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Abstract 

Background  Different production systems of livestock animals influence various factors, including the gut 
microbiota.

Methods  We investigated whether changing the conditions from barns to free-range chicken farming impacts 
the microbiome over the course of three weeks. We compared the stool microbiota of chicken from industrial barns 
after introducing them either in community or separately to a free-range environment.

Results  Over the six time points, 12 taxa—mostly lactobacilli—changed significantly. As expected, the former barn 
chicken cohort carries more resistances to common antibiotics. These, however, remained positive over the observed 
period. At the end of the study, we collected eggs and compared metabolomic profiles of the egg white and yolk 
to profiles of eggs from commercial suppliers. Here, we observed significant differences between commercial 
and fresh collected eggs as well as differences between the former barn chicken and free-range chicken.

Conclusion  Our data indicate that the gut microbiota can undergo alterations over time in response to changes 
in production systems. These changes subsequently exert an influence on the metabolites found in the eggs. The 
preliminary results of our proof-of-concept study motivate larger scale observations with more individual chicken 
and longer observation periods.
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Introduction
Over the past 50 years, the world’s population has been 
increasing exponentially, currently counting approxi-
mately 8 billion individuals. Researchers estimate to 
reach 10 billion people in 2050 [1], which in addition 
to rising income and global urbanisation leads to an 
increasing demand for food sources, in particular animal-
derived foods. Poultry meat displays the fastest expand-
ing meat production globally, with an average annual 
growth rate of 5% over the past 50  years, followed by 
3.1% for pork, and 1.5% for beef [2]. Furthermore, egg 
production has been constantly increasing globally in the 
last decades [3]. To achieve high production efficiency, 
the chicken industry used to supply chicken with sub-
therapeutic doses of antibiotics, provoking antimicro-
bial resistances in microorganisms inhabiting them. In 
2003, Europe banned the preventive use of antibiotics, 
which resulted in an increase of systemic infections in 
livestock chicken, requiring the use of therapeutic doses 
of antibiotics [4]. The massive use of antibiotics led to an 
emergence of antimicrobial resistant bacteria found on 
poultry meat, which raises health concerns for humans 
[5]. Of note, bacteria themselves as natural producers 
present in soil or other samples are a relevant source for 
new sustainable antibiotics [6].

Based on the technological advances in next gen-
eration sequencing and the gaining importance of the 
microbiome regarding various factors, researchers make 
use of genome wide shotgun sequencing to explore the 
microbiome in human health [7, 8]. Different specimen 
types, extraction kits and sequencing approaches affect 
the results of respective studies, calling for standardized 
approaches [9]. With maturing technology and algo-
rithms, researchers have also initiated projects focusing 
on impacts on the intestinal microbial composition of 
chicken and other livestock, such as diet, supplementa-
tion and living conditions [10–13]. It has been shown 
that the gastrointestinal tract impacts animal productiv-
ity and health [14]. In dairy cows, for example, a certain, 
yet dynamic gut bacteria composition was associated 
with greater milk production and better overall health. 
In chicken, a free-range housing environment positively 
affects egg quality of laying hens [15]. Further, the intesti-
nal microbial composition of chicken influences eggshell 
quality and safety regarding offspring and human con-
sumers [16].

On the one hand, threats arising from caged poultry 
production, as well as the increasing importance of high-
quality food, consumers demand free-range egg and meat 
production [17]. On the other hand, free-range poul-
try farming is more costly requiring larger surfaces and 
reducing sustainability. Accordingly, the exploration of 
hybrid keeping methods appears worthwhile.

In this study, we present an initial small-scale investi-
gation aimed at exploring the effects of varying produc-
tion systems on the microbiome and egg composition 
in chickens. Our objectives are twofold: firstly, to reach 
preliminary insights into the intricacies of these biologi-
cal interactions, and secondly, to inform the design of 
future, more extensive research. This includes determin-
ing the optimal number of individual chickens needed for 
robust data collection, establishing appropriate observa-
tion durations, and identifying more precise endpoints 
for in-depth analysis. In detail, we wanted to understand 
initial differences in gut microbiota composition associ-
ated with production systems and we wanted to see if 
a short intervention on such can lead to an approxima-
tion to the free-range chicken gut. Further, we wanted to 
test if, given enough time eggs appear indistinguishable 
among cohorts. We performed a longitudinal analysis of 
the intestinal microbiome of free-range chicken, com-
pared to previous barn chicken which were transferred 
to a free-range environment using fecal samples over the 
course of 8 weeks. Additionally, we investigated metabo-
lites in the egg white and egg yolk of store-bought eggs of 
barn and free-range chicken and compared the metabo-
lite composition to the chicken we kept in a free-range 
environment, those that were placed into a free-range 
environment coming from a barn industry, and chicken 
that originated from a barn industry and were put into a 
free-range community of existing free-range chicken.

Methods
Study design and sample collection
We acquired six chickens from a local industry barn in 
July 2022 and divided them into two cohorts (n = 3). 
H1-H3 were released from the industry barn and trans-
ferred to a free range but were kept isolated from other 
free-range chicken with access to a small chicken coop 
with an enclosure, and ii) H4-H6 released from the 
industry barn and joined an existing cohort of free-range 
chicken (H7, H8). From all eight chickens, we collected 
fecal samples on day 0, 3, 7, 10, 14, and 21. All fecal sam-
ples were subjected to whole-genome DNA extraction 
and subsequent whole-genome sequencing. Further, after 
97 days past study begin, we collected eggs from all study 
cohorts (H7, H8 n = 5, H1-H3 n = 5, H4-H6 n = 5) and 
analyzed the metabolite composition of egg white and 
egg yolk via mass spectrometry. We compared the results 
with the analyses of store-bought free-range eggs (n = 5) 
and eggs from barn chicken (n = 6). We further analyzed 
an egg from a newly resettled former barn chicken, which 
was transferred directly into an existing herd of free-
range chicken. The respective egg was collected on the 
day of relocation (Fig. 1).
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DNA extraction
DNA was extracted from all fecal samples using the 
ZymoBIOMICS DNA Miniprep Kit. The DNA was 
extracted according to the manufacturer’s protocol. 
Briefly, 50  mg of fecal samples were used for DNA 
extraction according to the manufacturer’s recom-
mendation. The mechanical lysis of bacterial cells was 
performed using the MP Biomedicals™ FastPrep-24™ 
5G Instrument (Fisher Scientific GmbH, Schwerte, 
Germany). The velocity and duration were adjusted to 
6  m/s for 45  s three times with 30  s of storage on ice 
in between each lysis step. DNA was eluted in 20  µl 
DNase/RNase free water [9]. The DNA concentration 
was determined via NanoDrop 2000/2000c (Thermo 

Fisher Scientific, Wilmington, DE) full-spectrum 
microvolume UV–Vis measurements.

Library preparation and sequencing
Extracted whole-genome DNA was sent to Novogene 
Company Limited (Cambridge, UK) for library prepara-
tion and sequencing. Briefly, the samples underwent a 
metagenomic library preparation process, after which 
they were sequenced using the paired-end Illumina 
Sequencing technique (PE 150 bases) on a HiSeq plat-
form. This method involves sequencing each DNA frag-
ment from both ends, with each read extending 150 
bases, thereby providing a comprehensive and detailed 
view of the genomic information by sequencing a read in 

Fig. 1  Study design and sample collection. a Cohort design, fecal sample collection and subsequent analyses. Barn chicken (depicted as brown 
chicken) were released from an industry barn and divided into two cohorts. H1-H3 were released into a free range, isolated from existing 
free-range chicken (depicted in white). H4-H6 were released and grouped together with existing free-range chicken. Samples were also collected 
from long-term existing free-range chicken H7 and H8. Fecal samples were collected from all cohorts on several days and subjected 
to whole-genome DNA extraction and subsequent whole-genome sequencing. b Anatomy of the chicken gastrointestinal tract. During sampling 
fecal samples will contain contain traces from the foregut but also from the ceca. c From all cohorts, eggs were collected 97 days past study begin 
and the egg white and egg yolk of each egg were analysed by mass spectrometry. Results were compared to eggs and eggs from barn chicken 
from a local supermarket. Additionally, an egg from a newly relocated former barn chicken (entered the environment the day of egg collection), 
which was transferred into a free-range environment and grouped with H7 and H8 was analyzed
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the forward direction and its complementary strand in 
the reverse direction, facilitating enhanced accuracy and 
depth in the metagenomic analysis. For all samples, 5 Gb 
reads per sample were generated.

Sequencing data analysis
As the first step of metagenomics shotgun sequenc-
ing analysis, we cleaned the reads by removing host 
sequences and performed QC with BBduk (ver-
sion (v):38.98, command line arguments (cla): “k = 23 
mink = 11 hdist = 1 ktrim = r tbo tpe out = stdout.fq 
-ref illumina.fasta" & “maq = 10minlength = 50  k = 31 
mcf = 0.5 -ref GRCg6a.fasta”) and GRCg6a as a reference. 
QC information was visualized with MultiQC (v1.11) 
[18]. For MinHash based comparison and taxonomic 
profiling we computed signatures on cleaned reads with 
sourmash [19] (v4.4.3, cla:”sketch dna -p k = 21,k = 31,k = 
51,scaled = 1000,abund –merge”). Comparison between 
samples was based on k-mer size 31. Own reanalysis of 
samples from Huang et  al. [20] followed the same data 
cleaning and signature computation pipeline. To pre-
pare taxonomic profiling, we extended the Genome Tax-
onomy Database (GTDB; vGTDB R07-RS207) [21] with 
metagenomic assembled genomes from Segura-Wang 
et al. [11] and Feng et al. [22]. To this end MAGs of both 
studies were dereplicated together with GTDB using 
dRep [23] (v:3.4.0 cla “comp 50 -con 10–checkM_method 
lineage_wf –S_algorithm fastANI –S_ani 0.95 -nc 0.5”). 
All dereplicated MAGs that were not part of GTDB were 
retained and their signatures and indexes were computed 
with sourmash. Taxonomic profiling was performed with 
sourmash on quality-controlled reads with k-mer size 51 
using the union of GTDB and the previously dereplicated 
MAGs as a reference. All further downstream analysis 
of taxonomic profiles was performed in R relying on the 
phyloseq package [24] (v1.40.0). Ordination analysis was 
computed with non-metric multidimensional scaling on 
Bray–Curtis distances. For all three differential abun-
dance analysis with ANCOMBC [25] (v:1.6.2) we kept 
only the samples that resembled a foregut signature as 
described in the results section. Further, for every test, 
we set the significance level at 0.01, the prevalence cutoff 
at 0.8, and the p-value adjustment method to “Benjamini-
Hochberg". For the first test comparing initial conditions 
we subset the remaining samples to only keep samples 
from day 0 and compared cohort of existing, free-ranged 
chicken with those of former barn chicken. In the second 
and third test we used all samples except those derived 
from the control group. The second test performed 
regression on the number of days, whereas the last test 
looked at the interaction term of days and final produc-
tion systems. Metagenomic assembly was performed 
with spades [26] (v:3.15.4, cla: “–meta”). Resistance 

annotation was done with ABRicate (v:1.0.1) and the 
NCBI AMRFinderPlus database. We further used R pack-
ages each suited to specific aspects of data processing 
and visualization in our study. For data tidying and trans-
formation, we used tidyr (version 1.2.0), while openxlsx 
(version 4.2.5) was employed for reading and writing 
Excel files, and tibble (version 3.1.8) was utilized for data 
manipulation in a tabular format. The composition anal-
ysis of the microbiome data relied on packages such as 
microbiome (version 1.18.0), phyloseq (version 1.40) for 
microbiome analysis, vegan (version 2.6–2) for commu-
nity ecology analysis, and ancombc (version 1.6.2) for 
differential abundance analysis. The overall plotting and 
visualization of data were achieved using ggplot2 (version 
3.3.6) and ggpubr (version 0.4.0). Specific figures were 
generated with targeted packages: VennDiagram (ver-
sion 1.7.3) for Fig. 2f, gghalves for Figs. 3c, d, & 4c, and 
ggridges for Fig. 4b. Additionally, the egg analysis, which 
included Monte Carlo sampling and Linear Discriminant 
Analysis (LDA), was conducted using the caret package 
(version 6.0–93).

Metabolomics sample preparation
All eggs were separated and egg white and yolk were 
frozen for one week at –20  °C. Afterwards, 400 µL 
methanol:ethanol (1:1, v/v) containing the internal stand-
ards 48 µM tryptophan-d5, 53.4 µM glucose-d7, 34.8 pal-
mitic acid-d31, and 8.6  µM creatinine-d3 were added to 
100 µL egg white or 100 mg egg yolk. All samples were 
shaken for 2  min at 2000  rpm and subsequently centri-
fuged for 30 min at 15,000 rpm and 2  °C. 150 µL of the 
supernatant were transferred into a new reaction tube 
and evaporated to dryness using a vacuum centrifuge 
(Concentrator plus, Eppendorf, Hamburg) at room tem-
perature and program “V-aq” for roughly 4  h. The resi-
due was reconstituted in 100 µL of a mixture containing 
methanol and acetonitrile (30:70, v/v) by shaking for 
5  min at 15,000  rpm and 22  °C. Ten µL of each sample 
of both drugs of abuse were pooled to obtain one qual-
ity control sample (group QC) for every cell experiment. 
Every obtained sample was transferred into an amber 
glass vial and 1 µL was injected onto the HPLC-HRMS/
MS as described below.

LC‑HRMS/MS apparatus for metabolomics
The analysis was performed using a Thermo Fisher 
Scientific (TF, Dreieich, Germany) Dionex UltiMate 
3000 RS pump consisting of a degasser, a quaternary 
pump, and an UltiMate Autosampler, coupled to a TF 
Q Exactive Plus system equipped with a heated electro-
spray ionization HESI-II source. Mass calibration was 
done prior to analysis according to the manufacturer’s 
recommendations using external mass calibration. 
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Additionally, before each experiment, the spray shield 
and capillary were cleaned. The performance of the col-
umn and mass spectrometer was tested using a mixture 
described by Maurer et  al. before every experiment. 
The conditions were set according to published pro-
cedures [27, 28]. Gradient reversed-phase elution was 
performed on a TF Accucore Phenyl-Hexyl column 
(100  mm × 2.1  mm, 2.6  µm, TF, Dreieich, Germany) 
or on a hydrophilic interaction liquid chromatogra-
phy (HILIC) Nucleodur column (125 × 3  mm, 3  μm, 
Macherey–Nagel, Düren, Germany) for normal-phase 
chromatography. The mobile phases for gradient elu-
tion using the Phenyl-Hexyl column consisted of 2 mM 
aqueous ammonium formate containing acetonitrile 

(1%, v/v) and formic acid (0.1%, v/v, pH 3, eluent A), as 
well as 2  mM ammonium formate in acetonitrile and 
methanol (1:1, v/v), containing water (1%, v/v), and 
formic acid (0.1%, v/v, eluent B). The flow rate was set 
from 1–10  min to 500 µL/min and from 10–13.5  min 
to 800 µL/min using the following gradient: 0–1.0 min 
hold 99% A, 1–10  min to 1% A, 10–11.5  min hold 1% 
A, 11.5–13.5 min hold 99% A. Normal-phase chroma-
tography was performed using aqueous ammonium 
acetate solution (200  mM, eluent C) and acetonitrile 
containing formic acid (0.1%, v/v, eluent D). The flow 
rate was set to 500 µL/min using the following gradi-
ent: 0–1  min 2% C, 1–5  min to 20% C, 5–8.5  min to 
60% C, 8.5–10 min hold 60% C, 10–12 min hold 2% C. 

Fig. 2  Stool Microbiota Composition. a Non-metric Multidimensional Scaling (NMDS) of Bray–Curtis dissimilarities computed on species 
information of gathered metagenomic samples after quality controlled. Time of sampling is indicated by color, whereas point shaped designates 
the cohort. b Principal coordinate Analysis computed on 1-MinHash similarity. Point shape shows sampling cohort, colors represent sampling 
time after study kick-off. c Relative species abundance on genus level for the different timepoints and chickens. d PCoA of Mash dissimilarities 
computed on our own samples extended by the dataset by Huang et al. All highlighted fecal samples are from this study. e Operational taxonomic 
units that were highlighted as significant after p-value adjustment in at least one of the three statistical tests. The different intersections (compare 
to panel f are marked by + , # and *, respectively) f Visualized concordance among test results. Each set denotes one statistical test and entries 
indicate the number of statistically significant differentially abundant OTUs
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For preparation and cleaning of the injection system, a 
mixture containing isopropanol and water (90:10, v/v) 
was used. The following settings were used: wash vol-
ume, 100 µL; wash speed, 4000 nL/s; loop wash fac-
tor, 2. Every analysis was performed at 40  °C column 
temperature, maintained by a Dionex UltiMate 3000 
RS analytical column heater. The injection volume for 
metabolomics analyses was 1 µL and for those analyses 
investigating the formation of imines 10 µL. The HESI-
II source conditions for every experiment were as fol-
lows: ionization mode, positive or negative; sheath gas, 
60 AU; auxiliary gas, 10 AU; sweep gas, 3 AU; spray 
voltage, 3.50 kV in positive mode and -4.0 kV in nega-
tive mode; heater temperature, 320 °C; ion transfer cap-
illary temperature, 320  °C; and S-lens RF level, 50.0. 
Mass spectrometry for UM was performed according 
to a previously optimized workflow [29] using full scan 
(FS) only. The settings for FS data acquisition were as 
follows: resolution, 140,000 at m/z 200; microscans, 1; 
automatic gain control (AGC) target, 5 × 105; maximum 
injection time, 200 ms; scan range, m/z 50–750; polar-
ity, negative or positive; spectrum data type, centroid.

Settings for parallel reaction monitoring (PRM) data 
acquisition were as follows: resolution, 35,000 at m/z 200; 
microscans, 1; AGC target, 5 × 105; maximum injection 
time, 200 ms; isolation window, 1.0 m/z; collision energy 
(CE), 10, 20, or 40; spectrum data type, centroid. The 
inclusion list contained the monoisotopic masses of all 
significant features, and a time window of their retention 
time 30  s. Analysis was performed using a randomized 
sequence order with five injections of pure methanol 
(reversed-phase chromatography) or eluent D (normal-
phase chromatography) samples at the beginning of the 
sequence for apparatus equilibration, followed by five 
injections of the pooled QC sample. Additionally, one 
QC injection was performed every five samples to moni-
tor batch effects as described by Wehrens et al. [30]. TF 
Xcalibur software version 3.0.63 was used for all data 
handling.

Metabolomic data analysis
Thermo Fisher LC-HRMS/MS RAW files were converted 
to mzML format using Proteo Wizard [31] and subse-
quently parsed by XCMS [32] in an R environment for 

Fig. 3  Resistances in free-range and caged chicken. a Detected resistances with ABRicate in the different assembled metagenomic samples. 
b Heatmap summarizing the changing mean number of resistances for the different chicken over time, based on initial keeping conditions. 
We consider day 0 and 3 to be the early timepoints. Day 14 and 21 serve as the late timepoint. c Boxplots with individual data points showing 
the averaged resistances in the early and late time point split by the cohorts. d Boxplots with individual data points showing the averaged 
resistances in the cohorts split by the early and late time points
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raw data inspection and peak picking. Total ion chroma-
tograms, base peak chromatograms and mean intensity 
chromatograms were visually inspected for deviations 
that may hint to improper measurements. Additionally, 
total ion currents of the samples were monitored in box-
plots to discover batch effects during measurements. The 
quality of the peak picking and the alignment was moni-
tored using total ion chromatograms and extracted ion 
chromatograms of the used internal standards. Annota-
tion of isotopes, adducts, and artifacts was performed 
using the package CAMERA [33]. Optimization of 
XCMS parameters was in accordance with a previously 
optimized strategy. Peak picking and alignment param-
eters can be found in the according Jupyter notebooks. 
Names of the features were adopted from XCMS using 
“M” followed by the rounded mass and “T” followed by 
the retention time in seconds (e.g., “M218T222” for an 
ion at m/z 218.1538 and a retention time of 222 s). Before 
log transformation, missing values were replaced by the 
lowest measured peak area as proposed by Wehrens 
et  al. [30] as a surrogate limit of detection. Batch cor-
rection was performed for each HPLC experiment by 
performing linear regression on QC samples, predicting 
each peak area based on the position of the investigated 
sample in the respective experiment. Based on these 
regression models, areas of all peaks for all samples were 
corrected by subtracting residuals and adding the average 
peak area. After area correction, we aggregated all peaks 

across all yolk 4 HPLC experiments into one feature vec-
tor and repeated the same for egg white. We removed 
QC samples for all further analysis. We then proceeded 
to analyze both egg components independently. Further, 
we made minor changes to the following workflow as 
needed depending on the hypothesis we tested, resulting 
in 4 workflows. For the first hypothesis comparing only 
collected eggs from our chicken, we removed the egg 
from the newest chicken for further analysis. The sec-
ond hypothesis comparing shopped eggs included this 
egg. For both hypotheses we performed ANOVA on both 
egg components with Benjamini–Hochberg correction 
as p-value adjustment method. For yolk feature filtering 
was applied on unadjusted ANOVA p-value threshold of 
0.01. For egg white we used 0.05. On the remaining fea-
tures and datapoints, PCA was performed. We then com-
puted feature loadings on principal components with a 
higher-than-average variance, with a minimum of three 
first principal components. The highest absolute loadings 
were selected for targeted MS analysis. We performed 
linear discriminant analysis only on high variance princi-
pal components using Monte-Carlo cross-validation.

Identification of significant features
MS2 spectra were recorded using the above mentioned 
PRM method to allow identification of significant fea-
tures. Individual spectra were exported after subtracting 
the baseline left and right of the peak. After conversion 

Fig. 4  Metabolomics profiles of eggs. a PCA of batch-corrected areas on ANOVA prefiltered features derived from untargeted HPLC–MS of eggs. b 
Projections of the four different trained LDA classifiers. Visualization includes the training data. c Batch-corrected peak areas of driving features we 
were able to identify with targeted MS/MS
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to mzXML format using Proteo Wizard, spectra were 
imported to NIST MSSEARCH version 2.3. A library 
search for identification was conducted using the fol-
lowing settings: Spectrum Search type, Identity (MS/
MS); Precursor Ion m/z, in spectrum; Spectrum Search 
Options, none; Presearch, Off; Other Options, none. 
MS/MS search was conducted using the following set-
tings: Precursor tolerance, ± 5  ppm; Product ion toler-
ance, ± 10  ppm; Ignoring peaks around precursor, ± m/z 
1. The search was conducted by using the following 
libraries: NIST 14 (nist_msms and nist_msms2 sublibrar-
ies), Wiley METLIN Mass Spectral Database, HMDB 5 
[34] (MS/MS Experimental), LipidBlast [35], and Mass-
Bank (NIST). Additionally, LipidMaps COMP_DB search 
[36], MetFrag [37], and MONA similarity search were 
used for inconclusive spectra matches or those that were 
not matched in MSSEARCH. Metabolites of the investi-
gated NPS were identified by comparing and interpreting 
their spectra to those of the parent compounds.

Results
For our proof of-concept, we defined a study set-up that 
lets us conclude on the change of the stool microbiomes 
and get additional information on the eggs as second-
ary read out. We acquired six barn chickens, which were 
primarily held for industry purposes and randomly split 
them into two cohorts of three chickens (Fig.  1a). The 
first cohort consisting of chicken H1-H3 remained iso-
lated with access to a small chicken coop with an enclo-
sure. The second cohort, H4-H6, was released from the 
industry barn and joined another cohort of existing free-
range chicken, H7-H8, in a different coop with enclosure. 
For each chicken, we monitored microbial composition 
in their feces at timepoints day 0, 3, 7, 10, 14, and 21 and 
performed genome-wide metagenomic sequencing. Of 
note, the collection approach enabled us to unambigu-
ously match the stool samples to the individual chicken 
because each sample was picked immediately. Of note, 
the gut microbiome of chicken is known to depend on 
the collection site within the digestive system. We, how-
ever, collected excreted samples. Especially the feces 
originating from the comparably large ceca and non-ceca 
parts (Fig. 1b) of the gut differ, calling for attention dur-
ing the data analysis. Even though visual differences exist, 
molecular profiling facilitates additional insights on the 
origin of the sample picked.

Additionally, to the fecal samples. we also collected 
eggs of the various cohorts 97  days after study start for 
the duration of 7 days. We then analyzed the metabolite 
composition of the egg white and egg yolk of each egg by 
mass spectroscopic analyses. Further, we compared the 
results with the metabolite composition of free-range 

eggs and barn chicken eggs bought in a local supermarket 
(Fig. 1c).

Fecal microbiome composition varies upon release
Following sequencing we performed a stringent quality 
control (QC) including removal of host DNA from the 
metagenomic samples and other QC steps (c.f. meth-
ods). The QC identified on average 0.57% (1.9% ± SD) 
of reads to be of low quality per sample. Afterwards, we 
performed taxonomic profiling where we observed an 
estimated average 50.18% (16.5% ± SD) assignment rate 
on a metagenomic assembled genome/strain level. With 
these taxonomic profiles, we initiated a first ordination 
analysis. Here, we observed no patterns linked to either 
time or the cohort (Fig. 2a). We thus repeated a similar 
analysis with MinHash similarities where we again did 
not observe any clusters or explainable trends associ-
ated with the two features (time and cohort) of interest 
(Fig.  2b). While these analyses suggest no general trend 
with respect to the cohort and time, the spread of the 
points motivates a closer look. Focusing on the relative 
microbiome compositions, we observed major variations 
and heterogeneity across samples (Fig.  2c). One group 
of samples (including amongst others H2 day 0, H3 day 
7, or any of the samples by H7) are mostly composed of 
Lactobacillus, Limsilactobacillus, and Ligilactobacillus. 
Another group (including most measurements, e.g., H4 
day 21, H5 day 10 and H8 day 10) differs significantly. The 
samples of the second group are characterized by a larger 
diversity on the genus level. The first set of samples falls 
in line with the foregut chicken microbiome that is exten-
sively discussed in literature [38, 39]. The larger diversity 
in the composition of the second group can be attributed 
to ceca samples in chicken, as discussed above (compare 
to Fig.  1b). Accordingly, we repeated the previous Min-
Hash similarity analysis but extended our samples with 
the data generated by Huang et  al. [20], providing an 
atlas of chicken metagenomes in different gut regions. 
Indeed, we confirm the expected clustering: most sam-
ples with lower Lacto-, Limsilacto-, and Ligilactobacillus 
relative abundances clustered closer to the cecum sam-
ples, whereas other samples scattered into the ileum, 
duodenum, and jejunum region (Fig.  2d). As expected, 
the major variations within the samples are mostly due 
to the detection of either the foregut or hindgut microbi-
ome. To minimize effects associated with gut regions in 
further analyses, we decided to subset our data to retain 
only the samples that clustered into the foregut region of 
the previous analysis. On the remaining 29 samples, we 
performed differential abundance analysis at the spe-
cies level and performed three different statistical tests, 
comparing i) differences in the microbiome due to ini-
tial production systems, ii) changes in the microbiome 
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in relocated chicken over time iii) differences in changes 
over time comparing the two resettled cohorts. Combin-
ing all three test results, a total of twelve different OTUs 
showed statistical significance (adjusted alpha level of 
0.01) (Fig.  2e). Four of the twelve species were signifi-
cantly differentially abundant in all three tests (Fig. 2f ).

Increased number of resistances seems to remain 
in free‑range environment
Among the most relevant aspects in livestock farming 
are resistances against antimicrobials [40–44]. We thus 
searched for potential antimicrobial resistance mecha-
nisms across all metagenomic samples. Consistently over 
all cohorts, we identified microbial resistance against tet-
racyclines, which is an antibiotic frequently used in vet-
erinarian medicine. Further, macrolide resistance appears 
to be prevalent in most chicken. In consideration of the 
One Health aspect, vancomycin resistance detected in 
all cohorts is a considerable threat, as bacteria carrying 
the resistance might also transfer onto humans and add 
onto the global health crisis of antimicrobial resistances. 
Vancomycin is commonly used as a last resort drug as 
resistance development is usually slow [45]. Moreover, 
we found bacteria resistant to carbapenems in the cohort, 
which was released from the industry barn and placed 
into an isolated free-range environment. Carbapenem 
resistance in Gram-negative bacteria is mainly caused 
by carbapenemases and counts as a major and on-going 
global health problem which is spreading rapidly and 
causing serious outbreaks with limited treatment options 
(Fig. 3a). Interestingly, the carbapenem resistance found 
in the industry barn chicken is caused by the subclass B1 
metallo-beta-lactamase JOHN-1, which was previously 
described in Flavobacterium johnsoniae but not detected 
in human colonizing bacteria yet [46]. A relevant aspect 
is the number of present resistances in the different 
cohorts. We thus computed the average number of resist-
ances for the original barn chicken and the free-range 
chicken at the beginning of the observation period and at 
the end after three weeks (Fig. 3b). For both time points, 
we recognize an increased number of resistances for the 
industrial barn chicken. This number seems however not 
to change over time, i.e., present resistances remain in the 
stool microbiota for at least three weeks. Comparing the 
early and late time point average resistances (Fig. 3c) and 
those in the free-range and former barn cohort separately 
(Fig.  3d) emphasizes this trend. Of note, we only reach 
statistically significant differences if all early and late time 
points are pooled together (Wilcoxon Mann–Whitney 
p-value 0.016) due to the limited number of chickens 
in the cohorts. Having identified changes in microbiota 
over time and having observed resistance factors in the 
metagenomes, we asked on differences in the eggs.

Metabolomic profiles of egg differ between free‑range 
and barn as well as commercial eggs
Examining the composition of eggs can offer vital 
insights into the nutritional impact of different poul-
try production systems, reflecting the direct correlation 
between production environments and the nutritional 
quality of eggs. To assess differences in egg composition 
we performed untargeted HPLC–MS of egg yolk and 
egg white separately. After peak calling and bias correc-
tion, we searched two different sets of features. First, we 
aimed to find features that separate our collected eggs 
by initial production system. Second, we aimed to iden-
tify features that separate shop eggs (organic eggs from a 
supermarket) from fresh eggs. Initially, we selected only 
significant ANOVA features. For the first test, we found 
no feature to be statistically significant after p-value 
adjustment. In the second test, we observed 14 and 90 
features in egg white and egg yolk respectively to meet 
our criteria. The small number of features undercutting 
the significance threshold of 0.05, the high dimensional 
feature spaces, and the low expected assignment rate in 
targeted MS, did not allow us to limit our further analysis 
only on ANOVA significant features. Instead, we decided 
to select high variance features allowing for reasonable 
separation after a first filtering based on ANOVA analy-
sis. Naturally, principal component analysis (PCA) on 
these ANOVA pre-filtered features already displayed 
clear separation for our cohorts, as well as separation 
among bought and collected eggs (Fig.  4a). Based on 
the most important features in the high variance princi-
pal components of the PCA, we trained linear discrimi-
nant analyses and attained an average cross-validation 
accuracy of 96% (6.2% ± SD) (Fig.  4b). Asking about the 
nature of the identified features, we performed a targeted 
MS approach. We successfully identified 10 of the most 
relevant features identified in the PCA via targeted MS 
(Fig.  4c). Breaking them up in the different classes, six 
features derived from lipids, three from amino acids and 
one was matched to a flavonoid. Post hoc testing identi-
fied in 6 of the 10 cases the eggs from the supermarket to 
be the most significantly differing cohort. In four cases, 
however, the egg from originally free-range chicken dif-
fered from all other eggs, including the former barn 
chicken that were put in the free-range setting.

Discussion
Our study analysed the fecal microbial composition over 
time of two different chicken cohorts being introduced to 
a free-range environment, isolated and within a commu-
nity of existing free-range chicken, and a control cohort. 
We aimed to identify potential differences in initial gut 
microbiota composition of free-range compared to barn 
chicken and detect changes over time under the different 
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conditions mentioned above. Further, we investigated 
metabolite composition of egg yolk and egg white for 
each cohort and drew the comparison to store-bought 
free-range and barn eggs.

The applied statistical analysis highlighted 12 different 
species to have differing abundances among initial pro-
duction systems or over time. Lacticaseibacillus paraca-
sei was initially higher in existing free-range chicken (H7, 
H8) and increased over time in both released cohorts. 
L. paracasei is believed to have regulatory effects on 
chicken gut immunity, microbial composition, and an 
overall higher microbial diversity as its presence was cor-
related with the enrichment of the genera Anaerotignum, 
Coprococcus, and Massilimicrobiota [47]. Anaerotignum 
sp. produce so called short-chain fatty acids [48], which 
play a key role in health homeostasis and inflammation 
reduction. Corprococcus sp. were correlated with the 
presence of other bacteria, which have a positive effect on 
host health [47]. Therefore, an enrichment in L. paraca-
sei seems favourable for chicken. H3, which was released 
into a group of existing free-range chicken further dis-
plays an increase in Lactobacillus crispatus, which 
belongs to the most prevalent species in the chicken 
gastrointestinal tract and its presence is correlated with 
a protection against infectious diseases in poultry [49–
51]. We further observed an initially lower abundance 
of Lactobacillus gallinarium in the existing free-range 
chicken (H7, H8), and a decrease of L. gallinarium in 
those chicken, which were released and grouped with 
H7 and H8. L. gallinarium is currently not correlated 
with any substantial positive or negative effect on poultry 
health or fitness [51]. However, as a lactic acid produc-
ing bacterium, Lactobacillus sp. are overall associated 
with health homeostasis and many species belonging to 
this genus display well-known probiotics in the animal 
industry [52]. Last, we observed an increase in Limosi-
lactobacillus reuteri (former Lactobacillus reuteri) in all 
former barn chicken and an initially higher abundance of 
L. reuteri in the free-range chicken. In new-born chicken, 
supplementation with L. reuteri has been shown to sup-
press growth of non-beneficial Proteobacteria, while it 
promoted enrichment of rather beneficial Lactobacillus 
sp. [53]. Also in humans, L. reuteri displays enormous 
potential as a probiotic strain [54]. As of today, little to 
nothing is known about Lactobacillus pullistercoris, 
Limosilactobacillus merdigallinarum, Limosilactobacillus 
sp012843675 and sp014836425, MAG4339 (Ligilactoba-
cillus), MAG5921 (Lactobacillus), and MAG617 (Limosi-
lactobacillus), which were highlighted in our analysis 
(Fig.  2e). Overall, we conclude that chicken in a free-
range environment show higher abundances of beneficial 
bacteria, and that resettling chicken from an industry 
barn to a free-range environment has a positive effect 

on health-associated bacterial abundances. Neverthe-
less, we want to underline that statistical analysis may be 
impacted by the initial sampling strategy. When combin-
ing our analyses with existing microbiome data on dif-
ferent gastrointestinal parts of chicken, it is obvious that 
our first group clusters with samples extracted from the 
cecum, and our second group clusters separated from all 
other parts of the chicken gastrointestinal tract (Fig. 2d). 
Previously, it could be shown that the microbial composi-
tion in the small intestine differs from those of the rela-
tively large cecum of chicken, the large intestine, and the 
colorectum [20]. Chicken are capable of releasing cecal 
content towards the ileum or towards the cloaca, then 
called the cecal drop [55]. This can occur every 8–10 h. 
Based on the results depicted in Fig.  2b, c, and d, we 
believe that some of the collected fecal samples belong to 
the group of cecal drops and rather represent the cecum 
microbial composition, whereas all other samples rep-
resent a mixture of all parts of the gastrointestinal tract, 
which is released with normal feces release. Depending 
on the selected separation criteria of these clusters, dif-
ferential abundance analysis may highlight other species.

Concerning the metabolomic egg composition ANOVA 
results indicated reliable differences between bought and 
collected eggs. On the contrary, statistical analysis did 
not highlight differences in our collected eggs compar-
ing initial production systems. This may likely be due to 
a shrinkage in overall sample size. When we looked at 
overall variances in a total of four investigations where 
we did observe variations in corrected peak area. How-
ever, whether these differences hold in the general case, 
would require a larger study cohort. On the one hand, 
our measurements of e.g., Schleichol 1, which belongs to 
the flavonoids, or PC25:1 which are generally positively 
connotated in literature were non-significantly reduced 
in our free-ranged cohort [56]. On the other hand, in 
the same cohort, we observed e.g., 1,25-Dihydroxy-cho-
lesterol to be slightly increased, which is associated with 
cell homeostasis and a precursor for steroid hormones 
[57]. Accordingly, we cannot clearly advocate for a pro-
duction system if we use egg composition as only quality 
criterion.

Conclusion
Our data indicate that the gut microbiota can undergo 
alterations over time in response to changes in pro-
duction systems. These changes subsequently exert an 
influence on the metabolites found in the eggs. Our 
study design, encompassing prompt stool sample col-
lection and enabling analysis on individual chickens, 
presents certain challenges. Primarily, the limited 
cohort sizes arise due to the practical constraints of 
overseeing only a small number of chickens. To address 
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this, camera-based systems with automated image 
analysis might support the handling of larger cohorts. 
Additionally, distinguishing between microbiota origi-
nating from the foregut and the cecum, even with the 
aid of molecular metagenomic measurements, poses 
its own set of challenges. The nucleic acid based read 
out bears further challenges: the observed resistances 
are encoded in the genome and do not reflect actual 
resistances. In this context, future studies should 
include meta-transcriptomic sequencing in order to 
get a more accurate and at least semi-quantitative view 
on the expression of the resistance genes. Further-
more, the number of time points and the three-week 
follow-up period might be insufficient, as it could allow 
for an adaptation of former barn chicken to the free-
range environment. To address this concern, we plan 
to re-analyze the stool microbiota of the cohort after a 
one-year interval. Moreover, the data we have gathered 
suggest the possibility of pursuing other downstream 
analyses. For instance, there is potential for identifying 
novel bioactive gene clusters that could serve as sources 
of novel antibiotics.

We thus consider our study as a proof-of-concept 
justifying further analyses at larger scale. Power esti-
mation based on the effect sizes in the present study 
suggest enlarged cohorts including 10 to 15 chicken 
per group. Further, doubling the observation time is a 
reasonable next step. It seems also to be interesting to 
extend the results to other livestock animal species. To 
enable respective larger scale studies, we suggest an AI 
based image analysis system that reduces the manual 
work to oversee the whole study. But using time series 
and individually matched metagenomes seams to bear 
an enormous potential to provide further insights in 
the dynamics of livestock metagenomes. Such high-res-
olution metagenomics might enable an improved sur-
veillance of arising resistances in animal populations.
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