2,

ϕ1, 1, 1
RG = 1.000,

ϕ1, 1, 2
RG = 3.302.

(17)

Now, we choose 0.104 as constant, which is the square root of the estimated latent 
variance ϕ1, 1, 1

FM1 , and apply the following conversion:

Λg
RG = 0.104 ⋅ Λg

FM1 = 0.104 ⋅ (1.000, 1.453, 1.207, 0.752, 1.818, 1.874) for g = 1, 2,
= (0.323, 0.470, 0.390, 0.243, 0.588, 0.606)′,

ϕ1, 1, 1
RG = 1

0.1042
⋅ ϕ1, 1, 1

FM1 = 1
0.1042

⋅ 0.104 = 1.000,

ϕ1, 1, 2
RG = 1

0.1042
⋅ ϕ1, 1, 2

FM1 = 1
0.1042

⋅ 0.345 = 3.302.

(18)

The choice of the constant exemplifies the mechanism of the conversion: It yields an “es­
timated” latent variance in the reference group of 1, which corresponds to the restriction 
prescribed by the RG scaling method.

To convert from FM1 to EC, we must bear in mind that the EC scaling restriction 
requires A(λ ∙ , 1

EC ) = 1. The loadings estimated under EC scaling are:

Λg
EC = (0.740, 1.076, 0.893, 0.557, 1.346, 1.388)′ for g = 1, 2,

ϕ1, 1, 1
EC = 0.191,

ϕ1, 1, 2
EC = 0.629.

(19)
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Denoting the average of the estimated loadings under the FM1 scaling as A(λ ∙ , 1
FM1), then 

choosing the constant 1/A(λ ∙ , 1
FM1) = 1.351 gives the conversion:7

Λg
EC = 1

1.351 ⋅ (1.000, 1.453, 1.207, 0.752, 1.818, 1.874)′ for g = 1, 2,
= (0.740, 1.076, 0.893, 0.557, 1.346, 1.388)′,

ϕ1, 1, 1
EC = 1.3512 ⋅ 0.104 = 0.191,

ϕ1, 1, 2
EC = 1.3512 ⋅ 0.345 = 0.629.

(20)

Klopp and Klößner (2021, Proposition 2) provide a theoretical account that demonstrates 
how to convert the estimated parameters obtained under any scaling method to the 
estimates obtained under any other scaling method, without the need to re-estimate 
the model, given that the estimated model-implied covariance matrices under the two 
different scaling methods are identical. To start, we note that the scaling method that 
was actually used has no effect on the conversion, only the “target” scaling method is of 
relevance (Klopp & Klößner, 2021, p. 190). For our further considerations, let S1, S2 ∈ S be 
two different scaling methods. The model was actually estimated with S1 scaling and S2
is the target scaling method. Additionally, let d ∈ ℝ\{0} be a constant. For our one latent 
variable example, the conversion equations according to Klopp and Klößner (2021) are

λj, i, g
S2 = d ⋅ λj, i, g

S1 (21)

ϕi, i, g
S2 = 1

d2 ⋅ ϕi, i, g
S1

(22)

Obviously, for our example with one latent variable, a conversion according to Equation 
(21) and Equation (22) with a constant d1 does not change the estimated model-implied 
covariance matrix, because

Σg
S2 = Λg

S2Φg
S2Λg

S2′ + Θg =
= dΛg

S1 1
d2Φg

S1 dΛg
S1′ + Θg

= Λg
S1Φg

S1Λg
S1′ + Θg = Σg

S1 .

(23)

The type of relation in Equation (23) is widely known in the SEM literature (e.g., 
Jöreskog, 1978; Mulaik, 2010, p. 443; Yoon and Millsap, 2007); Klopp and Klößner (2021, 

7) The exact number is 1.350715. Using the rounded number 1.351 produces some rounding issues in the following 
calculation.
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p. 185) call this relation change of scale. Note that this relation deserves special attention 
in the multiple group context. Because of the invariance conditions over the two groups, 
only one constant must be used simultaneously for both groups.

A general version of a change of scale for the model in Equation (9), which also easily 
accommodates more than one latent variable, would use non-singular diagonal matrices 
D containing the di factors for each latent variable. This general form is

Σg
S2 = Λg

S2Φg
S2Λg

S2′ + Θg =
= Λg

S1D D−1Φg
S1D−1 Λg

S1′D′ + Θg

= Λg
S1DD−1Φg

S1D−1DΛg
S1′ + Θg

= Λg
S1Φg

S1Λg
S1′ + Θg = Σg

S1 .

(24)

In the following section, we turn over to the formal side of this exemplary consideration 
and provide a general proof that each scaling method results in the same value of the 
discrepancy function. As we will see, the idea of a change of scale and the idea of the 
propagation of the scaling restriction over the groups via the invariance conditions will 
be essential in proving the equivalence of the scaling methods.

Full Metric Measurement Invariance: Theory
The considerations laid out above lead to the following proposition.

Proposition 1: If the full metric MI model is estimated by minimizing a discrepancy 
function, then the resulting optimal values of the discrepancy function as well as the 
estimated model-implied covariance matrices do not depend on the particular method 
used for scaling the MI model.

The outline of the proof is as follows: First of all, we will explain why the minimum of 
the discrepancy function, taken over all parameters fulfilling full metric MI, coincides, 
for every scaling method, with the discrepancy function’s minimum taken over all 
parameters simultaneously fulfilling full metric MI as well as the restrictions stemming 
from the corresponding scaling method. After having established this fact, it will be 
obvious that the resulting optimal discrepancy value does not depend on the particular 
scaling method, as the optimal values for different scaling methods all take the same 
value (namely, the discrepancy function’s minimum taken over all parameters fulfilling 
full metric MI). As a by-product of proving the invariance of the optimal discrepancy 
value, the proof will also show that the estimated model-implied covariance matrices do 
not depend on the method used for scaling the MI model.
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To follow the outline described above, we denote by θ an arbitrary parameter which 
fulfills full metric MI and minimizes the discrepancy function when no scaling restric­
tions are imposed. By definition, F(θ) ≤ F(θ) for all parameters θ which fulfill full metric 
MI, with F denoting the discrepancy function. For all scaling methods, this in particular 
implies F(θ) ≤ F(θS), with θS denoting the estimate for the parameters for a given scaling 
method S. We will now show that the reverse relation holds, too, i.e. F(θ) ≥ F(θS). When 
this relation has been established, it is clear that we have equality, F(θ) = F(θS), implying 
that all scaling methods lead to the same value for discrepancy function, F(θ), for the full 
metric MI model. To this end, we show that, for each scaling method S, there exists a 
change of scale which transforms the parameter θ to a new parameter θS

, such that the 
transformed parameter θS

 fulfills the constraints associated with the scaling method S as 
well as full metric MI.

1. For the FM method, we apply to θ the change of scale which divides all loadings of 

indicators j belonging to latent variable i in group g by λRi, i, 1, where Ri denotes the 

RI used for scaling factor i, while multiplying latent covariances ϕi1, i2, g between 

latent variables i1 and i2 in group g by λRi1, i1, 1 ⋅ λRi2, i2, 1.
8 This transformation results in a 

new parameter for which the RI’s loading always equals 1 (due to 

λRi, i, g
S = λRi, i, g

λRi, i, 1
= λRi, i, 1

λRi, i, 1
= 1) and all indicators are invariant (as the already invariant 

loadings of θ are divided by a quantity which is also invariant across groups). Thus, 
the transformed parameter fulfills the constraints associated with FM scaling as well 
as full metric MI.

2. For the EC method, we apply to θ the change of scale which divides all loadings of 

indicators j belonging to latent variable i by A(λ ∙ , i, 1), the average of all the loadings 

of latent variable i in group 1, while multiplying latent covariances ϕi1, i2, g between 

latent variables i1 and i2 in group g by A(λ ∙ , i1, 1) ⋅ A(λ ∙ , i2, 1). This transformation 

results in a new parameter for which the average loading of latent variable i’s 

indicators always equals 1 (due to A(λ ∙ , i, g
S ) = A( λ ∙ , i, g

A(λ ∙ , i, 1)
) = A( λ ∙ , i, 1

A(λ ∙ , i, 1)
) = 1) and all 

indicators are invariant (as the already invariant loadings of θ are divided by a 
quantity which is also invariant across groups). Thus, the transformed parameter 
fulfills the constraints associated with EC scaling as well as full metric MI.

3. For the RG method, we apply to θ the change of scale which multiplies all loadings 

of indicators j belonging to latent variable i by ϕi, i, g0, latent variable i’s standard 

8) Latent variances, being the special case of covariances with i1 = i2, are thus multiplied by λRi1, i1, 1
2

.
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deviation in the reference group g0, while dividing latent covariances ϕi1, i2, g between 

latent variables i1 and i2 in group g by ϕi1, i1, g0 ⋅ ϕi2, i2, g0. This transformation results 

in a new parameter for which the latent variable’s variance in group g0 equals 1 (due 

to ϕi, i, g0
S = ϕi, i, g0

ϕi, i, g0 ⋅ ϕi, i, g0
= 1) and all indicators are invariant (as the already invariant 

loadings of θ are multiplied by a quantity which is also invariant across groups). 
Thus, the transformed parameter fulfills the constraints associated with RG scaling 
as well as full metric MI.

In all three cases, the change of scale can be described by Λg
S = ΛgD and Φg

S = D−1ΦgD−1

for all groups g, where D is a diagonal matrix (with entries di, i = 1
λRi, i, 1

 for FM, di, i = 1
A(λ ∙ , i, 1)

for EC, and di, i = ϕi, i, g0 for RG scaling). From

Λg
S Φg

S Λg
S′ = ΛgDD−1ΦgD−1 ΛgD ′ = ΛgΦgD−1DΛg′ = ΛgΦg Λg

′, (25)

it follows that, in all groups, the estimated model-implied covariance matrices are 
identical for θS

 and θ. As the discrepancy function depends on the parameters on­
ly through the estimated model-implied covariance matrices, we can conclude that 
F(θ) = F(θS) ≥ F(θS), as θS minimizes the discrepancy function among all parameters 
which fulfill both full metric MI and the restrictions coming with the scaling method 
S, a set to which θS

 belongs.9 Additionally, Equation (25) shows that the estimated 
model-implied covariance matrices do not depend on the method used for scaling the full 
metric MI model.

Corollary 1: If the full metric MI model is estimated by minimizing a discrepancy 
function, then its χ2, p value, RMSEA, and other fit measures do not depend on the 
particular method used for scaling the model.

This immediately follows from Proposition 1, as all these quantities are calculated using 
the full metric MI model’s likelihood value, which does not depend on the particular 
method used for scaling the model.

Corollary 2: The results of the χ2 difference test which compares the full metric MI 
model to the configural MI model do not depend on the scaling methods used for 
estimating the configural and full metric MI model. This in particular holds for the χ2
difference statistics, the p value, ΔRMSEA, and differences of other fit measures.

9) If the estimate under the scaling method is uniquely defined, then θS and θS
 will coincide, θS = θS

.
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This immediately follows from the preceding corollary and the well-known fact that 
the corresponding quantities for the configural model do not depend on the particular 
method used for scaling the configural model, either.

Concerning the χ2-difference test comparing the configural to the full metric MI 
model, we would also like to shed some light on how to determine its degrees of 
freedom. Our explanations above show that scaling the full metric MI model consists of 
imposing exactly m restrictions, for instance by fixing all latent variables’ variances to 1 
in one group, as it is the case when scaling is done using the RG method. On the other 
hand, it is well-known that scaling the configural model consists of imposing exactly 
Gm restrictions, namely one per group and latent variable. Thus, there is a difference of 
Gm − m = (G − 1)m between the numbers of restrictions needed to scale the configural 
model and the full metric MI model, respectively. This difference needs to be taken into 
account when calculating the degrees of freedom of the χ2-difference test. Intuitively, one 
would think that the degrees of freedom were determined by the number of restrictions 
due to the full metric MI model, i.e. by the number of conditions required to ensure 
all loadings’ invariance. This number is given by (G − 1)p, as, for every indicator, the 
loadings in the first group must match the loadings in the remaining G − 1 groups. 
However, this number has to be corrected to account for the difference induced by the 
scaling restrictions, i.e. by (G − 1)m. These considerations yield the following corollary:

Corollary 3: The degrees of freedom of the χ2-difference test between the configural and 
full metric MI model are given by:

df full − dfconfigural = Δdf = (G − 1)p − (G − 1)m = (G − 1)(p − m) .

Corollary 3 can easily be adapted to partial metric MI models. In this case, the overall 
number of invariant indicators will be denoted by p∗. To calculate the degrees of freedom 
for the χ2 difference test comparing the partial metric MI model to the configural one, 
we can apply exactly the same approach as above: the number of restrictions due to the 
partial metric MI model, intuitively given by (G − 1)p∗, has to be corrected to account 
for the difference induced by the scaling restrictions, i.e. by (G − 1)m. This results in the 
following corollary:

Corollary 4: The degrees of freedom of the χ2-difference test between the configural and 
a partial metric MI model are given by:

dfpartial − dfconfigural = Δdf = (G − 1)p∗ − (G − 1)m = (G − 1)(p∗ − m) .

The preceding corollary implies a special case which deserves particular attention: the 
case of p∗ = m, which leads to the χ2-difference test having zero degrees of freedom. Re­
garding this case, we first we need to investigate when it appears: the condition p∗ = m
means that the number of indicators required to have invariant loadings, p∗, equals the 
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number of latent variables, m. This happens if exactly one indicator per latent variable 
is presumed to be invariant. Regarding the consequences, the fact that the χ2-difference 
test has zero degrees of freedom implies that these particular partial metric MI models 
have as many degrees of freedom as the configural model. Even more, as partial metric 
MI models are covariance-nested within the configural model (cf., Bentler & Bonett, 1980, 
p. 592f), all these partial metric MI models are indeed equivalent to the configural model. 
Together, this leads to the following corollary:

Corollary 5: A partial metric MI model in which only one indicator per latent variable is 
presumed to be invariant is equivalent to the configural model.

Partial Metric Measurement Invariance: An 
Example

Up to this point, we have mainly considered full metric MI models. In this section, 
building on the corollaries developed in the preceding section, we want to present a 
further example, in which we look at partial metric MI models. The example consists of 
three scenarios, A, B, and C. Each of thee scenarios is further divided into two settings. 
The dgp stays the same as in the previous example, please see the model given in 
Equation (10). As before, we use the ML discrepancy function and take the data from the 
first sample of the previous example’s simulation.

In the first scenario A, we want to look at the special case with an invariance con­
dition on the estimated loading of only one indicator. In this case, there is Δdf = 0
and the model under consideration is equivalent to the configural model, which has 
dfconfigural = 18 degrees of freedom (please see the supporting information for how the 
degrees of freedom are calculated). Estimating the configural model10 results in a value of 
19404 ⋅ 10−6 for the discrepancy function.

In the first setting of scenario A, we examine the case in which the estimated loading 
of the first indicator, which is actually invariant according to the dgp, is assumed to be 
invariant by the researcher. Thus, the unscaled model is identical to Equation (5) with 
g = 1, 2 and with the metric invariance condition λ1, 1, 1 = λ1, 1, 2. To scale this model, we 
start with the FM scaling method, see Table 3 for details.11 Once again, we consider every 
indicator as a potential RI, i.e., we look at FM1, …, FM6. For the FM1 scaling, the invari­
ance condition λ1, 1, 1 = λ1, 1, 2 yields that estimated loadings equal 1 in both groups. For 
the FM2 to FM6 scaling, the invariance condition regarding the first loading propagates 

10) We used the FM1 scaling method in each group. Because the configural model is basically a CFA model estimated 
simultaneously in several groups, the scaling has to be done in each group, and in each group the value of the 
discrepancy function does not depend on the scaling method.

11) Again, we only consider the case when the scaling restrictions are set in the reference group.
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the scaling from the reference to the focal group. Concerning the EC method, a first 
variant is to constrain the sum of only invariant indicators’ estimated loadings, which is 
for instance the way the semTools package (Jorgensen et al., 2021) applies this scaling 
method in the context of partial metric MI models.12 In this case, this leads to restricting 
the estimated loading of the first indicator to 1 (EC1). Thus, EC1 coincides with the FM1
scaling in this case. A second possibility is to constrain the sum of the estimated loadings 
of indicators which are not presumed to be invariant, such that their sum equals 5 (EC2). 
As a third possibility, we might also incorporate all estimated loadings, regardless of 
them being invariant or not, resulting in the condition that the sum of all estimated 
loadings equals 6 (EC3). Finally, there is the RG scaling method (RG1).

The second setting of scenario A entails an invariance condition on the estimated 
loading of the fifth indicator, i.e., λ5, 1, 1 = λ5, 1, 2, which is non-invariant in the dgp. The 
scaling options are basically the same as in the first setting, they differ only with respect 
to which indicators the researcher deems invariant or non-invariant, see Table 3 for 
details.

Estimating the models produces the results shown in Table 4. The table shows that in 
both settings, the value of the discrepancy function multiplied by the factor 106 is 19404. 
Thus, estimation leads to the same value of the discrepancy function, although there are 
different invariance conditions, and these partial models are indeed equivalent to the 
configural model. The scenario shows exemplarily that a partial metric MI condition on 
only one estimated loading is not feasible. Scrutinizing the various scaling options in 
Table 3 provides insight into this issue. For example, the FM1 scaling in the first setting 
as well as the FM5 scaling in the second setting correspond to the respective FM scaling 
of the configural model, where the RI’s loading is set to 1 in both groups. The reason 
is the propagation of the scaling via the invariance condition. Interestingly, this way of 
looking at the configural model is not new: Reise et al. (1993) developed a scaling method 
for the configural model, in which they set the variance of the latent variable to 1 in 
one group and required one loading to be invariant across groups. Their scaling method 
for the configural model is therefore identical to the RG scaling method for a partial 
metric MI model with only one invariant indicator. Steenkamp and Baumgartner (1998, 
p. 81) also pointed out that testing the invariance of only one loading is not meaningful. 
Following from our results, it is impossible to test the invariance of only one indicator 
because such a model will always correspond to the configural model.

In order to get around the problem arising in Scenario A, one might be tempted to 
ignore the rule of applying scaling restrictions in only one group and apply them in both 
groups. Doing so, there would be one degree of freedom for the χ2-difference test, and 
the partial metric MI model would no longer be equivalent to the configural model. In 

12) This refers to the function measEq.syntax in the semTools package.
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particular, such an approach would lead to a model with df = 19 degrees of freedom, but 
at the cost of violating the rule to apply the scaling restriction in only one group.13

Table 3

Invariance Conditions and Scaling Restrictions for All Settings in Scenario A in the Partial Metric MI Example

Setting 1
Invariance condition λ1, 1, 1 = λ1, 1, 2
Scaling FM1 : λ1, 1, 1 = 1

FM2 : λ2, 1, 1 = 1
FM3 : λ3, 1, 1 = 1
FM4 : λ4, 1, 1 = 1
FM5 : λ5, 1, 1 = 1
FM6 : λ6, 1, 1 = 1
EC1 : λ1, 1, 1 = 1
EC2 : λ2, 1, 1 + λ3, 1, 1 + λ4, 1, 1 + λ5, 1, 1 + λ6, 1, 1 = 5
EC3 : λ1, 1, 1 + λ2, 1, 1 + λ3, 1, 1 + λ4, 1, 1 + λ5, 1, 1 + λ6, 1, 1 = 6
RG1 : ϕ1, 1, 1 = 1

Setting 2
Invariance condition λ5, 1, 1 = λ5, 1, 2
Scaling FM1 : λ1, 1, 1 = 1

FM2 : λ2, 1, 1 = 1
FM3 : λ3, 1, 1 = 1
FM4 : λ4, 1, 1 = 1
FM5 : λ5, 1, 1 = 1
FM6 : λ6, 1, 1 = 1
EC1 : λ5, 1, 1 = 1
EC2 : λ1, 1, 1 + λ2, 1, 1 + λ3, 1, 1 + λ4, 1, 1 + λ6, 1, 1 = 5
EC3 : λ1, 1, 1 + λ2, 1, 1 + λ3, 1, 1 + λ4, 1, 1 + λ5, 1, 1 + λ6, 1, 1 = 6
RG1 : ϕ1, 1, 1 = 1

13) Such a situation may happen when there is a configural model, which has a scaling restriction in each group, and 
a researcher sets an invariance condition on an estimated loading falsely believing that this were a partial metric MI 
model with one invariance condition.
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In the following Scenario B, we will study this situation. The unscaled models in 
the two settings are identical to those in Scenario A. The various scaling options are 
shown in Table 5. Please note that in the first setting, FM1 scaling coincides with the 
configural model, as restricting the first loading in each group is the same as imposing 
an invariance condition. An analogous assertion holds for FM5 scaling in the second 
setting. The resulting values for the ML discrepancy function are given in Table 6. Some­
what surprisingly, almost all scaling methods yield different values for the discrepancy 
function (for the exception EC scaling we will provide hints below). Thus, the model fit 
as well as test statistics for the χ2-difference test are idiosyncratic to each scaling method, 
a phenomenon called constraint interaction (Klößner & Klopp, 2019; Steiger, 2002). The 
reason is that enforcing scaling restrictions in both groups leads to the hypothesis about 
the indicators’ invariance becoming dependent on the scaling method employed. The 
findings of Johnson et al. (2009) mentioned in the introduction are also driven by this 
effect, which we will now explore in more depth.

To do so, let us have a look at the situation in Setting 1 and the use of FM2 to 
scale the model. In this model, the first indicator’s estimated loading is invariant due 
to the condition λ1, 1, 1 = λ1, 1, 2, while the second indicator’s loading indirectly becomes 
invariant due to the scaling restrictions λ2, 1, 1 = 1 and λ2, 1, 2 = 1, which obviously imply 
λ2, 1, 1 = λ2, 1, 2. Therefore, this model does not presume that only the first indicator’s load­
ing is invariant, but it implicitly stipulates that the first and second indicators’ loadings 
are both invariant. Indeed, as the conditions λ2, 1, 1 = 1 and λ2, 1, 2 = 1 are equivalent to 
the conditions λ2, 1, 1 = λ2, 1, 2 and λ2, 1, 1 = 1, the FM2-scaled model in the first setting is 
actually equivalent to a partial metric MI model where the first two indicators’ loadings 
are presumed to be invariant and FM2 scaling is used in the first group only. Thus, 
the FM2-scaled model in the first setting is a model with p∗ = 2, not p∗ = 1, invariance 
conditions, investigating whether the first two indicators’ loadings are invariant across 
groups.

Scenario B demonstrates another aspect, too. There may be conditions under which 
identical values of the discrepancy function emerge, even though the model is not scaled 

Table 4

Values of the ML Discrepancy Function Multiplied by the Factor 106 in Scenario A in the Partial Metric MI Example

Setting Discrepancy function values

1 FM2 FM3 FM4 FM5 FM6 EC1 EC2 RG1
19404 19404 19404 19404 19404 19404 19404 19404

2 FM1 FM2 FM3 FM4 FM6 EC1 EC2 RG1
19404 19404 19404 19404 19404 19404 19404 19404
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according to the rule of setting scaling restrictions in one group only, as it was the case 
for the EC scaling variants in this scenario14 .

Table 5

Invariance Conditions and Scaling Restrictions for All Settings in Scenario B in the Partial Metric MI Example

Setting 1
Invariance condition λ1, 1, 1 = λ1, 1, 2
Scaling FM2 : λ2, 1, 1 = 1 ∧ λ2, 1, 2 = 1

FM3 : λ3, 1, 1 = 1 ∧ λ3, 1, 2 = 1
FM4 : λ4, 1, 1 = 1 ∧ λ4, 1, 2 = 1
FM5 : λ5, 1, 1 = 1 ∧ λ5, 1, 2 = 1
FM6 : λ6, 1, 1 = 1 ∧ λ6, 1, 2 = 1
EC1 : λ2, 1, 1 + λ3, 1, 1 + λ4, 1, 1 + λ5, 1, 1 + λ6, 1, 1 = 5 ∧

λ2, 1, 2 + λ3, 1, 2 + λ4, 1, 2 + λ5, 1, 2 + λ6, 1, 2 = 5
EC2 : λ1, 1, 1 + λ2, 1, 1 + λ3, 1, 1 + λ4, 1, 1 + λ5, 1, 1 + λ6, 1, 1 = 6 ∧

λ1, 1, 2 + λ2, 1, 2 + λ3, 1, 2 + λ4, 1, 2 + λ5, 1, 2 + λ6, 1, 2 = 6
RG : ϕ1, 1, 1 = 1 ∧ ϕ1, 1, 2 = 1

Setting 2
Invariance condition λ5, 1, 1 = λ5, 1, 2
Scaling FM1 : λ1, 1, 1 = 1 ∧ λ1, 1, 2 = 1

FM2 : λ2, 1, 1 = 1 ∧ λ2, 1, 2 = 1
FM3 : λ3, 1, 1 = 1 ∧ λ3, 1, 2 = 1
FM4 : λ4, 1, 1 = 1 ∧ λ4, 1, 2 = 1
FM6 : λ6, 1, 1 = 1 ∧ λ6, 1, 2 = 1
EC1 : λ1, 1, 1 + λ2, 1, 1 + λ3, 1, 1 + λ4, 1, 1 + λ6, 1, 1 = 5 ∧

λ1, 1, 2 + λ2, 1, 2 + λ3, 1, 2 + λ4, 1, 2 + λ6, 1, 2 = 5
EC2 : λ1, 1, 1 + λ2, 1, 1 + λ3, 1, 1 + λ4, 1, 1 + λ5, 1, 1 + λ6, 1, 1 = 6 ∧

λ1, 1, 2 + λ2, 1, 2 + λ3, 1, 2 + λ4, 1, 2 + λ5, 1, 2 + λ6, 1, 2 = 6
RG : ϕ1, 1, 1 = 1 ∧ ϕ1, 1, 2 = 1

14) The reason for this are specific to the EC scaling, a detailed explanation can be found in the supporting 
information.

Klopp & Klößner 215

Methodology
2023, Vol. 19(3), 192–227
https://doi.org/10.5964/meth.10177

https://www.psychopen.eu/


We now consider the last scenario, Scenario C, in which we want to showcase the 
scaling of a partial metric MI model with p∗ = 4 indicators presumed to be invariant 
across groups and with obeying the rule of applying scaling restrictions in only one 
group. Consequently, this partial metric MI model has dfpartial = 21 degrees of freedom. 
The first setting represents a situation in which the first four estimated loadings are 
investigated with respect to invariance across groups, i.e., the invariance conditions 
stipulated by the researcher correspond exactly to the invariant indicators in the dgp. 
Again, the unscaled model is as given in Equation (5) with g = 1, 2, and with the metric 
invariance conditions λj, 1, 1 = λj, 1, 2 for j = 1, 2, 3, 4.

For scaling, we use all possible versions of the FM, EC, and RG scaling methods. For 
the FM scaling method, these are six different versions, i.e., FM1, …, FM6. For indicators 
with invariance conditions, we see that if we set the FM scaling restriction in the 
reference group, the invariance conditions automatically propagate the corresponding 
condition to the focal group. For instance, for the FM1 scaling, the restriction λ1, 1, 1 = 1 is 
propagated to the focal group via the invariance conditions λ1, 1, 1 = λ1, 1, 2. This reasoning 
applies for FM2, FM3, and FM4 scaling, too. For FM5 and FM6 scaling, where the reasoning 
given above no longer applies, the partial metric invariance conditions on the first four 
loadings nevertheless propagate the scaling from the reference to the focal group.

For the EC scaling method, there are again several ways to set the restriction. The 
first way (EC1, see Table 7), consists in restricting the invariant loadings such that 
their sum equals 4, while the second way leads to restricting the two loadings without 
invariance conditions (EC2). Finally, it is also possible to apply the scaling restrictions 
such that the sum of all loadings equals 6 (EC3). As above, these restrictions are applied 
in the first group only, following our rule that the scaling restrictions must not be applied 
in both groups.

Table 6

Values of the ML Discrepancy Function Multiplied by the Factor 106 in Scenario B in the Partial Metric MI Example

Setting Discrepancy function values

1 FM2 FM3 FM4 FM5 FM6 EC1 EC2 RG1
19863 19469 20673 24692 35574 23825 23825 28653

2 FM1 FM2 FM3 FM4 FM6 EC1 EC2 RG1
20647 23324 28741 19706 24553 21314 21314 71042
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Table 7

Invariance Conditions and Scaling Restrictions for all Settings in Scenario C in the Partial Metric MI Example.

Setting 1
Invariance conditions λ1, 1, 1 = λ1, 1, 2 , λ2, 1, 1 = λ2, 1, 2 , λ3, 1, 1 = λ3, 1, 2 , λ4, 1, 1 = λ4, 1, 2
Scaling FM1 : λ1, 1, 1 = 1

FM2 : λ2, 1, 1 = 1
FM3 : λ3, 1, 1 = 1
FM4 : λ4, 1, 1 = 1
FM5 : λ5, 1, 1 = 1
FM6 : λ6, 1, 1 = 1
EC1 : λ1, 1, 1 + λ2, 1, 1 + λ3, 1, 1 + λ4, 1, 1 = 4
EC2 : λ5, 1, 1 + λ6, 1, 1 = 2
EC3 : λ1, 1, 1 + λ2, 1, 1 + λ3, 1, 1 + λ4, 1, 1 + λ5, 1, 1 + λ6, 1, 1 = 6
RG1 : ϕ1, 1, 1 = 1

Setting 2

Invariance conditions λ1, 1, 1 = λ1, 1, 2 , λ2, 1, 1 = λ2, 1, 2 , λ5, 1, 1 = λ5, 1, 2 , λ6, 1, 1 = λ6, 1, 2
Scaling FM1 : λ1, 1, 1 = 1

FM2 : λ2, 1, 1 = 1
FM3 : λ3, 1, 1 = 1
FM4 : λ4, 1, 1 = 1
FM5 : λ5, 1, 1 = 1
FM6 : λ6, 1, 1 = 1
EC1 : λ1, 1, 1 + λ2, 1, 1 + λ5, 1, 1 + λ6, 1, 1 = 4
EC2 : λ3, 1, 1 + λ4, 1, 1 = 2
EC3 : λ1, 1, 1 + λ2, 1, 1 + λ3, 1, 1 + λ4, 1, 1 + λ5, 1, 1 + λ6, 1, 1 = 6
RG1 : ϕ1, 1, 1 = 1

Finally, for the RG scaling method, we set the variance of the latent variable in the 
reference group to 1. In contrast to the FM and EC scaling method, it is obvious for 
the RG scaling method that the scaling restriction is only applied in one group, as this 
feature is part of the description of this scaling method, as outlined in the introduction. 
The invariance conditions placed on the first four indicators certainly propagate the 
scaling to the focal group also for the EC and RG scaling.

In the second setting, there are four indicators again with invariance conditions on the 
estimated loadings. However, in this setting, the invariance conditions are placed on the 
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estimated loadings of the first and second indicator, which are invariant in the dgp, and 
on the estimated loadings of the fifth and sixth indicator, which are non-invariant in the 
dgp. Thus, the metric invariance conditions are λj, 1, 1 = λj, 1, 2 for j = 1, 2, 5, 6. The scaling 
options are basically the same as in the first setting, they differ only with respect to 
which indicators the researcher deems invariant or non-invariant, see Table 7 for details. 
We would like to draw the reader’s attention to the fact that the scaling methods follow 
the researcher’s choices of invariant and non-invariant indicators, irrespective of the 
indicators’ invariance or non-invariance in the dgp, which is unknown to the researcher.

The results are presented in Table 8, which shows the values of the ML discrepancy 
function multiplied by the factor 106. Obviously, the value of the discrepancy function, 
and therefore the test statistic and all other fit indices are identical, irrespective of 
the scaling method. Additionally, the example also demonstrates that the invariance or 
non-invariance of certain loadings in the dgp does not interact with the specific scaling 
method the researcher chooses for scaling the partial metric MI model.

Table 8

Values of the ML Discrepancy Function Multiplied by the Factor 106 in Scenario C in the Partial Metric MI Example

Setting Discrepancy function values

1 FM1 FM2 FM3 FM4 FM5 FM6 EC1 EC2 EC3 RG1
22021 22021 22021 22021 22021 22021 22021 22021 22021 22021

2 FM1 FM2 FM3 FM4 FM5 FM6 EC1 EC2 EC3 RG1
45195 45195 45195 45195 45195 45195 45195 45195 45195 45195

In the following section, we will provide the formal proof that for partial metric MI 
models, the scaling method does not affect the value of the discrepancy function, as long 
as scaling restrictions are applied in one group only.

Partial Metric Measurement Invariance: Theory
The following proposition formalizes the results of the previous section.

Proposition 2: If a partial metric MI model is estimated by minimizing a discrepancy 
function, then the resulting optimal values of the discrepancy function as well as the 
estimated model-implied covariance matrices do not depend on the particular method 
used for scaling the partial metric MI model, as long as the scaling method is applied in 
only one group, g0.

The proof is essentially the same as the one for Proposition 1. The only detail that needs 
to be given precisely is how exactly to construct the changes of scale that transform a 
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given parameter θ to a new parameter θS
 which fulfills the restrictions associated with 

the Scaling Method S.

1. For the FM method, where the scaling restrictions consist of latent variable i’s 
(potentially non-invariant) reference indicator Ri’s loading being 1 in Group g0, we 

apply to θ the change of scale which divides all loadings of indicators j belonging to 

latent variable i in Group g by λRi, i, g0, while multiplying latent covariances ϕi1, i2, g

between latent variables i1 and i2 in Group g by λRi1, i1, g0 ⋅ λRi2, i2, g0. This transformation 

results in a new parameter for which the reference indicator’s loading in Group g0
equals 1 (due to λRi, i, g0

S = λRi, i, g0
λRi, i, g0

= 1) and all indicators supposed to be invariant across 

groups stay invariant (as the already invariant loadings of θ are divided by a 
quantity which is also invariant across groups). Thus, the transformed parameter 
fulfills the constraints associated with FM scaling as well as those of the partial 
metric MI model.

2. For the EC method, we apply to θ the change of scale which divides all loadings of 

indicators j belonging to latent variable i by A(λ ∙ , i, g0), the average of the 

corresponding loadings of latent variable i in Group g0, while multiplying latent 

covariances ϕi1, i2, g between latent variables i1 and i2 in Group g by 

A(λ ∙ , i1, g0) ⋅ A(λ ∙ , i2, g0). This transformation results in a new parameter for which the 

average loading of the latent variable i’s indicators in Group g0 equals 1 (due to 

A(λ ∙ , i, g0
S ) = A( λ ∙ , i, g0

A(λ ∙ , i, g0)
) = 1) and all indicators supposed to be invariant across 

groups stay invariant (as the already invariant loadings of θ are divided by a 
quantity which is also invariant across groups). Thus, the transformed parameter 
fulfills the constraints associated with EC scaling as well as those of the partial 
metric MI model.

3. For the RG method, we apply to θ the change of scale which multiplies all loadings 

of indicators j belonging to the latent variable i by ϕi, i, g0, latent variable i’s standard 

deviation in the Reference Group g0, while dividing the latent covariances ϕi1, i2, g

between the latent variables i1 and i2 in Group g by ϕi1, i1, g0 ⋅ ϕi2, i2, g0. This 

transformation results in a new parameter for which the latent variable’s variance in 

Group g0 equals 1 (due to ϕi, i, g0
S = ϕi, i, g0

ϕi, i, g0 ⋅ ϕi, i, g0
= 1) and all indicators supposed to be 

invariant across groups stay invariant (as the already invariant loadings of θ are 
divided by a quantity which is also invariant across groups). Thus, the transformed 
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parameter fulfills the constraints associated with RG scaling as well as those of the 
partial metric MI model.

Corollary 6: If a partial metric MI model is estimated by minimizing a discrepancy 
function, then its χ2, p value, RMSEA, and other fit measures do not depend on the 
particular method used for scaling the model, as long as the scaling method is applied in 
only one group.

This immediately follows from Proposition 2, as all these quantities are calculated using 
the partial metric MI model’s likelihood value, which does not depend on the particular 
method used for scaling the model.

Corollary 7: The results of the χ2-difference test which compares a partial metric MI 
model to the configural MI model do not depend on the scaling methods used for 
estimating the configural and partial metric MI model, as long as the scaling method 
used for the partial metric MI model is applied in only one group. This in particular holds 
for the χ2-difference statistics, the p value, ΔRMSEA, and differences of other fit 
measures.

This immediately follows from the preceding corollary and the well-known fact that 
the corresponding quantities for the configural model do not depend on the particular 
method used for scaling the configural model, either.

Conclusions, Remarks, and Answers
In this paper, our goal was to clarify the impact of the various scaling methods on the 
estimation results for metric measurement invariance models. To this end, we addressed 
both full and partial metric MI models, and the results were laid out by means of worked 
examples as well as theoretical results with formal proofs. A first important insight of 
the paper is that scaling restrictions for metric MI models must be placed in one group 
only, which is of particular importance for partial metric MI models if the FM or EC
methods are used and non-invariant loadings are involved. If the scaling restrictions are 
set in one group only, key quantities like optimal discrepancy values, χ2, RMSEA, and 
other fit measures do neither depend on the choice of the scaling method in general nor 
on the choice of the RI in case of using the FM method. Thus, all the concerns about 
the choice of RIs mentioned in the literature can be put aside, as long as scaling is done 
properly: in particular, it does not matter whether a chosen RI is truly invariant or not. 
We are now ready to answer the first two questions: All scaling methods provide the 
same results in sense of the numerical value of the discrepancy function (and therefore 
all other fit indices) but the scaling must obey the rule, Apply the scaling restriction in 
one group only, the invariance conditions do the rest! The inconsistencies found in the 
literature regarding the RI choice may be a result of the lacking distinction between 
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dgp, scaled, and estimated model, which we introduced in the multiple-group context. 
Following this distinction, it is obvious that a non-invariant indicator in the dgp (in other 
words: a truly non-invariant indicator) does not affect the estimation of the scaled model. 
Irrespective of the nature of the dgp, the estimated model, which is stipulated by the 
researcher, provides the same value of the discrepancy function regardless of the scaling. 
As an extreme example, the dgp could be completely different from a confirmatory factor 
analysis model, but an estimated confirmatory factor analysis model would still provide 
the same results regardless of the applied scaling method. However, in this paper, we 
adopted a realistic philosophy of science and made the more or less implicit assumption 
that the dgp matches the estimated model structurally (cf., Klopp & Klößner, 2021, pp. 
191, 202).

For partial metric MI models, the issues discussed in the literature regarding scal­
ing and in particular RI selection originate from scaling restrictions being set in all 
groups, instead of in one group only. For instance, when using the FM method, one 
implicitly adds the RI to the set of indicators that are being tested empirically for 
loading invariance, even if one originally did not want to presume invariance of this 
indicator’s loadings.15 Thus, choosing different RIs leads to different sets of indicators 
whose loadings’ invariance is under examination. Consequentially, the results differ, a 
phenomenon known as constraint interaction. These problems, however, can easily be 
avoided by setting scaling restrictions properly, i.e. by placing them in one group only. 
Apart from scaling in all groups instead of in only one, some of the concerns regarding 
the RI selection as well as concerns regarding other scaling methods, e.g., that the RG 
method implies an invariance assumption about the latent variances in the reference 
group (cf., Kline, 2016, p. 405), result from confounding the characteristics of the dgp 
with the scaling restrictions in the estimated model. As we have illustrated in Figure 1, 
these are distinctive entities.

One of the surprising results of this paper is that it is impossible to test the invariance 
or non-invariance of one specific loading by restricting only this loading to be invariant 
across groups, because in this case a partial metric MI model with the correct number 
of degrees of freedom is equivalent to the configural model. However, concerning the 
scaling of (partial) metric MI models, our research also showed that it is not necessary 
to choose an invariant RI, as long as the scaling is done in accordance with the rule 
introduced in this paper. This provides the answer to the third question: Also in partial 
metric MI models, all scaling methods provide the same results in sense of the numerical 
value of the discrepancy function (and therefore all other fit indices) but the scaling must 
obey the rule, Apply the scaling restriction in one group only, the invariance conditions do 

15) The semTools package’s help page for the function measEq.syntax correspondingly warns users that the RI’s 
loadings can not be freed.
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the rest! However, in partial metric MI settings, the researcher has to bear in mind that it 
is not possible to test the invariance of only one indicator.

With regard to the number of degrees of freedom for full and partial metric MI mod­
els, we provided formulas for calculating these easily. Given the findings of Schroeders 
and Gnambs (2018) regarding published papers with discrepancies with respect to the 
reported degrees of freedom, these formulas could prove very useful to applied research­
ers, when they try to determine the correct number of degrees of freedom for their 
models. Observing our rule, Apply the scaling restriction in one group only, the invariance 
conditions do the rest! in combination with the formulas for the degrees of freedom even 
provides a means for checking whether the scaling restrictions were set correctly.

The corollaries concerning the degrees of freedom also point at another issue. For the 
FM scaling method, Raykov et al. (2012, Appendix A) mentioned that the test of metric 
MI is incomplete because the MI model only tests the group equality of the scaled16 

subset of indicators but not the RI. As the test statistic does not depend on the scaling 
method, the RG and EC scaling methods also provide an incomplete test. However, the 
term incomplete as introduced by Raykov et al. (2012) in the context of the FM scaling 
method cannot be applied to the other two scaling methods. The corollaries provide 
firstly an explanation why the test is incomplete and secondly, explain what incomplete 
means in the context of the RG and EC. As can be seen in the corollaries about the 
degrees of freedom in the (G − 1)m term, one degree of freedom is lost due to the scaling 
restriction in the reference group regardless of the scaling method and this restriction 
is then propagated to the other groups via the invariance conditions. Thus, all scaling 
method have in common that they lose one degree of freedom due to the need to scale 
the metric MI model and that represents a meaning of the term incomplete which is 
common for all scaling methods. In addition, as all scaling methods are equivalent, the 
RI is not somehow excluded from invariance testing, as it is treated in the same way 
as the other indicators that are presumed to be invariant. And, finally, the underlying 
hypothesis being tested empirically does not depend on the scaling method a researcher 
decides to employ.

Concerning the fourth and last question, all scaling methods have the same mecha­
nism: the scaling restriction is only applied in the reference group and propagated by 
means of the MI conditions to the other groups. Thus, there are again no differences 
between the various scaling method in this regards. In particular, this mechanism is the 
foundation for the, Apply the scaling restriction in one group only, the invariance conditions 
do the rest! rule that is of utmost importance in the scaling of metric MI models.

To sum up, there are no potential issues concerning the choice of the RI when using 
the FM scaling method and more generally, all scaling methods yield the same result. 
Consequently, any chapter concerning this topic can be deleted from the textbooks. 

16) Raykov et al. (2012) use the term rescaled which in our framework refers to the scaled model.
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Instead, a thorough explanation of the scaling methods and the rule, Apply the scaling 
restriction in one group only, the invariance conditions do the rest! should be included. In 
order to set the focus on the scaling issues of the metric model, we did not address the 
scaling of scalar measurement invariance models, which in contrast to metric MI models 
additionally incorporate a mean structure. We expect that future research will produce 
results similar to the current paper, probably by using techniques resembling the ones 
used in this paper.

At this point, we want to emphasize that our consideration refers in the first line to 
the discrepancy function and, and in turn, to the LR-test in the form of the χ2-difference 
tests in the model testing sequence (see the Introduction section). The results should 
not be naively generalized to Wald or score tests, that are also sometimes used to 
investigate measurement invariance models. However, the developed scaling rule and the 
consideration about the degrees of freedom apply regardless of the respective statistical 
test.

We want to note that some parts of the results we presented are already present in 
the current literature. For instance, Wu and Estabrook (2016) provide a comprehensive 
account on the identification of confirmatory factor analysis models. However, they fo­
cus on the special case of models with ordinal indicator and scrutinize the identification 
of models with combinations of some invariance conditions. They also only consider the 
RG scaling method. In contrast, the approach in this article is to focus only on the scaling 
of the metric MI model considering the most common scaling methods. As mentioned 
above, we left the scaling restriction of the intercepts (or thresholds) behind.

Finally, we want to note that we also did not turn our attention to factors that poten­
tially have effects on metric MI tests, e.g., the size of the manifest variables’ residual 
variances. For instance, the example of Raykov et al. (2020) mentioned in the introduc­
tion, is the result of overlarge manifest residual error variances. As shown in Klopp and 
Klößner (2022), all possible scaling methods, i.e., all variants of the FM scaling as well 
as the RG and EC scaling methods, provide the same result test statistic. The authors 
also demonstrated by means of a Monte Carlo simulation, that lowering the size of the 
residual variances increased the chance to detect the violation of the metric MI condition. 
Another restriction was to focus on the multi-group context, ignoring longitudinal ones. 
However, all our examples and theoretical results can easily be translated to models with 
dependent variables, in particular, longitudinal models, where time essentially takes the 
role that groups take in this paper. In a nutshell, the scaling method does not affect 
results for longitudinal MI models of full or partial metric MI, as long as latent variables 
measured repeatedly over time are scaled by imposing a scaling restriction at only one 
point in time.
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