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Zusammenfassung 

Im Hinblick auf einen besseren Nachweis neuer Drogenmetabolite und Veränderungen des 

Stoffwechsels nach dem Konsum von Drogen, wurden verschiedene ungezielte Metabolomik-

Techniken untersucht und optimiert. Zunächst wurde eine geeignete Probenaufarbeitung für 

Urinproben untersucht. Nachfolgend wurde die analytische Methode in Bezug auf die 

verwendeten Flüssigkeitschromatographie Säulen unter Berücksichtigung verschiedener 

Matrizes optimiert. Zur Gewinnung verwertbarer Informationen aus Rohdaten und 

Sicherstellung einer aussagekräftigen biologischen Interpretation, wurden im Anschluss 

verschiedene Arbeitsabläufe zur Datenprozessierung verglichen. Im letzten Schritt wurden zwei 

Substanzen aufgrund ihres Missbrauchspotentials mithilfe der ungezielten Toxikometabolomik 

in vitro und in vivo untersucht. 

Die Optimierung der verschiedenen Techniken ergab, dass alle Parameter von der 

Probenentnahme bis zur biologischen Interpretation an die Fragestellung angepasst und zuvor 

sorgfältig untersucht werden sollten, da jeder Parameter einen Einfluss auf das Ergebnis der 

Studie hatte. Die beiden nicht-zielgerichteten Metabolom-Studien ergaben, dass 

Toxikometabolomik-Studien toxikokinetische Daten und Informationen über die 

Wirkungsweise von Missbrauchsdrogen liefern können. Toxikometabolomik-Studien 

ermöglichen es, herkömmliche Screening-Methoden zu umgehen, indem sie sowohl Metabolite 

als auch endogene Biomarker identifizieren können, die nicht zu erwarten gewesen wären.  
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Summary 

To improve the identification of new drug metabolites and to elucidate changes in the 

endogenous metabolism after drug consumption, several untargeted metabolomics techniques 

were investigated and optimized. Initially, a suitable sample preparation for urine samples was 

investigated. Subsequently, the analytical method was optimized for different matrices with 

respect to the used liquid chromatography columns. To obtain reliable information from the raw 

data and to ensure a meaningful biological interpretation, different data processing workflows 

were compared. Finally, two substances of interest due to their potential for abuse were 

investigated both in vitro and in vivo using untargeted toxicometabolomics.  

The optimization of various techniques demonstrated that parameters from sample collection 

to biological interpretation should be adapted to the research question and carefully considered 

beforehand, as each parameter has an influence on the outcome of the study. The two untargeted 

metabolomics studies indicated that the use of toxicometabolomics studies can provide both 

toxicokinetic data and information on the mode of action of drugs of abuse. Furthermore, 

toxicometabolomics studies can circumvent conventional screening methods by identifying 

both metabolites and endogenous biomarkers that would not have been expected. 
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1. General Part 

1.1. Metabolomics 

1.1.1. Principles of Metabolomics  

Metabolomics is an interdisciplinary field that combines analytical chemistry, bioinformatics, 

statistics, and biochemistry to provide a comprehensive analysis of the metabolome within a 

biological sample.1-3 The term ‘metabolome’ was first introduced by Steven Oliver in the 

1990s.4  It is defined as the sum of low-molecular-weight compounds (< 1,500 Da) that can be 

detected by mass spectrometry (MS) or nuclear magnetic resonance (NMR) analysis of 

biofluids or tissues.1,5 Since the composition of the metabolome is influenced by upstream 

effects of the genome, transcriptome, and proteome, metabolomics as an emerging field is 

closer to the phenotype than other ‘omics’ techniques.3,6 Unlike the aforementioned, the 

metabolome is also affected by several other factors such as diet, exercise, drugs, and 

underlying diseases, as well as chemicals that are derived during sample storage or preparation, 

amongst others.1,5,7 Due to its complex composition and high susceptibility to external 

influences, the metabolome can be categorized into four types: endometabolome, 

exometabolome, microbial metabolome, and xenometabolome. The endometabolome includes 

all metabolites produced by any cell type, tissue, or organism, while the exometabolome 

comprises metabolites that are excreted or consumed by cells. The microbial metabolome refers 

to metabolites produced by microbiota, and the xenometabolome encompasses metabolites 

derived from xenobiotics, contaminants, or diet.5 The metabolome can be analyzed using two 

primary strategies: untargeted and targeted metabolomics. Targeted approaches are hypothesis-

driven and usually requires prior knowledge to detect and quantify specific sets of 

metabolites.1,8 In contrast, untargeted approaches are used for hypothesis generation and aim to 

identify as many metabolites as possible without any previous knowledge to find new 

biomarkers.1,8  

 

1.1.2. Untargeted Metabolomics Workflow  

Ideally, an untargeted metabolomics approach offers a complete view of all metabolites present 

in an organism and enhances comprehension of metabolic response to a biological situation or 

certain stimulus.9 This assumes that every metabolite can be measured and that every 

measurement can be translated into biological information. However, in reality, this assumption 
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is challenging and requires appropriate experimental design and methodology to overcome.9 

The ability to collect data without prior knowledge is one of the major advantages of untargeted 

metabolomics, but it is also a key challenge to find the appropriate study design to gain the best 

biological insights.1,2,10 Therefore, a well-designed experiment and the choice of appropriate 

methods for samples and data processing are essential for the success of any metabolomics 

study.2,11  

Typically, a workflow for untargeted metabolomics studies can be divided into two major parts: 

First, the data generation which includes all steps from the biological question to data 

acquisition and second, the data processing which includes data preprocessing, statistical 

analysis, metabolite annotation, and biological interpretation (Figure 1). Each of these steps 

holds individual challenges and influences the outcome of a study.10 

 
Figure 1. Schematic overview of an untargeted metabolomics workflow. Created with BioRender.com. 

The first and most important step is the formulation of the biological question and thus the 

determination of the experimental design. The definition of the question sets the basis for the 

study and influences the subsequent steps.1,5  Once the biological question has been defined, 

the next step is the sample collection. There is no limitation regarding sample types in 

metabolomics studies, but both sample type and physicochemical properties of the metabolites 

predetermine an appropriate sample preparation and also the evaluation and interpretation 
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varies by biological system.2 Several studies showed, that preanalytical steps have a significant 

impact on the outcome of an untargeted study.12-16 Inadequate sample storage or preparation 

may lead to a high variability, loss of metabolites, formation of degradation metabolites, or 

influence with instruments, and therefore must be optimized according to sample type.5 Since 

the metabolome is of extremely diverse chemical nature, there is no method for capturing all 

metabolites.1 In general, the original biological system must be preserved as far as possible 

during sample preparation.2 The next step with considerable variability is the data acquisition. 

Untargeted metabolomics requires highly analytical instruments for thousands of small 

molecules with broad chemical diversity and complexity.3 Most common analytical 

technologies in untargeted metabolomics are NMR and hyphenated MS.1,2 While NMR 

provides no sample alteration, use of small amount of material, identification without reference, 

and high reproducibility compared with good selectivity, hyphenated MS in contrast exhibits 

higher sensitivity and a wide dynamic range.3 These properties make MS coupled to gas 

chromatography (GC) or liquid chromatography (LC) the most widespread technologies used 

in untargeted metabolomics.1,2,17 Chromatographic separation improves the analytical 

possibilities of MS, as on one hand it reduces ion suppression by separating molecules and thus 

improves detection. On the other hand, the retention time provides information about the 

polarity of the molecules.18,19 Regarding the choice of the chromatographic technique, each 

comes with advantages and disadvantages. GC-MS is highly reproducible and sensitive, but it 

is only reliable for measuring small metabolites (< 400 Da) and may not be suitable for 

measuring unstable molecules that are affected by the heating conditions used for derivatization 

and chromatography.1 LC-MS, on the other hand, enables the transfer of charged ions from the 

liquid phase to the gas phase without derivatization through the use of electrospray ionization 

or atmospheric pressure ionization interfaces. This offers the possibility of detecting both polar 

and non-polar metabolites, including lipids, and is therefore, currently the most commonly 

applied analytical technique in metabolomics.1,18,20  

The above-mentioned analytical methods, generate huge and high-dimensional amounts of raw 

data, necessitating powerful software tools to extract valuable information. Data pre-processing 

includes peak detection, peak alignment, baseline correction, and annotation.10,21 These steps 

play a key role to improve signal quality and reduce possible bias. For untargeted data 

processing a variety of software solutions are available, such as open-source software 

XCMS22,23, MetaboAnalyst24, MZmine25, or OpenMS26, and commercial software such as 

Compound Discoverer, MetaboScape, or MarkerView. Since the underlying algorithms differ, 

it is very likely, that the outcomes of untargeted studies vary upon the used tools.27 In order to 
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compare all the information and to identify compounds and metabolic pathways that are 

significantly different between investigated groups, a combination of univariate and 

multivariate analysis are performed. Tools for analyzing include for example t-test, analysis of 

variance (ANOVA), principal component analysis (PCA), or partial least-squares discriminant 

analysis (PLSDA), among others.9 While univariate statistic identify specific analytes that 

altered significantly between cohorts, multivariate statistics distinguish cohorts based on 

covariances or correlations of the many independent variables.9,21,28 The main bottleneck in 

untargeted approaches is translating variables into metabolite identities to draw biological 

conclusions from untargeted data.9,10 Metabolite annotation is the crucial link between acquired 

data and meaningful biological information.10 The primary challenge for researchers is to 

objectively investigate the connection between identified metabolites and their biological 

role.28,29 In untargeted workflows, the goals are to identify meaningful biomarker(s) and 

metabolic pathways that forecast or induce a particular phenotype. The former facilitates a fast 

and immediate implementation. The mechanistic investigation enables a focused exploration of 

enzyme activity, metabolite transporters, or transcription factors that govern the metabolic 

process.21 

However, this approach can prove challenging, as an untargeted approach typically only allows 

identification of single metabolites within a pathway, making their assignment to definite one 

often problematic. Therefore, a targeted study is necessary to investigate underlying pathways 

in order to confirm its impact on the phenotype.1  

 

1.2. Drug Abuse 

1.2.1. Origin of Drugs of Abuse 

The consumption of drugs to modify mental and physical well-being is an ancient practice that 

can be traced back to the earliest civilizations.30 In many cultures, their consumption is often 

related to religious and/or social rituals, but also for medicinal purpose.31 Throughout the 

Middle Ages, plants or their components, such as poppy juice or coca leaves were commonly 

used while the active substances such as morphine or cocaine were first isolated from plants in 

the 19th century.32-34 Originally intended for therapeutic effect, morphine was specifically 

utilized to treat severe pain.32,33 However, it was discovered that the opiates offered pleasurable 

effects and thus they were consumed for non-therapeutic purpose. As a result, these substances 

were quickly adopted as addictive drugs once their medical properties were uncovered.33  

Among other milestones, the isolation of morphine in the 19th century marked the beginning of 
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the pharmaceutical industry’s.35 After isolation of cocaine from coca leaves in 1855 and first 

synthesizing of amphetamine in 1887 as a synthetic derivative of the plant alkaloid ephedrine, 

diacetylmorphine, also known as heroin, was launched on the market by the Bayer company in 

1898.36 Unaware that they had created an even more potent drug, heroin was marketed to reduce 

the side effects of morphine.36,37 With the enactment of the German Opium Act in 1929, such 

classic drugs were available only by prescription and for medical purposes. As part of the 

modernization of German drug law under the 1961 UN Single Convention, the Opium Act, was 

replaced in 1971 by the current Narcotics Act (Betäubungsmittelgesetz, BtMG).38 This 

increased the search for new drugs of abuse, that were not covered by the law.  

The commonly used term drug of abuse (DOA) refers to a psychotropic substance that is illicitly 

consumed for non-therapeutic or recreational reasons.39 Classical DOAs include cocaine, 

heroin, amphetamine, methamphetamine, or methylenedioxymethamphetamine (ecstasy) 

which have been widely abused for decades and are subject to controlled substance 

legislation.36,39,40  

 

1.2.2. New Psychoactive Substances 

Designed to circumvent international drug legislation, new psychoactive substances (NPS) or 

also known as “legal highs” have spread in the drug market in the last years.41,42 NPS are an 

emerging class of compounds, which can chemically be similar to traditional DOAs but also 

new entities intended to mimic the effects of commonly known illicit substances without being 

restricted by drug laws.43,44 

They can be categorized in multiple ways, for example according to their origin – whether 

plant-based or synthetic, psychotropic effects, or chemical structure.45 At the end of 2022, the 

European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) monitored around 930 

NPS, 41 of which were first reported in Europe in 2022 of which 24 were synthetic 

cannabinoids followed by 5 synthetic cathinones.46  

Both synthetic cannabinoids and synthetic cathinones are excellent examples of the challenges 

presented by “legal highs”. These substances are typically modified chemicals derived from 

other known DOAs.47 

As legal alternatives to Cannabis sativa L., synthetic cannabinoids have become popular for 

mimicking the euphoric effects of the main psychotropic constituent, Δ9-tetrahydrocannabinol 

(THC).47-49 This effect is due to the fact that synthetic cannabinoids interact with the human 

cannabinoid type 1 (CB1) and/or type 2 (CB2) receptors, whereby interactions with CB1 are 
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primarily responsible for psychoactive effects.50,51 However, synthetic cannabinoids tend to 

have higher potency and efficacy at CB receptors than THC, which acts as a partial agonist at 

both subtypes. This might explain the limited toxicity of cannabis use.48,49 However, frequent 

use of synthetic cannabinoids can lead to severe or fatal intoxication, causing side effects such 

as increased heart rate, high blood pressure, hallucinations, rapid loss of consciousness, 

seizures, respiratory depression, or coma.52,53 

Synthetic cathinones commonly sold as “bath salts” are stimulant-like drugs derived from 

cathinone, the primary psychoactive compound found in Catha edulis (Vahl) Forssk. ex Endl..47 

The pharmacological effects of various derivatives rely primarily on the types and positions of 

the substituents.47,54,55  Preclinical studies have uncovered two ways in which they interact with 

monoamine transports. Compounds that either act as monoamine transporter blockers, similar 

to cocaine, or that act as monoamine transporter substrates, promoting neurotransmitter release, 

such as amphetamine and 3,4-methylendioxy-N-methylamphetamine (MDMA).56-63 Despite 

sharing a common phenethylamine core, synthetic cathinones have varying affinity, selectivity, 

and potency towards monoamine membrane receptors and transporters.54,62,64 The efficacy, 

selectivity, and affinity for a particular monoamine system is crucial due to the specific clinical 

and toxic effects that result from stimulation of different monoamine systems. For instance, the 

dopaminergic effects manifest in psychostimulant effects and reinforcing properties with a high 

potential for abuse and addiction, while noradrenergic effects result in sympathomimetic 

stimulation leading to cardiovascular and psychostimulant effects, and the serotonergic effects 

induce hyperthermia, seizures, paranoia, and hallucinations.54,63,65 Since previous studies have 

demonstrated that synthetic cathinones, which belong to the same chemical family, have diverse 

pharmacological effects, they are categorized based on their mode of action.54,59,62,63 Alongside 

the desirable effects, including increased alertness and attention, euphoria, improved mood and 

well-being, increased energy or reduced appetite, there are also adverse effects that can occur 

after acute or chronic intoxication or overdose.54 These symptoms encompass tachycardia, 

hyperthermia, restlessness, anxiety, or psychosis, and even multiple organ failure and death.54,66  

Due to the fluctuating presence on the market, the high structural diversity, the associated wide 

range of clinical manifestations of NPS and the related health and safety hazards, it is 

challenging for clinical and forensic toxicology to detect ingestion and conduct an appropriate 

risk assessment.47,67,68 
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1.3. Challenges Related to Drugs of Abuse in Toxicology 

Toxicology is defined as the study of potential harmful effects of substances on living organisms 

and ecosystems. Its goal is to assess the risks of substances to human and animal health while 

avoiding hazards. Besides the relationship between harmful effects and exposure, it also deals 

with the mode of action, diagnosis, prevention, and treatment of intoxications.69,70 Thereby, the 

processes of toxicokinetic and toxicodynamic play a crucial role. While toxicokinetic deals with 

the uptake, distribution, biotransformation, and excretion of potentially toxic substances within 

the body, toxicodynamic examines the interaction of these harmful substances with the target 

site, resulting in associated biochemical and physiological effects that can lead to adverse 

effects.71 During the early stages in drug development process various toxicological tests are 

utilized to examine the toxicokinetic and toxicodynamic of therapeutic drugs.67 Typically, these 

studies are not conducted on DOAs such as NPS prior to their entry into the market, presenting 

a significant challenge for both clinical and forensic toxicology.67,72 While forensic toxicology 

measures drugs in context of death or human performance, clinical toxicology deals with the 

impact of drugs in both acute poisoning and long-term monitoring/detection of emerging DOAs 

to confirm intake in case of overdose followed by acute intoxication.39,68 

On one hand, the structural diversity of NPS leads to an analytical challenge in detecting patient 

intake and thus a leakage of toxicokinetic information.68 On the other hand, the lack of 

information regarding the mode of action of these substances hinders an evaluation of their 

severity for acute and chronic toxicity. Additionally, the continuously fluctuating number of 

NPS available in the market complicates regulation and the application of a sufficient risk 

assessment. Brand et al. described the ongoing evasion of current regulations to promote newly 

misused drugs as a “cat and mouse game”.73  

However, it is essential to conduct toxicokinetic and toxicodynamic investigations on DOA 

such as NPS to address those challenges. Due to the lack of preclinical safety data and therefore 

for ethical reasons, controlled human studies are not possible, so in vitro and in vivo studies are 

preferred.67 The emphasis here is mostly on the confirmation of consumption, with a primary 

focus on the detection of intake. Although stimulants such as synthetic cathinones or 

piperazines are not extensively metabolized and can also be detected unmetabolized in human 

urine, most synthetic cannabinoids cannot be detected unmetabolized in urine.74 Consequently, 

it is important to continuously adapt existing analytical methods.75 
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1.3.1. Established Toxicology Studies in Clinical and Forensic Toxicology 

Due to the rapid emergence of new substances, well established in vitro models such as pooled 

human liver microsomes (pHLM), pooled human liver S9 fraction, primary human hepatocytes, 

HepaRG, or HepG2 cells, as well as zebrafish larvae are available to study metabolism of DOAs 

besides classical in vivo studies.76-78 Such in vitro models are particularly suitable for 

elucidating metabolism but also for investigating organ-specific toxicity.79,80 

Species differences aside, drug excretion patterns are affected by both dose and time, which 

complicates extrapolation to humans. It’s worth noting that excretion patterns are usually 

dependent on both dose and time, and the substances detected in case of intoxication or 

overdose may differ from those found after recreational use or during later excretion phases.67  

For toxicodynamic, there are systematic studies on transporter or receptor interaction profiles 

in various cell lines, enzyme inhibition screening of selected enzymes, or cytotoxicity 

tests.59,62,80-83 However, such in vitro tests do not provide insights into the molecular 

mechanisms as controlled in vivo tests.  

In most of the established toxicokinetic and toxicodynamic methods for NPS, the metabolites 

are often specifically investigated for the mode of action that can be derived from the general 

structure and thus targets are specifically searched for. As a result, not only metabolites that 

would not be expected are missed, but also potential targets remain undiscovered.  

 

1.3.2. Toxicometabolomics 

In recent years, toxicometabolomics, a sub-discipline of metabolomics, has become an 

important tool in toxicology.3,5,84-88 Compared to other omics techniques, metabolomics is more 

closely related to the drug response phenotype.3,7 Therefore, toxicometabolomics observes 

changes in small molecules that occur in an organism in response to a specific drug-induced 

stimulus.84 Given the growing problem of drug abuse worldwide, especially of NPS, the use of 

metabolomics opens up the possibility of identifying new exogenous and endogenous 

biomarkers.84 

Detection of biochemical changes following DOA intake can thus complement conventional 

approaches by revealing potential biomarkers of organ toxicity, identifying novel metabolites 

in a time- and dose-dependent manner, and discovering different drug targets, as well as 

providing insights into metabolic pathways, mechanisms of action, adverse effects, and early 

toxicity events, even at low doses.5,89 Therefore, the use of toxicometabolomics of DOAs is of 

great interest in clinical and forensic toxicology, not only for reliable confirmation of DOA 
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intake in patients, but also for appropriate risk assessment. Concerning NPS, conventional 

methods might not be as effective in screening approaches anymore. Thus, in screening 

methods, detection of drug intake may only be feasible through one or a few distinct 

metabolites, particularly when the parent compound is not detectable in the samples. However, 

when numerous structurally related compounds share common primary metabolites, detection 

of ingestion of a specific illicit drug may require less prominent metabolites.84 Therefore, in the 

highly fluctuating market of NPS, metabolomics is an alternative strategy to identify 

biomarkers, especially with regard to drug biotransformation. 

Although metabolomics is an invaluable tool in toxicology, it does have limitations. On the one 

hand, establishing a direct causal relationship between cause and effect using metabolomics 

alone can be challenging, since any event can lead to an effect.87 Additionally, ethical and 

biological variability concerns often lead to NPS metabolomics studies being performed in vitro 

or in vivo, which can prove difficult to extrapolate to humans.85,90 
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2. Aims and Scopes 

The aims of this study were to evaluate untargeted (toxico-)metabolomics techniques for the 

identification of drug metabolites and metabolic changes associated with drug consumption, 

particularly after ingestion of DOAs. Various steps in the untargeted metabolomics workflow 

should be evaluated, optimized, and applied using both in vitro and in vivo studies. Appropriate 

sampling strategies, including sample collection and preparation, should be developed. 

Analytical methods and data preprocessing should be optimized, while statistical analysis 

should be evaluated to identify significant changes between the investigated groups. Planned 

studies should finally reveal changes within endogenous and exogenous metabolome after acute 

exposure to DOAs. 

 

The following steps had to be conducted: 

 

• Development of suitable sample preparation of human and rat urine samples for untargeted 

liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS) 

metabolomics 

 

• Optimization of different LC columns using pHLM, rat plasma, and rat urine 

 

• Optimization of different data preprocessing software solutions for evaluation of untargeted 

metabolomics data 

 

• Investigation of rat metabolome after controlled administration of human equivalent 

amphetamine dose 

 

• Investigation of in vitro and in vivo metabolic pathways of the synthetic cathinone alpha- 

pyrrolidinocyclohexanophenone (PCYP) using untargeted toxicometabolomics 
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3. Results 

 

The results of the studies were published in the following articles: 

 

3.1. Optimization of Extraction and Reconstitution Solvents for the Untargeted 

Metabolomics Analysis of Human and Rat Urine Samples  

 

This is a pre-copyedited, author-produced version of an article submitted to Journal of 

Chromatography A (manuscript number: JCA-23-1456). 

 

(Submitted 10/2023, DOI not yet provided) 
 

Author Contributions: 

Selina Hemmer conducted and evaluated the experiments as well as composed the manuscript; 

Sascha K. Manier, Lea Wagmann, and Markus R. Meyer assisted with the design of the 

experiments, the interpretation of the analytical experiments, and scientific discussions. 
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ABSTRACT 10 

Inadequate sample preparation can result in the loss of important analytes and thus 11 

affect the outcome of untargeted metabolomics studies. Different sample preparations 12 

may be required for a biological matrix originating from different species. The aim of 13 

this study was to optimize the extraction of rat and human urine and the extract 14 

reconstitution before untargeted analysis by hydrophilic interaction chromatography or 15 

reversed-phase liquid chromatography high-resolution mass spectrometry. The 16 

resulting analytical data were evaluated for feature count, feature detectability, and 17 

reproducibility of selected compounds. A total of 12 different protein precipitation 18 

conditions were tested, combining four different extraction solvents and three different 19 

reconstitution solvents. A combination of methanol as extraction and acetonitrile/water 20 

(75/25) as reconstitution solvent gave the best results at least in terms of total feature 21 

count. In addition, it was found that a higher amount of methanol improved extraction 22 

of rat urine among the conditions tested. In comparison, human urine required a lower 23 

volume of extraction solvent. Overall, it can be concluded that systematic optimization 24 

of both the extraction method and the reconstitution solvent for each analyzed biofluid 25 

and analytical setting is encouraged. 26 

 27 
 28 
Keywords: untargeted metabolomics, human urine, rat urine, extraction methods, 29 

reconstitution, sample preparation  30 
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1. Introduction 31 

Metabolomics focuses on the analysis of low molecular weight compounds (<1,500 32 

Da) in a biological system [1]. Since these compounds are not only endogenous 33 

metabolites but also metabolites from exogenous sources such as drugs, diet, and gut 34 

microbiota, a high chemical diversity and complexity is expected. Thus in untargeted 35 

metabolomics, it is desirable to use methods that are not biased for or against specific 36 

analyte classes but cover a broad range of metabolites [2]. Among others, sample 37 

preparation is a critical step with implications for metabolite extraction and their 38 

subsequent detection to achieve high quality and comprehensive metabolome 39 

coverage [2, 3]. To obtain as many unknown metabolites with various physicochemical 40 

properties as possible, the integrity of the samples should be altered as little as 41 

possible. Hence, an ideal sample preparation should be non-selective, reproducible, 42 

simple, and fast [2, 4]. Due to several advantages such as non-invasive sample 43 

collection, large volumes, possibility of repeated sampling, low sample complexity 44 

compared to plasma, and reflection of the endogenous as well as exogenous metabolic 45 

profile, urine has been established as a key biological matrix in metabolomic studies 46 

[5, 6]. Despite these benefits, urine has a wide range of metabolite concentrations and 47 

is thus subjected to variable and unpredictable dilution [6]. Due to this fact and the high 48 

chemical diversity of metabolites, appropriate sample preparation is required. For 49 

urine, recommendations for very simple sample preparations such as filtration, 50 

centrifugation, dilution, or combinations thereof can be found in literature, since most 51 

analytes are present in sufficiently high concentrations and the protein levels are quite 52 

low [1, 4, 7, 8]. However, there are certain classes of compounds such as biogenic 53 

amines, lipids, or steroids that are present in lower concentrations and may require 54 

additional pre-analytical concentration steps [7]. Furthermore, due to species 55 

differences, different sample preparations may be required within the same biological 56 

matrix from different origins to cover the respective metabolome. 57 

Therefore, the aim of this study was to systematically test the impact of four different 58 

extraction solvents for protein precipitation in combination with three different 59 

reconstitution solvents on the analytical data of untargeted liquid chromatography high-60 

resolution mass spectrometry (LC-HRMS) metabolomics analysis of rat and human 61 

urine samples. Finally, the most appropriate method for each biofluid was identified. 62 

 63 

2. Materials and methods 64 
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 65 

2.1. Chemicals and reagents 66 

 67 

Ammonium formate, ammonium acetate, DL-aspartic acid-d3 (DL-aspartic acid-2,3,3-68 

d3), cortisol-d4 (cortisol-9,11,12,12-d4), creatinine-d3, formic acid, D-glucose-d7 (D-69 

glucose-1,2,3,4,5,6,6-d7), glycine-15N, palmitic acid-d31, and succinic acid-d4 were 70 

obtained from Merck (Darmstadt, Germany). Acetonitrile, ethanol, and methanol (all 71 

LC-MS grade) were from VWR (Darmstadt, Germany). Water was purified with a 72 

Millipore filtration unit (18.2 Ω x cm water resistance). L-Tryptophan-d5 was obtained 73 

from Alsachim (Illkirch-Graffenstaden, France). L-Carnitine-d9, cytosine-d2, D-fructose-74 
13C6, hypoxanthine-d4, kynurenic acid-d5, prostaglandin-E2-d9, stearic acid-13C, and 75 

thymidine-d4 were purchased from Cayman Chemical (Ann Arbor, MI, USA). DL-76 

Glutamic acid-d3 (DL-glutamic-2,4,4-d3 acid), L-arginine-d7 (L-arginine-2,3,3,4,4,5,5-77 

d7), and L-lysine-d3 (L-lysine-2,6,6-d3) were obtained from Toronto Research 78 

Chemicals (Toronto, Canada). 79 

 80 

2.2. Sample collection and preparation 81 

 82 

Rat urine (n = 5) was used from the control group of a previously published study [9]. 83 

Human urine was collected from 10 healthy individuals. Samples were aliquoted and 84 

stored at -80°C. Aliquots were thawed at 4°C over night and pooled for each species. 85 

Pooled urine was centrifugated at 15,000 x g at 4°C for 10 min. For each preparation, 86 

100 µL of supernatants of pooled rat or pooled human urine were transferred into a 87 

reaction tube. A total of 12 sample preparations (Table 1) were tested, based on four 88 

different extraction solvents. After precipitation, samples were shaken for 2 min at 89 

1,500 rpm, precipitated at -20°C for 30 min, and then centrifuged at 15,000 x g and 90 

4°C for 10 min. The supernatant was transferred in new reaction tubes and evaporated 91 

to dryness using a vacuum centrifuge at 1,400 rpm and 24 °C. The obtained residues 92 

were reconstituted in 50 µL using three different reconstitution solvents (Table 1). Each 93 

sample was prepared in quintuplets (n = 5). Pooled quality control (QC) samples were 94 

prepared by transferring 10 µL of each sample into one MS vial. 95 

Extraction solvents and reconstitution solvents were fortified with a total of 19 different 96 

internal standards of various endogenous compound classes (see Experimental 97 

section in Supporting information).  98 
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 99 

2.3. LC-HRMS/MS apparatus 100 

Analysis was performed according to previous published studies [9, 10]. Details can 101 

be found in Experimental section of Supporting information. 102 

 103 

2.4. Data evaluation 104 

Data processing was performed in an R environment [11, 12]. Thermo Fisher Scientific 105 

LC-HRMS raw files were converted into mzXML files using ProteoWizard [13]. XCMS 106 

parameters were optimized according to Manier et al. [12]. Peak-picking and alignment 107 

parameters are summarized in Table S2. Peak picking was performed using XCMS 3 108 

(version 3.20.0) [14] in an R environment and the R package CAMERA [15] was used 109 

for annotation of adducts, artifacts, and isotopes. Feature abundances containing the 110 

value zero were replaced by the lowest measured abundance as a surrogate limit of 111 

detection and the whole dataset was then log 10 transformed. Peak areas were 112 

normalized to the different ratios of extraction solvents. To evaluate the number of 113 

features that can be detected by the used analysis, total feature count was assessed. 114 

Therefore, the number of features which peak area was not declared as not available 115 

(“NA”) was summed up for each analysis. For the reproducibility, the coefficient of 116 

variation (CV) was determined from the peak areas of each sample preparation. In 117 

addition to the total feature count, peak areas of spiked internal standards were 118 

evaluated to compare each preparation in terms of different compound classes. 119 

Statistical evaluation was done using one-way ANOVA as well as Welch’s two sample 120 

t-test for significance comparing total feature count of each group in rat or human urine 121 

samples.  122 

R script can be found on GitHub (https://github.com/sehem/urine_preparation.git) and 123 

mzXML files are available via Metabolights (study identifier MTBLS8237). 124 

 125 

3. Results and discussion  126 

Results after analysis using hydrophilic interaction chromatography (HILIC) and 127 

positive and negative electrospray ionization are shown in Figure 1-3. Those of the 128 

analysis using reversed-phase chromatography (RP) are shown in Figure S1-3 in 129 

Supporting information. 130 

The extraction and reconstitution solvents were selected based on their frequency in 131 

the literature. Most published extractions were based on methanol (MeOH) and/or 132 

https://github.com/sehem/urine_preparation.git
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acetonitrile (ACN) in different ratios [8, 16-19]. Since elevated concentrations of water 133 

(H2O) might impair the performance of HILIC, cause instability, or poor solubilization 134 

of certain analytes, different ratios for ACN and H2O were evaluated as reconstitution 135 

solvents in addition to the previously described composition of ACN and MeOH [17, 136 

18]. 137 

Untargeted metabolomic studies aim to detect as many metabolites as possible to best 138 

describe the metabolome. Therefore, the size of the total feature count was used as 139 

one main parameter to compare the influence of (pre-)analytical methods. It need to 140 

be mentioned that the total feature count was also described as inappropriate 141 

parameter for such investigations in general, since it can be widely differ due to 142 

artifactual interference and therefore a method that detects the maximum number of 143 

features is not always the method that provides the broadest metabolome coverage. 144 

Such artifactual interference can be caused by contamination during metabolite 145 

extraction, carryover from previous experiments, background noise detected by MS, 146 

or misannotation of data during bioinformatic processing, amongst others [20]. Since 147 

this study followed a highly standardized procedure and almost the same conditions 148 

for each sample, the variability in the total feature count caused by artifactual 149 

interference should be rather small compared to the variability caused by different 150 

extractions of metabolites.  151 

Regarding the total feature count, each preparation condition was able to provide many 152 

features and there was no condition that was the optimal one for all four analytical 153 

methods and both species matrices. However, the total feature count mainly depended 154 

on the reconstitution solvent. For rat urine (Figure 1A+B and S1A+B), the highest 155 

feature count was observed for reconstitution solvent ACN/H2O (+0.1% formic acid) 156 

(75/25) over all four analytical methods. Compared to rat urine, differences were 157 

observed for human urine with respect to the used chromatographic method (Figure 158 

1C+D and S1C+D). For HILIC, reconstitution solvent ACN/H2O (+0.1% formic acid) 159 

(25/75) showed the highest effect using positive ionization and for RP, reconstitution 160 

solvent ACN/H2O (+0.1% formic acid) (75/25) using both polarities.  161 

In addition to total feature count, the reproducibility of the features was also evaluated 162 

using an accepted CV<20% (Figure 2 and S2). Overall, no clear trend was observed 163 

for one single sample preparation for all four analytical methods. Nevertheless, it can 164 

be assumed that the reproducibility of rat urine preparation was higher when using a 165 

ratio of 1:8 instead of 1:4 urine:MeOH. For human urine preparation, less extraction 166 
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solvents were required in general. This is most probably because rat urine contains a 167 

higher protein concentration than human urine and therefore requires a larger amount 168 

of solvent for protein precipitation [21]. Again, reconstitution solvents exerted a major 169 

impact. The highest reproducibility after preparation of rat urine and analyzing using 170 

positive ionization mode was for the reconstitution solvent ACN/H2O (+0.1% formic 171 

acid) (25/75) across all extractions, whereas using negative ionization mode no clear 172 

trend was observed. The reproducibility of peak areas after preparation of human urine 173 

using different reconstitution solvents highly depended on the used analytical method.  174 

Since the impact of the feature count and its reproducibility might be discussed, the 175 

peak areas of selected internal standards were also investigated in each analysis. For 176 

this purpose, various isotope labeled endogenous compounds were spiked into the 177 

extraction or reconstitution solvent at physiological concentrations (Table S1) [22]. 178 

Results of the mean peak areas of each isotope labeled compound for each 179 

preparation of rat and human urine are shown in Figure 3 for HILIC and in Figure S3 180 

for RP as heat maps. Cortisol-d4, DL-aspartic acid-d3, glycine-15N, hypoxanthine-d4, 181 

and stearic acid-13C could not be detected at their physiological concentrations in any 182 

sample and even not the neat solvents. This may have been due to low concentration 183 

and/or poor ionization. Since most analytes in urine can be considered as hydrophilic, 184 

most compounds were detected after HILIC (Figure 3). Most hydrophilic labeled 185 

compounds eluted within the first 60 sec on RP columns, which may lead to an 186 

increased risk of ion suppression. As already described for total feature count, the 187 

reconstitution solvents showed a greater impact compared to extraction solvents. For 188 

rat urine, reconstitution solvent ACN/H2O (+0.1% formic acid) (75/25) showed the best 189 

results. No fatty acids were detected using a higher amount of water and very 190 

hydrophilic labeled compounds showed smaller peak areas after using ACN/MeOH 191 

(70/30). With respect to extraction solvent, MeOH resulted in the largest peak areas. 192 

In human urine, a similar trend was observed as for rat urine, except for the two 193 

analytes cytosine-d2 and thymidine-d4. Both analytes were not detected most likely due 194 

to matrix effects as the analytes were detected in the respective neat solvents.  195 

Based on all results described above, it can be summarized that reconstitution solvents 196 

have a greater impact on compound recovery compared to extraction solvents during 197 

sample preparation of urine. Also, the used chromatographic system was important in 198 

selection of the extraction or reconstitution solvent. However, the use of multiple 199 

extraction and/or reconstitution solvents is expected to be unfeasible in most 200 
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circumstances, as it is time-consuming and costly. It therefore appears to be more 201 

reasonable to select solvents that fit for each chromatographic system. Nevertheless, 202 

this study also showed that it is not recommended to use the same sample preparation 203 

for the same matrix of different species in general. Even if rat and human urine differ 204 

slightly, it should not be assumed in future that the same preparation will lead to the 205 

same results. However, the results of this study are limited to the investigated 206 

compounds and matrix. Therefore, described suitable preparations are not universally 207 

applicable and this type of study should be done for each workflow to evaluate the 208 

most suitable solvents. 209 

 210 

4. Conclusion 211 

The study aimed to systematically evaluate the effects of four extraction solvents, three 212 

reconstitution solvents in combination with HILIC- or RP-LC, and positive or negative 213 

electrospray ionization HRMS on metabolome coverage represented by detectable 214 

features/compounds and feature reproducibility in both rat and human urine samples. 215 

The metabolome coverage represented by the number of detectable 216 

features/compounds and feature reproducibility of rat and human urine was evaluated. 217 

Results of this study shows indicated that the feature count and detected compounds 218 

were predominantly influenced by the reconstitution solvents used. Extraction solvents 219 

were required in higher amounts for rat urine preparation as compared to human urine. 220 

Considering the data of this study, it is recommended to use a combination of methanol 221 

for extraction and acetonitrile/water (75/25) as the reconstitution solvent. However, for 222 

optimal metabolome coverage, it is essential to adapt the preparation under 223 

consideration of the investigated biomatrix/species and the chromatographic system 224 

used. 225 

  226 
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Table 1  320 

Overview of the used sample preparation conditions. Ratio and percent refer to urine 321 

or solvent volume. MeOH = methanol, ACN = acetonitrile, and H2O = purified water. 322 

Preparation Extraction solvent Reconstitution solvent 

1_1 Urine:MeOH (1:4) ACN/MeOH (70/30) 

1_2 Urine:MeOH (1:4) ACN/H2O (+0.1% formic acid) (75/25) 

1_3 Urine:MeOH (1:4) ACN/H2O (+0.1% formic acid) (25/75) 

2_1 Urine:MeOH (1:8) ACN/MeOH (70/30) 

2_2 Urine:MeOH (1:8) ACN/H2O (+0.1% formic acid) (75/25) 

2_3 Urine:MeOH (1:8) ACN/H2O (+0.1% formic acid) (25/75) 

3_1 Urine:ACN (1:8) ACN/MeOH (70/30) 

3_2 Urine:ACN (1:8) ACN/H2O (+0.1% formic acid) (75/25) 

3_3 Urine:ACN (1:8) ACN/H2O (+0.1% formic acid) (25/75) 

4_1 Urine:ACN:MeOH (2:1:1) ACN/MeOH (70/30) 

4_2 Urine:ACN:MeOH (2:1:1) ACN/H2O (+0.1% formic acid) (75/25) 

4_3 Urine:ACN:MeOH (2:1:1) ACN/H2O (+0.1% formic acid) (25/75) 

 323 
  324 
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Legends to the figures 325 
 326 
Fig. 1. Results of statistical evaluation using one-way ANOVA and Welch’s two sample 327 

t-test comparing total feature count of each group in rat and human urine samples. 328 

Analysis was done using hydrophilic interaction chromatography (HILIC) in positive 329 

(pos) and negative (neg) ionization mode. A = rat urine pos, B = rat urine neg, C = 330 

human urine pos, D = human urine neg. ns not significant; *p < 0.05; **p < 0.01; ***p < 331 

0.001; ****p < 0.0001. 332 

Fig. 2. Histogram of the total feature count extracted for each preparation and their 333 

respective reproducibility evaluated by CV (coefficient of variation) in rat urine (A) and 334 

human urine (B) using hydrophilic interaction chromatography (HILIC) in positive (pos) 335 

and negative (neg) ionization mode. Black or gray filled area indicates the number of 336 

features with a CV <20%. 337 

Fig. 3. Heat map of the mean peak areas of internal standards (log 10 transformed) 338 

for each preparation in rat urine (A) and human urine (B) using hydrophilic interaction 339 

chromatography (HILIC) in positive or negative ionization mode depending on internal 340 

standard. 341 
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Experimental section 15 

 16 

Preparation of extraction and reconstitution solvents 17 

Each extraction and reconstitution solvent was spiked with a total for 19 different 18 

internal standards of various isotope labeled endogenous compounds. Therefore, two 19 

different standard solutions representing the analytes’ physiological concentrations 20 

according to human metabolome database (HMDB) [1] were spiked (Table S1). 21 

 22 

Table S1. Overview of the used isotope labeled endogenous compounds, their 23 

corresponding urine concentrations from human metabolome database (HMDB) [1], 24 

and the finally used concentration in the respective solvents. 25 

Solvent Compound 

Urine concentration 

according to HMDB, 

µM/mmol creatinine 

Concentration in 

corresponding 

solvent, µM/mmol 

creatinine 

Extraction 

solvent 

D-Fructose-13C6 129 26.9 

DL-Glutamic acid-d3 0.3-218 166.6 

Hypoxanthine-d4 2.3-25 35.7 

Kynurenic acid-d5 0.8-4.2 2.6 

L-Carnitine-d9 0.62-15.2 7.4 

L-Lysin-d3 1.7-75 6.5 

L-Tryptophan-d5 2.04-29.4 23.9 

Palmitic acid-d31 2.6-24.3 17.4 

Prostaglandin E2-d9 0.000057-0.02 0.3 

Succinic acid-d4 0.3-33.3 8.2 

Reconstitution 

solvent 

Cortisol-d4 0.012-0.021 0.03 

Creatinine-d3 500-35000 8.6 

Cytosine-d2 1.1-10.7 2.2 

D-Glucose-d7 10.3-111.7 53.5 

DL-Aspartic acid-d3 0.4-27 7.4 

Glycine-N15 24-600 65.8 

L-Arginine-d7 0.2-23 5.5 

Stearic acid-13C 0.1-7.7 3.5 

Thymidine-d4 0.7-11 4.1 

 26 

 27 
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LC-HRMS/MS apparatus 28 

Analyses were performed using a Thermo Fisher Scientific (TF, Dreieich, Germany) 29 

Dionex UltiMate 3000 RS pump consisting of a degasser, a quaternary pump, and an 30 

UltiMate Atosampler, coupled with a TF Q Exactive Plus equipped with a heated 31 

electrospray ionization (HESI)-II source [2-4]. Performance of the columns and the 32 

mass spectrometer was tested using a test mixture described by Maurer et al. [5]. 33 

Gradient reversed-phase (RP) elution was performed on a Waters (Eschborn, 34 

Germany) ACQUITY UPLC BEH C18 column (100 mm x 2.1 mm, 1.7 µm) and gradient 35 

hydrophilic interaction chromatography (HILIC) elution using a Merck (Darmstadt, 36 

Germany) SeQuant ZIC HILIC (150 mm x 2.1 mm, 3.0 µm). The mobile phase for the 37 

RP chromatography consisted of 10 mM aqueous ammonium acetate containing 38 

acetonitrile (1%, v/v) and formic acid (0.1%, v/v, pH 3, eluent A) and acetonitrile 39 

containing formic acid (0.1%, v/v, eluent B). The flow rate was set from 0 to 10 min to 40 

500 µL/min and from 10 to 13.5 to 800 µL/min using the following gradient: 0-1 min 41 

hold 99% A, 1-10 min to 1% A, 10-11.5 min hold 1% A, and 11.5-13.5 min hold 99% 42 

A. The gradient elution for HILIC was performed using aqueous ammonium acetate 43 

(200 mM, eluent C) and acetonitrile containing formic acid (0.1%, v/v, eluent D). The 44 

flow rate was set to 500 µL/min using the following gradient: 0-1 min hold 2% C, 1-5 45 

min to 20% C, 5-8.5 min to 60% C, 8.5-10 min hold 60% C, and 10-12 min hold 2% C. 46 

Injection volume was set to 1 µL for all samples. For preparation and cleaning of the 47 

injection system, isopropanol:water (90:10, v/v) was used. The following settings were 48 

used: wash volume, 100 µL; wash speed, 4000 nL/s; loop wash factor, 2. Column 49 

temperature for every analysis was set to 40°C, maintained by a Dionex UltiMate 3000 50 

RS analytical column heater. HESI-II source conditions were as follows: ionization 51 

mode, positive or negative; sheath gas, 60 AU; auxiliary gas, 10 AU; sweep gas, 3 AU; 52 

spray voltage, 3.5 kV in positive and -4.0 kV in negative mode; heater temperature 53 

320°C; ion transfer capillary temperature, 320°C; and S-lens RF level, 50.0. Mass 54 

spectrometry for untargeted metabolomics was performed according to a previously 55 

optimized workflow [2, 6]. The settings for full scan (FS) data acquisition were as 56 

follows: resolution 140,000 at m/z 200; microscan, 1; automatic gain control (AGC) 57 

target, 5e5; maximum injection time, 200 ms; scan range, m/z 50–750; spectrum data 58 

type; centroid. All samples were analyzed in randomized order, to avoid potential 59 

analyte instability or instrument performance to confound data interpretation. 60 

Additionally, one QC injection was performed every ten samples to monitor batch 61 
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effects, as described by Wehrens et al. [7]. TF Xcalibur software version 3.0.63 was 62 

used for data handling.63 
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Figure S1. Results of statistical evaluation using one-way ANOVA and Welch’s two 

sample t-test comparing total feature count of each group in rat and human urine 

samples. Analysis was done using reversed-phase (RP) chromatography in positive 

(pos) and negative (neg) ionization mode. A = rat urine pos, B = rat urine neg, C = 

human urine pos, D = human urine neg. ns not significant; * p < 0.05; ** p < 0.01; *** p 

< 0.001; **** p < 0.0001. 
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Figure S2. Histogram of the total feature count extracted for each preparation and their 

respective reproducibility evaluated by CV (coefficient of variation) in rat urine (A) and 

human urine (B) using reversed-phase (RP) chromatography in positive (pos) and 

negative (neg) ionization mode. Black or gray filled area indicates the number of 

features with a CV <20% 
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Figure S3. Heat map of the mean peak areas of internal standards (log 10 

transformed) for each preparation in rat urine (A) and human urine (B) using reversed-

phase (RP) chromatography in positive or negative ionization mode depending on 

internal standard.  
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ABSTRACT:  
Introduction Untargeted metabolomics studies are expected to cover a wide range of 

compound classes with high chemical diversity and complexity. Thus, optimizing (pre-

)analytical parameters such as the analytical liquid chromatography (LC) column is 

crucial. The selection of the column depends amongst others on the investigated 

biological matrix, the sample preparation, and the study purpose.  
Objectives The current investigation aimed to compare six different analytical 

columns. First, by comparing the chromatographic resolution of selected compounds. 

Second, on the outcome of an untargeted toxicometabolomics study using pooled 

human liver microsomes, rat plasma, and rat urine as matrices.  
Methods Separation and analysis was performed using three different reversed-phase 

(Phenyl-Hexyl, BEH C18 and Gold C18), two hydrophilic interaction chromatography 

(HILIC) (ammonium-sulfonic acid and sulfobetaine), and one porous graphitic carbon 

(PGC) columns coupled to high-resolution mass spectrometry (HRMS). Their impact 

was evaluated based on the performance of the columns and the size of feature count, 

amongst others.  

Results All three RP columns showed a similar performance, whereas the PGC 

column was superior compared to both HILIC columns at least for polar compounds. 

Comparing the size of feature count across all datasets, most features were detected 

using the Phenyl-Hexyl or sulfobetaine column.  

Conclusion The results underlined that the outcome of this untargeted 

toxicometabolomic study LC-HRMS metabolomic study was highly influenced by the 

analytical column, with the Phenyl-Hexyl or sulfobetaine column being the most 

suitable. However, the column selection may also depend on the investigated 

compounds as well as on the investigated matrix. 
 

Keywords:  
untargeted metabolomics, LC-HRMS, reversed-phase columns, hydrophilic interaction 

chromatography columns, quality assurance  
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1. Introduction 
Metabolomics studies can in general be divided into untargeted and targeted 

approaches. Whereas targeted metabolomics aims to detect and quantify specific 

metabolites of known structures and pathways, untargeted metabolomic studies, as a 

global approach, aim to detect as many metabolites as possible (Agin et al., 2016; 

Barnes et al., 2016a). Due to several advantages, liquid chromatography (LC) and 

mass spectrometry (MS) are meanwhile the major techniques used in metabolomics 

(Naz et al., 2014; Yao et al., 2019). The impact of LC is mainly influenced by the used 

stationary phase amongst others (Harrieder et al., 2022; Liu and Locasale, 2017). 

While normal- or hydrophilic interaction-phase chromatography (HILIC) columns are 

often used for retention of polar molecules such as amino acids or sugars, reversed-

phase (RP) columns are used for non to mid polar molecules such as fatty acids or 

lipids. Thus, a broad range of compounds can be covered by using both types. 

However, as several stationary HILIC and RP phases are available, their choice is 

crucial, which was already discussed extensively elsewhere (Diamantidou et al., 2023; 

Elmsjo et al., 2018; Si-Hung et al., 2017; Sonnenberg et al., 2019; Wernisch and 

Pennathur, 2016). Not only the different stationary phases but also the geometry and 

particle size of columns can affect the outcome of metabolomic studies. 

Most of the published studies on analytical column comparison are within the field of 

targeted metabolomics, investigated metabolite libraries with and without matrix, or 

developed a scoring approach for the comparison of different column types. To date, 

there are only a few studies available that did a column comparison within the field of 

untargeted metabolomics. One main issue in untargeted analysis are the 

heterogenous physicochemical properties of analytes, which are often even unknown 

beforehand. Thus, a more universal separation (and detection) system should be used 

(Harrieder et al., 2022; van de Velde et al., 2020). Multiple chromatographic methods 

are often used to enable a broad analyte coverage (Barnes et al., 2016a; Harrieder et 

al., 2022). Additionally, in order to ensure correct interpretation of differences in specific 

metabolites and for appropriate biological interpretation, a reliable and suitable overall 

approach is required (Naz et al., 2014).  

Therefore, the aim of this study was to compare of six different stationary phases, three 

reversed-phase, two hydrophilic interaction, and one porous graphitic carbon phase. 

First, by comparing the chromatographic resolution of selected compounds.  Second, 

their impact the outcome of an untargeted toxicometabolomics study (Hemmer et al., 
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2022). The (toxico-)metabolome of three different biological matrices should be 

investigated after exposure to the model compound PCYP. Analytical columns were 

evaluated based on their performance (chromatographic resolution of analytes) the 

number and quality of detected features after HRMS analysis. Finally, the study should 

show, which combination of columns may be suitable for which matrix in future studies.  

 

2. Experimental section 

2.1. Sample preparation and analysis of selected compounds 
Various mixtures consisting of different compound classes such as amino acids, 

biogenic amines, carboxylic acids, fatty acids, sugars, and others were analyzed at a 

concentration level of 50 µg/mL using the six columns Phenyl-Hexyl, Gold C18 (Gold), 

BEH C18 (BEH), ammonium-sulfonic acid (Nucleodur), sulfobetaine (ZicHILIC), and 

porous graphitic carbon particle (PGC) (Table S1). Further information on sample 

preparation of the neat standard mixtures can be found in the Supplementary 

Information. 

 

2.2. Sample handling of datasets.  
Study design, sample collection, sample preparation for pHLM, rat blood plasma, and 

rat urine were as described by Hemmer et al. (Hemmer et al., 2022). pHLM incubations 

were performed using a final PCYP concentration of 0 (blank group) or 50 µM (PCYP 

group) and pHLM. For each group, 5 replicates were prepared. Urine and plasma 

samples were collected from five control and five rats having PCYP administered. For 

each matrix and rat, three replicates were prepared and the corresponding 50 µL of 

them were added together, resulting in 150 µL per rat. Pooled quality control samples 

(QC group) were prepared for each matrix by transferring 50 µL of each sample into 

one MS vial. QC samples were used for optimization of peak-picking parameters, 

evaluating of column performance, and identification of significant features, as 

described in Experimental Section of Supplementary Information. QC samples, each 

sample of control rats and PCYP rats, were aliquoted into six separate MS vials and 

stored until use at -80 °C. For each run with each column, one of the corresponding 

vials was retrieved from the freezer and measured. Thus, the same conditions were 

given for all columns. 
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2.3. LC-HRMS apparatus  
Analyses were performed using a Thermo Fisher Scientific (TF, Dreieich, Germany) 

Dionex UltiMate 3000 RS pump consisting of a degasser, a quaternary pump, and an 

UlitMate Autosampler, coupled to a TF Q Exactive Plus equipped with a heated 

electrospray ionization (HESI)-II source according to previous published studies 

(Hemmer et al., 2022; Manier et al., 2019a; Manier et al., 2019b). Performance of the 

columns and the mass spectrometer was tested before each batch using a test mixture 

described in the Experimental Section in the Supplementary Information. The used 

columns and their corresponding flow rates, gradients, and mobile phases are shown 

in Table 1. More details about LC-HRMS analysis can be found in the Supplementary 

Information.  

 

2.4. Data processing and statistical analysis  
Data processing for untargeted metabolomics was performed in a R environment 

according to previously published workflows (Hemmer et al., 2021; Manier et al., 

2019a). Details can be found in the Supplementary Information, the R scripts on GitHub 

(https://github.com/sehem/Columns_Metabolomics)  and the mzXML files are 

available via Metabolights (study identifier MTBLS5082). The total feature count was 

used to evaluate the number of features detected by each analysis. Therefore, all 

adducts, artifacts, and isotopes annotated by CAMERA were removed (Kuhl et al., 

2012). Subsequently, the QCs of each analysis were considered, since all features 

present in QCs should also be present in experimental groups. For the reproducibility 

of the features, the coefficient of variation (CV) was determined from the peak areas 

of the QCs. Significant changes of features between control and PCYP respectively 

blank and PCYP group were assumed after Welch’s two-sample t-test and Bonferroni 

correction for pHLM (Broadhurst and Kell, 2006), p-value < 0.01 for urine, and p-value 

< 0.05 for plasma. Principal component analysis (PCA) and hierarchal clustering were 

used to investigate patterns in the datasets. For pHLM, t-distributed stochastic 

neighborhood embedding (t-SNE) (van der Maaten, 2014; van der Maaten and Hinton, 

2008) were used in addition to PCA. Names for features were adopted from XCMS 

using “M” followed by rounded mass and “T” followed by the retention time in seconds. 

After visual inspection of the extracted ion chromatograms (EIC) of significant features, 

based on the peak shape quality, the significant features were divided into true and 

false features (Hemmer et al., 2020).  

https://github.com/sehem/Columns_Metabolomics
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Table 1. O
verview

 of the used colum
ns and their corresponding flow

 rates, gradients, and m
obile phases. 

C
olum

n 
Phenyl-H

exyl  
G

old  
B

EH
  

N
ucleodur 

ZicH
ILIC

 
PG

C
 

C
hem

istry 
Phenyl/hexyl 

C
18  

C
18  

Am
m

onium
-sulfonic acid 

Sulfobetaine 
Porous graphitic 
carbon particle 

Phase 
Spherical, solid core, 
ultrapure silica 

Spherical, fully 
porous, 
ultrapure silica 

Ethylene bridged 
hybrid (BEH

) 
particle 
technology 

Fully porous particles 
Fully porous 
particles 

Specification 
Therm

o Fisher Accucore 
Phenyl-H

exyl colum
n  

Therm
o Fisher 

H
ypersil G

old 
C

18 colum
n  

W
aters AC

Q
U

ITY 
U

PLC
 BEH

 C
18  

colum
n  

M
acherey-N

agel H
ILIC

 
N

ucleodur colum
n  

M
erck SeQ

uant 
ZIC

 H
ILIC

  
M

erck PG
C

 Supel TM 
C

arbon LC
  

D
im

ensions 
100 m

m
 x 2.1 m

m
, 2.6 

µm
 

100 m
m

 x 2.1 
m

m
, 1.9 µm

 
100 m

m
 x 2.1 

m
m

, 1.7 µm
 

125 m
m

 x 3 m
m

, 3 µm
 

150 m
m

 x 2.1 
m

m
, 3 µm

 
150 m

m
 x 2.1 m

m
, 

2.7 µm
 

Flow
 rate 

500 µL/m
in (1-10 m

in); 800 µL/m
in (10-13.5 m

in) 
500 µL/m

in 

G
radient 

0-1m
in 99 %

 A, 1-10 m
in to 1 %

 A, 10-11.5 m
in hold 1 %

 A, 
11.5-13.5 m

in hold 99 %
 A 

0-1 m
in 2 %

 A, 1-5 m
in to 20 %

 A, 5-8.5 
m

in to 60 %
 A, 8.5-10 m

in hold 60 %
 A, 10-

12 m
in hold 2 %

 A 

0-1m
in 99 %

 A, 1-10 
m

in to 1 %
 A, 10-

11.5 m
in hold 1 %

 A, 
11.5-13.5 m

in hold 
99 %

 A 

M
obile 

phase 

Eluent A: aqueous 
am

m
onium

 form
ate (2 

m
M

), acetonitrile (1 %
, 

v/v) and form
ic acid (0.1 

%
, v/v, pH

 3) 
Eluent B: am

m
onium

 
form

ate solution (2 m
M

) 
in acetonitrile:m

ethanol 
(1:1, v/v), w

ater (1 %
, 

v/v), and form
ic acid (0.1 

%
, v/v) 

Eluent A: 10 m
M

 aqueous 
am

m
onium

 acetate containing 
acetonitrile (1 %

, v/v) and form
ic 

acid (0.1 %
, v/v, pH

 3) 
Eluent B: acetonitrile containing 
form

ic acid (0.1 %
, v/v) 

Eluent A: aqueous am
m

onium
 acetate (200 

m
M

) 
Eluent B: acetonitrile containing form

ic acid 
(0.1 %

, v/v). 

Eluent A: w
ater 

containing 
difluoroacetic acid 
(0.1 %

, v/v) 
Eluent B: acetonitrile 
containing 
difluoroacetic acid 
(0.1 %

, v/v). 
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3. Results and discussion 
An overview of the workflow used in this study is given in Figure 1. Since the aim of 

this study was to evaluate the influence of different analytical LC columns on the 

resolution of selected endogenous compounds and the results of untargeted 

metabolomics analyses, only columns were changed and other parameters remained 

unchanged. However, eluents and gradients had to be adopted and were selected 

according to the column types and as used in other studies (Hemmer et al., 2022; 

Manier et al., 2019b; Merck, 2019, 2020; Michely and Maurer, 2018). In addition, the 

choice of mobile phases was evaluated by the detectability of different compound 

classes using a system suitability test mixture described in the Experimental Section 

of the Supplementary Information. Sample preparations and all other LC-HRMS 

parameters such as column oven temperature, and MS settings were identical for all 

columns according to previously published studies (Hemmer et al., 2022; Manier et al., 

2019b).  

The Phenyl-Hexyl and Nucleodur columns were already used in previous studies and 

therefore used as reference for RP and HILIC analyses, respectively (Hemmer et al., 

2020; Hemmer et al., 2021; Manier et al., 2019b; Manier and Meyer, 2020; Manier et 

al., 2020a; Manier et al., 2020b). However, since C18 columns are the most common 

RP columns (Harrieder et al., 2022), two differently linked C18 stationary phases were 

chosen over C4 or C8 phases. Criscuolo et al. showed that not all C18 columns are 

efficient for lipid separation and not only the chemistry of the stationary phase, but also 

the different types of particles or their sizes must be considered (Criscuolo et al., 2019). 

The Gold column, using spherical fully porous particles, was often used for screening 

and metabolomics methods (Imbert et al., 2021; Liu et al., 2021; Thevenot et al., 2015). 

The last of the selected RP columns, the BEH, consisted of a C18 modification with 

ethylene bridged hybrid (BEH) particles. It is expected to be a universal column with a 

wide pH range and was also used in other metabolomics studies previously (Gika et 

al., 2008; Tobin et al., 2021; Zhao et al., 2018). 

Concerning HILIC, different stationary phase chemistries such as aminopropyl silane, 

alkyl amide, silica, or sulfobetaine groups are available. Amide or amino columns are 

one of the most frequently used HILIC columns. However, since these columns 

showed a reduced lifetime at elevated pH values, they were not included in this study 

(Harrieder et al., 2022). Instead, a sulfobetaine (ZicHILIC) column was selected, since 

it was often used in other metabolomics studies and showed suitable separation by its 
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zwitterionic stationary phase (Abdalkader et al., 2021; K Trivedi et al., 2012; Steuer et 

al., 2020). The in-house HILIC reference column, an ammonium-sulfonic acid 

(Nucleodur), has also a zwitterionic functional group.  

According to the manufacturer, the porous graphitic carbon (PGC) column offers high 

column efficiency for polar compounds and improved retention of compounds normally 

only be retained with HILIC (Merck, 2019). PGC is also expected to show high 

robustness regarding the eluents, pH range, and pressure. Therefore, the PGC column 

was grouped together with the two HILIC columns but in contrast, PGC should 

demonstrate elevated stability with respect to pH value and allow retention of polar 

molecules without HILIC conditions (Bapiro et al., 2016; Hanai, 2003; Knox et al., 2006; 

Pereira, 2010). The performance of each column was tested before each run using the 

system suitability test mixture. In addition, the columns were equilibrated before each 

analysis as described in their care and use instructions.  

Besides selected endogenous compounds such as amino acids, fatty acids, and 

sugars, three different datasets were generated and investigated by analyzing the 

following matrices. 1) pHLM incubations, a well-characterized in vitro model, which is 

commonly used in drug metabolism studies, since its ease of use and low variability 

(Asha and Vidyavathi, 2010; Richter et al., 2017). 2) Rat urine, a matrix to reflect the 

complexity of an in vivo model and which is rich in hydrophilic substances (Khamis et 

al., 2017; Wagmann et al., 2022). 3) Rat plasma, as a more complex matrix covering 

a broad spectrum of endogenous compound classes compared to urine.  

 

3.1. Resolution of selected endogenous compounds  
Artificial mixtures of 34 compounds from classes such as amino acids, fatty acids, and 

sugars, were investigated to conclude, which column might be most suitable for which 

compound class. The individual compounds and analytical results are shown in Table 

S1. The Phenyl-Hexyl and BEH columns exhibited quite similar behavior in terms of 

compound retention and retention time. In contrast, analytes eluted later by using the 

Gold column. With regard to mid- and non-polar substances, both arachidic acid and 

vitamin D2 were sufficiently retained using the Gold column in comparison to the 

Phenyl-Hexyl column. Regarding the HILIC columns, amino acids, carboxylic acids, 

and sugars could be sufficiently separated using both Nucleodur and ZicHILIC. 

Compared to the Nucleodur column, more amino acids and the carboxylic acids citrate 

and succinate were separated using the ZicHILIC column. With respect to biogenic 
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amines, noradrenalin could not be retained by using any HILIC column. The PGC 

column was the only one of the six columns capable to retain the amino acid threonine. 

With respect to mid- and non-polar compounds, the PGC column was able to separate 

fewer substances than the two HILIC columns. 

In summary, separation and retention of polar substances such as amino acids, 

carboxylic acids, biogenic amines, and sugars, ZicHILIC showed the best performance 

amongst all six columns, followed by Nucleodur. PGC was only able to separate and 

retain amino acids used in this study. Concerning the mid- and non-polar compounds, 

most of them were separated using the Gold column followed by the BEH and Phenyl-

Hexyl columns. Compared to the Phenyl-Hexyl column, the used C18 columns are more 

suitable for separation of long-chain fatty acids, since Phenyl-Hexyl columns are 

mainly designed to retain aromatic hydrocarbons. 

 

3.2. Column performance 
The performance of each column in terms of separation and chromatographic 

sensitivity (signal to noise ratio) was evaluated based on the peak-picking parameters 

obtained using QC samples (Table S2). Chromatographic peak width is important 

since narrow chromatographic peaks usually improve chromatographic sensitivity but 

in turn may reduce detection probability in slow mass analyzers. Broader peak shape 

usually leads to lower peak height (lower chromatographic sensitivity) and thus lower 

probability for being e.g., selected for fragmentation in data dependent approaches 

(Criscuolo et al., 2019). To evaluate the performance of each column, the minimum 

peak width was used to calculate peak capacity. Peak capacity is defined as the 

maximum number of peaks that can be chromatographically separated with a unit 

resolution within a retention time window using gradient elution and is directly 

proportional to the average peak resolution (Gilar et al., 2004; Wang et al., 2006). For 

this purpose, Equation 1 was used to obtain the peak capacity Pc from the elution time 

tg and the average peak width at baseline W (Neue, 2005). 

 

!" = $ +	 '!( (1) 

 

Overall, the highest peak capacity for all three matrices was found after using PGC 

(Table S2). Compared to the HILIC columns, only slightly differences were observed 

between the three RP columns.  
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The sensitivity of a system relates to the detector signal and the ability of peak to be 

chosen for MS/MS (Criscuolo et al., 2019). For evaluation of the sensitivity of each 

column, signal-to-noise threshold (snthresh) was used, which is defined as the ratio 

between the peak height from analytes to the peak height of background noise 

(Coleman et al., 2001). The highest snthresh ratio overall was shown using Gold and 

PGC column after analyzing rat urine and plasma (Table S2). For analyzing pHLM, 

Nucleodur showed the highest snthresh, whereas no differences were observed after 

using RP columns. 

In addition to peak capacity and snthresh, the total ion chromatograms (TIC) were 

visually evaluated. The TIC is described as the sum of all separated ion currents 

carried by the ions of different m/z contributing to a complete mass spectrum or in a 

specific m/z range of a mass spectrum (Murray et al., 2013). TICs for each column in 

both ionization modes after analyzing pHLM, rat urine, and rat plasma are shown in 

Figure S1-6. Both C18 columns showed no obvious difference after visual inspection. 

The peak shapes improved after approximately 200 seconds, which may indicate that 

the C18 columns required an extended equilibration phase compared to the Phenyl-

Hexyl column. For the HILIC columns, the Nucleodur and PGC columns showed a 

similar behavior. Among the HILIC columns, the ZicHILIC showed the visually best 

TIC.  

 
3.3. Feature count  
Features are chromatographic peaks detected by an algorithm and described by their 

retention time and their m/z (Mahieu et al., 2014). The size of the detected feature 

count is crucial for a sufficient description of e.g., the metabolome. Therefore, it can be 

assumed that the more features were detected after peak picking, the better the 

metabolome of the biosample was analytically described. However, it should be 

considered that the size of feature count can be influenced by non-matrix dependent 

parameters such as artifactual interference. These are peaks that originated from 

contaminants, chemical noise, and bioinformatic noise. In contrast, biologically derived 

features originated from metabolites of the analyzed biological sample. Therefore, a 

method that detects the maximum number of features is not always the method that 

provides the greatest metabolome coverage (Mahieu et al., 2014). In this study, the 

aim was to identify columns, that provide a sufficient metabolic coverage in term of 

number of feature count. In addition, the reproducibility of the features was also 

assessed by CV<10%, to exclude possible artifactual interference. Figure 2 shows the 
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feature count detected after peak picking (without isotopes and adducts detected by 

CAMERA) and their respective reproducibility evaluated by CV after analyzing all three 

matrices by using the six analytical columns and MS positive and negative ionization 

mode.  

The feature count differed widely amongst the columns. The Phenyl-Hexyl and 

ZicHILIC columns allowed detection of most features across all three datasets. The 

urine metabolome, currently described by about 3,100 metabolites (Bouatra et al., 

2013) seemed to be best covered after analysis using the BEH (1,960 features) and 

ZicHILIC columns (2,092 features) in positive mode. In contrast, the plasma 

metabolome was best described by the Phenyl-Hexyl and ZicHILIC columns. Since 

there are no data available on the number of metabolites in the plasma metabolome, 

the serum metabolome database was used as reference, which contains 4,651 small 

molecule metabolites (Psychogios et al., 2011). In comparison to the two other HILIC 

columns, significantly fewer features were detected in urine and plasma samples using 

the PGC. Reasons for this might be an inappropriate sample preparation, especially 

regarding the reconstitution solvent, or other LC parameters that were not further 

optimized in this study. Same patterns were observed for the reproducibility evaluated 

by CV <10%. Again, both columns Phenyl-Hexyl and ZicHILIC show the highest 

number of reproducible features over all three matrices. 

However, it should be considered that not all detected features are required to be of 

biological origin (Mahieu et al., 2014). Since the same samples of a dataset were 

always used for all six columns in this study, the number of artifactual features in the 

different analytical methods should be as low as possible and comparable. 

Contaminations originating from the samples themselves or from the sample 

processing can be excluded for the most part. However, differences in contamination 

may have occurred, for example due to the different eluents or stationary phases in 

the individual methods. 

 

3.4. Univariate and multivariate statistic  
Univariate statistics aimed to identify those features that were significantly altered 

between control and experimental groups (Barnes et al., 2016b). They were done 

using Welch’s two-sample t-test. An overview of all detected significant features can 

be found in Table S3 (sheet 1-3) in the Supplementary Information. No significant 

features were found after analyzing pHLM using MS in negative ionization mode 
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independent from the used column. In addition, no significant features were found after 

analyzing rat urine by PGC and MS in negative mode as well as after analyzing rat 

plasma by the Gold column and MS in negative mode as well as PGC and MS in 

positive and negative mode.  

Nevertheless, the columns were also evaluated according to the peak shape quality of 

the significant features. Since the EIC of some significant features turned out to be 

false features, they were divided into true and false features based on the peak shape 

quality of their EIC according to the criteria used by Hemmer et al. (Hemmer et al., 

2020). Therefore, the ratio of false vs true features was calculated (Table S4). Over all 

three datasets, the Phenyl-Hexyl column and the ZicHILIC showed the lowest ratio 

followed by Gold and Nucleodur columns.  

Besides univariate statistics, the different columns were also evaluated regarding the 

results of multivariate statistics to identify the largest changing features and specific 

signatures in the data. Since multivariate statistics can only be performed if there were 

at least two significant features, no data were available for datasets containing no or 

only one significant feature. In this study, PCA and hierarchical clustering were used 

to discover differences between the columns. The figures for the different datasets can 

be found in the Supporting Information (Figure S7-20). It was shown that groups blank 

vs PCYP and control vs PCYP, were distinct from each other independent from the 

used column and investigated matrix. Since the results of the variance of the first 

principal component indicated that the pHLM datasets were highly linear (Figure S7-

8), the patterns in pHLM dataset were evaluated using t-SNE (van der Maaten and 

Hinton, 2008). Results of the t-SNEs (Figure S13-14) showed similar cluster patterns 

for all columns. Regarding hierarchical clustering, there was in general a high distance 

between samples from blank or control group to those from PCYP and QC group 

(Figure S15-20), again independent from the used columns and investigated matrix. 

Therefore, it can be assumed that with respect to the multivariate statistics, there 

should be no significant influence of the used column on its outcome. After separation 

using PGC, no significant features were found in the plasma data, and thus, no 

multivariate statistics were performed. One explanation for this might be the different 

compositions of plasma and urine. While lipids and similar compounds predominate in 

plasma, more polar substances are present in urine (Bouatra et al., 2013; Psychogios 

et al., 2011). The PGC column should be much better suited for polar substances, such 

as those found in urine. 



 13 

 

3.5. Summary of column comparison 
Table 2 provides a brief summary of the results described above for each column. With 

respect to the different matrices, the Phenyl-Hexyl column was well suited for all three 

matrices, concerning both the overall number of features and the reproducibility of 

them. In addition, the Phenyl-Hexyl column exhibits a low false feature rate compared 

to C18 columns. Compared to the Phenyl-Hexyl column, the two C18 columns performed 

similarly. BEH showed significantly more features in urine compared to both other 

columns.  

Regarding the different matrices, the ZicHILIC column showed the best performance 

for analysis of urine and pHLM represented by e.g., the lowest false feature rate. 

Compared to the other two HILIC columns, the lowest number of features were 

detected after PGC separation. One explanation for this might be, that more analytical 

parameters need to be optimized for this column, such as eluents, gradient, column 

oven temperature, amongst others. However, this was not the aim of the study, thus 

optimizations are still needed for this column. Another explanation might be the 

composition of the metabolites in the different matrices. Compared to plasma, urine 

contains more polar compounds, which can be better separated by PGC (Bouatra et 

al., 2013; Psychogios et al., 2011). Nevertheless, PGC showed better peak capacity 

and snthresh than the HILIC columns. In terms of compound classes, the PGC column 

performed well for separation of amino acids. The ZicHILIC and Nucleodur column 

were equally suitable for the separation of polar substances such as amino acids or 

sugars.  

In summary, even though the chemistry of the stationary phase remains the same, 

there are significant differences between the investigated columns. Results of this 

study revealed that the LC columns should be adapted to both the matrix and 

metabolites being investigated.  

 

3.6. Limitations of the study 
The present study provides only a small insight into how different analytical columns 

can affect the outcome of an untargeted metabolomics study. The study also used only 

a limited selection from a huge pool of columns and the dimensions of the different 

columns were not identical. It is known that the column geometry and the particle size 

can play a crucial role (Criscuolo et al., 2019).  
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As preliminary experiments had shown that not every eluent was suitable for all 

columns, eluents could not be kept consistent and had to be slightly adopted. Since 

the study was primarily based on an untargeted approach, selected endogenous 

compounds were still used to detect any differences between the columns with respect 

to different compound classes. Nevertheless, it seems to be necessary to adapt the 

analytical method to the research question. Does the researcher want to detect as 

many metabolites as possible or does is the focus on certain compound classes? Does 

the researcher want to keep the analytical setup the same for all investigated matrices 

or does the researcher chose the more time-consuming and cost-intensive way and 

evaluate a suitable analytical method for each matrix? 

4. Conclusion 
Using LC-(MS), the choice of analytical columns plays a crucial role since the 

metabolome includes many compound classes with high chemical diversity and 

complexity. Thus, the influence of different reversed-phase, HILIC, and PGC columns 

was investigated on the outcome of an untargeted metabolomic study using three 

different matrices. Evaluation criteria included e.g., peak capacity, size of feature 

count, and results of multivariate statistics. 

The study showed that a combination of BEH and ZicHILIC might be a suitable choice 

for analysis of urine samples and a combination of Phenyl-Hexyl and ZicHILIC might 

be suitable for analysis of plasma samples. Over all three datasets, the best results 

were obtained by using a combination of Phenyl-Hexyl and ZicHILIC. However, 

concerning the use of Phenyl-Hexyl column for reversed-phase, it should be 

considered that mainly non-polar metabolites with aromatic hydrocarbon structure can 

be retained, and that e.g., fatty acids may not retain. Considering the results of this 

study, it can be concluded that if researchers want to achieve the best possible results, 

they should test and adapt the analytical method for each matrix and set of investigated 

substances. 
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Figure 1. Overview of the analytical workflow used in this study. Sample types were 

prepared with different preparation methods; samples were then separated on different 

reversed-phase and hydrophilic interaction-phase columns; mass spectrometry 

acquisition was performed in positive and negative ionization mode; data processing 

and evaluation was done using an in-house R script based on XCMS; columns were 

compared in terms of their different outcomes. (Created with BioRender.com) 
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Figure 2. Bar chart showing feature count detected after peak picking and their 

respective reproducibility evaluated by CV (coefficient of variation) in pooled human 

liver microsomes (HLM), rat urine, and rat plasma using different reversed-phase (A) 

and HILIC (B) columns. pos = positive, neg = negative, BEH = BEH C18, Gold = 

Hypersil Gold C18, Nucleodur = ammonium-sulfonic acid, ZicHILIC = sulfobetaine, PGC 

= porous graphitic carbon.  
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Table 2. Summary of study factors and the respective results from this study. Each 

column is compared within their chromatographic technique. BEH = BEH C18, Gold = 

Hypersil Gold C18, Nucleodur = ammonium-sulfonic acid, ZicHILIC = sulfobetaine, PGC 

= porous graphitic carbon, AA = amino acids, CA = carboxylic acids, BA = biogenic 

amines, FA = Fatty acids, H = pooled human liver microsome, U = rat urine, P = rat 

plasma. 

Parameter Reversed-phase columns Hydrophilic interaction columns 
Phenyl-
Hexyl  

BEH Gold Nucleodur ZicHILIC PGC 

High 

chromatographic 

resolution 

Short FA, 

Steroids 
Long FA 

FA, 

steroids 

AA, BA, 

sugars 

AA, BA, 

CA, sugars 
AA 

Column 

performance (peak 

width, peak 
capacity, snthresh) 

High Low High Low Low High 

Feature count High Low Low Low High Low 

Reproducibility 

feature count 
High Low Low Low High Low 

False feature rate Low High Low High Low Low 

Recommended 

matrix 
H, U, P H, U H, U P H, U, P H 
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1. Experimental section 
1.1. Material and chemicals 
PCYP hydrochloride was provided by the State Bureau of Criminal Investigation 

Schleswig-Holstein (EU project ADEBAR plus, Kiel, Germany) for research purposes. 

The chemical purity of >93% and identity of the compound were verified by MS and 

nuclear magnetic resonance analysis.  

25-HO Cholesterol, adenosine 5’ diphosphate, ammonium formate, ammonium 

acetate, arachidic acid, ascorbate, carnosine, chloroform, cholesteryl oleate, citrate, 

cortisone, creatinine, creatinine-d3, D-fructose, D-glucose, D-glucose-d7, D-ribose, 

dipotassium phosphate, dopamine, formic acid, glutamine, glutaminic acid, guanosine 

5’ triphosphate, histamine, inosine, isocitrate dehydrogenase, isocitrate, kynurenine, 

lauric acid, lysin, magnesium chloride, maltose, NAD, noradrenalin, palmitic acid-d31, 

pregnenolone, proline, retinol, riboflavin, serotonin, spermidine, succinate, superoxide 

dismutase, threonine, tripotassium phosphate, tryptophane, and vitamine D2 were 

obtained from Merck (Darmstadt, Germany). Acetonitrile, ethanol, methanol (all LC-

MS grade), and NADP-Na2 were from VWR (Darmstadt, Germany). L-Tryptophan-d5 

was obtained from Alsachim (Illkirch-Graffenstaden, France). 1-Palmitoyl-d9-2-

palmitoyl-sn-glycero-3-PC and prostaglandin-E3-d9 were from Cayman Chemical 

(Michigan, USA). Difluoroacetic acid (DFA) was obtained from Acros organics (Geel, 

Belgium). Water was purified with a Millipore filtration unit (18.2 W x cm water 

resistance). pHLM (20 mg microsomal protein x mL-1, 360 pmol total CYP/mg, 26 

donors) were obtained from Corning (Amsterdam, The Netherlands). After delivery, 

pHLM were thawed at 37 °C, aliquoted, snap-frozen in liquid nitrogen, and stored at -

80 °C until use. 

1.2. Sample preparation and analysis of selected compounds 
Various mixtures consisting of different compound classes such as amino acids, 

biogenic amines, carboxylic acids, fatty acids, sugars, and others were analyzed at a 

concentration level of 50 µg/mL using the six columns (Table S1). Amino acids, 

carboxylic acids, biogenic amines, polyamines, nucleotides, coenzymes, and vitamins 

were dissolved in a water/methanol (95:5, v/v) mixture, sugars in Millipore water, and 

fatty acids, lipids, steroids, and hormones in chloroform/methanol (1:1, v/v) mixture. 
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1.3. Performance test of each column using a system suitability test mixture 
The performance of each column was tested before each measurement. For this 

purpose, a test mixture was used, which contained the following analytes: Glucose-d7 

(10 mg/L), creatinine-d3 (1 mg/L), tryptophane-d5 (10 mg/L), cortisol (10 mg/L), 

pregnenolone (10 mg/L), prostaglandin-E3-d9 (10 mg/L), 1-palmitoyl-d9-2-palmitoyl-sn-

glycero-3-PC (10 mg/L), and palmitic acid-d31 (20 mg/L). The analytes were spiked in 

methanol for the phenyl-hexyl column. For the Hypersil Gold C18 (Gold), BEH C18 

(BEH), ammonium-sulfonic acid (Nucleodur), and sulfobetaine (ZicHILIC) columns, 

analytes were spiked in acetonitrile, and for porous graphitic carbon (PGC) column 

analytes were spiked in water containing DFA (0.1 %, v/v). 

 

1.4. Additional information about the LC-HRMS apparatus 
For preparation and cleaning of the injection system, isopropanol:water (90:10, v/v) 

was used. The following settings were used: wash volume, 100 µL; wash speed, 4000 

nL/s; loop wash factor, 2. Column temperature for every analysis was set to 40 °C, 

maintained by a Dionex UltiMate 3000 RS analytical column heater. Injection volume 

was set to 1 µL for all samples, except for samples of the compound classes. HESI-II 

source conditions were as follow: ionization mode, positive or negative; sheath gas, 60 

AU; auxiliary gas, 10 AU; sweep gas, 3 AU; spray voltage, 3.5 kV in positive and -4.0 

kV in negative mode; heater temperature 320 °C; ion transfer capillary temperature, 

320 °C; and S-lens RF level, 50.0. Mass spectrometry for untargeted metabolomics 

was performed according to a previously optimized workflow (Manier et al., 2019a; 

Manier et al., 2019b). The settings for full scan (FS) data acquisition were as follows: 

resolution 140,000 at m/z 200; microscan, 1; automatic gain control (AGC) target, 5e5; 

maximum injection time, 200 ms; scan range, m/z 50–750; spectrum data type; 

centroid. All study samples were analyzed in randomized order, to avoid potential 

analyte instability or instrument performance to confound data interpretation. 

Additionally, one QC injection was performed every five samples to monitor batch 

effects, as described by Wehrens et al.  (Wehrens et al., 2016). Significant features 

were subsequently identified using parallel reaction monitoring (PRM). Settings for 

PRM data acquisition were as follow: resolution, 35,000 at m/z 200; microscans, 1; 

AGC target, 5e5; maximum injection time, 200 ms; isolation window, m/z 1.0; collisions 

energy (CE), 10, 20, 35, or 40 eV; spectrum data type, centroid. The inclusion list 

contained the monoisotopic masses of all significant features, and a time window of 
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their retention time ± 60 s. The injection volume for the different mixture of compound 

classes was set to 2 µL and MS was carried out in full scan mode with subsequent 

data-dependent acquisition of MS2 (ddMS2) in positive and negative ionization mode. 

Following FS settings were used: resolution 35,000 at m/z 200; microscan, 1; AGC 

target, 5e4; maximum injection time, 120 ms; scan range, m/z 50–750. For ddMS2 

mode the following settings were used: resolution 17,500 at m/z 200; microscan, 1; 

AGC target, 5e4; maximum injection time, 250 ms; scan range, m/z 50–750; isolation 

window, m/z 1.0; high collision dissociation cell with stepped normalized collision 

energy (NCE), 17.5, 35, and 52.5 eV; exclude isotopes, on; dynamic exclusion, 5 s; 

spectrum data type, profile. TF Xcalibur software version 3.0.63 was used for data 

handling. 

 

1.5. Data processing and statistical analysis 
Thermo Fisher LC-HRMS/MS RAW files were converted into mzXML files using 

ProteoWizard (Adusumilli and Mallick, 2017). XCMS parameters were optimized using 

a previously developed strategy as mentioned by Manier et al. (Manier et al., 2019a). 

Peak picking and alignment parameters are summarized in Table S2. Peak picking 

was performed using XCMS in an R environment (Smith et al., 2006; Team) and the R 

package CAMERA (Kuhl et al., 2012) was used for the annotation of adducts, artifacts, 

and isotopes. Feature abundance with a value zero were replaced by the lowest 

measured abundance as a surrogate limit of detection and the whole dataset was then 

log 10 transformed (Wehrens et al., 2016). Normalization was performed for urine 

samples using the area of endogenous creatinine from those samples analyzed using 

HILIC column and positive ionization mode. For plasma samples, normalization was 

performed using the area of L-tryptophane-d5.  

 

1.6. Identification of significant features 
Significant features were identified by recording MS/MS spectra using the PRM 

method mentioned above. After conversion to mzXML format using ProteoWizard 

(Adusumilli and Mallick, 2017), spectra were imported to NIST MS Search version 2.3 

Library and the settings for library, and MS/MS search were used according to 

published procedures (Hemmer et al., 2020; Hemmer et al., 2021; Hemmer et al., 

2022; Manier et al., 2020). Metabolites of the synthetic cathinone PCYP were 
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tentatively identified by interpreting their spectra in comparison to that of the parent 

compound. Identified features were classified on the different levels of identification 

according to the Metabolomics Standards Initiative (MSI) (Sumner et al., 2007).  
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Table S1. Overview of the detected compound classes using different reversed-phase and 

hydrophilic interaction chromatography columns sorted by compound class. Retention times 

of the compounds detected utilizing the respective columns are given in seconds (s). 

BEH = BEH C18, Gold = Hypersil Gold C18, Nucleodur = ammonium-sulfonic acid, ZicHILIC = 

sulfobetaine, PGC = porous graphitic carbon. Hyphen (-) means that neither a peak nor a MS2 

were detected for this compound using the corresponding column. 

Compound 

class 
Compound 

RT reversed-phase, s RT HILIC, sec 

Phenyl-

hexyl 
BEH Gold Nucleodur ZicHILIC PGC 

Amino acid Creatinine 26 29 59 356 293 191 

Amino acid Glutamine 26 27 57 511 466 73 

Amino acid Glutaminic acid 26 27 57 533 488 81 

Amino acid Histidine 23 27 55 552 484 103 

Amino acid Kynurenine 88 127 188 446 364 296 

Amino acid Lysin 23 27 55 550 518 47 

Amino acid Proline 28 29 59 490 436 61 

Amino acid Threonine - - - - - 53 

Amino acid Tryptophane 149 172 217 452 380 344 

Biogenic amine Carnosine 24 28 52 550 506 190 

Biogenic amine Dopamine 38 57 95 443 400 239 

Biogenic amine Histamine 22 28 50 500 440 89 

Biogenic amine Noradrenalin 26 32 59 - - - 

Biogenic amine Serotonin 71 126 179 434 381 - 

Biogenic amine Spermidine 22 37 50 620 649 - 

Carboxylic acid Citrate 35 33 76 538 503 - 

Carboxylic acid Succinate 52 61 109 - 456 - 

Coenzyme NAD 32 52 80 - - - 

Fatty acid Arachidic acid - 697 674 82 44 - 

Fatty acid Lauric acid 421 - - - - - 

Lipide 
Cholesteryl 

oleate 
- - - - - - 

Nucleotide 
Adenosine 5’ 

Diphosphate 
- - - - - - 

Nucleotide 
Guanosine 5’ 

Triphosphate 
- - - - - - 

Nucleotide Inosine 61 98 151 367 329 349 
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Steroid 
25-HO 

Cholesterol 
- - - - - - 

Steroid Cortisone 331 310 323 92 52 - 

Steroid Vitamin D2 - - 699 - - - 

Sugar D-Fructose - - - 490 707 - 

Sugar D-Glucose 25 28 43 481 445 - 

Sugar D-Ribose 26 29 44 503 296 - 

Sugar Maltose 26 29 41 257 463  

Vitamin Ascorbate - - - 536 713 - 

Vitamin Riboflavin 211 214 245 329 263 - 

Vitamin Retinol - - - - - - 
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Table S2. O
verview

 of peak picking and alignm
ent param

eters used for preprocessing and calculation of peak capacity for different colum
ns and 

respective m
atrices. BEH

 = BEH
 C

18 , G
old = H

ypersil G
old C

18 , N
ucleodur = am

m
onium

-sulfonic acid, ZicH
ILIC

 = sulfobetaine, PG
C

 = porous 

graphitic carbon, pos = positive, neg = negative, ppm
 = allow

ed ppm
 deviation of m

ass traces for peak picking, snthresh = signal-to-noise 

threshold, m
zdiff = m

inim
um

 difference in m
/z for tw

o peaks to be considered as separate, prefilter 1 = m
inim

um
 of scan points, prefilter 2 = m

inim
um

 

abundance, bw
 = bandw

idth for grouping of peaks across separate chrom
atogram

s. 

C
olum

n  
M

atrix  
Polarity  

Peak 
w

idth, s  

Peak 
w

idth, 
m

ax  
ppm

  
sntresh  

m
zdiff  

Prefilter 1  Prefilter 2  
bw

  
Peak 

capacity 

Phenyl-
hexyl 

pH
LM

  
pos  

8.9 
100 

1.8 
10 

0.018 
7 

100 
5 

92 
neg  

8.9 
15 

1.7 
27 

0.094 
5 

100 
1 

92 

U
rine  

pos  
8.9 

19 
1 

12 
0.012 

7 
100 

2.5 
92 

neg  
7.8 

15 
2.5 

18 
-0.098 

6 
100 

4.5 
105 

Plasm
a 

pos  
8.9 

33 
1.3 

12 
0.1 

7 
100 

1 
92 

neg  
6.8 

100 
1.8 

16 
0.01 

5 
100 

1 
102 

BEH
  

pH
LM

 
pos  

8.9 
12 

1.6 
13 

0.016 
5 

100 
1.5 

92 
neg  

8.9 
33 

1.4 
15 

0.1 
7 

100 
1 

92 

U
rine 

pos  
7.8 

21 
2.4 

12 
-0.098 

6 
100 

1 
105 

neg  
8.9 

10 
1.4 

22 
0.002 

8 
100 

1.5 
92 

Plasm
a 

pos  
9.9 

12 
1.5 

14 
0.096 

6 
100 

0.2 
83 

neg  
8.9 

93 
2.5 

13 
-0.002 

5 
100 

0.3 
92 

G
old  

pH
LM

 
pos  

8.9 
15 

2.5 
12 

0.1 
6 

100 
2 

92 
neg  

8.9 
15 

1.2 
30 

-0.002 
7 

100 
1 

92 

U
rine 

pos  
8.9 

17 
2.5 

12 
0.004 

5 
100 

1 
92 

neg  
7.8 

100 
1.4 

23 
-0.1 

1 
2100 

0.8 
105 

Plasm
a 

pos  
8.9 

15 
2.5 

54 
0.1 

6 
100 

0.2 
92 

neg  
7.8 

100 
2.5 

45 
0.1 

5 
100 

1 
105 
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Ta
bl

e 
S2

. C
on

tin
ue

d.
  

C
ol

um
n 

 
M

at
rix

  
Po

la
rit

y 
 

Pe
ak

 
w

id
th

, s
  

Pe
ak

 
w

id
th

, 
m

ax
  

pp
m

  
sn

tre
sh

  
m

zd
iff

  
Pr

ef
ilt

er
 1

  
Pr

ef
ilt

er
 2

  
bw

  
Pe

ak
 

ca
pa

ci
ty

 

N
uc

le
od

ur
  

pH
LM

 
po

s 
 

9.
9 

10
0 

2.
5 

42
 

0.
1 

5 
10

0 
1.

5 
74

 
ne

g 
 

7.
8 

15
 

2.
1 

56
 

0.
1 

7 
80

00
 

1 
93

 

U
rin

e 
po

s 
 

9 
20

 
2.

5 
14

 
0.

00
59

 
7 

10
0 

1.
5 

81
 

ne
g 

 
8.

9 
37

 
2.

5 
18

 
0.

03
8 

7 
10

0 
1 

82
 

Pl
as

m
a 

po
s 

 
7.

8 
91

 
1.

1 
13

 
0.

01
4 

1 
10

0 
1 

93
 

ne
g 

 
8.

9 
33

 
2.

5 
11

 
0.

01
4 

1 
10

0 
0.

9 
82

 

Zi
cH

IL
IC

  

pH
LM

 
po

s 
 

7.
8 

29
 

1.
6 

17
 

0.
00

6 
6 

10
0 

0.
5 

93
 

ne
g 

 
7.

8 
17

 
2.

5 
51

 
0.

01
 

6 
13

00
 

1 
93

 

U
rin

e 
po

s 
 

8.
9 

21
 

1.
9 

16
 

0.
02

 
8 

10
0 

1.
5 

82
 

ne
g 

 
8.

9 
35

 
1.

3 
15

 
0.

02
2 

8 
10

0 
1.

5 
82

 

Pl
as

m
a 

po
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8.

9 
46

 
1.

4 
6 

0.
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25
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5 
15
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03
4 

6 
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0 
0.

9 
82
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C

 

pH
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1.
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0.
00

2 
6 
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1 
10
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ne
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1.
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92
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Table S3. Overview of the significant features using different columns in the corresponding 

matrices, namely pooled human liver microsome (pHLM) incubation (sheet 1), rat urine (sheet 

2), and rat plasma (sheet 3) in which the features showed significant changes between PCYP 

and blank or control group. Features are sorted according to m/z values, followed by the 

polarity, the retention time (RT) for the corresponding column in seconds (s), identity, and the 

identification level according to MSI. BEH = BEH C18, Gold = Hypersil Gold C18, Nucleodur = 

ammonium-sulfonic acid, ZicHILIC = sulfobetaine, PGC = porous graphitic carbon. Hyphen (-

) means that the feature was not significant using the corresponding column. 

Table S4. Overview of the calculated ratio of false vs true significant features for different 

columns and the respective matrices. Pos = positive, neg = negative, BEH = BEH C18, Gold = 

Hypersil Gold C18, Nucleodur = ammonium-sulfonic acid, ZicHILIC = sulfobetaine, PGC = 

porous graphitic carbon 

 Phenyl-

hexyl pos 

Phenyl-

hexyl neg 

BEH pos BEH neg Gold pos Gold neg 

pHLM 0 % - 4 % - 0 % - 

Urine 10 % 59 % 53 % 0 % 55 % 57 % 

Plasma 13 % 100 % 50 % 0 % 0 % - 

 Nucleodur 

pos 

Nucleodur 

neg 

ZicHILIC 

pos 

ZicHILIC 

neg 

PGC pos PGC neg 

pHLM 0 % 50 % 8 % - 0 % - 

Urine 25 % 55 % 29 % 35 % 0 % - 

Plasma 15 % 63 % 17 % 40 % - - 
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Figure S1. Total ion chromatograms (TIC) of reversed-phase chromatography in pooled 

human liver microsomes (pHLM) in positive (pos) and negative (neg) ionization mode. A = 

Phenyl-hexyl pos, B = Phenyl-hexyl neg, C = BEH pos, D = BEH neg, E = Gold pos, and F = 

Gold neg.  
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Figure S2. Total ion chromatograms (TIC) of hydrophilic interaction chromatography in pooled 

human liver microsomes (pHLM) in positive (pos) and negative (neg) ionization mode. A = 

Nucleodur pos, B = Nucleodur neg, C = ZicHILIC pos, D = ZicHILIC neg, E = PGC pos, and F 

= PGC neg 
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Figure S3. Total ion chromatograms (TIC) of reversed-phase chromatography in rat urine in 

positive (pos) and negative (neg) ionization mode. A = Phenyl-hexyl pos, B = Phenyl-hexyl 

neg, C = BEH pos, D = BEH neg, E = Gold pos, and F = Gold neg 



 S-17 

 
Figure S4. Total ion chromatograms (TIC) of hydrophilic interaction chromatography in rat 

urine in positive (pos) and negative (neg) ionization mode. A = Nucleodur pos, B = Nucleodur, 

C = ZicHILIC pos, D = ZicHILIC neg, E = PGC pos, and F = PGC neg. 
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Figure S5. Total ion chromatograms (TIC) of the reversed-phase chromatography in rat 

plasma in positive (pos) and negative (neg) ionization mode. A = Phenyl-hexyl pos, B = Phenyl-

hexyl neg, C = BEH pos, D = BEH neg, E = Gold pos, and F = Gold neg. 
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Figure S6. Total ion chromatograms (TIC) of hydrophilic interaction chromatography in rat 

plasma in positive (pos) and negative (neg) ionization mode. A = Nucleodur pos, B = Nucleodur 

neg, C = ZicHILIC pos, D = ZicHILIC neg, E = PGC pos, and F = PGC neg. 
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Figure S7. Scores of principal component analysis of pooled human liver microsome samples 

after analysis using reversed-phase chromatography in positive ionization mode. A = Phenyl-

hexyl, B = BEH, and C = Gold. 
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Figure S8. Scores of principal component analysis of pooled human liver microsome samples 

after analysis using hydrophilic interaction chromatography in positive ionization mode. A = 

Nucleodur, B = ZicHILIC, and C = PGC. 
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Figure S9. Scores of principal component analysis of rat urine samples after analysis using 

reversed-phase chromatography in positive (pos) and negative (neg) ionization mode. A = 

Phenyl-hexyl pos, B = Phenyl-hexyl neg, C = BEH pos, D = BEH neg, D = Gold pos, and F = 

Gold neg. 
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Figure S10. Scores of principal component analysis of rat urine samples after analysis using 

hydrophilic interaction chromatography in positive (pos) and negative (neg) ionization mode. 

A = Nucleodur pos, B = Nucleodur neg, C = ZicHILIC pos, D = ZicHILIC neg, and E = PGC 

pos. 
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Figure S11. Scores of principal component analysis of rat plasma samples after analysis using 

reversed-phase chromatography in positive ionization mode. A = Phenyl-hexyl and B = BEH. 

 

 
Figure S12. Scores of principal component analysis of rat plasma samples after analysis using 

hydrophilic interaction chromatography in positive (pos) and negative (neg) ionization mode. 

A = Nucleodur pos, B = Nucleodur neg, C = ZicHILIC pos, and D = ZicHILIC neg. 
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Figure S13. Results of t-distributed stochastic neighborhood embedding (t-SNE) of pooled 

human liver microsome samples after analysis using reversed-phase chromatography in 

positive ionization mode. A = Phenyl-hexyl, B = BEH, and C = Gold. 

 
Figure S14. Results of t-distributed stochastic neighborhood embedding (t-SNE) of pooled 

human liver microsome samples after analysis using hydrophilic interaction chromatography 

in positive ionization mode. A = Nucleodur, B = ZicHILIC, and C = PGC. 
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Figure S15. Results of heat map of hierarchical clustering of pooled human liver microsome 

samples after analysis using reversed-phase chromatography in positive ionization mode. A = 

Phenyl-hexyl, B = BEH, and C = Gold. 

 
Figure S16. Results of heat map of hierarchical clustering of pooled human liver microsome 

samples after analysis using hydrophilic interaction chromatography in positive ionization 

mode. A = Nucleodur, B = ZicHILIC, and C = PGC. 
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Figure S17. Results of heat map of hierarchical clustering of rat urine samples after analysis 

using reversed-phase chromatography in positive (pos) and negative (neg) ionization mode. A 

= Phenyl-hexyl pos, B = Phenyl-hexyl neg, C = BEH pos, D = BEH neg, D = Gold pos, and F 

= Gold neg. 
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Figure S18. Results of heat map of hierarchical clustering of rat urine samples after analysis 

using hydrophilic interaction chromatography in positive (pos) and negative (neg) ionization 

mode. A = Nucleodur pos, B = Nucleodur neg, C = ZicHILIC pos, D = ZicHILIC neg, and E = 

PGC pos. 
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Figure S19. Results of heat map of hierarchical clustering of rat plasma samples after analysis 

using reversed-phase chromatography in positive ionization mode. A = Phenyl-hexyl and B = 

BEH. 

 

 
Figure S20. Results of heat map of hierarchical clustering of rat plasma samples after analysis 

using hydrophilic interaction chromatography in positive and negative ionization mode. A = 

Nucleodur pos, B = Nucleodur neg, C = ZicHILIC pos, and D = ZicHILIC neg. 
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Abstract: The evaluation of liquid chromatography high-resolution mass spectrometry (LC-HRMS)
raw data is a crucial step in untargeted metabolomics studies to minimize false positive findings.
A variety of commercial or open source software solutions are available for such data processing.
This study aims to compare three di↵erent data processing workflows (Compound Discoverer 3.1,
XCMS Online combined with MetaboAnalyst 4.0, and a manually programmed tool using R) to
investigate LC-HRMS data of an untargeted metabolomics study. Simple but highly standardized
datasets for evaluation were prepared by incubating pHLM (pooled human liver microsomes)
with the synthetic cannabinoid A-CHMINACA. LC-HRMS analysis was performed using normal-
and reversed-phase chromatography followed by full scan MS in positive and negative mode.
MS/MS spectra of significant features were subsequently recorded in a separate run. The outcome of
each workflow was evaluated by its number of significant features, peak shape quality, and the results
of the multivariate statistics. Compound Discoverer as an all-in-one solution is characterized by its
ease of use and seems, therefore, suitable for simple and small metabolomic studies. The two open
source solutions allowed extensive customization but particularly, in the case of R, made advanced
programming skills necessary. Nevertheless, both provided high flexibility and may be suitable for
more complex studies and questions.

Keywords: untargeted metabolomics; LC-HRMS; data processing; feature detection; A-CHMINACA

1. Introduction

Metabolomics is defined as the analysis of the whole metabolome of a biological system and therefore,
aims to detect as many metabolites as possible in a biological sample [1,2]. However, the metabolic profile
is not limited to endogenous metabolites but also metabolites of exogenous sources like drugs, diet, and gut
microbiota may be added in. Furthermore, metabolomic studies can be divided into two major strategies,
untargeted and targeted approaches. Targeted metabolomics usually aims to detect and quantify specific
metabolites of known structures. The untargeted or global approach usually aims to identify as many
metabolites as possible without having any previous knowledge about them [1,3].

Due to its high selectivity and sensitivity, liquid chromatography coupled to high-resolution
mass spectrometry (LC-HRMS) is currently the most commonly applied analytical technique in
metabolomics [4–6]. To correctly interpret di↵erences in specific metabolites and to gain a proper
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biological interpretation, a reliable and suitable entire approach is necessary [4,5]. The part of data
processing includes a series of steps such as peak detection, peak alignment, baseline correction,
and annotation [7–9]. Data processing of LC-HRMS raw data is a key step in untargeted
metabolomic studies, which establishes a sound basis to accurately identify significant changes.
It involves reducing the complexity of raw data by extracting features, and usually transforming them
in order to subsequently perform adequate statistical tests [9,10].

A variety of software solutions are available for untargeted data processing, such as the
open source software XCMS, MZmine, OpenMS [11], MetAlign, MetaboAnalyst [12] and the
commercial software MarkerView, Compound Discoverer (CD), MetaboScape etc. In the case of
open source software, modules are often based on the programming language R [7].

Since the underlying algorithms differ, it is very likely that the outcome of a metabolomic study might
vary upon the tools used. Li et al. compared the performance of five software solutions (MS-Dial, MZmine,
XCMS, MarkerView, and CD) on a benchmark dataset from standard mixtures. All five software solutions
revealed similar performance in detecting true features. Nevertheless, to select true discriminating markers,
they recommended the combination of MZmine 2 and XCMS [13]. Fernández-Ochoa et al. determined that
Agilent Profinder showed good quality of the graphs and was characterized by its ease of use, whereas the
R pipeline seemed to be better suited for studies with a large number of samples [7].

Since further studies are missing and the selection of an appropriate tool is essential for the
quality and outcome of the statistical evaluation, the present study aimed to compare three di↵erent
data processing workflows to investigate LC-HRMS data of an untargeted metabolomics study,
namely the commercially available software CD 3.1, the open source online tool XCMS Online
in combination with MetaboAnalyst 4.0 (XCMS/MetaboAnalyst), and a manually programmed
tool using the language R based on di↵erent R packages [14]. XCMS, MetaboAnalyst, and the
R script were chosen as they were identified as suitable and were successfully used in previous
studies [15–17]. Simple but highly standardized datasets for evaluation should be used by
incubating pooled human liver microsomes (pHLM) with the synthetic cannabinoid A-CHMINACA
(1(-cyclohexylmethyl)-N-tricyclo[3.3.1.13,7]dec-1-yl-1H-indazole-3-carboxamide). The outcome of each
workflow should be evaluated by its number of significant features, the quality of the peaks, and
the results of multivariate statistics. Additionally, the metabolite profile of A-CHMINACA in pHLM
should be elucidated.

2. Results and Discussion

2.1. Study Design

Due to the ease of use and low variability of individual pHLM incubations and the fact that
it is a very well characterized in vitro model for drug metabolism studies, incubations of pHLM
with the synthetic cannabinoid A-CHMINACA were prepared to generate simple datasets [18].
The incubation mixtures were then analyzed using LC-HRMS/MS and finally, three di↵erent software
tools for untargeted data processing were applied to identify significant features. Software evaluation
in this study included the commercial software CD 3.1, which was developed for the used type
of MS instrument; open source software workflows including a combination of XCMS Online and
MetaboAnalyst 4.0; and a manually programmed tool using R. While XCMS-based software tools
might be one of the best solutions for LC-HRMS/MS untargeted metabolomics, XCMS was used as a
preprocessing tool in the case of the two open source workflows [15,19–22]. After data processing,
significant features were identified and the metabolic fate of A-CHMINACA in pHLM was elucidated.
The three untargeted data processing workflows were extensively evaluated with regards to their
number of significant features, the peak quality of the significant feature, their false positive rate,
and the results of the multivariate statistics.
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2.2. Untargeted Metabolomics

2.2.1. Parameter Optimization for the Three Di↵erent Workflows of Untargeted Metabolomics

In untargeted data processing, the optimization of various parameters is important to allow for the
detection of chromatographic peaks, construct extracted ion chromatograms (EICs), annotate features, and
for chromatogram alignment [19]. Since the two open source software tools XCMS/MetaboAnalyst and R are
not already optimized, peak picking and alignment parameters were optimized using a previously optimized
workflow [15]. The optimized XCMS parameters are summarized in Table S1. Using the R workflow,
all eight parameters could be transferred in exactly the same way. For XCMS Online, prefilter 1 was limited
up to 10. If this parameter was greater than 10, 10 was used for XCMS Online. Additionally, the parameter
bandwidth could only be specified in positive integer numbers in XCMS Online, so if this parameter was less
than 1, 1 was used. Since the commercial software CD was developed specifically in combination with the
used MS instrument type, an already existing workflow for untargeted metabolomics, namely “Untargeted
Metabolomics with statistics detect unknowns with ID using Online Database and mzLogic”, was chosen
without changing any parameters.

2.2.2. Comparison of Significant Features of the Three Di↵erent Workflows

Univariate statistics was done using one-way analysis of variance (ANOVA) for all three workflows
(Figure S1). False positive results were prevented using Bonferroni correction as a multiple testing
correction technique [23]. Since the settings of XCMS Online did not allow a change from the
Kruskal–Wallis test to ANOVA in multi-group comparisons for no evident reason, XCMS Online was
only used for peak picking and alignment. The resulting table was then reduced to the peak areas
and retention times between 1 and 10 min. The entire statistical evaluation was performed using
MetaboAnalyst 4.0. Visual inspection of the plotted ANOVA results (Figure S1) of the two open source
workflows revealed that they were similar to each other concerning significant features and their
corresponding p-values. In contrast to this, di↵erential analysis over all three groups was not possible
using CD, because the software does not allow one to do a statistical evaluation of more than two groups.
Thus, statistical evaluation using a Welch t-test in combination with the corresponding fold change
had to be performed for blank vs. low, blank vs. high, and low vs. high. A feature was considered
significant if it was significant between one of the two groups. In terms of number of significant features,
15 significant features were obtained for CD, 32 for the XCMS/MetaboAnalyst solution, and 28 for R
using normal phase chromatography and positive ionization mode. In the case of using a reversed
phase chromatography and positive ionization mode, 5 significant features were received for CD, 13 for
XCMS/MetaboAnalyst, and 11 for R. None of the analyses indicated significant features using negative
ionization mode. The Venn diagram in Figure 1A shows the composition of all significant features
obtained after using the three data processing workflows and the two analytical columns. In total, 11 of
the significant features were detected after using each of the three workflows, 31 significant features
were determined after using both open source workflows, and 17 after using CD. While the manually
programmed R tool used the R package CAMERA to identify isotopes and adducts in the dataset,
CD annotated neither isotopes nor adducts. In CD, isotopes and adducts were merely labeled in the
spectrum of the related compound, but not listed in the compound list and therefore, not annotated as
significant features. Taking this into account, the number of significant features identified by the two
open source workflows that are neither isotopes nor adducts could be reduced to 9 (Figure 1B).
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Figure 1. Comparison of the significant features of the three data processing workflows R (red),
XCMS Online combined with MetaboAnalyst (green), and Compound Discoverer (CD, blue) displayed
as Venn Diagram; (A =with isotopes and adducts; B =without isotopes and adducts).

In addition to the number of significant features, the three workflows were also evaluated
according to the peak shape quality of these features. Since the extracted ion chromatogram (EIC)
of some detected significant features appeared to be false positive hits, the significant features were
divided into true and false features based on the peak shape quality of their EIC. Therefore, peak quality
was divided into two main categories. The first category included non-existent group di↵erences,
which means that in the EIC of the respective significant features, there was no clear separation of
peak intensity between the four groups Blank, Low, High, and QC. The second category included
the non-correct peak integration, which means that in the EIC, the integrated peak could not be
separated from the baseline. By comparing the quality of the peaks based on the two categories
mentioned above, the overall true features for the three di↵erent workflows were 17 for CD, 28 for
XCMS Online/MetaboAnalyst, and 24 for R. The significant features detected by CD were all identified
as true features, which can be explained by the fact that this workflow does not show isotopes or adducts
as significant features. Furthermore, in comparison to the two open source workflows, CD used a fold
change of 1 in addition to the p-value in order to filter the features in one of the group comparisons.
The true features are listed in Tables 1 and 2.

Table 1. Overview of significant features of A-CHMINACA after untargeted analysis using
reversed-phase chromatography in positive mode of all three workflows.

Feature Measured Mass, m/z Retention Time, s Found with Identity

M296T431 296.1768 431 XM, CD A-CHMINACA-M (N-dealkyl-)
M424T443 424.2610 443 R, XM A-CHMINACA-M (di-HO-)
M408T474 408.2661 474 R, XM, CD A-CHMINACA-M (HO-)
M409T474 409.2693 474 R, XM A-CHMINACA-M (HO-) 13C isotope
M430T474 430.2481 474 R, XM A-CHMINACA-M (HO-) adduct [M + Na]+

M392T547 392.2710 547 R, XM, CD A-CHMINACA
M393T547 393.2743 547 R, XM A-CHMINACA 13C isotope
M394T547 394.2775 547 R, XM A-CHMINACA 13C2 isotope
M414T547 414.2530 547 R, XM, CD A-CHMINACA adduct [M + Na]+

M415T547 415.2562 547 R, XM A-CHMINACA adduct [M + Na]+ 13C isotope
M430T547 430.2270 547 R, XM, CD A-CHMINACA adduct [M + K]+

M437T547 437.3290 547 R, XM A-CHMINACA adduct
M438T547 438.3320 547 XM A-CHMINACA adduct 13C isotope

Features are ordered by retention time and m/z. Isotopes were annotated by the R package CAMERA and
not further identified. Metabolites are indicated by bold font. XM = XCMS Online/MetaboAnalyst, CD =
Compound Discoverer.
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Table 2. Overview of significant features of A-CHMINACA after untargeted analysis using a normal
phase (HILIC) column in positive mode of all three workflows.

Feature Measured Mass, m/z Retention Time, s Found with Identity

M355T70 355.2392 70 R, XM Unknown
M430T71 430.2270 71 XM A-CHMINACA adduct [M + K]+

M392T72 392.2710 72 R, XM, CD A-CHMINACA
M393T72 393.2743 72 R, XM A-CHMINACA 13C isotope
M394T72 394.2775 72 R, XM A-CHMINACA 13C2 isotope
M395T72 395.2809 72 R, XM A-CHMINACA 13C3 isotope
M356T74 356.1802 74 XM Unknown
M135T76 135.1174 76 CD A-CHMINACA artifact (adamantyl-ring)
M408T83 408.2661 83 R, XM, CD A-CHMINACA-M (HO-)
M409T83 409.2693 83 R, XM A-CHMINACA-M (HO-) 13C isotope
M296T86 296.1768 86 R, XM, CD A-CHMINACA-M (N-dealkyl-)
M297T86 297.1800 86 XM A-CHMINACA-M (N-dealkyl-) 13C isotope
M408T88 408.2661 88 CD A-CHIMINACA-M (HO-)
M422T92 422.2453 92 R, XM A-CHIMINACA-M (HO, Oxo)
M424T93 424.2610 93 CD A-CHMINACA-M (di-HO-)
M424T96 424.2610 96 R, XM, CD A-CHMINACA-M (di-HO-)
M425T96 425.2644 96 R, XM A-CHMINACA-M (di-HO-) 13C isotope
M274T113 274.1559 113 R, XM A-CHMINACA-M (HO-) (N-dealkyl-)
M312T115 312.1715 115 R, XM, CD A-CHMINACA-M (HO-) (N-dealkyl-)
M146T116 146.0819 116 CD A-CHMINACA artifact (indazole-core)
M440T117 440.2561 117 CD A-CHMINACA-M (tri-HO-)
M440T122 440.2565 122 CD A-CHMINACA-M (tri-HO-)
M176T135 176.0924 135 R, XM, CD Unknown
M158T135 158.0818 135 R, XM, CD [M + H � H2O]+175.086
M188T170 188.1288 170 R, XM, CD Unknown
M158T174 158.0818 174 R, XM [M + H � H2O]+175.086
M176T174 176.0924 174 R, XM, CD Unknown
M341T219 341.2447 219 R, XM Unknown
M313T253 313.2649 253 R, XM Unknown
M248T270 248.2382 270 XM Unknown

Features are ordered by retention time and m/z. Isotopes were annotated by the R package CAMERA and
not further identified. Metabolites are indicated by bold font. XM = XCMS Online/MetaboAnalyst, CD =
Compound Discoverer.

2.2.3. Comparison of Multivariate Statistics of the Three Di↵erent Software Workflows

In addition to univariate statistics, datasets are usually also analyzed using multivariate methods
to identify the largest changing features and specific signatures in the data [2]. In this study,
principal component analysis (PCA) and hierarchical clustering were used to evaluate di↵erences
between the three workflows.

PCA, as a non-supervised method, does not use any group information to find the
principal component. It is a data reduction technique, which enables high dimensional datasets to be
reduced to a few major principal components (PC) [24]. The scores of these components, which are
the weighted sum of the contribution of each metabolite to a principal component, are plotted.
It can be seen that each incubation group is distinct from another one. In addition to the score plot,
the loading plot provides information on which metabolites are contributing the most to the separations
between groups [24]. The results of the scores of PCA of all three workflows are shown in Figure 2.
The corresponding scree plots are shown in Figure S2. Regarding the variance of the first principal
component (PC1), di↵erences between the three workflows became visible. While PC1 accounts
for 97% of variance in R, it dropped to 60.6% in CD when using a PhenylHexyl column in positive
ionization mode. One explanation for this di↵erence could be the di↵erent peak picking parameters.
While the two open source workflows are highly adaptable methods regarding the optimization
of parameters, CD is a black box with limited possibilities for optimization. Another explanation for
the di↵erent PC1 could be that R and CD revealed a di↵erent amount of significant features. In contrast
to the two open source workflows, CD did not detect any isotopes or adducts of the parent compound
and its metabolites as significant features. This led to a low amount of compounds in relation to other
substances within the incubation mixture and therefore, the variability between the group Blank and
the groups Low and High are much higher. Figure S3 shows an example of the scores of PCA of the
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two open source workflows without isotopes and adducts using a PhenylHexyl column and ESI in
positive ionization mode.

Figure 2. Scores of principal component analysis. (A = XCMS Online/MetaboAnalyst, HILIC column,
positive mode; B = XCMS Online/MetaboAnalyst, PhenylHexyl column, positive mode; C = R,
HILIC column, positive mode; D = R, PhenylHexyl column, positive mode; E = Compound Discoverer,
HILIC column, positive mode; F = Compound Discoverer, PhenylHexyl column, positive mode).

Another technique for statistical data analysis, which was used to assess the di↵erence of the
three workflows, was hierarchical clustering. Hierarchal cluster analysis refers to a specific family of
distance-based procedures for cluster analysis. Clusters consist of objects that are less distant from
each other than objects in other clusters. In untargeted metabolomic studies, heat maps of hierarchical
clustering can be used to discover clustering patterns in the datasets. Figure 3 shows the resulting
heatmaps for all three workflows. Except for the heatmap of CD when using a PhenylHexyl column,
all other heatmaps showed a clear discrimination between samples from the group Blank and groups
Low and High. Blank samples appear very close or within the cluster of samples from group Low.
This could be explained by the concentration of the parent compound that was very low in group Low
and therefore, this concentration could not su�ciently form as many metabolites as in group High.
QC samples belonged to the cluster of samples from group High. Since pooled sample QC consisted
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of a mixture of every incubation sample, it contained the parent compound and its metabolites in a
concentration of the samples from group High and Low. As shown in Figure 3F, only two samples of
group High showed a clear discrimination between the other samples. The most likely explanation
could be the low number of significant features. In comparison to the two open source workflows,
CD detected only five significant features including the parent compound and four metabolites of
A-CHMINACA, which showed their highest intensity in sample group High.

Figure 3. Heat map of hierarchical clustering. (A = XCMS Online/MetaboAnalyst, HILIC column,
positive mode; B = XCMS Online/MetaboAnalyst, PhenylHexyl column, positive mode; C = R,
HILIC column, positive mode; D = R, PhenylHexyl column, positive mode; E = Compound Discoverer,
HILIC column, positive mode; F = Compound Discoverer, PhenylHexyl column, positive mode).

2.3. Targeted Metabolomics

2.3.1. Identification of Significant Features

The results of the identification of significant features are summarized in Tables 1 and 2. Annotated
isotopes by CAMERA were not further analyzed. All other features were analyzed using the parallel
reaction monitoring (PRM) method described below and the mass spectra are shown in Figure S4.
Proposed structural formulas of the metabolites were deducted by comparing their spectra with
those of the parent compound or reference spectra using the METLIN and Human Metabolome
Database (HMBD) [25,26]. According to the Metabolomics Standards Initiative, this approach referred
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to category two, which means a putatively annotated compound [25]. It applies to all of the identified
compounds except for 10 significant features, which are yet unknown and therefore, belongs to
category four. Concerning the incubations using A-CHMINACA, significant features consisted of
eight isotopes, two artifacts, nine metabolites, and four adducts.

2.3.2. Metabolism of A-CHMINACA in pHLM

From here onwards, only exact masses will be used for characterization of the parent compound and
its respective metabolites. The proposed phase I metabolic pathways of A-CHMINACA in pHLM are
summarized in Figure 4. After incubation with pHLM, nine metabolites were found in total. The main
metabolic reaction was the hydroxylation of the adamantyl-ring, which has already been described for
other synthetic cannabinoids containing such structure [27,28]. Protonated ions for hydroxylation were
observed with m/z 408.2661 (C25H34N3O2), m/z 424.2610 (C25H34N3O3), and m/z 440.2565 (C25H34N3O4)
corresponding to mono-, di-, and trihydroxylated derivates, respectively. Monohydroxylation of the
adamantyl-ring concerning M408T83 (PH: M408T474) was identified by the occurrence of the highly
abundant fragment ion with m/z 151.1117 (C10H15O) (Figure S4). Additionally, the occurrence of
the fragment ion with m/z 133.1012 (C10H13), which resulted from water loss on the adamantyl-ring,
supported this theory. M424T96 revealed an unmodified indazole-3-carbaldehyde moiety by the
occurrence of the fragment ion with m/z 241.1335 (C15H17N2O), suggesting that this molecule was
hydroxylated twice at the adamantyl-ring. The fragment ion with m/z 167.1067 (C10H15O2) also
strongly indicated that both hydroxylations occurred at the adamantyl-ring. Since M440T117 and
M440T122 had the same MS2 spectra, both gave rise to a fragment ion with m/z 422.2438 (C25H32N3O3)
indicating the loss of water from the species with m/z 440.2544 (C25H34 N3O4). The observed
fragment ion with m/z 167.1067 (C10H15O2) corresponded to the dihydroxylation at the adamantyl-ring.
The loss of water at the adamantyl-ring resulted in a fragment ion with m/z 149.0961 (C10H13O).
Whereas the monohydroxylation and dihydroxylation could be found significant by all three workflows,
trihydroxylation was only found by CD. In comparison to M424T96 (PH: M424T434), the feature
M424T93 gave rise to a fragment ion with m/z 151.1117 (C10H15O), indicating that hydroxylation
occurred once at the adamantyl-ring. Hydroxylation and oxidation at the adamantyl-ring of M422T92
were identified by the occurrence of fragmentation with m/z 165.0910 (C10H13O2), while the fragment
ion with m/z 404.2332 (C25H30 N3O2) resulted from water loss on the adamantyl-ring. Features
M296T86 (PH: M296T431), M274T113, and M312T115 were formed after N-dealkylation of the
indazole-3-carbaldeyde moiety, which was also described by Erratico et al. [29] in the in vitro metabolism
of AB-CHMINACA. Using the current incubation conditions, no phase II metabolites were expected to
be formed and were thus, not detected.

2.4. Comparison of the Three Software Workflows

Based on the usage of the three software workflows during this study and the results in the
previous sections, an overview of the pros and cons concerning important criteria is given in Table 3.

In comparison to the two open source workflows, the commercial software CD is characterized by its
ease of use as a user-friendly black box. Thermo Fisher LC-HRMS/MS RAW files can be uploaded directly,
and the desired workflow can be selected. The first results are available after a few mouse clicks.
For statistical evaluation, only p-value and fold change have to be specified. Limitations for this
kind of workflow are given by the preprocessing parameters, the normalization techniques, and the
statistical analysis. Looking at the results in this study, this commercial software showed a low false
positive rate for significant features, but neither isotopes nor adducts were detected that usually help
in identifying significant features. Since CD is limited to its statistical test of Welch’s t-test, it does not
allow one to do statistical evaluation of more than two groups and therefore, it is not a suitable workflow
for complex datasets. The open source combination of XCMS Online and MetaboAnalyst 4.0 allowed
for more intervention in the processing steps than CD. In XCMS Online, almost all parameters could be
taken over with a few exceptions and MetaboAnalyst allowed a wide range of statistical tests. The report
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of MetaboAnalyst allowed an interpretation of the results. Both online tools were also based on the
programming language R, but in contrast to the manually programmed R tool, less programming skills
were required. The disadvantage is that due to the limited statistical test equipment of XCMS Online,
a combination of these two online platforms was necessary. When comparing the results of the two
open source workflows, both showed an almost identical false positive rate. The difference between
the two workflows can only be seen in the user handling and the minimal difference in the number of
significant features. The latter can be attributed to the not quite perfectly adjusted peak picking parameters
using XCMS Online.

Figure 4. Metabolic pathways of A-CHMINACA in incubations with pooled human liver microsomes.
Undefined hydroxylation position is indicated by unspecific bonds. Metabolites are annotated with their
feature identity from untargeted metabolomics analysis. PH = PhenylHexyl column, HI =HILIC column.

Table 3. Overview of important criteria by which the three workflows can be classified.

Criteria Compound
Discoverer

XCMS Online/
MetaboAnalyst 4.0

Manually Programmed
R Tool

Open source - + +
Low false-positive rate + - +

Flexibility - -/+ +
Complex datasets - + +

Using raw data + - -
Required prior

knowledge - - +

Annotation of isotopes
and adducts - + +

Evaluation criteria: + = available/good; - = not available/bad.

In the case of complex datasets, the manually programmed R tool should be the best option. Due to
its high number of packages, functions, and methods, it o↵ers a great adaptability also with regard to
statistical analysis. However, this open source workflow requires advanced programming skills.

Regarding the results, the most relevant di↵erence between the two open source workflows and
the commercial software might be the optimization of the peak picking parameters. In contrast to the
two open source workflows, the vendor-based software CD was used without changing any parameter
(used as a black box as intended by the manufacturer). On the other hand, the two XCMS-based
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workflows are neutral for a broad range of data and therefore, they need parameter optimization
because they are not usable under standard settings [15,19–21].

In summary, all three workflows have found the most important metabolites,
but (toxico-)metabolomics includes not only exogenous metabolites but also endogenous ones.
However, it must also be said that the investigated set was rather simple and less complex. Due to
the minimal fluctuations, it was not necessary to normalize the dataset, for example, using an
internal standard. This might be necessary when analyzing plasma or urine samples. The choice
of the appropriate method should therefore depend on the complexity of the dataset and on
previous knowledge. Complex datasets in this context mean that there are more than two groups in
one study and that due to the complexity of the matrix, normalization to an endogenous biomarker
is necessary. Previous knowledge basically means that the user has previously programmed with R or
other programming languages. The manually programmed R tool required far more programming
skills than the open source combination of XCMS Online and MetaboAnalyst 4.0. The commercial
software CD on the other hand required almost no prior knowledge of metabolomics data processing.

3. Materials and Methods

3.1. Chemicals and Reagents

A-CHMINACA was provided by the EU project ADEBAR/State Bureau of Criminal Investigation
Schleswig-Holstein (Kiel, Germany) for research purpose. The chemical purity and identity of the
compound were verified by MS and nuclear magnetic resonance analysis. Ammonium formate,
ammonium acetate, formic acid, isocitrate dehydrogenase, isocitrate, dipotassium phosphate,
tripotassium phosphate, magnesium chloride, and superoxide dismutase were obtained from Sigma
(Taufkirchen, Germany). Acetonitrile (LC-MS grade), methanol (LC-MS grade), and NADP-Na2 were
from VWR (Darmstadt, Germany). pHLM (20 mg microsomal protein mL�1) was obtained from
Corning (Amsterdam, The Netherlands). After delivery, pHLM were thawed at 37 �C, aliquoted,
snap-frozen in liquid nitrogen, and stored at �80 �C until use.

3.2. pHLM Incubation

According to published procedures [16,30,31], incubations using pHLM were prepared as follows.
A-CHMINACA was freshly dissolved in methanol and subsequently diluted with 100 mM phosphate
bu↵er to obtain the required concentrations. Incubations were performed at 37 �C using final
A-CHMINACA concentrations of 0 (Blank group), 5 (Low group), or 50 µM (High group) and
1 mg protein mL�1 pHLM. Final incubation mixtures also contained 90 mM phosphate bu↵er,
5 mM isocitrate, 5 mM Mg2+, 1.2 mM NADP+, 200 U mL�1 superoxide dismutase, and 0.5 U mL�1

isocitrate dehydrogenase. The final incubation volume was 50µL. The reaction was stopped after 60 min
by adding 50 µL of ice-cold acetonitrile and then, centrifugated for 2 min at 18,407⇥ g. Every group
consisted of five replicates. Pooled quality samples (QC group) were prepared by transferring 10 µL of
each incubation into one MS vial. These were also used for optimization of the peak picking parameters,
batch correction, and identification of significant features, as described below. An aliquot of 70 µL of
the remaining supernatant was transferred into separate MS vials and used for metabolomics analysis,
as described below.

3.3. LC-HRMS/MS Apparatus

In accordance with Manier et al. [16], analyses were performed by using a Thermo Fisher Scientific
(TF, Dreieich, Germany) Dionex UltiMate 3000 RS pump consisting of a degasser, a quaternary pump, and an
UltiMate Autosampler, coupled to a TF Q-Exactive Plus system including a heated electrospray ionization
(HESI)-II source. Prior to every experiment, the performance of the columns and mass spectrometer was
tested using a test mixture as described by Maurer et al. [32,33]. Gradient normal phase elution was
performed on a Macherey-Nagel (Düren, Germany) HILIC Nucleodur column (125 mm ⇥ 3 mm, 3 µm) and
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reversed phase elution using a TF Accucore PhenylHexyl column (100 mm ⇥ 2.1 mm, 2.6 µm). The mobile
phase and gradient for the PhenylHexyl column consisted of 2 mM aqueous ammonium formate containing
acetonitrile (1%, v/v) and formic acid (0.1%, v/v, pH 3, eluent A), as well as 2 mM ammonium formate
solution with acetonitrile:methanol (1:1, v/v) containing water (1%, v/v) and formic acid (0.1%, v/v, eluent B).
The flow rate was set from 1–10 min to 500 µL min�1 and from 10–13.5 min to 800 µL min�1 using the
following gradient: 0–1.0 min hold 99% A, 1–10 min to 1% A, 10–11.5 min hold 1% A, 11.5–13.5 min hold
99% A. The gradient elution for normal phase chromatography was performed using aqueous ammonium
acetate (200 mM, eluent C) and acetonitrile containing formic acid (0.1%, v/v, eluent D). The flow rate was
set to 500 µL ⇥min�1 using the following gradient: 0–1 min hold 2% C, 1–5 min to 20% C, 5–8.5 min to
60% C, 8.5–10 min hold 60% C, 10–12 min hold 2% C. For preparation and cleaning of the injection system,
isopropanol:water (90:10, v/v) was used. Due to the lipophilic properties of A-CHMINACA, eluent D was
used for the flushing of both columns. The following settings were used: wash volume, 100µL; wash speed,
4000 nL s�1; loop wash factor, 2. Column temperature for every analysis was set to 40 �C, maintained by
a Dionex UltiMate 3000 RS analytical column heater. Injection volume was set to 1 µL. HESI-II source
conditions were as follows: ionization mode, positive or negative; sheath gas, 60 AU; auxiliary gas, 10 AU;
sweep gas, 3 AU; spray voltage, 3.5 kV in positive and�4.0 kV in negative mode; heater temperature, 320 �C;
ion transfer capillary temperature, 320 �C; and S-lens RF level, 50.0. Mass spectrometry for untargeted
metabolomics was performed according to a previously optimized workflow [15,16]. The settings for full
scan (FS) data acquisition were as follows: resolution, 140,000 fwhm; microscan, 1; automatic gain control
(AGC) target, 5⇥ 105; maximum injection time, 200 ms; scan range, m/z 50–750; spectrum data type; centroid.
Significant features were subsequently identified using PRM. Settings for PRM data acquisition were
as follows: resolution, 70,000 fwhm; microscans, 1; AGC target, 5 ⇥ 105; maximum injection time, 200 ms;
isolation window, 0.4 m/z; collisions energy (CE), 10, 20, 30, or 40 eV; spectrum data type, centroid.
The inclusion list contained the monoisotopic masses of all significant features and a time window of their
retention time ±60 s. TF Xcalibur software version 3.0.63 was used for data handling. Due to the carry-over
effect of A-CHMINACA, the analysis was performed using the following sequence order: five injections of
eluent D samples at the beginning of the sequence for apparatus equilibration, followed by five injections
of pooled QC samples, five blank groups, five low groups, and five high groups. Additionally, one QC
injection was performed every five samples to monitor batch effects, as described by Wehrens et al. [34].

3.4. Dataset Processing with Di↵erent Software

For the two open source software workflows, Proteo Wizard was used to convert Thermo Fisher
LC-HRMS/MS RAW files into mzXML files [35]. Optimization of the XCMS parameters was done by
using a comprehensive parameter sweeping approach [15]. Table S1 summarizes the peak picking and
alignment parameters used for the two open source workflows.

In the case of using R, peak picking was performed using XCMS in an R environment [14,36]
and the R package CAMERA [37] was used for the annotation of isotopes, adducts, and artifacts.
The dataset was filtered keeping merely those features with a p-value using Bonferroni correction [23].
Feature abundances with a value of zero were replaced by the lowest measured abundance as a surrogate
limit of detection and the whole dataset was subsequently log10 transformed [34]. Batch correction
was performed for those features that were detected in every QC sample. Corresponding feature
abundances were corrected using a linear model to extrapolate abundance drift between QC samples [34].
Principal component analysis (PCA) and hierarchical clustering were used to investigate patterns in
the dataset. Names for the features were adopted from XCMS using “M” followed by rounded mass
and “T” followed by the retention time in seconds. The R script and the mzXML files can be found at
https://github.com/sehem/HLM_Metabolomics.git.

For the combination of XCMS Online and MetaboAnalyst 4.0, first, XCMS Online was used for
peak picking and alignment using the optimized parameters listed in Table S1. The resulted table of
XCMS Online was then processed by removing all features under a retention time of 1 min and above
10 min and all columns were removed except the peak areas of each feature in each sample. The modified

https://github.com/sehem/HLM_Metabolomics.git
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table was then uploaded to MetaboAnalyst 4.0 for statistical analysis. For normalization of the dataset,
the following settings were used: sample normalization, none; data scaling, none; and data transformation,
log transformation. Subsequently, one-way ANOVA was selected using Bonferroni correction for p-value.
To investigate patterns in the dataset, PCA and hierarchical clustering using heat maps and dendrograms
were selected. For hierarchical clustering, distance measures using Euclidean distances and clustering
algorithms using complete were chosen.

In the case of CD, Thermo Fisher LC-HRMS/MS RAW files were uploaded and definitions of study
factors in the form of categorical factors were entered. Subsequently, the ratios blank/low, blank/high,
and low/high were defined. Afterwards, a predefined untargeted workflow named “Untargeted
Metabolomics with statistics detect unknowns with ID using Online Database and mzLogic” was used.
This workflow included findings and identified the di↵erences between samples, performed retention
time alignment, identified compounds using mzCloud, ChemSpider, and calculated di↵erential
analysis such as ANOVA, determined p-values, and fold changes. Bonferroni correction for p-value
and fold-change of 1 were used for ANOVA.

3.5. Identification of Significant Features

Identification of significant features was done by recording MS/MS spectra using the PRM method
mentioned above. Spectra were imported to NIST MSSEARCH version 2.3, after conversion to mzXML
format using ProteoWizard [35]. According to Manier et al. [17], a library search for identification was
conducted using the following settings: spectrum search type, identity (MS/MS); precursor ion m/z,
in spectrum; spectrum search options, none; presearch, o↵; other options, none. MS/MS search was
conducted using the following settings: precursor tolerance, ±5 ppm; product ion tolerance, ±10 ppm;
ignoring peaks around precursor, ±m/z 1. The search was conducted by using the following libraries:
NIST 14 (nist_msms and nist_msms2 sublibraries) and Wiley METLIN Mass Spectral Database.
Metabolites of the investigated synthetic cannabinoid A-CHMINACA were tentatively identified by
interpreting their spectra in comparison to that of the parent compound.

4. Conclusions

In this study, a dataset of pHLM incubations of the synthetic cannabinoid A-CHMINACA was
used to evaluate data processing of three di↵erent software workflows under their respective optimal
parameter settings. The commercial software CD is a vendor-based software, which was specifically
developed for the type of MS instrument used in this study. The two open source workflows, XCMS
Online/MetaboAnalyst and R, both use the “gold standard” XCMS for peak picking and alignment for
untargeted metabolomics data evaluation after LC-HRMS/MS analysis.

While the two open source workflows were highly adaptable methods regarding the optimization
of parameters, CD is a user-friendly black box with limited possibilities for optimization.
Additionally, the metabolic profile of A-CHMINACA in pHLM was determined to compare the three
software solutions. The main metabolic reactions were the hydroxylation of the adamantyl-ring and
N-dealkylation of the indazole-3-carbaldeyde moiety.

In relation to the results of this study, CD as an all-in-one solution is characterized by its ease of use
and therefore, seems suitable for simple and small metabolomic studies, as the dataset used in this study.
However, it is not possible to use the right statistical test, since the dataset exists of three groups.
Taking this into account, the statistical results of the used dataset can be better represented with the two
open source workflows. Both open source workflows allowed extensive customization but particularly
in the case of R, advanced programming skills are required, while XCMS Online/MetaboAnalyst is an
almost entirely point-and-click experience. Nevertheless, both provided high flexibility and may be
suitable for more complex studies and questions. The metabolic fate of A-CHMINACA in pHLM was
identified best by the two open source workflows.
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Table S1. Peak picking and alignment parameters used for preprocessing using R and XCMS Online. 

Column Polarity 
Peakwidth, 

min 
Peakwidth, 

max 
pp
m 

Snthresh Mzdiff 
Prefilte

r 1 
Prefilter 

2 
bw 

HI pos 10 22 1.0 39 0.07 7 900 0.1 (1*) 
HI neg 10 12 1.9 69 0.016 5 6100 0.1 (1*) 
PH pos 9.3 12 1.2 83 0.02 10 5400 0.1 (1*) 
PH neg 9.3 12 1.0 96 0.068 6 8200 0.5 (1*) 
HI = HILIC, PH = PhenylHexyl, pos = positive, neg = negative, ppm = allowed ppm deviation of mass traces 
for peak picking, snthresh = signal to noise threshold, mzdiff = minimum difference in m/z for two peaks to 
be considered as separate, prefilter 1 = minimum of scan points, prefilter 2 = minimum abundance, bw = 
bandwidth for grouping of peaks across separate chromatograms, * value used for XCMS Online.



 

Figure S1. Results of one-way ANOVA for A-CHMINACA incubations analyzed in positive 
ionization mode. A = XCMS Online/MetaboAnalyst, HILIC column; B = XCMS 
Online/MetaboAnalyst, PhenylHexyl column; C = R, HILIC column; D = R, PhenylHexyl column; E = 
Compound Discoverer, Low and Blank, HILIC column; F = Compound Discoverer, Low and Blank, 



PhenylHexyl column; G = Compound Discoverer, Low and High, HILIC column; H = Compound 
Discoverer, Low and High, PhenylHexyl column; I = Compound Discoverer, High and Blank, HILIC 
column; J = Compound Discoverer, High and Blank, PhenylHexyl column. 

 

Figure S2. Results of scree plots for A-CHMINACA incubations analyzed in positive ionization mode. 
A = XCMS Online/MetaboAnalyst, HILIC column; B = XCMS Online/MetaboAnalyst, PhenylHexyl 
column; C = R, HILIC column; D = R, PhenylHexyl column; E = Compound Discoverer, HILIC 
column; F = Compound Discoverer, PhenylHexyl column. 



 

Figure S3. Results of scores of principal component analysis for A-CHMINACA incubations analyzed 
in positive ionization mode without isotopes and adducts. A = XCMS Online/MetaboAnalyst, 
PhenylHexyl column; B = R, PhenylHexyl column. 



 



 



 

Figure S4. LC-HRMS/MS spectra of significant features in A-CHMINACA incubations analyzed with 
a HILIC column in positive ionization mode. Fragments with accurate mass, calculated elemental 
formula, and mass error value in parts per million (ppm). 
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The authors wish to make the following comment to this paper [1].
To avoid any misunderstandings and misleading interpretations regarding the general possibilities

of Compound Discoverer (CD) when reading the paper, we would like to add the following comment.
We used Compound Discoverer (CD) with an already existing workflow for untargeted metabolomics
namely “Untargeted Metabolomics with statistics detect unknowns with ID using Online Database
and mzLogic” without changing any parameters (“out-of-the-box”). Therefore, some features of CD
were not used, such as direct evaluation of isotopes and adducts, Scripting node for normalization,
and comparing three groups visually after ANOVA, as it was carried out for the other two workflows.

Readers should be aware that CD is nevertheless able to determine isotopic patterns and elemental
composition, integrate Scripting node that can then be used to integrate R or Python scripts, and is capable
of comparing multiple groups, performing ANOVA with Tukey as a post-hoc test, and nested designs.

The authors would like to apologize for any misunderstandings appearing from the original
manuscript. These comments do not a↵ect the scientific results.
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Abstract
Amphetamine is widely consumed as drug of abuse due to its stimulating and cognitive enhancing effects. Since ampheta-
mine has been on the market for quite a long time and it is one of the most commonly used stimulants worldwide, to date 
there is still limited information on its effects on the metabolome. In recent years, untargeted toxicometabolomics have been 
increasingly used to study toxicity-related pathways of such drugs of abuse to find and identify important endogenous and 
exogenous biomarkers. In this study, the acute effects of amphetamine intake on plasma and urinary metabolome in rats 
were investigated. For this purpose, samples of male Wistar rats after a single dose of amphetamine (5 mg/kg) were com-
pared to a control group using an untargeted metabolomics approach. Analysis was performed using normal and reversed 
phase liquid chromatography coupled to high-resolution mass spectrometry using positive and negative ionization mode. 
Statistical evaluation was performed using Welch’s two-sample t test, hierarchical clustering, as well as principal compo-
nent analysis. The results of this study demonstrate a downregulation of amino acids in plasma samples after amphetamine 
exposure. Furthermore, four new potential biomarkers N-acetylamphetamine, N-acetyl-4-hydroxyamphetamine, N-acetyl-
4-hydroxyamphetamine glucuronide, and amphetamine succinate were identified in urine. The present study complements 
previous data and shows that several studies are necessary to elucidate altered metabolic pathways associated with acute 
amphetamine exposure.

Keywords Untargeted metabolomics · Toxicometabolomics · Amphetamine · LC-HRMS/MS

Introduction

Once introduced as a treatment against narcolepsy, mild 
depression, post-encephalitic parkinsonism, and several 
other disorders (Heal et al. 2013), amphetamine nowadays 
has a limited therapeutic use but is widely consumed as a 
drug of abuse (DOA) due to its stimulating properties (Car-
valho et al. 2012). In 2018, amphetamine was one of the 
world’s most commonly used stimulants, along with cocaine 
and methamphetamine (UNODC 2020). In addition to the 
desired effects such as feelings of energy, sociability, and 
confidence, many adverse effects including hypertension, 

tachycardia, anxiety, paranoia or auditory and visual hal-
lucinations are associated with its use (Bonisch and Bruss 
2006; Steinkellner et al. 2011). These effects are based on 
its pharmacological ability to act as an indirect sympathomi-
metic and to increase the release of different neurotransmit-
ters such as noradrenaline and dopamine and/or inhibit their 
respective reuptake transporter in the presynaptic membrane 
(Carvalho et al. 2012; de la Torre et al. 2004). Although 
amphetamine is consumed since decades, there is still little 
knowledge available regarding its effects on the metabolic 
state of the organism (Steuer et al. 2020). Conventional 
in vitro toxicological studies, e.g., using human dopamin-
ergic differentiated SH-SY5Y cells revealed a neurotoxic 
effect, which caused mitochondrial dysfunction at a con-
centration of 3.5 mM (Carvalho et al. 2012; Feio-Azevedo 
et al. 2017).
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Metabolomics in general is used for discovery of novel 
biomarkers, investigation of physiologic status, or identifica-
tion of perturbed biochemical pathways (Nicholson and Lin-
don 2008) and can provide a snapshot analysis of the whole 
metabolome in a biological system (Liu and Locasale 2017). 
Toxicometabolomics, a sub-discipline of metabolomics, is 
dedicated to elucidate the pattern of small molecules (usually 
below 1500 Da) within an in vitro or in vivo system related 
to a certain stimulus such as DOA intake. Under highly con-
trolled study conditions, changes of the metabolome can be 
observed that may indicate or be the result of a certain drug 
intake (Wang et al. 2016). Toxicometabolomics can, therefore, 
be used to study toxicity-related pathways such as the mode of 
action of xenobiotics or in screening of drug induced cellular 
or organ toxicity, or to discover new biomarkers (Bouhifd 
et al. 2013; Ramirez et al. 2013). In recent years, toxicome-
tabolomics have been increasingly used in the field of DOA 
(Araujo et al. 2021; Manier et al. 2020a, b; Steuer et al. 2020; 
Zaitsu et al. 2016). Its application may allow to find exog-
enous biomarkers, which could be new drug metabolites, and 
on the other hand to identify endogenous biomarkers, which 
could not only be indications of acute drug ingestion or sam-
ple manipulation but also provide information in the mecha-
nism of drug action, consumption behavior, or can be used to 
assess the severity of intoxications (Steuer et al. 2019; Wang 
et al. 2016). Steuer et al. (2020) investigated changes of the 
plasma metabolome after amphetamine intake in a controlled 
human study of 13 participants and identified an increased 
energy and steroid metabolism. However, since there is no 
method that can reveal the complete metabolome and since 
the plasma metabolome is highly dynamic and influenced by 
various factors, further studies are needed. In vivo studies in 
laboratory animals are suitable for this purpose. Under well-
standardized and comparable conditions such as controlled 
diet, sleep cycles and little genetic variability, it is possible to 
better delineate the metabolome changes caused by ampheta-
mine use. Furthermore, to the best of our knowledge, there 
are no studies on the urinary metabolome after amphetamine 
exposure available.

This study should provide the metabolic profiling of rat 
plasma and urine in response to acute amphetamine exposure, 
provide additional metabolites/biomarker in urine for detec-
tion of amphetamine intake and should complement previous 
studies. Data should allow to observe changes in the metabo-
lome caused by amphetamine and allow to identify biologi-
cal pathways affected by its intake, which are necessary to 
further understand its acute and chronic effects and support 
further targeted analysis. The analysis should be done by liq-
uid chromatography coupled to high-resolution tandem mass 
spectrometry (LC–HRMS/MS).

Materials and methods

Chemicals and reagents

Racemic D-/L-amphetamine sulfate was purchased from 
Lipomed (Weil am Rhein, Germany). Acetonitrile, ethanol, 
and methanol (all LC–MS grade) were obtained from VWR 
(Darmstadt, Germany), ammonium formate, ammonium 
acetate, and formic acid, amino acids standards solution, 
D-Glucose-1,2,3,4,5,6,6-d7, palmitic acid-d31, and creatinine-
d3 from Merck (Darmstadt, Germany). L-Tryptophan-d5 was 
obtained from Alsachim (Illkirch-Graffenstaden, France). 
Water was purified with a Millipore filtration unit (18.2 
Ω × cm water resistance).

Study design

Ten adolescent male Wistar rats (Charles River, Sulzfeld, 
Germany) were housed in a controlled environment (tem-
perature 22  °C, humidity 57 ± 2%, and 12  h light/dark 
cycles). Studies have been approved by an ethics committee 
(33/2019—Landesamt für Verbraucherschutz, Saarbrücken, 
Germany). A single dose of 5 mg/kg body weight (BW) 
racemic D-/L-amphetamine was administered as aqueous 
suspension by gastric intubation to five rats. Five control 
rats were administrated only with water. During the study, 
rats were housed in metabolism cages for 24 h, having water 
ad libitum. Animal general health aspects were assessed at 
the time points 30 min, 60 min, 120 min, 360 min, and 24 h 
after amphetamine intake. The animals were then monitored 
including only some general aspects such as body weight, 
clean orifices, clear eyes, and sleep behavior. Detailed 
changes expected after intake of stimulants such as heart 
rate, radial maze for cognitive function or plus maze to 
determine activity and anxiety behavior were not and could 
not be monitored as this was not the focus of the current 
study.

The selected dose of 5 mg/kg BW D-/L-amphetamine 
is equivalent to 50 mg in a 60 kg human according to the 
allometric scaling principles of Nair and Jacob (2016). 
This would correspond to a human D-amphetamine dose of 
25 mg, which is in line with the work by Dolder et al. (2017) 
and 50 mg of a racemic mixture, which is used as recrea-
tional drug (http:// psych oakti vesub stanz en. de/ amphe tamin. 
Accessed 26-May-2020, 9:30).

Sample collection

Urine was collected separately from the feces over a period 
of eight or 24 h after administration, aliquoted, and frozen 
at − 80 °C until use. Blood samples were collected 1, 2, and 

http://psychoaktivesubstanzen.de/amphetamin
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8 h after administration. For blood sampling, animals were 
anesthetized with diethyl ether and blood was withdrawn 
from the Vena caudalis mediana using a heparin-coated 
syringe. Blood samples were centrifuged (1503 rcf, 5 min, 
24 °C), and plasma was removed and immediately stored at 
− 80 °C until analysis.

Sample preparation

According to Manier and Meyer (2020), plasma samples 
were prepared as follow. A volume of 50 µL plasma was 
transferred into a reaction tube and precipitated using 
200 µL of a mixture of methanol and ethanol (1:1, v/v). The 
mixture contained 48 µM L-tryptophan-d5, 8.6 µM creati-
nine-d3, 34.8 µM palmitic acid-d31, and 53.4 µM D-glucose-
d7 as internal standards. Samples were shaken for 2 min at 
2000 rpm and subsequently centrifuged for 30 min at 21,130 
rcf and 2 °C. 150 µL of the supernatant was transferred into a 
new reaction tube and evaporated to dryness using a vacuum 
centrifuge at 1400 rpm and 24 °C for 20 min. The obtained 
residues were reconstituted in 50 µL of a mixture of acetoni-
trile and methanol (70:30, v/v).

In accordance with Barnes et al. (2016), urine samples 
were centrifugated at 13,523 rcf at 4 °C for 10 min to remove 
any precipitates. 50 µL of urine were transferred in a reac-
tion tube and 200 µL methanol including 48 µM L-trypto-
phan-d5, 8.6 µM creatinine-d3, 34.8 µM palmitic acid-d31, 
and 53.4 µM D-glucose-d7 as internal standards were added. 
Samples were cooled to − 20 °C for 20 min and then cen-
trifugated for 10 min at 13,523 rcf and 4 °C. 150 µL of 
the supernatant were transferred into a new reaction tube 
and evaporated to dryness using a vacuum centrifuge at 
1400 rpm and 24 °C. The obtained residues were recon-
stituted in 50 µL of a mixture of acetonitrile and methanol 
(70:30, v/v).

For each matrix and the corresponding timepoint, one 
pooled quality control (QC) sample was prepared by trans-
ferring 10 µL of each sample into one MS vial. These QC 
samples were also used for optimization of the peak pick-
ing parameters and identification of significant features, as 
described below (QC group).

LC-HRMS/MS apparatus

According to Manier et al. (2019b), analyses were per-
formed using a Thermo Fisher Scientific (TF, Dreieich, 
Germany) Dionex UltiMate 3000 RS pump consisting of 
a degasser, a quaternary pump, and an UltiMate Autosa-
mpler, coupled to a TF Q-Exactive Plus system including 
a heated electrospray ionization (HESI)-II source. Per-
formance of the columns and the mass spectrometer was 
tested using a test mixture as described by Maurer et al. 
(Maurer et al. 2018, 2016). Gradient reversed phase (RP) 

elution was performed on a TF Accucore Phenyl-Hexyl 
column (100 mm × 2.1 mm, 2.6 µm) and normal phase 
(NP) elution using a Macherey–Nagel (Düren, Germany) 
HILIC Nucleodur column (125 mm × 3 mm, 3 µm). The 
mobile phase and gradient for the Phenyl-Hexyl column 
consisted of 2 mM aqueous ammonium formate contain-
ing acetonitrile (1%, v/v) and formic acid (0.1%, v/v, pH 
3, eluent A), as well as 2 mM ammonium formate solu-
tion with acetonitrile:methanol (1:1, v/v) containing water 
(1%, v/v) and formic acid (0.1%, v/v, eluent B). The flow 
rate was set from 1 to 10 min to 500 µL/min and from 10 
to 13.5 min to 800 µL/min using the following gradient: 
0–1 min hold 99% A, 1–10 min to 1% A, 10–11.5 min hold 
1% A, 11.5–13.5 min hold 99% A. The gradient elution 
for normal phase chromatography was performed using 
aqueous ammonium acetate (200 mM, eluent C) and ace-
tonitrile containing formic acid (0.1%, v/v, eluent D). The 
flow rate was set to 500 µL/min using the following gra-
dient: 0–1 min hold 2% C, 1–5 min to 20% C, 5–8.5 min 
to 60% C, 8.5–10 min hold 60% C, 10–12 min hold 2% 
C. For preparation and cleaning of the injection system, 
isopropanol:water (90:10, v/v) was used. The following 
settings were used: wash volume, 100 µL; wash speed, 
4000 nL/s; loop wash factor, 2. Column temperature for 
every analysis was set to 40 °C, maintained by a Dionex 
UltiMate 3000 RS analytical column heater. Injection 
volume was set to 1 µL. HESI-II source conditions were 
as follows: ionization mode, positive or negative; sheath 
gas, 60 AU; auxiliary gas, 10 AU; sweep gas, 3 AU; spray 
voltage, 3.5 kV in positive and − 4.0 kV in negative mode; 
heater temperature, 320 °C; ion transfer capillary tempera-
ture, 320 °C; and S-lens RF level, 50.0. Mass spectrometry 
for untargeted metabolomics was performed according to 
a previously optimized workflow (Manier et al. 2019a, b). 
The settings for full scan (FS) data acquisition were as fol-
lows: resolution, 140,000 fwhm; microscan, 1; automatic 
gain control (AGC) target, 5 ×  105; maximum injection 
time, 200 ms; scan range, m/z 50–750; spectrum data type; 
centroid. All study samples were analyzed in randomized 
order, to avoid potential analyte instability or instrument 
performance to confound data interpretation. Addition-
ally, one QC injection was performed every five samples 
to monitor batch effects, as described by Wehrens et al. 
(Wehrens et al. 2016).

Significant features were subsequently identified using 
PRM. Settings for PRM data acquisition were as follow: res-
olution, 35,000 fwhm; microscans, 1; AGC target, 5 ×  105; 
maximum injection time, 200 ms; isolation window, 1.0 m/z; 
collisions energy (CE), 10, 20, 35, or 40 eV; spectrum data 
type, centroid. The inclusion list contained the monoisotopic 
masses of all significant features and a time window of their 
retention time ± 60 s. TF Xcalibur software version 3.0.63 
was used for data handling.
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Data processing and statistical analysis

Thermo Fisher LC-HRMS/MS RAW files were converted 
into mzXML files using ProteoWizard (Adusumilli and Mal-
lick 2017). Optimization of XCMS parameter was done on a 
previously optimized strategy as mentioned by Manier et al. 
(2019a). Peak picking and alignment parameters are sum-
marized in Table S1 in the supplementary data. Peak picking 
was performed using XCMS in an R environment (Smith 
et al. 2006; Team) and the R package CAMERA (Kuhl 
et al. 2012) was used for the annotation of adducts, artifacts, 
and isotopes. Feature abundance with a value of zero were 
replaced by the lowest measured abundance as a surrogate 
limit of detection and the whole dataset was subsequently 
log10 transformed (Wehrens et al. 2016). Normalization 
was performed for urine samples using the area of endog-
enous creatinine from those samples analyzed using normal 
phase column and positive ionization mode and for plasma 
samples using the internal standard L-tryptophan-d5. Signifi-
cant changes of features between control and amphetamine 
group were assumed after evaluating their fold change using 
a threshold of 1.5, as well as after Welch’s two-sample t test 
and a p value < 0.025. Principal component analysis (PCA) 
and hierarchical clustering were used to investigate patterns 
in the datasets. Names for the features were adopted from 
XCMS using “M” followed by rounded mass and “T” fol-
lowed by the retention time in seconds. After visual inspec-
tion of the extracted ion chromatograms (EIC) of significant 
features, the significant features were divided into true and 
false features based on the peak shape quality of their EIC 
(Hemmer et al. 2020). The R scripts and the mzXML files 
can be found at https:// github. com/ sehem/ Amphe tamine_ 
Metab olomi cs. git.

Identification of significant features

Significant features were identified by recording MS/MS 
spectra using the PRM method mentioned above. After 
conversion to mzXML format using ProteoWizard (Adu-
sumilli and Mallick 2017), spectra were imported to NIST 
MSSEARCH version 2.3. Library search for identifica-
tion was performed using the following settings: spectrum 
search type, identity (MS/MS); precursor ion m/z, in spec-
trum; spectrum search options, none; presearch, off; other 
options, none. MS/MS search was conducted using the fol-
lowing settings: precursor tolerance, ± 5 ppm; product ion 
tolerance, ± 10 ppm; ignoring peaks around precursor, ± m/z 
1 (Manier et al. 2020b). Following libraries were used: 
NIST 2014 (nist_msms and nist_msms2 sublibrary) (Lin-
strom and Mallard 2001), Wiley METLIN Mass Spectral 
Database (Guijas et al. 2018), LipidBlast (Kind et al. 2013), 
MMHW (Maurer et al. 2018), the Human Metabolome 
Database (Wishart et al. 2007) (HMDB, V4.0). Metabolites 

of amphetamine were tentatively identified by interpreting 
their spectra in comparison to that of the parent compound. 
The in-silico fragmentation tool MetFrag (https:// msbi. ipb- 
halle. de/ MetFr ag/) was applied to MS/MS data to identify 
potential substructures. Identified features were classified on 
the different levels of identification according to the Metab-
olomics Standards Initiative (MSI) (Sumner et al. 2007): 
affirmation using MS/MS information and co-elution with 
authentic standards (level 1), affirmation without chemical 
reference standards, based on comparison of experimental 
MS/MS spectra with public/commercial spectral libraries 
(level 2), annotation of putatively characterized compound 
classes based on characteristic physicochemical properties 
of a chemical class of compounds, or by spectral similarity 
to known compounds of a chemical class (level 3), and uni-
dentified or unclassified metabolites (level 4).

Metabolic pathway analysis

To identify the endogenous metabolic pathways affected by 
amphetamine intake, all compounds identified with level 
1 were imported to MetaboAnalyst 5.0 (http:// www. metab 
oanal yst. ca) and searched against Rattus norvegicus metabo-
lite database, for each matrix and time points. Scatter plot 
was selected as visualization method and the hypergeometric 
test with the relative-betweenness centrality algorithm was 
used. For further biological interpretation biochemical path-
ways with a significant level of p < 0.05 was used.

Results

Data files in mzXML format and the corresponding R files 
can be found at https:// github. com/ sehem/ Amphe tamine_ 
Metab olomi cs. git. Results of univariate and multivariate sta-
tistic as well as the  MS2 spectra of amphetamine metabolites 
are available as supplementary data.

Animal general health aspects

Amphetamine exposed animals in this study showed no 
effect on their stereotyped behavior or exploratory activ-
ity after administration. Furthermore, no significant body 
weight loss could be observed in comparison to the control 
group.

Untargeted metabolomics: univariate 
and multivariate statistics

Volcano plots of detected features are shown in Fig. S1–4. 
An overview of the total number of significant features and 
their percentage of adducts/artifacts, isotopes, and false-
positive results are shown in Table S2. In addition, datasets 

https://github.com/sehem/Amphetamine_Metabolomics.git
https://github.com/sehem/Amphetamine_Metabolomics.git
https://msbi.ipb-halle.de/MetFrag/
https://msbi.ipb-halle.de/MetFrag/
http://www.metaboanalyst.ca
http://www.metaboanalyst.ca
https://github.com/sehem/Amphetamine_Metabolomics.git
https://github.com/sehem/Amphetamine_Metabolomics.git


3227Archives of Toxicology (2021) 95:3223–3234 

1 3

were analyzed using multivariate methods in form of PCA 
and hierarchical clustering, to identify the largest changing 
features and specific signatures. Results of the hierarchical 
clustering which are displayed in heatmaps are shown in Fig. 
S5–8. Results of the scores of PCA of all matrices and time 
points are shown in Fig. S9–12.

Plasma

Using the four different analytical methods (RP positive, RP 
negative, NP positive, NP negative), 41 features were found 
in total to be significant at all three plasma time points after 
amphetamine administration. Plasma samples which were 
taken 1 h after administration, revealed 14 significant fea-
tures after using RP and NP and positive ionization mode, 
which contained one isotope and two adducts according to 
CAMERA. However, one of these significant features was 
manually marked as false-positive, due to its EIC show-
ing a poor peak shape quality. Analyses using RP and NP 
and negative ionization mode did not reveal any significant 
changes at that time point. Considering the heat maps, a 
clear separation between the control group and the ampheta-
mine group is shown by NP (Fig. S5a). The dataset of the 
plasma samples which were taken 2 h after administration, 
revealed 13 significant features. These features included nine 
false-positive features, as well as two isotopes. Again, using 
RP and negative ionization did not reveal any significant fea-
tures. Looking at the PCA, the two groups amphetamine and 
control measured in positive ionization mode separated well 
(Fig. S9b and S11b). In plasma samples received 8 h after 
administration, 18 significant features were observed only 
in positive ionization mode. These features included five 
false-positive hits and two isotopes. Both heatmaps showed 
a clear separation of the amphetamine and control group 
(Fig. S5c and S7c).

Urine

In urine samples, 88 significant features were found in total 
using the above mentioned four different analytical methods 
in the samples collected after 8 and 24 h. Sixty-four sig-
nificant features were found in the 8-h urine samples. These 
features included 18 false-positive hits, as well as five iso-
topes and seven artifacts according to CAMERA. Heatmaps 
showed a good clustering of all groups (Fig. S5d, S6b, S7d, 
and S8a). Furthermore, in comparison to plasma, ampheta-
mine samples are clustered very closely together in the PCA 
scores, whereas the control group appears more distributed 
(Fig. S9d, S10b, S11d, and S12a). Urine samples which were 
collected 24 h after administration revealed 32 significant 
features. These features included two false-positive hits, two 
isotopes, and three artifacts. The four heatmaps displayed a 
good clustering of the groups (Fig. S5e, S6c, S7e, and S8b). 

In comparison to the PCA scores after 8 h, the amphetamine 
group appears more distributed after 24 h.

Identification of significant features

The results of the identification of significant features are 
summarized in Tables 1 and 2. The given level of identifica-
tion was in accordance with the MSI (Sumner et al. 2007). 
Isotopes that were putatively identified by CAMERA were 
not further identified. No  MS2 spectra could be recorded for 
several features due to their low abundance.

Plasma

In total, 14 compounds could be identified with a level of 
1 or 2 (Table 1). 1 h after administration, most identified 
compounds were amino acids, which could all be identified 
with level 1 according to MSI. Additionally, the sesquiterpe-
noid tocopheronic acid was identified. In comparison to the 
control group all compounds were downregulated. Ampheta-
mine and its metabolite N-acetylamphetamine were identi-
fied in samples drawn 2 h after administration. Furthermore, 
erucamide, an unsaturated fatty amide was upregulated com-
pared to the control group. In plasma samples obtained after 
the 8 h, the identified compounds were again amino acids 
and N-acylsphingosines such as L-methionine and ceramide. 
While amounts of most amino acids were decreased com-
pared to control group, all other compounds had increased.

Urine

Table 2 summarizes the 21 compounds which were identi-
fied in urine samples. Compared to urine collected after8 h, 
only amphetamine and its metabolites could be identified 
in the 24-h urine samples, except for N-acetylhistamine. 
Most of the identified compounds in 8-h urine samples were 
either amino acids or amphetamine metabolites. All identi-
fied compounds had increased in comparison to the control 
group except for L-tryptophan and spermidine.

Metabolic pathway analysis

since no substances with a level of 1 were identified in 
plasma samples 2 h after amphetamine administration, only 
the scatter plots of 1- and 8-h plasma samples are shown in 
Fig. 1a, b. The identified metabolic pathway in plasma sam-
ples 1 h after administration with p < 0.05 were aminoacyl-
tRNA biosynthesis, phenylalanine, tyrosine, and tryptophan 
biosynthesis, valine, leucine, and isoleucine biosynthesis, 
and ubiquinone and other terpenoid-quinone biosynthesis. 
For the 8-h plasma samples, glycine, serine, and threonine 
metabolism, aminoacyl-tRNA biosynthesis, and valine, leu-
cine, and isoleucine biosynthesis were found as significantly 
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changed metabolic pathways. In the 8-h urine samples, only 
two endogenous metabolites were identified by level 1, 
therefore, the scatter plot shows only one significant hit for 
arginine biosynthesis (Fig. 1c). No endogenous metabolites 
could be identified with level 1 according to MSI in urine 
24 h after administration and, therefore, no metabolic path-
way analysis was possible.

Discussion

The metabolome is considered as all compounds with molec-
ular weights less than 1500 Da, which could be detected in, 
e.g., biofluids or tissues (Barnes et al. 2016). These mol-
ecules are not necessarily originating from the biological 
sample but also from, e.g., tubing vials and reagents. Sam-
ples such as plasma or urine are particularly complex since 
the metabolome is affected additionally by, e.g., food, micro-
biome, and drugs used to anesthetize experimental animals 

(Barnes et al. 2016). Since there are many parameters, which 
can influence the human metabolome, animal models are 
well suited to study changes in the metabolome, as they 
are less complex than human studies and can be performed 
under standardized and comparable conditions. Animals 
are subject to a uniform sleep–wake rhythm, kept under the 
same conditions, receive the same food and water, and they 
have the advantage that their genetic variability is very low. 
Furthermore, a metabolomic study requires significantly 
fewer animals than would be needed in a human clinical 
study to obtain reliable results. They are also beneficial com-
pared to in vitro studies, which often represent only certain 
cells or organs and thus only a part of an entire organism. 
Thus, ten male adolescents Wistar rats were used in this 
study. Certain metabolites are released or excreted into blood 
and urine due to a certain stimulus such as drug of abuse 
intake. There they can be identified and serve as potential 
biomarkers (Wang et al. 2016). While plasma is primarily 
of interest in terms of changes in endogenous metabolites 

Table 1  Identified compounds in plasma samples that showed significant changes between amphetamine (A) and control (C) group, sorted 
according to compound classes, m/z values are given for the highest prevalent ion species

Identification levels for each metabolite are given according to MSI (Sumner et al. 2007). The corresponding chromatography method is given 
for normal phase (NP) and for reversed phase (RP) chromatography. Statistical was performed by Welch t test (p < 0.025): not significant 
(n.s.) > 0.025
*0.01–0.025
**0.001–0.01
*** < 0.001

Compound name Identification 
level

Compound class m/z Chromatography Adducts Change p (1 h, 
A vs. 
C)

p (2 h, 
A vs. 
C)

p (8 h, 
A vs. 
C)

Creatine 1 Amino acid 131.0695 RP M + H ↑ n.s n.s *
L-Tryptophan 1 Amino acid 204.0899 RP M + H, 

M + H-NH3, 
M + K*HCOOH, 
M + 1

↓ ** n.s n.s

L-Citrulline 1 Amino acid 175.0957 NP M + H ↓ * n.s n.s
L-Histidine 1 Amino acid 155.0695 RP M + H ↓ ** n.s n.s
L-Methionine 1 Amino acid 149.0510 RP, NP M + H ↓ ** n.s **
L-Proline 1 Amino acid 115.0633 RP, NP M + H ↓ * n.s n.s
L-Threonine 1 Amino acid 119.0582 RP, NP M + H ↓ ** n.s *
L-Tyrosine 1 Amino acid 181.0739 RP, NP M + H ↓ * n.s n.s
Amphetamine 1 Amphetamine 135.1048 RP M + H ↑ n.s * n.s
Amphetamine-M 

(N-acetyl)
2 (NIST msms) Amphetamine 177.1154 RP M + H ↑ n.s ** n.s

Ceramide 
(d18:1/23:0)

2 (Lipidmaps) N-acylsphingo-
sine

635.6216 NP M + H, M + 1 ↑ n.s n.s **

Nicotinamide 2 (NIST ms/ms) Pyridine carbox-
ylic acids

122.0480 NP M + H ↓ n.s n.s *

Tocopheronic 
acid

3 (hmdb) Sesquiterpenoids 294.1467 NP M + H-H2O ↓ ** n.s n.s

Erucamide 2 (NIST msms) Unsaturated fatty 
amide

337.3345 NP M + H, M + 1 ↑ n.s * n.s
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Table 2  Identified compounds in urine samples that showed significant changes between amphetamine (A) and control (C) group, sorted accord-
ing to compound classes, m/z values are given for the highest prevalent ion species

Identification levels for each metabolite are given according to MSI (Sumner et al. 2007). The corresponding chromatography method is given 
for normal phase (NP) and for reversed phase (RP) chromatography. Statistical was performed by Welch t test (p < 0.025): not significant 
(n.s.) > 0.025
*0.01–0.025
**0.001–0.01 
*** < 0.001

Compound name Identification 
level

Compound class m/z Chromatogra-
phy

Adducts Change p (8 h, A vs. C) p (24 h, 
A vs. 
C)

4-Hydroxy-6-methyl-
2-pyron

2 (NIST msms) 126.0317 NP M + H ↑ * n.s

Imidazole lactate 2 (NIST msms) 156.0535 NP M + H ↑ * n.s
Histamine 2 (NIST msms) Amines 111.0796 NP M + H ↑ ** n.s
L-Pentahomomethio-

nine
2 (METLIN) Amino acids 219.1293 NP M + H ↑ * n.s

L-Tryptophan 1 Amino acids 204.0899 RP M + H ↓ * n.s
N-acetyl-L-arginine 2 (NIST msms) Amino acids 216.1222 NP M + H ↑ ** n.s
N-acetylhistamine 2 (NIST msms) Amino acids 153.0902 RP M + H ↑ n.s *
N2, N5-diacetylorni-

thine
2 (NIST msms) Amino acids 216.1110 RP M + H ↑ * n.s

Spermidine 2 (NIST msms) Amino acids 145.1579 RP M + H ↓ * n.s
γ-Glutamyl-γ-

aminobutyraldehyde
2 (NIST msms) Amino acids 216.1110 NP M-H ↑ ** n.s

Amphetamine 1 Amphetamine 135.1048 RP, NP M + H-NH3, 
M + D-NH3, 
M + H, M + H, 
M + D, 
M + 1, M + 2, 
M + H-107

↑ ** ***

Amphetamine-M 
(3-OH sulfate)

2 (MMHW) Amphetamine 231.0565 RP, NP M + H ↑ ** **

Amphetamine-M 
(4-hydroxy glucu-
ronide)

3 Amphetamine 327.1318 RP M + H ↑ ** n.s

Amphetamine-M 
(4-hydroxy-)

3 Amphetamine 151.0997 RP, NP M + H, 
M + H-(107), 
M + D

↑ *** **

Amphetamine-M 
(6-oxohexanoic 
acid-)

3 Amphetamine 263.1521 NP M + H ↑ *** n.s

Amphetamine-M 
(N-acetyl-4-hydroxy 
glucuronide)

3 Amphetamine 369.1424 RP, NP M + H, H–H ↑ ** **

Amphetamine-M 
(N-acetyl-)

3 Amphetamine 177.1154 NP M + H ↑ n.s *

Amphetamine-M 
(N-acetyl-4-hy-
droxy-)

3 Amphetamine 193.1103 NP M + H ↑ * n.s

Amphetamine suc-
cinate

3 Amphetamine 235.1208 NP M + H, M + D ↑ *** **

5-Acetylamino-
6-amino-3-methyl-
uracil

2 (MetFrag) N-arylamides 198.0753 NP M + H, M + D ↑ * n.s

1,3-Dimethyluracil 2 (MetFrag) Pyrimidines 140.0586 NP M + H, M + D ↑ * n.s
Urea 1 Ureas 60.0324 RP M + Na ↑ * n.s
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that may be affected by amphetamine abuse, urine is of 
interest for detecting metabolites (intake biomarker). The 
application of untargeted metabolomics to urine may allow 
the detection of metabolites that may be overseen by conven-
tional pathway analysis methods because they might not be 
expected. Therefore, both plasma and urine were analyzed 
in this study to complement and confirm previous studies 
of the plasma metabolome after amphetamine intake and to 
detect additional metabolites/biomarker in urine that allow 
detection of amphetamine abuse. Blood draw time points of 

1, 2, and 8 h were chosen to examine both direct and delayed 
effects of amphetamines on the plasma metabolome. Blood 
at time point = 0 min was not sampled to avoid additional 
stress to the animals prior to substance application, which 
could have influenced the study outcome. Furthermore, 
individual differences in the animals could be ruled out via 
the study design as changes in the metabolome between the 
control and amphetamine group were only assumed to be 
statistically significant in case they occurred in the complete 
group. Since the maximum plasma concentration is reached 

Fig. 1  Overview of the scatter plots of the metabolic pathways 
changed by a single dose of amphetamine (5  mg/kg) in a plasma 
1 h, b plasma 8 h, and c urine 8 h after administration. The color of 
the dots is based on the negative decadic logarithm of the p value. 
Dark color indicates a more significant pathway. The dots radius 
complies with the pathway impact value. Statistically significant 

pathways (p < 0.05) are numbered from 1 to 6. 1 = aminoacyl-tRNA-
biosynthesis; 2 = phenylalanine, tyrosine and tryptophan biosynthesis; 
3 = valine, leucine, and isoleucine biosynthesis; 4 = ubiquinone and 
other terpenoid-quinone biosynthesis; 5 = glycine, serine and threo-
nine metabolism; 6 = arginine biosynthesis
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after 15 min, the first two withdrawal time points were 1 and 
2 h (Slezak et al. 2018). 8 h after amphetamine administra-
tion, amphetamine or metabolites of them could no longer 
be detected in plasma. However, effects could possibly still 
be detected but also some changes may also occur at a later 
time point and thus be undetectable (Gertsman and Barshop 
2018). The two urine collection time points were chosen to 
be able to detect both direct and delayed effects.

It was not possible to find potential reasons for all iden-
tified altered metabolites in this study. Conclusions on a 
pathway can only be drawn if the pathway could be clearly 
identified by more than one metabolite. Metabolites that 
occurred as a single phenomenon of a possible pathway 
must, therefore, first be considered individually in their func-
tion. To be able to make specific statements about the influ-
ence of the metabolites in association with amphetamine 
consumption, a targeted study can be considered in which a 
specific analysis can be made for metabolites that occur in 
the proposed metabolic pathways.

Plasma samples collected after controlled 
amphetamine administration

The complexity of the plasma metabolome was visible com-
paring the PCA of the plasma datasets to the urine datasets 
(Fig. S9–12). Urine samples are well clustered in contrast 
to plasma samples regarding the multivariate statistics. This 
can be explained by the fact, that in contrast to plasma, most 
of the identified features in urine belong to amphetamine and 
its metabolites.

While Steuer et al. (2020) identified in human various 
metabolites derived from energy metabolism in general, 
such as acyl carnitines, fatty acids, bile acids, the current 
study found amino acids to be significantly changed in 
rat plasma. It needs to be mentioned, that the species may 
not be directly comparable. The difference in the results 
between Steuer et al. (2020) and the present study shows 
that comprehensive studies and different analytical strate-
gies are necessary to study changes within the metabolome. 
The pathway analysis of time points 1 and 8 h after admin-
istration are shown in Fig. 1a and b. Except for creatine, 
all amino acids were downregulated in the amphetamine-
treated rats compared to the control group. The pathway, 
which was indicated for both time points was the amino-
acetyl-tRNA biosynthesis, which is an essential process 
in protein synthesis (Rubio Gomez and Ibba 2020). While 
tryptophan, histidine, methionine, threonine, and tyros-
ine are essential amino acids, proline and tryptophan are 
functional amino acids, which are important regulators of 
key metabolic pathways. Such pathways are necessary for 
maintenance growth, reproduction, and immunity in organ-
ism (Wu 2009). In addition to the amino acids, further fea-
tures were identified, but these belong to MSI level 2 and 

were, therefore, not included in the pathway analysis. The 
N-acylsphingosine ceramide (d18:1/23:0) was increased in 
8-h plasma samples of amphetamine-treated rats. Ceramides 
are biologically used as membrane stabilizer, energy source 
and storage, and in inflammatory processes. The observa-
tion of amphetamine being able to increase energy metabo-
lism also correlates with other studies conducted both in 
humans and in rats (Dickson 1998; Tserng and Griffin 2004). 
Again, species may not be comparable. Another endogenous 
metabolite, which is associated with the energy metabolism 
is tocopheronic acid (Fahy et al. 2005; Watson 2006). It is 
also part of the lipid metabolism and transport and was sig-
nificantly decreased in comparison to the control group after 
1 h of drug administration. Furthermore, nicotinamide was 
downregulated in amphetamine-treated rats. It is involved 
in the nicotinamide adenine dinucleotide  (NAD+) signaling 
pathway. NAD is synthesized from both nicotinamide and 
degradation products of the amino acid tryptophan (Canto 
and Auwerx 2011). It has an important role as a cofactor 
in numerous metabolic processes such as glycolysis, citric 
acid cycle of cellular respiration, or other cellular functions 
(Belenky et al. 2007; Ying 2006). In plasma collected after 
2 h, only three features were identified. Two of them were 
identified as amphetamine and its metabolite N-acetyl-
amphetamine. The third feature identified was erucamide, 
which is an endogenous metabolite that causes reduced 
mobility and slightly decreased awareness in rats (Cravatt 
et al. 1995; McKinney and Cravatt 2005). Such oleamides 
could also be originating from disposable laboratory plas-
ticware. To test whether this metabolite was a contaminant 
from laboratory plasticware or whether it was endogenous 
in origin, a study was performed according to McDonald 
et al. (2008) by replacing plasma with methanol. The result 
showed that erucamide was also found in methanol samples, 
but compared to plasma, the intensity and peak area was 
much lower. Additionally, the EIC showed a higher signal 
in amphetamine-treated plasma than in the control group. 
Therefore, it might be possible that erucamide was mainly 
derived from an endogenous source. All identified features 
except of amphetamine and its metabolite N-acetylampheta-
mine were of endogenous origin and may help to understand 
acute and long-term effects of amphetamine abuse and are an 
important complement to already published results.

Urine samples collected after controlled 
amphetamine administration

Compared to other biofluids such as plasma, urine is char-
acterized by being easy to collect, rich in metabolites, and 
able to reflect imbalances in all biochemical pathways within 
an organism (Khamis et al. 2017). It is, amongst others, also 
well suited for identifying novel exogenous drug metabolites 
or endogenous biomarkers indicative for drug ingestion so 
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far, they are not exclusively excreted into feces. This is of 
particular interest for compounds, which show relatively 
small detection windows such as amphetamine (Carvalho 
et al. 2012; Kraemer and Maurer 2002; Musshoff 2000). 
Therefore, an untargeted metabolomics approach was used 
in the present study to detect endogenous and (new) exog-
enous metabolites in rat urine. According to previous stud-
ies in mammals (Caldwell 1976; Cho and Wright 1978; 
Musshoff 2000), expected amphetamine metabolites were 
formed mainly through (1) hydroxylation in position 4 of 
the aromatic ring, followed by conjugation of the phenol 
group with sulfate or glucuronic acid and (2) N-deamination 
and oxidation into corresponding benzoic acid derivatives 
which were further conjugated with glycine and excreted as 
hippuric acids (Kraemer and Maurer 2002). However, there 
might be species differences to be considered. In the present 
study, seven amphetamine metabolites were found amongst 
them 4-hydroxyamphetamine and its sulfate and glucuronic 
acid conjugates. Features, which belong to the N-deamina-
tion and oxidation pathway were not indicated as statisti-
cally significant. However, six metabolites/adducts could be 
identified  (MS2 spectra shown in Fig. S13). In detail, the 
N-acetylation, which was also found in plasma samples, the 
N-acetylation together with the hydroxylation of the aro-
matic ring, the glucuronic acid conjugate of N-acetyl-4-hy-
droxyamphetamine, and the conjugate with acid succinic 
acid. The 6-oxohexanoic acid adduct cannot be explained 
from a biological point of view. It is possible that this adduct 
originated exogenously. However, to our knowledge this is 
the first report of amphetamine bound to succinic acid in 
rat. In addition to the amphetamine metabolites mentioned 
above, endogenous metabolites were also detected in urine. 
These included metabolites, which belong to the histamine 
metabolism such as N-acetylhistamine and histamine itself. 
Histamine is a powerful vasodilator, stimulant of gastric 
secretion, and also a centrally acting neurotransmitter. Fur-
thermore, histamine has a considerable impact on mitigating 
stress-induced adverse effects in rats (Chen et al. 2020). This 
observation suggests that amphetamine induces additional 
stress to rats compared to the control group. Spermidine 
was decreased in amphetamine-treated rats. Polyamines such 
as spermidine and spermine play important roles in mam-
malian cells in protein and nucleic acid synthesis, protec-
tion from oxidative damage, activity of ion channels, and 
cell proliferation, differentiation and apoptosis (Pegg 2016). 
The pathway which was indicated for urine collected 8 h 
after administration was the arginine biosynthesis (Fig. 1c). 
Arginine, a semi-essential amino acid, is synthesized from 
citrulline, which has also been detected in plasma and is 
metabolized either to ornithine and urea or to citrulline and 
nitric oxide (NO). The arginine derivatives N-acetyl-L-ar-
ginine and urea, and N2, N5-diacetylornithine, a derivate of 

ornithine, were also detected in urine (Cynober et al. 1995; 
Sasso et al. 2014). In rats, arginine acts as a key signal for 
the activation of ureagenesis during high-protein feeding. 
Additionally, arginine plays an important role in cell divi-
sion, ammonia-removing from body, immune function, and 
hormones release. As a precursor of NO, the smallest signal-
ing molecule in mammalian cells, arginine is thus indirectly 
involved in the regulation of blood pressure (Cynober et al. 
1995). γ-Glutamyl-γ-aminobutyraldehyde, imidazole lactate, 
5-acetylamino-6-amino-3-methyluracil, and 1,3-dimethylu-
racil fluctuated significantly in urine. However, the biologi-
cal significance of these metabolites is currently unclear.

Limitations of the study

The present study provides only a snapshot of the metabo-
lome in rats and a direct transfer to humans is not possible. 
Furthermore, individual altered features in this study could 
only be partly explained in terms of their general func-
tion in mammals, but not how they relate to amphetamine 
abuse. This is due to the fact that it is not possible to draw 
reliable conclusions about a specific pathway based on a 
single feature and thus explain processes in the organism. 
Thus, further studies are needed to draw reliable conclu-
sions. However, the findings of this study may help to first 
understand the impact of amphetamine on the metabolome 
of mammals but—and this is much more of relevance—to 
allow a targeted design of future human studies that need 
then fewer subjects. Furthermore, the newly detected metab-
olites in rats may potentially not be formed (at least to this 
extent) in humans.

Conclusion

Due to the complexity of the metabolome in plasma and 
urine with its multitude of different metabolites, it is not 
possible to establish an untargeted metabolomics approach 
that allows a holistic view on the metabolome. For this rea-
son, the present study is a further piece in the puzzle to 
elucidate, which metabolic changes occur in an organism 
after amphetamine intake. In this study, the major endog-
enous metabolites that were significantly altered belong 
to the compound class of amino acids. Furthermore, new 
amphetamine metabolites N-acetylamphetamine, N-acetyl-
4-hydroxyamphetamine, N-acethyl-4-hydroxy-glucuronic 
amphetamine, and an amphetamine succinic acid conjugate 
were identified, which may be used for detection of ampheta-
mine intake. The example of the succinate metabolite shows 
that untargeted metabolomics allows to identify metabolites 
that would otherwise not have been expected or would not 
have been searched for in a targeted approach.
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Table S2. Overview of the total number of significant features found with all 4 different 

analytical methods (reversed phase chromatography positive/negative and normal phase 

chromatography positive/negative) and their percentage of adducts/artifacts, isotopes and 

false-positive results in the respective matrices. Features found with more than one analytical 

method count only once. 

Matrix Time 
point 

Number 
significant features Adducts/Artifacts Isotopes False-

positive  

Plasma 
1h 14 2 1 1 
2h 13 0 2 9 
8h 18 0 2 5 

Urine 8h 64 7 5 18 
24h 32 3 2 2 

 
 



 

Fig. S1. Results of volcano plot for plasma and urine samples after analysis using normal phase 

chromatography and positive ionization mode. a = plasma 1 h; b = plasma 2 h; c = plasma 8 h; d = urine 8 

h; e = urine 24 h.



 

 

Fig. S2. Results of volcano plot for plasma and urine samples after analysis using normal phase 

chromatography and negative ionization mode. a = plasma 2 h; b = urine 8 h; c = urine 24 h. 

 

 

 

 



 

Fig. S3. Results of volcano plot for plasma and urine samples after analysis using reversed phase 

chromatography and positive ionization mode. a = plasma 1 h; b = plasma 2 h; c = plasma 8 h; d = urine 8 

h; e = urine 24 h. 

 



 

Fig. S4. Results of volcano plot for urine samples after analysis using reversed phase chromatography and 

negative ionization mode. a = urine 8 h; b = urine 24 h. 

 



 

Fig. S5. Results of heat map of hierarchical clustering for plasma and urine samples after analysis using 

normal phase chromatography and positive ionization mode. a = plasma 1 h; b = plasma 2 h; c = plasma 8 h; 

d = urine 8 h; e = urine 24 h. 
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Fig. S6. Results of heat map of hierarchical clustering for plasma and urine samples after analysis using 

normal phase chromatography and negative ionization mode. a = plasma 2 h; b = urine 8 h; c = urine 24 h. 
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Fig. S7. Results of heat map of hierarchical clustering for plasma and urine samples after analysis using 

reversed phase chromatography and positive ionization mode.  a = plasma 1 h; b = plasma 2 h; c = plasma 8 

h; d = urine 8 h; e = urine 24 h. 
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Fig. S8. Results of heat map of hierarchical clustering for urine samples after analysis using reversed phase 

chromatography and negative ionization mode.  a = urine 8 h; b = urine 24 h. 
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Fig. S9. Results of scores of principal component analysis for plasma and urine samples after analysis using 

normal phase chromatography and positive ionization mode.   a = plasma 1 h; b = plasma 2 h; c = plasma 8 

h; d = urine 8 h; e = urine 24 h. 



 

Fig. S10. Results of scores of principal component analysis for plasma and urine samples after analysis 

using normal phase chromatography and negative ionization mode.  a = plasma 2 h; b = urine 8 h; c = urine 

24 h. 



 

Fig. S11. Results of scores of principal component analysis for plasma and urine samples after analysis 

using reversed phase chromatography and positive ionization mode.  a = plasma 1 h; b = plasma 2 h; c = 

plasma 8 h; d = urine 8 h; e = urine 24 h. 



 

Fig. S12. Results of scores of principal component analysis for urine samples after analysis using reversed 

phase chromatography and negative ionization mode.  a = urine 8 h; b = urine 24 h. 

 

 

 



 

Fig. S13. LC-HRMS/MS spectra of amphetamine metabolites. Fragments with accurate mass, calculated 

elemental formula, and mass error value in parts per million (ppm). 



 

Fig. S13. Continued. 
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Abstract: Synthetic cathinones are one important group amongst new psychoactive substances (NPS)
and limited information is available regarding their toxicokinetics and -dynamics. Over the past few
years, nontargeted toxicometabolomics has been increasingly used to study compound-related effects
of NPS to identify important exogenous and endogenous biomarkers. In this study, the effects of
the synthetic cathinone PCYP (2-cyclohexyl-1-phenyl-2-(1-pyrrolidinyl)-ethanone) on in vitro and
in vivo metabolomes were investigated. Pooled human-liver microsomes and blood and urine of
male Wistar rats were used to generate in vitro and in vivo data, respectively. Samples were analyzed
by liquid chromatography and high-resolution mass spectrometry using an untargeted metabolomics
workflow. Statistical evaluation was performed using univariate and multivariate statistics. In total,
sixteen phase I and one phase II metabolite of PCYP could be identified as exogenous biomarkers.
Five endogenous biomarkers (e.g., adenosine and metabolites of tryptophan metabolism) related
to PCYP intake could be identified in rat samples. The present data on the exogenous biomarker
of PCYP are crucial for setting up analytical screening procedures. The data on the endogenous
biomarker are important for further studies to better understand the physiological changes associated
with cathinone abuse but may also serve in the future as additional markers for an intake.

Keywords: toxicometabolomics; PCYP; LC-HRMS; untargeted metabolomics

1. Introduction

In clinical and forensic toxicology, knowledge about the toxicometabolomics of drugs
of abuse (DOAs) is important not only for reliable confirmation of a DOA intake by patients
but also for their risk assessment in general [1]. Such knowledge is particularly important
when the DOA itself can no longer be detected and metabolites or endogenous biomarkers
are the only targets for their detection. At the end of 2020, the European Monitoring
Centre for Drugs and Drug Addiction (EMCDDA) reported around 830 new psychoactive
substances (NPS), including 156 synthetic cathinones [2]. Due to the structural diversity
of NPS and the lack of toxicokinetic information (including metabolic fate), the detection
of an intake by patients is an analytical challenge in clinical and forensic toxicology [3,4].
Furthermore, the fluctuating compounds of NPS available on the market make it difficult
to regulate them and to evaluate sufficient risk assessment for each compound.

Between 2019 and 2022, 29 synthetic cathinones have been identified for the first
time [5]. They are classified as stimulants or amphetamine-type stimulants [6,7]. The
pharmacological effects of the different derivates depend on the type of substituents and
their location. In preclinical studies, two ways on interaction with monoamine transporters
were demonstrated: monoamine transporter blockers such as cocaine or monoamine
transporter substrates stimulated the release of neurotransmitters such as amphetamine
and MDMA [8,9].
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The synthetic cathinone PCYP (2-cyclohexyl-1-phenyl-2-pyrrolidin-1-yl-ethan-1-one)
was first detected in March 2019 in the U.S., and in Europe the first case report was pub-
lished 2020 [5]. Due to the presence of the lipophilic and bulky cyclohexyl ring, PCYP exhib-
ited an up to twofold stronger interaction with dopamine transporters in vitro compared
to alpha-pyrrolidinovalerophenone (↵-PVP). Therefore, it shows stronger dopaminergic
stimulation and higher addictive potential [10]. This biochemical reaction led to desired
effects such as stimulation and euphoria, but also to adverse effects including restlessness,
anxiety, psychosis, tachycardia, and hyperthermia [5]. So far, no data are available about
the metabolic fate of PCYP and the impact of PCYP on endogenous metabolic pathways.
To date, only one case report of PCYP intake in Europe has been published [5]. It cannot be
excluded that there is, was, and will be more extensive distribution. To uncover such abuse,
screening procedures need to be up to date, which is often not possible in cases where the
urinary screening targets are not known.

In recent years, toxicometabolomics, a subdiscipline of metabolomics, has increas-
ingly gained interest in the study of the toxicokinetic and -dynamic DOAs [3,11–16]. The
application of untargeted toxicometabolomics may allow researchers to find exogenous
biomarkers, such as new drug metabolites, and endogenous biomarkers. Not only could
these be indicators of acute drug ingestion or sample manipulation, but they could also
offer information on the mode of action of the drugs and consumption patterns or could
be used to assess the severity of intoxication [17–19]. Due to the lack of authentic human
samples, toxicometabolomic studies are often conducted using different in vitro and in vivo
models, such as pooled human-liver microsomes (pHLMs), HepaRG cell lines, and/or
rats [13–15].

Since data about neither the metabolic pathway of PCYP nor the impact on the
metabolome are available, this study aimed to provide the metabolic profile in an in vitro
model using pHLM incubation. In conducting an in vivo experiment providing rat plasma
and rat urine, the endogenous response to an acute PCYP exposure should be revealed.
Analysis will be conducted by liquid chromatography coupled with high-resolution tan-
dem mass spectrometry (LC-HRM/MS) using an untargeted metabolomics workflow.
The resulting data should enable us to overcome the analytical challenge in clinical and
forensic toxicology to confirm patient intakes of PCYP and to understand its acute and
chronic effects.

2. Materials and Methods

2.1. Materials and Chemicals
PCYP hydrochloride was provided by the State Bureau of Criminal Investigation

Schleswig-Holstein (E.U. project ADEBAR plus, Kiel, Germany) for research purposes. The
chemical purity of >93% and the identity of the compound was verified by MS and nu-
clear magnetic resonance analysis. Ammonium formate, ammonium acetate, creatinine-d3,
dipotassium phosphate, formic acid, D-glucose-1,2,3,4,5,6,6-d7, isocitrate dehydrogenase,
isocitrate, magnesium chloride, palmitic acid-d31, superoxide dismutase, and tripotas-
sium phosphate were obtained from Merck (Darmstadt, Germany). Acetonitrile, ethanol,
methanol (all LC-MS grade), and NADP-Na2 were from VWR (Darmstadt, Germany). L-
Tryptophan-d5 was obtained from Alsachim (Illkirch-Graffenstaden, France). 1-Palmitoyl-
d9-2-palmitoyl-sn-glycero-3-PC and prostaglandin-E3-d9 were from Cayman Chemical
(Ann Arbor, MI, USA). Water was purified with a millipore filtration unit (18.2 W ⇥ cm
water resistance). pHLMs (20 mg microsomal protein ⇥ mL�1, 360 pmol total CYP/mg,
26 donors) were obtained from Corning (Amsterdam, The Netherlands). After delivery,
pHLMs were thawed at 37 �C, aliquoted, snap-frozen in liquid nitrogen, and stored at
�80 �C until use.

2.2. Sample Preparation and Analysis of pHLM Incubation
According to published procedures [3,20], incubations using pHLMs were prepared

as follows. PCYP was dissolved freshly in methanol and subsequently diluted with 0.1 M
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phosphate buffer to obtain the required concentrations. Incubations were performed using a
final PCYP concentration of 0 (blank group) or 50 µM (PCYP group) and 1 mg protein mL�1

pHLM at 37 �C. The final incubation mixtures also contained 90 mM phosphate buffer, 5 mM
isocitrate, 5 mM Mg2+, 1.2 mM NADP+, 200 U/mL superoxide dismutase, and 0.5 U mL�1

isocitrate dehydrogenase. A final incubation volume of 50 µL was obtained. The reaction
was stopped after 60 min by adding 50 µL of ice-cold acetonitrile and then centrifuged for
2 min at 18,407⇥ g. For each group, 5 replicates were prepared. Pooled-quality samples (QC
group) were prepared by transferring 20 µL of each replicate incubation into one MS vial.
QC samples were used for optimization of the peak-picking parameters and identification
of significant features, as described below.

2.3. Study Design In Vivo
Ten adolescent male Wistar rats (Charles River, Sulzfeld, Germany) were housed in a

controlled environment (temperature 22 �C, humidity 57 ± 2%, and 12 h light/dark cycle).
Studies were approved by an ethics committee (33/2019-Landesamt für Verbraucherschutz,
Saarbrücken, Germany). A single dose of 2 mg/kg body weight (BW) PCYP was admin-
istered to five rats as aqueous suspension by gastric intubation. Five control rats were
administrated only with water. During the study, rats were housed in metabolism cages
for 24 h, having water ad libitum. Animal general health aspects were assessed at the time
points 30, 60, 120, 360 min, and 24 h after intake.

2.4. Sample Collection In Vivo
Blood samples of 0.5 mL were collected from each rat one hour after administration.

For blood sampling, animals were anesthetized with diethyl ether and blood was taken from
the Vena caudalis mediana using a heparin-coated syringe. Blood samples were centrifuged
(1503⇥ g, 5 min, 24 �C) and plasma was removed and immediately stored at �80 �C
until analysis. Urine was collected separately from the feces over a period of 24 h after
administration, aliquoted, frozen, and stored at �80 �C until use.

2.5. Sample Preparation and Analysis of Rat Blood Plasma and Rat Urine
According to Manier and Meyer [21], blood plasma samples were prepared as follows:

an amount of 50 µL plasma was transferred into a reaction tube and precipitated using
200 µL of a mixture of methanol and ethanol (1:1, v/v). The mixture contained 48 µM
L-tryptophan-d5, 8.6 µM creatinine-d3, 34.8 µM palmitic acid-d31, and 53.4 µM D-glucose-
d7 as internal standard. Samples were shaken for 2 min at 2000 rpm and subsequently
centrifuged at 21,130⇥ g and 2 �C for 30 min. A volume of 150 µL of the supernatant was
transferred into a new reaction tube and evaporated to dryness using a vacuum centrifuge
at 1400 rpm and 24 �C for 20 min. The obtained residues were reconstituted in 50 µL of a
mixture of acetonitrile and methanol (70:30, v/v).

Based on Hemmer et al. [15], urine samples were centrifuged at 13,523⇥ g at 4 �C
for 10 min. Volumes of 100 µL of urine were transferred into reaction tubes and 400 µL
methanol, including 48 µM L-tryptophan-d5, 8.6 µM creatinine-d3, 34.8 µM palmitic acid-
d31, and 53.4 µM D-glucose-d7 as internal standard, was added. Samples were cooled to
�20 �C for 20 min and then centrifuged at 13,523⇥ g and 4 �C for 10 min. An amount
of 350 µL of the supernatant was transferred into a new reaction tube and evaporated to
dryness using a vacuum centrifuge at 1400 rpm and 24 �C. The obtained residues were
reconstituted in 50 µL of a mixture of acetonitrile and methanol (70:30, v/v).

Pooled QC samples were prepared by transferring 50 µL of each sample into one MS
vial. These QC samples were also used for optimization of the peak-picking parameters
and identification of significant features, as described below (QC group). QC samples, and
each sample of control rats (water administration) and PCYP rats (PCYP administration)
were stored until use at �80 �C.
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2.6. LC-HRMS Apparatus
According to published procedures [3,15,20], analyses were performed using a Thermo

Fisher Scientific (TF, Dreieich, Germany) Dionex UltiMate 3000 RS pump consisting of a
degasser, a quaternary pump, and an UlitMate Autosampler, coupled with a TF Q Exac-
tive Plus equipped with a heated electrospray ionization (HESI)-II source. Performance
of the columns and the mass spectrometer was tested using a test mixture described by
Maurer et al. [1,22]. Gradient reversed-phase (RP) elution was performed on a TF Ac-
cucore Phenyl-Hexyl column (100 mm ⇥ 2.1 mm, 2.6 µm) and hydrophilic interaction
chromatography (HILIC) elution using a Merck (Darmstadt, Germany) SeQuant ZIC HILIC
(150 mm ⇥ 2.1 mm, 3.5 µm). The mobile phase for the RP chromatography consisted of
2 mM aqueous ammonium formate containing acetonitrile (1%, v/v) and formic acid
(0.1%, v/v, pH 3, eluent A), as well as 2 mM ammonium formate solution with acetoni-
trile:methanol (1:1, v/v) containing water (1%, v/v) and formic acid (0.1%, v/v, eluent B).
The flow rate was set from 0 to 10 min to 500 µL/min and from 10 to 13.5 min to 800 µL/min
using the following gradient: 0–1 min hold 99% A, 1–10 min to 1% A, 10–11.5 min hold 1%
A, and 11.5–13.5 min hold 99% A. The gradient elution for HILIC was performed using
aqueous ammonium acetate (200 mM, eluent C) and acetonitrile containing formic acid
(0.1%, v/v, eluent D). The flow rate was set to 500 µL/min using the following gradient:
0–1 min hold 2% C, 1–5 min to 20% C, 5–8.5 min to 60% C, 8.5–10 min hold 60% C, and
10–12 min hold 2% C. Injection volume was set to 1 µL for all samples. For preparation and
cleaning of the injection system, isopropanol:water (90:10, v/v) was used. The following set-
tings were used: wash volume, 100 µL; wash speed, 4000 nL/s; loop wash factor, 2. Column
temperature for every analysis was set to 40 �C, maintained by a Dionex UltiMate 3000 RS
analytical column heater. HESI-II source conditions were as follows: ionization mode, posi-
tive or negative; sheath gas, 60 AU; auxiliary gas, 10 AU; sweep gas, 3 AU; spray voltage,
3.5 kV in positive and �4.0 kV in negative mode; heater temperature 320 �C; ion transfer
capillary temperature, 320 �C; and S-lens RF level, 50.0. Mass spectrometry for untargeted
metabolomics was performed according to a previously optimized workflow [3,23]. The
settings for full-scan (FS) data acquisition were as follows: resolution 140,000 at m/z 200;
microscan, 1; automatic gain control (AGC) target, 5e5; maximum injection time, 200 ms;
scan range, m/z 50–750; spectrum data type; centroid. All study samples were analyzed
in randomized order to avoid potential analyte instability or instrument performance
potentially confounding data interpretation. Additionally, one QC injection was performed
every five samples to monitor batch effects, as described by Wehrens et al. [24]. Significant
features were subsequently identified using PRM. Settings for PRM data acquisition were
as follows: resolution, 35,000 at m/z 200; microscans, 1; AGC target, 5e5; maximum injec-
tion time, 200 ms; isolation window, m/z 1.0; collisions energy (CE), 10, 20, 35, or 40 eV;
spectrum data type, centroid. The inclusion list contained the monoisotopic masses of all
significant features and a time window of their retention time ± 60 s. TF Xcalibur software
version 3.0.63 was used for data handling.

2.7. Data Processing and Statistical Analysis
Data processing for untargeted metabolomics was performed in an R environment

according to previously published workflows [15,23]. TF LC-HRMS/MS RAW files were
converted into mzXML files using ProteoWizard [25]. XCMS parameters were optimized
using a previously developed strategy, as mentioned by Manier et al. [23]. Peak-picking
and alignment parameters are summarized in Table S1. Peak picking was performed using
XCMS in an R environment [26,27], and the R package CAMERA [28] was used for the
annotation of adducts, artifacts, and isotopes. Feature abundances with a value of zero
were replaced by the lowest-measured abundance as a surrogate limit of detection and
the whole dataset was then log 10 transformed [24]. Normalization was performed for
urine samples using the area of endogenous creatinine from those samples analyzed using
HILIC column and positive ionization mode. For plasma samples, normalization was
performed using the area of L-tryptophane-d5. Significant changes in features between
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control and PCYP respectively blank and PCYP groups were assumed after Welch’s two-
sample t-test and Bonferroni correction for pHLM [29]; p-value < 0.01 for urine, and
p-value < 0.05 for plasma. Principal component analysis (PCA) and hierarchal clustering
were used to investigate patterns in the datasets. For pHLM, t-distributed stochastic
neighborhood embedding (t-SNE) [30,31] was used instead of PCA. Names for features
were adopted from XCMS using “M” followed by rounded mass and “T” followed by
the retention time in seconds. After visual inspection of the extracted ion chromatograms
(EIC) of significant features, based on the peak shape quality, the significant features
were divided into true and false features [20]. The R scripts can be found on GitHub
(https://github.com/sehem/PCYP_Metabolomics.git) and the mzXML files used in this
study are available via Metabolights (study identifier MTBLS6469).

2.8. Identification of Significant Features
Significant features were identified by recording MS/MS spectra using the PRM

method mentioned above. After conversion to mzXML format using ProteoWizard [25],
spectra were imported to NIST MS Search version 2.3 Library. The settings for library
and MS/MS search were used according to published procedures [14,15,20]. Metabolites
of the synthetic cathinone PCYP were tentatively identified by interpreting their spectra
in comparison to that of the parent compound. Identified features were classified on
the different levels of identification according to the metabolomics standards initiative
(MSI) [32].

3. Results and Discussion

3.1. Study Design
Two different models were used to investigate the toxicometabolomics of the synthetic

cathinone PCYP via an untargeted approach. The in vitro model used is common in drug
metabolism studies due to its ease of use and low variability [33]. Rat, as in vivo model,
was used to investigate the impact of the synthetic cathinone on the rat metabolome. In
comparison to cell lines, plasma or urine samples are very complex since the metabolome
can also be affected by, for example, food, the microbiome, and drugs used to anesthetize
animals [34]. Due to the complexity and influence of the metabolome, animal models are
well-suited for studying changes in the metabolome compared to human studies. Animal
studies can be performed under standardized and comparable conditions. For example,
animals are subject to a uniform sleep–wake rhythm, and they can be kept under the same
conditions and obtain the same water and food. Due to their very low genetic variability,
it is also possible to obtain reliable results with significantly fewer animals compared to
human clinical studies. Compared to in vitro studies, which often only represent certain
cell components, cells, or organs, in vivo studies offer the possibility to provide an insight
into the whole organism. Besides elucidation of the endogenous response, urine also
offers the possibility to analyze for drug metabolites. The knowledge about xenobiotic
metabolic pathways is essential for clinical and forensic toxicology to develop suitable
analytical screening procedures to detect consumption [5,8,9]. Compared to conventional
methods for analyzing metabolic pathways, an untargeted urinary toxicometabolomics
approach allows for the detection of metabolites which might be overlooked as they are not
expected [3,14,35]. Besides toxicokinetics, there is limited information available about the
mode of action of synthetic cathinones, especially of PCYP. This is where the blood plasma
comes into play. Plasma samples are of interest with respect to changes in endogenous
metabolites that may be affected by the intake of drugs of abuse.

3.2. Untargeted Data Processing and Statistical Analysis
Univariate statistics were performed using volcano plot. False-positive results were

prevented by using Bonferroni correction [29] for pHLM-derived data, with p-value > 0.01
for urine-derived data, and p-value > 0.05 for plasma-derived data. Results of the iden-
tification of significant features and their level of identification in accordance with the

https://github.com/sehem/PCYP_Metabolomics.git
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MSI [32] are summarized in Tables S2–S4. Annotated isotopes by CAMERA were not
further analyzed. Features were analyzed as described above using the PRM method, and
MS2 spectra for PCYP metabolites are shown in Figure S8. For several features, no MS2

spectra could be recorded due to their low abundance.
Using the four different analytical methods (RP positive, RP negative, HILIC positive,

HILIC negative), thirty features, containing eleven isotopes and one adduct, were found
in total to be significant in pHLM incubation. Analysis using RP and HILIC and negative
ionization mode did not reveal any significant changes. Rat plasma samples, which
were taken 1 h after administration, revealed 17 metabolites and 3 isotopes using above-
mentioned analytical methods. In urine samples, 122 significant features were found in
total containing 16 isotopes and 1 adduct.

Besides univariate statistics, the different datasets were also evaluated regarding
the results of multivariate statistics to identify the largest changing features and specific
signatures in the data. Since multivariate statistics could only be performed if there were
at least two significant features, no data were available for datasets containing no or only
one significant feature. For all analyses and matrices, it can be shown that the PCYP and
blank or control groups were distinct from each other (Figures S1–S3). Complementary to
the scores plot, the loadings plot provided information about which metabolites had the
greatest contribution to the separations between groups [36]. Thereby, it can be seen that
especially PCYP itself and its metabolites lead to the separation of the individual groups.
For data derived from the pHLM incubations (Figure S1), the variance in the first principal
component was between 99 and 97% using RP and HILIC in positive ionization mode.
These results indicated that the pHLM datasets were highly linear, revealing that the PCA is
not suitable for those experiments where only the parent compound and its metabolites are
detectable. Therefore, the patterns in the pHLM dataset were evaluated using t-SNE, which
is a dimension reduction algorithm that visualizes similarities in datasets [31]. Results
of the t-SNEs (Figure S4) showed similar cluster patterns for all analyses. This can be
explained by the fact that data derived from pHLM incubations show low variability and
only PCYP itself and its metabolites led to the separation of the two groups.

In addition to PCA, hierarchical clustering was also performed. In untargeted metabolomics
studies, heat maps of hierarchical clustering can be used to discover clustering patterns in the
datasets. For all analyses and matrices, the hierarchical clustering mostly revealed a high distance
of samples from blank or control group to those from PCYP and QC groups (Figures S5–S7).
However, there was an exception for urine samples separated by HILIC in positive ionization
mode (Figure S7C). In this case, two QC samples were clearly separated from other data. Taking
a closer look at these two runs, it was observed that the total ion chromatogram of these two
samples showed a higher intensity than the other QCs, even though it was the same sample.
Reasons for this remain unclear.

3.3. Metabolic Pathways of PCYP
The proposed metabolic pathways of PCYP in the in vitro and in vivo models are

summarized in Figure 1. The MS2 spectra of all PCYP metabolites are shown in Figure S8.
Table S5 provides a list of all metabolites in terms of their abundance in each column
and matrix. Additionally, Table S5 includes the metabolite identification number (M), the
calculated exact mass of the protonated molecule, and the elemental composition of all
detected metabolites, respectively. The corresponding retention times of each metabolite for
each column are given in Tables S2–S4 in the Supporting Information. Figures S9 and S10
show the reconstructed chromatograms of the most abundant metabolites in pHLM and
rat urine.
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Figure 1. In vitro and in vivo metabolic pathways of PCYP. The parent compound is indicated by
a black square, undefined hydroxylation positions are indicated by unspecific bonds. Metabolite
identification numbers (M) match with the metabolites listed in Table S5.

In total, sixteen phase I and one phase II metabolite were found in all three matrices using
the four different above-mentioned analytical methods. Not metabolized PCYP could only
be detected in vitro but not in the in vivo samples. However, this was not surprising since
the average elimination half-time of the structure analog ↵-PVP was reported to be <2.1 h in
Sprague–Dawley rats after injection [37]. Regarding the in vitro phase I metabolism, PCYP
was reduced by a N,N-bis-dealkylation (M4), which was also reported for ↵-PVP [38–41]. In
accordance with previous publications, the pyrrolidine ring underwent biotransformation
resulting in a mono- (M1) and dihydroxylation (M5), an oxo- (M8) as well as a ring-opened
mono- (M11) and dihydroxy metabolite (M12) [3,42]. The opening of the pyrrolidine ring
has also previously been observed for the two synthetic cathinones ↵-PBP and ↵-PEP
and is most likely the result of hydroxylation at the ortho-position of the pyrrolidine
ring, followed by a retrohemiaminal reaction [3]. The combination of hydroxylation on
hexyl and pyrrolidine ring leading to a dihydroxylation (M13) was also detected in pHLM
incubations.

Nine phase I metabolites could be identified in vivo, amongst them the monohy-
droxylation at the benzyl-ring (M3) and the dihydroxylation at the pyrrolidine ring (M5).
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Additionally, a combination of di- (M9) and trihydroxylation (M10) on the hexyl ring
and oxidation at the pyrrolidine ring was found in urine samples. The combination of
hydroxylation on hexyl and pyrrolidine ring leading in a dihydroxylation (M13) was also
detected. Tri- and tetrahydroxylation metabolites were found, resulting in a dihydroxyla-
tion on the pyrrolidine ring followed by a monohydroxylation on the hexyl (M6) and/or
benzyl ring (M7, M14). Tetrahydroxylation led to a bis-N-dealkylation (M16). Another
metabolite, which was only detected in urine samples, consisted of hydroxylation on the
hexyl ring and pyrrolidine cleavage followed by oxidation to carboxylic acid (M15). The
metabolites M5, M6, and M9 could also be observed in rat plasma. Regarding phase II
metabolism, only the conjugation with glucuronic acid after hydroxylation of the benzyl
ring (M17) could be observed. No other conjugates, such as glucuronic acid or sulfate,
could be found. The lower abundance of phase II metabolites can be explained by the fact
that drug-metabolizing enzymes such as cytochrome P450 or glucuronosyltransferases
have different expressions and functions in different species. Therefore, significantly more
phase I metabolites are formed in rat liver compared to humans, whereas more phase II
metabolites are formed in humans [43–46].

Since the parent compound could no longer be detected in 24 h urine, analytical proce-
dure should include these metabolites in addition to the parent compound, considering
its probability of being not detectable in urine after lower doses or after sampling times
later than 24 h after intake. Therefore, reference spectra need to be added to common MS
databases to allow detection [22,47]. Nevertheless, authentic human samples are required to
fill the gap between in vitro and in vivo assays and to reliably determine which metabolites
are useful for screening procedures in humans.

3.4. Effect of PCYP on the Rat Metabolome
Since there is limited information available on the effects of NPS on the metabolome [11,48],

untargeted toxicometabolomics have been increasingly used to study their toxicity-related
pathways. Toxicometabolomics combines the detection and identification of endogenous and
exogenous biomarker. This allows the determination of metabolites of the investigated substance
in order to detect an intake by patients, as well as the identification of biomarkers that provide
information on the effect of substances on the metabolome in only one experiment [49,50].

The complexity of the metabolome becomes visible by comparing the PCAs of the
three investigated matrices (pHLM incubations, plasma samples, and urine samples) in
this study (Figures S1–S3). Since the PCAs in pHLM are highly linear and only PCYP and
its metabolites were identified as significant features, rat urine and rat plasma samples
showed higher variability. In rat plasma samples collected 1 h after administration, three
significantly altered metabolites could be identified by MSI level 2 or 3 [32]. In PCYP-
treated rats, adenosine was significantly increased. Adenosine is a ubiquitous nucleoside
and is consequently involved in many biological processes as a component of DNA or
RNA. For example, it plays an important role in energy transfer as adenosine diphosphate
(ADP) or -triphosphate (ATP). As cyclic adenosine monophosphate (cAMP), it also plays a
role in signal transduction. Furthermore, adenosine itself is both a neurotransmitter and
a potent vasodilator [51]. Altered adenosine levels after acute or chronic consumption of
drugs of abuse and psychostimulants have already been reported in several studies [52–56].
Other studies have shown that high levels of adenosine induce sleep in rats [57–59]. During
the monitoring of the animal general health aspects at the time point 30 min, 60 min,
120 min, 360 min, and 24 h, no significant change in the sleep behavior could be observed
between the two groups. Another endogenous metabolite that was significantly increased
in the plasma of PCYP-treated rats was 3-methyladipic acid. 3-methyladipic acid itself is a
metabolite of the catabolism of the naturally occurring phytanic acid and is involved in
biological processes such as lipid peroxidation, fatty acid metabolism, cell signaling, and
the lipid metabolism pathway [51]. Quinoline-2-ol was also significantly increased in rat
plasma as well as in rat urine of PCYP-treated rats. However, the biological significance of
this metabolite is currently unclear.
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Urine is distinguished from plasma by being easily collected, rich in metabolites, and
capable of reflecting imbalances in all biochemical pathways within an organism [60]. It
is well-suited for the identification of novel exogenous drug metabolites or endogenous
biomarkers indicative for drug ingestion unless they are not exclusively excreted in feces.
In this study, ten PCYP metabolites could be identified in rat urine collected 24 h after
administration, which are described in detail above. In addition to quinoline-2-ol, which
was also significantly present in rat urine, three other metabolites were identified in rat urine
that did not belong to PCYP. Daidzein, is an isoflavone and is known as a biomarker for the
consumption of soybeans and other soy products [51]. It was significantly increased in urine
of PCYP-treated rats. Since the rats had only water and no food available in their metabolic
cage after substance administration, this finding cannot be associated with the consumption
of PCYP. The last two metabolites which were significantly changed in rat urine belong to
the tryptophan metabolism. Kynurenic acid was significantly decreased in PCYP-treated
rats. In the tryptophan metabolism, kynurenic acid is a metabolite of L-kynurenine and
also known as neuroprotective agent. Several studies reported a reduced kynurenic acid
in mood disorders such as depressive or bipolar disorders [61–63]. Dihydroxyquinoline
was increased in PCYP-treated rats. In tryptophan metabolism, 4,6-dihydroxyquinoline
and 4,8-dihydroxyquinoline are degradation products of hydroxykynurenamine (HMDB).
This observation suggests that PCYP induces the tryptophan metabolism. Kolanos et al.
demonstrated in an in vitro experiment, that PCYP, due to its structure, shows strong
dopaminergic stimulation [10]. Based on these two observations, it can be hypothesized
that synthetic cathinones such as PCYP may directly affect neurotransmission, and thereby
affect important metabolic pathways such as tryptophan metabolism. Since the present
study provides only a snapshot of the metabolome in rats and only two metabolites of
the tryptophan metabolism could be identified, further studies are required to obtain a
reliable conclusion.

Furthermore, it is important to keep in mind that a direct correlation to humans is
not possible. The few altered endogenous metabolites in this study could only be partly
explained regarding their general function in mammals. Since it is very difficult to make
a reliable conclusion about a specific pathway based on one or two metabolites, further
studies are needed. These studies should be based on a targeted metabolomics approach
on the alteration of the tryptophan metabolism after PCYP intake.

4. Conclusions

The present study provides a snapshot on the altered metabolic pathway after acute
intake of the synthetic cathinone PCYP. Using untargeted toxicometabolomics, sixteen
phase I and one phase II metabolites of PCYP could be identified in vitro and in vivo.
The main metabolic reaction in rat urine was the dihydroxylation on the pyrrolidine ring
followed by mono- and/or dihydroxylation on the benzyl and/or hexyl ring. Regarding
phase II metabolism, only the glucuronidation after hydroxylation on the benzyl ring could
be observed. Since there are no data available regarding the metabolic pathways of PCYP,
the identified metabolites in this study could be used for detection of PCYP intake.

Additionally, five endogenous metabolites could be identified as being significantly
altered after PCYP intake. Particular attention should be paid to the two metabolites which
are involved in tryptophan metabolism. Since there are many more metabolites involved in
this metabolism, further studies are required to confirm this observation. The results of this
study demonstrate how the use of toxicometabolomic workflows can overcome conven-
tional screening methods to identify metabolites and endogenous biomarkers that would
not be expected. Thus, the knowledge obtained from this study of the rat metabolome can
be applied to similar compounds and provide insights into the effects of the compound
(class) on an organism. Overall, this study contributes to the understanding of the influence
of synthetic cathinones, especially PCYP, on the mammalian metabolome. However, further
studies are essential to support the results of this study and to investigate the applicability
to humans.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12121209/s1, Table S1: Overview of the peak-picking and
alignment parameters used for preprocessing for the reversed-phase (RP) and hydrophilic interac-
tion chromatography (HILIC) column and the respective matrices. Pos = positive, neg = negative,
ppm = allowed ppm deviation of mass traces for peak picking, snthresh = signal to noise threshold,
mzdiff = minimum difference in m/z for two peaks to be considered as separate, prefilter 1 = min-
imum of scan points, prefilter 2 = minimum abundance, bw = bandwidth for grouping of peaks
across separate chromatograms; Table S2: Overview of the significant features using reversed-phase
(RP) and hydrophilic interaction chromatography (HILIC) column in pooled human-liver microsome
(pHLM) incubation. Features are sorted according to m/z values, followed by the polarity, the
retention time (RT) for the corresponding column in seconds (sec), identity, and the identification
level according to MSI. Hyphen (-) means that the feature was not significant using the corresponding
column; Table S3: Overview of the significant features using reversed-phase (RP) and hydrophilic
interaction chromatography (HILIC) column in rat. Features are sorted according to m/z values, fol-
lowed by the polarity, the retention time (RT) for the corresponding column in seconds (sec), identity,
and the identification level according to MSI. Hyphen (-) means that the feature was not significant
using the corresponding column; Table S4: Overview of the significant features using reversed-phase
(RP) and hydrophilic interaction chromatography (HILIC) column in rat urine. Features are sorted
according to m/z values, followed by the polarity, the retention time (RT) for the corresponding
column in seconds (sec), identity, and the identification level according to MSI. Hyphen (-) means
that the feature was not significant using the corresponding column; Table S5: Detected PCYP
metabolites using reversed-phase (RP) and hydrophilic interaction chromatography (HILIC) column
in their corresponding matrices namely pooled human-liver microsomes (H), rat urine (U), and rat
plasma (P) in which the metabolites could be detected. Metabolite identification numbers (ID) match
with the labeling of the structure in Figure 1. For each metabolite, the calculated exact mass of the
protonated molecule and elemental composition are given. Hyphen (-) means that the metabolite
was not significant in any matrix of the respective column; Figure S1: Results of scores of principal
component analysis of pooled human-liver microsome samples after analysis using reversed-phase
(RP) and hydrophilic interaction chromatography (HILIC) in positive ionization mode. A = RP pos,
B = HILIC pos; Figure S2: Results of scores of principal component analysis of rat urine samples
after analysis using reversed-phase (RP) and hydrophilic interaction chromatography (HILIC) in
positive and negative ionization mode. A = RP pos, B = RP neg, C = HILIC pos, D = HILIC neg;
Figure S3: Results of scores of principal component analysis of rat plasma samples after analysis using
reversed-phase (RP) and hydrophilic interaction chromatography (HILIC) in positive and negative
ionization mode. A = PH pos, B = HILIC pos, C = HILIC neg; Figure S4: Results of t-distributed
stochastic neighborhood embedding (t-SNE) of pooled human-liver microsome samples after analysis
using reversed-phase (RP) and hydrophilic interaction chromatography (HILIC) in positive ionization
mode. A = RP pos, B = HILIC pos; Figure S5: Results of heat map of hierarchical clustering of pooled
human-liver microsome samples after analysis using reversed-phase (RP) and hydrophilic interaction
chromatography (HILIC) in positive ionization mode. A = RP pos, B = HILIC pos; Figure S6: Results
of heat map of hierarchical clustering of rat urine samples after analysis using reversed-phase (RP)
and hydrophilic interaction chromatography (HILIC) in positive and negative ionization mode.
A = RP pos, B = RP neg, C = HILIC pos, D = HILIC neg; Figure S7: Results of heat map of hierarchical
clustering of rat plasma samples after analysis using reversed-phase (RP) and hydrophilic interaction
chromatography (HILIC) in positive and negative ionization mode. A = RP pos, B = HILIC pos,
C = HILIC neg; Figure S8: LC-HRMS/MS spectra of the PCYP metabolites detected in positive
ionization mode. Fragments with accurate mass, calculated elemental formula, and mass error value
in parts per million (ppm); Figure S9: Reconstructed ion chromatogram of m/z 288.1958 after analysis
of one QC sample of pooled human-liver microsome in full scan in positive ionization mode using
hydrophilic interaction chromatography (HILIC). Metabolite identification number (M) match with
the metabolites listed in Table S5; Figure S10: Reconstructed ion chromatograms of m/z 304.1856,
m/z 320.1856, and m/z 336.1805 after analysis of one QC sample of rat urine in full scan in positive
ionization mode using hydrophilic interaction chromatography (HILIC). Metabolite identification
numbers (M) match with the metabolites listed in Table S5.

https://www.mdpi.com/article/10.3390/metabo12121209/s1
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Table S4. O
verview

 of the significant features using reversed-phase (R
P) and hydrophilic interaction chrom

atography (H
ILIC

) colum
n in rat urine. 

Features are sorted according to m
/z values, follow

ed by the polarity, the retention tim
e (R

T) for the corresponding colum
n in seconds (sec), identity, 

and the identification level according to M
SI. H

yphen (-) m
eans that the feature w

as not significant using the corresponding colum
n. 

m
/z 

Polarity 
R

P 
R

T, sec 
H

ILIC
 

R
T, sec 

Identity 
Identification level according 
to M

SI 
146.0602 

Positive 
244 

70 
Q

uinolin-2-ol 
2 (N

IST m
sm

s) 
147.0635 

Positive 
244 

- 
Q

uinolin-2-ol isotope 
2 (N

IST m
sm

s) 
148.0965 

Positive 
- 

456 
U

nknow
n 

4 
162.0551 

Positive 
- 

230 
D

ihydroxyquinoline 
3 (N

IST m
sm

s) 
163.0584 

Positive 
- 

230 
D

ihydroxyquinoline isotope 
3 (N

IST m
sm

s) 
185.0437 

Positive 
- 

303 
Kynurenic acid [M

-C
H

2 O
2 +N

a] + 
2 (m

assbank) 

186.0470 
Positive 

- 
303 

Kynurenic acid [M
-C

H
2 O

2 +N
a] + isotope 

2 (m
assbank) 

189.0582 
Positive 

156 
67 

U
nknow

n 
4 

190.0503 
N

egative 
- 

176 
U

nknow
n 

4 
190.0614 

Positive 
- 

67 
U

nknow
n isotope 

4 
208.1183 

N
egative 

- 
398 

U
nknow

n 
4 

208.4951 
N

egative 
- 

320 
U

nknow
n 

4 
208.9913 

N
egative 

- 
320 

U
nknow

n 
4 

211.0401 
Positive 

156 
- 

U
nknow

n 
4 

215.0013 
N

egative 
- 

301 
U

nknow
n 

4 
219.9996 

N
egative 

- 
248 

U
nknow

n 
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220.9920 
N

egative 
- 

248 
U

nknow
n 

4 
221.0448 

N
egative 
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U
nknow

n 
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239.9966 
N

egative 
203, 151 

232, 271 
U

nknow
n 

4 
240.0539 

Positive 
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263 
U

nknow
n 

4 
242.0118 

Positive 
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271 
U

nknow
n 

4 
242.0122 

N
egative 

- 
245 

U
nknow

n 
4 

242.0123 
N

egative 
157 

- 
U

nknow
n 
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Table S4. C
ontinued. 

m
/z 

Polarity 
R

P 
R

T, sec 
H

ILIC
 

R
T, sec 

Identity 
Identification level according 
to M

SI 
302.2108 

Positive 
- 

366 
U

nknow
n 

4 
303.1704 

Positive 
- 

271 
U

nknow
n 

4 
303.2109 

Positive 
- 

366 
U

nknow
n isotope 

4 
304.0070 

N
egative 

- 
320 

U
nknow

n 
4 

304.1910 
Positive 

305 
232 

PC
YP-M

 (dihydroxy-)  
3 

305.1942 
Positive 
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PC
YP-M

 (dihydroxy-) isotope 
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306.1701 
Positive 
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296 

PC
YP-M

 (hydroxy + pyrrolidin cleavage w
ith 

oxidation to C
O

O
H

)  
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307.0578 
Positive 
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U
nknow

n 
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Positive 
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U
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n 
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Positive 
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n isotope 
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nknow
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PC
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 (dihydroxy-, oxo)  
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Positive 
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nknow
n 

4 
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Positive 
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233, 318 
PC

YP-M
 (dihydroxy-, oxo) isotope 

3 
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Positive 
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PC

YP-M
 (trihydroxy-)  
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Positive 
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PC
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 (trihydroxy-) isotope 

3 
322.2015 

Positive 
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U

nknow
n 

4 
323.2048 

Positive 
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nknow
n isotope 
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Table S4. C
ontinued. 

m
/z 

Polarity 
R

P 
R

T, sec 
H

ILIC
 

R
T, sec 

Identity 
Identification level according 
to M

SI 
353.0329 

N
egative 

- 
245 

U
nknow

n 
4 

356.1471 
Positive 

247 
- 

U
nknow

n 
4 

360.1920 
Positive 

- 
202, 344 

U
nknow

n 
4 

361.1952 
Positive 

- 
344 

U
nknow

n isotope 
4 

365.2357 
N

egative 
- 

146 
U

nknow
n 

4 
367.0484 

N
egative 

- 
240 

U
nknow

n 
4 

371.1338 
N

egative 
225 

- 
U

nknow
n 

4 
372.1212 

Positive 
- 

114 
U

nknow
n 

4 
376.1426 

Positive 
271 

- 
U

nknow
n 

4 
380.0548 

N
egative 

- 
246 

U
nknow

n 
4 

390.1762 
Positive 

225 
- 

U
nknow

n 
4 

391.0682 
N

egative 
- 

223 
U

nknow
n 

4 
426.1333 

Positive 
- 

247 
U

nknow
n 

4 
462.0523 

N
egative 

- 
320 

U
nknow

n 
4 

464.2285 
Positive 

- 
393 

PC
YP-M

 (hydroxy-glucuronide-) 
3 

465.2155 
Positive 

317 
360 

U
nknow

n 
4 

466.2189 
Positive 

- 
360 

U
nknow

n isotope 
4 

573.3299 
N

egative 
- 

139 
U

nknow
n 

4 
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Table S5. Detected PCYP metabolites using reversed-phase (RP) and hydrophilic interaction 
chromatography (HILIC) column in their corresponding matrices namely pooled human liver 
microsomes (H), rat urine (U), and rat plasma (P) in which the metabolites could be detected. 
Metabolite identification numbers (ID) match with the labeling of the structure in Figure 1. For 
each metabolite the calculated exact mass of the protonated molecule and elemental 
composition are given. Hyphen (-) means that the metabolite was not significant in any matrix 
of the respective column. 

Metabolite-
ID 

Calculated 
exact mass, 

m/z 

Elemental 
composition RP HILIC 

PCYP 272.2009 C18H25NO H H 
M1 288.1958 C18H25NO2 H H 
M2 288.1958 C18H25NO2 H H 
M3 288.1958 C18H25NO2 H H, U  
M4 218.1539 C14H19NO - H 
M5 304.1907 C18H25NO3 H, U, P H, U, P 
M6 320.1856 C18H25NO4 U, P U, P 
M7 336.1805 C18H25NO5 U U 
M8 286.1802 C18H23NO2 H - 
M9 318.1700 C18H23NO3 U, P U, P 
M10 334.1649 C18H25NO5 U U 
M11 290.2115 C18H27NO2 H H 
M12 306.2064 C18H27NO3 H - 
M13 304.1907 C18H25NO3 H - 
M14 320.1856 C18H25NO4 U U 
M15 306.1700 C17H23NO4 U U 
M16 250.1438 C14H19NO3 - U 
M17 464.2279 C24H33NO8 - U 
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Figure S1. Results of scores of principal component analysis of pooled human liver microsome 
samples after analysis using reversed-phase (RP) and hydrophilic interaction chromatography 
(HILIC) in positive ionization mode. A = RP pos, B = HILIC pos. 

 
Figure S2. Results of scores of principal component analysis of rat plasma samples after 
analysis using reversed-phase (RP) and hydrophilic interaction chromatography (HILIC)  in 
positive and negative ionization mode. A = PH pos, B = HILIC pos, C = HILIC neg. 
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Figure S3. Results of scores of principal component analysis of rat urine samples after 
analysis using reversed-phase (RP) and hydrophilic interaction chromatography (HILIC) in 
positive and negative ionization mode. A = RP pos, B = RP neg, C = HILIC pos, D = HILIC 
neg. 

 
 

 
Figure S4. Results of t-distributed stochastic neighborhood embedding (t-SNE) of pooled 
human liver microsome samples after analysis using reversed-phase (RP) and hydrophilic 
interaction chromatography (HILIC) in positive ionization mode. A = RP pos, B = HILIC pos. 
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Figure S5. Results of heat map of hierarchical clustering of pooled human liver microsome 
samples after analysis using reversed-phase (RP) and hydrophilic interaction chromatography 
(HILIC) in positive ionization mode. A = RP pos, B = HILIC pos.  

 
Figure S6. Results of heat map of hierarchical clustering of rat plasma samples after analysis 
using reversed-phase (RP) and hydrophilic interaction chromatography (HILIC) in positive and 
negative ionization mode. A = RP pos, B = HILIC pos, C = HILIC neg.  
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Figure S7. Results of heat map of hierarchical clustering of rat urine samples after analysis 
using reversed-phase (RP) and hydrophilic interaction chromatography (HILIC) in positive and 
negative ionization mode. A = RP pos, B = RP neg, C = HILIC pos, D = HILIC neg. 
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Figure S8. LC-HRMS/MS spectra of the PCYP metabolites detected in positive ionization 
mode. Fragments with accurate mass, calculated elemental formula, and mass error value in 
parts per million (ppm). 



 S-16 

 
Figure S8. Continued. 
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Figure S8. Continued. 
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Figure S8. Continued. 
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Figure S8. Continued. 
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Figure S9. Reconstructed ion chromatogram of m/z 288.1958 after analysis of one QC sample 
of pooled human liver microsome in full scan in positive ionization mode using hydrophilic 
interaction chromatography (HILIC). Metabolite identification number (M) match with the 
metabolites listed in Table S5.   

 

 
Figure S10.   Reconstructed ion chromatograms of m/z 304.1856, m/z 320.1856, and m/z 
336.1805 after analysis of one QC sample of rat urine in full scan in positive ionization mode 
using hydrophilic interaction chromatography (HILIC). Metabolite identification numbers (M) 
match with the metabolites listed in Table S5. 
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4. Discussion  

In an untargeted toxicometabolomics workflow, each step poses various key challenges that 

require individual optimization for both analytical setup and biological question. Therefore, the 

initial three studies focused on optimizing the workflow for untargeted toxicometabolomics 

studies by means of LC-HRMS. Optimization was performed for critical steps such as sample 

preparation, data acquisition, and data analysis. 

With effects for metabolite extraction and subsequent detection, sample preparation is a critical 

step in achieving comprehensive analyte coverage in metabolomics.12,95 As key biological 

matrix in metabolomics studies, urine has several advantages such as non-invasive sample 

collection, comparatively low sample complexity, and reflection of both endogenous and 

exogenous metabolic profile among others.96,97 However, urine exhibits a variety of metabolite 

concentrations and is susceptible to variable and unpredictable dilution.97 As such, and due to 

the high chemical diversity of metabolites, appropriate sample preparation is required. Thus, 

the first study systematically examined the impact of various extraction solvents in combination 

with different reconstitution solvents on the analytical data of untargeted LC-HRMS 

toxicometabolomics analysis of urine samples from rat and human. Results were evaluated 

based on the total feature count, feature detectability, and reproducibility of selected 

compounds. The findings revealed that reconstitution solvents had a more significant effect on 

the recovery of the compounds compared to extraction solvents. This is in line with the results 

of the study by Manier and Meyer, who investigated the effect of reconstitution solvents on 

evaporated human plasma samples and found also a major impact of solvent composition on 

analyte recovery.98 Furthermore, the choice of chromatographic system plays a crucial role for 

the different extraction and reconstitution solvents. Additionally, increasing the amount of 

extraction solvent enhanced the extraction of rat urine. In contrast, a lower amount of extraction 

solvent was required for human urine. This may be due to the higher protein concentration in 

rat urine, which requires a large amount of solvent for protein precipitation.99 The results of the 

study demonstrate the importance of adapting sample preparation protocols to the specific 

biomatrix, and species investigated, as well as the chromatographic system employed.  

One of the major challenges in the development of analytical methods for untargeted 

toxicometabolomics is the analysis of the diverse physicochemical properties of the analytes, 

which are often unknown. This includes detecting both endogenous and exogenous biomarkers, 

such as new drug metabolites. To cover a wide range, a universal separating and detecting 

system is required. Both reversed-phase (RP) and normal-phase or hydrophilic interaction 
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chromatography (HILIC) are used in untargeted approaches.1 In addition to the baseline 

separation of all molecules, the resolution of even small differences in structure and molecular 

mass plays a crucial role in the precise annotation, identification, and interpretation of data.18 

Several studies have examined the impact of various columns on targeted metabolomics studies 

or selected metabolite libraries.100-102 However, few studies have compared columns in 

untargeted metabolomics studies. Most of these studies have only compared columns using a 

single type of separation method or a single matrix.103,104 Therefore, in the second study the 

influence of three different RP, two HILIC, and one porous graphitic carbon column were 

investigated by comparing the chromatographic resolution of selected compounds and the 

outcome of an untargeted toxicometabolomics study using pHLM, rat plasma, and rat urine as 

matrices. The results of this study emphasized that the outcome of an untargeted 

toxicometabolomics study might be highly influenced by the analytical column, which is in line 

with findings from current literature.17,19,105,106 Despite nearly identical stationary phases 

chemistries, there were identifiable distinctions among columns. Criscuolo et al. demonstrated 

that it is necessary to consider not only the chemistry of the stationary phase, but also the 

different types of particles or their size, among other factors.107 Variations were observed not 

only between different matrices but also in terms of substance detectability. For instance, using 

a Phenyl-Hexyl column may retain mainly non-polar metabolites with an aromatic hydrocarbon 

structure, and may less retain e.g. fatty acids. However, the study has some limitations, such as 

a limited selection of columns or the selection of endogenous compounds. It is important to 

keep these limitations in mind. Nonetheless, the study demonstrates that the selection of the 

column, and thus the analytical method, must be tested in advance for an untargeted 

toxicometabolomics study and adapted to each matrix and set of investigated substances to 

achieve the best possible results. 

After data generation, extensive data processing is required to interpret metabolomics results 

accurately, evaluate sample classification and/or discrimination, and discover biomarkers from 

the intricate and information-rich raw data files. Several software options are available for this 

purpose, but they can differ regarding their algorithm and thus influence the outcome of a 

study.27 In the third study, a dataset of pHLM incubation of the synthetic cannabinoid A-

CHMINACA was used to evaluate the data processing of three different software workflows.91 

These three workflows included the commercial software Compound Discoverer 3.1, as well 

as two open-source solution: XCMS Online combined with MetaboAnalyst 4.0 and a manually 

programmed tool using R. Additionally, the metabolic fate of A-CHMINACA in pHLM was 

investigated. Results indicate that commercial software, like Compound Discoverer, are user-
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friendly black boxes with limitations in preprocessing parameters, normalization techniques, 

and statistical analysis. Open-source software, on the other hand, offer more transparency in 

methodology but require the customization of parameters and advanced programming skills. 

Online tools, like XCMS Online, require less programming knowledge, but often have limited 

parameter specifications. Fernández-Ochoa et al. compared the commercially Agilent Profinder 

software with an open-source R pipeline and drew a similar conclusion.108 The study also found 

out that the vendor-based software is easy to use and produces better quality graphics. However, 

the open-source methods are more effective in correcting drift between and within batches. 

Additionally, the statistical methods used in the open-source pipeline achieved better 

classification results, indicating higher data quality. Therefore, their conclusion was that the 

open-source method is often more suitable for a large number of samples due to its higher 

capacity and versatility.108 Nevertheless, for complex biological questions, manually 

programmed tools are typically superior, as they provide numerous packages and adaptability, 

including normalization to an endogenous marker. Nonetheless, comparing various software 

tools is challenging as it is highly depending on the selected parameters.85 Concerning the in 

vitro metabolism of A-CHMINACA, the primary metabolic reactions involved hydroxylation 

of the adamantyl-ring and N-dealkylation of the indazole-3-carbaldehyde moiety. Although all 

three workflows identified the most important metabolites, the simplicity and low complexity 

of the dataset did not require any normalization compared to complex plasma or urine samples.  

The last two studies investigated the influence of DOAs in vitro and in vivo using untargeted 

toxicometabolomics. The purpose of the studies was to gain insights into the endogenous 

response in the rat metabolome after acute exposure, as well as information on the metabolic 

profile in vitro and in vivo, thus allowing the establishment of suitable biomarkers to verify the 

intake of the respective DOA. 

The fourth study offered new insights into the metabolic profiling of rat plasma and urine in 

response to acute amphetamine exposure and additional urinary metabolites/biomarkers to 

detect amphetamine uptake, complemented previous studies.93 Compared to a prior study 

conducted with humans, which mainly observed various metabolites related to energy 

metabolism, the findings from rats indicated a decrease in amino acids following exposure to 

amphetamine.109  Furthermore, four new potential biomarkers were identified in rat urine: N-

acetylamphetamine, N-acetyl-4-hydroxyamphetamine, N-acetyl-4-hydroxyamphetamine 

glucuronide, and amphetamine succinate. While this study is only a snapshot of the rat 

metabolome and cannot be directly extrapolated to humans, it is another piece of the puzzle to 

better understand acute and chronic effects and to support future targeted studies in humans that 



 

   198 

require fewer subjects. The varied results of the two studies highlight the importance of 

comprehensive investigations and different analytical approaches when researching differences 

in metabolomics. A good example of the benefits of untargeted toxicometabolomics studies is 

amphetamine succinate. Studies like this one can detect metabolites that would not be expected 

or sought in a targeted approach.  

The fifth study provides the metabolic profile in an in vitro model using pHLM incubation 

while the in vivo experiments provide insights into the endogenous response of rat plasma and 

urine to acute exposure of the synthetic cathinone PCYP.94 A total of sixteen phase I metabolites, 

of which nine were found in vivo, and one phase II metabolite of PCYP were identified as 

exogenous biomarkers. The main metabolic reaction in rat urine was the dihydroxylation at the 

pyrrolidine ring, followed by mono- and/or dihydroxylation at the benzyl and/or hexyl rings. 

These metabolites offer the possibility of establishing analytical screening procedures to 

overcome the analytical challenge in clinical and forensic toxicology and to confirm patient 

intake. Furthermore, metabolites of tryptophan metabolism and adenosine were also found 

related to PCYP intake. Suggesting that synthetic cathinones such as PCYP may directly affect 

neurotransmission and thereby influence important metabolic pathways such as tryptophan 

metabolism. These findings provide additional markers of cathinone abuse, improve our 

understanding of the associated physiological changes, and thus demonstrate the advantages of 

an untargeted toxicometabolomics study. Specifically, it permits exploration of both biomarkers 

and mode of action in a single study, which proves particularly advantageous for highly 

fluctuating substances such as NPS, for which both toxicokinetic and toxicodynamic data are 

lacking. Nevertheless, it is important to note that this study provides only a snapshot of the rat 

metabolome. Further studies using targeted toxicometabolomics approaches are needed to 

investigate the changes in tryptophan metabolism after PCYP ingestion and its applicability to 

humans.  
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5. Conclusion 

Based on the results of the different studies, it can be concluded that there are different 

influences in an untargeted toxicometabolomics approach, which affect the outcome of a study 

in varying degrees. Starting with the sample preparation, which is an essential and important 

step for the extraction and detection of various metabolite. The analytical method used, where 

in an LC-MS approach especially the analytical column used has a strong influence and 

therefore needs to be adapted for each matrix and regarding toxicometabolomics, also for the 

substance to be investigated. Finally, data processing also plays an important role in the correct 

extraction of information. Although raw files may be identical, not all data processing software 

is appropriate for every biological question. Studies have shown there is no standardized 

procedure for untargeted toxicometabolomics. Therefore, instead of simply applying a standard 

procedure, researchers should optimize corresponding procedures and parameters beforehand 

to the study question to achieve the best results possible. Even with ideal parameter 

optimization, a single metabolomics study remains only a snapshot that captures only a single 

moment in time.  

In addition to the optimization strategies of an untargeted toxicometabolomics approach, the 

two untargeted toxicometabolomics studies have shown how the use of toxicometabolomics 

workflows overcome conventional screening methods to identify metabolites and endogenous 

biomarkers that would not be expected. It allows for acquisition of both toxicokinetic data and 

information on the mode of action of DOA within one study. Even for classical DOAs such as 

amphetamine, which seem to be well studied toxicologically, metabolomics is expected to 

reveal new insights or hidden modes of actions. Nevertheless, untargeted toxicometabolomics 

can be a time-consuming process yielding only individual metabolites that can be assessed only 

in terms of their physiological function rather than within a biological context. Furthermore, a 

single toxicometabolomics study is merely a snapshot, capturing only a moment in time, and 

therefore further studies are usually required to support or refute the biological interpretation. 

Nonetheless, these metabolites are useful for initiating further targeted studies and even 

conducting human studies.  

Another advantage of untargeted toxicometabolomics is the reduced number of animals 

required for in vivo experiments. For an in vivo study, a small number of animals per group is 

necessary to achieve significant results owing to their genetic identity, uniform sleep/wake 

rhythm, and consistent diet. The utilization of even a small dose to observe an effect on the 

metabolome helps to minimize pain and suffering experienced by the test animals. 
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Nevertheless, it is essential to emphasize that the complete organism is mandatory to verify 

useful endogenous biomarkers in the context of toxicometabolomics. Furthermore, a 

preliminary study is conducted, which is followed by a specific study to interpret the biomarkers 

biologically. Despite using fewer animals, the targeted study still necessitates additional 

laboratory animals. Subsequently, extrapolation to humans must be examined to apply the 

findings to the human population. 
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7. Abbreviations 

ANOVA analysis of variance  

DOA drugs of abuse 

EMCDDA European Monitoring Center for Drugs and Drug Addiction  

GC gas chromatography 

GC-MS gas chromatography coupled to mass spectrometry 

HILIC hydrophilic interaction chromatography 

LC liquid chromatography 

LC-HRMS liquid chromatography coupled to high resolution mass 

spectrometry 

MS mass spectrometry 

NMR nuclear magnetic resonance 

NPS new psychoactive substances 

PCA principal component analysis 

PCYP alpha-pyrrolidinocyclohexanophenone 

pHLM pooled human liver microsomes 

PLSDA partial least-squares discriminant analysis 

RP reversed-phase 

 


