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Biobased de novo synthesis, upcycling, and recycling — 
the heartbeat toward a green and sustainable 
polyethylene terephthalate industry☆ 

Fabia Weiland, Michael Kohlstedt and Christoph Wittmann   

Polyethylene terephthalate (PET) has revolutionized the 
industrial sector because of its versatility, with its predominant 
uses in the textiles and packaging materials industries. Despite 
the various advantages of this polymer, its synthesis is, 
unfavorably, tightly intertwined with nonrenewable fossil 
resources. Additionally, given its widespread use, accumulating 
PET waste poses a significant environmental challenge. As a 
result, current research in the areas of biological recycling, 
upcycling, and de novo synthesis is intensifying. Biological 
recycling involves the use of micro-organisms or enzymes to 
breakdown PET into monomers, offering a sustainable 
alternative to traditional recycling. Upcycling transforms PET 
waste into value-added products, expanding its potential 
application range and promoting a circular economy. Moreover, 
studies of cascading biological and chemical processes driven 
by microbial cell factories have explored generating PET using 
renewable, biobased feedstocks such as lignin. These avenues 
of research promise to mitigate the environmental footprint of 
PET, underlining the importance of sustainable innovations in 
the industry. 
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Introduction 
The synthetic polymer polyethylene terephthalate 
(PET) has a variety of uses in fibers, coatings, and 
packaging materials and thus plays a major role in our 
daily lives [1] (Figure 1). Considering its several ad
vantageous properties [2], it is no surprise that the 
market volume for PET has burgeoned over the years, 
whereby current global production hovers near ap
proximately 50 million metric tons annually [3]. 

The process of generating PET begins with two primary 
raw materials, purified (dimethyl)terephthalic acid 
(TPA) and ethylene glycol (EG), both of which are 
derived mainly via petrochemical routes (Figure 1) and 
undergo polycondensation [4,5]. TPA production starts 
with petroleum-derived p-xylene, which, in the most 
commonly used American Oil Company (AMOCO) 
process, undergoes liquid-phase oxidation with mole
cular oxygen as the oxidant, acetic acid as the solvent, 
and a catalytic system consisting of cobalt, manganese, 
and bromide ions 4,5. EG is primarily obtained from 
ethylene via catalytic oxidation into ethylene oxide and 
subsequent hydrolysis [4]. Notably, conventional ethy
lene synthesis by steam cracking naphtha is not only 
energy intensive but also strongly contributes to global 
carbon emissions [6], ultimately influencing the en
vironmental footprint of PET production. 

However, both petrochemical-based PET-monomer 
synthesis [5,6] and the fate of postconsumer plastics 
(Figure 1) are reasons for the manifold environmental 
concerns [7,8]. An especially unfortunate side effect of 
the ubiquity of PET is its release into the environment, 
and the pervasive nature of certain plastics is known to 
be an urgent, enduring threat to terrestrial and marine 
ecosystems, as well as human society [8,9]. Additionally, 
even though the basic framework is ideal from a che
mical viewpoint, recycled PET is often considered dis
advantageous in terms of production costs, product 
quality, and energy consumption, limiting its re-entry 
into a new life cycle [1,2,7,10]. Thus, even in Europe,     
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which is generally known for high collection rates [2], 
the actual PET recycling rate is quite low, as only one- 
fifth of the available material enters a new life cycle, 
whereas the rest is ultimately lost without further usage  
[11] (Figure 1). 

In terms of the increase in eco-consciousness worldwide, 
the magnitude of the PET waste problem underscores 
the urgent need for sustainable consumption practices, 
improved recycling technologies, and policies that pro
mote a circular economy for plastics [1,12–15]. In this 
review, we highlight recent studies demonstrating how 
biotechnologically engineered cell factories can con
tribute not only to reviving postconsumer PET waste 
streams but also to the de novo synthesis of PET from 
green, alternative feedstocks. Based on these impressive 
achievements, green routes have the potential to drive 
the entire PET industry for the first time, but further 
advancements in the future are still needed. 

Concepts and strategies for creating a 
biobased circular polyethylene terephthalate 
industry 
The biobased valorization of postconsumer PET has a 
comparable start to that of other biotechnological feed
stocks [16,17], with depolymerization [10] (Figure 2). 
Most of the available depolymerization methods are 
under constant development and result in specific pro
duct spectra [7]. Current studies rely either on separate 
chemical [18] or biobased [19] strategies or a combina
torial (tandem) approach [20] to transform PET poly
mers into suitable substrates for micro-organisms. 
However, micro-organisms have not had enough time to 
adapt to the environmental presence of man-made PET  
[19], and identifying microorganisms suitable as hosts or 
gene donors is essential for biobased PET valorization  
[21,22]. Therefore, the efficient coupling of (1) PET 
degradation strategies, (2) TPA and EG assimilation, and 
(3) production often requires other key biotechnological 
technologies, for example, adaptive laboratory evolution, 
in addition to genetic engineering [23] (Figure 2). In
itiated by pioneering works [21], contemporary con
tributions (Table 1) have also demonstrated the 
potential of metabolically engineered cell factories for 
the open loop recycling or even upcycling of PET 
(monomers), hence allowing its conversion into new (and 
often value-added) products [14] (Figure 1). Similarly, 

the metabolic layout of genetically engineered microbes 
may also be used for the production of PET precursors 
from alternative, renewable feedstocks, for example, 
lignin-based aromatics [24] and (hemi)cellulose-based 
sugars [25–27], which are chemically converted into 
biobased PET, thereby closing the circle (Figure 2). 

Microbes and hosts relevant to polyethylene 
terephthalate recycling and upcycling 
PET was long considered nonbiodegradable [7]. How
ever, since the initial discovery of PET depolymeriza
tion via the hydrolase TfH from the actinomycete 
Thermobifida fusca in 2005 [28], several enzymes with 
PET-degrading capabilities have been identified 
(Table 2) [29–31]. Additionally, the isolation of Ideonella 
sakaiensis 201-F6 from a PET-degrading microbial con
sortium capable of using PET as a major carbon and 
energy source [22] made the public aware of the po
tential for biobased PET degradation. Nevertheless, 
PET hydrolases are still rare, and identifying them re
quires extensive screening efforts [32] (Figure 2). Thus, 
more than 50% of the reported PET degraders have 
emerged from bacteria, particularly Bacillus sp., followed 
by fungi, including Aspergillus sp. [33]. Notably, the 
search for host strains benefits from the microbial variety 
in soils [33], whereby widespread PET pollution spurs 
mining efforts at contaminated sites on land [21] or in 
aquatic habitats [34]. 

Despite this clear variety, not all PET degraders are 
necessarily equally suitable for biobased PET recycling 
due to slow growth, for example, fungi [33], or the ne
cessity to develop genetic engineering tools to unlock 
their potential [35]. Thus, so-far natural PET degraders 
are primarily used as donors for relevant enzymes, which 
are subsequently introduced into proven hosts, for ex
ample, Escherichia coli [36] and Yarrowia lipolytica [37]. In 
an attempt to bioremediate polluted seawater, key en
zymes have also been introduced into marine micro
alga [38]. 

Remarkably, several bacteria associated with lignin va
lorization [16] also possess interesting properties as hosts 
for PET valorization. Known to withstand demanding 
and toxic conditions [10,39,40], Pseudomonas putida plays 
a vital role in the emerging field of PET valorization  
[20,41–43] (Table 1), and Comamonas testosteroni holds 

Sourcing, application, and fate of European PET in numbers. The depicted data are taken from Ref. [11]. Monomers for PET synthesis can be derived 
from different sources, whereby the most common routes for TPA and EG production rely on fossil resources [4,84]. Synthetic routes for the green 
production of PET precursors largely rely on separated or integrated chemical catalysis (CC) and biocatalysis (BC) [84]. The available bio-PET contains 
30% biomass (EG fraction) [4], whereby its given fraction of the available virgin PET takes into account the fact that 26.5% of bioplastics are produced 
in Europe and that the share of PET from the total global production of 2.22 million tons of plastics is 4.2% [85]. To date, the major fraction of PET has 
been lost (red), with light red bars indicating the percentage of PET that enters a sortation process but is not part of a further life cycle 11. Regarding 
PET recycling (blue), novel developments [7] target an enhanced life cycle from waste PET to recycled PET with virgin-like characteristics (closed loop)  
[14]. Recent scientific advances in biobased solutions (green) for PET production and the upcycling of PET into various novel products (open loop [14]) 
could contribute to a sustainable PET industry.   
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the combined potential for the valorization of lignin- and 
PET-based aromatic monomers [44]. 

In addition to single-host strains (Table 1), PET valor
ization might also benefit from the employment of natural  
[45] and artificial [46,47] consortia, aiming at synergistic 
and co-operative PET degradation (Figure 2). This setup 
matches well with current research focusing on under
standing the man-made plastisphere, which refers to the 
natural microbial communities that colonize plastic waste 
in terrestrial and aquatic ecosystems [48]. 

Novel enzymes for polyethylene terephthalate 
recycling 
Compared with other plastics, the presence of ester 
bonds in PET facilitates the attack and subsequent 
degradation of PET by microbial enzymes, which have 

great potential for use in environmental-benign PET 
recycling [1]. In addition to closed-loop recycling pro
cesses [49–51], these enzymes also play vital roles as 
starting points for microbial upcycling strategies [19,52] 
(Figure 1). Enzymes with the ability to modify or de
grade PET include PETases (EC 3.1.1.101), cutinases 
(EC 3.1.1.74), lipases (EC 3.1.1.3), and carboxylesterases 
(EC 3.1.1.1), all of which share the common ability to 
hydrolyze carboxylic esters (EC 3.1.1) resulting in pro
ducts with hydroxyl and carboxylic acid residues [7,29]. 
Additionally, MHETase (EC 3.1.1.102) [22] and the 
recently reported BHETase (EC number not yet as
signed) [53] further breakdown the intermediate pro
ducts mono-(2-hydroxyethyl) terephthalate (MHET) 
and bis-(2-hydroxyethyl)-terephthalate (BHET) into 
TPA and EG, altogether providing the optimal setup for 
further downstream microbial catabolism (Figure 3). 

Figure 2  

Current Opinion in Biotechnology

The potential of using micro-organisms in a biobased PET industry. The use of PET as a feedstock for biotechnology requires its depolymerization via 
chemical catalysis (CC) and/or biocatalysis (BC) to afford the monomers TPA and EG [7]. For example, novel strains were isolated from PET- 
contaminated sites [21,22], and combined with established workhorses [20] and information gained from metagenomes [51], these strains serve as 
valuable sources for identifying the metabolic pathways and enzymes necessary for PET (monomer) metabolism. Hereby, key biotechnological 
methods, including adaptive laboratory evolution [23] and metabolic engineering [41], enable enhanced strain performance. Additionally, mining for 
novel enzymes has benefited from advanced screening strategies [55,103] complemented by biosensors [65] and improved enzyme candidates via 
protein engineering [49,59]. Monocultures [19] or cocultures [47,72,98] of streamlined cell factories may then be used for the upcycling of PET into 
various products [18–21,43,72,79–82,101]. Likewise, sugars [25–27] and aromatics [24] from plant biomass serve as substrates for the production of 
TPA and EG by metabolically engineered microbes, allowing the production of fully biobased PET. Abbreviations: ARO, aromatic compounds; EG, 
ethylene glycol; HAA, hydroxyalkanoyloxy-alkanoate; βKA, β-ketoadipic acid; LYC, lycopene; MA, cis, cis-muconic acid; PCA, protocatechuic acid; 
PDC, 2-pyrone-4,6-dicarboxylic acid; PHA, polyhydroxyalkanoates; SUG, sugar; VIN, vanillin. 
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Among many other promising PETases, such as 
IsPETase from I. sakaiensis [22], the leaf-branch compost 
cutinase (LCC) [50] and the metagenomic polyester 
hydrolase PHL7 [51] are currently undergoing extensive 
optimization efforts (Table 2). Therefore, rational and 
structure-guided protein engineering targets, inter alia, 
at an enhanced thermostability over a broad temperature 
range and increased enzymatic activity [49,54–57]. An
other interesting aspect is the broadening of the sub
strate spectrum of PETases to other polyesters [58]. 
Overall, protein crystal structures and bioinformatic tools 
have played pivotal roles in identifying specific amino 
acid chain mutations that can be used to modulate the 
desired enzyme features (Table 2). For example, the 
French company Carbios successfully developed the 
more efficient variant LCCICCG from the previously 
identified LCC cutinase [59]. They patented and in
dustrialized the process under the term C-ZYME, 
claiming a 30% reduction in CO2 emissions compared 
with conventional routes of PET waste management, for 
example, incineration [60] (Figure 1). 

Additionally, other state-of-the-art strategies to enhance 
enzymatic PET depolymerization include (1) chimeric 
proteins of PETase and MHETase [61], (2) dual en
zyme systems [62], and (3) the surface display of en
zymes on microbial surfaces aided by a codisplay of 
hydrophobin, an adhesion protein facilitating adsorption 
to hydrophobic surfaces such as PET films [63] or by the 
addition of rhamnolipids [36]. The current successful 
application of bioinformatic tools and machine learning  
[49,57,64] complemented by biosensors [65] has already 
paved the way for overall accelerated enzyme discovery 
and improvement, thus facilitating the selection of sui
table enzyme candidates via enzyme mining (Figure 2). 

Metabolic pathways for the degradation of 
polyethylene terephthalate-based monomers 
Notably, it has been known for several decades that 
different micro-organisms can metabolize the PET 
monomers TPA and EG; readers interested in these 
micro-organisms are referred to [15,66] for a more de
tailed overview of the underlying pathways, which in 
total provides a powerful basis for metabolic en
gineering (Figure 2). The aerobic TPA degradation 
pathway has been identified in different Proteobacteria  
[67–69] and the Rhodococcus genus [70,71] and gen
erally follows the same pattern (Figure 3). Despite 
many similarities, including the genetic organization of 
the tph operon [15], the different cofactor preferences 
indicate the potential of certain adjustments for me
tabolic engineering [72]. Additionally, the downstream 
pathways involved in the degradation of proto
catechuate, a key intermediate in aromatic degradation 
pathways, are quite diverse among host strains (Figure 3)  
[16], suggesting that the metabolic engineering of TPA 
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assimilates will largely benefit from recent developments 
in bacterial lignin upgrading [73]. 

Recent efforts have specifically focused on character
izing P. putida KT2440 in relation to EG metabolism. 
Starting from the initial insights from comparative pro
teomics with Pseudomonas strain JM37 [74], strain 
KT2440 was found to possess a gcl operon, providing the 
genomic setup for the glyoxylate carboligase (Gcl) 
pathway [75] (Figure 3). This pathway is naturally 

repressed and must first be activated either by deletion 
of the specific transcriptional repressor GclR [23] or by 
constitutive overexpression [75], after which it could be 
allowed to grow on EG as the sole carbon and energy 
source. This pathway has also been identified in Pseu
domonas umsongensis GO16 [69] and suggested for I. sa
kaiensis [76]; however, based on CO2 release and the 
input of reducing equivalents metabolically, the use of 
this pathway is quite costly [77]. Establishing the β-hy
droxyaspartate cycle from Paracoccus denitrificans as an 

Table 2 

Blockbuster enzymes for biological PET depolymerization.        

Source Name Engineered variant Substrate Comment Reference (s)  

Ideonella sakaiensis 210 F6 IsPETase  PET  [22,102]  
IsPETaseS238F/W159H PET Evolved from 

IsPETase 
[58] 

ThermoPETase/IsPETaseTM/ 
IsPETaseS121E/D186H/R280A 

PET Evolved from 
IsPETase 

[54] 

IsPETaseS121E/D186H/S242T/N246D PET Evolved from 
IsPETase 

[56] 

FAST-PETase PET Evolved from 
IsPETase 

[49] 

HotPETase PET Evolved from 
IsPETase 

[55] 

DuraPETase PET Evolved from 
IsPETase 

[57] 

TS-PETase/IsPETaseR280A/S121E/ 

D186H/N233C/S282C 
PET Evolved from 

IsPETase 
[103] 

Z1-PETase PET Evolved from 
IsPETase 

[104] 

Ideonella sakaiensis 210 F6 IsMHETase  MHET  [22,102] 
Thermobifida fusca DSM43793 TfH  PET  [28,105] 
Thermobifida fusca KW3 TfC (TfCut1, TfCut2)  PET  [106,107] 
Thermobifida fusca KW3 TfCa  MHET, BHET Carboxyl esterase [62]  

TfCa WAI69W/V376A MHET, BHET Evolved from TfCa [62] 
Rhizobacter gummiphilus RgPETase  PET  [108] 
Brachybacterium ginsengisoli BgP  PET Marine bacterium 

(deep sea) 
[109] 

Streptomyces sp. SM14 SM14est  PET Marine bacterium [110] 
Pseudomonas aestusnigri PE-H  PET Marine bacterium [111] 
Burkholderiales bacterium BbPETase  PET  [112]  

BbPETaseS335N/T338I/M363I/N365G PET  [112] 
Thermobifida cellulosilytica Thc (Thc_Cut1, 

Thc_Cut2)  
PET  [106,113] 

Humicola/Humilica/ 
Thermomyces insolens 

HiC  PET Fungal enzyme [114] 

Fusarium solani f. sp. pisi FsC  PET Fungal enzyme [114] 
Pseudomonas mendocina PmC  PET  [114] 
Bacillus subtilis Bs2Est  MHET, BHET Carboxyl esterase [99] 
HR29 BhrPETase  PET  [115] 
Leaf-branch compost 
metagenome 

LCC  PET  [50,116]  

LCCICCG PET  [50,59] 
Compost metagenome PHL7  PET  [51]  

PHL7L210T PET  [117] 
Metagenome PES-H1/PES-H2  PET Polyester hydrolase [118]  

PES-H1L92F/Q94Y PET  [118] 
Metagenome ChryBHETase  BHET Carboxyl esterase [53]  

BsEst  BHET Carboxyl esterase [53]   
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alternative route for glyoxylate metabolism in P. putida 
KT2440 combined with adaptive laboratory evolution 
markedly enhanced growth on EG [77]. 

From polyethylene terephthalate to novel 
products via microbial pathways 
In recent years, several researchers have made great 
contributions to microbial PET valorization, giving rise 
to a versatile spectrum of products (Table 1; Figure 2). 
Native EG metabolism harbors interesting inter
mediates, for example, glycolate [72] and ethanol [78], 
and is often used as a complementary carbon source for 
holistic PET valorization concepts [20,43]. Aromatic 
TPA metabolism via protocatechuate (PCA; Figure 2) 
allows the adaptable production of other aromatic com
pounds (AROs) [72] or plastic precursors [18,43] 
(Table 2). For example, Werner et al. extensively en
gineered P. putida KT2440 for the production of β-ke
toadipate, a building block for a nylon-6,6 analog (Figure 
4a) [20]. In addition to enhancing EG utilization, effi
cient TPA catabolism required the screening of a com
binatorial gene library. The best strain for TPA 
catabolism contained the TPA transporter tpaK from R. 
jostii and the tph operon from Comamonas sp. E6. 
Moreover, PETase and MHETase from I. sakaiensis 
enabled the conversion of BHET, derived from PET 
glycolysis, into TPA and EG. Strain AW165, with dele
tion of pcaIJ to allow β-ketoadipate accumulation, pro
duced 1.39 mM product from depolymerized PET under 
supplementation with additional glucose and 15.1 g l-1 

product from commercial BHET powder [20]. In addi
tion to biotransformation strategies, the de novo synthesis 
of polyhydroxyalkanoates (PHA) [21,52] or hydroxyalk
anoyloxy alkanoates [19,79] represents an alternative 
approach for converting waste PET into novel plastics 
with different properties. Next to high-value products, 
for example, lycopene [80], recent efforts have sug
gested potential applications of microbial PET valor
ization in the food sector, for example, via the 

production of vanillin [81] or single-cell proteins [82] 
(Figure 2). 

Overall, PET valorization is likewise believed to be 
easier than the valorization of other biotechnological 
feedstocks because of its comparatively simple compo
sition [10]. Nevertheless, according to recent studies, 
some aspects have been proven to be crucial when fine- 
tuning cell factories to metabolize TPA and EG, parti
cularly in terms of tolerance to (1) high concentrations of 
substrates [80,83], (2) toxic metabolic intermediates [75], 
and (3) accompanying stressors from certain chemical 
depolymerization methods [80]. Moreover, for non-na
tive degraders, TPA import [20], as well as sufficient 
coconsumption of both TPA and EG, seem to be re
levant targets [20,43]. As noted in Ref. [20], an issue that 
has not been widely considered thus far is that in an 
authentic postconsumer PET scenario, the presence of 
various additives [30] will also pose additional challenges 
for host strains. 

Toward alternative routes for polyethylene 
terephthalate production — de novo synthesis 
of polyethylene terephthalate from alternative 
feedstocks 
Regarding the far-reaching consequences of conven
tional PET synthesis, several attempts have been made 
to establish alternative and sustainable production routes 
for TPA and EG by the chemical conversion of biomass  
[4,84]. However, most of these processes are not acces
sible on a commercial scale, and the available bio-PET 
consists of sugarcane-derived EG and fossil-based TPA  
[4] (Figure 1). According to European Bioplastics, only 
4.2% of the PET produced in 2022 worldwide was bio
based [85]. 

The production of PET monomers from different 
feedstocks is also an emerging field of biotechnology  
[15,86]. In particular, for EG, several pathways have 

PET as a feedstock for microbial upgrading of postconsumer waste streams. Microbial enzymes are considered attractive tools for PET degradation, 
spurring recent efforts to identify novel and superior enzymes (enzyme mining) [1,7]. Relevant enzymes belong to the group of carboxylic ester 
hydrolases (EC 3.1.1) [7,29], whereby only a small fraction of these are suitable for both surface modification and the degradation of the inner PET core  
[29]. One interesting PET depolymerizing enzyme donor is the bacterium I. sakaiensis, which supplies PETase and MHETase [22]. A recent study 
specifically focused on developing a BHETase mining process [53]. Once depolymerized, EG and TPA are metabolized via different pathways [15,66]. 
Using P. putida as a case study, in addition to the stepwise oxidation of EG [74], the Gcl pathway enables growth on EG as the sole carbon and energy 
source [23,75] and was also identified in P. umsongensis [69]. TPA degradation involves oxygen-dependent dihydroxylation catalyzed by TPA 
dioxygenase, followed by decarboxylation of the intermediate 1,2-dihydroxy-3,5-cyclohexadiene-1,4-dicarboxylate (DHCD) [68,71]. Depending on the 
host, PCA is further metabolized via different pathways [44,68,70], which are initiated by oxygen-dependent ring cleavage at different positions [16]. 
Enzymes: AldB_I: aldehyde dehydrogenase; GarK: glycerate kinase; GlcDEF: glycolate oxidase; Hyi: hydroxypyruvate isomerase; GlxR: tartronate 
semialdehyde reductase; PcaB: 3-carboxy-cis,cis-muconate cycloisomerase; PcaC: 4-carboxymuconolactone decarboxylase; PcaD: β-ketoadipate 
enol-lactonase; PcaHG: protocatechuate-3,4-dioxygenase; PcaIJ: β-ketoadipate CoA-transferase; PcaF: β-ketoadipyl-CoA thiolase; PedI: aldehyde 
reductase; PedE: PQQ-dependent (m)ethanol family dehydrogenase; PmdAB: protocatechuate-4,5-dioxygenase; PmdC: 4-carboxy-2- 
hydroxymuconate-6-semialdehyde dehydrogenase; PmdD: 2-pyrone-4,6-dicarboxylate hydrolase; PedH: quinoprotein (m)ethanol family 
dehydrogenase; PmdF: 4-carboxy-4-hydroxy-2-oxoadipate aldolase; PmdU: 4-oxalomesaconate tautomerase; PmdE: 4-oxalomesaconate hydratase; 
PraA: protocatechuate-2,3-dioxygenase; PraB: 2-hydroxymuconate-6-semialdehyde dehydrogenase; PraC: 2-hydroxymuconate tautomerase; PraD: 
4-oxalocrotonate decarboxylase; PraE: 2-hydroxypenta-2,4-dienoate hydratase; PraF: 4-hydroxy-2-oxovalerate aldolase; PraG: acetaldehyde 
dehydrogenase; PraH: 5-carboxy-2-hydroxymuconate-6-semialdehyde decarboxylase; TphA1A2A3/TpaAaAbB: terephthalate 1,2-dioxygenase; 
TphB/TpaC: 1,2-dihydroxy-3,5-cyclohexadiene-1,4-dicarboxylate dehydrogenase; TtuD: hydroxypyruvate reductase.   
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been identified, allowing production from D-xylose  
[25,87–90], the downstream intermediate xylonic acid  
[91,92] or other pentose sugars [26] via the formation of 
glycolaldehyde, which is subsequently enzymatically 
reduced to EG (Figure 5). Alternative pathways start 
with glucose via L-serine as an intermediate [27,93], and, 
additionally, a novel biosynthetic pathway from acetate 
has been designed computationally [94]. 

Comparably fewer pathways are available for biobased de 
novo TPA production 15 (Figure 5). For instance, in a 

metabolically engineered E. coli strain, the conversion of 
p-xylene was established by stepwise conversion with p- 
toluate as an intermediate [95]. In a subsequent study in 
which P. putida KT2440 was used as an alternative host, 
this approach was further improved, yielding a titer of 
38.25 g l−1 TPA [96]. In addition, Kohlstedt et al. de
monstrated the feasibility of linking lignin-related aro
matic degradation pathways with PET synthesis [24] 
(Figure 4b). The genome-reduced P. putida strain EM42 
was equipped with genetic modifications relevant for the 
formation of catechol (CAT)-based cis,cis-muconate. The 

Figure 4  

Current Opinion in Biotechnology

P. putida KT2440 as a case study for a biobased PET industry. (a) From PET to alternative polymers. P. putida KT2440 was streamlined for β-KA 
production from PET depolymerized by glycolysis. Strain AW165 is characterized by the following: (1) constitutive overexpression of genes involved in 
EG oxidation, (2) deletion of gclR for activation of the Gcl pathway, (3) expression of the tphA2IIA3IIBIIA1II operon from Comamonas sp. E6 and tpaK 
from R. jostii for TPA catabolism and import, respectively, (4) expression of PETase and MHETase from I. sakaiensis for BHET hydrolysis, and (5) 
deletion of pcaIJ for β-KA accumulation. The strain produced β-KA from PET, depolymerized using a combination of chemical and biological methods, 
which subsequently can be used to produce a nylon-6,6 analog [20]. (b) From lignin to PET. The genome-reduced P. putida KT2440 derivative EM42 
was metabolically engineered for MA production by deleting the catBC genes, thereby generating the MA-10 strain. Additionally, strain MA-11 harbors 
a second copy of the native catA2 gene, which is introduced downstream of catA, the major catechol-1,2-dioxygenase. The genetic setup of both 
strains enabled enhanced cis,cis-muconate production from the toxic lignin model compound CAT in comparison to the KT2440 strains without 
genome reduction in terms of productivity, titer, and yield. MA was recovered from the culture broth, followed by stepwise chemical conversion into 
BHET and final polymerization into PET [24]. Considering the results of previous works, a full value chain from lignin to PET is possible [40]. Color 
coding: deletions are highlighted in red, and native genes and enzymes are depicted in full color, whereas heterologous genes are shown in white with 
a colored frame. HMDA, hexamethylenediamine; DPEA, N,N-diisopropylethylamine.   
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Figure 5  
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purified product was subsequently chemically converted 
into dimethylterephthalate, which, after transesterifica
tion to generate BHET, was later used for PET produc
tion, paving the groundwork for a novel value chain from 
lignin to PET [24,40]. 

Conclusions 
The global dependency on the all-around useful product 
PET faces two major issues arising from conventional 
fossil fuel-based production [5,6] and the limited possi
bilities of how to proceed with postconsumer PET in a 
manner that limits both material loss and environmental 
concerns [7,8]. Both challenges have been sizable drivers 
in recent years when establishing alternative routes for 
both PET synthesis [86] and its valorization [1]. As de
monstrated by scientists worldwide, harnessing the 
outstanding variability and flexibility within natural mi
crobial metabolic pathways is an enormous opportunity 
toward a sustainable PET industry [15,29,30,66], 
thereby contributing to the realization of the sustainable 
development goals of the United Nations [13]. However, 
biobased routes for PET production and valorization 
have played an almost nonexistent role in the PET in
dustry thus far. Regarding the current landscape of PET 
usage (Figure 1), it has become clear that PET pro
duction and valorization require innovative approaches 
and solutions, in which micro-organisms and bio
technology will definitely play important roles. 
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