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Heuristic search guides the exploration of states via heuristic functions ℎ estimating remaining 
cost. Symbolic search instead replaces the exploration of individual states with that of state sets, 
compactly represented using binary decision diagrams (BDDs). In cost-optimal planning, heuristic 
explicit search performs best overall, but symbolic search performs best in many individual 
domains, so both approaches together constitute the state of the art. Yet combinations of the two 
have so far not been an unqualified success, because (i) ℎ must be applicable to sets of states rather 
than individual ones, and (ii) the different state partitioning induced by ℎ may be detrimental for 
BDD size. Many competitive heuristic functions in planning do not qualify for (i), and it has been 
shown that even extremely informed heuristics can deteriorate search performance due to (ii).
Here we show how to achieve (i) for a state-of-the-art family of heuristic functions, namely 
potential heuristics. These assign a fixed potential value to each state-variable/value pair, 
ensuring by LP constraints that the sum over these values, for any state, yields an admissible 
and consistent heuristic function. Our key observation is that we can express potential heuristics 
through fixed potential values for operators instead, capturing the change of heuristic value 
induced by each operator. These reformulated heuristics satisfy (i) because we can express 
the heuristic value change as part of the BDD transition relation in symbolic search steps. We 
run exhaustive experiments on IPC benchmarks, evaluating several different instantiations of 
potential heuristics in forward, backward, and bi-directional symbolic search. Our operator-
potential heuristics turn out to be highly beneficial, in particular they hardly ever suffer from (ii). 
Our best configurations soundly beat previous optimal symbolic planning algorithms, bringing 
them on par with the state of the art in optimal heuristic explicit search planning in overall 
performance.

1. Introduction

Classical planning deals with problems of finding a sequence of operators (or actions) leading from an initial state to one of the 
goal states in a fully observable deterministic environment. In this paper, we are concerned with two families of methods designed 
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to solve such problems: heuristic explicit search and symbolic search. Heuristic explicit search guides the exploration of states using 
heuristic functions that estimate remaining cost. A∗ search [27] guarantees cost-optimality—it returns a solution whose summed-up 
operator cost is minimal if the heuristic is admissible. The design of admissible heuristic functions has been intensively investigated in 
planning [e.g., 9,28–30,41,43], and planning algorithms based on these techniques are state-of-the-art for many benchmark domains 
in cost-optimal planning.

In contrast to heuristic explicit search, symbolic search replaces the exploration of individual states with that of state sets, 
compactly represented using binary decision diagrams (BDDs) [6]. The primary operations needed for search can be implemented 
at the level of BDDs, in time polynomial in the size of the BDDs. This greatly improves exhaustive (blind) search, as it allows to 
represent and manipulate large state-space fractions efficiently [7]. Thus, symbolic search is very effective whenever large portions 
of the state space need to be traversed [52,53]. In cost-optimal planning, algorithms of this kind [12,14,15,57] slightly lag behind 
heuristic explicit search in terms of overall performance across benchmark domains, but are highly complementary and beat heuristic 
explicit search in a range of benchmark domains. In short, both approaches together constitute the state-of-the-art in cost-optimal 
planning.

In principle, the two approaches are orthogonal enhancements of the same vanilla search algorithm—state-space search—and so 
a natural idea is to combine the two. Indeed that idea has been presented decades ago in the BDDA∗ algorithm [10,18], and has 
received substantial attention ever since, either using heuristics to enhance symbolic search [10,16,17,26,32,33], using symbolic 
search to compute informative heuristics [10,11,25,60], or both [34,55,59].

Yet, this combination has not been an unqualified success. For a heuristic function ℎ to be usable in heuristic symbolic search, (i) 
ℎ must be applicable to sets of states rather than individual ones, as evaluating the heuristic on each state individually would defeat the 
purpose of symbolic search. Furthermore, as heuristic symbolic search requires to distinguish states with different heuristic values, (ii) 
the partitioning of states into BDD-represented sets is different when using ℎ, which may be detrimental for BDD size. Condition (i) has been 
achieved for some strong heuristics in planning, in particular for pattern databases (PDBs) [34,60]. But it remains elusive for many 
other competitive heuristic functions. Regarding (ii), it has been shown that even extremely informed heuristics can exponentially 
deteriorate search performance [51], increasing BDD size to the extent of massively outweighing the reduction in search space size.

Due to all this, symbolic bi-directional blind search, without heuristics, is at this time considered the dominant symbolic search 
approach, and the use of heuristic search in this context has lost traction.

Here we challenge this trend by showing that potential heuristics [40], denoted in what follows by ℎ𝙿, yield fresh synergy between 
heuristic and symbolic search. We focus on the simplest kind of potential heuristics (i.e. those of dimension one), which assign a 
fixed potential value 𝙿(𝑓 ) to each fact 𝑓 (i.e., each state-variable/value pair) in a given planning task, and obtain the heuristic value 
ℎ𝙿(𝑠) of a state 𝑠 as the sum ℎ𝙿(𝑠) =

∑
𝑓∈𝑠 𝙿(𝑓 ) of potential values of the facts 𝑓 true in 𝑠. It is ensured via linear program (LP) 

constraints over the fact potentials that ℎ𝙿 is an admissible and consistent heuristic function.
This family of heuristic functions does not per se satisfy condition (i). Here we show how to reformulate them in a way that 

addresses this problem. Our key observation is that we can express potential heuristics through a fixed operator potential value 𝚀(𝑜)
for each of the task’s operators 𝑜 instead, capturing the change of heuristic value ℎ𝙿(𝑠′) −ℎ𝙿(𝑠) for any state transition 𝑠 → 𝑠′ induced 
by 𝑜. We show that, under a mild assumption on the planning task structure (discussed below), ℎ𝙿(𝑠) for a state 𝑠 reached via an 
operator sequence ⟨𝑜1, … , 𝑜𝑘⟩ is equal to the value of ℎ𝙿 in the initial state plus the sum 𝚀(𝑜1) +⋯ + 𝚀(𝑜𝑘) of operator potentials. 
This heuristic function satisfies (i) in the sense that we can express the heuristic value change as part of the BDD transition relation 
(TR) in symbolic search steps. Specifically, this reformulated potential heuristic fits into the symbolic heuristic search algorithm 
GHSETA∗ [33], which partitions TRs by both their costs and the change of heuristic values they induce.

The assumption required for the above is that every state variable 𝑉 affected by the effect of an operator 𝑜 is constrained by 𝑜’s 
precondition. This is true in many standard planning benchmarks, but is of course not true in general. For input tasks that do not 
satisfy this assumption, our reformulation can also be applied and still yields admissible heuristics, but these are path-dependent and 
inconsistent, necessitating node re-opening in search. Therefore, they do not tend to work well in practice [21,22]. For this reason 
and because this setting unnecessarily complicates the theory, we discuss them only in Appendix A. We present two better remedies. 
First, disambiguations [2,20] allow to weaken the assumption, and also yield much stronger potential heuristics. Second, one can 
use task transformations to transition normal form [38], where necessary, to achieve the assumption.

Another technical difficulty is that the operator potentials are real (floating-point) numbers, which can lead to rounding and 
precision issues. Naïvely rounding these values may lead to inconsistent heuristics. We show that this can instead be dealt with by 
extending the potential-heuristic LP to a mixed-integer linear program (MIP) that forces the operator potentials to be integers.

Putting the above pieces together, we obtain a new heuristic function for forward symbolic heuristic search: the forward search 
direction is enforced as computing ℎ𝙿(𝑠) requires to know the operator sequence ⟨𝑜1, … , 𝑜𝑛⟩ leading to 𝑠. This is at odds with 
backward search and bi-directional search, which are traditional key strengths of symbolic search. However, as it turns out, our 
approach applies to such searches as well, through a different reformulation where ⟨𝑜𝑘+1, … , 𝑜𝑛⟩ are the operators on the path from 
the search state to the goal node, and ℎ𝙿(𝑠) equals the value of ℎ𝙿 in the initial state plus the sum of 𝚀(𝑜𝑖) over 𝑜𝑘+1 to 𝑜𝑛, i.e., it 
turns out summing operator-potentials over sequences of operators works both in forward and backward direction.

This equality for the backward direction requires not only the mild assumption discussed above, but additionally requires the 
strong assumption that there is a single unique goal state. One can, again, apply our approach anyway to obtain path-dependent and 
inconsistent heuristics, but this does not always pay off in practice. What turns out to be effective instead is to partition the goal 
2

states over their heuristic values at the beginning of symbolic backward search. The operator-potentials then work analogously to 



Artificial Intelligence 334 (2024) 104174D. Fišer, Á. Torralba and J. Hoffmann

forward search. This in turn extends to symbolic bi-directional search where we can choose any combination of operator-potential or 
blind heuristics for each search direction.1

We run exhaustive experiments on IPC benchmarks, evaluating several different instantiations of potential heuristics in forward, 
backward, and bi-directional symbolic search, and comparing these configurations to the state-of-the-art in cost-optimal planning. 
Our operator-potential heuristics turn out to be highly beneficial. They hardly ever suffer from the risk (ii) of possibly increased BDD 
sizes. The key observations are:

• Our combination of symbolic search with potential heuristics vastly outperforms each of its components, showing that this 
combination is (much) more than the sum of its parts.

• Our best configurations soundly beat previous optimal symbolic planning algorithms, establishing a new state-of-the-art for this 
method family.

• Our best configurations furthermore bring symbolic search on par with the state of the art in optimal heuristic explicit search 
planning in overall performance, while maintaining the high level of complementarity. Thus we improve the state of the art in 
cost-optimal planning overall.

This paper is a combination and extension of two of our previous publications [21,22]. In [21], we introduced operator-potential 
heuristics and we showed how to efficiently combine them with the forward symbolic search. In [22], we addressed the application 
of operator-potential heuristics in the backward and bi-directional symbolic search resulting in a path-dependent inconsistent but 
admissible variant of operator-potential heuristics for the backward direction. In this paper, we unify the formulations of operator-
potential heuristics from those two previous publications, and we present a coherent description of operator-potential heuristics 
and their integration to forward, backward, and bi-directional symbolic search. Moreover, we extend these findings by showing 
how to turn path-dependent (inconsistent) variant of operator-potential heuristics for the backward search into heuristics that are 
consistent, which leads to a significant improvement of the backward symbolic search. Lastly, we present a comprehensive and 
detailed experimental analysis of virtually all aspects of operator-potential heuristics and their integration into symbolic search.

The paper is organized as follows. We next give the necessary background on planning framework and notations, potential 
heuristics, and symbolic search (Section 2). We then introduce our reformulated operator-potential heuristics, analyzing possible 
designs for forward and backward search (Section 3). We show that these heuristics can easily be used in symbolic search (Section 4). 
We give a detailed empirical evaluation (Section 5) before concluding the paper (Section 6).

For ease of reading, we limit our analysis in Section 3 to the case where all effect variables are constrained by the precondition; 
Appendix A discusses operator-potential heuristics not making that assumption.

2. Background

We consider the finite domain representation (FDR) of planning tasks [5]. An FDR planning task Π is specified by a tuple 
Π = ⟨ , , 𝐼, 𝐺⟩.  is a finite set of variables, each variable 𝑉 ∈  has a finite domain dom(𝑉 ). A fact ⟨𝑉 , 𝑣⟩ is a pair of a variable 
𝑉 ∈  and one of its values 𝑣 ∈ dom(𝑉 ). The set of all facts is denoted by  = {⟨𝑉 , 𝑣⟩ ∣ 𝑉 ∈  , 𝑣 ∈ dom(𝑉 )}, and the set of facts of 
variable 𝑉 is denoted by 𝑉 = {⟨𝑉 , 𝑣⟩ ∣ 𝑣 ∈ dom(𝑉 )}. A partial state 𝑝 is a variable assignment over some variables vars(𝑝) ⊆  . We 
write 𝑝[𝑉 ] for the value assigned to the variable 𝑉 ∈ vars(𝑝) in the partial state 𝑝. We also identify 𝑝 with the set of facts contained 
in 𝑝, i.e., 𝑝 = {⟨𝑉 , 𝑝[𝑉 ]⟩ ∣ 𝑉 ∈ vars(𝑝)}. A partial state 𝑠 is a state if vars(𝑠) =  . 𝐼 is an initial state. 𝐺 is a partial state called goal, 
and a state 𝑠 is a goal state iff 𝐺 ⊆ 𝑠.  denotes the set of all states. Let 𝑝, 𝑡 be partial states. We say that 𝑡 extends 𝑝 if 𝑝 ⊆ 𝑡.

 is a finite set of operators, each operator 𝑜 ∈ has a precondition pre(𝑜), prevail condition prv(𝑜), and effect eff(𝑜), which 
are partial states over  , and a cost cost(𝑜) ∈ℝ+

0 . For every operator 𝑜 ∈ it holds that vars(pre(𝑜)) ⊆ vars(ef f(𝑜)), and vars(pre(𝑜)) ∩
vars(prv(𝑜)) = ∅, and vars(prv(𝑜)) ∩ vars(ef f(𝑜)) = ∅, i.e., preconditions are defined only over affected variables, preconditions and 
prevail conditions are defined over a different set of variables, and prevail conditions cannot be defined over any affected variable. 
We also assume that pre(𝑜)[𝑉 ] ≠ eff(𝑜)[𝑉 ] for every 𝑉 ∈ vars(pre(𝑜)) ∩ vars(ef f(𝑜)).

An operator 𝑜 is applicable in a state 𝑠 iff prv(𝑜) ∪ pre(𝑜) ⊆ 𝑠. The resulting state of applying an applicable operator 𝑜 in a state 
𝑠 is another state 𝑜�𝑠� such that 𝑜�𝑠�[𝑉 ] = eff(𝑜)[𝑉 ] for every 𝑉 ∈ vars(ef f(𝑜)), and 𝑜�𝑠�[𝑉 ] = 𝑠[𝑉 ] for every 𝑉 ∈  ⧵ vars(ef f(𝑜)).

Given non-negative integers 𝑘, 𝑛 ∈ ℕ0, [𝑘, 𝑛] denotes the set {𝑘, … , 𝑛} for 𝑘 ≤ 𝑛, and [𝑘, 𝑛] is defined as an empty set for 𝑘 > 𝑛. 
Moreover, [𝑛] denotes a shorthand for [1, 𝑛]. A sum over an empty set is considered to be zero.

A sequence of operators 𝜋 = ⟨𝑜1, … , 𝑜𝑛⟩ is applicable in a state 𝑠0 if there are states 𝑠1, … , 𝑠𝑛 such that 𝑜𝑖 is applicable in 𝑠𝑖−1
and 𝑠𝑖 = 𝑜𝑖�𝑠𝑖−1� for 𝑖 ∈ [𝑛]. The resulting state of this application is 𝜋�𝑠0� = 𝑠𝑛 and cost(𝜋) =

∑
𝑖∈[𝑛] cost(𝑜𝑖) denotes the cost of this 

sequence of operators. We also consider an empty sequence of operators 𝜋 which is applicable in every state 𝑠 and 𝜋�𝑠� = 𝑠.
A sequence of operators 𝜋 = ⟨𝑜1, … , 𝑜𝑛⟩ is called an 𝑠-𝑡-path if there exist states 𝑠 and 𝑡 such that 𝜋 is applicable in 𝑠 and 𝜋�𝑠� = 𝑡. 

A sequence of operators 𝜋 is called an 𝑠-plan if it is applicable in the state 𝑠 and 𝜋�𝑠� is a goal state, and 𝐼 -plan is called simply a
plan. An 𝑠-𝑡-path (𝑠-plan, plan) 𝜋 is called optimal if its cost is minimal among all 𝑠-𝑡-paths (𝑠-plans, plans).

A state 𝑠 is forward reachable if there exists an 𝐼 -𝑠-path, otherwise we say it is forward unreachable. A state 𝑠 is backward 
reachable if there exists an 𝑠-plan, otherwise we say it is backward unreachable. An operator 𝑜 is forward (backward) reachable 

1 One may consider to perform symbolic heuristic backward search simply by reversing the planning task and applying our techniques for symbolic heuristic 
forward search. But this would require to enumerate individual goal states, or to transform the task to the transition normal form with a single goal state. The former 
3

is obviously ineffective, and the latter is ineffective for symbolic search as we show in the experimental evaluation in Section 5.2.
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iff it is applicable in some forward (backward) reachable state. The set of all forward reachable states is denoted by fw, the set of 
all 𝐼 -𝑠-paths for all 𝑠 ∈ fw is denoted by fw, the set of all backward reachable states is denoted by bw, and the set of all 𝑠-plans 
for all 𝑠 ∈ bw is denoted by bw. A state 𝑠 ∈ fw ⧵ bw that is forward reachable but not backward reachable is called forward 
dead-end (i.e., forward dead-ends 𝑠 are states that are reachable from the initial state, but there does not exist any 𝑠-plan), and a 
state 𝑠 ∈ bw ⧵ fw that is backward reachable but not forward reachable is called backward dead-end (i.e., backward dead-ends 𝑠
are states for which there exist an 𝑠-plan, but they are not reachable from the initial state).

A forward heuristic ℎfw ∶ fw ↦ ℝ ∪ {∞} estimates the cost of optimal 𝑠-plans for all forward reachable states 𝑠 ∈ fw. The
optimal forward heuristic ℎ⋆

fw(𝑠) maps each forward reachable state 𝑠 to the cost of the optimal 𝑠-plan or to ∞ if 𝑠 is a forward 
dead-end state. A forward heuristic ℎfw is called

1. forward admissible if ℎfw(𝑠) ≤ ℎ⋆
fw(𝑠) for every forward reachable state 𝑠 ∈ fw;

2. goal-aware if ℎfw(𝑠) ≤ 0 for every forward reachable goal state 𝑠; and
3. forward consistent if ℎfw(𝑠) ≤ ℎ(𝑜�𝑠�) + cost(𝑜) for all forward reachable states 𝑠 ∈ fw and operators 𝑜 ∈ applicable in 𝑠.

A backward heuristic ℎbw ∶ bw ↦ ℝ ∪ {∞} estimates the cost of optimal 𝐼 -𝑠-paths. The optimal backward heuristic ℎ⋆
bw(𝑠)

maps each backward reachable state 𝑠 to the cost of the optimal 𝐼 -𝑠-path or to ∞ if 𝑠 is a backward dead-end. A backward heuristic 
ℎbw is called

1. backward admissible if ℎbw(𝑠) ≤ ℎ⋆
bw(𝑠) for every backward reachable state 𝑠 ∈ bw;

2. init-aware if ℎbw(𝐼) ≤ 0;
3. backward consistent if ℎbw(𝑜�𝑠�) ≤ ℎbw(𝑠) + cost(𝑜) for all backward reachable states 𝑠 ∈ bw and operators 𝑜 ∈ such that 𝑜

is applicable in 𝑠 and 𝑜�𝑠� is backward reachable.

Note that we allow negative heuristic values as is usual in works on potential heuristics, because it allows to find more informed 
potential heuristics [e.g., 40], and we can treat negative estimates as zeros during the search. Admissibility and consistency is usually 
defined for all states whereas here we define them for forward and backward reachable states only. Clearly, if a forward (backward) 
heuristic is goal-aware (init-aware) and forward (backward) consistent, then it is also forward (backward) admissible. Sometimes 
we omit the adjective forward or backward when it is clear from the context. In particular, admissibility and consistency of a 
forward heuristic will always mean forward admissibility and forward consistency, respectively, and admissibility and consistency 
of a backward heuristic will always mean backward admissibility and backward consistency, respectively.

We also consider heuristic functions over all states, ℎ ∶  ↦ℝ ∪ {∞}. Nevertheless, admissibility and consistency is used only for 
forward and backward heuristics, goal-awareness is used only for forward heuristics, and init-awareness only for backward heuristics.

In the context of heuristic search, ℎ-value of a state node 𝑠 refers to the heuristic value of 𝑠, 𝑔-value to the cost of the sequence of 
operators leading to 𝑠, and 𝑓 -value is the sum of 𝑔-value and the maximum of ℎ-value and zero (since we allow negative ℎ-values).

We define heuristics as state-dependent meaning they are functions mapping states to numbers. We also deal with path-
dependent heuristics that map sequences of operators to numbers, i.e., a path-dependent heuristic can return different numerical 
values for the same state depending on the sequence of operators that leads to it. The exact definition of path-dependent heuristics 
is provided in Appendix A as we deal with them formally there.

A set of facts 𝑀 ⊆  is a mutex if 𝑀 ⊈ 𝑠 for every forward reachable state 𝑠 ∈ fw. We will leverage prior work on so-called 
disambiguation [2,20]. Given a variable 𝑉 ∈  and a partial state 𝑝, a set of facts 𝐹 ⊆ 𝑉 is called a disambiguation of 𝑉 for 𝑝 if 
for every forward reachable state 𝑠 ∈ fw such that 𝑝 ⊆ 𝑠 it holds that 𝐹 ∩ 𝑠 ≠ ∅ (i.e., ⟨𝑉 , 𝑠[𝑉 ]⟩ ∈ 𝐹 ).

Disambiguation allows us to infer which facts cannot be part of any forward reachable state extending a given partial state. For 
example, suppose we have three variables 𝑉𝑎, 𝑉𝑏 and 𝑉𝑐 each having two facts: 𝑎1, 𝑎2 ∈ 𝑉𝑎

, 𝑏1, 𝑏2 ∈ 𝑉𝑏
and 𝑐1, 𝑐2 ∈ 𝑉𝑐

. Moreover, 
suppose there is no forward reachable state containing 𝑎1 and 𝑏1 at the same time, or 𝑏2 and 𝑐2 at the same time, i.e., {𝑎1, 𝑏1} and 
{𝑏2, 𝑐2} are mutexes. Now, given a partial state 𝑝 = {𝑏1, 𝑐1}, we can infer from the aforementioned mutexes that there is no forward 
reachable state extending 𝑝 containing 𝑎1 because every such state already contains 𝑏1. Therefore, the set {𝑎2} is a disambiguation 
of 𝑉𝑎 for 𝑝. If we consider the variable 𝑉𝑏 that is already defined in 𝑝, then we get that the set {𝑏1} is a disambiguation of 𝑉𝑏 for 
𝑝, because we can safely say that any forward reachable state extending 𝑝 must contain 𝑏1. As another example, consider a partial 
state 𝑝′ = {𝑎1, 𝑐2}. In this case, we have that the empty set ∅ is a disambiguation of 𝑉𝑏 for 𝑝′, because we can infer from the mutexes 
that neither 𝑏1 or 𝑏2 can be part of any forward reachable state extending 𝑝′. Therefore, we can conclude that 𝑝′ itself is a mutex as 
there is no forward reachable state (i.e., variable assignment over all variables) containing 𝑝′. In other words, disambiguation tells us 
which facts can potentially appear in forward reachable states extending a given partial state. Note that disambiguations are allowed 
to overapproximate these sets which is necessary because we are usually not able to find a complete set of mutexes—there can be 
exponentially many of them, and it is as hard as planning to prove that a given set of facts is mutex [23].

Clearly, every 𝑉 is a disambiguation of 𝑉 for all possible partial states, and if ⟨𝑉 , 𝑣⟩ ∈ 𝑝 then {⟨𝑉 , 𝑣⟩} is a disambiguation of 𝑉
for 𝑝. Moreover, if the disambiguation of 𝑉 for 𝑝 is an empty set (for any 𝑉 ), then all states extending 𝑝 are unreachable. Therefore, 
we can use empty disambiguations to determine unsolvability of planning tasks (if 𝐺 extends 𝑝), or to prune unreachable operators 
(if a precondition or prevail condition of the operator extends 𝑝). So, from now on we will consider only non-empty disambiguations, 
and we will assume that, for every partial state 𝑝 and a variable 𝑉 ∈ vars(𝑝), the disambiguation of 𝑉 for 𝑝 is exactly {⟨𝑉 , 𝑝[𝑉 ]⟩}.

Fišer et al. [20] showed how to use mutexes to find disambiguations, so here we will assume we already have disambiguations 
4

inferred. Given an operator 𝑜 ∈ , 𝐷𝑜(𝑉 ) denotes a disambiguation of 𝑉 for pre(𝑜) ∪ prv(𝑜), and 𝐷𝐺(𝑉 ) denotes a disambiguation 
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of 𝑉 for the goal 𝐺. Note that as per our assumption above, we have that 𝐷𝑜(𝑉 ) = {⟨𝑉 , 𝑣⟩} for every ⟨𝑉 , 𝑣⟩ ∈ pre(𝑜) ∪ prv(𝑜), and 
𝐷𝐺(𝑉 ) = {⟨𝑉 , 𝑣⟩} for every ⟨𝑉 , 𝑣⟩ ∈𝐺.

A planning task Π is in Transition Normal Form (TNF) if (i) vars(pre(𝑜)) = vars(ef f(𝑜)) for every 𝑜 ∈  and (ii) the goal is 
a fully defined state. Here, we are interested only in the first condition, so we say that the planning task Π is normalized if 
vars(pre(𝑜)) = vars(ef f(𝑜)) for every 𝑜 ∈ . From now on, we assume the given planning task is normalized. This simplifies the 
presentation and proofs, but we discuss the general case in Appendix A.

Every planning task can be normalized in polynomial time by introducing new auxiliary zero-cost operators, which grow the 
representation only polynomially [38], and it can be further improved with disambiguations [20]. Unfortunately, this transformation 
turns out to be detrimental to symbolic search as we show in Section 5.2.

However, we can also use a more straightforward “multiplication” method that, for every operator 𝑜 ∈ and every of its affected 
variable not appearing in its precondition 𝑉 ∈ eff(𝑜) ⧵ pre(𝑜), enumerates all possible values of 𝑉 and creates the corresponding 
operators. This method can be improved with disambiguations as we do not need to enumerate all values of 𝑉 , but we can consider 
only the disambiguation 𝐷𝑜(𝑉 ). It turns out that, despite its worst-case exponential increase in task size, it very rarely happens in 
our benchmarks that a task cannot be transformed with this method, and it has a good synergy with the symbolic search.

2.1. Background on potential heuristics

Potential heuristics [39,40] are defined as weighted sums over a set of simple state features that correspond to conjunction of 
facts. The dimension of a feature is the number of facts in the corresponding conjunction. We consider here the simplest variant, 
one-dimensional potential heuristics (also sometimes called atomic potential heuristics), where all features are single facts. It assigns 
a numerical value to each fact, and the heuristic value for a state 𝑠 is then simply a sum of the potentials of all facts in 𝑠.

Definition 1. Let Π denote a planning task with facts  . A potential function is a function 𝙿 ∶  ↦ℝ. A potential heuristic for 𝙿
maps each state 𝑠 ∈  to the sum of potentials of facts in 𝑠, i.e.,

ℎ𝙿(𝑠) =
∑
𝑓∈𝑠

𝙿(𝑓 ). (1)

Moreover, we use ℎ𝙿fw to denote ℎ𝙿 restricted to forward reachable states, i.e., ℎ𝙿fw(𝑠) = ℎ𝙿(𝑠) for every forward reachable state 
𝑠 ∈ fw.

Now we can state sufficient conditions for the potential heuristic to be forward consistent, goal-aware, and forward admissible, 
which we will need later on. We use the formulation using disambiguation previously introduced by Fišer et al. [20] and adapted to 
our notation and the assumption that we have a normalized planning task. In contrast to the prior formulation [20, Theorem 7], we 
simplify the condition ensuring forward consistency (Equation (3) below), because we assume we have a normalized planning task 
where vars(pre(𝑜)) = vars(ef f(𝑜)) for every 𝑜 ∈, i.e., for every affected variable 𝑉 ∈ vars(ef f(𝑜)) we know exactly what is the value 
of 𝑉 in the precondition of 𝑜 (and thus also in the state where 𝑜 is applicable).

Theorem 2. Let Π = ⟨ , , 𝐼, 𝐺⟩ denote a normalized planning task with facts  , and let 𝙿 denote a potential function. If
∑
𝑉 ∈

max
𝑓∈𝐷𝐺(𝑉 )

𝙿(𝑓 ) ≤ 0 (2)

and for every operator 𝑜 ∈ it holds that

∑
𝑓∈pre(𝑜)

𝙿(𝑓 ) −
∑

𝑓∈eff(𝑜)
𝙿(𝑓 ) ≤ cost(𝑜), (3)

then ℎ𝙿fw is goal-aware, forward consistent, and forward admissible.

Equation (2) ensures goal-awareness, and Equation (3) ensures forward consistency. Note that Equation (2) uses the disambigua-
tion 𝐷𝐺(𝑉 ) because we do not need to consider all values of every variable not appearing in the goal 𝐺, but just those that can be 
part of a forward reachable goal state. In practice, we can obtain potentials as a solution to a linear program (LP) with constraints 
corresponding to conditions from Theorem 2 [40] as follows.

1. For each 𝑓 ∈  , we create a (real-valued) variable 𝙿(𝑓 ).
2. To ensure goal-awareness, we use the constraint Equation (2). The maximization in Equation (2) can be transformed into a set 

of linear inequality constraints in a standard way: For every variable 𝑉 ∈  , we create an auxiliary real-valued variable 𝑋𝑉 , 
then for every 𝑉 ∈  and 𝑓 ∈𝐷𝐺(𝑉 ), we add the constraint 𝙿(𝑓 ) ≤𝑋𝑉 , and finally we replace Equation (2) with the constraint ∑

𝑉 ∈ 𝑋𝑉 ≤ 0.
5

3. To ensure consistency, we add the constraint Equation (3) for every operator 𝑜 ∈.
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Any solution of such LP for any objective function results in a goal-aware and forward consistent potential function. Since we can 
choose any objective function, we can look for potential heuristics maximizing the heuristic estimate for the initial state [40], we can 
maximize the average heuristic estimates for all (syntactic) states  [44], use mutexes to disregard some states that are not reachable 
[20], or we can even combine some of the above. For example, we can construct a LP so that we obtain a potential heuristic that 
maximizes ℎ𝙿fw(𝐼) while maximizing the average estimate over all states [20].

2.2. Background on symbolic search

While explicit state-space search algorithms operate on individual states, symbolic search [37] works on sets of states compactly 
represented as Binary Decision Diagrams (BDDs) [6]. BDDs are an efficient data-structure to represent Boolean functions {0, 1}𝑛 ↦
{0, 1} in the form of a directed acyclic graph. A set of states 𝑆 ⊆  is represented as a BDD via its characteristic function  ↦ {0, 1}
assigning 1 to states that belong to 𝑆 and 0 to states that do not belong to 𝑆 . Note that this assumes a binary encoding of states. We 
use the standard representation and variable ordering used in previous works on symbolic search for classical planning [34,57]. The 
size of a BDD 𝐵, denoted as |𝐵|, refers to the number of nodes in 𝐵. The advantage of using this representation comes from the fact 
that BDDs can be exponentially smaller than the number of states they represent.

Once we have sets of states represented as BDDs, we can use operations on BDDs to operate with sets of states without enumerating 
them one by one. Operations like the union (∪), intersection (∩), and complement of sets of states correspond to the disjunction (∨), 
conjunction (∧), and negation (¬) of their characteristic functions, respectively. For example, if we have two BDDs 𝐵1 and 𝐵2, 
representing sets of states 𝑆1 and 𝑆2, the operation 𝐵1 ∧ 𝐵2 results in a BDD which represents 𝑆1 ∩ 𝑆2. These operations take only 
polynomial time in the size of the input BDDs 𝑂(|𝐵1||𝐵2|), which enables efficient manipulation of large sets of states.

To perform symbolic search, the operators of the planning task are represented as transition relations (TRs), also using BDDs. 
A TR of an operator 𝑜 is a characteristic function 𝑇𝑜 ∶  ×  ↦ {0, 1} that represents all pairs of states ⟨𝑠, 𝑜�𝑠�⟩ such that 𝑜 is 
applicable in 𝑠. Having a TR 𝑇𝑜 for every operator 𝑜 ∈ , we can construct a TR representing all operators with the same cost 𝑐 as 
𝑇𝑐 =

⋁
𝑜∈,cost(𝑜)=𝑐 𝑇𝑜. That is, 𝑇𝑐 represents all pairs of states ⟨𝑠, 𝑠′⟩ such that 𝑠′ can be reached from 𝑠 by applying some operator 

with cost 𝑐. As the size of 𝑇𝑐 may be exponential in the number of operators with cost 𝑐, in practice, it is often a good idea to 
use disjunctive partitioning to keep the size at bay [33,57,58]. Moreover, mutexes can be used for a more accurate approximation of 
reachable states [54,57].

Having a representation for sets of states as well as sets of operators, one can efficiently perform forward search by iteratively 
applying the image operation starting with the BDD representing the initial state. Given a BDD 𝑆 representing a set of states and a 
TR 𝑇𝑐 , image(𝑆, 𝑇𝑐) computes the set of successor states reachable from any state in 𝑆 by applying any operator represented by 𝑇𝑐 . 
By using a separate TR per operator cost 𝑐, one can easily keep track of the cost of reaching a state. If 𝑆𝑔 represents a set of states 
reachable with cost 𝑔, then all states in image(𝑆𝑔, 𝑇𝑐) are reachable with a cost of 𝑔 + 𝑐. By repeatedly applying this operation, one 
can enumerate all states, classified into sets 𝑆0, 𝑆1, … according to the distance from the initial state. Whenever the representation 
of each 𝑆𝑔 is compact, one can get exponential gains with respect to explicit-state search [13].

For the search in the backward direction, one can start with the BDD representing all goal states and use the operation pre-image
instead of image, i.e., pre-image(𝑆, 𝑇𝑐 ) computes the set of all predecessor states 𝑆′ from which a state in 𝑆 can be reached by 
applying an operator represented by 𝑇𝑐 . Torralba et al. [57] provide a comprehensive description of how to efficiently implement 
image and pre-image operations.

The most prominent implementation of symbolic heuristic search in the context of automated planning is BDDA∗ [18] which 
is a variant of A∗ [27] using BDDs to represent sets of states. Like A∗, BDDA∗ expands states by ascending order of their 𝑓 -value. 
To take advantage of the symbolic representation, BDDA∗ represents all states with the same 𝑔 and ℎ value in a single BDD 𝑆𝑔,ℎ

(disjunctive partitioning of 𝑆𝑔,ℎ can also be used). Given a set of states 𝑆𝑔,ℎ and a TR 𝑇𝑐 , the 𝑔-value of the resulting set of successor 
states image(𝑆𝑔,ℎ, 𝑇𝑐) is simply 𝑔 + 𝑐. However, these successor states have to be split according to their ℎ-value. This can usually be 
performed efficiently with, e.g., symbolic pattern databases [34], by partitioning all states into BDDs 𝑆ℎ, where each 𝑆ℎ represents 
the set of all states with the heuristic value ℎ. Then a conjunction of the successor states and a set 𝑆ℎ will give us the sub-set of 
successor states with heuristic value ℎ. To fully partition a set of states according to their heuristic value, we then need to compute 
such a conjunction for every partition 𝑆ℎ.

GHSETA∗ [33] encodes the heuristic function as part of the transition relation, creating multiple TRs depending on the impact of 
the operators on heuristic value. That is, we need a function 𝛿ℎ ∶ ↦ℝ mapping operators to numbers so that if the heuristic value 
for the state 𝑠 is ℎ(𝑠) and the operator 𝑜 ∈  is applicable in 𝑠, then ℎ(𝑜�𝑠�) = ℎ(𝑠) + 𝛿ℎ(𝑜) is the heuristic value for the successor 
state 𝑜�𝑠�. Then we can partition operators into TRs not only by their costs but also by the change of the heuristic value 𝛿ℎ(𝑜) they 
induce, i.e., instead of having a TR 𝑇𝑐 for every operator with the cost 𝑐, we have a TR 𝑇𝑐,𝑞 for every operator cost 𝑐 and every 
possible value 𝑞 = 𝛿ℎ(𝑜). With this approach, computing 𝑔 and ℎ-values of successor states is much more straightforward than in the 
previous case: image(𝑆𝑔,ℎ, 𝑇𝑐,𝑞) directly results in the BDD 𝑆𝑔+𝑐,ℎ+𝑞 representing all successor states of 𝑆𝑔,ℎ with 𝑔-value 𝑔 + 𝑐 and 
ℎ-value ℎ + 𝑞. This is a very efficient way of evaluating the heuristics within symbolic search. However, up to now, all heuristics 
known to be suitable for this representation were either non-informative, inadmissible, or domain dependent. We show, in the next 
two sections, that potential heuristics can be adapted to this schema to smoothly integrate them into the GHSETA∗ algorithm.

Algorithm 1 shows the pseudo-code of the GHSETA∗ algorithm in the forward direction. It takes a planning task, a heuristic 
estimate ℎ𝐼 for the initial state, and a function 𝛿ℎ inducing, together with ℎ𝐼 , a consistent admissible forward heuristic, i.e., we 
assume that for every sequence of operators 𝜋 = ⟨𝑜1, … , 𝑜𝑛⟩ applicable in 𝐼 it holds that ℎ𝐼 +

∑
𝑖∈[𝑛] 𝛿ℎ(𝑜𝑖) is a forward consistent 
6

and forward admissible heuristic estimate for the state 𝜋�𝐼�.
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Algorithm 1: GHSETA∗ in the forward direction with a consistent heuristic.

Input: A planning task Π, a heuristic estimate ℎ𝐼 ≥ 0 for the initial state, and a function 𝛿ℎ ∶ ↦ℝ so that ℎ𝐼 and 𝛿ℎ induce a consistent 
and admissible heuristic.

Output: An optimal plan or “unsolvable”.
1 for each ⟨𝑐, 𝑞⟩ ∈ {⟨cost(𝑜), 𝛿ℎ(𝑜)⟩ ∣ 𝑜 ∈} do
2 Construct 𝑇𝑐,𝑞 from {𝑜 ∈ ∣ cost(𝑜) = 𝑐, 𝛿ℎ(𝑜) = 𝑞} ;

3 𝑆0,ℎ𝐼
← BDD representing the set {𝐼} ;

4 𝚘𝚙𝚎𝚗← {⟨ℎ𝐼 , 𝑆0,ℎ𝐼
⟩};

5 𝚌𝚕𝚘𝚜𝚎𝚍← ∅ ;
6 while 𝚘𝚙𝚎𝚗 ≠ ∅ do
7 ⟨𝑓, 𝑆𝑔,ℎ⟩ ← PopMin(𝚘𝚙𝚎𝚗);

8 𝑆𝑔,ℎ ← 𝑆𝑔,ℎ ∧ ¬𝚌𝚕𝚘𝚜𝚎𝚍 ;

9 if 𝑆𝑔,ℎ contains a goal state then
10 return ExtractPlan(𝑆𝑔,ℎ) ;

11 𝚌𝚕𝚘𝚜𝚎𝚍← 𝚌𝚕𝚘𝚜𝚎𝚍 ∨𝑆𝑔,ℎ ;

12 for each 𝑇𝑐,𝑞 do
13 𝑆𝑔+𝑐,ℎ+𝑞 ← image(𝑆𝑔,ℎ, 𝑇𝑐,𝑞) ∧ ¬𝚌𝚕𝚘𝚜𝚎𝚍 ;

14 if 𝑆𝑔+𝑐,ℎ+𝑞 ≠ ∅ then
15 𝑓 ← 𝑔 + 𝑐 +max(0, ℎ + 𝑞) ;
16 𝚘𝚙𝚎𝚗← InsertOrUpdate(𝚘𝚙𝚎𝚗, 𝑓 , 𝑆𝑔+𝑐,ℎ+𝑞) ;

17 return “unsolvable”;

18 function InsertOrUpdate(𝑂, 𝑓 , 𝑆𝑔,ℎ)

19 if there exists ⟨𝑓, 𝑆 ′
𝑔,ℎ

⟩ ∈𝑂 then

20 return (𝑂 ⧵ ⟨𝑓, 𝑆 ′
𝑔,ℎ

⟩) ∪ {⟨𝑓, 𝑆 ′
𝑔,ℎ

∨𝑆𝑔,ℎ⟩};

21 else
22 return 𝑂 ∪ {⟨𝑓, 𝑆𝑔,ℎ⟩};

Lines 1 and 2 describe the partitioning of operators into TRs based on their cost and the change of heuristic value they induce via 
the function 𝛿ℎ. The rest is a standard A∗ algorithm without re-opening states (because we assume a consistent heuristic) adapted for 
searching over sets of states and computing heuristic values by summing over sequences of operators rather than calling a heuristic 
function for every expanded state. The main distinctions to the state-space A∗ are the following:

1. As in the standard A∗, we maintain the set of closed states (lines 5 and 11). However, since we operate on sets of states instead 
of individual states, we represent the set of closed states as a BDD (possibly with disjunctive partitioning), and we skip closed 
states stored in the set 𝚌𝚕𝚘𝚜𝚎𝚍 by removing 𝚌𝚕𝚘𝚜𝚎𝚍 from all expanded and generated sets of states (lines 8 and 13).

2. GHSETA∗ also maintains an open list as a priority queue ordering states by the increasing 𝑓 -values, but all states with the same 
𝑔 and ℎ-values are merged into one BDD (line 16 and the function InsertOrUpdate()). So, in each cycle, a set of states with 
the lowest 𝑓 -value are processed at once using the BDD 𝑆𝑔,ℎ with minimal 𝑔-value among those with minimal 𝑓 = 𝑔 +max(ℎ, 0)
value.

3. Given a set of states 𝑆𝑔,ℎ (with the 𝑔-value 𝑔 and ℎ-value ℎ) and a TR 𝑇𝑐,𝑞 (with the cost 𝑐 and inducing the change of ℎ-value 
by 𝑞), we can easily compute the 𝑔 and ℎ-value of the successor states image(𝑆𝑔,ℎ, 𝑇𝑐,𝑞) as 𝑔 + 𝑐 and ℎ + 𝑞, respectively (line 13).

4. Instead of terminating when a goal state is removed from the queue, we terminate when we remove a set of states containing 
a goal state. The plan extraction in GHSETA∗ (line 10) is a little bit more complicated than in state-space A∗, because a simple 
backchaining from a goal state is not possible here. Nevertheless, it is still polynomial in the length of the plan—a detailed 
description is provided by Torralba et al. [57].

Finally, we adapt the GHSETA∗ algorithm to support negative ℎ-values. Instead of considering the 𝑓 -value of a state to be 𝑔 + ℎ, 
we use instead 𝑓 = 𝑔 +max(ℎ, 0). Therefore, the 𝑓 -value of the successor states is 𝑔 + 𝑐 +max(0, ℎ + 𝑞) (in line 15). This is not only 
an optimization (i.e., avoiding the expansion of any bucket where 𝑔 > ℎ⋆

fw(𝐼) even if 𝑔 + ℎ < ℎ⋆
fw(𝐼)). In fact, this is also needed for 

correctness of the stopping condition, as otherwise goal states with negative heuristic value could be expanded even if they do not 
correspond to an optimal plan. The common solution of simply changing the heuristic function to max(ℎ, 0) is not possible as that 
cannot always be expressed as a 𝛿ℎ function. However, by keeping the original (negative) ℎ value for the BDD representation, and 
making the heuristic non-negative only when computing the 𝑓 -value, we get the best of both worlds: an efficient BDD representation 
without unnecessarily expanding any set of states with negative heuristic value.

Note that Jensen et al. [33] also introduce the FSETA∗ algorithm where the change of heuristic values is compiled directly into 
operators’ costs. This is similar to encoding the heuristic as a task transformation, i.e., by changing the cost of each operator to be 
cost(𝑜) + 𝛿ℎ(𝑜). It is well-known that running Dijkstra on the reformulated task is equivalent to running A∗ on the original task [36]. 
However, it is not entirely clear how to apply these approaches in the presence of heuristics that can take negative heuristic values. 
7

We leave this question to future research.
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If no heuristic is used (i.e., ℎ = 0 for all states), performing backward search is straightforward. One can simply run Algorithm 1, 
starting with the BDD representing the set of all goal states instead of the initial state (line 3). Then, at each step, it uses the pre-image 
operation instead of image (line 13), and it terminates when a BDD containing the initial state is removed from the priority queue 
(line 9). In Sections 3 and 4, we explain how to extend this for performing backward search with any (backward) consistent and 
admissible heuristic.

The bi-directional search combines the forward and backward search by keeping separate open and closed lists for each direction 
and then alternating between the forward and backward steps. In each iteration of the algorithm, it is decided whether to expand 
a set of states from the forward or the backward open list. A common criterion is to select the search direction whose next step is 
estimated to be easiest (e.g., by selecting the set of states whose BDD representation is smallest). In our implementation, we use the 
criteria used by Torralba et al. [57], which besides the BDD size, also considers the time spent in previous iterations to estimate 
which direction will take less time in completing the next step.

The bi-directional search stops when both directions meet and we are able to prove that the plan combined from both directions is 
an optimal plan. That is, instead of checking whether the current set of states selected for expansion contains a goal state (line 9), we 
check whether the intersection with the closed list from the opposite direction is non-empty. If the intersection is not empty, then any 
state in such intersection is part of a plan. The algorithm keeps track of the best plan 𝜋 found so far, and terminates as soon as no better 
plan can be found, i.e., whenever cost(𝜋) ≤min𝑠∈𝚘𝚙𝚎𝚗𝑓 𝑓 (𝑠) or cost(𝜋) ≤min𝑠∈𝚘𝚙𝚎𝚗𝑏 𝑓 (𝑠) or cost(𝜋) ≤min𝑠∈𝚘𝚙𝚎𝚗𝑓 𝑔(𝑠) +min𝑠∈𝚘𝚙𝚎𝚗𝑏 𝑔(𝑠), 
where 𝚘𝚙𝚎𝚗𝑓 and 𝚘𝚙𝚎𝚗𝑏 are the open lists of the forward and backward search, respectively, and 𝑓 (𝑠) and 𝑔(𝑠) denote 𝑓 and 𝑔-values 
of a state 𝑠, respectively.2 This guarantees that the bi-directional search terminates with an optimal plan, as long as an admissible 
heuristic is used in both directions, even when different heuristics are used in each direction. Note also that each direction can use a 
different partitioning of operators into TRs.

3. Operator-potential heuristics

Potential heuristics map facts to numerical values. Here, we show that instead of mapping facts to numerical values, we can map 
each operator 𝑜 to a numerical value, called operator-potential, corresponding to the change of the heuristic value over a transition 
induced by 𝑜. More precisely, we show how to transform a potential function 𝙿 ∶  ↦ℝ to an operator-potential function 𝚀 ∶ ↦ℝ
so that for every state 𝑠 and each operator 𝑜 applicable in 𝑠 it holds that ℎ𝙿(𝑜�𝑠�) = ℎ𝙿(𝑠) + 𝚀(𝑜). In other words, we define 𝚀 in such 
a way that 𝚀(𝑜) is exactly equal to the change of heuristic value of the corresponding potential heuristic over a transition between 
states induced by the operator 𝑜.

Recall that we assume vars(pre(𝑜)) = vars(ef f(𝑜)) for every operator 𝑜 ∈ (the general case is discussed in Appendix A). As pointed 
out by [45] in the context of proving the limitations of one-dimensional potential heuristics, this means that we know exactly how 
each operator 𝑜 changes the state 𝑠 on which it is applied, i.e., for every fact ⟨𝑉 , 𝑣⟩ ∈ eff(𝑜) we know exactly what is the value 
𝑠[𝑉 ] because ⟨𝑉 , 𝑠[𝑉 ]⟩ ∈ pre(𝑜). (Note that the same is not true for higher-dimensional potential heuristics, so operator-potential 
functions are defined for potential heuristics of dimension one only.)

Definition 3. Given a potential function 𝙿, a function 𝚀 ∶ ↦ℝ is called an operator-potential function for 𝙿 if

𝚀(𝑜) =
∑

𝑓∈eff(𝑜)
𝙿(𝑓 ) −

∑
𝑓∈pre(𝑜)

𝙿(𝑓 ) (4)

for every operator 𝑜 ∈.

In the following proposition, we show that 𝚀(𝑜) is exactly equal to the change of the heuristic value of the potential heuristic from 
a state to state. Note that Proposition 4 holds for any state 𝑠, in particular, for every forward reachable as well as every backward 
reachable state.

Proposition 4. Let 𝑠 ∈  denote a state, and let 𝑜 ∈ denote an operator applicable in 𝑠. Then 
∑

𝑓∈𝑠 𝙿(𝑓 ) + 𝚀(𝑜) =
∑

𝑓∈𝑜�𝑠� 𝙿(𝑓 ).

Proof. Let 𝑡 = 𝑠 ⧵ pre(𝑜). Since we assume vars(pre(𝑜)) = vars(ef f(𝑜)), it follows that 𝑡 = 𝑜�𝑠� ⧵ eff(𝑜). Therefore, we have that

∑
𝑓∈𝑠

𝙿(𝑓 ) + 𝚀(𝑜) =
∑
𝑓∈𝑡

𝙿(𝑓 ) +
∑

𝑓∈pre(𝑜)
𝙿(𝑓 ) + 𝚀(𝑜)

=
∑
𝑓∈𝑡

𝙿(𝑓 ) +
∑

𝑓∈pre(𝑜)
𝙿(𝑓 ) +

∑
𝑓∈eff(𝑜)

𝙿(𝑓 ) −
∑

𝑓∈pre(𝑜)
𝙿(𝑓 )

=
∑
𝑓∈𝑡

𝙿(𝑓 ) +
∑

𝑓∈eff(𝑜)
𝙿(𝑓 ) =

∑
𝑓∈𝑜�𝑠�

𝙿(𝑓 ). □

2 Recent work on bi-directional explicit-state heuristic search [1,3,31,46,47] has derived stronger bounds when consistent heuristics are used. Transferring those 
8

to symbolic search is a promising avenue for future research.
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Next, we show that the property from Proposition 4 extends over sequences of operators. That is, for any two states 𝑠, 𝑠′ ∈  and 
any sequence of operators 𝜋 = ⟨𝑜1, … , 𝑜𝑛⟩ leading from 𝑠 to 𝑠′ (i.e., 𝜋 is applicable in 𝑠 and 𝜋�𝑠� = 𝑠′) it holds that the sum over 
operator potentials of operators from the sequence 𝜋, 

∑
𝑖∈[𝑛] 𝚀(𝑜𝑖), is exactly equal to the change of heuristic value of the potential 

heuristic from 𝑠 to 𝑠′, i.e., ℎ𝙿(𝑠) +
∑

𝑖∈[𝑛] 𝚀(𝑜𝑖) = ℎ𝙿(𝑠′). Note that this property holds for any sequence of operators 𝜋 between states 
𝑠 and 𝑠′. In other words, for a fixed pair of states 𝑠, 𝑠′ ∈  and any two sequences of operators 𝜋 = ⟨𝑜1, … , 𝑜𝑛⟩ and 𝜋′ = ⟨𝑞1, … , 𝑞𝑚⟩
both leading from 𝑠 to 𝑠′, it holds that ℎ𝙿(𝑠) +

∑
𝑖∈[𝑛] 𝚀(𝑜𝑖) = ℎ𝙿(𝑠) +

∑
𝑖∈[𝑚] 𝚀(𝑞𝑖) = ℎ𝙿(𝑠′). Therefore for any such 𝜋 and 𝜋′ the sums 

over operator potentials are exactly the same, i.e., 
∑

𝑖∈[𝑛] 𝚀(𝑜𝑖) =
∑

𝑖∈[𝑚] 𝚀(𝑞𝑖). Therefore, summing operator potentials over sequences 
of operators preserves state-dependency as long as the planning task is normalized. We will use this property later when we define 
state-dependent operator-potential heuristics in forward and backward direction.

Proposition 5. Let 𝑠 ∈  denote a state, and let 𝜋 = ⟨𝑜1, … , 𝑜𝑛⟩ denote a sequence of operators applicable in 𝑠. Then 
∑

𝑓∈𝑠 𝙿(𝑓 ) +∑
𝑖∈[𝑛] 𝚀(𝑜𝑖) =

∑
𝑓∈𝜋�𝑠� 𝙿(𝑓 ).

Proof. (By induction) The claim clearly holds for the empty sequence 𝜋. Now, assume the claim holds for some sequence of operators 
𝜋′ = ⟨𝑜1, … , 𝑜𝑘−1⟩ such that 𝜋′ is applicable in 𝑠 and 𝑘 ≤ 𝑛, and we prove that it also holds for the sequence of operators 𝜋′′ =
⟨𝑜1, … , 𝑜𝑘−1, 𝑜𝑘⟩. Let 𝑠𝑘−1 = 𝜋′�𝑠� and 𝑠𝑘 = 𝜋′′�𝑠�.

From Proposition 4 we have that 
∑

𝑓∈𝑠𝑘−1 𝙿(𝑓 ) + 𝚀(𝑜𝑘) =
∑

𝑓∈𝑠𝑘 𝙿(𝑓 ) because 𝑜𝑘 is applicable in 𝑠𝑘−1 and 𝑜𝑘�𝑠𝑘−1� = 𝑠𝑘, and from 
the assumption we have that 

∑
𝑓∈𝑠𝑘−1 𝙿(𝑓 ) =

∑
𝑓∈𝑠 𝙿(𝑓 ) +

∑
𝑖∈[𝑘−1] 𝚀(𝑜𝑖), therefore it follows that

∑
𝑓∈𝑠𝑘

𝙿(𝑓 ) =
∑

𝑓∈𝑠𝑘−1

𝙿(𝑓 ) + 𝚀(𝑜𝑘) =
∑
𝑓∈𝑠

𝙿(𝑓 ) +
∑

𝑖∈[𝑘−1]
𝚀(𝑜𝑖) + 𝚀(𝑜𝑘) =

∑
𝑓∈𝑠

𝙿(𝑓 ) +
∑
𝑖∈[𝑘]

𝚀(𝑜𝑖),

which concludes the proof. □

Now that we have shown how to define operator-potential functions and we proved their fundamental properties in relation to 
the corresponding potential heuristics, we move to the introduction of a new family of operator-potential heuristics in forward and 
backward direction. In Section 3.1, we show how to construct operator-potential forward heuristics that are goal-aware, forward 
consistent and thus also forward admissible. In Section 3.2, we focus on operator-potential backward heuristics. We show that the 
same approach used for the operator-potential forward heuristics can be used also in the backward direction. Although it leads to 
backward admissible estimates, it can also result in path-dependent heuristics. So, we show how to remedy this issue and obtain 
operator-potential backward heuristics that are state-dependent, init-aware, backward consistent, and backward admissible.

3.1. Forward direction

Under the assumption that vars(pre(𝑜)) = vars(ef f(𝑜)) for every operator and with Proposition 5 in place, the construction of a 
forward consistent operator-potential heuristic ℎ𝚀fw is straightforward. Given a potential function 𝙿 and its corresponding operator-

potential function 𝚀, we start by setting the heuristic value for the initial state ℎ𝚀fw(𝐼) to ℎ𝙿fw(𝐼) =
∑

𝑓∈𝐼 𝙿(𝑓 ), and then it follows 
from Proposition 5 that adding a sum of operator-potentials over any sequence of operators 𝜋 = ⟨𝑜1, … , 𝑜𝑛⟩ applicable in the initial 
state results in the heuristic value ℎ𝙿fw(𝜋�𝐼�), i.e., such construction exactly preserves heuristic values of the potential heuristic ℎ𝙿fw
along with its properties such as consistency, goal-awareness, and admissibility.

Definition 6. Let 𝚀 denote an operator-potential function for 𝙿. An operator-potential forward heuristic ℎ𝚀fw ∶ fw ↦ℝ ∪ {∞} for 
𝚀 is defined as

ℎ𝚀fw(𝑠) =
∑
𝑓∈𝐼

𝙿(𝑓 ) +
∑
𝑖∈[𝑛]

𝚀(𝑜𝑖) (5)

for every sequence of operators 𝜋 = ⟨𝑜1, … , 𝑜𝑛⟩ such that 𝜋�𝐼� = 𝑠.

Now we need to show that ℎ𝚀fw is well-defined, i.e., Equation (5), indeed, expresses a function mapping forward-reachable states 
to numbers. In other words, we need to show that ℎ𝚀fw(𝑠) is the same for every sequence of operators 𝜋 leading from the initial state 
to 𝑠. This follows directly from Proposition 5 as it also shows that ℎ𝚀fw is exactly equal to ℎ𝙿fw and therefore ℎ𝚀fw has exactly the same 
properties as ℎ𝙿fw.

Theorem 7. ℎ𝚀fw is well-defined, and ℎ𝚀fw(𝑠) = ℎ𝙿fw(𝑠) for every forward-reachable state 𝑠 ∈ fw, and ℎ𝚀fw is forward admissible (goal-aware, 
forward consistent) if ℎ𝙿fw is forward admissible (goal-aware, forward consistent).

Proof. Let 𝑠 ∈ fw denote a forward reachable state, and let 𝜋 = ⟨𝑜1, … , 𝑜𝑛⟩ denote a sequence of operators such that 𝜋 is applicable 
in 𝐼 and 𝜋�𝐼� = 𝑠. From Proposition 5 it follows that 

∑
𝑓∈𝐼 𝙿(𝑓 ) +

∑
𝑖∈[𝑛] 𝚀(𝑜𝑖) =

∑
𝑓∈𝑠 𝙿(𝑓 ), and from definitions of ℎ𝚀fw and ℎ𝙿fw it 
9

further follows that
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𝐼

𝑠1

𝑠2

𝑠3

𝐺

𝑜1 𝑜2

𝑜3 𝑜4

𝑜5

𝑜 ∈ cost(𝑜) 𝚀(𝑜)

𝑜1 0 1
𝑜2 0 0
𝑜3 0 0.9
𝑜4 0 0.1
𝑜5 1 −1

Fig. 1. A simple example showing path-dependency of an operator-potential heuristic after rounding operator potentials down to the nearest integers. Let 𝐼 and 𝐺
denote the initial and goal state, respectively, let cost(𝑜𝑖) = 0 for all 𝑖 ∈ [4], and cost(𝑜5) = 1, and let 𝚀(𝑜1) = 1, 𝚀(𝑜2) = 0, 𝚀(𝑜3) = 0.9, 𝚀(𝑜4) = 0.1, and 𝚀(𝑜5) = −1, and 
let ℎ𝚀

fw(𝐼) = 0.

ℎ𝚀fw(𝑠) =
∑
𝑓∈𝐼

𝙿(𝑓 ) +
∑
𝑖∈[𝑛]

𝚀(𝑜𝑖) =
∑
𝑓∈𝑠

𝙿(𝑓 ) = ℎ𝙿fw(𝑠).

Therefore ℎ𝚀fw is well-defined, ℎ𝚀fw(𝑠) = ℎ𝙿fw(𝑠) for every 𝑠 ∈ fw, and therefore if ℎ𝙿fw is forward admissible (goal aware, forward 
consistent), then so is ℎ𝚀fw. □

Note that ℎ𝚀fw is a state-dependent heuristic even though it is computed from 𝐼 -𝑠-paths. This is because every 𝐼 -𝑠-path results 
in exactly the same value of ℎ𝚀fw(𝑠). Moreover, note that ℎ𝚀fw can be used in an incremental way: For every forward reachable state 
𝑠 ∈ fw and an operator 𝑜 ∈ applicable in 𝑠, we have that ℎ𝚀fw(𝑜�𝑠�) = ℎ𝚀fw(𝑠) + 𝚀(𝑜). In other words, ℎ𝚀fw can be used in search so 
that we assign the heuristic value ℎ𝚀fw(𝐼) =

∑
𝑓∈𝐼 𝙿(𝑓 ) to the initial state and then whenever we expand a state 𝑠 with an operator 𝑜, 

we compute the heuristic value for the resulting state simply by adding 𝚀(𝑜) to the heuristic value we have previously stored for 𝑠, 
i.e., ℎ𝚀fw(𝑜�𝑠�) = ℎ𝚀fw(𝑠) + 𝚀(𝑜). This property of ℎ𝚀fw will be particularly useful in the context of symbolic search.

As we show later, a frictionless application of operator-potentials in symbolic search requires partitioning of operators using 
𝚀(𝑜) values, i.e., we need to group together operators that induce the same change of operator-potential heuristic values. Therefore, 
we need to compare 𝚀(𝑜) values on equality. However, 𝙿 is typically inferred using a linear program which results in 𝚀(𝑜) values 
represented as floating-point numbers. This could significantly reduce efficiency of the partitioning as each partition can consist of a 
single operator even when 𝚀(𝑜) values differ only slightly. Moreover, the strength of symbolic search lies in its ability to aggregate 
states with the same heuristic and 𝑔-values into a BDD. Therefore, having floating-point heuristic values is an even larger problem.

Assuming operator costs are integers, both issues can be resolved if all 𝚀(𝑜) values and ℎ𝙿fw(𝐼) are integers. It is easy to see that 
ℎ𝙿fw(𝐼) can be safely rounded up to the nearest integer, because if costs of operators are integers, then also costs of plans must 
be integer-valued. It may also seem that rounding operator potentials down to the nearest integer may resolve this issue as the 
sums over the rounded operator potentials would result in admissible estimates. However, rounding 𝚀(𝑜) values down may result in 
path-dependent estimates.

Consider the planning task depicted in Fig. 1. The operator-potential heuristic ℎ𝚀fw is clearly forward consistent, goal-aware, and 
forward admissible. Let 𝚀̂ denote a function mapping each operator 𝑜𝑖 to 𝚀(𝑜𝑖) rounded down to the nearest integer, i.e., 𝚀̂(𝑜1) = 1, 
𝚀̂(𝑜2) = 𝚀̂(𝑜3) = 𝚀̂(𝑜4) = 0, and 𝚀̂(𝑜5) = −1. Now, consider the state 𝑠2. If we use 𝚀̂ instead of 𝚀 to compute heuristic values using 
Equation (5), then taking the path ⟨𝑜1, 𝑜2⟩ results in ℎ𝚀fw(𝐼) + 𝚀̂(𝑜1) + 𝚀̂(𝑜2) = 1, and the path ⟨𝑜3, 𝑜4⟩ results in ℎ𝚀fw(𝐼) + 𝚀̂(𝑜3) + 𝚀̂(𝑜4) = 0, 
i.e., we get two different values depending on the path used to reach 𝑠2. Moreover, note that path-dependency may also result in 
inconsistency: Consider the states 𝑠1 and 𝑠2, and operator sequence ⟨𝑜1⟩ used to reach 𝑠1 and ⟨𝑜3, 𝑜4⟩ used to reach 𝑠2. In this case, 
the estimate with 𝚀̂ for 𝑠1 would be 1, but the estimate for 𝑠2 would be 0 as well as the cost of 𝑜2.

We resolve this issue by restricting the potential functions to always result in integer-valued operator-potentials. Note that this 
approach still allows to round ℎ𝙿fw(𝐼) up to the nearest integer as it clearly preserves forward consistency, goal-awareness, and 
forward admissibility of the resulting heuristics.

To obtain integer operator-potentials, we propose to use the following mixed-integer linear program (MIP):

1. For every fact 𝑓 ∈  , we create the real-valued variable 𝙿(𝑓 ).
2. For every operator 𝑜 ∈, we create the integer-valued variable 𝚀(𝑜).
3. To ensure goal-awareness and forward consistency of the resulting potential function 𝙿, we add the constraint Equation (2), and, 

for every 𝑜 ∈, we add the constraint Equation (3).
4. For every operator 𝑜 ∈, we add the constraint Equation (4). This ensures that 𝚀(𝑜) will be, indeed, an operator-potential as per 

Definition 3, and since 𝚀(𝑜) is an integer-valued variable, the resulting operator-potential will be also integer.

Clearly, any solution to such MIP results in an operator-potential function according to Equation (4) with integer 𝚀(𝑜) values and 
the corresponding ℎ𝚀fw will be forward consistent, goal-aware, and forward admissible. So, we can use any optimization criteria that 
was previously proposed for the potential heuristics [20,40,44].

The disadvantage of using MIP is that it is harder to solve than LP because MIP is NP-hard in general whereas LP can be solved 
by a polynomial algorithm. However, this seems to be rarely a bottleneck in practice as we show in the experimental evaluation in 
10
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 = {𝑣1, 𝑣2}, dom(𝑣1) = {𝑥, 𝑦}, dom(𝑣2) = {𝐴,𝐵,𝐶}

𝐼 = {⟨𝑣1, 𝑥⟩, ⟨𝑣2,𝐴⟩}, 𝐺 = {⟨𝑣2, 𝐶⟩}

𝑜 ∈ prv(𝑜) pre(𝑜) ef f(𝑜) cost(𝑜) 𝚀(𝑜)

𝑜1 ∅ ⟨𝑣1, 𝑥⟩, ⟨𝑣2,𝐴⟩ ⟨𝑣1, 𝑦⟩, ⟨𝑣2,𝐵⟩ 1 -1
𝑜2 ∅ ⟨𝑣2,𝐵⟩ ⟨𝑣2, 𝐶⟩ 1 -1
𝑜3 ∅ ⟨𝑣1, 𝑦⟩ ⟨𝑣1, 𝑥⟩ 1 -1

𝑓 𝙿(𝑓 )

⟨𝑣1, 𝑥⟩ 0
⟨𝑣1, 𝑦⟩ 1
⟨𝑣2,𝐴⟩ 2
⟨𝑣2,𝐵⟩ 0
⟨𝑣2, 𝐶⟩ -1

ℎ𝙿
fw(𝐼) = ℎ𝚀

fw(𝐼) = 2

𝑥𝐴 𝑦𝐵

𝑦𝐶

𝑥𝐵 𝑥𝐶

𝑜1
𝑜2

𝑜3

𝑜2

Fig. 2. Example planning task Π= ⟨ ,, 𝐼,𝐺⟩ illustrating operator-potential backward heuristic.

3.2. Backward direction

Interestingly, under certain conditions, the very same operator-potential function and Equation (5) can be used to obtain backward 
admissible estimates also in the backward direction. To be more precise, given a potential function 𝙿 such that the conditions from 
Theorem 2 hold and the operator-potential function 𝚀 for 𝙿, for every 𝑠-plan 𝜋 = ⟨𝑜1, … , 𝑜𝑛⟩, the estimate

∑
𝑓∈𝐼

𝙿(𝑓 ) +
∑
𝑖∈[𝑛]

𝚀(𝑜𝑖) (6)

is a lower bound on the cost of every 𝐼 -𝑠-path. That is, Equation (6) is a backward admissible heuristic estimate for the backward 
search even when 𝙿 and 𝚀 are computed in the same way as for the forward direction which we prove in the following Proposition 8.

Proposition 8. Let 𝙿 denote a potential function such that Equation (2) and Equation (3) hold, let 𝚀 denote an operator-potential function 
for 𝙿, let 𝑠 ∈ fw ∩ bw denote a state that is both forward and backward reachable, let 𝜋 = ⟨𝑜1, … , 𝑜𝑛⟩ denote an 𝑠-plan, and let 𝜋′ =
⟨𝑜′1, … , 𝑜′𝑚⟩ denote an 𝐼 -𝑠-path. Then 

∑
𝑓∈𝐼 𝙿(𝑓 ) +

∑
𝑖∈[𝑛] 𝚀(𝑜𝑖) ≤

∑
𝑖∈[𝑚] cost(𝑜′𝑖).

Proof. Note that ℎ𝚀fw(𝐼) =
∑

𝑓∈𝐼 𝙿(𝑓 ) and that ⟨𝑜′1, … , 𝑜′𝑚, 𝑜1, … , 𝑜𝑛⟩ is a plan. Let 𝑔 = 𝜋�𝑠�. From Equation (2) it follows that 
ℎ𝙿fw(𝑔) ≤ 0, and from Theorem 7 it follows that ℎ𝚀fw(𝐼) +

∑
𝑖∈[𝑛] 𝚀(𝑜𝑖) +

∑
𝑖∈[𝑚] 𝚀(𝑜′𝑖) = ℎ𝙿fw(𝑔) ≤ 0. Therefore we have that ℎ𝚀fw(𝐼) +∑

𝑖∈[𝑛] 𝚀(𝑜𝑖) ≤ − 
∑

𝑖∈[𝑚] 𝚀(𝑜′𝑖). Finally, From Definition 3 and Equation (3) it follows that −𝚀(𝑜′𝑖) ≤ cost(𝑜′𝑖) for every 𝑖 ∈ [𝑚] and 
therefore − 

∑
𝑖∈[𝑚] 𝚀(𝑜′𝑖) ≤

∑
𝑖∈[𝑚] cost(𝑜′𝑖) which concludes the proof. □

Now, it may seem that we are ready to formulate the backward variant of operator-potential heuristics. Unfortunately, the 
aforementioned Equation (6) can result in different values depending on the given 𝑠-plan 𝜋, i.e., such heuristic estimates are path-
dependent. Consider the planning task depicted in Fig. 2, and the state “𝑦𝐵” backward-reachable from both goal states “𝑥𝐶” and 
“𝑦𝐶”. For “𝑦𝐶” and ⟨𝑜2⟩, Equation (6) evaluates to ℎ𝚀fw(𝐼) + 𝚀(𝑜2) = 2 − 1 = 1. And for “𝑥𝐶” and ⟨𝑜3, 𝑜2⟩, it evaluates to ℎ𝚀fw(𝐼) +
𝚀(𝑜3) + 𝚀(𝑜2) = 2 − 2 = 0. Both are backward admissible estimates for the backward search as the cost of the remaining operator 𝑜1
is 1, but the estimates are path-dependent. This behavior is caused by the fact that we allow negative heuristic estimates possibly 
resulting in different heuristic values of different goal states. For example, ℎ𝚀fw-value for “𝑥𝐶” is −1 whereas ℎ𝚀fw-value for “𝑦𝐶” is 
zero.

This observation suggests that we can fix this issue by incorporating heuristic values of goal states in the computation. And 
indeed, it turns out that if Equation (3) holds for the potential function 𝙿, then subtracting the sum of potentials over goal state facts 
from Equation (6) resolves the issue. So, we define goal-corrected operator-potential backward heuristic accordingly and then we prove 
that it is well-defined (i.e., state-dependent), init-aware, backward consistent, and therefore also backward admissible.

Definition 9. Let 𝚀 denote an operator-potential function for 𝙿 such that Equation (3) holds for 𝙿. A goal-corrected operator-
potential backward heuristic ℎ𝚀bw ∶ bw ↦ℝ ∪ {∞} for 𝚀 is defined as

ℎ𝚀bw(𝑠) =
∑
𝑓∈𝐼

𝙿(𝑓 ) +
∑
𝑖∈[𝑛]

𝚀(𝑜𝑖) −
∑

𝑓∈𝜋�𝑠�

𝙿(𝑓 ) (7)

for every backward reachable state 𝑠 ∈ bw and every 𝑠-plan 𝜋 = ⟨𝑜1, … , 𝑜𝑛⟩ ∈ bw.

We start by showing in the following Lemma 10 that ℎ𝚀bw from Definition 9 is state-dependent, i.e., for every backward reachable 
11

state 𝑠 ∈ bw, ℎ𝚀bw(𝑠) evaluates to the same value for all 𝑠-plans. This is a consequence of Proposition 5 because it shows that for a 
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𝑠 𝑠′

𝑠𝑔 𝑠′
𝑔

𝑜

𝜋 𝜋′

Fig. 3. Illustration for Lemma 12.

given (backward reachable) state 𝑠 ∈ bw the sum 
∑

𝑓∈𝐼 𝙿(𝑓 ) +
∑

𝑖∈[𝑛] 𝚀(𝑜𝑖) −
∑

𝑓∈𝜋�𝑠� 𝙿(𝑓 ) evaluates to exactly the same value for 
all 𝑠-plans 𝜋 = ⟨𝑜1, … , 𝑜𝑛⟩.
Lemma 10. Let 𝚀 denote an operator-potential function for 𝙿, let 𝑠 ∈ bw denote a backward reachable state, let 𝑠𝑔 ⊇ 𝐺 and 𝑠′𝑔 ⊇ 𝐺 denote 
two goal states, and let 𝜋 = ⟨𝑜1, … , 𝑜𝑛⟩ ∈ bw and 𝜋′ = ⟨𝑜′1, … , 𝑜′𝑚⟩ ∈ bw denote two 𝑠-plans such that 𝜋�𝑠� = 𝑠𝑔 and 𝜋′�𝑠� = 𝑠′𝑔 . Then

∑
𝑓∈𝐼

𝙿(𝑓 ) +
∑
𝑖∈[𝑛]

𝚀(𝑜𝑖) −
∑
𝑓∈𝑠𝑔

𝙿(𝑓 ) =
∑
𝑓∈𝐼

𝙿(𝑓 ) +
∑
𝑖∈[𝑚]

𝚀(𝑜′𝑖) −
∑
𝑓∈𝑠′𝑔

𝙿(𝑓 ).

Proof. Since 
∑

𝑓∈𝐼 𝙿(𝑓 ) appears on both sides of the equation, we need to prove that
∑
𝑖∈[𝑛]

𝚀(𝑜𝑖) −
∑
𝑓∈𝑠𝑔

𝙿(𝑓 ) =
∑
𝑖∈[𝑚]

𝚀(𝑜′𝑖) −
∑
𝑓∈𝑠′𝑔

𝙿(𝑓 ).

Since 𝜋�𝑠� = 𝑠𝑔 , it follows from Proposition 5 that 
∑

𝑓∈𝑠 𝙿(𝑓 ) +
∑

𝑖∈[𝑛] 𝚀(𝑜𝑖) =
∑

𝑓∈𝑠𝑔 𝙿(𝑓 ), and similarly for 𝜋′ and 𝑠′𝑔 we have that ∑
𝑓∈𝑠 𝙿(𝑓 ) +

∑
𝑖∈[𝑚] 𝚀(𝑜′𝑖) =

∑
𝑓∈𝑠′𝑔 𝙿(𝑓 ). Therefore, it follows that

∑
𝑖∈[𝑛]

𝚀(𝑜𝑖) −
∑
𝑓∈𝑠𝑔

𝙿(𝑓 ) = −
∑
𝑓∈𝑠

𝙿(𝑓 ) =
∑
𝑖∈[𝑚]

𝚀(𝑜′𝑖) −
∑
𝑓∈𝑠′𝑔

𝙿(𝑓 ),

which concludes the proof. □

Next, we show that ℎ𝚀bw is init-aware.

Lemma 11. Let 𝚀 denote an operator-potential function for 𝙿, let 𝜋 = ⟨𝑜1, … , 𝑜𝑛⟩ denote a plan, and let 𝑠𝑔 = 𝜋�𝐼�. Then 
∑

𝑓∈𝐼 𝙿(𝑓 ) +∑
𝑖∈[𝑛] 𝚀(𝑜𝑖) −

∑
𝑓∈𝑠𝑔 𝙿(𝑓 ) = 0.

Proof. It follows directly from Proposition 5, because 𝑠𝑔 = 𝜋�𝐼� and therefore 
∑

𝑓∈𝐼 𝙿(𝑓 ) +
∑

𝑖∈[𝑛] 𝚀(𝑜𝑖) =
∑

𝑓∈𝑠𝑔 𝙿(𝑓 ). □

In the following Lemma 12 we show that ℎ𝚀bw is backward consistent under the assumption that Equation (3) holds for 𝙿. It 
follows from the state-dependency of ℎ𝚀bw and the fact that if Equation (3) holds, then −𝚀(𝑜) ≤ cost(𝑜) holds, i.e., transitioning over 
an operator 𝑜 cannot decrease the heuristic estimate by more than cost(𝑜).

Lemma 12. Let 𝚀 denote an operator-potential function for 𝙿, let 𝑠, 𝑠′ ∈ bw and 𝑜 ∈  denote two backward reachable states and an 
operator such that 𝑜�𝑠� = 𝑠′, let 𝜋 = ⟨𝑞1, … , 𝑞𝑛⟩ ∈ bw denote an 𝑠-plan, let 𝜋′ = ⟨𝑞′1, … , 𝑞′𝑚⟩ ∈ bw denote an 𝑠′-plan, and let 𝑠𝑔 = 𝜋�𝑠�

and 𝑠′𝑔 = 𝜋′�𝑠′�. If Equation (3) holds for 𝙿, then
∑
𝑓∈𝐼

𝙿(𝑓 ) +
∑
𝑖∈[𝑚]

𝚀(𝑞′𝑖 ) −
∑
𝑓∈𝑠′𝑔

𝙿(𝑓 ) ≤
∑
𝑓∈𝐼

𝙿(𝑓 ) +
∑
𝑖∈[𝑛]

𝚀(𝑞𝑖) −
∑
𝑓∈𝑠𝑔

𝙿(𝑓 ) + cost(𝑜).

Proof. Let 𝜌 = ⟨𝑜, 𝑞′1, … , 𝑞′𝑛⟩ (see illustration in Fig. 3). From Lemma 10 and the fact that 𝜌 ∈ bw and it is applicable in 𝑠 and 
𝜌�𝑠� = 𝑠′𝑔 , it follows that

∑
𝑓∈𝐼

𝙿(𝑓 ) +
∑
𝑖∈[𝑛]

𝚀(𝑞𝑖) −
∑
𝑓∈𝑠𝑔

𝙿(𝑓 ) =
∑
𝑓∈𝐼

𝙿(𝑓 ) + 𝚀(𝑜) +
∑
𝑖∈[𝑚]

𝚀(𝑞′𝑖 ) −
∑
𝑓∈𝑠′𝑔

𝙿(𝑓 ),

therefore
∑
𝑓∈𝐼

𝙿(𝑓 ) +
∑
𝑖∈[𝑚]

𝚀(𝑞′𝑖 ) −
∑
𝑓∈𝑠′𝑔

𝙿(𝑓 ) =
∑
𝑓∈𝐼

𝙿(𝑓 ) +
∑
𝑖∈[𝑛]

𝚀(𝑞𝑖) −
∑
𝑓∈𝑠𝑔

𝙿(𝑓 ) − 𝚀(𝑜).
12

Therefore it is enough to prove that −𝚀(𝑜) ≤ cost(𝑜) which follows directly from Definition 3 and Equation (3). □
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Algorithm 2: Partitioning of the goal states such that all states within each partition have the same ℎ𝙿 -value.

Input: A set of variables  = {𝑉1, … , 𝑉𝑛}, a disambiguation map 𝐷𝐺 for goal 𝐺, a potential function 𝙿.
Output: Partitioning 𝑃𝐺 of the goal states by their ℎ𝙿-values.

1 𝑃𝐺 ← {⟨0, ⟩} where  is a set of all states;
2 for 𝑖 = 1, … , 𝑛 do
3 𝑀 ← ∅;
4 for each 𝑓 ∈𝐷𝐺(𝑉𝑖) do
5 𝐵 ← {𝑠 ∈  ∣ 𝑓 ∈ 𝑠};
6 InsertOrUpdate(𝑀 , 𝙿(𝑓 ), 𝐵) ;

7 𝑃𝐺 ← Merge(𝑃𝐺 , 𝑀) ;

8 return 𝑃𝐺 ;

9 function InsertOrUpdate(𝑀 , ℎ, 𝐵)
10 if there exists ⟨ℎ, 𝐵′⟩ ∈𝑀 then
11 𝑀 ← (𝑀 ⧵ {⟨ℎ, 𝐵′⟩}) ∪ {⟨ℎ, 𝐵′ ∪𝐵⟩};
12 else
13 𝑀 ←𝑀 ∪ {⟨ℎ, 𝐵⟩};

14 function Merge(𝑀 , 𝑀 ′)

15 𝑋 ← ∅;
16 for each ⟨ℎ, 𝐵⟩ ∈𝑀 do
17 for each ⟨ℎ′, 𝐵′⟩ ∈𝑀 ′ do
18 InsertOrUpdate(𝑋, ℎ + ℎ′, 𝐵 ∩𝐵′);

19 return 𝑋;

Now we are ready to prove that goal-corrected operator-potential backward heuristics are well-defined (i.e., state-dependent), 
init-aware, backward consistent, and therefore also backward admissible.

Theorem 13. ℎ𝚀bw is well-defined, init-aware, backward consistent, and backward admissible.

Proof. It follows from Lemma 10 that ℎ𝚀bw is well-defined because given any backward reachable state 𝑠, the value of ℎ𝚀bw(𝑠) is the 
same for all 𝑠-plans. Init-awareness follows directly from Lemma 11, backward consistency follows directly from Lemma 12, and 
backward admissibility follows from init-awareness and backward consistency. □

3.3. Partitioning of goal states into BDDs for backward search

Backward search starts in goal states and proceeds towards the initial state. So, given a state 𝑠 reached during the backward 
search, backward heuristics estimate the cost of the optimal 𝐼 -𝑠-path. Incorporating heuristic values of goal states into Equation (7)
allows us to define a backward heuristic that is state-dependent, backward consistent, backward admissible, and at the same time we 
can associate each operator with the change of the heuristic value it induces. However, it also comes with a price. Goal conditions 
of planning tasks are partial states, so they can define an exponential number of goal states. It may seem we need to enumerate all 
(forward reachable) goal states in order to compute heuristic values for them, which would be in general infeasible. Fortunately, 
in symbolic search, sets of states are represented as BDDs whose size can be exponentially smaller than the number of states they 
represent. So, in order to use ℎ𝚀bw in the context of symbolic search, we do not need to enumerate all forward reachable goal states, 
but rather partition those goal states into multiple BDDs so that each BDD represents all forward reachable goal states with the same 
ℎ𝙿-value (or an overapproximation of them). Algorithm 2 encapsulates the algorithm that does exactly that.

The main idea behind Algorithm 2 is as follows. Given a fact 𝑓 , let 𝑓 = {𝑠 ∈  ∣ 𝑓 ∈ 𝑠} denote a set of all states containing 𝑓 . First, 
it is easy to see that, given a variable 𝑉 ∈  and its value 𝑣 ∈ dom(𝑉 ), for every state 𝑠 ∈ ⟨𝑉 ,𝑣⟩ it holds that 𝑠[𝑉 ] = 𝑣 and therefore 
𝙿(⟨𝑉 , 𝑠[𝑉 ]⟩) = 𝙿(⟨𝑉 , 𝑣⟩). So, given a set of distinct variables 𝑉1, … , 𝑉𝑛 ∈  and their respective values 𝑣1 ∈ dom(𝑉1), … , 𝑣𝑛 ∈ dom(𝑉𝑛), 
for every state 𝑠 ∈

⋂
𝑖∈[𝑛] ⟨𝑉𝑖,𝑣𝑖⟩ it holds that 𝑠[𝑉𝑖] = 𝑣𝑖 for every 𝑖 ∈ [𝑛], and therefore 

∑
𝑖∈[𝑛] 𝙿(⟨𝑉𝑖, 𝑠[𝑉𝑖]⟩) =∑

𝑖∈[𝑛] 𝙿(⟨𝑉𝑖, 𝑣𝑖⟩). In other 
words, starting from sets of states 𝑓1

, … , 𝑓𝑛
where each 𝑓𝑖 is from a different variable 𝑉𝑖, we can construct a set of more specific 

states by taking the intersection between sets 𝑓𝑖
while keeping track of the sum of potentials over variables 𝑉𝑖.

Second, given a variable 𝑉 and two values 𝑣, 𝑣′ ∈ dom(𝑉 ), for every state 𝑠 ∈ ⟨𝑉 ,𝑣⟩ ∪ ⟨𝑉 ,𝑣′⟩ it holds that 𝑠[𝑉 ] = 𝑣 or 𝑠[𝑉 ] = 𝑣′. 
So, if 𝙿(⟨𝑉 , 𝑣⟩) = 𝙿(⟨𝑉 , 𝑣′⟩), then also 𝙿(⟨𝑉 , 𝑠[𝑉 ]⟩) = 𝙿(⟨𝑉 , 𝑣⟩) for every state 𝑠 ∈ ⟨𝑉 ,𝑣⟩ ∪⟨𝑉 ,𝑣′⟩. And we can generalize this idea to a 
set of distinct variables 𝑉1, … , 𝑉𝑛 ∈  and their values 𝑣1, 𝑣′1 ∈ dom(𝑉1), … , 𝑣𝑛, 𝑣′𝑛 ∈ dom(𝑉𝑛): If 

∑
𝑖∈[𝑛] 𝙿(⟨𝑉𝑖, 𝑣𝑖⟩) =∑

𝑖∈[𝑛] 𝙿(⟨𝑉𝑖, 𝑣
′
𝑖⟩), 

then for every state 𝑠 ∈
⋂

𝑖∈[𝑛] ⟨𝑉𝑖,𝑣𝑖⟩ ∪
⋂

𝑖∈[𝑛] ⟨𝑉𝑖,𝑣′𝑖⟩ it holds that 𝑠[𝑉𝑖] = 𝑣𝑖 or 𝑠[𝑉𝑖] = 𝑣′𝑖 for every 𝑖 ∈ [𝑛], and therefore also ∑
𝑖∈[𝑛] 𝙿(⟨𝑉𝑖, 𝑠[𝑉𝑖]⟩) =∑

𝑖∈[𝑛] 𝙿(⟨𝑉𝑖, 𝑣𝑖⟩).
Algorithm 2 puts these two ideas together. It iterates over all variables one by one (outer cycle on lines 2 to 7). For each variable 

𝑉𝑖, it considers only the values of 𝑉𝑖 that can be part of some (forward reachable) goal state (line 4), and partitions all states having 
those values by their potential values (lines 3 to 6). Finally, it merges the partitioning over the variable 𝑉𝑖 into the partitioning over 
13

the variables 𝑉1, … , 𝑉𝑖−1 achieved in the previous step while keeping track of the sum of potentials over the variables 𝑉1, … , 𝑉𝑖.
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Since only the facts that can be part of a goal state are considered, the resulting partitioning 𝑃𝐺 is a partitioning of goal states 
only (Theorem 14 (A1)). Since the disambiguation map 𝐷𝐺 overapproximates forward reachable states by definition, 𝑃𝐺 contains all 
forward reachable goal states (Theorem 14 (A2)). Since the function 𝙼𝚎𝚛𝚐𝚎 is always called only for a partitioning 𝑀 over variables 
𝑉1, … , 𝑉𝑖−1 and a partitioning 𝑀 ′ over the variable 𝑉𝑖, taking the intersections on line 18 must result in a partitioning over variables 
𝑉1, … , 𝑉𝑖 eventually terminating with the partitioning over all variables (Theorem 14 (A3)). And finally, since, on line 18, ℎ is the 
sum of potentials over variables 𝑉1, … , 𝑉𝑖−1, and ℎ′ is the potential over the variable 𝑉𝑖, then ℎ + ℎ′ is the sum of potentials over 
variables 𝑉1, … , 𝑉𝑖 which eventually results in the sum over all variables, i.e., the value of the potential heuristic (Theorem 14 (A4)).

Theorem 14. Let  = {𝑉1, … , 𝑉𝑛}, 𝐷𝐺 , and 𝙿 denote inputs of Algorithm 2, and let 𝑃𝐺 = {⟨ℎ1, 𝑃𝐺
1 ⟩, … , ⟨ℎ𝑚, 𝑃𝐺

𝑚 ⟩} denote the output of 
Algorithm 2. Then

A1. for every 𝑠 ∈
⋃

𝑗∈[𝑚] 𝑃
𝐺
𝑗 it holds that 𝐺 ⊆ 𝑠, i.e., 𝑃𝐺 contains only goal states and nothing else; and

A2. for every forward-reachable goal state 𝑠𝑔 it holds that 𝑠𝑔 ∈
⋃

𝑗∈[𝑚] 𝑃
𝐺
𝑗 , i.e., 𝑃𝐺 contains all forward-reachable goal states; and

A3. for every 𝑗, 𝑘 ∈ [𝑚] such that 𝑗 ≠ 𝑘 it holds that 𝑃𝐺
𝑗 ∩ 𝑃𝐺

𝑘
= ∅ and ℎ𝑗 ≠ ℎ𝑘, i.e., 𝑃𝐺 is, indeed, a partitioning; and

A4. for every 𝑗 ∈ [𝑚] and every 𝑠 ∈ 𝑃𝐺
𝑗 it holds that ℎ𝑗 = ℎ𝙿(𝑠), i.e., Algorithm 2 partitions goal states based on their ℎ𝙿-values.

Proof. Given a set of variables 𝑋 ⊆  and a partial state 𝑠, let 𝑠|𝑋 denote a restriction of 𝑠 to 𝑋, i.e., 𝑠|𝑋 = {⟨𝑉 , 𝑣⟩ ∣ ⟨𝑉 , 𝑣⟩ ∈ 𝑠, 𝑉 ∈
𝑋}; and given a set of partial states 𝑆 , let 𝑆|𝑋 = {𝑠|𝑋 ∣ 𝑠 ∈ 𝑆}.

We start with four invariants that hold in every cycle 𝑖 of the outer loop (lines 2-7) with respect to the construction of the set 𝑀
(constructed on lines 3-6):

I1. For every ⟨ℎ, 𝐵⟩ ∈𝑀 and every 𝑠 ∈𝐵 it holds that ⟨𝑉𝑖, 𝑠[𝑉𝑖]⟩ ∈𝐷𝐺(𝑉𝑖). This follows from the fact that 𝐵 is built from the union 
of sets of states {𝑠 ∈  ∣ 𝑓 ∈ 𝑠} where 𝑓 ∈𝐷𝐺(𝑉𝑖).

I2. For every ⟨ℎ, 𝐵⟩ ∈ 𝑀 and every 𝑠 ∈ 𝐵 it holds that ℎ = 𝙿(⟨𝑉𝑖, 𝑠[𝑉𝑖]⟩). This holds because InsertOrUpdate() inserts a set 
of states 𝐵 = {𝑠 ∈  ∣ 𝑓 ∈ 𝑠} with ℎ = 𝙿(𝑓 ) only if the value ℎ is not yet in 𝑀 , and it replaces ⟨ℎ, 𝐵⟩ with ⟨ℎ, 𝐵 ∪ 𝐵′⟩ where 
𝐵′ = {𝑠 ∈  ∣ 𝑓 ′ ∈ 𝑠} only if 𝙿(𝑓 ′) = ℎ.

I3. For every ⟨ℎ, 𝐵⟩ ∈ 𝑀 it holds that 𝐵|⧵{𝑉𝑖} = |⧵{𝑉𝑖}, i.e., 𝐵 restricted to all variables excluding 𝑉𝑖 is a set of all syntactic 
partial states over  ⧵ {𝑉𝑖}. This follows from the fact that every 𝐵 on line 5 is constructed so that 𝐵|⧵{𝑉𝑖} = |⧵{𝑉𝑖} and 
therefore for every union 𝑋 of such sets it also holds that 𝑋|⧵{𝑉𝑖} = |⧵{𝑉𝑖}.

I4. For every ⟨ℎ, 𝐵⟩, ⟨ℎ′, 𝐵′⟩ ∈ 𝑀 such that ⟨ℎ, 𝐵⟩ ≠ ⟨ℎ′, 𝐵′⟩ it holds that 𝐵 ∩ 𝐵′ = ∅ and ℎ ≠ ℎ′. Since InsertOrUpdate()
maintains the set 𝑀 so that there no two elements with the same ℎ-value, we have that ℎ ≠ ℎ′. Since {𝑠 ∈  ∣ 𝑓 ∈ 𝑠} ∩ {𝑠 ∈  ∣
𝑓 ′ ∈ 𝑠} = ∅ whenever 𝑓 ≠ 𝑓 ′, we have that 𝐵 ∩𝐵′ = ∅.

Since 𝑃𝐺 is initialized with the set of all (syntactic) states  and, in the function 𝙼𝚎𝚛𝚐𝚎, the sets of states are constructed only 
using intersections, it follows from I3 that in every cycle 𝑖 of the outer loop, the function 𝙼𝚎𝚛𝚐𝚎 is called on line 7 with the argument 
𝑃𝐺 such that for every ⟨ℎ, 𝐵⟩ ∈ 𝑃𝐺 it holds that 𝐵|{𝑉𝑖,…,𝑉𝑚} = |{𝑉𝑖,…,𝑉𝑚}. Therefore, the function 𝙼𝚎𝚛𝚐𝚎 returns 𝑃𝐺 such that for 
every ⟨ℎ, 𝐵⟩ ∈ 𝑃𝐺 it holds that 𝐵|{𝑉𝑖+1 ,…,𝑉𝑚} = |{𝑉𝑖+1 ,…,𝑉𝑚}, and furthermore from I1 it follows that for every 𝑠 ∈ 𝐵 and every 
𝑉 ∈ {𝑉1, … , 𝑉𝑖}, it holds that ⟨𝑉 , 𝑠[𝑉 ]⟩ ∈𝐷𝐺(𝑉 ). Therefore, at the end of the algorithm, for every ⟨ℎ, 𝐵⟩ ∈ 𝑃𝐺 and every 𝑠 ∈𝐵 and 
every 𝑉 ∈  , it holds that ⟨𝑉 , 𝑠[𝑉 ]⟩ ∈𝐷𝐺(𝑉 ). Therefore, it follows from the definition of 𝐷𝐺 that A1 holds because 𝐷𝐺(𝑉 ) = {⟨𝑉 , 𝑣⟩}
for every ⟨𝑉 , 𝑣⟩ ∈𝐺, and also A2 holds because we considered all possible facts that can appear in any forward reachable goal state.

From I4 and the fact that Merge() uses only intersections to construct sets of states, it follows that 𝑃𝐺
𝑗 ∩ 𝑃𝐺

𝑘
= ∅ for every 

𝑗, 𝑘 ∈ [𝑚] s.t. 𝑗 ≠ 𝑘. And since InsertOrUpdate() makes sure that the output set does not contain two elements with the same 
ℎ-value, it follows that A3 holds.

Finally, from I2 and the fact that 𝙼𝚎𝚛𝚐𝚎 in cycle 𝑖 sums ℎ and ℎ′ such that ℎ is a sum of potentials over variables 𝑉1, … , 𝑉𝑖−1 and 
ℎ′ is the potential over variable 𝑉𝑖, it follows that A4 holds. □

Note that all sets of states can be represented as BDDs, and union (∪) and intersection (∩) between sets of states can be computed 
as a disjunction (∨) and conjunction (∧) between BDDs.

Also note that Algorithm 2 can be easily used for generating a symbolic pattern database equivalent to the potential heuristic. 
Running Algorithm 2 with empty 𝐺 as the input will produce a partitioning of all states (i.e., all states extending ∅) by their ℎ𝙿-values. 
Such symbolic pattern database can be used directly in the variant of BDDA∗ introduced by Kissmann & Edelkamp [34] (discussed 
in Section 2.2). However, there are two main reasons why not to use such symbolic pattern databases. First, the computation of the 
partitioning can be easily infeasible in practice because there is no guarantee that the resulting BDDs will concisely represent the 
underlying set of states (i.e., in the worst case the size of the BDD can be linear in the number of states it represents, therefore it 
can grow exponentially). This guarantee does not exist even for the partitioning of goal states and we will focus on this aspect in our 
experimental evaluation in Section 5.4. Second, and more importantly, symbolic pattern databases generated with Algorithm 2 cannot 
be more informative than the corresponding potential heuristic which, in turn, is equivalent to the operator-potential heuristics ℎ𝚀fw
(and to ℎ𝚀bw on forward reachable states). As we discuss in the next section, ℎ𝚀fw and ℎ𝚀bw can be applied in the symbolic search by a 
straightforward integration of the underlying operator-potential function 𝚀 into the GHSETA∗ search, which makes the computation 
14

of heuristic values using symbolic pattern databases much more expensive than using GHSETA∗ with ℎ𝚀fw or ℎ𝚀bw instead.
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4. Symbolic search with operator-potential heuristics

The integration of the operator-potential forward heuristic in the forward GHSETA∗ is straightforward. The operator-potential 
forward heuristic ℎ𝚀fw is defined as ℎ𝚀fw(𝑠) =

∑
𝑓∈𝐼 𝙿(𝑓 ) +

∑
𝑖∈[𝑛] 𝚀(𝑜𝑖) (see Equation (5)) and therefore we have that ℎ𝚀fw(𝑠) = ℎ𝙿(𝐼) +∑

𝑖∈[𝑛] 𝚀(𝑜𝑖) (because ℎ𝙿(𝐼) = ℎ𝙿fw(𝐼) =
∑

𝑓∈𝐼 𝙿(𝑓 )). Moreover, we have shown in Theorem 7 that ℎ𝚀fw is forward consistent and 
forward admissible (assuming the underlying ℎ𝙿fw is forward consistent and forward admissible). Therefore, we can integrate ℎ𝚀fw
into GHSETA∗ described in Algorithm 1 by simply setting ℎ𝐼 to ℎ𝙿(𝐼) and using 𝚀 as the 𝛿ℎ function. That is, we set the heuristic 
value of the initial state to ℎ𝙿(𝐼), and partition operators by their costs and 𝚀(𝑜) values.

For the backward direction, we also use 𝚀 as the 𝛿ℎ function, but on top of that we need to partition the set of goal states using 
Algorithm 2. That is, we cannot start with the BDD representing the set of all goal states (and initialize ℎ𝐼 to ℎ𝙿(𝐼)) because this 
could result in a path-dependent inconsistent heuristic. What we need to do instead is to generate the partitioning of the (forward 
reachable) goal states by their ℎ𝙿-values and initialize the open list accordingly. Let 𝑃𝐺 = {𝑃𝐺

ℎ1
, … , 𝑃𝐺

ℎ𝑛
} denote all partitions returned 

by Algorithm 2, where ℎ1, … , ℎ𝑛 are all distinct ℎ𝙿-values goal states can have, i.e., for every 𝑃𝐺
ℎ𝑖
∈ 𝑃𝐺 and every state 𝑠𝑔 ∈ 𝑃𝐺

ℎ𝑖
it 

holds that ℎ𝙿(𝑠𝑔) = ℎ𝑖. Moreover, let ℎ𝐼
𝑖 = ℎ𝙿(𝐼) − ℎ𝑖 for every 𝑖 ∈ [𝑛]. Then we need to initialize the open list (lines 3 and 4 in 

Algorithm 1) as {⟨max(0, ℎ𝐼
𝑖 ), 𝑆0,ℎ𝐼

𝑖
⟩ ∣ 𝑃𝐺

ℎ𝑖
∈ 𝑃𝐺, 𝑆0,ℎ𝐼

𝑖
= 𝑃𝐺

ℎ𝑖
}, i.e., we insert every partition 𝑃𝐺

ℎ𝑖
into the open list with the 𝑔-value set 

to zero, ℎ-value set to ℎ𝐼
𝑖 = ℎ𝙿(𝐼) − ℎ𝑖, and 𝑓 -value set to max(0, ℎ𝐼

𝑖 ). This is all that is needed, because it ensures that any sequence 
of operators ⟨𝑜1, … , 𝑜𝑚⟩ applied on any state from any 𝑆0,ℎ𝐼

𝑖
results in the ℎ-value ℎ𝐼

𝑖 +
∑

𝑗∈[𝑚] 𝚀(𝑜𝑗 ) = ℎ𝙿(𝐼) −ℎ𝑖+
∑

𝑗∈[𝑚] 𝚀(𝑜𝑗 ) which 
is exactly what we need in order to obtain a goal-corrected operator-potential backward heuristic according to Definition 9 that is 
backward consistent and backward admissible (Theorem 13).

The bi-directional GHSETA∗ combines the aforementioned approaches and therefore we can use different operator-potential 
heuristics in each direction or choose to use blind symbolic search in one direction and an operator-potential heuristic in the other.

5. Experimental evaluation

The proposed heuristics and the GHSETA∗ algorithm was implemented in C as a part of the cpddl planning library.3 The inference 
of potential and operator-potential functions was implemented using CPLEX LP/MIP solver v22.1.0. For the manipulation of BDDs 
we used the CUDD library v3.0.0.

The translation from PDDL to FDR uses the inference of lifted mutex groups proposed by Fišer [19] that are subsequently used 
for the creation of FDR variables. Operators and facts are pruned with the ℎ2 heuristic in forward and backward direction [4], and 
we used mutex pairs from the forward ℎ2 heuristic for disambiguation.

Performing operations on BDDs can sometimes be very time-consuming, which significantly reduces performance of the symbolic 
search. Therefore, we follow the approach used in previous implementations of symbolic planners by applying various time limits on 
BDD operations to mitigate their negative effect whenever we can. We use a time limit of 30 seconds for applying mutexes on the 
BDDs representing goal states. When the time limit is reached in the forward or backward GHSETA∗, the search is simply performed 
without mutexes applied on the goal BDDs. In case of bi-directional GHSETA∗, when the time limit is reached, the search in the 
backward direction is disabled, because it is a strong indication that computing successor states in the backward direction will be 
very slow or it will require a large amount of memory. We also applied 10 seconds time limit on merging transition relation BDDs, 
i.e., for each cost and operator-potential value we try to build a single BDD representing all operators in that partition, but if we 
fail to do that within the time limit, we use the disjunctive partitioning [33,57]. In case of bi-directional GHSETA∗, we also turn off 
backward search once the step in the backward direction takes longer than three minutes (i.e., one tenth of the overall time limit 
as we describe below). This helps symbolic search to proceed without getting stuck in a fruitless attempt to compute a set of states 
that cannot be efficiently represented as a BDD. We do not apply the same time limit in the forward direction, because computing 
successors in the backward direction is usually more time-consuming than in the forward direction (i.e., if it takes long in the forward 
direction, it will probably take even longer in the backward direction).

The experiments were conducted on a cluster of computing nodes with Intel Xeon Scalable Gold 6146 processors. The time and 
memory limits were set to 30 minutes and 8 GB, respectively. We used all planning domains from the optimal track of International 
Planning Competitions (IPCs) from 1998 to 2018 excluding the ones containing conditional effects after translation and those that 
could not be grounded and pruned with ℎ2 within the time and memory limits. We merged, for each domain, all benchmark suites 
across different IPCs eliminating duplicate instances, resulting in a total of 1648 planning tasks across 48 domains.4

Potential and operator-potential functions were inferred with the following optimization criteria:

• 𝙸: maximize the heuristic value of the initial state [40], i.e., we set the optimization criteria of the LP/MIP to maximize ∑
𝑓∈𝐼 𝙿(𝑓 ).

• 𝙰+𝙸: maximize the heuristic value for the average (syntactic) state while enforcing the maximum heuristic value for the initial 
state [20,44]. We first compute 𝙸 to obtain the maximal heuristic value for the initial state ℎ𝐼 . Then we extend the LP/MIP with 
the additional constraint 

∑
𝑓∈𝐼 𝙿(𝑓 ) ≥ ℎ𝐼 , and we maximize the sum

3 Source code is publicly available at https://gitlab .com /danfis /cpddl.
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4 Dataset is available at https://gitlab .com /danfis /pddl -data.

https://gitlab.com/danfis/cpddl
https://gitlab.com/danfis/pddl-data


Artificial Intelligence 334 (2024) 104174D. Fišer, Á. Torralba and J. Hoffmann

∑
⟨𝑉 ,𝑣⟩∈

𝙿(⟨𝑉 , 𝑣⟩)
|dom(𝑉 )| .

• 𝚂𝟷𝚔+𝙸: maximize the average heuristic value for 1 000 states sampled using random walks, while enforcing the maximum 
heuristic value for the initial state [20,44]. We enforce the maximum heuristic value for the initial state as in 𝙰+𝙸. Then we 
sample 1 000 states 𝑆 by random walks starting from the initial state with binomially distributed length of walks centered 
around the double of the maximum ℎ-value for the initial state. Finally, we set the optimization criteria to the maximization of 
the heuristic value over states 𝑆 , i.e., we maximize

1
|𝑆|

∑
𝑠∈𝑆

∑
𝑓∈𝑠

𝙿(𝑓 ).

• 𝙼2+𝙸: maximize the average heuristic value for all reachable states approximated with mutexes while enforcing the maximum 
heuristic value for the initial state [20]. The maximum ℎ-value for the initial state is enforced as in 𝙰+𝙸 and 𝚂𝟷𝚔+𝙸. The 
optimization criteria is based on estimating, for each fact 𝑓 ∈  , the number of forward reachable states containing 𝑓 . The 
details are described by Fišer et al. [20, Section 5.1] as the optimization criteria opt𝑘


which we use for 𝑘 = 2.

The blind symbolic search is denoted by 𝚋. The forward symbolic search is denoted by −→⋅ , and the backward symbolic search 
by ←−⋅ : For example, the blind forward search is denoted by −→𝚋 , the backward search with ℎ𝚀bw optimized for 𝙰+𝙸 is denoted by ←−−𝙰+𝙸, 
and the bi-directional search with ℎ𝚀fw optimized for 𝙰+𝙸 used in the forward direction, and ℎ𝚀bw optimized for 𝙸 in the backward 
direction is denoted by −−→𝙰+𝙸-←−𝙸 . For the blind bi-directional symbolic search, we use the shorthand ←→𝚋 .

For symbolic search with operator-potential heuristics (ℎ𝚀fw and ℎ𝚀bw), we transformed planning tasks so that vars(pre(𝑜)) =
vars(ef f(𝑜)) for every operator 𝑜 by the “multiplication” method described in Section 2 using the ℎ2 mutexes for disambiguation. 
We also compare to the variant where tasks are transformed to TNF using the (polynomial) method proposed by Pommerening 
& Helmert [38] improved with disambiguations [20]. We show, however, that this method is almost always detrimental to the 
performance. Note that the transformed planning tasks are not only used for the computation of potential functions, but must also be 
used for the symbolic search, because the inferred operator-potentials correspond to the operators of the transformed planning task, 
not the original task. The time spent in the transformation of planning tasks is always counted as a part of the running time.

Besides our implementation of blind symbolic search, we also compare to the following planners:

• A∗ with potential heuristics using the same optimization criteria used for operator-potential heuristics (𝙿𝙸, 𝙿𝙰+𝙸, 𝙿𝚂𝟷𝚔+𝙸, and 
𝙿𝙼2+𝙸);

• A∗ with the LM-Cut (𝚕𝚖𝚌) heuristic [29];
• A∗ with the merge-and-shrink (𝚖𝚜) heuristic with SCC-DFP merge strategy, non-greedy bisimulation shrink strategy, and the 

limit of 50 000 states for the resulting abstract transition system [30,48,49];
• the Complementary2 planner (𝚌𝚘𝚖𝚙𝟸) from IPC 2018 [24,25];
• the Scorpion planner (𝚜𝚌𝚛𝚙) from IPC 2018 [42,43];
• the cGamer planner from IPC 2014 [34,56] with the PDB heuristic (𝚌𝚐𝚖), i.e., an implementation of the symbolic search with 

pattern databases.

We do not show a detailed comparison to the implementation of blind symbolic search competing in IPC 2011 and 2014 (𝚜𝚖𝚋), 
because our implementation has overall better performance. The overall number of solved tasks is 943 by −→𝚋 in contrast to 852 by 
−−→𝚜𝚖𝚋, 795 by ←−𝚋 vs. 702 by ←−−𝚜𝚖𝚋, and 1 055 by ←→𝚋 vs. 942 by ←←←←←←→𝚜𝚖𝚋. Moreover, there are only 27, 12, and 13 individual tasks solved by 
−−→𝚜𝚖𝚋, ←−−𝚜𝚖𝚋, and ←←←←←←→𝚜𝚖𝚋 that are not solved by −→𝚋 , ←−𝚋 , and ←→𝚋 , respectively.

The 𝚌𝚐𝚖 planner is compared only on subsets of domains because of its limited support of PDDL features like conditional effects, 
inequality preconditions, or quantifiers (we had to exclude domains caldera, cavediving, GED, maintenance, movie, mprime, snake, 
spider, termes, and trucks).

5.1. Operator-potential functions via mixed-integer linear programs

Potential functions (for state-space search) are typically inferred using linear programs (LPs). Nevertheless, a smooth integration 
of operator-potential heuristics in the symbolic search requires integer-valued operator-potentials which in turn requires solving 
mixed-integer linear programs (MIPs).

Although there always exists an operator-potential heuristic (e.g., assigning zero to all operators), solving MIP instead of LP may 
result in a less informative heuristic because the MIP used for operator-potentials is more restricted than the corresponding LP for 
(fact) potentials. To get a sense of how much does using integer-valued operator-potentials cost in terms of a loss of informativeness, 
we focus on the potential heuristic optimized for the initial state (𝙸) which gives us the highest possible estimate for the initial state. 
Comparing how its values for initial states change if the MIP is used instead of LP shows that it actually almost never changes. We 
found that we get a smaller heuristic value in only 17 tasks from four domains (two tasks in nomystery, three in pegsol, eight in 
pipesworld-notankage, and four in pipesworld-tankage), and the heuristic values always differ only by one. So, using MIP instead of 
LP almost never leads to a loss of informativeness. However, solving a MIP, which is NP-complete, is typically much more time and 
16

memory demanding than solving a LP, which can be done in polynomial time.
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Fig. 4. Per-task comparison of the time in seconds needed for solving LP formulations of potential functions (on horizontal axis), and the corresponding MIP 
formulations of operator-potential functions (on vertical axis).

Fig. 5. Cumulative graphs comparing solving MIP and LP variants of (operator-) potential heuristics. Only tasks where both MIP and LP was solved within time and 
memory limits are considered.

Fig. 4 shows per-task comparisons of the runtime of LP and MIP solvers for different variants of (operator-) potential heuristics. 
Note that 𝙸 requires solving one LP (or MIP), whereas 𝙰+𝙸, 𝙼2+𝙸, and 𝚂𝟷𝚔+𝙸 require solving two LPs (MIPs)—the first one for getting 
maximal heuristic value for the initial state which is then used in the second one as an additional constraint. Although solving the MIP 
is indeed almost always slower (sometimes by more than two orders of magnitude), the runtime is not a significant limiting factor in 
most tasks. This can be observed in Fig. 5a depicting a cumulative number of tasks with successfully inferred operator-potentials on 
𝑦 axis versus the ratio between the runtime of MIP and LP variants on 𝑥 axis, i.e., the point (𝑥, 𝑦) corresponds to 𝑦 tasks where the 
ratio between the runtime of MIP over LP is 𝑥 or less. For all tested optimization criteria of potential heuristics, the slowdown is well 
below the factor of ten for most of the tasks, and the median slowdown is 1.4 for 𝙸, 2.6 for 𝙰+𝙸, 2.3 for 𝚂𝟷𝚔+𝙸, and 1.6 for 𝙼2+𝙸.

Fig. 5b depicts the runtime in absolute numbers as a cumulative graph of the number of tasks over the runtime of the MIP variant. 
It shows that the operator-potential function can be found within one second for most tasks, and under ten seconds for almost all 
tasks. The runtime higher than ten seconds occurred in only 25, 74, 127, and 130 tasks for 𝙸, 𝙰+𝙸, 𝚂𝟷𝚔+𝙸, and 𝙼2+𝙸, respectively. In 
contrast to the LP variant, MIP could not be solved within the time or memory limit in only one task from the caldera domain, four 
from pipesworld-tankage, and two from spider for 𝙸 and 𝙰+𝙸, and additionally three more tasks from airport and four more from 
pipesworld-notankage for 𝚂𝟷𝚔+𝙸 and 𝙼2+𝙸. Overall, using MIP instead of LP is rarely a bottleneck, primarily because it is computed 
only once before the search starts.

5.2. Normalization of planning tasks

State-dependent and (forward and backward) consistent heuristics ℎ𝚀fw and ℎ𝚀bw require that vars(pre(𝑜)) = vars(ef f(𝑜)) for every 
operator 𝑜 ∈ . In the set of benchmarks we use here, this is the case in 485 out of 1 648 tasks. The rest of the tasks has to 
be transformed to this form. As already described in Section 2, it can be done either by the polynomial method described by 
Pommerening & Helmert [38] and Fišer et al. [20], denoted by 𝚙𝚘𝚕𝚢, or by the (more brute-force) “multiplication” method (𝚖𝚞𝚕𝚝). 
The disadvantage of the 𝚙𝚘𝚕𝚢 method is that it can introduce many zero-cost operators, and the disadvantage of the 𝚖𝚞𝚕𝚝 method 
is that it can incur in an exponential blow-up of the number of operators. Nevertheless, Fig. 6 shows that it rarely happens that 
the number of operators is significantly increased by 𝚖𝚞𝚕𝚝 in our dataset. In fact, only one task (from the caldera domain) could 
not be transformed by 𝚖𝚞𝚕𝚝 due to the memory limit, and the number of operators grew more than two-fold in only two domains: 
In maintenance, the number of operators was between 2.3 and 2.7 times higher with 𝚖𝚞𝚕𝚝. In agricola, the number of operators 
increased 7- to 16-fold.

The runtime also does not seem to be an issue. The transformation takes more than one second in only 28 tasks for 𝚖𝚞𝚕𝚝 in 
contrast to 34 tasks for 𝚙𝚘𝚕𝚢. The maximum runtime of 𝚖𝚞𝚕𝚝 is 6.7 seconds in contrast to 9 seconds of 𝚙𝚘𝚕𝚢, and the median of the 
17

ratio between the runtimes of 𝚖𝚞𝚕𝚝 and 𝚙𝚘𝚕𝚢 is one. Therefore, both methods are about as fast as the other.
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Fig. 6. Per-task comparison of the number of operators before and after the transformation using 𝚙𝚘𝚕𝚢 or 𝚖𝚞𝚕𝚝; 𝚋𝚊𝚜𝚎 denotes the number of operators in the original 
planning task (before the transformation).

Table 1
Comparison of the 𝚙𝚘𝚕𝚢 and 𝚖𝚞𝚕𝚝 methods in terms of the number of domains where one method solved more tasks than the other, the number of 
tasks solved by one method but not the other, and the overall number of solved tasks.

−→𝙸 −−→𝙰+𝙸 −−−−→𝚂𝟷𝚔+𝙸 −−−→𝙼2+𝙸 ←−𝙸 ←−−𝙰+𝙸 ←−−−−𝚂𝟷𝚔+𝙸 ←−−−𝙼2+𝙸 −−→𝙰+𝙸-←−𝚋 −−→𝙰+𝙸-←̃−𝙸
𝚙𝚘𝚕𝚢 #domains with higher coverage than 𝚖𝚞𝚕𝚝 0 0 0 0 1 1 2 1 0 0

#tasks solved by 𝚙𝚘𝚕𝚢 but not by 𝚖𝚞𝚕𝚝 0 1 1 1 5 1 4 1 1 1
overall number of solved tasks 884 998 980 990 649 610 616 610 827 818

𝚖𝚞𝚕𝚝 #domains with higher coverage than 𝚙𝚘𝚕𝚢 21 18 18 19 32 31 26 31 37 39
#tasks solved by 𝚖𝚞𝚕𝚝 but not by 𝚙𝚘𝚕𝚢 108 120 121 124 174 185 158 184 337 304
overall number of solved tasks 992 1 117 1 100 1 113 818 794 770 793 1 163 1 121

Table 2
“Domain Dominance”: the row 𝑥 and column 𝑦 shows the number of domains where the method 𝑥 solved more tasks than the method 𝑦. “Task Dominance”: the row 
𝑥 and column 𝑦 shows the number of tasks solved by 𝑥 but not by 𝑦. “tot”: the overall number of solved tasks (coverage). The number in the cell (𝑥, 𝑦) is in bold if it 
is higher than the number in (𝑦, 𝑥). The most interesting numbers are highlighted with grey background: We highlight comparisons between GHSETA∗ and A∗ with 
the same (operator-) potential heuristics, and we highlight comparisons between the forward blind symbolic search (−→𝚋 ) and the forward GHSETA∗ with ℎ𝚀

fw .
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−−→𝙰+𝙸 – 4 13 25 25 25 30 31 31 – 6 21 149 151 153 125 184 200 1 117
−−−→𝙼2+𝙸 1 – 11 25 25 25 30 31 31 2 – 18 151 151 155 121 180 201 1 113
−−−−→𝚂𝟷𝚔+𝙸 2 4 – 22 22 21 26 30 27 4 5 – 140 141 142 110 170 189 1 100
𝙿𝙰+𝙸 9 9 12 – 3 4 19 24 16 36 42 44 – 5 14 113 169 65 1 004
𝙿𝙼2+𝙸 8 9 12 0 – 3 19 24 16 33 37 40 0 – 13 108 164 61 999
𝙿𝚂𝟷𝚔+𝙸 9 10 12 2 4 – 20 24 17 32 38 38 6 10 – 107 162 69 996
−→𝙸 0 0 0 14 14 14 – 21 18 0 0 2 101 101 103 – 76 134 992
−→𝚋 4 4 5 16 16 17 7 – 20 10 10 13 108 108 109 27 – 132 943
𝙿𝙸 5 6 7 0 0 3 16 19 – 22 27 28 0 1 12 81 128 – 939

So, neither of the methods seem to be detrimental in terms of the size of the resulting planning task or the runtime overhead 
they incur. However, it turns out that the 𝚖𝚞𝚕𝚝 method has a much better synergy with the symbolic search with operator-potential 
heuristics than 𝚙𝚘𝚕𝚢, as can be observed in Table 1. For example, there is only a single task from the whole dataset where using 
𝚙𝚘𝚕𝚢 is beneficial over using 𝚖𝚞𝚕𝚝 in the forward search—it is the one task from the caldera domain mentioned above, where 𝚖𝚞𝚕𝚝
could not successfully transform the planning task within the memory limit. We think the clear superiority of 𝚖𝚞𝚕𝚝 is caused by the 
auxiliary zero-cost operators created by 𝚙𝚘𝚕𝚢, because a single operator in the task created with 𝚖𝚞𝚕𝚝 may correspond to a sequence 
of operators in the task created with 𝚙𝚘𝚕𝚢. Thus the change of the heuristic value induced by such an operator is dissolved into 
multiple operators for 𝚙𝚘𝚕𝚢. For these reasons, in all of the following experiments, we consider the transformation method 𝚖𝚞𝚕𝚝
only.

5.3. Forward search

As we discussed in Section 5.1, operator-potential heuristics tend to retain informativeness of the corresponding potential heuris-
tics. So, the next question is whether the information provided by operator-potential heuristics increases the efficiency of the symbolic 
search. Table 2 compares all variants of GHSETA∗, state-space search A∗ with the same potential heuristics, and the blind forward 
and bi-directional symbolic search. GHSETA∗ variants are clearly superior to their A∗ counterparts in overall numbers—be it the 
overall number of solved tasks, number of domains in which GHSETA∗ dominates A∗, or the number of tasks solved by GHSETA∗

but not A∗. However, we can still observe some complementarity between the methods (in particular, for the potentials optimized 
18

for the initial state (𝙸)).
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Table 3
Per-domain comparison of the number of solved tasks for the forward GHSETA∗ with ℎ𝚀

fw , A∗ with potential heuristics, and forward and bi-directional blind symbolic 
search. The row “others” sums over domains with exactly the same number of solved tasks by all compared methods. “+” indicates that GHSETA∗ solved every task 
that was solved by A∗ with the same potential heuristic; “�” indicates that GHSETA∗ solved every task solved by −→𝚋 ; and “⊕” indicates the combination of both +
and � occurring at the same time. Finally, we highlight in blue (⊕) the cases where GHSETA∗ has strictly more coverage than any of the two methods it combines. 
(For interpretation of the colors in the table, the reader is referred to the web version of this article.)

domain −→𝙸 −−→𝙰+𝙸 −−−−→𝚂𝟷𝚔+𝙸 −−−→𝙼2+𝙸 𝙿𝙸 𝙿𝙰+𝙸 𝙿𝚂𝟷𝚔+𝙸 𝙿𝙼2+𝙸
−→𝚋 ←→𝚋

agricola (20) + 13 ⊕ 20 ⊕ 20 ⊕ 20 3 3 3 3 20 20
airport (30) � 27 � 27 � 27 � 27 30 30 30 30 26 27
barman (34) + 11 + 16 + 16 + 16 11 11 11 11 18 18
blocks (35) ⊕ 23 ⊕ 31 ⊕ 30 ⊕ 31 21 28 28 28 21 33
caldera (20) 17 17 17 17 12 12 12 12 17 17
childsnack (20) ⊕ 4 ⊕ 5 ⊕ 5 ⊕ 5 0 0 0 0 4 4
data-network (20) + 9 ⊕ 13 + 9 ⊕ 13 9 9 9 9 11 13
depot (22) 6 ⊕ 11 � 10 ⊕ 11 9 11 11 11 7 8
driverlog (20) ⊕ 13 ⊕ 14 ⊕ 13 ⊕ 14 13 13 13 13 11 14
elevators (50) ⊕ 35 ⊕ 35 ⊕ 35 ⊕ 35 31 31 31 31 35 43
floortile (40) ⊕ 17 ⊕ 17 ⊕ 17 ⊕ 17 16 16 16 16 17 34
freecell (80) � 42 � 69 � 68 � 67 65 72 72 69 20 25
ged (20) ⊕ 15 ⊕ 15 � 15 ⊕ 15 15 15 19 15 15 20
gripper (20) ⊕ 20 ⊕ 20 ⊕ 20 ⊕ 20 8 8 8 8 20 20
hiking (20) + 14 + 14 + 15 + 14 13 14 14 14 16 18
logistics (61) ⊕ 27 ⊕ 28 ⊕ 28 ⊕ 28 13 24 24 24 21 25
mprime (35) ⊕ 28 ⊕ 30 ⊕ 29 ⊕ 30 24 24 24 24 27 27
mystery (19) � 15 ⊕ 19 ⊕ 19 ⊕ 19 16 18 18 18 15 15
nomystery (20) ⊕ 14 ⊕ 18 ⊕ 17 ⊕ 18 10 14 14 14 11 18
openstacks (100) ⊕ 88 ⊕ 91 ⊕ 91 ⊕ 91 57 57 57 57 87 87
parcprinter (50) � 44 � 48 ⊕ 45 � 48 48 48 45 48 41 39
parking (40) � 0 � 13 � 13 � 13 11 16 16 16 0 5
pathways (30) ⊕ 5 ⊕ 5 ⊕ 5 ⊕ 5 4 4 4 4 5 5
pegsol (50) ⊕ 48 ⊕ 48 ⊕ 48 ⊕ 48 48 48 48 48 46 48
petri-net-alignment (20) 9 11 10 10 13 13 11 13 12 19
pipesworld-notankage (50) � 22 � 25 � 25 � 23 25 30 29 29 17 17
pipesworld-tankage (50) ⊕ 18 ⊕ 20 � 20 ⊕ 20 16 19 20 19 17 17
rovers (40) ⊕ 13 ⊕ 14 ⊕ 14 ⊕ 14 6 8 8 8 13 14
satellite (27) ⊕ 7 ⊕ 11 ⊕ 10 ⊕ 11 6 6 6 6 7 11
scanalyzer (50) ⊕ 23 ⊕ 23 ⊕ 23 ⊕ 23 23 23 23 23 21 21
snake (20) � 10 � 11 � 11 � 11 15 15 15 15 7 7
sokoban (50) � 48 ⊕ 50 ⊕ 50 ⊕ 50 50 50 50 50 48 48
spider (20) � 11 � 13 � 11 � 12 14 16 16 15 7 7
storage (30) ⊕ 15 ⊕ 16 ⊕ 16 ⊕ 16 15 16 16 16 15 15
termes (20) ⊕ 12 ⊕ 12 ⊕ 12 ⊕ 12 12 12 12 12 12 18
tetris (17) � 13 � 16 � 16 � 16 15 17 17 17 9 12
tidybot (40) � 30 ⊕ 34 ⊕ 34 ⊕ 34 32 32 32 32 30 29
tpp (30) ⊕ 12 ⊕ 12 ⊕ 12 ⊕ 12 7 8 8 8 8 8
transport (70) 23 + 25 23 + 25 24 24 24 24 27 34
trucks (30) � 14 ⊕ 16 ⊕ 14 ⊕ 16 14 14 14 14 13 13
visitall (40) � 22 � 22 � 22 � 22 30 30 23 30 17 18
woodworking (50) ⊕ 40 ⊕ 45 ⊕ 48 ⊕ 47 19 29 29 29 38 48
zenotravel (20) � 10 ⊕ 12 ⊕ 12 ⊕ 12 11 11 11 11 9 11

others (118) 105 105 105 105 105 105 105 105 105 105

Σ (1648) 992 1 117 1 100 1 113 939 1 004 996 999 943 1 055

The more detailed per-domain comparison in Table 3 indicates that A∗ with a potential heuristic solves more tasks than GHSETA∗

with the corresponding operator-potential heuristic mostly in domains where −→𝚋 performs worse than A∗ with potential heuristics. 
Nevertheless, GHSETA∗ performs at least as good as (and usually better than) the corresponding A∗ with potential heuristics in an 
overwhelming majority of domains.

The comparison to −→𝚋 in Table 2 shows that enhancing symbolic search with operator-potential heuristics greatly increases the 
overall number of solved tasks, and it is rarely detrimental. Table 3 shows a great synergy between the methods across the whole 
benchmark set. This suggests that the partitioning of operators by their operator-potentials induces a compact representation of sets 
of states using BDDs which can also be observed in Fig. 7.

Fig. 7a shows that the size of BDDs measured as the number of nodes of the BDDs consistently decreases when the operator-
potential heuristic is used, and this, as expected, leads to a speedup per expanded BDD (Fig. 7b) as most operations on BDDs are 
polynomial in the number of BDD nodes. Fig. 7c shows that the number of expanded BDDs (sets of states) increases, which, again, 
is expected, because the sets of states during the search are partitioned not only by 𝑔-values but also ℎ-values. Nevertheless, the 
overall search effort is reduced, which can be observed in Fig. 7d comparing the number of BDD nodes from all expanded BDDs, and 
in Fig. 7e showing the overall runtime in seconds. As the plots show, the number of total BDD nodes across all BDDs involved in 
19

the search is rarely significantly increased when using operator-potential heuristics. This shows that operator-potential heuristics can 
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Fig. 7. Per-task comparison between the best-performing variant of forward GHSETA∗ .

Table 4
The number of tasks in which the partitioning of goal states using Al-
gorithm 2 failed. The row “others” sums over domains where there is 
no difference between the compared methods.

domain ←−𝙸 ←−−𝙰+𝙸 ←−−−−𝚂𝟷𝚔+𝙸 ←−−−𝙼2+𝙸

airport (30) 1 0 0 0
childsnack (20) 4 0 1 0
data-network (20) 1 0 0 0
depot (22) 1 2 1 0
mprime (35) 1 0 0 0
pathways (30) 1 0 0 0
pipesworld-notankage (50) 12 2 2 18
pipesworld-tankage (50) 16 15 8 12
rovers (40) 1 0 0 0
snake (20) 3 6 2 15
sokoban (50) 2 2 1 0
storage (30) 6 10 7 0
tetris (17) 5 1 2 1
tidybot (40) 1 0 0 0
tpp (30) 17 15 16 15

others (1164) 0 0 0 0

Σ (1648) 72 53 40 61

Fig. 8. Cumulative graphs comparing the number of goal BDDs and the number of nodes they consist of.

overcome the limitations of other “more informed” heuristics that do not induce a good BDD representation of sets of states during 
the search [51]. In terms of runtime, this translates into speed ups of up to several orders of magnitude, while being detrimental in 
very few cases.

Overall, it seems GHSETA∗ with operator-potential heuristics tends to get the best from both the symbolic search and the heuristic 
search with potential heuristics. Furthermore, one can observe that the combination of symbolic search and operator-potential 
heuristics is often better than the sum of its parts, i.e., in many domains the combination solves every task solved by any of the two 
20

techniques it combines, and it achieves a strictly higher coverage than the best of them.
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Table 5
“Domain Dominance”: the row 𝑥 and column 𝑦 shows the number of domains where the method 𝑥
solved more tasks than the method 𝑦. “Task Dominance”: the row 𝑥 and column 𝑦 shows the number 
of tasks solved by 𝑥 but not by 𝑦. “tot”: the overall number of solved tasks (coverage).

Domain Dominance Task Dominance

←− 𝙸 ←− 𝚋 ←
−− 𝙰+
𝙸

←
−−
−

𝙼 2
+
𝙸

←
−−
−−

𝚂 𝟷
𝚔+

𝙸

←− 𝙸 ←− 𝚋 ←
−− 𝙰+
𝙸

←
−−
−

𝙼 2
+
𝙸

←
−−
−−

𝚂 𝟷
𝚔+

𝙸

tot
←−𝙸 – 22 18 18 23 – 86 64 65 78 818
←−𝚋 16 – 9 11 14 63 – 42 44 59 795
←−−𝙰+𝙸 12 16 – 6 14 40 41 – 15 35 794
←−−−𝙼2+𝙸 11 15 3 – 13 40 42 14 – 38 793
←−−−−𝚂𝟷𝚔+𝙸 7 12 5 5 – 30 34 11 15 – 770

5.4. Backward search

Goal-corrected operator-potential backward heuristics require partitioning of goal states by their heuristic values. Algorithm 2
from Section 3.3 can provide such partitioning as a set of BDDs, but it can have exponential runtime and it can generate an exponential 
number of partitions in the worst case.

Table 4 shows the number of tasks per domain where Algorithm 2 did not finish partitioning of goal states within the time 
limit (the memory limit was never an issue). The partitioning is not possible in only a relatively small number of tasks from the IPC 
domains and it is highly dependent on the domain and operator-potential heuristic. Moreover, only three tasks where the partitioning 
failed could be solved by some variant of the backward symbolic search. ←−𝙸 failed to compute partitioning of goal states in one task 
in airport which was solved by ←−−𝙰+𝙸, ←−−−−𝚂𝟷𝚔+𝙸, ←−−−𝙼2+𝙸 and ←−𝚋 , and one task in tetris which was solved by ←−−𝙰+𝙸, ←−−−−𝚂𝟷𝚔+𝙸 and ←−−−𝙼2+𝙸. ←−−−−𝚂𝟷𝚔+𝙸
failed to determine partitioning in one task from the tpp domain which was solved by ←−𝙸 . Overall, partitioning of goal states fails 
(with very few exceptions) only in tasks that cannot be solved by any variant of backward symbolic search. The median runtime of 
Algorithm 2 for all variants is about 1 millisecond, and the averages are 8.3, 3.5, 2.6 and 5 seconds for ←−𝙸 , ←−−𝙰+𝙸, ←−−−−𝚂𝟷𝚔+𝙸 and ←−−−𝙼2+𝙸, 
respectively. Therefore, running partitioning of goal states does not seem to be a limiting factor in practice.

To see how many partitions we get for a different operator-potential heuristic, i.e., how many different heuristic values goal states 
have, we plot cumulative graphs in Fig. 8a showing the number of tasks (on 𝑦-axis) having at least the number of goal BDD partitions 
given on 𝑥-axis. The median of the number of partitions is 5 for 𝙸, and 1 for 𝙰+𝙸, 𝚂𝟷𝚔+𝙸, 𝙼2+𝙸. The average is 42.1, 3.8, 17.8 and 3.8
for 𝙸, 𝙰+𝙸, 𝚂𝟷𝚔+𝙸 and 𝙼2+𝙸, respectively. The number of tasks with 10 (100) or less partitions is 1 007 (1 438) for 𝙸, 1 503 (1 580) for 
𝙰+𝙸, 1 311 (1 546) for 𝚂𝟷𝚔+𝙸, and 1 469 (1 564) for 𝙼2+𝙸. So, in a majority of tasks the partitioning results in a very low number of 
partitions, it rarely happens that the number of partitions exceeds 100, and the optimization for the initial state (𝙸) tends to generate 
more partitions than other methods. The number of partitions is also highly domain-dependent, and larger tasks tend to have more 
goal partitions than smaller tasks from the same domain.

Fig. 8b shows the size of the representation of goal states as a cumulative graph similar to Fig. 8a, i.e., it shows the number of 
tasks (𝑦-axis) where the sum of the number of BDD nodes over all goal BDDs is at least the number given on the 𝑥-axis. Note that 
the number of goal states in every task is the same for all variants of operator-potential heuristics, but the partitioning of goal states 
may be different. The graph shows that a higher number of goal BDDs results in a less concise representation of the underlying states 
which is not surprising. Nevertheless, the difference between the size of representations for different operator-potential heuristics 
seems to be less profound than the difference between the number of partitions.

Table 5 compares GHSETA∗ with different variants of ℎ𝚀bw and the blind backward symbolic search in terms of the number of 
domains where one method solved more tasks than the other (“Domain Dominance”), and the number of tasks solved by one method 
but not the other (“Task Dominance”). On one hand, we can observe that using operator-potential heuristics 𝙸, 𝙰+𝙸, and 𝙼2+𝙸 instead 
of blind search is beneficial in more domains than it is detrimental, ←−𝙸 solves more tasks overall than ←−𝚋 , and the overall coverage of 
←−𝚋 is almost the same as ←−−𝙰+𝙸 and ←−−−𝙼2+𝙸. On the other hand, all methods using ℎ𝚀bw seem to be complementary to the blind search and 
to each other in terms of both domain and task dominance. Nevertheless, ←−𝙸 stands out in this comparison as it not only solves more 
tasks than any other method, but is also superior to all other methods in the number of dominated domains and tasks. Moreover, we 
were not able to ascertain any correlation between the number of goal partitions and the number of solved tasks.

Similarly to the forward search, we can also observe in this case that the average size of an expanded BDD is often decreased 
(Fig. 9a), which leads to a speedup per expanded BDD (Fig. 9b). The number of expanded BDDs is also increased (Fig. 9c) as 
expected because of the partitioning of states by both 𝑔- and ℎ-values. Where the backward search significantly differs from its 
forward counterpart is the comparison of the size of the BDD representation of sets of states (Fig. 9d) and the overall runtime 
of backward search (Fig. 9e) which show complementarity of the blind backward search and the backward search with operator-
potential heuristic rather than a clear-cut improvement thanks to more informed search as was the case for the forward symbolic 
search (cf. Fig. 7d and 7e).

5.5. Bi-directional search

Symbolic bi-directional search allows us to combine any variant of the operator-potential heuristics in forward and backward 
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directions. Table 6 shows the comparison of the overall number of solved tasks for all variants of forward and backward GHSETA∗
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Fig. 9. Per-task comparison between the best-performing variant of backward GHSETA∗ (←−𝙸 ) and the backward blind symbolic search (←−𝚋 ).

Table 6
Overall number of tasks solved by different combinations of forward and backward 
symbolic search. A value in the row 𝑥 and the column 𝑦 is the overall number of 
solved tasks where 𝑥 was used for the forward direction and 𝑦 for the backward 
direction of the symbolic bi-directional search. ∅ means that no forward or back-
ward search was used. 𝚘𝚛𝚊𝚌𝚕𝚎 refers to selecting the best variant for each task for 
the respective search direction. The highest coverage of all non-oracle variants is 
in bold.

∅ ←−𝚋 ←−𝙸 ←−−𝙰+𝙸 ←−−−𝙼2+𝙸 ←−−−−𝚂𝟷𝚔+𝙸 ←−−−−−−𝚘𝚛𝚊𝚌𝚕𝚎

∅ – 795 818 794 793 770 893
−→𝚋 943 1 055 991 998 998 974 1 084
−→𝙸 992 1 038 1 012 1 018 1 017 1 011 1 064
−−→𝙰+𝙸 1 117 1 163 1 121 1 150 1 138 1 136 1 178
−−−→𝙼2+𝙸 1 113 1 153 1 112 1 141 1 135 1 134 1 170
−−−−→𝚂𝟷𝚔+𝙸 1 100 1 135 1 099 1 118 1 108 1 112 1 152
−−−−−−→𝚘𝚛𝚊𝚌𝚕𝚎 1 130 1 185 1 136 1 159 1 152 1 150 1 204

Table 7
“Domain Dominance”: the row 𝑥 and column 𝑦 shows the number of domains where the method 𝑥 solved more tasks than the method 𝑦. “Task Dominance”: the row 
𝑥 and column 𝑦 shows the number of tasks solved by 𝑥 but not by 𝑦. “tot”: the overall number of solved tasks (coverage).

Domain Dominance Task Dominance

−−
→

𝙰+
𝙸-
←− 𝚋

−−
−→

𝙼 2
+
𝙸-
←
−− 𝙰+
𝙸

−−
→

𝙰+
𝙸-
←− 𝙸

−−
→

𝙰+
𝙸

←→ 𝚋 −→ 𝚋 ←− 𝙸 ←− 𝚋 −−
→

𝙰+
𝙸-
←− 𝚋

−−
−→

𝙼 2
+
𝙸-
←
−− 𝙰+
𝙸

−−
→

𝙰+
𝙸-
←− 𝙸

−−
→

𝙰+
𝙸

←→ 𝚋 −→ 𝚋 ←− 𝙸 ←− 𝚋 tot
−−→𝙰+𝙸-←−𝚋 – 16 21 15 26 37 41 37 – 31 53 62 128 230 350 377 1 163
−−−→𝙼2+𝙸-←−−𝙰+𝙸 4 – 12 13 23 35 39 36 9 – 37 60 120 220 326 363 1 141
−−→𝙰+𝙸-←−𝙸 3 9 – 10 20 31 39 35 11 17 – 43 118 203 307 343 1 121
−−→𝙰+𝙸 8 15 15 – 22 31 39 37 16 36 39 – 128 184 320 351 1 117
←→𝚋 6 7 11 10 – 23 35 36 20 34 52 66 – 115 260 262 1 055
−→𝚋 4 5 6 4 2 – 26 30 10 22 25 10 3 – 186 190 943
←−𝙸 0 1 2 1 7 12 – 22 5 3 4 21 23 61 – 86 818
←−𝚋 1 4 5 4 1 6 16 – 9 17 17 29 2 42 63 – 795

with operator-potential heuristics and blind symbolic search. The baseline of blind bi-directional symbolic search (←→𝚋 ), which was 
the state-of-the-art variant of symbolic search until now, solved 1 055 tasks, but all variants of GHSETA∗ using an operator-potential 
heuristic other than 𝙸 in the forward direction overcome this result—even the forward-only GHSETA∗. The table also shows that using 
operator-potential heuristics in the forward direction has much bigger impact on the overall number of solved tasks than operator-
potential heuristics in the backward direction. This is in-line with our previous findings regarding forward-only and backward-only 
GHSETA∗.

Table 7 provides even more insights as it compares selected bi-directional variants with operator-potential heuristics with the 
best-performing variants of the forward-only and backward-only GHSETA∗ with operator-potential heuristics and the blind variants 
of symbolic search in all directions. For the bi-directional GHSETA∗, we selected the best-performing variant −−→𝙰+𝙸-←−𝚋 and two more 
best-performing variants among those that do not use the blind backward search. The bi-directional variants with operator-potential 
heuristics are clearly superior to the forward-only and backward-only GHSETA∗ and blind variants in the overall number of solved 
tasks, in the number of domains where one variant solves more tasks than the other, and the number of tasks solved by one variant 
but not the other. The only exception is −−→𝙰+𝙸 that dominates −−→𝙰+𝙸-←−𝙸 and −−−→𝙼2+𝙸-

←−−𝙰+𝙸 in more domains than the other way around 
22

(although it is still worse in the overall numbers).
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Fig. 10. Per-task comparison between the best-performing variant of backward GHSETA∗ (←−𝙸 ) and the backward blind symbolic search (←−𝚋 ).

Closer inspection of the experimental results showed that there are only 29 and 10 tasks solved by ←−𝚋 and ←−𝙸 , respectively, that 
are not solved by −−→𝙰+𝙸. This also at least partially explains why the best variant of the bi-directional symbolic search is −−→𝙰+𝙸-←−𝚋 and not −−→𝙰+𝙸-←−𝙸 even though the backward GHSETA∗ with 𝙸 has higher overall coverage than the backward blind search: ←−𝙸 seems to work 
better than ←−𝚋 in tasks that can already be solved by −−→𝙰+𝙸. Thus, the blind backward search seems to be more complementary to the 
forward symbolic search with operator-potential heuristics.

Table 6 also shows the results for “oracles”, i.e., for each individual task we select the best variant in the respective direction to 
see what is the potential of the proposed techniques. In other words, 𝚘𝚛𝚊𝚌𝚕𝚎 shows the best possible result if we knew for each task 
in advance what is the best search technique from those introduced in this paper. The numbers indicate that if we better understand 
what makes one operator-potential heuristic better suited for a symbolic search in a particular task than the other, we may be able 
to further improve the performance of the proposed techniques. For example, comparing −−−−−−→𝚘𝚛𝚊𝚌𝚕𝚎-←−𝚋 (1 185) and −−−−−−→𝚘𝚛𝚊𝚌𝚕𝚎-←−−−−−−𝚘𝚛𝚊𝚌𝚕𝚎
(1 204), one can observe that there are 19 instances that are only solved when operator-potential heuristics are used within the 
backward search.

As in the previous cases, we also analyze in more detail the effect of the proposed methods on the number and sizes of BDDs 
representing sets of states and the runtime. Fig. 10 compares the best-performing bi-directional variant −−→𝙰+𝙸-←−𝚋 with (on the top 
row) the baseline ←→𝚋 (which was up until now the best symbolic planner), and (on the bottom row) with −−→𝙰+𝙸-←−𝙸 to see how using a 
different operator-potential heuristics in the backward direction affects the search. Recall that ←−𝙸 performs better than ←−𝚋 , but −−→𝙰+𝙸-←−𝚋
performs better than −−→𝙰+𝙸-←−𝙸—there are only 11 tasks solved by −−→𝙰+𝙸-←−𝙸 that are not solved by −−→𝙰+𝙸-←−𝚋 , but 53 tasks solved by −−→𝙰+𝙸-←−𝚋
and not by −−→𝙰+𝙸-←−𝙸 (cf. Table 7).

The comparison to ←→𝚋 seems to replicate the improvements that we observed when comparing −−→𝙰+𝙸 and −→𝚋 (cf. Fig. 7). This is not 
surprising as the difference between the methods is exactly replacing blind forward search with −−→𝙰+𝙸, which was shown to greatly 
improve performance in the unidirectional search case. The bottom row of Fig. 10 comparing −−→𝙰+𝙸-←−𝚋 and −−→𝙰+𝙸-←−𝙸 shows that replacing 
𝚋 with 𝙸 in the backward direction of the bi-directional search has much less profound effect than in the backward-only search (cf. 
Fig. 9). Nevertheless, we can still observe that using operator-potential heuristics in the backward direction (instead of blind search) 
results in more expanded BDDs (sets of states) because 𝙸 induces more fine-grained partitioning of sets of states (Fig. 10c, bottom), 
and we can see that the size of the expanded BDDs tends to be smaller with 𝙸 (Fig. 10a, bottom). However, as we already noted, −−→𝙰+𝙸
seems to be more complementary with ←−𝚋 than with ←−𝙸 which results in a better overall performance of −−→𝙰+𝙸-←−𝚋 .

5.6. Comparison to state-of-the-art

What remains is the comparison to other state-of-the-art planning methods. From the newly proposed methods, we consider 
the best variants of GHSETA∗ in all directions (−−→𝙰+𝙸, ←−𝙸 , −−→𝙰+𝙸-←−𝚋 ), and the bi-directional GHSETA∗ combining the best forward and 
backward variant (−−→𝙰+𝙸-←−𝙸 ). We compare those to heuristic state-based planners (𝚕𝚖𝚌, 𝚖𝚜, 𝚌𝚘𝚖𝚙𝟸, and 𝚜𝚌𝚛𝚙), the blind bi-directional 
symbolic search (←→𝚋 ), and the symbolic search with pattern databases (𝚌𝚐𝚖). Table 8 compares the methods by counting the number 
of domains where one method solved more tasks than the other, and the number of tasks solved by one method but not the other.−−→𝙰+𝙸, −−→𝙰+𝙸-←−𝚋 , and −−→𝙰+𝙸-←−𝙸 perform better than any other compared method in the overall number of solved tasks. Since 𝚌𝚐𝚖
performs worse than the blind bi-directional symbolic search, it is not surprising it performs much worse than our best methods. 
Moreover, there is not much complementarity between 𝚌𝚐𝚖 and our best methods, i.e., there are only few domains or tasks where 
𝚌𝚐𝚖 performs better than −−→𝙰+𝙸, −−→𝙰+𝙸-←−𝚋 , or −−→𝙰+𝙸-←−𝙸 . A similar picture can be observed with the heuristic planners 𝚕𝚖𝚌 and 𝚖𝚜: They 
23

perform significantly worse than our best methods and there is not much complementarity.
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Table 8
“Domain Dominance”: the row 𝑥 and column 𝑦 shows the number of domains where the method 𝑥 solved more tasks than the method 𝑦. “Task Dominance”: the row 
𝑥 and column 𝑦 shows the number of tasks solved by 𝑥 but not by 𝑦. “tot”: the overall number of solved tasks (coverage). For 𝚌𝚐𝚖, we considered only the subset of 
domains supported by the planner, i.e., both the row and columns for 𝚌𝚐𝚖 disregard domains caldera, cavediving, GED, maintenance, movie, mprime, snake, spider, 
termes, and trucks.

Domain Dominance Task Dominance

−−
→

𝙰+
𝙸-
←− 𝚋

−−
→

𝙰+
𝙸-
←− 𝙸

−−
→

𝙰+
𝙸

𝚜𝚌
𝚛𝚙

𝚌𝚘
𝚖𝚙

𝟸

←→ 𝚋 𝚕𝚖
𝚌

𝚖𝚜 ←− 𝙸 𝚌𝚐
𝚖

−−
→

𝙰+
𝙸-
←− 𝚋

−−
→

𝙰+
𝙸-
←− 𝙸

−−
→

𝙰+
𝙸

𝚜𝚌
𝚛𝚙

𝚌𝚘
𝚖𝚙

𝟸

←→ 𝚋 𝚕𝚖
𝚌

𝚖𝚜 ←− 𝙸 𝚌𝚐
𝚖

tot
−−→𝙰+𝙸-←−𝚋 – 21 15 17 23 26 36 39 41 36 – 53 62 137 117 128 277 321 350 481 1 163
−−→𝙰+𝙸-←−𝙸 3 – 10 14 17 20 34 35 39 34 11 – 43 120 106 118 246 288 307 451 1 121
−−→𝙰+𝙸 8 15 – 15 20 22 34 38 39 35 16 39 – 113 115 128 254 271 320 459 1 117
𝚜𝚌𝚛𝚙 19 25 25 – 19 27 36 37 35 29 77 102 99 – 119 179 230 251 362 463 1 103
𝚌𝚘𝚖𝚙𝟸 10 18 16 16 – 21 33 38 38 34 50 81 94 112 – 86 218 245 303 424 1 096
←→𝚋 6 11 10 14 12 – 25 32 35 34 20 52 66 131 45 – 188 232 260 389 1 055
𝚕𝚖𝚌 1 5 5 2 6 9 – 21 28 28 15 26 38 28 23 34 – 100 184 299 901
𝚖𝚜 1 3 1 1 4 9 15 – 21 28 17 26 13 7 8 36 58 – 160 274 859
←−𝙸 0 2 1 7 5 7 16 16 – 27 5 4 21 77 25 23 101 119 – 255 818
𝚌𝚐𝚖 1 2 2 6 0 1 8 8 10 – 5 10 16 46 5 3 51 62 62 – 518

Fig. 11. Per-task comparison of the runtime (in seconds) of the best variant of GHSETA∗ against the explicit state search methods 𝚜𝚌𝚛𝚙 and 𝚌𝚘𝚖𝚙𝟸.

𝚜𝚌𝚛𝚙 and 𝚌𝚘𝚖𝚙𝟸 both solve less tasks than our best methods overall, but they also seem to be complementary to our approach. In 
particular, the number of domains where 𝚜𝚌𝚛𝚙 performs better than our methods is higher than the other way around. In fact, 𝚜𝚌𝚛𝚙
is the best-performing planner (from the ones compared here) in 28 domains, whereas −−→𝙰+𝙸-←−𝚋 is the best-performing planner in 22 
domains (−−→𝙰+𝙸-←−𝙸 in 14 domains, and −−→𝙰+𝙸 in 15 domains). Nevertheless, the overall numbers are in favor of the bi-directional GHSETA∗

with operator-potential heuristics, and the difference seems to be spread over large number of structurally different domains.
In terms of runtime, Fig. 11 shows a comparison of our best approach, −−→𝙰+𝙸-←−𝚋 , against several explicit-state search planners. The 

comparison with 𝚜𝚌𝚛𝚙 and 𝚌𝚘𝚖𝚙𝟸 is not very insightful as they use an expensive preprocessing phase to compute the heuristic with a 
fixed time limit of 900 and 300 seconds, respectively. Due to this, −−→𝙰+𝙸-←−𝚋 is faster in the majority of instances. The comparison with 
𝚕𝚖𝚌 and 𝚖𝚜 shows that, despite the huge advantage in coverage of −−→𝙰+𝙸-←−𝚋 , there are still a number of instances solved faster by these 
planners. This is partially due to the preprocessing phase of −−→𝙰+𝙸-←−𝚋 , which requires some time to compute the potential heuristics 
and initialize the data-structures to perform symbolic search. But overall, −−→𝙰+𝙸-←−𝚋 is still up to several orders of magnitude faster on 
many instances.

6. Conclusion

Heuristic state space search and symbolic search are complementary enhancements to the same basic algorithm—state space 
search—through the use of heuristic search guidance functions ℎ, and of compact state-set representations, respectively. It is natural 
to combine both approaches, yet that combination has not been an unqualified success. One key reason for this is that, in symbolic 
search, ℎ must be (efficiently) applicable to sets of states rather than individual ones. Here we show that potential heuristics can 
be reformulated in a manner allowing to do just that. The resulting methods empirically do not tend to suffer from the second key 
problem (detrimental state partitionings). They soundly beat the previous state of the art in symbolic search for optimal planning; 
they are on par with, as well as highly complementary to, the state of the art in optimal heuristic search planning.

This result boosts our ability to plan optimally, and it re-emphasizes the role of symbolic search, in particular heuristic symbolic 
search, as part of the state of the art, suggesting that further research effort may be well placed in this area which recently received 
scant attention.

A specific question opened up by our research is whether the key to our method—the transformation of heuristic values into 
a sum of heuristic-value changes per operator—may be applicable to other kinds of heuristic functions as well. For example, for 
abstraction heuristics this is certainly not true per se, as the change in heuristic value (abstract goal distance) is highly dependent on 
the state in general. But perhaps abstractions can be designed so as to avoid that phenomenon. Similarly, it may be possible to adjust 
24

the design of other admissible estimators, like landmark heuristics, to this end.
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Beyond this, there is a number of issues that our work sheds light upon, and that would be worth being explored more broadly. 
Our experimental analysis shows that potential heuristics defined in previous work obtain great performance in forward search, and a 
mild improvement in backward search. This suggests to investigate what kind of potential heuristics can do better in each direction, 
as well as defining new optimization criteria for potential heuristics, and/or investigating whether higher-dimensional potential 
heuristics [39] can further improve performance. More generally, a key issue is to improve our understanding of what makes a 
heuristic good in symbolic search. Operator-potential heuristics offer a clear positive example, in contrast to previous analysis [51]. 
A promising avenue of research is to characterize what kind of heuristics induce good state partitionings for sets of states represented 
as BDDs, and how the choice of representation (e.g., using EVMDDs instead [8,35,50]) affects the usefulness of different heuristic 
functions. Another promising line of research is on how to best make use of heuristics in symbolic bi-directional search. In recent 
years, there have been significant advances in explicit state bi-directional heuristic search [1,3,31,46,47], which could shed light on 
how to make the most out of heuristics in the symbolic search case too.
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Appendix A. General case: path-dependent heuristics

In this section, we consider the general case of path-dependent heuristics, where we allow for the heuristic value of a state 𝑠 to 
depend on the path used to reach 𝑠 from the initial state (in forward search), or the goal (in backward search). This opens several 
new possibilities:

1. We can lose the assumption that vars(pre(𝑜)) = vars(ef f(𝑜)) for every operator 𝑜, i.e., we move from the normalized FDR to the 
FDR in its general form. So, for the rest this section, let Π = ⟨ , , 𝐼, 𝐺⟩ denote a planning task (not necessarily normalized).

2. We no longer require that the operator-potential is the exact change in heuristic value. Rather, it suffices if this is an admissible 
approximation. This allows to infer potential functions using the LP encoding and rounding potentials down to the nearest 
integer instead of using the MIP encoding.

However, we observe in the experiments (see results below) that normalizing the task to have state-dependent heuristics is almost 
always superior in practice. As the general case complicates the theory and proofs, we decided to focus the main part of the paper 
on the conceptually simplest (and in practice better performing) case and only consider path-dependent heuristics in this appendix.

The definitions of potential functions and potential heuristics (Definition 1) do not change for the general case, but the sufficient 
conditions under which the potential heuristic is consistent (Equation (3)) need to be adapted because it can happen that there is 
an operator 𝑜 that affects a variable for which a precondition is not defined, i.e., vars(ef f(𝑜)) ⧵ vars(pre(𝑜)) ≠ ∅. As in the previous 
case, we borrow the formulation from Fišer et al. [20]. Recall that 𝐷𝑜(𝑉 ) denotes a disambiguation of 𝑉 for pre(𝑜) ∪ prv(𝑜) for every 
𝑜 ∈ . Here, we assume 𝐷𝑜(𝑉 ) is given to us for every 𝑜 ∈  and every 𝑉 ∈  (e.g., it has been computed by using the method by 
Fišer et al. [20]).

Theorem 15. Let 𝙿 denote a potential function. If Equation (2) holds and for every operator 𝑜 ∈ it holds that
∑

𝑉 ∈vars(eff(𝑜))
max

𝑓∈𝐷𝑜(𝑉 )
𝙿(𝑓 ) −

∑
𝑓∈eff(𝑜)

𝙿(𝑓 ) ≤ cost(𝑜), (A.1)

then ℎ𝙿fw is goal-aware, forward consistent, and forward admissible.

We show that for non-normalized FDR tasks, heuristics computed as sums of operator-potential values over sequences of operators 
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lead to path-dependent heuristics. Similarly to a forward heuristic ℎfw, a path-dependent forward heuristic ℎ̃fw ∶ fw ↦ℝ ∪ {∞}

https://perspicuous-computing.science
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estimates the cost of optimal 𝑠-plans, but it takes sequences of operators applicable in 𝐼 instead of reachable states as its inputs, 
i.e., two different sequences of operators 𝜋, 𝜋′ ∈ fw such that 𝜋�𝐼� = 𝜋′�𝐼� = 𝑠 ∈ fw can result in two different heuristic values 
ℎ̃fw(𝜋) ≠ ℎ̃fw(𝜋′). A path-dependent forward heuristic ̃ℎfw is called forward admissible if ̃ℎfw(𝜋) ≤ ℎ⋆

fw(𝑠) for every reachable state 
𝑠 ∈ fw and every sequence of operators 𝜋 ∈ fw such that 𝜋�𝐼� = 𝑠.

A path-dependent backward heuristic ℎ̃bw ∶ bw ↦ ℝ ∪ {∞} is defined analogously to the path-dependent forward heuristic, 
i.e., it takes 𝑠-plans and estimates the cost of the optimal 𝐼 -𝑠-paths. A path-dependent backward heuristic ℎ̃bw is called backward 
admissible if ̃ℎbw(𝜋) ≤ ℎ⋆

bw(𝑠) for every 𝑠 ∈ bw and every 𝜋 ∈ bw such that 𝜋 is applicable in 𝑠 and 𝜋�𝑠� is a goal state.

A.1. General operator-potential function

The previous definition of the operator-potential function (Definition 3) was pertinent to the normalized FDR tasks only. Here, 
we need to generalize the definition to cover also cases where operators affect variables not defined in their preconditions. Note that 
similarly to Definition 3, the general operator-potential function ̃𝚀 is defined using the left hand side of the consistency condition on 
potential function (Equation (A.1)) with the opposite sign.

Definition 16. Given a potential function 𝙿, a function ̃𝚀 ∶ ↦ℝ is called a general operator-potential function for 𝙿 if

𝚀̃(𝑜) ≤
∑

𝑓∈eff(𝑜)
𝙿(𝑓 ) −

∑
𝑉 ∈vars(eff (𝑜))

max
𝑓∈𝐷𝑜(𝑉 )

𝙿(𝑓 ) (A.2)

for every operator 𝑜 ∈.

Typically, we would like to use the largest value satisfying the inequality, i.e.,

𝚀̃(𝑜) =
∑

𝑓∈eff(𝑜)
𝙿(𝑓 ) −

∑
𝑉 ∈vars(eff (𝑜))

max
𝑓∈𝐷𝑜(𝑉 )

𝙿(𝑓 ), (A.3)

as that leads to the most informative heuristic. However, it is still safe to use lower values if that is convenient for some reason. For 
example, this allows us to compute potential functions with floating-point operator potentials and round them down to the nearest 
integer. Also note that if the input planning task is normalized, then 𝚀̃ computed with Equation (A.3) is equal to 𝚀, because in 
normalized tasks, 𝐷𝑜(𝑉 ) is a singleton for every 𝑉 ∈ vars(ef f(𝑜)), i.e., 

⋃
𝑉 ∈vars(eff(𝑜))𝐷𝑜(𝑉 ) = pre(𝑜).

Next, we show that ̃𝚀(𝑜) (constructed from the potential function 𝙿) is a lower bound on the change of the heuristic value of ℎ𝙿fw
induced by the operator 𝑜.

Proposition 17. Let 𝚀̃ denote a general operator-potential function for 𝙿, 𝑠 ∈ fw denote a forward reachable state, and let 𝑜 ∈  denote 
an operator applicable in 𝑠. Then 

∑
𝑓∈𝑠 𝙿(𝑓 ) + 𝚀̃(𝑜) ≤

∑
𝑓∈𝑜�𝑠� 𝙿(𝑓 ).

Proof. We prove the case where 𝚀̃(𝑜) =
∑

𝑓∈eff(𝑜) 𝙿(𝑓 ) −
∑

𝑉 ∈vars(eff (𝑜)) max𝑓∈𝐷𝑜(𝑉 ) 𝙿(𝑓 ), the general case from Definition 16 eas-
ily follows. Let 𝑡 = 𝑜�𝑠� ⧵ eff(𝑜) denote the set of facts unaffected by the operator 𝑜, and let 𝑥 = 𝑠 ⧵ 𝑡 denote the set of 
facts changed by 𝑜. So, we have 

∑
𝑓∈𝑠 𝙿(𝑓 ) =

∑
𝑓∈𝑡 𝙿(𝑓 ) +

∑
𝑓∈𝑥 𝙿(𝑓 ) and 

∑
𝑓∈𝑜�𝑠� 𝙿(𝑓 ) =

∑
𝑓∈𝑡 𝙿(𝑓 ) +

∑
𝑓∈eff(𝑜) 𝙿(𝑓 ). Therefore, 

we need to prove that 
∑

𝑓∈𝑥 𝙿(𝑓 ) +
∑

𝑓∈eff(𝑜) 𝙿(𝑓 ) −
∑

𝑉 ∈vars(eff(𝑜)) max𝑓∈𝐷𝑜(𝑉 ) 𝙿(𝑓 ) ≤
∑

𝑓∈eff(𝑜) 𝙿(𝑓 ) which holds iff 
∑

𝑓∈𝑥 𝙿(𝑓 ) −∑
𝑉 ∈vars(eff (𝑜)) max𝑓∈𝐷𝑜(𝑉 ) 𝙿(𝑓 ) ≤ 0 holds. It is easy to see that vars(𝑥) = vars(ef f(𝑜)) and from the definition of disambiguation it fol-

lows that for every 𝑉 ∈ vars(𝑥) it holds that 𝑥[𝑉 ] ∈𝐷𝑜(𝑉 ). Therefore, for every 𝑉 ∈ vars(𝑥), we have that 𝙿(𝑥[𝑉 ]) ≤max𝑓∈𝐷𝑜(𝑉 ) 𝙿(𝑓 ), 
which concludes the proof. □

Unlike 𝚀 in case of normalized FDR tasks, 𝚀̃ for non-normalized tasks does not necessarily capture the change of the heuristic 
value exactly, even if we take the maximal value satisfying the inequality in Equation (A.2). Consider the simple non-normalized 
planning task in Fig. A.1 and states “aX” and “bX”, and the operator 𝑜1. The ℎ𝙿fw-value for “aX” is zero and ℎ𝙿fw-value for “bX” is one, 
i.e., the change of the heuristic value is one, but 𝚀̃(𝑜1) = 0 (as Equation (A.2) needs to account also for the self-loop resulting from 
applying 𝑜1 in the state “bX”).

A.2. Forward direction

Path-dependent operator-potential forward heuristics are defined analogously to their state-dependent counterparts (Definition 6), 
except that here we use ̃𝚀 instead of 𝚀.

Definition 18. Let 𝚀̃ denote a general operator-potential function for 𝙿. A path-dependent operator-potential forward heuristic
ℎ̃𝚀fw ∶ fw ↦ℝ ∪ {∞} for ̃𝚀 is defined as

ℎ̃𝚀 (𝜋) =
∑

𝙿(𝑓 ) +
∑

𝚀̃(𝑜 ) (A.4)
26
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𝑓∈𝐼 𝑖∈[𝑛]

𝑖
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 = {𝑣1, 𝑣2}, dom(𝑣1) = {𝑎, 𝑏}, dom(𝑣2) = {𝑋,𝑌 }

𝐼 = {⟨𝑣1, 𝑎⟩, ⟨𝑣2,𝑋⟩}, 𝐺 = {⟨𝑣1, 𝑏⟩, ⟨𝑣2, 𝑌 ⟩}
𝑜 ∈ prv(𝑜) pre(𝑜) ef f(𝑜) cost(𝑜) 𝚀̃(𝑜)

𝑜1 ⟨𝑣2,𝑋⟩ ∅ ⟨𝑣1, 𝑏⟩ 1 0
𝑜2 ∅ ∅ ⟨𝑣2, 𝑌 ⟩ 1 -1
𝑜3 ⟨𝑣2, 𝑌 ⟩ ⟨𝑣1, 𝑎⟩ ⟨𝑣1, 𝑏⟩ 1 1

𝑓 𝙿(𝑓 )

⟨𝑣1, 𝑎⟩ 0
⟨𝑣1, 𝑏⟩ 1
⟨𝑣2,𝑋⟩ 0
⟨𝑣2, 𝑌 ⟩ -1

state 𝑠 ℎ𝙿
fw(𝑠)

{⟨𝑣1, 𝑎⟩, ⟨𝑣2,𝑋⟩} 0
{⟨𝑣1, 𝑎⟩, ⟨𝑣2, 𝑌 ⟩} -1
{⟨𝑣1, 𝑏⟩, ⟨𝑣2,𝑋⟩} 1
{⟨𝑣1, 𝑏⟩, ⟨𝑣2, 𝑌 ⟩} 0

𝑎𝑋

𝑏𝑋

𝑏𝑌

𝑎𝑌

𝑜1 𝑜2

𝑜1

𝑜2

𝑜2𝑜2 𝑜3

Fig. A.1. Example planning task Π = ⟨ , , 𝐼, 𝐺⟩ showing path dependency of operator-potential heuristics for non-normalized FDR tasks. 𝚀̃ is computed using 
Equation (A.3).

for any sequence of operators 𝜋 = ⟨𝑜1, … , 𝑜𝑛⟩ applicable in 𝐼 .

Observe that ℎ̃𝚀fw can, indeed, be path-dependent for non-normalized planning tasks. Consider the example planning task 
in Fig. A.1 again. The goal state “bY” can be reached from the initial state “aX” by two different paths, 𝜋 = ⟨𝑜1, 𝑜2⟩ and 
𝜋′ = ⟨𝑜2, 𝑜3⟩, and we obtain two different heuristic values for 𝜋 and 𝜋′. Namely, ℎ̃𝚀fw(𝜋) = ℎ𝙿fw(𝐼) + 𝚀̃(𝑜1) + 𝚀̃(𝑜2) = −1 and 
ℎ̃𝚀fw(𝜋

′) = ℎ𝙿fw(𝐼) + 𝚀̃(𝑜2) + 𝚀̃(𝑜3) = 0.

Next, we show that if the underlying potential heuristic ℎ𝙿fw is forward admissible, then the path-dependent operator-potential 
forward heuristic ̃ℎ𝚀fw is also forward admissible. This follows simply from the fact that ̃𝚀 provides lower bounds on the change of the 
heuristic value of ℎ𝙿fw induced by each operator. So, if we start from the admissible estimate for the initial state, then adding these 
lower bounds results in an admissible estimate for all forward reachable states.

Theorem 19. If ℎ𝙿fw is forward admissible, then ̃ℎ𝚀fw is forward admissible.

Proof. We need to prove that for any 𝜋 = ⟨𝑜1, … , 𝑜𝑛⟩ ∈ fw and 𝑠 = 𝜋�𝐼� it holds that 
∑

𝑓∈𝐼 𝙿(𝑓 ) +
∑

𝑖∈[𝑛] 𝚀̃(𝑜𝑖) ≤
∑

𝑓 ′∈𝑠 𝙿(𝑓 ′), which 
we will prove by induction.

The claim clearly holds for the empty sequence 𝜋 because ℎ𝙿fw(𝐼) = ℎ̃𝚀fw(𝐼). So, we assume 
∑

𝑓∈𝐼 𝙿(𝑓 ) +
∑

𝑖∈[𝑘] 𝚀̃(𝑜𝑖) ≤
∑

𝑓∈𝑠′ 𝙿(𝑓 )
holds for some 0 < 𝑘 < 𝑛, 𝜋′ = ⟨𝑜1, … , 𝑜𝑘⟩, and 𝑠′ = 𝜋′�𝐼�, and we need to prove that 

∑
𝑓∈𝐼 𝙿(𝑓 ) +

∑
𝑖∈[𝑘+1] 𝚀̃(𝑜𝑖) ≤

∑
𝑓∈𝑜𝑘+1�𝑠′� 𝙿(𝑓 )

also holds.
From the assumption 

∑
𝑓∈𝐼 𝙿(𝑓 ) +

∑
𝑖∈[𝑘] 𝚀̃(𝑜𝑖) ≤

∑
𝑓∈𝑠′ 𝙿(𝑓 ) it follows that

∑
𝑓∈𝐼

𝙿(𝑓 ) +
∑
𝑖∈[𝑘]

𝚀̃(𝑜𝑖) + 𝚀̃(𝑜𝑘+1) ≤
∑
𝑓∈𝑠′

𝙿(𝑓 ) + 𝚀̃(𝑜𝑘+1).

From Proposition 17, it follows that 
∑

𝑓∈𝑠′ 𝙿(𝑓 ) + 𝚀̃(𝑜𝑘+1) ≤
∑

𝑓∈𝑜𝑘+1�𝑠′� 𝙿(𝑓 ). Therefore, we have
∑
𝑓∈𝐼

𝙿(𝑓 ) +
∑

𝑖∈[𝑘+1]
𝚀̃(𝑜𝑖) =

∑
𝑓∈𝐼

𝙿(𝑓 ) +
∑
𝑖∈[𝑘]

𝚀̃(𝑜𝑖) + 𝚀̃(𝑜𝑘+1) ≤
∑
𝑓∈𝑠′

𝙿(𝑓 ) + 𝚀̃(𝑜𝑘+1) ≤
∑

𝑓∈𝑜𝑘+1�𝑠′�

𝙿(𝑓 ),

which concludes the proof. □

This allows us to use operator-potential heuristics also for non-normalized planning tasks, but, as we noted before, it almost 
always pays off to normalize planning tasks and use ℎ𝚀fw (which is forward consistent) instead of using the path-dependent variant 
ℎ̃𝚀fw with the original planning task.

A.3. Backward direction

Using ̃𝚀 instead of 𝚀 to compute path-dependent operator-potential backward heuristics allows us to use it also for non-normalized 
planning tasks and without goal-splitting. Note that in the case of path-dependent heuristics we also require Equation (A.1) to hold 
for the potential heuristic 𝙿, which is necessary to ensure backward admissibility of the heuristics.

Definition 20. Let 𝚀̃ denote a general operator-potential function for 𝙿 such that Equation (2) and Equation (A.1) hold. A path-
27

dependent operator-potential backward heuristic ℎ̃𝚀bw ∶ bw ↦ℝ ∪ {∞} for 𝚀 is defined as
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Table A.1
Comparison of the path-dependent operator-potential forward heuristics (ℎ̃𝚀

fw) 
on the original planning task, and the (consistent) operator-potential forward 
heuristics (ℎ𝚀

fw) on the normalized tasks. Whenever the original planning task 
is already normalized, ℎ̃𝚀

fw is used as a consistent heuristic, i.e., it equals to 
ℎ𝚀
fw . We compare the number of domains where one method solved more tasks 

than the other, the number of tasks solved by one method but not the other, 
and the overall number of solved tasks.

𝙸 𝙰+𝙸 𝚂𝟷𝚔+𝙸 𝙼2+𝙸

ℎ̃𝚀
fw #domains with higher coverage than ℎ𝚀

fw 1 1 0 1
#tasks solved by ℎ̃𝚀

fw but not by ℎ𝚀
fw 3 1 1 2

overall number of solved tasks 952 1 081 1 057 1 078

ℎ𝚀
fw #domains with higher coverage than ℎ̃𝚀

fw 11 11 11 10
#tasks solved by ℎ𝚀

fw but not by ℎ̃𝚀
fw 43 37 44 37

overall number of solved tasks 992 1 117 1 100 1 113

ℎ̃𝚀bw(𝜋) =
∑
𝑓∈𝐼

𝙿(𝑓 ) +
∑
𝑖∈[𝑛]

𝚀̃(𝑜𝑖) (A.5)

for every sequence of operators 𝜋 = ⟨𝑜1, … , 𝑜𝑛⟩ ∈ bw, i.e., for every 𝑠-plan 𝜋.

Theorem 21. ̃ℎ𝚀bw is backward admissible.

Proof. Any estimate for a backward dead-end state is admissible. Let 𝜋 = ⟨𝑜1, … , 𝑜𝑛⟩ denote a plan, and let 𝑚 ∈ [𝑛]. It is enough 
to show that 

∑
𝑓∈𝐼 𝙿(𝑓 ) +

∑
𝑖∈[𝑚+1,𝑛] 𝚀̃(𝑜𝑖) ≤

∑
𝑗∈[𝑚] cost(𝑜𝑗 ). We show this for 𝚀̃(𝑜) =

∑
𝑓∈eff(𝑜) 𝙿(𝑓 ) −

∑
𝑉 ∈vars(eff(𝑜)) max𝑓∈𝐷𝑜(𝑉 ) 𝙿(𝑓 ), 

and it is clear that the inequality holds for lower values of ̃𝚀(𝑜).
Since Equation (2) and Equation (A.1) hold, it follows from Theorem 15 that ℎ𝙿fw is forward consistent, goal-aware, and forward 

admissible, and therefore ̃ℎ𝚀fw is forward admissible Theorem 19. Therefore, we have that

ℎ̃𝚀fw(𝜋�𝐼�) =
∑
𝑓∈𝐼

𝙿(𝑓 ) +
∑
𝑖∈[𝑛]

𝚀̃(𝑜𝑖) =
∑
𝑓∈𝐼

𝙿(𝑓 ) +
∑
𝑗∈[𝑚]

𝚀̃(𝑜𝑗 ) +
∑

𝑖∈[𝑚+1,𝑛]
𝚀̃(𝑜𝑖) ≤ 0.

Therefore it follows that 
∑

𝑓∈𝐼 𝙿(𝑓 ) +
∑

𝑖∈[𝑚+1,𝑛] 𝚀̃(𝑜𝑖) ≤ − 
∑

𝑗∈[𝑚] 𝚀̃(𝑜𝑗 ).
From Definition 16 and Equation (A.1), it follows that

𝚀̃(𝑜) =
∑

𝑓∈eff(𝑜)
𝙿(𝑓 ) −

∑
𝑉 ∈vars(eff (𝑜))

max
𝑓∈𝐷𝑜(𝑉 )

𝙿(𝑓 ) ≥ −cost(𝑜),

therefore −𝚀̃(𝑜) ≤ cost(𝑜) for every operator 𝑜, therefore it holds that − 
∑

𝑗∈[𝑚] 𝚀̃(𝑜𝑗 ) ≤
∑

𝑗∈[𝑚] cost(𝑜𝑗 ), which concludes the proof. □

A.4. Symbolic search with path-dependent heuristics

Algorithm 1 describes the GHSETA∗ algorithm when assuming consistent heuristics. However, path-dependent heuristics may 
create inconsistencies, leading to states being expanded with sub-optimal 𝑔-values. This, in turn, may lead to states being incorrectly 
pruned in lines 8 or 13, and the algorithm could return a sub-optimal plan.

However, the algorithm can easily be adapted to support inconsistent (and path-dependent) heuristics by re-expanding any state 
if it is reached again with a lower 𝑔-value. This requires to replace the 𝚌𝚕𝚘𝚜𝚎𝚍 set (which is used in Algorithm 1 to hold all 
expanded states) by multiple subsets, 𝚌𝚕𝚘𝚜𝚎𝚍𝑔 , each of which contains the set of all states expanded with the corresponding 𝑔-value. 
Therefore, in line 11, states are inserted in 𝚌𝚕𝚘𝚜𝚎𝚍𝑔 . And in lines 8 and 13, we loop over all 𝑔′ ≤ 𝑔 to remove any state in 𝚌𝚕𝚘𝚜𝚎𝚍𝑔′
and 𝚌𝚕𝚘𝚜𝚎𝚍𝑔′+𝑐 , respectively.

A.5. Results

We evaluate symbolic search with state-dependent (ℎ𝚀fw/ℎ𝚀bw) and path-dependent (ℎ̃𝚀fw/ℎ̃𝚀bw) operator-potential heuristics. The 
state-dependent variant is the one we analyzed in detail in Section 5: It requires to normalize planning tasks and partitioning of goal 
states (in case of backward symbolic search). For path-dependent heuristics, we avoid normalizing the task and partitioning of goal 
states. But, in exchange, we need to re-expand states within the GHSETA∗ algorithm as explained above.

Table A.1 summarizes the comparison between the two variants in forward search. There are at most three tasks where using 
ℎ̃𝚀fw is beneficial to increase coverage, whereas ℎ𝚀fw performs better in 37 to 44 tasks, depending on the optimization criteria of the 
underlying potential heuristics.

Table A.2 shows results for backward search. Here, we include as well results for the path-dependent heuristic on the normal-
ized task (but without goal-splitting), to better understand the effect that task normalization and goal-splitting has on the overall 
28

performance.
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Table A.2
Comparison of the path-dependent operator-potential backward heuristics on the original 
planning tasks (ℎ̃𝚀

bw-orig), on the tasks normalized with the “multiplication” method but 
without goal splitting (ℎ̃𝚀

bw -norm), and the operator-potential backward heuristics on 
normalized tasks with goal-splitting (ℎ𝚀

bw). We compare the number of domains where 
one method solved more tasks than the other, the number of tasks solved by one method 
but not the other, and the overall number of solved tasks.

𝙸 𝙰+𝙸 𝚂𝟷𝚔+𝙸 𝙼2+𝙸

ℎ̃𝚀
bw-orig #domains with higher coverage than ℎ̃𝚀

bw-norm 3 1 2 3
#tasks solved by ℎ̃𝚀

bw-orig but not by ℎ̃𝚀
bw-norm 3 3 3 4

#domains with higher coverage than ℎ𝚀
bw 5 3 6 3

#tasks solved by ℎ̃𝚀
bw-orig but not by ℎ𝚀

bw 14 12 19 13
overall number of solved tasks 715 725 713 725

ℎ̃𝚀
bw-norm #domains with higher coverage than ℎ̃𝚀

bw-orig 5 5 6 3
#tasks solved by ℎ̃𝚀

bw-norm but not by ℎ̃𝚀
bw-orig 11 13 11 10

#domains with higher coverage than ℎ𝚀
bw 5 2 8 3

#tasks solved by ℎ̃𝚀
bw-norm but not by ℎ𝚀

bw 13 9 22 13
overall number of solved tasks 723 735 721 731

ℎ𝚀
bw #domains with higher coverage than ℎ̃𝚀

bw-orig 28 20 22 18
#tasks solved by ℎ𝚀

bw but not by ℎ̃𝚀
bw-orig 117 81 76 81

#domains with higher coverage than ℎ̃𝚀
bw-norm 25 19 21 21

#tasks solved by ℎ𝚀
bw but not by ℎ̃𝚀

bw-norm 108 68 71 75
overall number of solved tasks 818 794 770 793

Table A.3
Same as Table A.1 and Table A.2, but for bi-directional symbolic search. Note that in the case of ℎ𝚀

fw - ℎ̃𝚀
bw -norm, we use 

inconsistent ̃ℎ𝚀
bw , but forward consistent ℎ𝚀

fw as the tasks are already normalized.

−→ 𝙸
-←
−− 𝙰+
𝙸

−→ 𝙸
-←
−−
−

𝙼 2
+
𝙸

−−
→

𝙰+
𝙸-
←
−− 𝙰+
𝙸

−−
→

𝙰+
𝙸-
←
−−
−

𝙼 2
+
𝙸

−−
−→

𝙼 2
+
𝙸-
←− 𝙸

−−
−−
→

𝚂 𝟷
𝚔+

𝙸-
←
−−
−−

𝚂 𝟷
𝚔+

𝙸

ℎ̃𝚀
fw - ℎ̃𝚀

bw-orig #domains with higher coverage than ℎ𝚀
fw - ℎ̃𝚀

bw-norm 3 1 3 1 4 2
#tasks solved by ℎ̃𝚀

fw - ℎ̃𝚀
bw-orig but not by ℎ𝚀

fw - ℎ̃𝚀
bw-norm 8 5 5 3 5 5

#domains with higher coverage than ℎ𝚀
fw - ℎ𝚀

bw 5 6 6 8 9 4
#tasks solved by ℎ̃𝚀

fw - ℎ̃𝚀
bw-orig but not by ℎ𝚀

fw - ℎ𝚀
bw 10 13 8 19 18 9

overall number of solved tasks 987 985 1 104 1 104 1 083 1 080

ℎ𝚀
fw - ℎ̃𝚀

bw-norm #domains with higher coverage than ℎ̃𝚀
fw - ℎ̃𝚀

bw-orig 14 14 14 15 14 8
#tasks solved by ℎ𝚀

fw - ℎ̃𝚀
bw-norm but not by ℎ̃𝚀

fw - ℎ̃𝚀
bw-orig 28 29 30 36 33 27

#domains with higher coverage than ℎ𝚀
fw - ℎ𝚀

bw 5 5 6 8 8 5
#tasks solved by ℎ𝚀

fw - ℎ̃𝚀
bw-norm but not by ℎ𝚀

fw - ℎ𝚀
bw 8 12 11 22 22 10

overall number of solved tasks 1 007 1 009 1 129 1 137 1 111 1 102

ℎ𝚀
fw - ℎ𝚀

bw #domains with higher coverage than ℎ̃𝚀
fw - ℎ̃𝚀

bw-orig 14 16 17 18 14 11
#tasks solved by ℎ𝚀

fw - ℎ𝚀
bw but not by ℎ̃𝚀

fw - ℎ̃𝚀
bw-orig 41 45 54 53 47 41

#domains with higher coverage than ℎ𝚀
fw - ℎ̃𝚀

bw-norm 7 8 9 7 8 7
#tasks solved by ℎ𝚀

fw - ℎ𝚀
bw but not by ℎ𝚀

fw - ℎ̃𝚀
bw-norm 19 20 32 23 23 20

overall number of solved tasks 1 018 1 017 1 150 1 138 1 112 1 112

As in the previous case, using path-dependent variant of operator-potential backward heuristics is rarely beneficial over using the 
state-dependent variant with goal-splitting ℎ𝚀bw. Normalizing the task is actually an advantage, due to improving the informativeness 
of the operator-potential heuristics (as the max expression in Equation (A.2) is basically an admissible approximation).

Finally, as for ℎ𝚀fw and ℎ𝚀bw, ̃ℎ𝚀fw and ̃ℎ𝚀bw can be combined into bi-directional symbolic search, but as in the previous cases, it rarely 
pays off to use the path-dependent variant of the heuristics. Table A.3 summarizes the comparison on selected variants. Overall, we 
observe that using the consistent state-dependent operator-potential heuristics is mostly beneficial compared to the same heuristics 
without normalizing the task.

References

[1] V. Alcázar, The consistent case in bidirectional search and a bucket-to-bucket algorithm as a middle ground between front-to-end and front-to-front, in: Proceed-
ings of the 31st International Conference on Automated Planning and Scheduling (ICAPS’21), 2021, pp. 7–15.

[2] V. Alcázar, D. Borrajo, S. Fernández, R. Fuentetaja, Revisiting regression in planning, in: Proceedings of the 23rd International Joint Conference on Artificial 
Intelligence (IJCAI’13), 2013, pp. 2254–2260.

[3] V. Alcázar, P.J. Riddle, M. Barley, A unifying view on individual bounds and heuristic inaccuracies in bidirectional search, in: Proceedings of the 34th AAAI 
29

Conference on Artificial Intelligence (AAAI’20), 2020, pp. 2327–2334.

http://refhub.elsevier.com/S0004-3702(24)00110-3/bib7B44D1E816EB7EAC10A7074DDFB69207s1
http://refhub.elsevier.com/S0004-3702(24)00110-3/bib7B44D1E816EB7EAC10A7074DDFB69207s1
http://refhub.elsevier.com/S0004-3702(24)00110-3/bib3D119DD9DD829C8B849166E765C3A493s1
http://refhub.elsevier.com/S0004-3702(24)00110-3/bib3D119DD9DD829C8B849166E765C3A493s1
http://refhub.elsevier.com/S0004-3702(24)00110-3/bib7EAE6AAA60F64163E4C5D2C373A087AFs1
http://refhub.elsevier.com/S0004-3702(24)00110-3/bib7EAE6AAA60F64163E4C5D2C373A087AFs1


Artificial Intelligence 334 (2024) 104174D. Fišer, Á. Torralba and J. Hoffmann

[4] V. Alcázar, Á. Torralba, A reminder about the importance of computing and exploiting invariants in planning, in: Proceedings of the 25th International Conference 
on Automated Planning and Scheduling (ICAPS’15), 2015, pp. 2–6.

[5] C. Bäckström, B. Nebel, Complexity results for SAS+ planning, Comput. Intell. 11 (1995) 625–655.
[6] R.E. Bryant, Graph-based algorithms for boolean function manipulation, IEEE Trans. Comput. 35 (1986) 677–691.
[7] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, L.J. Hwang, Symbolic model checking: 10ˆ20 states and beyond, Inf. Comput. 98 (1992) 142–170.
[8] G. Ciardo, R. Siminiceanu, Using edge-valued decision diagrams for symbolic generation of shortest paths, in: Formal Methods in Computer-Aided Design, 4th 

International Conference (FMCAD’02), 2002, pp. 256–273.
[9] S. Edelkamp, Planning with pattern databases, in: Proceedings of the 6th European Conference on Planning (ECP’01), 2001, pp. 13–24.

[10] S. Edelkamp, Symbolic pattern databases in heuristic search planning, in: Proceedings of the 6th International Conference on Artificial Intelligence Planning and 
Scheduling (AIPS’02), 2002, pp. 274–283.

[11] S. Edelkamp, Automated creation of pattern database search heuristics, in: Proceedings of the 4th Workshop on Model Checking and Artificial Intelligence 
(MoChArt 2006), 2006, pp. 35–50.

[12] S. Edelkamp, M. Helmert, Exhibiting knowledge in planning problems to minimize state encoding length, in: Proceedings of the 5th European Conference on 
Planning (ECP’99), 1999, pp. 135–147.

[13] S. Edelkamp, P. Kissmann, Limits and possibilities of BDDs in state space search, in: Proceedings of the 23rd National Conference of the American Association 
for Artificial Intelligence (AAAI’08), 2008, pp. 1452–1453.

[14] S. Edelkamp, P. Kissmann, Optimal symbolic planning with action costs and preferences, in: Proceedings of the 21st International Joint Conference on Artificial 
Intelligence (IJCAI’09), 2009, pp. 1690–1695.

[15] S. Edelkamp, P. Kissmann, On the complexity of BDDs for state space search: a case study in connect four, in: Proceedings of the 25th National Conference of 
the American Association for Artificial Intelligence (AAAI’11), 2011, pp. 18–23.

[16] S. Edelkamp, P. Kissmann, Á. Torralba, Symbolic A* search with pattern databases and the merge-and-shrink abstraction, in: Proceedings of the 20th European 
Conference on Artificial Intelligence (ECAI’12), 2012, pp. 306–311.

[17] S. Edelkamp, P. Kissmann, Á. Torralba, BDDs strike back (in AI planning), in: Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI’15), 
2015, pp. 4320–4321.

[18] S. Edelkamp, F. Reffel, OBDDs in heuristic search, in: Proceedings of the 22nd Annual German Conference on Advances in Artificial Intelligence (KI’98), in: 
Lecture Notes in Computer Science, vol. 1504, Springer, 1998, pp. 81–92.

[19] D. Fišer, Lifted fact-alternating mutex groups and pruned grounding of classical planning problems, in: Proceedings of the 34th AAAI Conference on Artificial 
Intelligence (AAAI’20), 2020, pp. 9835–9842.
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