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Abstract
Background  Adult-onset Still’s disease (AOSD) and systemic juvenile idiopathic arthritis (sJIA) resemble a continuum of 
a rare, polygenic IL-1β-driven disease of unknown etiology.
Objective  In the present study we sought to investigate a potential role of recently described autoantibodies neutralizing the 
interleukin-1(IL-1)-receptor antagonist (IL-1-Ra) in the pathogenesis of Still’s disease.
Methods  Serum or plasma samples from Still’s disease patients (AOSD, n = 23; sJIA, n = 40) and autoimmune and/or 
inflammatory disease controls (n = 478) were analyzed for autoantibodies against progranulin (PGRN), IL-1Ra, IL-18 bind-
ing protein (IL-18BP), and IL-36Ra, as well as circulating IL-1Ra and IL-36Ra levels by ELISA. Biochemical analyses of 
plasma IL-1Ra were performed by native Western blots and isoelectric focusing. Functional activity of the autoantibodies 
was examined by an in vitro IL-1β-signaling reporter assay.
Results  Anti-IL-1-Ra IgG were identified in 7 (27%) out of 29 Still’s disease patients, including 4/23 with AOSD and 3/6 
with sJIA and coincided with a hyperphosphorylated isoform of endogenous IL-1Ra. Anti-IL-36Ra antibodies were found 
in 2 AOSD patients. No anti-PGRN or anti-IL-18BP antibodies were detected. Selective testing for anti-IL-1Ra antibodies 
in an independent cohort (sJIA, n = 34) identified 5 of 34 (14.7%) as seropositive. Collectively, 8/12 antibody-positive Still’s 
disease patients were either new-onset active disease or unresponsive to IL-1 blocking drugs. Autoantibody-seropositivity 
associated with decreased IL-1Ra plasma/serum levels. Seropositive plasma impaired in vitro IL-1Ra bioactivity, which 
could be reversed by anakinra or canakinumab treatment.
Conclusion  Autoantibodies neutralizing IL-1Ra may represent a novel patho-mechanism in a subgroup of Still’s disease 
patients, which is sensitive to high-dose IL-1 blocking therapy.

Keywords  Still’s disease · Systemic juvenile idiopathic arthritis (sJIA) · Adult-onset Still’s disease (AOSD) · Anti-IL-1Ra 
autoantibodies

Introduction

Systemic juvenile idiopathic arthritis (sJIA) and adult-onset 
Still’s disease (AOSD) are considered as polygenic autoin-
flammatory disorders. Recent gene expression data support 
the concept of a Still’s disease continuum that includes both 

a pediatric/juvenile (systemic juvenile idiopathic arthritis, 
sJIA) and adult onset (AOSD) form [1]. sJIA and AOSD are 
rare but are severe diseases with inflammatory manifesta-
tions that can affect multiple organs and can be complicated 
by macrophage activation syndrome (MAS) as a life-threat-
ening hyperferritinemic cytokine storm condition. Following 
exclusion of infectious, autoimmune, or neoplastic causes, 
diagnosis is based on criteria established by Yamaguchi 
et al. [2]. On a serum/plasma biomarker level Still’s disease 
is further hallmarked by elevated levels of bioactive, free 
IL-18 (not complexed by IL-18 binding protein (IL-18BP)) 
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[4]; as well as S100 proteins [6], sCD163 [7], IL-6, IL-8, 
IL-17, and TNF-α [8].

At present, excessive IL-1β release from Still’s disease 
patients’ immune cells and elevated levels in serum or 
plasma remains hard to detect, using state-of-the-art detec-
tion platforms. However, excellent response to IL-1 target-
ing therapies identifies both diseases as primarily driven by 
excessive IL-1β-signaling. Therapeutic IL-1 blockade either 
by substitution with recombinant human IL-1Ra (anakinra) 
[9] or by monoclonal antibody (canakinumab)-mediated 
neutralization of IL-1β [10] significantly improves disease 
outcomes in both AOSD and sJIA. Recent single cell expres-
sion and functional data further establish a prominent role 
of IL-1 in disease pathology [12–15].

Autoimmunity is not an established contributing factor 
in the pathogenesis of sJIA or AOSD, and sero-negativity 
for rheumatoid autoantibodies is an essential feature or hall-
mark of the final diagnosis. Yet, for sJIA, association with 
HLA-DRB1-11* and altered inflammatory T-lymphocyte 
subsets, in part driven by IL-1 signaling, were reported 
[14–17]. Beyond, recent data point to an enhanced develop-
ment of inflammatory, antibody-production driving T helper 
cells and altered self-reactive IgG profiles in sJIA [18], sup-
porting the concept that features adaptive immunity may 
drive Still’s disease progression [19–21]. For AOSD, certain 
HLA haplotypes were associated with the development and 
course of disease [22–25], and anecdotal reports suggest that 
individual patients with AOSD can potentially benefit from 
B-cell depletion [26].

Importantly, in both sJIA and AOSD, the specific molec-
ular reasons for excessive IL-1 and potentially also IL-18 
signaling are still poorly understood. In these lines, an asso-
ciation of polymorphisms in IL1RN (encoding IL-1Ra) iden-
tified in sJIA has been suggested to affect its expression in 
patients and thus result in an IL-1Ra:IL-1β imbalance and 
excessive IL-1β signaling [27]. While these data are still 
a matter of controversial discussion [28, 29], we recently 
reported on a new class of immune-modulatory autoantibod-
ies targeting endogenous IL-1Ra [30] [31], as well as pro-
granulin (PGRN), a receptor antagonist to TNFR1/TNFR2 
[32] and DR3 [33], which we both observed in SARS-CoV-2 
infection/inflammation–associated context. With respect to 
anti-PGRN autoantibodies, these data partly echoed previ-
ous observations in several autoimmune diseases including 
seronegative PsA and chronic inflammatory bowel diseases 
[34]. Of note, seropositivity for either anti-PGRN or anti-
IL-1Ra antibodies was transient, associated with acute 
inflammation and coincided with unusual isoforms of the 
respective antigen due to hyperphosphorylation of a serine 
residue in position 81 (PGRN) [30] or threonine residue in 
position 111 (IL-1Ra)[31]. Importantly, anti-IL-1Ra anti-
bodies depleted circulating IL-1Ra in plasma and impaired 

its bioactivity, thus promoting unrestricted IL-1β signaling 
[31].

Following these observations, we now hypothesize 
whether such immune-modulatory autoantibodies targeting 
IL-1Ra, IL-18BP and other anti-inflammatory mediators 
may also contribute to the pathogenesis of polygenic auto-
inflammatory disorders such as Still’s disease and may have 
been missed in previous investigations due to their transient 
nature.

Patients and Methods

Study Cohort

This retrospective study was approved by the local Ethical 
Review Boards (Ärztekammer des Saarlandes: 41/21; Muen-
ster: 2015–670-fS; Milano: STS-CE 065/8) and conducted 
according to the Declaration of Helsinki. Blood plasma or 
serum samples were collected following written informed 
consent. In total, 63 Still’s disease patients (AOSD, n = 23; 
sJIA, n = 40; Table 1) were enrolled in the present study. 
Of one patient with initial diagnosis of AOSD complicated 
by MAS, one sample during acute inflammation and two 
follow-up samples were obtained.

Out of the entire Still’s disease study cohort (n = 63, 
Table 1), n = 29 patients (cohort 1 AOSD, n = 23; sJIA, n = 6; 
Table S1) were included for an initial screening approach 
aiming at a broader analysis for autoantibodies targeting 
anti-inflammatory mediators. All study cohort patient sam-
ples were collected at the Department of Internal Medicine 
I of the Saarland University Hospital (Homburg/Saar, Ger-
many), the unit of Immunology, Rheumatology, Allergy, and 
rare diseases, IRCCS San Raffaele Scientific (Milan, Italy).

To further test for prevalence of anti-IL-1Ra antibodies 
in Still’s disease, we further enrolled samples obtained from 
n = 34 sJIA and n = 1 AOSD patients (Table S2) collected at 
the Department of Pediatric Rheumatology and Immunol-
ogy at University Children’s Hospital Muenster (cohort 2). 
Collectively, for both cohorts 1 and cohort 2, we aimed at 
identifying serum and plasma samples as closest to disease 
onset as possible. Yet, due to the retrospective nature of the 
study, the interval between clinical disease onset and biosa-
mples included in this study is not standardized.

As study controls, plasma samples of various inflamma-
tory autoimmune diseases (ANCA-associated vasculitides, 
n = 50; systemic lupus erythematosus, n = 50; rheumatoid 
arthritis, n = 100; polymyalgia rheumatic, n = 47; psoriatic 
arthritis, n = 100; Crohn’s disease, n = 50; ulcerative coli-
tis, n = 50) were included, all collected at the department of 
Internal Medicine I and II at Saarland University Hospital 
(Homburg/Saar, Germany).
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ELISA for Autoantibodies Against PGRN, IL‑1Ra, 
IL‑18BP, and IL‑36Ra

Respective ELISA were performed as described in the sup-
plemental methods section.

Western Blot and Isoelectric Focusing of IL‑1Ra, 
PGRN, and IL‑36Ra

Western blot and isoelectric focusing of IL-1Ra and IL-36Ra 
were performed as described in the supplemental methods 
section.

ELISA for Plasma Level Determination of IL‑1Ra 
or IL‑36Ra

IL-1Ra plasma levels were determined with a commercially 
available ELISA kit (Invitrogen/ThermoFisher #BMS2080) 
and IL-36Ra plasma level with a commercially available 
ELISA kit (Adipogen, #AG-46B-0006-KI01) according to 
the manufacturer’s instructions.

IL‑1 Signaling Reporter Assay

The IL-1 signaling reporter assay using HEK-Blue™ IL-1β 
reporter cells was done as detailed in the supplemental meth-
ods section.

Analysis of Inflammatory Patients’ Mediators 
in Serum or Plasma

Multiplexed analysis of serum or plasma proteins was per-
formed as described in the supplemental methods section.

Statistics

Differences in proportions of IL-1Ra-autoantibody-
positivity between AOSD/sJIA and autoimmune disease 
were compared by the Fisher exact test. Association 
between two categorical variables was tested with the 
two-tailed Fisher exact test. Distributions of IL-1 Ra 
plasma determined by ELISA were tested for normality 
by the Shapiro–Wilk test. Means of normally distributed 
plasma levels of IL-1Ra between patient subgroups with 
or without IL-1Ra-Abs were then compared by two-tailed 
non-paired t-test. For the analysis comparing seroposi-
tive with seronegative subgroups, patients with AOSD 
and sJIA were combined. No correction for multiple 
analysis was done.
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Fig. 1   Anti-IL-1Ra and anti-IL-36Ra antibodies in Still’s disease. A 
Anti-IL-1Ra and anti-IL-36Ra antibodies in Still’s disease patients’ 
plasma (sJIA, patient 13, 14, 16, 17, 18, 20) were detected by ELISA. 
B Seven (24%) out of 29 patients vs. six (1.3%) out of 447 inflam-
matory and autoimmune controls revealed anti-IL-1Ra antibodies. 
C, D IL-1Ra reactive Ig type and IgG subclasses as well as titers of 
anti-IL-1Ra IgG in patients’ plasma were tested by ELISA. E Sche-

matic clinical course and treatment regime of a newly diagnosed 
AOSD patient (patient 1) with macrophage activation syndrome. F, G 
Anti-IL-1Ra IgG titers in diagnosis and follow-up plasma samples of 
patient 1 as well as IL-1Ra reactive Ig type and IgG subclasses were 
tested by ELISA. All data are presented as means and represent 2 rep-
licates
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Results

Autoantibodies Targeting Anti‑Inflammatory 
Mediators in Still’s Disease

Among Still’s disease patients in cohort 1 (n = 29; AOSD, 
n = 23; sJIA, n = 6), 7 (24%; AOSD, n = 4; sJIA, n = 3) 
were tested seropositive for antibodies binding to IL-1Ra 

(Fig. 1A, B). Among inflammatory/autoimmune controls 
(n = 447), anti-IL-1Ra antibodies were found in 6 out of 
447 investigated patients (1.3%; Fig. 1B, Figure S1). In 
all autoantibody-positive Still’s disease patients or con-
trols, anti-IL-1Ra antibodies belonged predominantly to 
the IgG1 subclass (Fig. 1C, Figure S1H). In Still’s disease 
patients, anti-IL-1Ra antibody titers ranged between 1:200 
and 1:400 (Fig. 1D). One patient with new-onset AOSD 
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also complicated by MAS tested positive for both anti-IL-
1Ra and anti-IL-36Ra antibodies (patient 1, Fig. 1A). Of 
this patient, four longitudinal samples covering both acute 
inflammation as well as remission were available (Fig. 1E). 
At initial presentation, anti-IL-1Ra antibody titers ranged 
up to 1:800 and antibodies belonged to the IgG1 subclass 
exclusively (Fig. 1F, G). Following initiation of anakinra 
treatment, autoantibody titers dropped to 1:100 (Fig. 1F). 
After 3 months of daily anakinra injections and partial 
remission, treatment was switched to targeted IL-1β neu-
tralization using canakinumab. At 3 months follow-up visit, 
the anti-IL-1Ra antibody titers were still detectable at a 
1:100 titer (Fig. 1F), while a 4-month-follow-up plasma 
sample enrolled in protein biochemical analysis still revealed 
immune complexed IL-1Ra in Western blot (Fig.  2C). 
Among all patients investigated in cohort 1, no antibodies 
specific for PGRN or IL-18BP were detected (Figure S2).

Hyperphosphorylated Atypical IL‑1Ra Isoforms, 
Immune Complexed IL‑1Ra and Anti‑IL‑1Ra Epitope 
Specificity in Still’s Disease

In our previous analysis we observed seropositivity for 
anti-IL-1Ra antibodies to coincide with hyperphosphoryl-
ated isoforms of IL-1Ra in plasma [30, 31, 36]. Isoelectric 
focusing (IEF) performed on total protein from plasma of 
the AOSD patient with new-onset disease complicated by 
MAS with samples during acute inflammation and remission 
(Fig. 1E) revealed the presence of an additional, negatively 
charged IL-1Ra protein band at the time of presentation 
(Fig. 2A). Pretreatment with alkaline phosphatase prior to 
IEF resulted in disappearance of both the normally occurring 

second as well as the atypical additional third IL-1Ra iso-
form, thus indicating a hyperphosphorylation (Fig. 2B). In 
the follow-up samples available with this patient, hyper-
phosphorylated IL-1Ra in plasma was still detectable at 
the 3- and 4-month-follow-up visits after initial diagnosis 
and MAS, and coinciding with seropositivity (Figs. 1F and 
2A). In native Western blots of total plasma protein of this 
patient, we further observed an additional protein band rep-
resenting IgG-bound IL-1Ra (Fig. 2C). Signal intensity of 
this band was weakening alongside with decreasing anti-IL-
1Ra IgG titers in plasma (Figs. 1F and 2C).

Beyond, hyperphosphorylated IL-1Ra was observed in 
all six anti-IL-1Ra autoantibody seropositive Still’s disease 
patients in cohort 2 (n = 29) but not in any of the seronega-
tive individuals (Fig. 2D). In native Western blots and coin-
ciding with hyperphosphorylated IL-1Ra, we observed both 
a weakened protein band of free IL-1Ra (approx. 17 kDa) as 
well as a band representing IgG-bound IL-1Ra in all sero-
positive Still’s disease patients (Fig. 2E).

Throughout, it needs to be emphasized that in contrast 
to Western blots of native gradient gels and sample prepa-
ration in native, non-reducing buffer (Fig. 2C and E), the 
pretreatment for IEFs results in a dissociation of immune 
complexes in serum or plasma samples (Fig. 2A, B, and 
D). Therefore, protein bands in the IEF analysis engulf both 
formerly autoantibody-bound as well as free IL-1Ra and 
thus cannot reflect an antibody-mediated protein depletion. 
In consequence, in IEFs, there is no difference in IL-1Ra 
protein band intensities.

Beyond these biochemical analysis, in a comparative 
epitope mapping approach on recombinant IL-1Ra frag-
ments, we observed anti-Il-1Ra IgG in plasma of both sero-
positive sJIA as well as AOSD patients to preferentially 
bind to peptides spanning amino acids to a region spanning 
G98-N116 and F125-G143. This echoes the epitope specificity 
of anti-IL-1Ra antibodies in multisystem inflammatory syn-
drome in children (MIS-C) but differs from those observed 
in severe COVID-19 (Fig. 2F, G).

Autoantibody‑Mediated IL‑1Ra Depletion Across 
Different Disease States and Sensitivity to IL‑1 
Blocking Therapies

In order to level the number of analyzed AOSD and sJIA 
patients in our study and to further balance for an even-
tual center bias in terms of sample quality and collection 
procedures as well as sample matrix (serum vs. plasma), 
we enrolled a second cohort of predominantly sJIA patients 
(n = 34; AOSD, n = 1) and analyzed respective serum sam-
ples for anti-IL-1Ra as well as anti-IL-36Ra antibodies. In 
this cohort we identified anti-IL-1Ra antibodies in 5 out of 
34 sJIA patients (15%) and observed anti-IL-36Ra antibod-
ies in one sJIA and 1 AOSD patient (Fig. 3A). As additional 

Fig. 2   Anti-IL-1Ra antibodies in Still’s disease associate with IL-1Ra 
hyperphosphorylation and recognize similar epitopes as in MIS-C. 
A Isoelectric focusing (IEF) of plasma IL-1Ra in diagnosis and fol-
low-up samples of patient 1. Plasma samples previously tested posi-
tive or negative for anti-IL-1Ra antibodies were used as positive or 
negative control. B IEF with or without alkaline phosphatase treat-
ment of IL-1-Ra in plasma of patient 1. Positive and negative controls 
as described above. A, B Protein bands in IEF representing hyper-
phosphorylated IL-1Ra are highlighted. C Western blot of native 
PAGE for IL-1RA:IgG immune complexes in diagnosis and follow-
up plasma samples of patient 1. Positive and negative controls as 
described above. Protein bands representing immune complexed and 
non-immune complexed “free” IL-1Ra are highlighted. D, E IEF of 
plasma IL-1Ra (D) or Western blot of native PAGE for IL-1RA:IgG 
immune complexes (E) in 29 Still’s disease patients. Positive and 
negative controls as well as respective protein bands have been 
described above. Seropositivity for anti-IL-1Ra IgG according to 
ELISA (Fig. 1A) is indicated by + / − . F Approximative epitope map-
ping of anti-IL-1Ra antibodies in selected sJIA and AOSD plasma 
samples compared to MIS-C and COVID-19 using IL-1Ra derived 
synthetic peptides. Full-length IL-36 was used as negative control. 
Data are presented as means. G Visualization of the identified anti-
genic determinants of IL-1Ra reactive IgG in patients’ plasma on the 
solvent exposed surface of human IL-1Ra (1ilr.pdb)

◂
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disease controls, we also tested patients with clinically (fever 
of unknown origin, FUO, n = 8) or genetically defined auto-
inflammatory syndromes (familial Mediterranean fever, 
FMF, n = 3; cryopyrin-associated periodic syndrome, CAPS, 
n = 2), which are in part primarily driven by excessive IL-1b 
expression and signaling and thus present with an immuno-
pathology similar to that of Still’s disease. Here, we identi-
fied only very low levels of IL-1Ra reactive IgG and IgM 
antibodies (titer of 1:100) in a single FUO patient, which 
also coincided with a decrease in serum IL-1Ra levels. All 
other patients were tested negative for anti-IL-1Ra antibod-
ies (Figure S3).

As observed among patients in cohort 1 (Fig. 2D, E), 
hyperphosphorylated IL-1Ra was found in all anti-IL-1Ra 
autoantibody seropositive Still’s disease patients in cohort 

2 (n = 29) but not seronegative individuals (Figure S4A). In 
Western blots of native gradient PAGE, we observed both a 
weakened protein band of free IL-1Ra (approx. 17 kDa) as 
well as a band representing IgG-bound IL-1Ra in all sero-
positive Still’s disease patients (Figure S4B). Importantly, in 
these analysis, we identified 1 patient (patient 24 of cohort 
2), which tested positive for anti-IL-1Ra IgG in both ELISA 
(Fig. 3A) as well as Western blot (Figure S4B), but we could 
not observe hyperphosphorylation of endogenous IL-1Ra by 
IEF (Figure S4A). Similarly, we observed hyperphosphoryl-
ated IL-1Ra and immune complexed IL-1Ra with a single 
FUO patient (Figure S5A, B) who was tested positive for 
anti-IL-1Ra antibodies by ELISA (Figure S3).

In contrast to changes in endogenous IL-1Ra observed 
in anti-IL-1Ra seropositive Still’s disease patients, no such 

Fig. 3   Autoantibody mediated IL-1Ra depletion across different dis-
ease states and sensitivity to IL-1 blocking therapies. A Anti-IL-1Ra 
and anti-IL-36Ra antibodies as determined by ELISA in sera of an 
independent Still’s disease patients’ cohort (AOSD, patient 35). B 
IL-1Ra levels in anti-IL-1Ra IgG positive or negative Still’s disease 
plasma or serum samples, including strafication for underlying dis-
ease activity and response to aIL-1 treatment. Data are represented as 
individual values and were analyzed by Mann–Whitney U test. Lines 
indicate median and error bars the interquartile range. **p ≤ 0.01; 
****p ≤ 0.0001. MAS, macrophage activation syndrome, aIL-1 NR, 

anti-IL-1 therapy non-responder. C, D IL-1b signaling assay using 
HEK IL-1 reporter cells to evaluate the efficacy of anakinra (C) or 
canakinumab (D) to override the IL-1Ra depleting effect of anti-IL-
1Ra positive Still’s disease plasma. In this assay cohort 1 plasma 
samples 1 (anti-IL-1Ra titer 1:800) and 6 (seronegative) were used at 
a dilution of 1:20. TNFa, IL-36Ra, and a monoclonal anti-stomatin-
like protein 2 (SLP2) antibody (targeting an assay-irrelevant protein) 
were used as negative controls in these assays. Data are presented as 
mean + / − SD of triplicates
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changes in protein charge or additional isoforms could be 
observed with IL-36Ra in case of seropositivity for anti-
IL-36Ra antibodies (Figure S6A). Yet, in native Western 
blots, we also observed IL-36Ra:IgG immune complexes 
in those patients’ serum samples (Figure S6B), which also 
tested seropositive in ELISA for anti-IL-36Ra IgG (Fig. 3A).

Next, we analyzed the entire Still’s disease study cohort 
(n = 63; AOSD, n = 24; sJIA, n = 39) for IL-1Ra plasma or 
serum levels and observed those significantly decreased 
(unpaired t test for parametric data, two tailed p < 0.0001; 
t = 7.985; df = 61) in anti-IL-1Ra seropositive patients (mean 
719.1 pg/ml, SD 350.3 pg/ml), when compared to seron-
egative cases (mean 1598 pg/ml, SD 341.7 pg/ml) (Fig. 3B, 
upper panel).

Beyond, anti-IL-1Ra antibodies could be detected in both 
active/MAS patients (7/32, 22%; Fig. 3B, center panel), as 
well as inactive Still’s disease patients (5/31, 16%; Fig. 3B, 
lower panel) and appeared not associated with non-response 
to IL-1 targeting therapy (where this information was avail-
able, Tables S1and S2) or other clinical disease features 
(Table S3). Among already treated patients, the detection of 
IL-1Ra-Abs was not associated with previous anakinra treat-
ment (p > 0.9999; two-sided Fisher’s exact test; Table S4).

Moreover, we could not observe an obvious link with 
inflammatory cytokine levels in anti-IL-1Ra seropositive 
vs. seronegative sJIA and AOSD patients (Figure S7). In 
seropositive sJIA patients, IL-6 levels were elevated by trend 
(p = 0.08) compared to anti-IL-1Ra seronegative patients. 
No such tendency was observed among patients with 
AOSD. No differences could be observed with respect to 
IL-18 serum/plasma levels in both sJIA and AOSD. Soluble 
VCAM-1 concentrations were significantly decreased in sera 
of anti-IL-1Ra seropositive compared to seronegative sJIA 
patients, but only within overall range of healthy control 
levels (Figure S7A).

Employing high sensitivity proteomics using proximity 
extension assay on a very limited number of patients’ sam-
ples confirmed elevation in IL-6 and a few other markers in 
seropositive vs. seronegative patients (Figure S7B–D).

Next to depletion of circulating IL-1Ra, our previous 
studies [30, 36, 37] indicated an anti-IL-1Ra IgG mediated 
impairment of IL-1Ra bioactivity, resulting in unopposed 
IL-1 signaling [30, 31, 36]. Similarly, we also observed 
antibodies in Still’s disease plasma to disturb IL-1Ra func-
tion and facilitate unrestricted IL-1β signaling. Beyond, we 
also tested the sensitivity of this IgG-mediated detrimental 
impact on IL-1Ra function to IL-1 targeting therapies. In 
such lines, we investigated the potential effect of increasing 
concentrations of anakinra or canakinumab on IL-1β signal-
ing in the presence of anti-IL-1-Ra IgG from diluted plasma. 
In these assays on an IL-1β signaling reporter cell line, both 
anakinra and canakinumab in concentrations above 1 µg/ml 
(anakinra) or 10 µg/ml (canakinumab) ameliorated the net 

proinflammatory impact anti-IL-1Ra antibodies in patient’s 
plasma (Fig. 3C, D, and Figure S8).

Discussion

Despite in part substantial scientific progress, the pathogen-
esis of many polygenic autoinflammatory diseases such as 
systemic juvenile idiopathic arthritis (sJIA, Still’s disease) 
as well as its counterpart in adults (adult-onset still’s dis-
ease, AOSD) still remains poorly understood. Both sJIA and 
AOSD are currently considered to represent a continuum of 
one and the same disease [37]. Both conditions frequently 
respond well to IL-1β/IL-1R1-blocking drugs, which argues 
for excessive/dysregulated IL-1β signaling to play a cen-
tral role in Still’s disease pathology. Lack of understanding 
regarding specific disease triggers presents an eminent blind 
spot in the pathophysiologic understanding of polygenic 
autoinflammation. Yet, several observational data suggest 
infections to play an essential role as initial triggers of dis-
ease. In this respect our recent observations on an infectious/
inflammatory context, [30, 31, 36] triggering a transient IL-
1Ra depleting autoantibody response is highly intriguing as 
it may indicate a potential starting point of the IL-1-driven 
pathology in Still’s disease.

Here, we report on the occurrence of neutralizing autoan-
tibodies targeting IL-1Ra in Still’s disease patients. Col-
lectively, we identified 18.75% (12/64; sJIA 20.51%, 8/39; 
AOSD 12.5%, 3/24) of patients as seropositive for anti-IL-
1Ra antibodies. In contrast, those were identified in only 
1.3% (6/447) autoimmune or inflammatory controls. Apart, 
autoantibodies targeting IL-36Ra were found in two AOSD 
patients, while anti-PGRN or anti-IL-18BP antibodies were 
detected in none of the investigated individuals.

Seropositivity for anti-IL-1Ra antibodies in Still’s disease 
in all but one patient (patient 24, cohort 2) coincided with 
hyperphosphorylation of endogenous IL-1Ra, as already 
observed in our previous studies in context of SARS-CoV-2 
infection or mRNA vaccination [30, 31, 36]. Approximative 
peptide-based epitope mapping of anti-IL-1Ra IgG in both 
sJIA and AOSD indicated similar antigenic determinants 
as recognized in MIS-C, but different from COVID-19. Of 
note, the identified epitopes in sJIA, AOSD, and MIS-C 
(G98-N116 and F125-G143) overlapped with those associated 
with anti-IL-1Ra antibodies recently described in context of 
IgG4-related disease (F100-G119 and M136-E152; Jarrell et al., 
2022). Anti-IL-1Ra antibodies in Still’s disease depleted IL-
1Ra in serum and plasma; however, this depletion was less 
pronounced as observed in previous studies in SARS-CoV-2 
context [30, 31, 36], likely due to lower anti-IL-1Ra titers 
generally observed in Still’s disease.

Despite these intriguing (mechanistic) findings, at 
present, we cannot clearly associate seropositivity for 
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anti-IL-1Ra IgG in Still’s disease with clinical disease activ-
ity. Frequency of seropositive patients presenting with active 
disease (including present or history of MAS) compared to 
inactive disease appears elevated by trend (22% vs. 16%, chi-
square p value 0.56). This observation is further bolstered by 
data we reported earlier on 10 sJIA patients in long-standing 
remission, none of which revealed IL-1Ra targeting antibod-
ies [31]. Next to poor association with disease activity, we 
also could not link presence of anti-IL-1Ra antibodies with 
non-response to anakinra treatment, a recombinant truncated 
form of human IL-1Ra expressed in E. coli that is admin-
istered by daily subcutaneous injection. Of patients where 
we had such information available, only four reported non-
responders (two of those with active disease) tested sero-
positive for anti-IL-1Ra IgG in contemporaneous serum/
plasma samples, whereas seven reported non-responders 
were tested seronegative. Collectively, we believe that in the 
present study, the transient occurrence of both the autoanti-
bodies and IL-1Ra hyperphosphorylation renders analysis as 
discussed above complicated. The hyperphosphorylated IL-
1Ra isoform potentially precedes autoantibody appearance, 
as suggested from our previous data of longitudinal samples 
demonstrating a disappearance of the hyperhosphorylated 
IL-1Ra isoform while IL-1Ra targeting antibodies were still 
present [31]. This may also be seen with patient 24 of cohort 
2 in the present study. Thus, in order to better understand a 
link of autoantibody occurrence with clinical disease activity 
or response to treatment, this requires biosampling synchro-
nized with disease on-set, flare, or non-response to therapy, 
ideally including longitudinal follow-up.

Beyond, we cannot identify a significant association 
of seropositivity for anti-IL-1Ra antibodies with Still’s 
disease hallmark cytokine levels such as IL-6 or IL-18. 
The lack of such associations can be due to overall low 
frequency of seropositive vs. seronegative patients or to 
impact of auto-antibody-mediated IL-1Ra depletion at tis-
sue rather than whole blood level. In these lines, investiga-
tions in other context point towards little to no impact of 
therapeutic IL-1 blockade on an inflammatory whole blood 
signature (our own yet unpublished data), and stimula-
tion of whole blood with recombinant IL-1β demonstrates 
surprisingly weak overall inflammatory impact by this 
cytokine [38, 39]. In contrast, we and others have dem-
onstrated strong effect of anti-IL-1 treatment on inflam-
matory activation of, i.e., endothelial cells [40] and also 
associate this with decreased shedding of VCAM-1 due to 
persistent inflammatory endothelial activation [40], as also 
observed in the present data. Further, our recent obser-
vations on an association of anti-IL-1Ra antibodies with 
the influx of CD3 + and CD68 + cells into the myocar-
dium may also argue for a tissue directed rather than sys-
temic impact of these auto-antibodies [36]. Nonetheless, 
in the present study, the overall lack of such associations 

hampers the interpretation on the impact of the observed 
autoantibodies on Still’s disease pathology.

Non-apparent correlation of anti-IL-1Ra antibodies 
with clinical activity (markers) may be reminiscent of the 
role of anti-neutrophil cytoplasmic antibodies (ANCAs) 
in systemic vasculitis. In many cases, ANCA-titers only 
correlate weakly with disease activity [42], while in vitro 
evidence and preclinical models suggest a prominent pro-
inflammatory impact [42, 43][44], and it is thus still debat-
able whether these antibodies represent an epiphenomenon 
or can be considered critical drivers of disease [45].

Systemic JIA patients are frequently treated by daily sub-
cutaneous injections of anakinra. In case of clinical benefit 
from the IL-1 blocking therapeutic approach, treatment can 
be switched to canakinumab, an IL-1β neutralizing mono-
clonal antibody. While IL-1 targeting therapies represent 
the gold-standard of treatment in sJIA and are also applied 
first-line [46], in AOSD, they are frequently introduced later 
in the disease course, and guidelines still recommend the 
use of drugs such as methotrexate or calcineurin inhibi-
tors (i.e., cyclosporin) [47]. Importantly, in our study, both 
anakinra and canakinumab at concentrations in the range 
of peak plasma or serum levels of both drugs according 
to reported pharmacokinetic data (anakinra (2 mg/kg/day), 
approx. 2 µg/ml [48]; canakinumab (4.5 mg/kg), approx. 
40 µg/mL [49]) could outcompete the inhibitory effect of 
anti-IL-1Ra antibodies on IL-1Ra bioactivity in Still’s dis-
ease plasma. Importantly, these data suggest standard treat-
ment protocols to possibly override eventual detrimental 
auto-antibody-mediated effects on disease pathology.

Collectively, our study findings require to be interpreted 
in the light of several limitations. [1] Our study is retrospec-
tive and thus analyzes a very heterogenous cohort of patients 
with respect to clinical disease courses and underlying treat-
ments, with no standardized sampling protocols. [2] The 
overall number of identified seropositive patients is small 
and this—as discussed above—limits interpretations. [3] 
The cause or trigger of IL-1Ra hyperphosphorylation still 
remains unclear, and we were unable to associate anti-IL-
1Ra seropositivity with, i.e., HLA as these data were only 
available for a fraction of sJIA patients.

Yet, the present study is the first to report on anti-IL-1Ra 
autoantibodies in a polygenic autoinflammatory disease. Inter-
estingly, our molecular findings on the association with IL-1Ra 
hyperphosphorylation, antibody specificity, and impact on IL-
1Ra plasma/serum levels and bioactivity do phenocopy earlier 
observations in SARS-CoV-2 context. We speculate that our 
findings may indicate evidence for autoimmune events in a sub-
set of (early) sJIA and AOSD pathology that may destabilize 
IL-1:IL-1Ra balance and could thus result in long-standing or 
recurring episodes of autoinflammation. Importantly, we dem-
onstrate that state-of-the-art IL-1-targeting therapies can over-
ride the negative auto-antibody impact on IL-1Ra bioactivity.
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