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SUMMARY
Store-operated calcium entry (SOCE) through STIM-gated ORAI channels governs vital cellular functions.
In this context, SOCE controls cellular redox signaling and is itself regulated by redox modifications.
However, the molecular mechanisms underlying this calcium-redox interplay and the functional outcomes
are not fully understood. Here, we examine the role of STIM2 in SOCE redox regulation. Redox prote-
omics identify cysteine 313 as the main redox sensor of STIM2 in vitro and in vivo. Oxidative stress sup-
presses SOCE and calcium currents in cells overexpressing STIM2 and ORAI1, an effect that is abolished
by mutation of cysteine 313. FLIM and FRET microscopy, together with MD simulations, indicate that
oxidative modifications of cysteine 313 alter STIM2 activation dynamics and thereby hinder STIM2-medi-
ated gating of ORAI1. In summary, this study establishes STIM2-controlled redox regulation of SOCE as a
mechanism that affects several calcium-regulated physiological processes, as well as stress-induced
pathologies.
INTRODUCTION

SOCE and CRAC Channels
Store-operated calcium entry (SOCE) through stromal interac-

tion molecule (STIM)-gated ORAI channels is a major calcium

(Ca2+) entry route in cells. SOCE is responsible for controlling

cellular functions such as proliferation, differentiation, gene

regulation, and secretion (Parekh and Putney, 2005; Prakriya

and Lewis, 2015). SOCE is also involved in several pathological

conditions; cancer, immune deficiency, tubular aggregate

myopathy, and other severe diseases are known to be deter-

mined by mutations or perturbed expression levels of the key

SOCE-regulating proteins (Ambudkar, 2018; Fahrner et al.,

2018; Feske et al., 2006; Picard et al., 2009; Prevarskaya et al.,
This is an open access article und
2011; Stanisz et al., 2014, 2016). SOCE is typically initiated by

the engagement of surface receptors that cause cytosolic pro-

duction of inositol trisphosphate (IP3) and activation of endo-

plasmic reticulum (ER)-based IP3 receptors (IP3Rs), which

release Ca2+ from the ER and lead to activation of a Ca2+

release-activated Ca2+ current (ICRAC) through plasma mem-

brane Ca2+ release-activated Ca2+ (CRAC) channels (Hoth and

Penner, 1992). Five proteins represent the main molecular deter-

minants of the CRAC channels: ORAI1 and its homologs ORAI2

and ORAI3 are the channel-forming subunits within the plasma

membrane, whereas STIM1 and STIM2 are responsible for

sensing the luminal ER Ca2+ levels and gating of ORAI channels

(Carrasco and Meyer, 2011; Hogan et al., 2010; Hoth and Nie-

meyer, 2013; Prakriya and Lewis, 2015; Soboloff et al., 2012).
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STIM Structure and Function
STIM1 and STIM2 are localized in the ER membrane and

sense luminal ER Ca2+ via an N-terminally located, classical

EF-hand structure (Stathopulos et al., 2008) (Figure 1A). In

the cytosolic part, both STIM1 and STIM2 have three coiled-

coil domains (CC1, CC2, and CC3) and a lysine (Lys)-rich

domain that binds to the plasma membrane phosphatidylino-

sitol 4,5-bisphosphate (PI(4,5)P2) upon activation (Liou et al.,

2007). The second and third coiled-coil domains form the

so-called CAD (CRAC activating domain) or SOAR (STIM-

ORAI activating region), which directly interacts with and

gates the pore-forming ORAI channels (Park et al., 2009;

Yuan et al., 2009). In the resting state of STIM1 and STIM2,

their CAD/SOAR domain is shielded by an interaction with

CC1 (Korzeniowski et al., 2010; Muik et al., 2011; Subedi

et al., 2018). Upon STIM1 activation, CC1 detaches from the

CAD/SOAR structure (this two-domain construct is named

OASF, for ORAI activating small fragment) to allow ORAI bind-

ing, as well as interaction with the plasma membrane. Hence,

CC1 plays an important role in maintaining a closed and com-

pressed configuration to finally restrict and control interaction

with ORAI channels (Fahrner et al., 2014, 2018; Subedi et al.,

2018). Although STIM1 and STIM2 have several highly

conserved domains and both activate the ORAI channels,

they manifest physiologically different functions in many

cellular systems. For example, STIM2 responds to small

changes in ER Ca2+ concentrations, whereas STIM1 requires

substantial store depletion (Brandman et al., 2007; Zheng

et al., 2011). STIM1 is also more efficient in generating large

ORAI-mediated Ca2+ signals in comparison to STIM2 (Wang

et al., 2014). STIM2 has recently been reported to facilitate

the coupling of ORAI1 function with nuclear factor of activated

T-cells 1 (NFAT1) activation (Son et al., 2020). Moreover,

STIM2 has been identified as an important regulator of cell

physiology and pathology, particularly in immune cells,

neuronal cells, and other cells originating from the neural

crest, such as melanocytes and melanoma (Berna-Erro

et al., 2009, 2017; Cheng et al., 2012; Clemens et al., 2017;

Diercks et al., 2018; Shaw et al., 2014; Stanisz et al., 2012,

2014; Sun et al., 2014; Yoshikawa et al., 2019).

Redox Regulation of Ca2+ Channels
Protein function can be regulated by redox modifications of

reactive cysteines, but methionine residues and other amino
Figure 1. STIM2 Oxidation Reversibly Inhibits SOCE

(A) Schematic representation of the STIM1 and STIM2 primary structure. Cyste

additional cysteines in STIM2, yellow). The long signal peptide (87 aa) of STIM2

(B–E) Ca2+ imaging of STIM2 small interfering RNA (siRNA)-treated WM3734 m

(1 mM, 10–15 min). (C) Quantification of DSOCEmax ((2)-(1)). H2O2-induced inhibit

sample. Data are presented as mean ± SEM (n values: siCtrl = 166, siCtrl+H2O2

(F) HyPer-DAAO imaging in 1205Lu melanoma cells treated with 4 mM D-alanine

(G) H2O2 concentration following 60 min of D-ala (4 mM) treatment (n values: unt

(H and I) Ca2+ imaging in 1205Lu melanoma cells. (H) Calibrated Ca2+ traces o

quantification of DSOCEmax ((2)-(1)). Data are presented as mean ± SEM (n value

(J) Ca2+ imaging of HEKO1TCM+S2WT cells with or without H2O2 (1 mM, 15 min)

(K) Corresponding quantification of DSOCEmax (max-basal). Data are presented

675).

Statistical significance was addressed using unpaired, two-tailed Student’s t tes
acids can also be oxidized under more extreme conditions.

Redox modifications are typically induced through chemically

(reactive oxygen species [ROS], H2S) or enzymatically driven

electron transfer, which alters the protein redox status and

thereby its function (Rhee, 1999; Sies et al., 2017; Winterbourn

and Hampton, 2008). We and others have shown that CRAC

channels, transient receptor potential (TRP) channels, IP3Rs,

and voltage-gated Ca2+ channels can be controlled via redox

modifications and can thus influence several physiological and

pathophysiological conditions (for details, see Bhardwaj et al.,

2016; Bogeski et al., 2011; Bogeski and Niemeyer, 2014; Nunes

and Demaurex, 2014; Trebak et al., 2010). Compared with its ho-

molog STIM1, STIM2 has ten additional cysteine residues in the

cytosolic domain whose functional importance was not under-

stood. Here, we explore the role of these STIM2-specific cyste-

ines in the context of SOCE redox regulation.

RESULTS

Oxidative Stress Inhibits STIM2-Controlled SOCE
The schematic comparison of human STIM1 and STIM2 primary

structures (Figure 1A) highlights the ten additional cytosolic cys-

teines (yellow circles) in STIM2 that suggest increased redox

sensitivity of STIM2 over STIM1. In melanoma cells, STIM2 is

the predominant STIM isoform and, together with ORAI1, con-

trols their growth and invasion (Hooper et al., 2015; Stanisz

et al., 2014). Therefore, we used melanoma cells to test whether

STIM2 redox regulation affects SOCE. As seen in Figures 1B

and 1C, silencing of STIM2 reduced SOCE in melanoma cells

(black versus red), as previously reported (Stanisz et al.,

2014). In addition, H2O2 treatment suppressed SOCE in both

STIM2-silenced and STIM2-non-silenced cells (black versus

gray and red versus light red). To extract the contribution of

STIM2 redox regulation in this experimental setup (melanoma

cells express ORAI1, which is also inhibited by H2O2), we

normalized the H2O2-treated cells against their respective con-

trols (black or red) and calculated the percentage of inhibition

following H2O2 treatment. The quantifications depicted in Fig-

ure 1D (max) and Figure 1E (plateau) indicated that silencing

of STIM2 significantly reduces the redox sensitivity of SOCE in

melanoma cells. To evaluate whether this is a cell-line-specific

effect, we performed the same measurements in a second mel-

anoma cell line (1205Lu) and in primary human CD4+ T cells. As

depicted in Figures S1A–S1G, we could observe a significant
ine residues are highlighted as dots (cysteines in STIM1 and STIM2, green;

is excluded from the current numbering.

elanoma cells. (B) Calibrated Ca2+ traces with or without H2O2 pre-treatment

ion of DSOCEmax (D) and DSOCEplateau ((3)-(1)) (E) normalized to the untreated

= 210, siS2 = 111, siS2+H2O2 = 184).

(D-ala) and 1 mM H2O2, as indicated (n = 82, scale bars: 10 mm).

reated = 63, D-ala = 104).

f cells with or without D-ala pre-treatment (4 mM, 60 min). (I) Corresponding

s: untreated = 82, D-ala = 145).

and DTT (2 mM, 15 min).

as mean ± SEM (n values: S2WT = 939, S2WT+H2O2 = 620, S2WT+H2O2+DTT =

t, ***p < 0.005. See also Figure S1.
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contribution of STIM2 to SOCE redox regulation in both addi-

tional cell lines.

Treatment of cells with a bolus of H2O2 resembles a phagocyte

oxidative burst to a certain degree and, with proper controls, can

be used in answering physiological questions. Nevertheless, it

was important to obtain greater insight into the molecular mech-

anisms of STIM2 redox regulation and better understand the

physiological relevance. We thus overexpressed the yeast di-

amino acid oxidase (DAAO, an enzyme that generates H2O2 in

presence of D-amino acids) fused with the H2O2 biosensor Hy-

Per in melanoma cells. This H2O2-inducer-sensor construct pro-

vided us the possibility to simultaneously generate and monitor

intracellular H2O2 levels (for details, see Matlashov et al.,

2014). Figures 1F and 1G show that addition of D-alanine causes

a significant and gradual increase in cytosolic H2O2, thus

mimicking physiological H2O2 production by enzymes such as

the NADPH oxidases. Moreover, Ca2+ measurements in these

DAAO-overexpressing melanoma cells indicated significant

SOCE inhibition of around 35% following treatment with

D-alanine (Figures 1H and 1I). Hence, we could conclude that

both intracellular and extracellular oxidants can inhibit STIM2-

controlled SOCE.

ORAI1, which is the predominant ORAI isoform inmost cells, is

inhibited by oxidation of a critical cysteine (C195) located in the

extracellular space (Ben-Kasus Nissim et al., 2017; Bogeski

et al., 2010). Hence, to precisely quantify the oxidation-induced

effects of STIM2 on SOCE, it was essential to render ORAI1

redox insensitive. For this purpose, we developed an inducible

HEK293 cell line overexpressing ORAI1 with no cysteines

(HEKO1TCM; triple-cysteine mutant [TCM], C195S + C143S +

C126S). As seen in Figure S1H, stimulation with doxycycline

induced a robust increase in ORAI1TCM expression after 12 h.

Moreover, the cells exhibited typical Ca2+ transients following

thapsigargin (Tg)-induced store depletion and concomitant

Ca2+ entry following addition of 0.5 mMCa2+ to the bath solution

(Figures S1I and S1J). By using these cells, it was possible to

evaluate the functional significance of STIM2 redox regulation

on SOCE. As depicted in Figures 1J and 1K, HEKO1TCM cells

were first exposed to H2O2 to induce cysteine oxidation and

were subsequently treated with Tg to activate SOCE. The quan-

tification of these traces showed that H2O2 treatment of cells

overexpressing ORAI1TCM and STIM2WT (gray) caused inhibition

of SOCE by more than 50% when compared with the untreated

control (black). Moreover, we found that additional treatment

with the thiol-reducing agent DTT (dithiothreitol, red) significantly

reversed the H2O2-induced SOCE inhibition. In summary, these

findings indicated that thiol modifications may play a central role

in the STIM2-controlled redox regulation of SOCE.

Identification of STIM2 Reactive Cysteines
To address the role of thiol oxidative modifications and the addi-

tional cytosolic cysteines in STIM2 redox sensitivity, we initially

used a MTSEA-biotin assay to quantify the total content of reac-

tive cysteines (Figure 2A). Hydrogen peroxide treatment of

HEK293 cells transiently overexpressing STIM2WT inhibited the

MTSEA-biotin-bound STIM2WT fraction by around 2-fold when

compared with the cells subsequently treated with DTT (Figures

2B and 2C). This approach indicated that at least some cysteines
4 Cell Reports 33, 108292, October 20, 2020
in STIM2 are redox regulated followingH2O2 treatment. To deter-

mine the identity of the reactive cysteines in STIM2, we next per-

formed redox proteomic analysis (OxICAT) based onmass spec-

trometry (MS, specifically LC-MS/MS). HEK293 cells stably

overexpressing STIM2WT (HEKS2WT) were treated with H2O2

(oxidized state) or DTT (reduced state) and incubated sequen-

tially with a light-isotope-labeled (12C) and a heavy-isotope-

labeled (13C) isotope-coded affinity tag (ICAT), a chemical tool

used for determining thiol oxidative modifications (Figure 2D)

(Leichert et al., 2008; Lindemann and Leichert, 2012). This

approach includes all cellular thiols and will identify the peptides

with the highest abundance. Furthermore, only cysteines whose

redox states were altered between the reducing and the

oxidizing conditions are considered for further analysis. The

quantification of the MS-based redox proteomics identified

several peptides. Twenty peptides with the highest redox regu-

lation are listed in Table S1. Among these, we identified three

STIM2 peptides that displayed a significantly different abun-

dance in the light and heavy ICAT-labeled fractions. Further anal-

ysis showed that the cysteine at position 302 (C302) and the

cysteine at position 313 (C313) are modified by thiol oxidation

(Figure 2E). Cross-species alignment (Figure 2F) indicated that

C313 is more conserved than C302, suggesting that C313 might

have a more prominent regulatory role.

Mimicking oxidative stress by treating cells with external H2O2

is a handy tool that is regularly used in detecting thiol oxidation,

particularly when performing redox proteomics. Nevertheless, it

was essential to explore whether STIM2 cysteine oxidation is

regulated in vivo, under fully physiological conditions. To answer

this question, we performed bioinformatic analyses of a public

database provided by a recently published study that used redox

proteomics to evaluate global cysteine oxidation in different tis-

sues of young and aged mice (Xiao et al., 2020). As seen in Fig-

ure 2G, STIM2 C313 was oxidized in 9 of 20 conditions (from 10

tissues). This analysis indicated that STIM2 C313 is the major

sensor of STIM2, given that the oxidation rate (percentage of oc-

cupancy) and the number of tissues in which its oxidation was

detected were significantly higher compared with other STIM2

cysteine residues (Xiao et al., 2020). Interestingly, oxidation of

C302 was not detected with this analysis.

Altogether, using different screening approaches, we identi-

fied C313 and possibly C302 as redox sensors of STIM2. More-

over, in vivo study confirmed that C313 can be oxidized under

physiological conditions and without the addition of external

oxidants.

STIM2 C313 Modulates SOCE Redox Sensitivity
To determine the functional importance of C302 and C313 in

STIM2, we mutated each of them into valine or alanine residues.

These STIM2 cysteine mutants were transiently overexpressed

in HEKO1TCM. The Ca2+ imaging experiments depicted in Fig-

ures S2A–S2D, indicated that the C302 and C313 mutants are

functional and do not affect SOCE significantly under resting

(not oxidized) environmental conditions. As demonstrated in Fig-

ure 1, H2O2 treatment inhibited SOCE in HEKO1TCM cells overex-

pressing STIM2WT. To evaluate the contribution of STIM2’s C302

and C313, we measured SOCE in HEKO1TCM cells overexpress-

ing STIM2WT, STIM2C302V, or STIM2C313V. Figures 3A and 3B



Figure 2. C302 and C313 in STIM2 Are Modified under Oxidative Stress

(A) Schematic representation of the MTSEA-biotin assay.

(B) Representative STIM2 immunoblot from untreated, H2O2-treated, and H2O2+DTT-treated cells.

(C) Quantification of MTSEA-bound fractions of S2WT under oxidizing conditions (1 mM H2O2) and reducing conditions (2 mM DTT) normalized to the untreated

sample. Data are presented as mean ± SEM (n = 4).

(D) Schematic representation of the OxICAT redox proteomic method.

(E) Identified peptides byOxICAT redox proteomics in theCC1 domain of STIM2, indicating the percentage of oxidation of C302 andC313 in HEKS2WT cells under

oxidizing (OX) conditions (1 mM H2O2) and reducing (RED) conditions (2 mM DTT).

(F) Sequence alignment of the CC1 domain (residues 289–329 of human STIM2), highlighting C302 and C313.

(G) Oximouse dataset (Xiao et al., 2020); quantification of STIM2C313 oxidation as the percentage of occupancy from 16-week-old (young) and 80-week-old (old)

male C57BL/6J mice. Data are presented as mean ± SEM.

BAT, brown adipose tissue; epi, epididymal fat; subQ, subcutaneous fat; SKM, skeletal muscle. Statistical significance was addressed using unpaired, two-tailed

Student’s t test, *p < 0.05. See also Table S1.
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demonstrate that the H2O2-induced SOCE inhibition was

reduced in cells overexpressing the STIM2C302V mutant (green)

and almost fully abolished in cells overexpressing the

STIM2C313V mutant (blue). These measurements were also per-

formed with HEKO1TCM cells overexpressing STIM2 C302 and

C313 alanine mutants. The results presented in Figures S2E

and S2F depict similar behavior when compared with the valine
mutants. Moreover, Ca2+ measurements in HEK cells lacking

STIM1 and STIM2 (HEKS1KOS2KO) and transiently overexpress-

ing ORAI1TCM and STIM2WT or STIM2C313V indicated that

endogenous STIM levels do not significantly affect SOCE

redox regulation in an overexpressing system such as

HEKO1TCM+S2WT/C313V (Figures S2G and S2H). Next, we sought

to test whether and how other stimuli that induce cellular
Cell Reports 33, 108292, October 20, 2020 5



Figure 3. STIM2 C313 Controls the Oxidation-Induced Inhibition of SOCE and ICRAC
(A) Ca2+ imaging of HEKO1TCM with transient overexpression of S2WT, S2C302V, or S2C313V with or without pre-treatment with H2O2 (1 mM, 15 min).

(B) Corresponding quantification of DSOCEmax (max-basal). Data are presented as mean ± SEM (n values: S2WT = 939, S2WT+H2O2 = 620, S2C302V+H2O2 = 432,

S2C313V+H2O2 = 812).

(C) Ca2+ imaging of HEKO1TCMwith transient overexpression of S2WTDK or S2C313ADK and HyPer-DAAOwith or without pre-treatment with H2O2 (1 mM, 15min) or

D-ala (4 mM, 60 min).

(D) Corresponding quantification of DSOCEmax. Data are presented as mean ± SEM (n values: S2WTDK = 24, S2WTDK+H2O2 = 42, S2WTDK+D-ala = 82, S2C313ADK =

33, S2C313ADK+H2O2 = 35, S2C313ADK+D-ala = 71).

(legend continued on next page)

6 Cell Reports 33, 108292, October 20, 2020

Article
ll

OPEN ACCESS



Article
ll

OPEN ACCESS
oxidative stress affect STIM2-controlled SOCE. For this pur-

pose, we first transfected HEKO1TCM cells with the HyPer-

DAAO construct and measured Tg-induced SOCE with and

without D-alanine stimulation. As seen in Figures 3C and 3D,

D-alanine treatment caused inhibition of SOCE in HE-

KO1TCM+S2WT cells. Notably, this D-alanine-induced SOCE inhi-

bition was reversed in cells overexpressing the STIM2C313A
mutant. To calculate the amount of H2O2 generated by the HE-

KO1TCM HyPer-DAAO-overexpressing cells, we first measured

HyPer fluorescence following stimulation with D-alanine. As

seen in Figures S3A and S3B, this induced a significant increase

in basal cytosolic H2O2 levels, comparable to the one in mela-

noma cells. To determine the relative intracellular H2O2 concen-

tration in this experimental setup (4 mMD-alanine for 60min), we

treated the HEKO1TCM HyPer-DAAO cells with increasing con-

centrations of external H2O2. We found that around 100 mM

H2O2 saturates the HyPer biosensor and that the increase in

intracellular H2O2 strongly depends on the extracellular H2O2

concentration (Figures S3A and S3C). Based on this calibration,

we also estimated that 4 mM D-alanine can induce cumulative

intracellular H2O2 levels that correspond to the concentration

induced by the addition of around 5.6 mM external H2O2, thus

indicating that lower concentrations of the oxidant inhibit

SOCE via oxidation of STIM2.

Drugs that block the mitochondrial electron transfer chain

(ETC) are known to induce elevated mitochondrial ROS produc-

tion and can cause oxidative stress by exhausting antioxidant

protection in the cytosol, similar to drugs that directly suppress

the cellular antioxidant system. Hence, we treated HE-

KO1TCM+S2WT/C313V cells with inhibitors of the mitochondrial

ETC, such as oligomycin and antimycin A, and with a drug that

inhibits antioxidant enzymes such as thioredoxin reductase (aur-

anofin), and we measured SOCE using the same protocol as in

Figure 3A. The quantification of DSOCEmax (Figure 3E) showed

that all three drugs, as well as H2O2, inhibited SOCE in HE-

KO1TCM+S2WT cells. Again, the inhibitory effects were reversed

in HEKO1TCM cells overexpressing the S2C313V mutant.

To further dissect the STIM2-controlled redox regulation, we

used whole-cell Ca2+ current measurements and recorded ICRAC.

To avoid side effects that may affect SOCE and cause unspecific

oxidation of plasma-membrane-bound proteins following

external stimulation with H2O2, we applied the oxidant via the

patch pipette. ICRAC was induced by adding 20 mM EGTA (diso-

dium ethylenediaminetetraacetate dihydrate) in the pipette solu-

tion. As shown in FiguresS3DandS3E,HEKO1WTcells transiently

overexpressing S2WT, S2C302V, or S2C313V developed typical and

comparable ICRAC. However, the addition of H2O2 in the pipette
(E) Quantification of DSOCEmax of HEKO1TCM with transient overexpression of S

antimycin A (1 mM, 60 min), oligomycin (1 mM, 60 min), and auranofin (1 mM, 60 m

H2O2 = 966, S2WT+1 mM H2O2 = 620, S2WT+antimycinA = 286, S2WT+oligomyci

S2C313V+1 mM H2O2 = 812, S2313V+antimycinA = 332, S2313V+oligomycin = 198

(F–H) ICRAC in HEK293 cells transiently overexpressing O1WT and S2WT, S2C302V, o

the pipette solution. ICRACwas blocked with La3+ (10 mM) at the end of themeasure

V) plots of ICRAC recorded in response to 100 ms voltage ramps ranging from

S2WT+H2O2 = 12, S2C302V+H2O2 = 7, S2C313V+H2O2 = 11).

Statistical significance was addressed using unpaired, two-tailed Student’s t te

S2WT+H2O2 data are also shown in Figures 1I and 1J and in (A) and (B); S2313V+
caused a strong reduction of ICRAC in the HEKO1WT+S2WT cells

(gray) (Figures 3F–3H). This inhibition was only partially and not

significantly reversed in the HEKO1WT+S2C302V cells (compare

green to gray traces) and was almost fully reversed in the

HEKO1WT+S2C313V cells (compare blue to gray).

In summary, Ca2+ imaging experiments and patch-clamp re-

cordings indicated that C313 is the main redox sensor of

STIM2 and that various conditions that cause cellular oxidative

stress inhibit STIM2-controlled SOCE through its oxidation.

The CC1-Controlled STIM2 Intramolecular Clamp Is Not
Involved in the Oxidation-Induced Inhibition of SOCE
We next aimed to identify the molecular mechanism by which

oxidation of C313 affects STIM2 function and inhibits SOCE.

The STIM activation cascade is initiated by depletion of ER

Ca2+ stores and involves STIM oligomerization, its elongation,

and binding to ORAI1. Accordingly, several molecular mecha-

nisms underlying the STIM2-controlled SOCE redox regulation

were plausible. Oxidation of C313 could (1) prevent opening of

the CC1-controlled intramolecular clamp, (2) hinder STIM2-

STIM2 (or STIM2-STIM1) cytosolic dimerization, and/or (3) inhibit

STIM2-ORAI1 interaction.

To test the first hypothesis, we performed fluorescence reso-

nance energy transfer (FRET) measurements as described in

Muik et al. (2009). For this purpose, the cytosolic domain of

STIM2 (residues 237–478) was labeled with YFP (at the N termi-

nus) and CFP (at the C terminus). This construct, named OASF2

(see also Figure 1A), was overexpressed in HEK293 cells, and

CFP-YFP FRET was recorded in bath solution containing

2 mM external Ca2+. As depicted in Figure 4A, a high FRET

signal would suggest an inactive STIM2 conformation, whereas

a low FRET signal would mean an open, i.e., extended, confor-

mation. Our results (Figure 4B, upper panels, and Figure 4C)

show that the FRET ratio for OASF2 is approximately 0.193,

suggesting a rather open state when compared with OASF1

(Fahrner et al., 2014) (FRET for OASF1 = 0.27) and confirming

previous findings (Subedi et al., 2018). As seen in Figure 4B

(lower panels) and Figure 4C, addition of H2O2 caused a

decrease in the CFP-YFP FRET signal, suggesting that oxida-

tion might induce additional extension of OASF2. To test the

role of C313, we used the same approach as in Figure 4B in

OASF2C313V-overexpressing cells. Figures 4D and 4E show

that replacing C313 slightly reduced the resting FRET signal

when compared with OASF2WT, suggesting an additional

extended configuration. In addition, the C313 mutant of

OASF2 was less effected by H2O2 and resulted in a smaller

additional extended configuration in comparison to OASF2WT.
2WT or S2C313V with or without H2O2 pre-treatment (100 mM or 1 mM, 15 min),

in). Data are presented as mean ± SEM (n values: S2WT = 939, S2WT+100 mM

n = 244, S2WT+auranofin = 278, S2C313V = 754, S2C313V+100 mM H2O2 = 460,

, S2313V+auranofin = 223).

r S2C313V. (F) Current response in the presence and absence of H2O2 (100 mM) in

ment. (G) Corresponding quantification of peak currents. (H) Current-voltage (I-

�100 to 80 mV. Data are presented as mean ± SEM (n values: S2WT = 10,

st, *p < 0.05, **p < 0.01, ***p < 0.005. See also Figures S2 and S3. S2WT and

H2O2 is shown in (B).
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Figure 4. Oxidation of C313 Does Not Con-

trol Opening of the OASF2 Fragment

(A) Schematic representation of CFP-YFP FRET

measurements based on the OASF2 fragment.

Upper panel: closed/folded conformation with

positive FRET. Lower panel: open conformation

with no FRET.

(B) Representative images of CFP, YFP, and FRET

of HEK293 cells overexpressing OASF2WT before

and after treatment with H2O2 (100 mM).

(C) Corresponding quantification.

(D) Representative images for OASF2C313V.

(E) Corresponding quantification.

(F) Normalized FRET over time (FRET+H2O2 �
FRET�H2O2, normalized to t = 0 min) for OASF2WT

and OASF2C313V.

(G) Change of FRET after oxidation with H2O2

(100 mM), as indicated in (F) (DH2O2max as a per-

centage).

Data are presented as mean ± SEM (n values:

S2WT = 11, S2WT+H2O2 = 9, S2C313V = 10,

S2C313V+H2O2 = 11; scale bars: 10 mm). Statistical

significance was addressed using unpaired,

two-tailed Student’s t test, *p < 0.05, **p < 0.01,

***p < 0.005. See also Figure S4.

Article
ll

OPEN ACCESS
To compare the effects of H2O2 on OASF2WT and with those on

OASF2C313V, we subtracted the traces without H2O2 (to correct

for bleaching), normalized the starting value (t = 0 min) to 100%

(Figure 4F), and calculated the percentage of inhibition. Fig-

ure 4G indicated that OASF2WT wasmore sensitive to oxidation

than OASF2C313V. Similar results were obtained using

OASF2C302V (Figure S4). Nevertheless, these findings could

not explain the mechanism responsible for SOCE inhibition

following oxidation of STIM2, given that enhanced OASF2 elon-

gation would instead cause elevated SOCE. Accordingly, we

set out to test the possible alternatives.

Oxidation of C313 Hinders STIM2 Activation
Activated STIM protein dimers undergo a conformational

change and oligomerize, i.e., form puncta close to the plasma

membrane, wherein they, in their open conformation, interact

with ORAI channels and activate SOCE (Gudlur et al., 2020; So-

boloff et al., 2012). It has been demonstrated that the STIM
8 Cell Reports 33, 108292, October 20, 2020
CC1 domain plays an important role in

STIM-STIM interaction and STIM puncta

formation (Fahrner et al., 2014; Prakriya

and Lewis, 2015). To test whether oxida-

tion of C313 affects STIM2 activation

and evaluate the effect of C313 oxida-

tion on a molecular scale, we performed

atomistic molecular dynamics (MD) sim-

ulations of a homology model of STIM2

containing the residues 306–391, which

is based on the nuclear magnetic reso-

nance (NMR) structure of STIM1 (Statho-

pulos et al., 2013) (sequence alignment

in Figure S5A). One monomer of the

NMR structure of STIM1, and therefore
of the homology model of STIM2, consists of a C-terminal

part of the CC1 domain and the CC2 domain (CC1a3-CC2)

that intertwine with each other into a homodimeric conforma-

tion (Figure 5A). The CC1a3-CC2 homodimer was simulated

four times each (for 500 ns) with C313 either in its non-sulfony-

lated form (C313) or in its sulfonylated (oxidized) form (C313-

Sulf). At the end of the simulations, both the C313 and the

C313-Sulf dimers displayed similar overall deviations of 4–8 Å

(root-mean-square deviations [RMSD]) from their initial confor-

mation (Figures S5B and S5C). However, the C313-Sulf mono-

mers showed increased flexibility compared with the C313

monomers, especially at the N-terminal end, including C313-

Sulf (residues 306–314) and the linker (residues 343–350) that

connects the two a helices (Figure 5B). This increased flexibility

of the linker region of C313-Sulf is related to a reduced interac-

tion between E314 located in the N-terminal part of one mono-

mer and R342 residing near the turn region of the other mono-

mer, which form a stable salt bridge in the C313 dimer



Figure 5. Oxidation of C313 Increases Helical Flexibility and Abolishes an Intermolecular Salt Bridge in STIM2-STIM2 Dimers

(A) Homology model of human STIM2 CC1a3-CC2. The STIM2 dimer comprises residues E306-R391 in eachmonomer that form two alpha helices connected by

a turn. C313-Sulf is shown as yellow sticks.

(B) STIM2 dimer flexibility in MD simulations. The root-mean-square fluctuations (RMSFs) were calculated as described in STAR Methods. Bars represent the

error for the RMSFs of eight individual STIM2 CC1a3-CC2 monomers.

(C–G) Inter- and intramolecular residue-residue interactions within STIM2 CC1a3-CC2. (C) Pairwise minimal distances between E314 of one monomer and R342

of the other monomer were calculated for the C313 and C313-Sulf dimer simulations and are depicted in a histogram. (D) Snapshot of the protein conformation of

a C313 dimer simulation (R308, blue-green; C313, yellow; E314, red; R342, green). (E) Pairwise minimal distances between R308 and C313 or C313-Sulf of the

samemonomer. (F) Pairwise minimal distances between R308 and E314 in the samemonomer within C313 or C313-Sulf. (G) Snapshot of a C313-Sulf simulation

(R308, blue-green; C313-Sulf, yellow; E314, red; R342, green). The intermolecular E314-R342 salt bridge is broken.

(H) Average helicity for STIM2 CC1a3-CC2 for the C313 simulations (black) and the C313-Sulf simulations (red).

Data are presented as mean ± SEM of both STIM2 CC1a3-CC2 monomers in all simulations. The first and last residues (E306 and R391) are defined as coil by

default. See also Figure S5.
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simulations (Figures 5C and 5D). In the C313-Sulf simulations,

the intermolecular E314-R342 salt bridge breaks and thus de-

stabilizes the CC1a3-CC2 linker (compare Figures 5D and

5G). Moreover, E314 and in particular the neighboring C313-

Sulf are instead more frequently involved in an interaction

with the neighboring R308 of the same monomer (Figures

5E–5G). Thereby, the first residues of CC1a3 lose their initial

helical conformation. On average, the N-terminal part (residues

307–314) in the C313 simulations is ~61% helical, whereas in

the C313-Sulf simulations, the helicity is reduced by ~15% (Fig-

ure 5H). Moreover, the destabilized CC1a3-CC2 domain

induced by C313-Sulf is in line with a slightly extended config-

uration of the OASF2C313V (Figure 4D). This in silico analysis

indicated that even in its resting, ORAI-unbound conformation,

STIM2 C313 sulfonylation affects the structural properties of

the STIM2 dimer.

Our results based on MD simulations suggest that

oxidized C313 may destabilize the interaction sites between

CC1 and CC2 helices of STIM2. This structural instability may

interfere with the CC1-CC1 and/or CC1-CC2 interaction

following STIM2 activation. To experimentally test this hypothe-

sis, we performed FRET microscopy of STIM2 (Figure 6A).

To prevent the known pre-clustering of STIM2WT (Brandman

et al., 2007; Emrich et al., 2019), we used constructs missing

the membrane-tethering polybasic Lys-rich domain (STIM2DK)

(for details, see Brandman et al., 2007). We transfected

HEKO1WT cells with STIM2WTDK-GFP+STIM2WTDK-mCherry or

STIM2C313ADK-GFP+STIM2C313ADK-mCherry and evaluated inter-

molecular FRET/donor ratio values, as well as the STIM2 clus-

ter-covered area. The data in Figures 6B and 6C show an ex-

pected increase of the STIM2WTDK�STIM2WTDK FRET signal,

as well as the STIM2WTDK cluster-covered area, in cells activated

with Tg (black versus gray). Moreover, the Tg-induced increase

in FRET efficiency and the cluster-covered area was abolished

by H2O2 treatment (gray versus light gray). In addition, we found

that Tg treatment increased FRET and the cluster area in cells

overexpressing STIM2C313ADK (dark blue versus blue). However,

in these cells, H2O2 treatment did not reduce the Tg-induced in-

crease in FRET and the STIM2 cluster-covered area (blue versus

light blue) (Figures 6B and 6C). To elucidate the mechanism by

which oxidation of C313 affects STIM2 interaction, we employed

fluorescence lifetime imaging microscopy (FLIM), because it
Figure 6. STIM2-STIM2 Interaction Is Diminished by Redox Modificatio

(A) Schematic representation of STIM2-STIM2 FRET measurements.

(B and C) Confocal microscopy of HEKO1WT cells overexpressing S2WTDK or S2C3
before fixation. (B) Cluster FRET/donor ratio. (C) Cluster area normalized to cell a

S2WT+H2O2+Tg = 78, S2C313A = 62, S2C313A+Tg = 83, S2C313A+H2O2+Tg = 51).

(D and E) FLIM microscopy of HEKO1WT cells overexpressing S2WTDK or S2C313A
(D) FLIM-imaging-based phasor plots showing point clouds of the molecular spe

(E) FRET efficiency calculation (as a percentage) of the FLIM-imaging-based dat

S2C313A+H2O2+Tg = 10).

(F–H) STIM1/STIM2 residues used to calculate the solvent-accessible surface are

(Figures S5D and S5E). SASA is shown for equivalent residues in STIM2 in simu

(I) Schematic representation of STIM2-ORAI1TCM FRET measurements.

(J and K) Confocal microscopy of HEK293 cells overexpressing S2WTDK-GFP or S2C31
before fixation. (J) Cluster FRET/donor ratio. (K) Cluster area normalized to cell are

S2WT+H2O2+Tg = 110, S2C313A = 68, S2C313A+Tg = 118, S2C313A+H2O2+Tg = 109).

Statistical significance was addressed using unpaired, two-tailed Student’s t tes
is among the most accurate methods for measuring intermolec-

ular interactions via FRET. STIM2WTDK-GFP was used as a fluo-

rescence donor, and STIM2WTDK-mCherry was used as an

acceptor. Initially, using a bi-exponential curve fit, we identified

two lifetimes for GFP: a shorter one (t1 = 1.25 ± 0.16 ns) and a

longer one (t2 = 2.28 ± 0.05 ns). To evaluate the effects of

STIM2 redox regulation and the role of its C313 on GFP lifetimes,

we treated the STIM2WTDK- and STIM2C313ADK-overexpressing

HEKO1WT cells with H2O2 and Tg. These data were processed

using the phasor analysis method, because it has proved to be

a robust approach for the identification of different molecular

species based on their lifetimes, as well as for the estimation

of FRET efficiency of molecular species exhibiting multi-expo-

nential decays (for technical details, see Digman et al., 2008).

The phasor plots shown in Figure 6D indicate that the un-

quenched donors (green circle; STIM2WTDK-GFP, left panel;

and STIM2C313ADK-GFP, right panel) exhibit point clouds with

the longest averaged lifetimes. The shortest donor lifetimes

were recorded in HEKO1WT cells treated with Tg only in

STIM2WTDK- and STIM2C313ADK-overexpressing cells (red cir-

cles). Hydrogen peroxide treatment prevented Tg-induced life-

time reduction of STIM2WTDK (cyan circle, left panel). However,

in the STIM2C313ADK-expressing cells, this H2O2-induced prolon-

gation of donor lifetime was diminished (cyan circles, right panel)

when compared with STIM2WT. In addition to donor lifetimes, we

quantified FRET efficiency using the FRET trajectory approach

as part of phasor analysis (Digman et al., 2008). The quantifica-

tion of this analysis is shown in Figure 6E and displays a similar

pattern as the FRET/donor ratio-based analysis shown in

Figure 6B.

Altogether, FRET and FLIM of STIM2 confirmed the impor-

tance of C313 redox regulation and suggested that oxidation

of STIM2C313 interferes with STIM2-STIM2 interaction following

its activation.

Oxidation of C313 Does Not Affect STIM2-ORAI1
Interaction
The previous results indicated that oxidation, i.e., S-sulfonyla-

tion, of C313 hinders STIM2 oligomerization. However, these

findings did not exclude the possibility that oxidized C313 might

also affect STIM2 interaction with ORAI1. To evaluate this hy-

pothesis, we used MD simulations and calculated the solvent-
ns of C313

13ADK fused to GFP andmCherry treated with Tg (1 mM) or H2O2 (100 mM) and Tg

rea. Data are presented as mean ± SEM (n values: S2WT = 68, S2WT+Tg = 110,

DK fused to GFP and mCherry. Cells were treated as in (B) and (C).

cies occurring after the respective treatment.

a shown in (D) (n values: S2WT+Tg = 10, S2WT+H2O2+Tg = 4, S2C313A+Tg = 5,

a (SASA) based on the STIM1-ORAI1 NMR structure (Stathopulos et al., 2013)

lations (calculated over 300–500 ns) for (G) C313 and (H) C313-Sulf.

3ADK-GFP andmCherry-ORAI1TCM treated with Tg (1 mM) or H2O2 (100 mM) and Tg

a. Data are presented as mean ± SEM (n values: S2WT = 113, S2WT+Tg = 119,

t, *p < 0.05, **p < 0.01, ***p < 0.005.
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accessible surface area (SASA) of the residues that form the

ORAI1 binding site in the NMR structures of STIM1 with bound

ORAI1 C termini (Figure S5D; SASA = 8.02 nm2) and without

bound ORAI1 C termini (Figure S5E; SASA = 2.54 nm2) (Statho-

pulos et al., 2013). Then, we compared them to the surface area

of the equivalent residues in STIM2 C313 and C313-Sulf ob-

tained in the simulations (Figures 6F–6H). Our data indicated

that the binding sites overall become more accessible in the

C313 simulations (SASA = 4.4 ± 1.4 nm2) and C313-Sulf simula-

tions (SASA = 4.8 ± 1.2 nm2) compared with the STIM1 apo

structure, with the distributions of the accessible surface areas

marginally shifted toward larger values for C313-Sulf compared

with C313 dimer simulations (compare Figures 6G and 6H).

These simulations thus suggested that oxidation of C313

would most likely not disturb STIM2-ORAI1 interaction. To test

this experimentally, we performed FRET imaging and cluster-

size analyses in HEK293 cells expressing STIM2WTDK-GFP

and mCherry-ORAI1TCM (Figure 6I) with and without

stimulation with Tg. Our results showed an increase of the

STIM2WTDK-ORAI1TCM FRET signal, as well as the STIM2WTDK-

ORAI1TCM cluster-covered area, in cells activated with Tg (black

versus gray). We also found that H2O2 treatment suppressed the

Tg-induced increase in FRET efficiency and the cluster-covered

area (gray versus light gray). In addition, Tg treatment increased

FRET and the cluster area in cells overexpressing STIM2C313ADK-

ORAI1TCM (dark green versus green). However, in these cells,

H2O2 treatment did not reduce the Tg-induced increase in

FRET and the STIM2WT-ORAI1WT cluster-covered area (green

versus light green, Figures 6J and 6K). Given that this finding

was similar to the one for STIM2-STIM2 (Figures 6B and 6C),

we postulated that the STIM2-ORAI1 interaction under oxidative

stress is most likely controlled by the redox control of STIM2

oligomerization.

In summary, the MD simulations and the FRET imaging sug-

gested that if the STIM2-STIM2 interaction would not have

been affected, the ORAI1-STIM2 interaction would have most

likely not been overtly altered by STIM2C313 oxidation. Hence,

we could conclude that the oxidation of C313 inhibits SOCE

mostly by hindering STIM2-STIM2 clustering, i.e., interaction.

DISCUSSION

SOCE is a Ca2+ entry mechanism that is highly sensitive to redox

modifications (Bogeski and Niemeyer, 2014; Nunes and De-

maurex, 2014). We reported SOCE redox regulation even before

the molecular identity of STIM and ORAI was fully elucidated (Bo-

geski et al., 2006). Moreover, we demonstrated that extracellular

oxidants cause oxidative modifications of C195 in ORAI1 and

ORAI2 and thereby inhibit SOCE (Bogeski et al., 2010). We also

found that ORAI3 lacks the C195 and is thereby redox insensitive

(Bogeski et al., 2010). Accordingly, we demonstrated that the

ORAI3/ORAI1 ratio determines the overall CRAC channel redox

sensitivity and thus controls monocyte immune responses (Saul

et al., 2016; Schmidt et al., 2019). Moreover, in a recent study,

redox regulation of ORAI channels was shown to be involved in

the mitochondrial control of SOCE (Ben-Kasus Nissim et al.,

2017). In addition to ORAI, STIM1 function can be redox regu-

lated. A mature STIM1 protein has four cysteine residues: two in
12 Cell Reports 33, 108292, October 20, 2020
the ER lumen, one in the ER transmembrane domain, and one

in the cytosolic CAD/SOAR domain (Figure 1A). The role of these

cysteines was examined in the context of redox regulation, and it

was demonstrated that S-glutathionylation of the luminal C56

causes Ca2+ store-independent clustering of STIM1 and thus

activation of ORAI channels (Hawkins et al., 2010). Another study

showed that STIM1 function is regulated by the ER oxidoreduc-

tase ERp57 via redox modulation of C49 and C56. The lack of

these two residues caused inhibition of SOCE, whereas ERp57

knockdown caused its elevation (Prins et al., 2011). Furthermore,

studies have demonstrated that S-nitrosylation of STIM1C49 and

C56 interferes with STIM1 oligomerization and consequently

leads to SOCE inhibition (Gui et al., 2018; Zhu et al., 2018).

In this study, we evaluated the redox regulation of STIM2. As

seen in Figure 1A, STIM2 has ten additional cytosolic cysteines

compared with STIM1, but their role was not yet understood.

Our redox proteomic analysis identified two of these cysteines

(C302 and C313), localized in the CC1 domain of STIM2, to be

oxidized following treatment with external oxidants. The

conserved cysteines within the lumen of the ER, shown previ-

ously to be regulated in STIM1 (described earlier), were identi-

fied neither in our analysis nor in an in vivo redox proteomic

study (Xiao et al., 2020). These findings do not negate the role

of the STIM2 luminal cysteines in SOCE redox regulation but

rather suggest that oxidative stress needs to be discussed as

a localized subcellular event, not as a generalized state of a

cell (Mishina et al., 2019). In terms of SOCE, spatially limited,

i.e., local, redox regulation would be physiologically plausible.

The ORAI/STIM machinery spans from the extracellular space

to the ER lumen, thereby crossing the plasma membrane, the

cytosol, and the ER membrane. At physiological conditions,

the redox potential of all three compartments (ER lumen,

cytosol, and extracellular space) is different. The cytosol is

rather reducing, whereas the ER lumen is highly oxidizing

(Sies et al., 2017). This suggests that the exact intracellular

localization of cysteines in ORAI and STIM could play a decisive

role in determining the CRAC channel function under conditions

that cause oxidative stress. Based on the current knowledge,

elevated oxidative burden in the extracellular space and in

the cytosol would cause inhibition of SOCE, whereas elevation

in the oxidizing potential of the ER lumen would cause SOCE

activation following S-glutathionylation and SOCE inhibition

following S-nitrosylation. Nevertheless, it is also known that al-

terations of the redox state of one compartment can affect the

redox state of another cellular compartment (Appenzeller-Her-

zog et al., 2016; Bertolotti et al., 2016; Mishina et al., 2019).

Determining how these complex redox-signaling mechanisms

integrate in the context of STIM and ORAI redox regulation

and how this regulation translates into physiology and pathol-

ogy requires additional comprehensive investigation. In mela-

noma, for example, cysteine oxidation of ORAI1 and/or

STIM2 inhibits SOCE andwould thereby blockmigration and in-

vasion of this highly aggressive cancer. Indeed, studies that

demonstrate that antioxidants promote melanoma metastatic

spread (Le Gal et al., 2015; Piskounova et al., 2015), together

with studies reporting an essential role of ORAI and STIM in

melanoma pathobiology (Stanisz et al., 2016), provide a

possible connection between SOCE redox regulation and



Figure 7. Oxidation of C313 Hinders STIM2 Activation and Inhibits SOCE

(A) Under resting conditions (i.e., high [Ca2+]ER), STIM2 is in a closed conformation. ORAI1 channels and SOCE are inactive.

(B) Depletion of the ER Ca2+ stores (i.e., low [Ca2+]ER) during signaling events (e.g. surface receptor activation) leads to Ca2+ dissociation from the STIM2 luminal

EF-hands, causing STIM2 dimers to unfold, elongate, and thus activate ORAI channels and SOCE.

(C) Under oxidizing conditions STIM2 C313 is sulfonylated, a modification that hinders proper STIM2 activation and its gating of ORAI1 and subsequently causes

SOCE inhibition.

Article
ll

OPEN ACCESS
melanoma aggressive behavior. Moreover, a study that per-

formed a comprehensive state-of-the-art redox proteomic

analysis of different tissues in young and aged mice identified

STIM2 C313 to be oxidized in 9 of 20 samples (Xiao et al.,

2020). Thus, this in vivo study confirmed our in vitro findings

and demonstrated that STIM2 oxidative modifications are

physiologically highly relevant. Xiao et al. (2020) identified

oxidative modifications of four additional cytosolic cysteines.

However, the number of conditions in which these cysteines

were identified in an oxidized form and the percentage of occu-

pancy were significantly inferior compared with C313 (for de-

tails, see Xiao et al., 2020). Again, oxidative modification of

the luminal cysteines of STIM2 was not detected.

An NMR-based 3D structure of the whole STIM2 protein, with

exception of its EF-SAM domain (Zheng et al., 2011), is not avail-

able. We therefore transformed the reported STIM1 NMR struc-

ture (Stathopulos et al., 2013) by replacing the different amino

acids between STIM1 and STIM2 to generate a homology model

that will help us in understanding the role of C313 oxidation in

STIM2. The data gained from this model, together with our

experimental FRET- and FLIM-obtained results (Figures 5 and

6), indicated that oxidation of C313 inhibits SOCE by interfering

with STIM2 activation, i.e., dimerization/oligomerization. In addi-

tion, using the samemodel, we evaluated the role of STIM1 R304

mutation into tryptophan (STIM1-R304W). R304 corresponds to

R308 in STIM2, and its R304Wmutation renders STIM1 constitu-

tively active, leading to the development of Stormorken syn-

drome (Misceo et al., 2014). A recent study demonstrated that

R304 point mutations in STIM1 caused altered STIM1 CC1a2
and CC1a3 linker flexibility and CC1 homodimerization (Fahrner

et al., 2018). This study suggested that the R304WSTIM1mutant

increases the CC1 homodimerization and rigidifies the CC1a2-

CC1a3 linker by the formation of an a helix, resulting in an

extended STIM1 conformation that enables interaction with

ORAI. Oxidation of C313 in STIM2 and the coupled interaction

of C313-Sulf with R308will probably also affect the conformation

of the linker, and an effect on the transition from the closed to the

extended state of STIM2 is likely. However, simulation of a full-

length STIM2 structure to shed light on these hypotheses would

have been beyond the scope of this study. Future studies are

warranted in addressing these important questions and in exam-

ining whether and how a mutation or mutations and posttransla-

tional modifications of STIM2 R308 and/or C313 will affect hu-

man physiology and pathology.

In this study, we show that under normal (reducing) conditions,

depletion of ERCa2+ stores leads to STIM2 elongation, oligomer-

ization, and activation of ORAI channels (Figures 7A and 7B).

However, under oxidative stress, the C313 in the CC1 domain

of STIM2 will be oxidized. As experimentally demonstrated and

depicted in Figure 7C, we found that C313 thiol oxidation inter-

feres with STIM2 activation and leads to inhibition of SOCE.

In summary, we demonstrate that oxidation of a specific

cysteine (C313) in STIM2 is an essential redox-controlled regula-

tory mechanism of cellular Ca2+ homeostasis. Tissue-specific

STIM2 abundance and local ROS hotspots could thus play a

decisive role in oxidative stress-induced pathological conditions

such as aging, cancer, cardiovascular disease, and neurodegen-

erative disorders.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-Orai1 Sigma-Aldrich Cat#O8264; RRID: AB_1078883

Anti-GAPDH Cell Signaling Technology Cat#2118L; RRID: AB_561053

Anti-Mouse; HRP Conjugated GE Healthcare Cat#NA931; RRID: AB_772210

Anti-Rabbit; HRP Conjugated GE Healthcare Cat#NA9340; RRID: AB_772191

Biological Samples

Human donor blood samples UMG Göttingen blood bank (UMG,

Ethics approval 2/3/18)

N/A

Chemicals, Peptides, and Recombinant Proteins

Dulbecco’s modified Eagle’s (DMEM) medium Thermo Fisher Scientific Cat#41966029

MCDB153 basal medium Biochrom Cat#F8105

Leibovitz’s L-15 medium Biochrom Cat#F21315

AIMV medium Thermo Fisher Scientific Cat#12055091

RPMI medium Sigma Aldrich Cat#R7388

OptiMEM medium Thermo Fisher Scientific Cat#51985034

DPBS Thermo Fisher Scientific Cat#14190250

Lipofectamine2000 Thermo Fisher Scientific Cat#11668027

Fugene� HD Promega GmbH Cat#E2311

TransFectin Bio-Rad Cat#1703351

SF Cell Line 4D-NucleofectorTM X Kit L Amaxa Nucleofector, Lonza Cat#V4XC-2024

P3 Primary Cell 4D-NucleofectorTM X Kit L Amaxa Nucleofector, Lonza Cat#V4XP-3024

ImmunoCultTM Human CD3/CD28 T cell Activator Stem Cell Technologies Cat#10991

MTSEA-biotin Biotinum Cat#B-90066-1

Pierce Avidin-Agarose Thermo Fisher Scientific Cat#20219

Pierce ECL Western Blotting Substrate Thermo Fisher Scientific Cat#32106

Fura-2 AM Thermo Fisher Scientific Cat#F1221

Thapsigargin Sigma-Aldrich Cat#T9033

Fluoromount-G Thermo Fisher Scientific Cat#00495802

Critical Commercial Assays

Dynabeads Untouched Human CD4 T Cells Kit Invitrogen, Thermo Fisher

Scientific

Cat#10449053

Cleavable ICAT Method Development kit AB SCIEX Cat#4337336

Cleavable ICAT Method Bulk kit AB SCIEX Cat#4337337

Deposited Data

OxiMouse (Xiao et al., 2020) https://oximouse.hms.harvard.edu/

download.html

STIM2 homology model Protein Databank PDB: 2MAJ and PDB: 4O9B

Redox proteomics This publication Table S1

Experimental Models: Cell Lines

HEK293 ATCC Cat#CRL-1573

HEK HA-Orai1 WT (Kilch et al., 2013) N/A

HEK Flp-In STIM2 This publication N/A

Flp-In T-REx 293 Thermo Fisher Scientific Cat#R78007

HEK Flp-In O1-TCM This publication N/A

HEK293 STIM1/STIM2 double knockout (Emrich et al., 2019) N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

WM3734 Meenhard Herlyn laboratory (The

Wistar Institute, Philadelphia, USA)

N/A

1205Lu Meenhard Herlyn laboratory (The

Wistar Institute, Philadelphia, USA)

N/A

Oligonucleotides

STIM2 siRNA sense 50 UAA GCA GCA UCC CAC AUG

ATT - dTdT 30
Microsynth N/A

STIM2 siRNA antisense 30 dT dT - AUU CGU CGU

AGG GUG UAC UAA 50
Microsynth N/A

Ctrl siRNA sense 50 UUC UCC GAA CGU GUC ACG

U - dTdT 30
Microsynth N/A

Ctrl siRNA antisense 30 dTdT - AAG AGG CUU GCA

CAG UGC A 50
Microsynth N/A

Recombinant DNA

pCAGGS-O1-TCM (Bogeski et al., 2010) N/A

pcDNA5/FRT/TO Thermo Fisher Scientific Cat#V103320

poG44 Thermo Fisher Scientific Cat#V600520

pcDNA5/FRT/TO-ORAI1-TCM This publication N/A

pEX-CMV-SPS1-YFP-STIM2 Addgene Addgene Cat#18862

pEX-CMV-SPS1-YFP-STIM2 (cysteine to valine mutants) This publication N/A

spS1-HA-hSTIM2-EGFP or mCherry (cysteine to alanine

mutants)

This publication N/A

YFP-OASF2-CFP (cysteine to valine mutants) This publication N/A

HA-hSTIM2-DK17-EGFP or mCherry (cysteine to alanine

mutants)

This publication N/A

mCherry-hORAI1-TCM This publication N/A

pCMV-pL4-HyPer-DAAO-NES (Pak et al., 2020) N/A

Software and Algorithms

FIJI / ImageJ (Schindelin et al., 2012) https://imagej.net/Welcome

Zeiss Zen (2.6) Carl Zeiss Microscopy GmbH N/A

TILLVision (4.0.1) T.I.L.L. Photonics GmbH / FEI

GmbH

N/A

Leica Application Suite LAS X (3.5.5) Leica Microsystems N/A

VisiView (2.1.1) and (4.2.0.0) Visitron Systems GmbH N/A

Biorad Quantity One (4.6.9) Biorad https://www.bio-rad.com/de-de/

product/quantity-one-1-d-analysis-

software?ID=1de9eb3a-1eb5-4edb-

82d2-68b91bf360fb

Image Lab (3.0.1) Biorad https://www.bio-rad.com/de-de/

product/image-lab-software?

ID=KRE6P5E8Z

MaxQuant software (1.5.3.17, DE) (Cox and Mann, 2008) https://www.maxquant.org/

MATLAB (7.0.4) The MathWorks, Inc. https://de.mathworks.com/

products/matlab.html

Python (3.7.7) Python Software Foundation http://www.python.org

Pandas (0.25.3) https://conference.scipy.org/

proceedings/scipy2010/

mckinney.html

https://pandas.pydata.org/

PyMOL (1.8.5.0) Schrödinger https://pymol.org/2/#opensource

RStudio (1.1.456) RStudio https://rstudio.com/products/

rstudio/download/#download

(Continued on next page)
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SWISS-MODEL (2019) (Benkert et al., 2011; Waterhouse

et al., 2018)

https://swissmodel.expasy.org/

GROMACS (2019) (Abraham et al., 2015) http://manual.gromacs.org/

documentation/

AMBER14 (including antechamber) https://ambermd.org/doc12/

Amber14.pdf

https://ambermd.org/

ACPYPE (0.1.0) (Sousa da Silva and Vranken,

2012)

http://ambermd.org/AmberTools.php

Gaussian 09 Gaussian Inc. https://gaussian.com/glossary/g09/

Adobe Photoshop (CS6) Adobe https://www.chip.de/downloads/

Photoshop-CS6_15182066.html
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Prof. Dr.

med. Ivan Bogeski (ivan.bogeski@med.uni-goettingen.de).

Materials Availability
All unique/stable reagents generated in this study are available from the Lead Contact with a completed Materials Transfer

Agreement.

Data and Code Availability
The redox proteomics data generated during this study are available in Table S1 and are available from the Lead Contact on request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
HEK293 (#CRL-1573, ATCC,Manassas, USA), HEKHA-Orai1WT (Kilch et al., 2013), HEK Flp-In T-REx 293 (#R78007, Thermo Fisher

Scientific GmbH, Schwerte, Germany), HEK293 STIM1/STIM2 double knockout (Emrich et al., 2019), HEK Flp-In STIM2 (this publi-

cation), HEK Flp-In O1-TCM (this publication), were cultivated in DMEM medium (#41966029, Thermo Fisher Scientific GmbH,

Schwerte, Germany) supplemented with 10% FCS, 1% Penicillin/Streptomycin and antibiotics for selection (see Table S2).

WM3734 and 1205Lu melanoma cells were a gift fromMeenhard Herlyn (TheWistar Institute, Philadelphia, USA) and were cultivated

in tumor medium (80%MCDB153 basal medium (#F8105, Biochrom, Berlin, Germany), and 20% Leibovitz’s L-15medium (#F21315,

Biochrom, Berlin, Germany) supplementedwith 1.68mMCaCl2 and 2%FCS). All cells were negative formycoplasma andweremain-

tained at 37�C in 5% CO2.

Primary cell cultures
Primary human effector CD4+ T cells were isolated as described in Bogeski et al. (2010) by a negative selection using Invitrogen

Dynabeads Untouched Human CD4 T Cells Kit (#10449053, Thermo Fisher Scientific GmbH, Schwerte, Germany) from PBMCs ob-

tained from leukoreduction system (LRS) chambers provided by the Blood bank (UMG, Ethics approval 2/3/18) by density gradient

centrifugation and cultivated in AIMV (#12055091, Thermo Fisher Scientific GmbH, Schwerte, Germany) supplemented with 10%

FCS. Naı̈ve T cells were activated using the ImmunoCultTM Human CD3/CD28 T cell Activator (#10991, StemCell Technologies, Van-

couver, Canada) 72 hours prior to nucleofection (see siRNA-mediated protein knockdown) and cultivated in RPMI medium (#R7388,

Sigma-Aldrich, Munich, Germany) supplemented with 10% FCS.

METHOD DETAILS

Cell line transfection and reagents
HEK cell lines were transfected with 200 ng each plasmid (imaging) or with 2 mg each plasmid in 10 cm dishes along with, 3 mL

Lipofectamine2000 (#11668027, Thermo Fisher Scientific GmbH, Schwerte, Germany) or Fugene� HD (#E2311, Promega GmbH,

Mannheim, Germany) and 100 mL OptiMEM (#51985034, Thermo Fisher Scientific GmbH, Schwerte, Germany) according to manu-

facturer’s instructions. Imaging was performed 24 – 48 hours after transfection, unless otherwise specified. Stable HEK Flp-In O1-

TCM (HEKO1TCM) cells were induced with 1 mg/mL doxycycline 6 - 12 hours before imaging.
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All chemicals were purchased from Sigma-Aldrich (Munich, Germany), unless otherwise indicated. Plasmids used see Table S3

and the Key Resources Table.

siRNA-mediated protein knockdown
Transient knockdown was generated using siRNA from Microsynth (Balgach, Switzerland) (siSTIM2 sense: 50 UAA GCA GCA UCC

CACAUGATT - dTdT 30, antisense: 30 dT dT - AUUCGUCGUAGGGUGUACUAA 50; siCtrl sense: 50 UUCUCCGAACGUGUCACG

U - dTdT 30, antisense: 30 dTdT - AAG AGG CUU GCA CAG UGC A 50). 1-3 million cells were transfected by nucleofection (Amaxa

Nucleofector, Lonza GmbH, Cologne, Germany) using the SF Cell Line Kit for melanoma cell lines and P3 Primary Cell Kit for T cells

(#V4XC-2024 and #V4XP-3024) according to manufacturer’s instructions with 4 mL of a 20 mM siRNA stock solution. All measure-

ments were performed 48 hours after transfection and the knockdown efficiency was confirmed as shown in Stanisz et al. (2012,

2014).

Redox proteomics
The OxICAT method was used according to the protocol of Leichert et al. (2008) using the reagents provided by AB SCIEX (Framing-

ham, USA). Cleavable ICATMethod Development kit (#4337336) and Bulk kit (#4337337). Briefly, HEKS2WT (stable) cells were grown

and treated with either 1 mMH2O2 (oxidized sample) or 2 mMDTT (reduced sample) for 30 min at room temperature. All used buffers

were degassed and kept under hypoxic conditions over night. Cells corresponding to 100 mg of protein were lysed by sonification in

denaturating alkylation buffer (DAB: 6 M Urea, 10 mM EDTA (ethylenediaminetetraacetic acid), 20 mM Tris-HCl (2-Amino-2-(hydrox-

ymethyl)-1,3-propanediol hydrochloride) pH 8.5, 0.5% (w/v) SDS (sodium dodecyl sulfate)), including 20% (v/v) acetonitrile in pres-

ence of light-labeled (12C) ICAT (isotope-coded affinity tag). Samples were precipitated and washed with 80% (v/v) acetone as

described. Proteins were fully reducedwith 1mMTCEP (tris(2-carboxyethyl)phosphine hydrochloride) for 10min at 37�C and labeled

with heavy-labeled (13C) ICAT following the same precipitation and washing steps. Samples were denatured using denaturing buffer

(50 mM Tris-HCl, 0.1% SDS (w/v)) and digested with trypsin (0.125 mg/mL). Tryptic peptides were purified using cation exchange and

avidin affinity chromatography according to the manufacturer’s instructions. Cleavage of the biotin-tag was performed and resulting

peptides were concentrated to dryness and dissolved in 0.1% (v/v) trifluoroacetic acid for LC-MS/MS analysis. Measurements were

performedwith a LTQOrbitrap Elite instrument (Thermo Fisher Scientific GmbH, Schwerte, Germany) as described (Lindemann et al.,

2013). Data analysis and quantification of cysteine oxidation was performed using the MaxQuant software (version 1.5.3.17, DE)

(Cox and Mann, 2008) using the Homo_sapiens.GRCh38.pep.all (downloaded 12.2015 on http://uswest.ensembl.org/info/data/

ftp/index.html) for the search engine Andromeda as described in Xie et al. (2019).

MTSEA-biotin assay
HEK293 cells were transfected using nucleofection (Amaxa Nucleofector, Lonza GmbH, Cologne, Germany) according to manufac-

turer’s instructions. The cells were used 48 hours after transfection and incubated for 15 min at room temperature in Ringer’s

buffer containing 0.5 mM CaCl2 ( = untreated) and 1 mM H2O2 ( = oxidized sample) or 1 mM H2O2 and additional 15 min with

2 mM DTT ( = reduced sample). Cells were washed with PBSB (DPBS (Dulbecco’s phosphate-buffered saline), pH adjusted to pH

8.0, with 1 mM MgCl2 and 0.5 mM CaCl2), permeabilized with PBSB + 0.001% (w/v) digitonin for 5 min and washed 3 times with

PBSB. MTSEA-biotin labeling (0.5 mg/mL, 2-aminoethyl methanethiosulfonate hydrobromide; #B-90066-1, Biotinum, Fremont,

USA) was performed for 40 min at room temperature. Cells were washed with PBSB + 0.1% (w/v) BSA (bovine serum albumin)

and PBSB. Cells were detached with PBSB + 2 mM EDTA and collected by centrifugation (5 min, 4�C, 1000 g). The cell pellet

was washed with PBSB and cells were lysed (PBS pH 7.4, 1% (v/v) Triton, 1 mM EDTA, proteinase inhibitors) using a cannula

with 0.3 mm diameter. The lysate was incubated for 15 min at 4�C. Cell debris were removed by centrifugation for 20 min 4�C
and 13,000 g.MTSEA-biotin labeled proteins were isolated from 500 mg cell lysate using avidin-coated beads (#20219, Thermo Fisher

Scientific GmbH, Schwerte, Germany). Unspecific binders were removed by washing with lysis buffer + 250mMNaCl. MTSEA-biotin

labeled proteins were eluted using Laemmli buffer (4% (w/v) SDS, 125mM Tris-HCl pH 6.8, 0.004% (w/v) bromophenol blue, 20% (v/

v) glycerol, 10% (w/v) b-mercaptoethanol) for 15 min at 65�C. The samples were further processed by SDS-PAGE and

immunoblotting.

Immunoblotting
25 mg of extracted protein were separated using 7% SDS–polyacrylamide gel electrophoresis (SDS-PAGE) and transferred onto

nitrocellulose membranes. Primary antibody incubations were performed at 4�C overnight, blots were washed three times with

PBS-T (PBS + 0.1% (v/v) Tween 20). Secondary antibodies were used 1:10,000 (anti-mouse, #NA931, GE Healthcare and anti-rabbit,

#NA9340, GE Healthcare, Chicago, USA) and were applied for 1 hour at room temperature. Bands were detected with Pierce ECL

Western Blotting Substrate (#32106, Thermo Fisher Scientific GmbH, Schwerte, Germany), after three washing steps with PBS-T.

Different exposure times were used depending on the primary antibody using Biorad Quantity One (4.6.9) and Biorad Image Lab

(3.0.1) for image acquisition and analysis. Primary antibodies used 1:1000: Orai1 (#O8264, Sigma-Aldrich, Munich, Germany),

STIM2 (#S8572, Sigma-Aldrich, Munich, Germany) and GAPDH (glyceraldehyde 3-phosphate dehydrogenase; #2118L, Cell

Signaling Technology, Danvers, USA).
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‘‘Oximouse’’ bioinformatics
The site stoichiometry data for all proteins from the OxiMouse project (data downloaded on the 20.05.2020 from https://oximouse.

hms.harvard.edu/download.html) (Xiao et al., 2020) were preparedwith Python 3.7.7 and Pandas 0.25.3 to skip all irrelevant columns,

replace all NaN with 0 and extract the STIM2 specific data to Excel.

Fura-2-based Ca2+ imaging
Cells (150,000 - 300,000) were seeded on 25mm round (No 1.5, #6310172, VWR, Radnor, USA) glass coverslips 24 - 48 hours before

transfection. Fura-2-based measurements of cytosolic Ca2+ were performed as in Saul et al. (2016). Briefly, cells were loaded with

1 mM Fura-2 AM (#F1221, Thermo Fisher Scientific GmbH, Schwerte, Germany) in growth medium for 30 min at room temperature.

The measurements were performed in Ringer’s buffer (pH 7.4) containing 145 mM NaCl, 4 mM KCl, 10 mM Glucose, 10 mM HEPES

(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid), 2 mM MgCl2 and concentrations of CaCl2 as indicated, or 0 mM CaCl2 with

1 mM EGTA at room temperature and store depletion was facilitated using 1 mM Tg (thapsigargin, #T9033, Sigma-Aldrich, Munich,

Germany). Ratiometric time-lapse imaging was performed on an Olympus microscope and analyzed with TILLVision 4.0.1 software

(FEI GmbH, Munich, Germany) or using a Zeiss Axiovert S100TV equipped with a pE-340fura (CoolLED, Andover, United Kingdom)

LED light source with LED 340 nm (excitation filter: 340/20) and 380 nm (excitation filter: 380/20) together with a T400 LP dichroic

mirror and 515/80 emission filter, a sCMOS pco.edge camera and a Fluar 20x/0.75 objective. Data were analyzed with VisiView

4.2.0.0 software (Visitron Systems GmbH, Puchheim, Germany). The obtained 340 nm / 380 nm fluorescence ratios were converted

to calibrated data using the equation [Ca2+] = K*(R � Rmin)/(Rmax � R), while the values of K, Rmin, and Rmax were determined as

described in Grynkiewicz et al. (1985).

Hydrogen peroxide measurements
Hydrogen peroxide was measured using the ratiometric protein sensor HyPer in Ringer’s buffer containing 0.5 mM Ca2+. HyPer-

DAAO plasmids were transfected using Lipofectamine2000 or Fugene� HD as described above using 1 mg plasmid. Experiments

were performed with a Zeiss Observer D1 equipped with a 20x Plan Apochromat (N.A. 0.8) objective, Axiocam 702 mono and

LED system (Colibri, Zeiss) at 37�C. Images were acquired upon excitation at 420 nm (excitation filter: 420/40) and 505 nm (excitation

filter: 500/15) together with a 515 nmdichroicmirror and 539/25 emission filter. Data were analyzed using Zen 2.6 software (Carl Zeiss

Microscopy GmbH, Oberkochen, Germany).

Electrophysiological recordings
Electrophysiological experiments were performed 24 to 34 hours after transiently transfecting HEK293 cells with TransFectin

(#1703351, Bio-Rad Laboratories, Hercules, USA) using 1 mg of Orai1-CFP and 1 mg STIM2 constructs. Patch-clamp recordings

in whole-cell configuration were performed at 21–25�C. An Ag/AgCl electrode was used as reference electrode. Voltage ramps

were applied every 5 s from a holding potential of 0 mV, covering a range of �90 to +90 mV over 1 s. Experiments were run with

10 mMCa2+ bath solution, while store-dependent activation was induced by buffering cytosolic Ca2+ with 20 mM EGTA. For passive

store depletion, the internal pipette solution included: 145mMCsmethane sulphonate, 20mMEGTA, 10mMHEPES, 8mMNaCl and

3.5 mM MgCl2; pH 7.2. Standard extracellular solution consisted of: 145 mM NaCl, 10 mM HEPES, 10 mM CaCl2, 10 mM Glucose,

5 mM CsCl and 1 mM MgCl2; pH 7.4. A liquid junction potential correction of +12 mV was applied, resulting from a Cl�-based bath

solution and a sulphonate-based pipette solution. All currents were leak corrected by subtracting the initial voltage ramps obtained

shortly after break-in with no visible current activation from themeasured currents or at the end of the experiment using La3+ (10 mM).

OASF2 FRET microscopy
Confocal FRET microscopy was performed on HEK293 cells transiently transfected with TransFectin using 1 mg plasmid. The trans-

fected cells were grown on coverslips for 24 hours and subsequently transferred to an extracellular solution consisting of 140 mM

NaCl, 5 mM KCl, 1 mM MgCl2, 2 mM CaCl2, 10 mM glucose and 10 mM HEPES buffer (adjusted to pH 7.4 with NaOH). A

QLC100Real-TimeConfocal System (VisiTech Int.) connected to two Photometrics CoolSNAPHQmonochrome cameras (Roper Sci-

entific) and a dual-port adaptor (dichroic: 505lp; cyan emission filter: 485/30; yellow emission filter: 535/50; Chroma Technology

Corp.) was used to record fluorescence images. This system was attached to an Axiovert 200M microscope (Zeiss, Germany) in

conjunction with two diode lasers (445 nm, 515 nm) (Visitron Systems). Visiview 2.1.1 software (Visitron Systems) was used for image

acquisition and control of the confocal system. Illumination times for CFP/FRET and YFP images that were recorded consecutively

with a minimum delay were about 600 ms. Image correction to address cross-talk and cross-excitation was performed prior to the

calculation. To this end, appropriate cross-talk calibration factors were determined for each construct on each day of the FRET

experiment. After threshold determination and background subtraction, the corrected FRET (Eapp) was calculated on a pixel-to-pixel

basis with a custom-made software integrated into MATLAB 7.0.4 according to the method published by Zal and Gascoigne (2004),

with a microscope specific constant G value of 2.0.

STIM2 cluster analysis and STIM2-STIM2 FRET
HEKO1WT cells were transfected either with HA-hSTIM2DK17-EGFP + HA-hSTIM2DK17-mCherry or HA-hSTIM2-C313A-DK17-

EGFP + HA-hSTIM2-C313A-DK17-mCherry as described above and seeded on 12 mm round (No 1.5, #6302190, VWR, Radnor,
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USA) poly-D-lysine (50 mg/mL) coated coverslips 24 hours before usage. Cells were washed once with Ca2+ free DPBS (#14190250,

Thermo Fisher Scientific GmbH, Schwerte, Germany) and treated for 15min with 1 mMTg (thapsigargin, #T9033, Sigma-Aldrich, Mu-

nich, Germany) or 100 mMH2O2 followed by 15 min 1 mM Tg (all in Ca2+ free DPBS). Cells were fixed with 4% (w/v) PFA (paraformal-

dehyde) in DPBS buffer for 15 min at room temperature and mounted with Fluoromount-G (#00495802, Thermo Fisher Scientific

GmbH, Schwerte, Germany) on glass slides. Imaging was performed on a Zeiss LSM800 setup equipped with LCI Plan-Neofluar

63x (N.A. 1.3) glycerin immersion objective. Images were acquired with Zen 2.6 software (Zeiss, Oberkochen, Germany) using multi-

alcali-PMT detectors splitting the signals at 590 nm for GFP (488 nm; SP545 filter), mCherry (561 nm; no filter) and FRET (488 nm, no

filter) using an averaging of 4 and unidirectional fast image acquisition. Images were analyzed using a customized ImageJ macro.

Briefly, following background subtraction, cells borders were marked and their area was recorded. Cluster area was measured

with the ImageJ Particle Analyzer in binarized images resulting from intensity-based thresholding in all three channels. FRET was

calculated using the bleed-through (obtained by samples expressing either the GFP or mCherry tagged STIM2) and background cor-

rected FRET/donor ratio.

FRET=donor ratio =
ðFRET � backgroundÞ � ½ðdonor � backgroundÞ$CFd� � ½ðacceptor � backgroundÞ$CFa�

ðdonor � backgroundÞ Equation 1

*CF: correction factor for donor and acceptor bleed-through

STIM2-ORAI1TCM cluster analysis and STIM2-ORAI1TCM FRET
HEK293 cells were transfected either with HA-hSTIM2DK17-EGFP + mCherry-hORAI1-TCM or HA-hSTIM2-C313A-DK17-EGFP +

mCherry-hORAI1-TCM and samples were prepared and analyzed as described above for STIM2-STIM2 cluster analysis.

FLIM microscopy
Time-correlated single photon counting (TCSPC) - based fluorescence lifetimes were recordedwith a Leica SP8 FALCON laser scan-

ning confocal microscope (Leica Microsystems, Mannheim, Germany). 1x105 donor-based photons/pixel were recorded within the

donor-specific 500 – 525 nm emission window with a 63x (1.4 NA) objective upon pulsed (40 MHz) 488 nm excitation. The phasor

analysis approach provided within the Leica Application Suite (3.5.5) was used to identify different molecular species populations

based on their respective lifetime. FRET efficiencies were obtained by applying the FRET trajectory approach of the phasor analysis

method. For details, see Digman et al. (2008). The samples, HEKO1WT cells expressing either with HA-hSTIM2DK17-EGFP + HA-

hSTIM2DK17-mCherry or HA-hSTIM2-C313A-DK17-EGFP + HA-hSTIM2-C313A-DK17-mCherry, were treated and prepared as

for STIM2 cluster analysis (see above). Samples with single GFP or untransfected HEKO1WT cells were used as controls to establish

the FRET efficiency.

MD simulations
Model preparation

The STIM2 model was prepared based on the STIM1 CC1a3-CC2 homodimer NMR structure (Stathopulos et al., 2013) taken from

the Protein Databank (PDB: 2MAJ) (Berman et al., 2000). The N-terminal part of each STIM1 monomer was extended by 10 residues

in a-helical conformation according to the crystal structure of CC1 of STIM1 (PDB: 4O9B) (Cui et al., 2013). The final STIM1-dimer

model contained two monomers each consisting of residues 302-387. A homology model for the STIM2 homodimer was generated

using SWISS-MODEL (2019) (Benkert et al., 2011; Waterhouse et al., 2018). The sequence identity between the modeled regions of

STIM1 and STIM2 was computed to 76.74% and the generated homology STIM2 dimer model obtained a QMEAN-score of �1.56

(Benkert et al., 2011). Each monomer of the final STIM2 CC1a3-CC2 homodimer contained residues 306-391 (Figure 5A).

Parameterization of C313 S-Sulfonylation

In order to investigate the effect of S-sulfonylation of C313 in STIM2, force field parameters for the modified amino acid were gener-

ated using Antechamber within the AMBER14 software package. Initial coordinates of S-sulfonylated cysteine were obtained from

the PDB (PDB: 2H4E) (Gales et al., 2007). Following the protocol for parameterization of non-standard amino acids (http://ambermd.

org/), the N- and C-termini of a single S-sulfonylated cysteine residue were capped with an acetyl- and N-methyl-group in a-helical

conformation, respectively, using PyMOL (1.8.5.0).

Full geometry optimization with restraints on backbone dihedral angles was performed with the Hartree–Fock level of theory

(Hehre, 1976) (HF/6-31G*) in Gaussian 09. Partial charges of the optimized structure were calculated and assigned to individual

atoms using the Restrained Electrostatic Potential (RESP) method (Cornell et al., 1993). Complete AMBER14SB force field param-

eters (Maier et al., 2015) were generated with Antechamber, thereby, AMBER14SB protein atom types were used for all standard

amino acid atoms while the sulfonic acid sulfur atom and associated bond parameters were described by the Generalized AMBER

Force Field (GAFF) (Wang et al., 2004). Finally, the C313-S-sulfonylated STIM2 homodimer was modeled by manually inserting the

modified amino acid using PyMOL. Protein AMBER14SB force field parameters were generated with AMBER14 and converted to

input files for GROMACS 2019 (Abraham et al., 2015) using ACPYPE 0.1.0 (Sousa da Silva and Vranken, 2012).

Molecular dynamics simulations

STIM2 homodimers were solvated in dodecahedron simulation boxes (x, yz10.25 nm, zz7.25 nm) at a 0.15 M salt concentration.

Simulation systems contained one STIM2 CC1a3-CC2 homodimer, roughly 24,000 water molecules and approx. 140 ions (sodium
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and chloride). Both the C313 and C313-Sulf systems were first minimized (1,000 steps) with the steepest descent algorithm and sub-

sequently equilibrated for 1 ns with position restraints on all heavy atoms, followed by a 10 ns long simulation with restraints on the

backbone atoms only. The equilibrated system was used as a starting structure for four different C313 and C313-Sulf simulations,

respectively. The simulations were initialized with different atom starting velocities and were conducted for 500 ns. The temperature

was kept constant at 310 K with the v-rescale algorithm (Bussi et al., 2007) with a time constant of 0.1 ps. The pressure was coupled

isotropically to 1 bar (tp = 2.0 ps) with the Berendsen barostat (Berendsen et al., 1984) for the equilibration simulations and Parrinello-

Rahman (Parrinello and Rahman, 1981) for the production run simulations. Charged interactions were calculated with Particle Mesh

Ewald (Darden et al., 1993) with a real space cut-off of 1.0 nm and the van der Waals potential was shifted to zero with rvdw = 1.0 nm.

All simulations were performed in GROMACS 2019.x (Abraham et al., 2015) with parameters of the AMBER14SB and Generalized

AMBER force field (Maier et al., 2015; Wang et al., 2004).

Data analysis

The rootmean square deviations (RMSDs) for STIM2 backbone atomswere calculated for each simulation after least-square fitting all

backbone atoms of the model STIM2 CC1a3-CC2 dimer. The average root mean square fluctuations (RMSFs) for each residue were

determined based on all four simulations and both STIM2 CC1a3-CC2 monomers. For this purpose, the final 200 ns of each simu-

lation was divided into 10 ns intervals wherein the RMSF was calculated separately for each monomer after least-square fitting the

backbone atoms. The mean RMSF and standard error was calculated based on all eight temporal RMSF averages. Similarly, the

average helicity was assessed by determining the temporal amount over the final 200 ns of each simulation for which a residue

was helical (a- or 310-helix).

Individual residue-residue interactions either within the CC1a3-CC2 monomers (intra) or between the two CC1a3-CC2 monomers

(inter) were analyzed based on pairwise minimal distances of side chain residues during the final 200 ns.

The solvent accessibilities of the two individual ORAI binding sites were calculated for all 20 STIM1 CC1[TM-distal]-CC2 NMR struc-

tures in its ORAI bound and free conformation (Stathopulos et al., 2013), respectively, and for the model STIM2 CC1[TM-distal]-CC2

structures obtained in the final 200 ns of the simulations. The binding sites in STIM1 were defined based on the residues interacting

with ORAI (Figure S5D) and equivalent residues were chosen for STIM2 (Figure 6F; Figure S5A, alignment).

Generation of HEKO1TCM cell line
pcDNA5/FRT/TO-ORAI1-TCM (TM: Triple Cysteine Mutant C126S; C143S; C195S) was constructed by amplifying ORAI1-TCM from

pCAGGS-O1-TCM (Bogeski et al., 2010) using 50-GCG CGC GGA TCC ATG CAT CCG GAG CCC GCC CCG CC-30 forward and 50-
GCGCGCGCGGCCGCCTAGGCATAGTGGCTGCCGGGCGTC-30 reverse and cloned viaNotI andBamHI into pcDNA5/FRT/TO

(#V103320, Thermo Fisher Scientific GmbH, Schwerte, Germany). The vector was transfected as described above into HEK Flp-In T-

REx 293 cells along with poG44 (#V600520, Thermo Fisher Scientific GmbH, Schwerte, Germany), cells were treated according to

manufacturer’s instructions and selected by clonal selection. O1TCM expression was induced 12 - 24 hours after transfection with

1 mg/mL doxycycline for 6 - 12 hours. Characterization of the cell line see Figures S1H–S1J.

Construction of plasmids
pEX-CMV-SPS1-YFP-STIM2 (#18862, Addgene; kindly provided by Tobias Meyer): The mentioned mutations P38L, V222I and

E575V (depositors comment) were corrected and cysteine to valine point mutations were introduced in STIM2 plasmids (accession

number NM_020860) using the QuikChange site-directed mutagenesis kit (Agilent Technologies, Santa Clara; USA).

YFP-OASF2-CFP: For creation of the double-tagged OASF2 construct, CFP was integrated into pEYFP-C2 (Clontech, Kusatsu,

Japan) via SacII and XbaI. Finally, the STIM2 fragment (OASF2 residues 237-478) was cloned into this modified vector via EcoRI

and SacII and mutations were introduced via QuikChange site-directed mutagenesis kit (Agilent Technologies, Santa Clara; USA).

spS1-HA-hSTIM2-EGFP and spS1-HA-hSTIM2-mCherry: Previously generated HA-hSTIM2 pEGFP-N1 plasmid containing no

fluorescent protein tag was double-digested with NdeI and SalI-HF restriction enzymes. The 2.668 kB insert containing CMV pro-

moter as well as signal sequence of STIM1 followed by HA-hSTIM2 until the stop codon was gel purified and ligated into NdeI

and SalI-HF digested and purified pEGFP-N1 and pMCherry-N1 vectors. Site-directed mutagenesis of both resulting constructs

by 50-CTT TTT AAG AAG AAA TCT AAG TCG ACG GTA CCG CGG GCC C-30 forward and 50-GGG CCC GCG GTA CCG TCG

ACT TAG ATT TCT TCT TAA AAA G-30 reverse primers led to the removal of the stop codon of hSTIM2 and brought the C-terminal

EGFP or mCherry in frame. Cysteine to alanine mutations were introduced by site-directed mutagenesis using 50-GCA AAG GAG

GAGGCTGCTCGGCTGAGAGAGC-30 forward or 50-CTA AGGGAGGGAGCTGAAGCTGAA TTGAGTAGACGTCAG-30 forward

primer to generate C302A or C313A mutant, respectively.

HA-hSTIM2-DK-EGFP and HA-hSTIM2-DK-mCherry plasmids: SpS1-HA-hSTIM2-EGFP and spS1-HA-hSTIM2-mCherry plas-

mids were double-digested with EcoRI-HF and SalI-HF restriction enzymes. The resulting vector backbones missing fragments en-

coding for hSTIM2 residues 94-746 were gel purified. YFP-hSTIM2-DKwasmutagenized using 50-CCT TTG TCA TAA TGGAGAGTC

GAC AAA AGC AAA AAGCCA TCA AA-30 forward and 50-TTT GAT GGC TTT TTG CTT TTG TCG ACT CTC CAT TAT GAC AAA GG-30

reverse primers to create a SalI restriction site after the codon of E729 residue. The mutagenized plasmid was digested with EcoRI-

HF and SalI-HF restriction enzymes and an insert encoding for hSTIM2 residues 94-729 was purified. This insert was ligated into the

above generated vectors. This resulted in HA-hSTIM2-DK-EGFP and HA-hSTIM2-DK-mCherry plasmids lacking last 15 residues

(K-rich domain) of hSTIM2. Cysteine to alanine mutations were introduced by amplification of STIM2 fragments with pairs of primers
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50-GGA AGC TCT TCA AAC AAT ACA TAA ACA AAT GG-30 forward and 50-GTT CTG CAT ACT GAC GTC TAC TCA ATT CCG CTT

CAG CTC CCT CCC TTA GCT CTC-30 reverse or 50-GAG AGC TAA GGG AGG GAG CTG AAG CGG AAT TGA GTA GAC GTC AGT

ATGCAG AAC-30 forward and 50-GGG ACACCT CAT CTC TTG ATA TCT TTCG-30 reverse. Purified fragments were used for overlap

extension PCR, using primers 50-GGA AGC TCT TCA AAC AAT ACA TAA ACA AAT GG-30 forward and 50-GGG ACA CCT CAT CTC

TTG ATA TCT TTC G-30 reverse. PCR-product was purified and digested with EcoRI/XhoI (#R0101S, #R0146S, NEB) restriction en-

zymes. Digested PCR-product was cloned into HA-hSTIM2-DK17-EGFP and mCherry (digested with EcoRI/XhoI).

All the above-mentioned HA and EGFP or mCherry tagged plasmids contained a 13-residue long linker (STVPRARDPPVAT) be-

tween hSTIM2 and EGFP or mCherry. EGFP always contained monomeric A207K mutation.

mCherry-hORAI1-TCM plasmid: hOrai1-TCM cDNA encoding the residues 43 to 273 from hOrai1-C126S-C143S-C195S

pCAGGS-IRES-GFP (Bogeski et al., 2010) was replaced in mCherry-hOrai1 peGFP-N1 (kindly provided by Dr. Matthias Seedorf,

Heidelberg University, Germany) using ApaI / SacI-HF enzymes from NEB.

The integrity of all resultingmutantswas confirmed by sequence analysis (EurofinsGenomics, Luxembourg, Luxembourg orMicro-

synth Seqlab GmbH, Göttingen, Germany).

QUANTIFICATION AND STATISTICAL ANALYSIS

Data obtained from experiments were analyzed or processed using Zeiss Zen 2.6, TILLVision 4.0.1, Leica Application Suite LAS X

3.5.5, VisiView 2.1.1 and 4.2.0.0, Biorad Quantity One 4.6.9, Image Lab 3.0.1, MATLAB 7.0.4, MaxQuant software 1.5.3.17, Python

3.7.7, Pandas 0.25.3, ImageJ or FIJI and Microsoft Excel. MD simulation data were generated as described in Method Details and

visualized using PyMOL 1.8.5.0, RStudio 1.1.456 and Adobe Photoshop CS6. Data are presented as mean mean ± SEM and indi-

cated n values correspond to independent experiments or for imaging experiments and electrophysiological recordings to the num-

ber of cells. Statistical significance was tested with unpaired, two-tailed Student t test unless otherwise specified. The significant

differences are indicated by asterisks *p < 0.05; **p < 0.01; ***p < 0.005.
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