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Abstract
There is a proposition due to Kollár as reported by Kollár (Proceedings of the summer
research institute, Santa Cruz, CA, USA, July 9–29, 1995, American Mathematical
Society, Providence, 1997) on computing log canonical thresholds of certain hyper-
surface germs using weighted blowups, which we extend to weighted blowups with
non-negative weights. Using this, we show that the log canonical threshold of a con-
vergent complex power series is at most 1/c, where (c, . . . , c) is a point on a facet of
its Newton polyhedron. Moreover, in the case n = 2, if the power series is weakly nor-
malised with respect to this facet or the point (c, c) belongs to two facets, then we have
equality. This generalises a theorem of Varchenko 1982 to non-isolated singularities.
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1 Introduction

Let f be a holomorphic function, not identically zero, on a domain of Cn where n is
any positive integer and let P be a zero of f . The log canonical threshold of f at P
can be characterised in many ways:

(1) it is the greatest positive rational number λ such that the pair (C2, λV ( f )) is log
canonical (Definition 2.5),

(2) it is the supremum of rational numbers λ such that | f |−λ is L2 in a neighbourhood
of P , sometimes called the complex singularity exponent ([10, Definition 8.4]),

(3) it is the smallest jumping number of V ( f ) ([16, Definition 9.3.22]),
(4) it is the negative of the largest zero of the Bernstein–Sato polynomial of f ([13,

Theorem 10.6]),
(5) if f defines an isolated singularity, then the log canonical threshold is equal to

min(1, βC( f )) where βC( f ) is the complex singular index (see [20, Section 4]
or [13, Theorem 9.5]), called the complex oscillation index in [2, 13.1.5] and the
complex singularity index in [18],

(6) if f defines an isolated singularity, then the complex singular index minus one
coincides with the smallest spectrum number ([18, p 558]).

If f does not define an isolated singularity, then it is not clear whether the log canonical
threshold and the complex singular index coincide ([13, 9.6]).

Considering f as a power series inC{x1, . . . , xn}, the Newton polyhedron (Defini-
tion 2.2) is the convex hull of all the points (i1, . . . , in) ∈ R

n such that the monomial
xi11 · . . . · xinn has a non-zero coefficient in some power series g in the ideal generated
by ( f ). The distance to the Newton polyhedron is defined as the rational number c
such that the point (c, . . . , c) is on the boundary of the Newton polyhedron of f .

In case of isolated plane curve singularities, by [20, Theorem 4.4] there is a coordi-
nate change (described in [19] for isolated real plane curve singularities) such that the
log canonical threshold is equal to the reciprocal of the distance. The proof is analytic
in nature. See [14, Theorem 6.40] for an algebraic proof. Note that the proof of [14,
Theorem 6.40] works only for reduced plane curves since the last sentence of the proof
uses finite determinacy of isolated singularities.

The main result of this paper is extending [20, Theorem 4.4] to non-isolated plane
curve singularities:

Theorem (= Theorem 3.10) Let f ∈ C{x1, . . . , xn} be any non-zero power series
satisfying f (0) = 0. Let c ∈ Q>0 be the unique number such that a (not necessarily
compact) facet � of the Newton polyhedron of f contains the point (c, . . . , c) ∈ R

n.
Then, lct0( f ) ≤ 1/c. Moreover, in the case n = 2, if f is weakly normalised with
respect to � or the point (c, c) is in the intersection of two facets, then lct0( f ) = 1/c.

The proof relies on Proposition 3.2, which is a generalisation of [13, Proposi-
tion 8.14] to weighted blowups with non-negative weights.

A generalisation of [3, Algorithm 4] shows how to find a coordinate change such
that f ∈ C{x, y} is normalised with respect to every facet of the Newton polyhedron
(Proposition 3.6). To read off the log canonical threshold, aweaker condition is enough,
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which we call weakly normalised (Definition 3.5). In case the singularity is non-
isolated, Theorem 3.6 only gives a formal coordinate system, which is enough for
computing the log canonical threshold (Remark 3.11(b)). In case the principal part of
f ∈ C{x, y} is non-degenerate, by [3, Remark 3.28], all power series that are right
equivalent to f and are normalisedwith respect to every compact facet of their Newton
polyhedrons have the same Newton polyhedron. This does not always hold without
the non-degeneracy assumption as shown by Examples 3.8 and 3.9.

The log canonical threshold at a point of a reduced plane curve can also be computed
using Puiseux expansions. An explicit formula is given in [6, Theorem 2.13], which
generalises [15, Theorems 1.2 and 1.3], that depends only on the first two maximal
contact values of the branches and their intersection numbers.

Lastly, we mention some similar results that have been proved in higher dimen-
sions, assuming the power series has enough monomials and with general enough
coefficients. More precisely, we say that a power series f ∈ C{x1, . . . , xn} is non-
degenerate with respect to a face σ of its Newton polyhedron if the polynomials

∂ fσ
∂x1

, . . . ,
∂ fσ
∂xn

do not have common zeros in (C \ {0})n , where fσ is the sum of the terms of f
lying on σ . We say that f has non-degenerate principal part if f is non-degenerate
with respect to all compact faces ([2, Definition 6.2.2]). As a stronger condition, we
say that f is non-degenerate if f is non-degenerate with respect to all faces ([9,
Definition 5]). In particular, if f is non-degenerate, then f has to be non-singular
outside the coordinate hyperplanes.

By [2, Theorem 13.2(1)], if f ∈ C{x1, . . . , xn} defines an isolated singularity and
has non-degenerate principal part, then the log canonical threshold of f is at most the
reciprocal of the distance of the Newton polyhedron, with equality if the distance is
greater than 1. The proof is analytic.

If f is a non-degenerate polynomial, then we can combinatorially compute all
the jumping numbers, not only the log canonical threshold, and in fact describe the
multiplier ideal of the divisor defined by f . Namely, let a f denote the ideal generated
by the monomials appearing with a non-zero coefficient in f . By [8, Main Theorem]
(also given in [16, Theorem 9.3.27]), the multiplier ideal J (r · a) of a monomial ideal
a ⊆ C[x1, . . . , xn] coincideswith the ideal generatedbyallmonomials xi11 ·. . .·xinn such
that (i1, . . . , in) + (1, . . . , 1) is in the interior of r P , where r P is the homothety with
factor r applied to the the Newton polyhedron P of a. In the preprint [9, Theorem 12],
it is proved that if f is non-degenerate, then a toric log resolution of a f also log-
resolves div f . In this case, by [9, Corollary 13] (stated also in [16, Theorem 9.3.37]),
for every rational number 0 < r < 1, we have the equality of multiplier ideals,

J (r · div f ) = J (r · a f ).

As detailed in [16, Example 9.3.31], this recovers the result on log canonical thresholds
of [2, Theorem 13.2(1)] in the special case of non-degenerate polynomials.
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2 Preliminaries

2.1 Power series and Newton polyhedron

Definition 2.1 The field of complex numbers is denoted C. The C-algebra of power
series in variables x1, . . . , xn that are absolutely convergent in a neighbourhood of 0
is denoted byC{x1, . . . , xn}, where n is a positive integer. The (possibly non-reduced)
complex subspace of Cn defined by a convergent power series f ∈ C{x1, . . . , xn} is
denoted by V ( f ). The saturation of a power series f ∈ C[[x1, . . . , xn]], denoted
sat( f ), is the power series f /(xa11 · . . . · xann ) where a1, . . . , an ∈ Z≥0 are as large as
possible.

Two formal power series f , g ∈ C[[x1, . . . , xn]] are formally right equivalent if
there exists a C-algebra isomorphism � of C[[x1, . . . , xn]] such that �( f ) = g. Two
convergent power series f , g ∈ C{x1, . . . , xn} are right equivalent if there exists a
C-algebra isomorphism� ofC{x1, . . . , xn} such that�( f ) = g ([7, Definition I.2.9]).

Let w = (w1, . . . , wn) ∈ Q
n≥0 be non-negative rational numbers, not all zero, and

let

f :=
∑

i1,...,in∈Z≥0

ai1,...,in x
i1
1 · . . . · xinn

be a power series in C[[x1, . . . , xn]], where ai1,...,in are complex numbers. The w-
weight of f , denoted wtw( f ), is defined to be

wtw( f )

:= min

{
i1w1 + . . . + inwn

∣∣∣∣∣
i1, . . . , in ∈ Z≥0, the coefficient

of xi11 · . . . · xinn is non-zero in f

}
∈ Q≥0 ∪ {∞}.

If f is not zero, then the w-weighted-homogeneous leading term of f , denoted fw,
is defined to be

∑

i1,...,in∈Z≥0
i1w1+...+inwn=wtw( f )

ai1,...,in x
i1 · . . . · xin .

Definition 2.2 ([1, Section 12.7], local Newton polytope in [7, Definition 2.14]) The
Newton polyhedron of f ∈ C[[x1, . . . , xn]] is the subset of Rn given by the convex
hull of the union of the subsets (i1, . . . , in)+ (R≥0)

n taken over non-negative integers
i1, . . . , in such that xi11 · . . . · xinn has a non-zero coefficient in f .

Definition 2.3 [[7, Definition I.2.15]] Let f ∈ C[[x1, . . . , xn]] be a power series such
that its Newton polyhedron has non-empty intersection with every coordinate axis.
We say that f isNewton non-degenerate or has non-degenerate Newton boundary
if for every compact facet � of its Newton polyhedron and non-zero normal vector
w ∈ Z

2≥0 of �, sat( fw) defines an isolated singularity.
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2.2 Log canonical threshold and weighted blowups

Definition 2.4 [[12, Notation 0.4]] Let X be a smooth complex space. AQ-divisor on
X is a formal Q-linear combination

∑
λi Di of prime divisors Di where λi ∈ Q. A

Z-divisor
∑

Di is snc if all the prime divisors Di are smooth and around every point
of X ,

∑
Di is locally given by V (x1 · . . . · xk) in Cn where 0 ≤ k ≤ n.

Let D be a Q-divisor on a smooth complex space X . A log resolution of (X , D)

is a proper modification ([4, Definition VII.1.1]) π : X ′ → X from a smooth complex
space X ′ such that the exceptional locus E of π is of pure codimension 1 and E ∪
π−1(Supp(D)) is snc.

For any proper bimeromorphic holomorphism ϕ : X ′ → X from a smooth complex
space X ′, the relative canonical divisor of ϕ, denoted Kϕ , is the unique Q-divisor
that is linearly equivalent to ϕ∗(KX ) − KX ′ and supported on the exceptional locus
of ϕ, where KX and KX ′ are the canonical classes of respectively X and X ′. The log
pullback of D with respect to ϕ is theQ-divisor D′ = Kϕ +ϕ∗D on X ′. We have the
Q-linear equivalence KX ′ + D′ ∼ ϕ∗(KX + D).

Definition 2.5 [[13, Definition 3.5] or [12, Definition 2.34]] Let D be a Q-divisor on
a smooth complex space X and let P ∈ X be a point. The pair (X , D) is log canonical
at P if we can restrict (X , D) to an open neighbourhood of P such that there exists a
log resolution with the coefficient of every prime divisor in the log pullback of D at
most 1. The log canonical threshold of (X , D) at P is

lctP (X , D) := sup
{
λ ∈ Q>0

∣∣ (X , λD) is log canonical at P
}
.

If f ∈ C{x1, . . . , xn} is not zero, then lct0( f ) is the log canonical threshold of
(Cn, V ( f )) at the origin, where C

n and V ( f ) are considered as complex spaces
defined around the origin.

Proposition 2.6 [[13, Proposition 8.19]] Let f ∈ C{x1, . . . , xn} be non-zero and
satisfy f (0) = 0. Let d be a non-negative integer such that the truncation f≤d of f
up to degree d is non-zero. Then,

∣∣lct0( f ) − lct0( f≤d)
∣∣ ≤ n

d + 1
.

Remark 2.7 See [11, Proposition-Definition 10.3] for a toric description and [12, Def-
inition 4.56] for an algebraic description of weighted blowups of affine space with
positive integer weights.

If the variables of an affine spaceAk overC have non-negative integer weights, not
all zero, then write Ak as a product Am × A

n where all the weights of Am are zero
and all the weights of An are positive. The weighted blowup of Ak is the morphism
idAm × ϕ where ϕ is the weighted blowup of An .

If X is a complex subspace of Ck , then the weighted blowup of X is the induced
holomorphism from strict transform of X with respect to the analytification of the
weighted blowup of Ak .
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Lemma 2.8 Let ϕ : W → C
n be a weighted blowup of Cn with non-negative weights

w = (w1, . . . , wn) satisfying gcd(w1, . . . , wn) = 1. Let E be the exceptional prime
divisor. Let f ∈ C{x1, . . . , xn} be any non-zero power series. Let λ be any rational
number. Then, the coefficient of E in the log pullback ofλV ( f ) is 1+λwtw( f )−∑

wi .

Proof Using toric geometry ([5, Lemma 11.4.10]), we find

KW = ϕ∗KCn + (∑
wi − 1

)
E .

Let v be the discrete valuation of the field of meromorphic functions of Cn given by
the order of vanishing along the exceptional divisor E . Then, v( f ) = wt0( f ). Let
V ( f ) = ∑

α jC j , whereC j are prime divisors and the coefficientsα j are non-negative
integers. Then,

∑
α j (ϕ

−1∗ C j ) = ϕ∗V ( f ) − wt0( f )E .

The lemma follows. �


3 Main

3.1 Computing the log canonical threshold using weights

In this Section, we prove Proposition 3.2, which is the main tool used in Sect. 3.3 for
computing log canonical thresholds.

Remark 3.1 A version of Proposition 3.2 Is proved in [13, Proposition 8.14] with two
differences:

1. in [13, Proposition 8.14], the weights are required to be positive, whereas we allow
any non-negative weights, not all zero,

2. the condition that (Cn, b · V ( fw)) is log canonical is replaced by the condition
that (Pn−1, V ( fw(xw1

1 , . . . , xwn
n ))) is log canonical, where Pn−1 is the exceptional

divisor of the blowup of Cn at 0.

The statement in [13, Proposition 8.14] contains an error, it should instead say that
(Pn−1, b · V ( fw(xw1

1 , . . . , xwn
n ))) is log canonical, otherwise Examples 3.3 and 3.4

are counter-examples.
Proposition3.2 is stated, without proof, for positive weights in [15, Proposition 2.1].

Proposition 3.2 Let n be a positive integer. Let f ∈ C{x1, . . . , xn} be a non-zero power
series. Assign non-negative rational weights w = (w1, . . . , wn) to the variables,
not all zero. Let fw denote the w-weighted-homogeneous leading term of f . Define
b := ∑

i wi/wtw( f ) ∈ Q>0 ∪ {∞}. Define the subset

C := VCn ({xi | i ∈ {1, . . . , n}, wi > 0}).
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Then, lct0( f ) ≤ b. Moreover, considering C
n and V ( fw) as complex spaces defined

in a neighbourhood of 0, if b is finite and (Cn, b · V ( fw)) is log canonical outside C,
then lct0( f ) = b.

Proof After scaling by a suitable positive rational number, the numbers w1, . . . , wn

are non-negative integers with gcd(w1, . . . , wn) = 1.
If there is exactly one index i0 ∈ {1, . . . , n} such that wi0 is positive, then

wt( f ) = 1/b is the coefficient of the prime divisor V (xi0) in the divisor V ( f ).
Therefore, lct0( f ) ≤ b. Now, let b be finite and let (Cn, b · V ( fw)) be log canoni-
cal away from V (xi0). The complex space VCn ( fw) \ VCn (xi0) is biholomorphic to

(C1 \ {0}) × VCn−1( fw/x1/bi0
). Therefore, (Cn−1, b · V ( fw/x1/bi0

)) is log canonical.

Note that V (xi0)+ b · V ( f /x1/bi0
) is precisely the divisor b · V ( f ) and that the restric-

tion of b · V ( f /x1/bi0
) to V (xi0) is b · V ( fw/x1/bi0

). By inversion of adjunction ([13,
Theorem 7.5]), (Cn, b · V ( f )) is log canonical. Therefore, lct0( f ) = b.

Below we consider the case where there are at least two positive weights amongw.
Let ϕ : W → C

n be the w-weighted blowup and E its exceptional divisor. For every
λ ∈ Q>0, by Lemma 2.8, the coefficient of E in the log pullback of λV ( f ) is

1 + λwtw( f ) −
∑

wi .

Therefore, lct0( f ) ≤ b.
Now, let b be finite and let (Cn, b ·V ( fw)) be log canonical outsideC . We show that

(E, b ·V ( fw)) is log canonical. For every i ∈ {1, . . . , n} such thatwi is positive, let the
groupμwi ofwi -th roots of unity act onCn by ξ · (x1, . . . , xn) = (ξw1x1, . . . , ξwn xn),
where ξ is a primitive wi -th root of unity. Let

p : Cn \ V (xi ) → C
n \ V (xi )

μwi

be the natural holomorphism. By [13, Theorem 8.12],

(
C
n \ V (xi )

μwi

, V ( fw)

)

is log canonical. For every monomial M in theμwi -invariantC-algebraC[x0, . . . , xn,
x−1
i ]μwi , there exists an integer kM such that wtw(M) = kMwi . The C-algebra iso-
morphism

C[x0, . . . , xn, x−1
i ]μwi → C[x1, . . . , xn, x−1

i ]0 ⊗C C[y, y−1]
xi �→ y

M �→ ykM x−kM
i M
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induces a biholomorphism

C
n \ V (xi )

μwi

∼= (E \ V (xi )) × (C1 \ {0})

which takes V ( fw) ⊆ (Cn \ V (xi ))/(μwi ) to VE\V (xi )( fw) × (C1 \ {pt}). Since log
canonicity is a local analytic property ([17, Proposition 4.4.4]) and since taking a
product with a smooth complex space does not change discrepancies, (E, b · V ( fw))

is log canonical.
We show that lct0(Cn, V ( f )) = b. Since the exceptional divisor E of the weighted

blowup ϕ : W → C
n is the product of an affine space and a weighted projective

space, E is log terminal. Let D′
w be the log pullback of b · V ( fw). By inversion of

adjunction ([13, Theorem 7.5]), since (E, b · V ( fw)) is log canonical, (W , D′
w) is

log canonical near E . By [13, Lemma 3.10.2], (Cn, b · V ( f )) is log canonical at 0.
Therefore, lct0( f ) = b. �


Examples 3.3 and 3.4 show that the number b in Proposition 3.2 can be greater
than 1.

Example 3.3 Let f := x + yd , where d is any positive integer. Since f is smooth at 0,
lct0( f ) = 1.On the other hand, choosingweights (1, 1/d), wefind b = (d+1)/d > 1.

Example 3.4 Let f = x21 + . . . + x2n−1 + xk+1
n , where n ≥ 3 and k ≥ 1. If n =

3, then f defines a canonical surface singularity, and if n ≥ 4, then f defines a
terminal (n − 1)-fold singularity. By inversion of adjunction ([13, Theorem 7.5]),
lct0( f ) = 1. On the other hand, choosing weights (1/2, . . . , 1/2, 1/(k + 1)), we find
b = (n − 1)/2 + 1/(k + 1) > 1.

3.2 Choosing a coordinate system

Inmost coordinate systems, the Newton polyhedron gives very little information about
the power series. Namely, for every non-zero non-unit power series, after a general
linear coordinate change, its Newton polyhedron has exactly one compact facet, and
that compact facet has a normal vector (1, . . . , 1). Proposition 3.6 describes a natural
coordinate change such that the Newton polyhedron is interesting for our purposes.
In this case, we can read off the log canonical threshold from the Newton polyhedron
by Theorem 3.10.

Definition 3.5 is [3, Definition 3.24] generalised to the situation where the power
series is not necessarily right equivalent to a Newton non-degenerate power series. It
coincides with [3, Definition 3.24] if the power series is right equivalent to a Newton
non-degenerate one. In Theorem 3.10, we only need a weaker condition which we call
weakly normalised with respect to �.

Definition 3.5 Let f ∈ C[[x, y]] be non-zero. Let � be a (not necessarily compact)
facet of the Newton polyhedron of f . Let w = (wx , wy) be the unique non-negative
integers with gcd(wx , wy) = 1 such that w is normal vector of �. Let fw be the
w-weighted homogeneous leading term of f . Let a, b be the greatest non-negative
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integers such that fw/(xa yb) is a power series. Let d be the greatest non-negative
integer such that an irreducible power series to the power d divides sat( fw). We say
that f is weakly normalised with respect to � if one of the following holds:

(W1) wx = 0 or wy = 0,
(W2) d ≤ max(a, b), or
(W3) wx > 1 and wy > 1.

We say f is normalised with respect to � if one of the following holds:

( N1) wx = 0 or wy = 0,
( N2) wx = 1 and wy = 1 and d ≤ min(a, b),
( N3) wx = 1 and wy > 1 and d ≤ b,
( N4) wx > 1 and wy = 1 and d ≤ a, or
( N5) wx > 1 and wy > 1.

Proposition 3.6 Every formal power series f ∈ C[[x, y]] is formally right equivalent
to a formal power series g ∈ C[[x, y]] which is normalised with respect to each
compact facet of its Newton polyhedron. If f ∈ {x, y} defines an isolated singularity,
then there exists a right equivalence between f and a polynomial g ∈ [x, y] which is
normalised with respect to each compact facet of its Newton polyhedron.

Proof We get a formal power series by lines 1–28 and 43 of [3, Algorithm 4] (skipping
lines 29–42). If f defines an isolated singularity, then f is (μ + 1)-determined ([7,
Corollary 2.24]) whereμ is its local Milnor number at the origin. Therefore, we have a
right equivalence to a polynomial g of degree μ + 1 which is normalised with respect
to each compact facet of its Newton polyhedron. �

Remark 3.7 (a) By [3, Algorithm 4] lines 1–28 and 43, if f ∈ C{x, y} is right equiva-

lent to a Newton non-degenerate power series and f is normalised with respect to
each compact facet of its Newton polyhedron, then f is Newton non-degenerate.

(b) By [3, Remarks 3.27 and 3.28], if f ∈ C{x, y} is right equivalent to a Newton
non-degenerate power series, then we can associate a unique, up to reflection,
polyhedron to the right equivalence class of f , namely the Newton polyhedron
of any power series in the right equivalence class of f which is normalised with
respect to each compact facet of its Newton polyhedron.

If f ∈ C{x, y} is not right equivalent to a Newton non-degenerate power series,
then we do not have such uniqueness as in Remark 3.7(b):

Example 3.8 The right equivalent polynomials

f := x2y2(x + y)2 + x9 + y7,

g := x2y2(x + y)2 + x9 − (x + y)7

are both normalised with respect to each facet of their Newton polyhedrons, but the
Newton polyhedron of f is strictly contained in the Newton polyhedron of g. The
local Milnor number of f at the origin is 30 and by Theorem 3.10 the log canonical
threshold of f at the origin is 1/3.
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Fig. 1 Compact faces of the
Newton polyhedrons in Example
3.8

Fig. 2 Compact faces of the Newton polyhedrons in Example 3.9

With more care, we can also construct an example where the Newton polyhedrons
are not contained in one another:

Example 3.9 Let the set of polyhedrons in R2 have a partial order “≤” given by N1 ≤
N2 if and only if N1 ⊆ N2 or r(N1) ⊆ N2, where r is the reflection with respect to
the line passing through the origin and (1, 1). Define

f := (
xy(x + y)

)7 + (xy)4(x + y)6(x8 + y8) + xy(x22 + y22).

Let � be the C-algebra automorphism of C{x, y} given by � : x �→ x , y �→ −x − y.
Then f and �( f ) are both normalised with respect to each compact facet of their
Newton polyhedrons but the Newton polyhedrons of f and �( f ) are incomparable.
Moreover, the Newton polyhedrons of f and �( f ) are precisely all the minimal
Newton polyhedrons, up to reflection, in the formal right equivalence class of f . The
local Milnor number of f at the origin is 454 and by Theorem 3.10 the log canonical
threshold of f at the origin is 2/21.
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3.3 Reading the log canonical threshold from the Newton polyhedron

Theorem 3.10 Let f ∈ C{x1, . . . , xn} be any non-zero power series satisfying f (0) =
0. Let c ∈ Q>0 be the unique number such that a (not necessarily compact) facet � of
the Newton polyhedron of f contains the point (c, . . . , c) ∈ R

n. Then, lct0( f ) ≤ 1/c.
Moreover, in the case n = 2, if f is weakly normalised with respect to � or the point
(c, c) is in the intersection of two facets, then lct0( f ) = 1/c.

Proof Let � be any (not necessarily compact) facet of the Newton polyhedron of f
that contains the point (c, . . . , c). Letw ∈ Z

n≥0 be the unique normal vector of� such
that gcd(w1, . . . , wn) = 1. Let fw denote thew-weighted-homogeneous leading term
of f . Then, wtw( f )/

∑
wi = c. By Proposition 3.2, lct0( f ) ≤ 1/c.

Now, let n = 2 and let f be weakly normalised with respect to �. We use
Proposition3.2 to prove that lct0( f ) = 1/c. For this, we need to show that the pair
(C2, 1

c V ( fw)) is log canonical outside the origin, or equivalently that all the irreducible
components of V ( fw) have multiplicity less than or equal to c.

Ifw2 = 0, then fw = uxc1x
k
2 for some unit u ∈ C{x2} and non-negative integer k ≤

c, showing that all the irreducible components of V ( fw) have multiplicity less than or
equal to c. Similarly in the case w1 = 0.

Below, we consider the case where w1 and w2 are both positive. Let (P1, P2) and
(Q1, Q2) be the two extreme points of �, where P1 < Q1 and Q2 < P2. Since �

contains the point (c, c), we necessarily have P1 ≤ c and Q2 ≤ c. Let d be the greatest
integer such that an irreducible power series g to the power d divides the saturation
sat( fw) of fw. To show that all the irreducible components of V ( fw) have multiplicity
less than or equal to c, it suffices to prove that d ≤ c.

If w1 = 1 or w2 = 1, then since f is weakly normalised with respect to �, we
have d ≤ max(P1, Q2) ≤ c. Otherwise, after possibly permuting x1 and x2, we have
1 < w1 < w2. Therefore, deg g(0, x2) ≥ 2. Since gd | sat( f ), we find that

g(0, x2)
d | sat( fw)(0, x2) = x P2−Q2

2 .

Therefore, d ≤ (P2 − Q2)/2. Since � has slope −w1/w2 > −1 and � contains the
point (c, c), the line containing � contains the point (0, α) where α < 2c. Therefore,
P2 < 2c. This proves that d < c.

Finally, let n = 2 and let (c, c) be contained in the intersection of two facets.
Let (w1, w2) ∈ Z

2
>0 be any vector such that fw is the monomial xc yc. Then

wtw( f )/
∑

wi = c. By Proposition 3.2, since the pair (C2, 1
c V (xc yc)) is log canon-

ical, we find lct0( f ) = 1/c. �

Remark 3.11 (a) By Proposition3.6, Theorem 3.10 gives an algorithm for computing

the log canonical threshold for every non-zero non-unit power series f ∈ C{x, y}
that defines an isolated singularity. The algorithm outputs positive integers a, b
such that the log canonical threshold is a/b.

(b) By Propositions 2.6and 3.6 and Theorem 3.10, if f is formally right equivalent to
a power series g ∈ C[[x, y]] such that g is normalised with respect to a facet of the
Newton polyhedron that contains the point (c, c), then the log canonical threshold
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of f is 1/c. In particular, this gives an algorithm for computing the log canonical
threshold for every non-zero power series f ∈ C{x, y} arbitrarily precisely, but
it is not necessarily able to find two positive integers such that the log canonical
threshold is their quotient.

(c) The above in (b) is the best possible in the following sense: given two computable
convergent power series (meaningwherewe can compute the terms up to arbitrarily
high order), there exists no algorithm to compute two positive integers such that
the log canonical threshold is their quotient. This is not surprising, since there is
even no algorithm to determine whether a computable power series is equal to
zero.

(d) In case f is a polynomial, itwould be desirable to knowaboundon the denominator
of the log canonical threshold, perhaps depending only on the degree. By (b),
this would give an algorithm for computing the exact value of the log canonical
threshold, as a quotient of two positive integers.

Remark 3.12 The number c in Theorem 3.10 is the minimum of the numbers
wtw′( f )/

∑
w′
i taken over all facets of the Newton polyhedron.

More precisely: let �′ be any (not necessarily compact) facet of the Newton
polyhedron of a non-zero power series f ∈ {x1, . . . , xn} satisfying f (0) = 0. Let
w′ = (w′

1, . . . , w
′
n) ∈ Q

n≥0 be any non-negative numbers such that w′ is a non-zero
normal vector to �′. Then, wtw′( f )/

∑
w′
i = c′, where c′ ∈ Q≥0 is the unique ratio-

nal number such that the hyperplane containing �′ contains the point (c′, . . . , c′). In
the notation of Theorem 3.10, we have c′ ≤ c, with equality if and only if the ray from
the origin through the point (1, . . . , 1) intersects �′.

3.4 Example—sum and product of powers

As an application of Proposition 3.2, we compute the log canonical thresholds of
power series of the form (

∏
xaii )(

∑
xbii ).

Remark 3.13 Proposition 3.14 is the corrected version of [13, Example 8.17] and [15,
Proposition 2.2], where we have added that the log canonical threshold is at most 1.
Examples 3.3 and 3.4 show that this correction is indeed needed.

Proposition 3.14 Let n ≥ 2. Let f = (
∏

xaii )(
∑

xbii ), where a1, . . . , an are non-
negative integers and b1, . . . , bn are positive integers. Then,

lct0( f ) = min

({
1,

∑
1/bi

1 + ∑
ai/bi

}
∪

{
1

a j

∣∣∣∣ j ∈ {1, . . . , n}, a j > 0

})
.

Proof Denote

M := min

({ ∑
1/bi

1 + ∑
ai/bi

}
∪

{
1

a j

∣∣∣∣ j ∈ {1, . . . , n}, a j > 0

})
.

If M > 1, then replace an by 1.
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If M = (
∑

1/bi )/(1 + ∑
ai/bi ), then by Proposition 3.2, it suffices to show that

(Cn, M ·V ( f )) is log canonical outside the origin. For every point P ∈ C
n , if the j-th

coordinate Pj of P is non-zero, then after a suitable biholomorphism locally around P ,
V ( f ) becomes either D1 := V ((x j − Pj ) · ∏

i �= j x
ai
i ) or D2 := V (

∏
i �= j x

ai
i ). Since

the support of both D1 and D2 is snc and since M ≤ 1/ai for all i , we find that
(Cn, M · V ( f )) is log canonical at P .

If M = 1/a1 and n = 2, then a1 ≤ a2 + b2. Therefore, (C2, M · V (xa11 xa2+b2
2 ))

is log canonical outside V (x1). By Proposition 3.2, lct0( f ) = M . The case where
M = 1/a2 and n = 2 is similar.

Lastly, if M = 1/a j and n ≥ 3, then let w be the non-negative weights where

wi > 0 if and only if i = j . We have fw = (
∑

i x
ai
i )(

∑
i �= j x

bi
i ). By Proposition 3.2,

it suffices to show that the pair (Cn, M · V ( fw)) is log canonical outside V (x j ). For
this, it suffices to show that the pair

(
C
n−1, M · V ((∏

i �= j

xaii
)(∑

i �= j

xbii
)))

is log canonical, where both the product and the sum is over i ∈ {1, . . . , n} \ { j}. The
equality M = 1/a j implies that

M ≤
∑

j �=i 1/bi

c + ∑
j �=i ai/bi

.

Log canonicity is now proved by induction over n. �
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