
Efficient and differentiable combinatorial
optimization for visual computing

Ahmed Abbas

A dissertation submitted towards the degree
Doctor of Engineering Science (Dr.-Ing.)

of the Faculty of Mathematics and Computer Science
of Saarland University

Saarbrücken, 2024.

Date of Colloquium: 02.08.2024
Dean of the Faculty: Prof. Dr. Roland Speicher
Chair of the Committee: Prof. Dr. Isabel Valera
Reviewer, Advisor: Prof. Dr. Paul Swoboda
Reviewer: Prof. Dr. Bernt Schiele
Reviewer: Dr. M. Pawan Kumar
Academic Assistant: Dr. Jonas Fischer

Abstract

Many visual computing tasks involve reasoning over structured domains and discrete
objects which can be modeled as combinatorial optimization (CO) problems. Tremendous
speed-up in general-purpose CO solvers has allowed to solve these problems in many
cases despite being NP-hard. Approaching large-scale structured prediction problems
from a combinatorial optimization standpoint however, has been a challenge due to a
variety of reasons. These include near real-time performance requirements and lack of
differentiability of CO approaches. The latter causes difficulties in harnessing machine
learning to specify problem specifications and in developing learnable CO algorithms. We
aim to address these shortcomings on multiple avenues.

First, we focus on a specific CO problem for clustering known as the multicut problem
with many applications in a variety of visual computing tasks. The multicut problem
is defined on a weighted graph where edge weights encode preferences of the endpoints
belonging to the same or different clusters. We devise methods for reducing human effort
in multicut model specification, (i.e., edge weights and graph structure) and for reducing
high compute times associated with large problem sizes. For inferring the edge weights, we
utilize neural networks and propose strategies for improving gradient estimation through
the multicut problem. This allows to train the neural network by imposing a loss on the
clustering produced by the multicut problem. Our approach improves performance on
large-scale panoptic segmentation tasks. As a second step, we focus on the challenge of
graph structure design. We propose a compact formulation of the multicut problem on
the complete graph along with efficient algorithms, sidestepping the problem of graph
selection. Our approach yields better panoptic segmentation performance as compared to
the one obtained by a hand-designed graph structure. Lastly, we address scalability issues
of the multicut problem. We devise a massively parallelizable GPU-friendly algorithm
resulting in more than an order of magnitude speed-up over existing sequential methods.

As a second avenue, we shift our focus to general-purpose CO solvers and tackle
challenges related to their scalability. As a first step, we devise parallel algorithms that
can harness GPUs gaining up to an order of magnitude speed-up over sequential CPU
counterparts. For the second step, we exploit machine learning in solving relaxations of CO
problems. We employ differentiable solver primitives and use neural networks inside the
solver to guide the solving process. Given a few problem instances from a task of interest,
our general-purpose solver can be adapted by learning instead of task-specific solver
development. Empirically our learned approach achieves significantly better performance
than its non-learned version, better solutions than task-specific solvers, and exhibits better
anytime performance compared to a commercial solver (Gurobi). Our method is also
applicable to some problems unrelated to structured prediction and offers competitive
performance to the commercial solver.

In summary, we study methods to make CO for visual computing more practical by
devising differentiable, massively parallel, and data-driven methods.

3

Zusammenfassung

Bei vielen Problemstellungen im Bereich Visual Computing geht es um Gebiete mit spezi-
fischer Struktur und diskrete Objekte, die als Probleme der kombinatorischen Optimierung
(CO) modelliert werden können. Die enorme Beschleunigung bei Allzweck-CO-Lösern
hat es in vielen Fällen ermöglicht, diese Probleme zu lösen, obwohl sie NP-schwer sind.
Das Lösen solcher großen strukturierte Vorhersageprobleme unter dem Gesichtspunkt der
kombinatorischen Optimierung ist jedoch aus verschiedenen Gründen eine Herausforderung.
Dazu gehören Rechenzeiten in nahezu Echtzeit und mangelnde Differenzierbarkeit von
CO-Ansätzen. Letzteres führt zu Schwierigkeiten bei der Nutzung maschinellen Ler-
nens zur Spezifizierung von Problemspezifikationen und bei der Entwicklung lernbarer
CO-Algorithmen. Unser Ziel ist es, diese Mängel auf mehreren Wegen zu beheben.

Zunächst konzentrieren wir uns auf ein spezifisches CO-Problem für Clustering, das
als Multicut-Problem bekannt ist, und bei vielen Anwendungen in einer Vielzahl von
Problemen im Bereich Visual Computing auftritt. Das Multicut-Problem wird in einem
gewichteten Graph definiert, in dem Kantengewichte die Präferenzen der Endpunkte
kodieren, die zu demselben oder zu verschiedenen Clustern gehören. Wir entwickeln Meth-
oden zur Reduzierung des menschlichen Aufwands bei der Multicut-Modellspezifikation
(d.h. Kantengewichte und Graphenstruktur) und zur Reduzierung der hohen Rechen-
zeiten, die mit großen Problemgrößen verbunden sind. Zur Ableitung der Kantengewichte
nutzen wir neuronale Netze und schlagen Strategien zur Verbesserung der Gradienten-
schätzung im Graphen des MulticutProblem vor. Dies ermöglicht es neuronale Netzwerk
zu trainieren, indem die Clusterung, die durch das Multicut-Problem erzeugt wurde,
durch eine Kostenfunktion zu quantifizieren. Unser Ansatz verbessert die Leistung bei
groß angelegten panoptischen Segmentierungsaufgaben. Im zweiten Schritt konzentrieren
wir uns auf die Herausforderungen des Designs der Graphenstruktur. Wir schlagen eine
kompakte Formulierung des Multicut-Problems für den gesamten Graphen zusammen
mit effizienten Algorithmen vor. Damit umgehen wir das Problem der Graphenauswahl.
Unser Ansatz führt zu einer besseren panoptischen Segmentierungsleistung im Vergleich zu
einer von Hand entworfenen Graphentruktur. Abschließend befassen wir uns mit Skalier-
barkeitsproblemen des Multicut-Problems. Wir entwickeln einen massiv parallelisierbaren
GPU-freundlichen Algorithmus, der zu einer Geschwindigkeitssteigerung von mehr als
einer Größenordnung gegenüber bestehenden sequentiellen Methoden führt.

Als Zweites verlagern wir unseren Fokus auf universelle CO-Löser und gehen Her-
ausforderungen im Zusammenhang mit ihrer Skalierbarkeit an. Zunächst entwickeln wir
parallele Algorithmen, welche GPUs nutzen können und die gegenüber sequentiellen CPU-
Algorithmen eine Geschwindigkeitssteigerung von bis zu einer Größenordnung erreichen.
Im Folgenden nutzen wir maschinelles Lernen zur Lösung von Relaxierungen von CO-
Problemen. Wir verwenden differenzierbare Löser-Primitive und nutzen neuronale Netze
innerhalb des Löser, um den Lösungsprozess zu steuern. Anhand einiger Instanzen einer
relevanten Problemstellung kann unser Allzwecklöser durch Lernen angepasst werden und
somit muss kein aufgabenspezifischer Löser entwickelt werden. Empirisch erreicht unser

5

6

erlernter Ansatz eine deutlich bessere Leistung als seine nicht erlernte Version, bessere
Lösungen als aufgabenspezifische Löser und weist im Vergleich zu einem kommerziellen
Löser (Gurobi) in allen Testinstanzen eine bessere Leistung auf. Unsere Methode ist auch
auf einige Probleme anwendbar, die nichts mit strukturierter Vorhersage zu tun haben,
und bietet eine konkurrenzfähige Leistung gegenüber kommerziellen Lösern.

Im Wesentlichen untersuchen wir Methoden, um CO für Visual Computing praktischer
zu machen, indem wir differenzierbare, massiv parallele und datengesteuerte Methoden
entwickeln.

Acknowledgements

I express my gratitude to my advisor Paul Swoboda for his invaluable guidance during my
PhD. Our meetings were always stimulating through which I learned not only about our
core research areas but also about efficient & maintainable software implementations, and
effective scientific writing. I am also grateful to Paul for giving enough independence to
discover my own research interests while also providing helpful feedback along the way.
Lastly, I admire Paul’s creativeness in devising whimsical acronyms for many of our joint
projects which brought great humor on looming submission deadlines.

I thank Bernt Schiele for his much needed advice at the start of my PhD. I am also
grateful to Bernt for providing a great environment for research in the D2 group by
providing enough research freedom, weekly seminars, biannual retreats etc. The group
meetings were very beneficial through which I got exposed to topics outside of my research
areas.

I would also like to thank the committee members and especially the reviewers for
providing valuable feedback on the thesis.

Lastly, I thank Connie Balzert for her help and advice regarding all official matters,
visa issues, etc., which made my stay very comfortable. I also thank the IT support
staff of MPI, with whom I had very less chance to interact with due to the excellent IT
infrastructure.

7

Contents

Contents 9

1 Introduction 13
1.1 Contributions and Outline . 13

1.1.1 Navigating NP-Hardness . 15

I Efficient & differentiable multicut algorithms 17

2 Background 18
2.1 Multicut Problem . 18

2.1.1 Integer Linear Program . 19
2.1.2 Related Problems . 20
2.1.3 Algorithms . 21
2.1.4 Applications . 23

3 Panoptic Segmentation with End-to-end Training 24
3.1 Introduction . 24
3.2 Related Work . 26

3.2.1 Panoptic Segmentation . 26
3.2.2 Algorithms as a Layer in Neural Networks 27

3.3 Method . 28
3.3.1 Convolutional neural network (CNN) architecture 29
3.3.2 (Asymmetric) Multiway Cut . 29
3.3.3 Fully Differentiable Training . 30

3.4 Experiments . 34
3.4.1 Datasets . 34
3.4.2 Training . 34
3.4.3 Results . 35
3.4.4 Limitations . 38

3.5 Conclusion . 39

4 Massively Parallel Multicut Algorithms 40
4.1 Introduction . 40
4.2 Related Work . 41
4.3 Method . 42

4.3.1 Primal: Parallel Edge Contraction 42
4.3.2 Dual: Conflicted Cycles & Message Passing 44
4.3.3 Primal-Dual Updates . 46
4.3.4 GPU Implementations . 48

4.4 Experiments . 49

9

10 CONTENTS

4.4.1 Results . 51
4.5 Conclusion . 53

5 Efficient Multicut on Complete Graphs 54
5.1 Introduction . 54
5.2 Related Work . 55
5.3 Method . 56

5.3.1 Greedy Additive Edge Contraction 56
5.3.2 Lazy Edge Contraction . 60
5.3.3 Varying Affinity Strength . 60
5.3.4 Computational Complexity . 62

5.4 Experiments . 63
5.4.1 ImageNet Clustering . 64
5.4.2 Panoptic Segmentation . 65

5.5 Conclusion . 68

II Efficient & differentiable ILP solver 69

6 Background 70
6.1 Binary Programs . 70
6.2 Lagrangean Decomposition . 72
6.3 Lagrangean Optimization . 74

6.3.1 Dual Block Coordinate Ascent . 74
6.3.2 Binary Decision Diagrams . 77

6.4 Common Approaches for Structured Prediction 79
6.4.1 Optimization & Heuristics coupled with Neural Networks 79
6.4.2 Custom Neural Architectures . 79

7 Massively Parallel 0–1 ILP Algorithms 81
7.1 Introduction . 81
7.2 Related Work . 82
7.3 Method . 84

7.3.1 Dual Optimization . 84
7.3.2 Primal Rounding . 90

7.4 Experiments . 91
7.4.1 Results . 93
7.4.2 Limitations . 95

7.5 Conclusion . 96

8 Learning to Solve 0–1 ILP Relaxations 97
8.1 Introduction . 97
8.2 Related Work . 99
8.3 Method . 100

8.3.1 Lagrange Decomposition . 100
8.3.2 Optimization of Lagrangean Dual 100

CONTENTS 11

8.3.3 Backpropagation through Dual Optimization 101
8.3.4 Non-parametric Updates . 104
8.3.5 Graph Neural Network . 104
8.3.6 Overall Pipeline . 106

8.4 Experiments . 107
8.4.1 Results . 109
8.4.2 Limitations . 112

8.5 Conclusion . 112

9 Conclusion 114

List of Algorithms 116

List of Figures 117

List of Tables 118

Bibliography 119

1Introduction

Structured output prediction tasks are prevalent in visual computing e.g., tracking,
clustering, matching, pose estimation, etc. Combinatorial optimization (CO) offers
a general framework to model such problems. Such a framework is particularly

attractive because of its flexibility to domain changes i.e., a method for tracking objects in
driving videos will be equally applicable in different parts of the world, a formulation of
clustering grid graphs can be easily adapted for meshes, etc. Since many CO problems can
be formulated as integer programs, a general-purpose integer programming solver offers a
potential to handle such problems conveniently

Despite the above-mentioned benefits CO approaches also come with drawbacks. These
include large compute times and reduced capabilities to leverage labeled examples requiring
extensive hand engineering. Tremendous progress in deep learning architectures fueled
by the processing power of GPUs and the availability of training data has offered an
alternative to such CO approaches for structured prediction. Many structured tasks can
also be handled by specially designed neural network architectures. Such architectures
however, are only applicable in specific scenarios.

In this thesis we aim to improve synergy between combinatorial optimization and
deep learning based methods at multiple fronts. We study methods to address model
specification issues associated with combinatorial optimization methods. Moreover we
devise efficient solvers by devising massively parallelizable components and by exploiting
machine learning. We study two classes of combinatorial optimization methods and split
the thesis accordingly. In the upcoming Section 1.1 we summarize our contributions with
an overview of each chapter.

1.1 Contributions and Outline

The thesis is divided into two parts, with each part starting with its necessary background
and related works.

Part I
In this part we focus on a particular class of methods for clustering graph structured data
through the multicut problem (a.k.a. correlation clustering). The multicut problem is
defined on a weighted graph where edge weights describe the preference of the respective
endpoints to be in the same or in different clusters. The multicut problem is particularly
appealing because it does not require the number of clusters to be known. The multicut
problem and its variants have been extensively utilized in computer vision for a variety
of tasks including instance segmentation, multi-object tracking, pose estimation, motion
segmentation, etc. We aim to make multicut model specification seamless and devise
efficient parallel algorithms for its solution with lower bound guarantees.

13

14 chapter 1. introduction

Chapter 3: In this chapter we study a pipeline containing neural networks followed by
a combinatorial optimization (CO) problem with the goal of end-to-end training. The
neural network predicts the costs of the CO problem and a loss is imposed on the solution
of the CO problem. A fundamental challenge in this regard is the non-differentiability of
CO solutions w.r.t. the input objective. We propose a technique for improved gradient
estimation through the CO problem leading to faster training convergence. As a use
case we consider the problem of panoptic segmentation in images i.e., assign each pixel a
category and delineate instances of each category. The panoptic segmentation problem
is phrased as asymmetric multiway cut problem (Kroeger et al., 2014), a variant of the
multicut problem. Our pipeline outperforms other comparable approaches in the literature
due to end-to-end training. This chapter is based on our study (Abbas and Swoboda,
2021).
As a drawback, our pipeline does not offer real-time performance as solving the optimization
problem takes more than a few seconds. We alleviate this issue in the following Chapter 4.

Chapter 4: In this chapter we focus on making algorithms for the multicut problem more
efficient by exploiting GPU parallelism. To this end, we devise primal-dual algorithms to
yield upper and lower bounds respectively. The primal step performs edge contractions
on multiple regions of the multicut problem graph in parallel. The dual step optimizes
a Lagrange relaxation in parallel yielding lower bounds to the objective. It also helps in
obtaining better primal updates. Our algorithms outperform existing multicut algorithms
by more than an order of magnitude. Such an approach, therefore, alleviates the issue
of high compute times from the previous chapter. This chapter is based on the work
presented as (Abbas and Swoboda, 2022b).

Chapter 5: In the last chapter of this part, we address another aspect regarding the
practicality of the multicut problem for computer vision applications. The multicut
problem is defined on a graph whose structure is not always trivial to design. Ideally one
would like to consider the complete graph however, such an approach does not scale to
large problems. This is because explicit storage of edge weights on the complete graph
requires quadratic memory in the number of nodes. We alleviate this issue by a problem
formulation that operates on feature vectors associated with each node. The edge costs
are then computed on the fly when needed. We show how to rewrite classical greedy
algorithms for multicut in our dense setting and how to modify them for greater efficiency
and solution quality. Through this approach, we replace the hand-designed graph structure
of Chapter 3 with our formulation yielding improved panoptic segmentation results. This
chapter is based on our study in (Abbas and Swoboda, 2023).
Part II
In this second part, we study methods for an efficient and general-purpose integer pro-
gramming (IP) solver as a means to address combinatorial optimization problems. Such
an approach if successful, offers an alternate pathway for achieving efficient IP algorithms
for structured prediction tasks. This is because a conventional approach for improving
efficiency has been to devise problem-specific algorithms requiring considerable human
effort each time a new problem class is encountered. First, we design a parallelizable
general-purpose IP solver that can harness GPU capabilities for faster computation. Sec-
ondly, we make components of such a solver differentiable and employ neural networks

1.1 contributions and outline 15

inside the solver to guide the solving process. This allows us to train our general-purpose
solver on the problem class of interest in a matter of hours to a few days for further
performance improvement. In our experiments, our trained solvers outperform problem-
specific hand-designed solvers from the literature for structured prediction tasks. We
also evaluate our approach on benchmarks outside of structured prediction and show
competitive performance to a general-purpose commercial solver.
Chapter 7: In this chapter we design an IP solver containing massively parallelizable
components. We build on the Lagrangean decomposition framework of Lange and Swoboda
(2021) where the associated subproblems are represented by binary decision diagrams.
To optimize the Lagrangean we propose a parallelizable block coordinate ascent scheme.
Moreover we exploit second-order information during Lagrangean optimization through
quasi-Newton updates. For recovering a primal solution we propose a parallelizable
heuristic based on cost perturbation. Our algorithms yield an order of magnitude speed-up
as compared to the scheme of (Lange and Swoboda, 2021) and also reach better objectives.
This chapter is primarily based on the study (Abbas and Swoboda, 2022a) and additionally
from Roetzer et al. (2024). The work (Roetzer et al., 2024) has two equal main contributors
and aims towards an efficient approach for integer programming based formulation for 3D
shape matching. Such a pipeline allows to impose geometric consistency (i.e., neighboring
elements of one shape to match to neighboring ones) in the shape matching task. One
main contributor to Roetzer et al. (2024) is Paul Roetzer who proposed a better shape
matching IP formulation by utilizing deep neural networks, performed experiments, and
compared against approaches from the literature. The other main contribution is the thesis
author who devised a second-order update scheme for optimizing the Lagrangean relaxation
yielding faster convergence and also did experiments for comparing IP algorithms. In this
chapter we additionally compare this second-order scheme from Roetzer et al. (2024) on
the datasets considered in Abbas and Swoboda (2022a).

Chapter 8: In this chapter we aim to speed up a crucial component of IP solvers i.e.,
the relaxation algorithm. To this end, we generalize the Lagrangean update scheme
from Chapter 7 and use graph neural networks to guide the solving process. To escape
fixed points associated with block coordinate ascent algorithms we provide the neural
network means to escape them. Training of our solver is done in a self-supervised fashion.
Our approach achieves significantly faster performance and better objectives than its
hand-designed version from Chapter 7, achieving close to optimal objectives on large
structured prediction problems and other combinatorial ones. In particular, we achieve
better objective values than specialized solvers for specific problem classes while retaining
their efficiency. Our solver has better any-time performance over a large time period
compared to a commercial solver. This chapter is mainly based on the paper (Abbas and
Swoboda, 2024) and additionally includes a comparison with the second-order update
scheme from Chapter 7.

1.1.1 Navigating NP-Hardness

We would like to highlight that the CO problems we study are NP-Hard. While traditional
solvers such as (Gurobi Optimization, 2019; CPLEX, 2019) can often solve such problems

16 chapter 1. introduction

to guaranteed optimality, the process is frequently time-consuming. The latter phenomenon
is encountered quite often on structured prediction tasks due to their large-scale nature.
In many such tasks the importance of reduced computation time outweighs even that
of achieving optimal solutions with guarantees. Therefore the aim of our work would
mainly be on devising CO algorithms that can achieve satisfactory solutions quickly rather
than striving for optimal ones. Such a design choice however, can make our algorithms
less desirable in scenarios where convergence and optimality guarantees are of utmost
importance. Nonetheless, in some cases our methods will provide bounds to the optimal
objectives allowing to estimate the quality of our obtained solutions.

I
E f f i c i e n t & D i f f e r e n t i a b l e

m u lt i c u t a l g o r i t h m s

2Background
Contents

2.1 Multicut Problem . 18
2.1.1 Integer Linear Program . 19
2.1.2 Related Problems . 20
2.1.3 Algorithms . 21
2.1.4 Applications . 23

Many scientific applications require partitioning a group of objects into clusters.
A common way to approach such problems is to represent the objects as a
set of nodes, model their pairwise relations by edges, and use edge weights to

denote pairwise similarities. The multicut problem allows partitioning of such graphs in
cases the number of clusters is not known apriori. This flexibility has made the multicut
problem an attractive tool in many computer vision applications. Although the multicut
problem is NP-hard, heuristics do provide good enough solutions for practical purposes.
Despite these favorable points, some nuisances hamper wider applicability. These include
additional human effort for designing appropriate edge weights and the graph structure.
Moreover multicut heuristics offer limited scalability with growing problem sizes due to
their sequential nature. Our goal in this part of the thesis will be to reduce human effort
in multicut model specification (edge weights, graph structure) and to design massively
parallel algorithms for faster computation on GPUs. The problems of edge weights
and graph structure design will be the topic of Chapters 3 and 5 respectively. Parallel
algorithms for the multicut problem are proposed in Chapter 4. In the following, we
provide the necessary background and discussion of related works.

2.1 Multicut Problem

A decomposition (or clustering) of a graph G = (V , E) is a partitioning {Vi}ki=1 containing
disjoint subsets of V where the subgraph of G induced by each Vi being connected. Each
element Vi of the decomposition is termed as a cluster or a component. The set of edges
straddling distinct components is a multicut of G.

Definition 1 (Multicuts). For a connected graph G = (V , E) denote 1F ∈ {0, 1}E as the
indicator vector of F ⊆ E i.e., 1f = 1⇔ f ∈ F . Moreover G[S] denotes the subgraph of
G induced by S ⊆ V . Then the set of all multicuts of G is

MG =

1δ(V1,...,Vk) :
k ∈N

V1∪̇ . . . ∪̇Vk = V
G[Vi] is connected ∀i ∈ [k]

 . (2.1)

where ∪̇ is disjoint union, and δ(V1, . . . , Vk) = {pq ∈ E | ∃i ̸= j : p ∈ Vi, q ∈ Vj}.

18

2.1 multicut problem 19

V1

V3

V2

0 1

Figure 2.1: Decomposition of a graph (V , E) into three components V1, V2, V3. The
corresponding multicut is an edge labeling where edges of E straddling distinct components
are marked by a 1 and a 0 otherwise (two of these edges labels are shown for an illustration).

See Figure 2.1 for an example decomposition of a graph into three components. Note
that we assume that the graph G is connected for notational convenience. We now define
the multicut problem through an additional cost vector c ∈ RE .

Definition 2 (Multicut problem). Given an graph G = (V , E) and a cost vector c ∈ RE,
the multicut problem is

min
y∈MG

∑
ij∈E

cij yij . (MC)

where MG is defined in (2.1).

An edge ij ∈ E with positive cost (cij > 0) favors the nodes i and j to be in the same
component and is termed attractive. In the other case, the end points of an edge with
negative cost prefer to lie in distinct components (repulsive).

2.1.1 Integer Linear Program

We now aim towards an integer programming formulation of the multicut problem (MC)
by describing the set MG (2.1) in terms of linear inequalities and binary constraints for
each edge. Since the multicut problem is NP-hard (Bansal et al., 2004; Demaine et al.,
2006), a complete polyhedral description of conv(MG) is not feasible. A good relaxation
for most practical problems is given in terms of cycle inequalities (Chopra and Rao, 1993).
Specifically given a cycle C = {e1, . . . , el} ⊆ E, a feasible multicut must either not contain
any cut edge or should contain at least two cut edges.

Definition 1 (Cycle Inequality). For a graph G = (V , E) denote cycle(G) to be a set of
edges which form a cycle. A cycle inequality for a given cycle C of G is defined as

∀e ∈ C : ye ≤
∑

e′∈C\{e}
ye′ . (2.2)

By considering all possible cycles, the cycle inequality (2.2) together with the binary
constraints y ∈ {0, 1}E actually define MG (Chopra and Rao, 1993).

20 chapter 2. background

Lemma 3 (Chopra and Rao (1993)). The feasible set of multicuts MG (2.1) can be
equivalently described as

MG ≡ {y ∈ {0, 1}E | y satisfies (2.2) ∀C ∈ cycles(G)}. (2.3)

Since there can be exponentially many cycles, cutting planes can be utilized by searching
for violated cycle inequalities. Moreover it is sufficient to consider simple and chordless
cycles in Lemma 3 as shown by Chopra and Rao (1993). The works of Yarkony et al.
(2014); Lange et al. (2018) restrict this set further to conflicted cycles by accounting for
the structure of multicut edge costs. In general terms, a cycle is termed as conflicted if it
contains exactly one repulsive edge.

Definition 2 (Conflicted cycles (Lange et al., 2018)). Let the set of attractive edges in E
be E+ = {ce > 0 : ∀e ∈ E} and repulsive edges E− = {ce < 0 : ∀e ∈ E}. Then conflicted
cycles of G is the set {C ∈ cycles(G) : |C ∩E−| = 1}.

Lemma 4 (Lange et al. (2018)). Let

CYCG = {y ∈ [0, 1]E | y satisfies (2.2) ∀C ∈ cycles(G)}.

Further denote

CYC−
G = {y ∈ [0, 1]E | y satisfies (2.2) ∀C ∈ cycles(G) s.t. |C ∩E−| = 1}.

Then
min

y∈CYCG

c⊤y = min
y∈CYC−

G

c⊤y. (2.4)

To obtain a tighter relaxation further inequalities are studied in Deza et al. (1992);
Chopra and Rao (1993); Oosten et al. (2001). However, for most of the problems from
computer vision and machine learning the works of Lange et al. (2018); Swoboda and
Andres (2017) demonstrate little to no impact by considering these additional inequalities.

2.1.2 Related Problems

There are multiple closely related problems to the multicut problem. The classical
multicut problem is an extension of the min-cut problem to multiple source and sink
terminals with non-negative edge costs in the work of Hu (1963). Another closely related
problem is correlation clustering (Bansal et al., 2004). In this case, edges are labeled
with positive or negative signs instead of real-valued costs, and the complete graph is
considered. The problem was also shown to be NP-hard alongside a constant-factor
approximation algorithm (Bansal et al., 2004). A weighted version of the correlation
clustering problem was proposed in Demaine et al. (2006) which is equivalent (up to
variable involution) to the multicut problem (MC). The authors show the equivalence of
weighted correlation clustering to the classical multicut problem. An equivalent problem
for multicut on complete graphs is the clique partitioning problem. The works of Grötschel
and Wakabayashi (1989, 1990) study the clique partitioning problem, and propose valid
inequalities and separation procedures for a cutting plane algorithm.

2.1 multicut problem 21

2.1.3 Algorithms

For obtaining solutions to (MC) without optimality guarantees or estimates on the distance
to optimum, a large number of methods have been proposed with different execution
time/solution quality trade-offs.

2.1.3.1 Greedy heuristics

A fast and simple greedy additive edge contraction (GAEC) heuristic was proposed
by Keuper et al. (2015). The heuristic iteratively merges the most attractive nodes
through edge contraction operations until no attractive edge is left. Its variants involving
different strategies for selecting contraction candidates were proposed by Kardoost and
Keuper (2018); Bailoni et al. (2022). The greedy edge fixation algorithm from Levinkov
et al. (2017a) generalizes the GAEC heuristic by also marking some edges as being cut
and disallowing joining moves accordingly. A comparative survey of some of the above
primal heuristics was done by Levinkov et al. (2017a). Despite their approximate nature,
in practice greedy algorithms perform well for computer vision and machine learning tasks
as shown by the works from Keuper et al. (2015); Levinkov et al. (2017a); Bailoni et al.
(2022).

In the upcoming chapters, we will build upon the greedy additive edge contraction
(GAEC) heuristic of Keuper et al. (2015). The heuristic is described in Algorithm 2.1.
In detail, we initialize each node as a separate cluster (all edges are cut) and iteratively
contract a pair of nodes i, j having the largest non-negative cost cij (if it exists). The
edge cost of parallel edges is summed up (line 3) where N i corresponds to neighbors of
node i. Note that contracting an edge ij corresponds to fixing yij = 0 in (MC).

Algorithm 2.1: GAEC (Keuper et al., 2015)
Data: Graph G = (V , E), edge costs c ∈ RE

Result: Clusters V
// Check if attractive edge present

1 while maxuv∈E cuv ≥ 0 do
2 m := ij = arg maxuv∈E cuv

// Aggregate edge costs
3 cml = cil + cjl, l ∈ N i ∪N j \{i, j}

// Update edges
4 E′ = {ml | l ∈ N i ∪N j \{i, j}}
5 E = E′ ∪E \ {il}l∈N i

∪ {jl}l∈N j

// Update nodes
6 V = (V ∪ {m}) \ {i, j}
7 end

22 chapter 2. background

2.1.3.2 Move-making algorithms

The first heuristic for multicut, the classical Kernighan&Lin move-making algorithm was
originally proposed by Kernighan and Lin (1970) and slightly generalized by Keuper et al.
(2015). The algorithm consists of trying various moves such as joining two components,
moving a node from one component to the next, etc. and performing sequences of moves
that decrease the objective. A more involved Cut, Glue & Cut (CGC) move-making
heuristic from Beier et al. (2014) works by alternating bipartitioning of the graph and
exchanging nodes in pairs of clusters. The latter operation is performed by computing a
max-cut on a planar subgraph via reduction to perfect matching. CGC was extended to a
more general class of possible ‘fusion moves’ by Beier et al. (2016).

2.1.3.3 Linear programming based algorithms

For obtaining lower bounds that estimate the distance to the optimum or even certify the
optimality of a solution several LP relaxation based algorithms have been proposed. These
algorithms can be used inside branch and bound and their computational results can be
used to guide primal heuristics to provide increasingly better solutions. It has been shown
by Kappes et al. (2011); Kim et al. (2011) that multicut problems of moderate sizes can be
solved with commercial integer linear programming (ILP) solvers like Gurobi (Gurobi Op-
timization, 2019) in a cutting plane framework in reasonable time to global optimality. A
specialized algorithm for multicut on planar graphs was devised by Yarkony et al. (2012)
by column generation based on solving perfect matching subproblems. Similarly Lukasik
et al. (2020) employ benders decomposition allowing for parallel computation of the
subproblems. The above approaches however, do not scale well to large-scale problems as
the underlying LP relaxations are still solved by traditional LP solvers which do not scale
linearly with problem size. Additionally, violated inequality separation (cutting planes)
requires solving weighted shortest path problems which is not possible in linear time. The
block coordinate ascent algorithm from Swoboda and Andres (2017) based on message
passing approximately solves a dual LP relaxation of the multicut problem faster than
traditional solvers. An even faster, but less powerful, approximate cycle packing algorithm
was proposed by Lange et al. (2018); Lange (2020). Note that in addition to providing
lower bounds, the schemes of Swoboda and Andres (2017); Lange et al. (2018) also aid in
recovering better primal solutions.

2.1.3.4 Partial optimality

For fixing variables to their optimal values and shrinking the problem before or during
optimization, persistency or partial optimality methods have been proposed in Alush and
Goldberger (2012); Lange et al. (2018, 2019). These methods apply a family of criteria
that, when passed, prove that any solution can be improved if its values do not coincide
with the persistently fixed variables.

2.1 multicut problem 23

2.1.4 Applications

The multicut problem and its extensions such as higher-order multicut (Kim et al.,
2011; Kappes et al., 2016), lifted multicut (Keuper et al., 2015), (asymmetric) multiway
cut (Chopra and Rao, 1991; Kroeger et al., 2014), lifted disjoint paths (Hornakova et al.,
2020) and joint multicut and node labeling (Levinkov et al., 2017c) have found numerous
applications in machine learning, computer vision, biomedical image analysis, data mining
and beyond. Examples include unsupervised image segmentation (Alush and Goldberger,
2013; Andres et al., 2011; Yarkony et al., 2012; Andres et al., 2013), instance-separating
semantic segmentation (Kirillov et al., 2017), multiple object tracking (Tang et al., 2017;
Hornakova et al., 2020), cell tracking (Jug et al., 2016), articulated human body pose
estimation (Insafutdinov et al., 2017), motion segmentation (Keuper et al., 2018), image and
mesh segmentation (Keuper et al., 2015), neuron segmentation for connectomics (Andres
et al., 2012; Beier et al., 2017; Pape et al., 2017) and many more.

3Panoptic Segmentation with
End-to-end Training
Contents

3.1 Introduction . 24
3.2 Related Work . 26

3.2.1 Panoptic Segmentation . 26
3.2.2 Algorithms as a Layer in Neural Networks 27

3.3 Method . 28
3.3.1 Convolutional neural network (CNN) architecture 29
3.3.2 (Asymmetric) Multiway Cut 29
3.3.3 Fully Differentiable Training 30

3.4 Experiments . 34
3.4.1 Datasets . 34
3.4.2 Training . 34
3.4.3 Results . 35
3.4.4 Limitations . 38

3.5 Conclusion . 39

This chapter aims for a fully differentiable architecture for simultaneous semantic and
instance segmentation (a.k.a. panoptic segmentation) consisting of a convolutional
neural network and an asymmetric multiway cut problem solver. The latter is a

more general version of the multicut problem that elegantly incorporates semantic and
boundary predictions to produce a panoptic labeling. These semantic and boundary
estimates are predicted by neural networks which are then used in the objective function
of the asymmetric multiway cut problem. We aim for an end-to-end differentiable pipeline
where these estimates are consumed by the optimization problem in a differentiable manner.
This allows to impose a loss directly on the final panoptic predictions produced by the
optimization problem leading to reduced human effort and potentially better performance.
For the loss function, we maximize a smooth surrogate of the panoptic quality metric.
Experimental evaluation shows improvement by backpropagating through the optimization
problem w.r.t. comparable approaches on Cityscapes and COCO datasets. Overall, our
approach of combinatorial optimization for panoptic segmentation shows the utility of
using optimization in tandem with deep learning in a challenging large-scale real-world
problem and showcases benefits and insights into training such an architecture.

3.1 Introduction

Panoptic segmentation is the task of simultaneously segmenting different semantic classes
and instances of the same class (Kirillov et al., 2019b). Panoptic segmentation is challenging

24

3.1 introduction 25

since neural networks (NN) may produce conflicting predictions (i.e., boundaries separating
instances that are not closed contours, instance voting schemes with multiple maxima per
instance, etc.). Therefore most approaches combine NNs with a post-processing step to
compute a final panoptic segmentation that resolves the conflicting evidence produced by
NNs. In general, joint training of NNs with post-processing algorithms is an active research
area. In our work we propose a fully differentiable approach for panoptic segmentation,
our post-processing being a combinatorial optimization problem.

In this work we pursue the bottom-up approach building segmentations directly from
pixels and combine CNNs with the asymmetric multiway cut problem (AMWC) (Kroeger
et al., 2014). The latter is an elegant combinatorial optimization problem that combines
semantic and affinity predictions and directly produces a panoptic labeling. We train CNN
and AMWC jointly so that the supervisory signal for training the CNN is influenced by
the computations of the combinatorial optimization stage. The loss we propose to use for
this training differs from common lower-level CNN losses and is a smooth surrogate closely
corresponding to the final panoptic quality metric (Kirillov et al., 2019b). We show in
this work how our conceptual contributions i.e., using AMWC as a differentiable module
and training on surrogate panoptic quality loss can be made to work together and yield
performance improvements.

The general idea of combining optimization and neural networks and train them jointly
has recently enjoyed resurgent interest. The fundamental problem for the specific task
of combinatorial optimization is that the output of combinatorial problem is 0–1 valued,
hence the loss landscape becomes piecewise constant and simply differentiating through
a solver is not possible anymore. Several methods have been proposed to address this
problem (Vlastelica et al., 2019; Domke, 2010; Peng et al., 2018; Ferber et al., 2020;
Berthet et al., 2020; Indelman and Hazan, 2020). To our knowledge our work is the first to
utilize the perturbation techniques (Vlastelica et al., 2019; Domke, 2010) on a large-scale
setting with scalable but suboptimal heuristic solvers. We give evidence that training
works in this setting and gives performance benefits. To this end, we propose a robust
extension of the backpropagation technique (Vlastelica et al., 2019) that gives better
empirical convergence.

Our architecture is inspired by Cheng et al. (2020); Chen et al. (2018) and consists of
a ResNet-50 backbone, a semantic segmentation branch for computing class costs and an
affinity branch for boundary predictions. Semantic and affinity costs are taken as input
by the AMWC solver that returns a panoptic labeling. We first pre-train semantic and
affinity branches with simple cross-entropy losses obtaining a strong baseline that achieves
a performance similar or better than other bottom-up approaches (Cheng et al., 2020;
Wolf et al., 2020; Gao et al., 2019). We finetune subsequently with the AMWC solver
and the panoptic surrogate loss via our new robust backpropagation approach and show
further performance improvements.

Current state-of-the-art approaches use very large networks (e.g., Max-DeepLab (Wang
et al., 2020a) uses transformers containing more parameters than a ResNet-101). This
might lead to the impression that advances in panoptic segmentation require deeper and
more sophisticated architecture. We show that our simpler model can be significantly
improved by a fully differentiable approach and argue that simpler models have not yet
reached their full potential. Also, our simpler architecture allows for a more controlled

26 chapter 3. panoptic segmentation with end-to-end training

setting and makes it easier to identify crucial components and measure to which extent
performance improvements can be achieved.

3.2 Related Work

3.2.1 Panoptic Segmentation

We categorize panoptic segmentation approaches into three categories: (i) bottom-up
methods predict information on the pixel-level and then use post-processing to produce
a segmentation, (ii) top-down methods proceed by first identifying regions of interest
(ROI) and subsequently basing segmentation on them and (iii) hybrid methods combine
bottom-up and top-down ideas. For a general overview of recent segmentation methods
we refer to Minaee et al. (2021). Here we will restrict to panoptic segmentation tasks.
Top-down. Recent works include (Li et al., 2018a; Kirillov et al., 2019b; Porzi et al.,
2019; Kirillov et al., 2019a; Xiong et al., 2019; Qiao et al., 2020; Carion et al., 2020; Yang
et al., 2020a; Mohan and Valada, 2021). This principle has also been used with weak
supervision (Li et al., 2018b). As a drawback, top-down approaches use ROIs which are
mostly axis-aligned and so they can be in-efficient for scenarios containing deformable
objects (Tian et al., 2020).
Bottom-up. Panoptic-DeepLab (Cheng et al., 2020) based on (Yang et al., 2019)
proposes a single-stage neural network architecture which combines instance center of mass
scores with semantic segmentation to compute panoptic segmentation. They use post-
processing similar to Hough-voting (Ballard, 1981), obtaining great results and reducing
the gap to top-down approaches. Subsequently, Axial-DeepLab (Wang et al., 2020b)
made improvements using an attention mechanism to enlarge the receptive field using the
post-processing scheme of (Yang et al., 2019).

The methods SSAP (Gao et al., 2019) and SMW (Wolf et al., 2020) are most similar
to our as they also use semantic and affinity scores with a graph partitioning algorithm.
SMW (Wolf et al., 2020) additionally uses Mask-RCNN (He et al., 2017) and SSAP solves
multiple graph partitioning problems in coarse-to-fine manner. Older works (Kirillov
et al., 2017; Liu et al., 2018) use graph partitioning schemes but only for the instance
segmentation task.
Hybrid. The approaches (Li et al., 2020; Wolf et al., 2020) use both bottom-up (affinity
scores) and top-down (bounding boxes) sources of information. Conditional convolu-
tion (Tian et al., 2020) was used by Wang et al. (2020a). Transformers are used by Carion
et al. (2020) and combined with Max-DeepLab in a sophisticated architecture, achieving
remarkable results. They used a surrogate for the panoptic quality metric along with
an instance discrimination loss similar to Wu et al. (2018). However, Max-DeepLab
imposes an upper bound on the maximum number of instances in an image and requires
thresholding low confidence predictions.

In summary, bottom-up methods are generally simpler than top-down ones and require
fewer hyper-parameters. However, they lack global context and are generally outperformed
by top-down approaches. As a solution Axial-DeepLab (Wang et al., 2020b) reduce this

3.2 related work 27

gap by incorporating long range context.
Almost all of the above-mentioned approaches use multiple loss functions (see (Kendall

et al., 2018) for a possible solution), need thresholds for getting rid of low confidence
predictions or assume an upper bound on the number of instances and therefore require
hyperparameter tuning. To achieve end-to-end training, approaches of Wang et al. (2020a);
Carion et al. (2020); Li et al. (2020) design mechanisms embedded in the NNs which can
compute panoptic segmentations directly but still have test-time hyperparameters (such
as maximum number of instances, probability thresholding) and need more complicated
architectures. Except for the above works, other approaches delegate this task to a post-
processing module which does not participate in training. The motivation of our work is
based on prioritizing ease-of-use and simplicity. Therefore we have chosen a bottom-up
approach and propose a fully differentiable method for training with only one loss and no
ad-hoc downstream refinements of the segmentation.

3.2.2 Algorithms as a Layer in Neural Networks

Recently there has been some interest in training neural networks with additional layers for
problem-specific constraints and prior knowledge. The works of Gould et al. (2019); Kotary
et al. (2021) provide an extensive survey and insights. An excellent overview of multiple
approaches for learning graphical model parameters is given in Domke (2013). Since the
focus of our work is on using an optimization problem as a layer in neural networks, hence
we will review approaches for this scenario. The approaches can be categorized as follows:
Unrolling. For training NNs together with cheap and differentiable iterative algorithms
(or for algorithms that can be made differentiable e.g., by smoothing), straightforwardly
computing gradients is the most simple approach. This has been done for K-means (Wilder
et al., 2019) bipartite matching (Zeng et al., 2019), conditional random fields (Zheng
et al., 2015; Arnab et al., 2018; Song et al., 2019b; Domke, 2010), non-linear diffusion for
image restoration (Chen and Pock, 2016) and ranking and sorting (Cuturi et al., 2019).
The interesting study (Christianson, 1994) shows that under some stability conditions
backpropagation through the last few steps of iterative procedures is enough to get good
estimates of gradients.
Implicit function theorem. In case solutions satisfy fixed point conditions (e.g., KKT
conditions) the implicit function theorem can be used to compute gradients. This was
done for quadratic programs in (Amos and Kolter, 2017), embedding MaxSAT in neural
networks (Wang et al., 2019), a large class of convex optimization problems (Agrawal
et al., 2020), smoothed top-k selection via optimal transport (Xie et al., 2020) and deep
equilibrium models (Bai et al., 2019).
Problem-specific methods. Specialized approaches for backpropagating for specific
problems were investigated for submodularity (Djolonga and Krause, 2017) (e.g., using
a graph-cut layer), belief propagation (Knobelreiter et al., 2020), dynamic program-
ming (Mensch and Blondel, 2018), markov random fields (Chen et al., 2015; Kirillov et al.,
2016) and nearest neighbor selection (Plötz and Roth, 2018).
Perturbation approaches. Perturbing the objective of an optimization problem for
learning has been proposed by Papandreou and Yuille (2011); Li et al. (2013); Bertasius

28 chapter 3. panoptic segmentation with end-to-end training

et al. (2017) for graphical model parameters. In the works of Corro and Titov (2019);
Berthet et al. (2020); Paulus et al. (2020) perturbation is used in the forward pass to get
a differentiable estimate of the solution. Perturbing the objective in the direction of loss
decrease has been proposed by Domke (2010) for backpropagating through graphical model
inference, in McAllester et al. (2010) to estimate gradients through a structured loss and
in Vlastelica et al. (2019) to backpropagate through combinatorial optimization problems.
The latter was used for ranking (Rolínek et al., 2020a) and graph matching (Rolínek et al.,
2020b).

3.3 Method

Our architecture shown in Figure 3.1 is comprised of two stages: (i) a CNN to compute
semantic class and affinities for boundary predictions followed by (ii) an AMWC optimiza-
tion layer producing the final panoptic labeling. We describe below our CNN architecture,
the AMWC problem and finally the approach for backpropagting through the AMWC
solver to optimize panoptic surrogate loss.

ResNet-50

Decoder

Asymmetric
multiway cut

Semantic
seg. branch

Classifiers

Panoptic
quality loss

CE loss
w. top-k

BCE loss
w. top-k

Semantic labels

Edge labels

Panoptic labels

Affinity branch

Figure 3.1: Overview of our architecture: Image features computed through a ResNet-50
backbone (He et al., 2016b) are fed into a semantic segmentation branch to predict class
scores and to an affinity branch to predict object boundaries. Costs from both branches are
used in the AMWC solver for computing a panoptic labeling. Pre-training of the semantic
and affinity branch is done with top-k cross-entropy losses (Yang et al., 2019) (dotted
arrows). For backpropagation through AMWC solver we use the panoptic quality loss
(dashed arrows). The computation flow marked by solid lines is for panoptic segmentation,
dotted arrow for pre-training and dashed arrows for fully differentiable training.

3.3 method 29

3.3.1 Convolutional neural network (CNN) architecture

Our CNN architecture (see Figure 3.1) is comprised of the following parts: a shared
ResNet-50 backbone pre-trained on ImageNet (Deng et al., 2009) producing feature maps
for the subsequent semantic and affinity branch. Our CNN architecture corresponds
to Panoptic-Deeplab (Cheng et al., 2020) with the exception of a modified instance
segmentation branch due to different post-processing (Hough voting for vs. AMWC in
our work). We also use DeepLabv3+ (Chen et al., 2018) decoders for both semantic and
affinity branch similar to Cheng et al. (2020) allowing for a fair comparison.

Affinity predictor. The affinity branch predicts for given pairs of pixels whether they
belong to the same instance. It takes two sources of inputs: (i) features from the affinity
decoder and (ii) semantic segmentation costs which makes finding boundaries between
different classes easier. Gradients of segmentation costs computed from affinity predictors
are not backpropagated during training to preclude the affinity branch from influencing
the semantic branch.

We take horizontal and vertical edges at varying distances d. For COCO we use d ∈
{1, 4, 16, 32, 64} and for Cityscapes d ∈ {1, 4, 16, 32, 64, 128}. For each d all corresponding
edges are sampled and affinity scores are computed by a dedicated predictor for each
distance. For long range edges with d > 1 we compute edge features by taking the
difference of affinity features of the edge endpoints before sending them to the predictor.
This helps in capturing long-range context.

3.3.2 (Asymmetric) Multiway Cut

Multiway cut (MWC) (Calinescu, 2008) is a combinatorial optimization problem for graph
partitioning defined on a graph. In MWC a pre-defined number of classes is given and
each node is assigned to one. The cost of a class assignment is given by node and edge
affinity costs that give the preference of a node belonging to a certain class and endpoints
of the edge to belong to the same class respectively. Hence, the multiway cut can be
straightforwardly used to formulate semantic segmentation, each MWC class corresponding
to a semantic class.

The asymmetric multiway cut (AMWC) problem was introduced by Kroeger et al.
(2014) as an extension of MWC. It additionally allows to subdivide some classes into an
arbitrary number of sub-clusters. This allows to model segmenting a given semantic class
into multiple instances for panoptic segmentation.

Mathematically, MWC and AMWC are defined on a graph G = (V , E) together with
edge weights cE : E → R and node costs cV : V × {1, . . . , K} → R, where K is the
number of classes. The edge affinities cE indicate the preference of edge endpoints to
belong to the same cluster, while the node costs cV indicate the preference of assigning
nodes to classes. A set P ⊆ [K] contains classes that can be partitioned. For MWC we
have P = ∅ while for AMWC P ⊆ [K]. Let MG be the set of valid boundaries i.e.,
edge indicator vectors of partitions of V as defined in (2.1). The MWC and AMWC

30 chapter 3. panoptic segmentation with end-to-end training

optimization problems can be written as

min
x:V →{1,...,K},y∈MG

∑
i∈V cV (i, x(i)) +

∑
ij∈E cE(ij) · y(ij)

s.t. y(ij) = 0, if x(i) = x(j) /∈ P
y(ij) = 1, if x(i) ̸= x(j)

(3.1)

The above constraints stipulate that y produces a valid clustering of the graph compatible
with the node labeling x i.e., boundaries implied by y align with class boundaries defined
by x and non-partitionable classes not in P do not possess internal boundaries. The
AMWC can be thought of as a special case of InstanceCut (Kirillov et al., 2017) that
has class-dependent edge affinities, which however, makes it less scalable. Illustrations of
MWC and AMWC are given in Figure 3.2.

1

4

2

3

(a) MWC

1

4

2

3A

3B
3C

(b) AMWC

Figure 3.2: Exemplary MWC and AMWC problems with 4 classes (K = 4). MWC is a
special case of AMWC when P = ∅. For P = {3} we get an AMWC problem where class
3 is partitioned into subclusters (instances) 3A, 3B and 3C .

Given a feasible solution (x, y) satisfying the constraints in (3.1), the panoptic labeling
z : V → {1, . . . , J} is computed by connected components w.r.t. y i.e., z(i) = z(j) ⇔
y(ij) = 0, ∀ij ∈ E. For optimizing AMWC (3.1) we adapt the greedy additive edge
contraction Algorithm 2.1 (Keuper et al., 2015) to account for node costs cV .

Note that, contrary to other approaches for panoptic segmentation such as (Wang
et al., 2020a; Tian et al., 2020; Xiong et al., 2019) AMWC neither has an upper bound on
the number of instances (which is automatically decided by the optimization problem) nor
suffers from computational bottlenecks in this regard. It also does not require thresholding
to get rid of low confidence predictions.

3.3.3 Fully Differentiable Training

To train our architecture along with the AMWC solver we first introduce a new robust
variant of the perturbation technique for backpropagation (Vlastelica et al., 2019) which
works well for our setting of a large-scale problem and suboptimal solver. Second, we
introduce a smooth panoptic loss surrogate. Last, we show how to backpropagate gradients
for the panoptic loss surrogate through a MWC layer.

3.3 method 31

3.3.3.1 Robust Perturbation for Backpropagation
The fundamental difficulty of backpropagating through a combinatorial optimization prob-
lem is that the loss landscape is piecewise constant, since the output of the combinatorial
problem is integer valued. To handle this difficulty, generally applicable perturbation
techniques (Bengio et al., 2013; Domke, 2010; Indelman and Hazan, 2020; McAllester et al.,
2010; Vlastelica et al., 2019) have been proposed. They work by taking finite differences
of solutions with perturbations of the original problem. The work (Vlastelica et al., 2019)
interprets this as creating a continuous interpolation of the non-continuous original loss
landscape.

The second difficulty is that, due to large size and NP-hardness of AMWC, we use a
heuristic suboptimal solver that does not in general deliver optimal solutions. Therefore,
we propose a multi-scale extension of Vlastelica et al. (2019) for increased robustness that
works well in our setting.

Assume a binary integer linear optimization layer W takes a cost vector c as input
from a neural network i.e., W : Rn → {0, 1}n, c 7→ arg minx∈S⟨c, x⟩ where S ⊂ {0, 1}n
is the set of constraints. Afterwards the minimizer of W is fed into a loss function
L : {0, 1}n → R. For backpropagation we need to compute the gradient ∂(L◦W)

∂c , where
L ◦W is the composition of L and W. Since, this gradient is zero almost everywhere a
continuous interpolation (L ◦W)λ is proposed by Vlastelica et al. (2019) where λ > 0 is
an interpolation range. The gradient w.r.t. the interpolation is computed by perturbation
of the cost vector c by incoming gradient as follows

∂(L ◦W)λ

∂c
=

1
λ

[
W(c + λ∇L(W(c)))−W(c)

]
(3.2)

while Vlastelica et al. (2019) report that a large interval of interpolation ranges λ work
well on their test problems with optimal solvers, we have not been able to confirm this for
our suboptimal heuristic that only gives approximately good solutions to W. Therefore,
we propose to use a multi-scale loss and its gradient

(L ◦W)avg :=
1
N

N∑
i=1

(L ◦W)λi
, ∂(L ◦W)avg

∂c
=

1
N

N∑
i=1

∂(L ◦W)λi

∂c
(3.3)

where λi are sampled uniformly in an interval. While the robust backpropagation for-
mula (3.3) needs multiple calls to the optimization oracle W, they can be computed in
parallel. In practice the computation time for a backward pass will hence not increase.

3.3.3.2 Panoptic Quality Surrogate Loss
Panoptic quality (PQ) (Kirillov et al., 2019b) is a size-invariant evaluation metric defined
between a set of predicted masks and ground-truth masks for each semantic class l ∈ [K].
For each class, it requires to match predicted and object masks to each other w.r.t.
intersection-over-union (IoU) since instance labels are permutation invariant. A pair of
predicted and ground truth binary masks p and g of the same class l is matched (i.e.,
true-positive) if IoU(p, g) ≥ 0.5. We write (p, g) ∈ TPl. For the unmatched masks, each
prediction (ground-truth) is marked as false positive FPl (false negative FNl). Since at

32 chapter 3. panoptic segmentation with end-to-end training

most one match exists per ground truth mask, this matching process is well-defined (Kirillov
et al., 2019b). The PQ metric is defined as the mean of class specific PQ scores

PQl =

∑
(p,g)∈T Pl

IoU(p, g)

|TPl|+ 0.5(|FPl|+ |FNl|)
(3.4)

Note that the PQ score (3.4) can be arbitrarily low just by the presence of small sized false
predictions (Cheng et al., 2020; Xiong et al., 2019; Porzi et al., 2019). A common practice
to avoid such issue is to reject small predictions before computing the PQ score with some
dataset specific size thresholds, before evaluation. However, this rejection mechanism is
not incorporated during training.

The PQ metric (3.4) cannot be straightforwardly used for training due to the discontinu-
ity of the hard threshold based matching and the rejection mechanism. Therefore we replace
the hard threshold matching process for each class l by computing correspondences via a
maximum weighted bipartite matching with IoU as weights. The corresponding matches
are TP l, the unmatched prediction masks FP l and the unmatched ground truth masks
FN l. The hard thresholding is smoothed via soft thresholding function h(u) = u4

u4+(1−u)4

centered around 0.5. The small prediction rejection mechanism for mask p is smoothed via
σl(p) = [1 + exp(−0.1(1T p− tl))]

−1 centered at area threshold tl for class l. The overall
surrogate PQ for class l is

PQl =

∑
(p,g)∈T P l

h(IoU(p, g)) σl(p) IoU(p, g)∑
(p,g)∈T P l

h(IoU(p, g)) σl(p) + 0.5{∑p∈F P l
σl(p) + |FN l|}

(3.5)

where the term h(IoU(p, g)) models the probability of a predicted mask p being true
positive.

3.3.3.3 Transformation to Multiway Cut
In order to directly train with the panoptic loss surrogate (3.5) via the backpropagation
formula (3.3) we propose a transformation of the AMWC problem to a lifted MWC
problem in the backward pass for computing gradients. The AMWC optimization oracle
W can be written as

(x∗, y∗, z∗) = arg min
x,y,z

⟨cV , x⟩+ ⟨cE , y⟩ (3.6)

s.t. z(i) = z(j), if y(ij) = 0
z(i) ̸= z(j), if y(ij) = 1

(x, y) ∈ S, z ∈ Z+

where S describes the constraint listed in (3.1) and the loss is calculated w.r.t. panoptic
labels z∗ i.e., W(cV , cE) = z∗. To compute the gradients as per (3.2) we need to perturb
the cost vector associated with z in (3.6). However, AMWC only takes semantic costs and
affinity costs as input not the panoptic costs. In other words, the gradient of (3.5) affects
node costs of individual instances separately (i.e., they work on panoptic labels), but
AMWC assumes node costs are equal for all instances of one semantic class (i.e., it works

3.3 method 33

on class labels). Therefore we transform the AMWC problem into a lifted MWC problem
that has a class for each panoptic label in the ground truth. This allows to optimize
directly in panoptic label space and compute a gradient w.r.t. semantic and affinity costs
which can then be backpropagated to corresponding branches.

Algorithm 3.1: Backward pass
Input : ∂L

∂z , cV , cE, x, y, m, λ

Output : ∂L
∂cV

, ∂L
∂cE

// Transform node costs to panoptic costs and perturb

1 c′
V (l) = cV (m(l)) + λ∂L

∂z (l), ∀l ∈ [J]
// Multiway cut on panoptic label space

2 (zp, yp) = MWC(c′
V , cE)

// Perturbed class labels
3 xp(i) = m(zp(i)),∀i ∈ V

// Compute node cost gradients

4 ∂L
∂cV

= 1
λ(xp − x)

// Compute edge cost gradients

5 ∂L
∂cE

= 1
λ(yp − y)

6 return ∂L
∂cV

, ∂L
∂cE

AMWC
cV

cE

semantic
costsedge
costs

Losspanoptic
labels z

Compute
pan. costs

x y ∂L
∂z

semantic
labels

edge
labels

MWC

cV λcE

c′
VCompute

gradients

xp

yp

λ

∂L
∂cV

∂L
∂cE

Fo
rw

ar
d

pa
ss

Ba
ck

wa
rd

pa
ss

Figure 3.3: Gradient computation for cV , cE for fully differentiable learning: AMWC
produces semantic, edge, panoptic labels x, y, z resp. Perturbations of panoptic label costs
c′

V are computed and sent to the MWC solver together with the original edge costs cE .
Results are used to compute and return the gradients.

For the backward pass described in Algorithm 3.1 we define the following notation: Let
J be the number of classes for the lifted MWC problem and m : [J]→ [K] the mapping
from panoptic labels onto the corresponding semantic class. Algorithm 3.1 computes the
gradient w.r.t. the simple backpropagation formula (3.2). For the robust backprop (3.3)
the algorithm has to be called multiple times with the corresponding interpolation ranges
λ. An illustration of the gradient computation is given in Figure 3.3.

34 chapter 3. panoptic segmentation with end-to-end training

Line 1 in Alg. 3.1 merges two sources of information i.e., preference of the loss L on
panoptic labels z and current class costs cV . Note that the edge costs cE are not perturbed.
Afterwards, the perturbed panoptic labels zp are converted back to class labels xp on line 3
to compute the gradients.

3.4 Experiments

All baselines are trained on NVIDIA Quadro RTX 8000 GPUs with 48GB memory each.
For fully differentiable training we use one Tesla P40 with 24GB memory and a 32 core
CPU to solve all AMWC problems in the batch in parallel.

3.4.1 Datasets

We train and evaluate our approach on the Cityscapes (Cordts et al., 2016) and COCO (Lin
et al., 2G014) panoptic segmentation datasets. We test on the validation and test sets
provided by the two datasets. For evaluation on the test set we do not use validation set
for training.
Cityscapes. Contains traffic related images of resolution 1024× 2048 where training,
validation and testing splits have 2975, 500, and 1525 images for training, validation,
and testing, respectively. It contains 8 ‘thing’ and 11 ‘stuff’ classes. During training we
use random scale augmentation and crop to 512× 1024 resolution as done in Panoptic-
DeepLab (Cheng et al., 2020). During evaluation the input images are sent at original
resolution. The values of small segment rejection thresholds (used during both training and
inference) are 200, 2048 for ‘thing’and ‘stuff’class resp. Lastly, to handle larger occlusions
we additionally use affinities at a distance of 128.
COCO. Is more diverse and contains 118k, 5k, and 20k images for training, validation,
and testing, resp. The dataset has 80 ‘thing’ and 53 ‘stuff’ classes. During training random
scale augmentation is also used with a crop size of 640× 640 resolution same as in Cheng
et al. (2020). The values of small segment rejection thresholds (used during both training
and inference) are 200, 4096 for ‘thing’and ‘stuff’class resp. During evaluation the input
images are resized to 640× 640 resolution.

3.4.2 Training

We closely follow the implementation of Panoptic-DeepLab (Wu et al., 2019) (based
on Pytorch (Paszke et al., 2019)), use the provided ImageNet pre-trained ResNet-50
backbone and the same learning rate parameters for training our baseline model. The
Adam optimizer (Kingma and Ba, 2014) is used for all our experiments.
Resolution. The CNNs produce an output with 1/4-th the resolution in every dimension
w.r.t. input images, similar to Panoptic-DeepLab. This reduced input size is maintained
for AMWC (instead of upsampled) to reduce computation time during full training and
evaluation. The panoptic labels computed by the AMWC solver are upsampled during
evaluation. Since these labels are discrete, upsampling may misalign object boundaries

3.4 experiments 35

and small ground-truth objects can potentially be missed as well. While this can put
our method at a disadvantage, our full training scheme offsets this by achieving panoptic
quality even better than the performance at finest resolution of comparable methods.
Baseline pre-training. We pre-train the CNN architecture as a baseline model and for
achieving a good initialization for the subsequent fully differentiable training. This also
allows us to measure the additional gain by full training. In pre-training we apply the
weighted top-k cross-entropy loss (Yang et al., 2019) to each affinity predictor separately
and also to the semantic segmentation branch. Since the main objective of the affinity
classifier should be to predict instance boundaries we increase the loss by a factor of 4 for
edges where at least one endpoint belongs to a ‘thing’ class. Additionally, we also increase
the semantic and affinity loss weights of small objects by a factor of 3 (Cheng et al., 2020).

We train Cityscapes on one GPU with batch-size 12 for 250k iterations, with initial
learning rate 0.001 and the decay strategies of Panoptic-DeepLab. Training takes around
8 days. COCO is trained on four GPUs with a total batch-size of 48 for 240k iterations
using the same learning rate parameters as above. Training takes around 11 days.
Full training. For training our pipeline through AMWC solver we use only the panoptic
quality surrogate loss (3.5) and fine-tune the semantic and affinity classifiers along with
the last layer of each semantic and affinity decoder. The ResNet50 backbone and all batch
normalization parameters (Ioffe and Szegedy, 2015) are frozen. We train with batch size
of 24 until training loss convergences which amounts to 3000 iterations for Cityscapes
and 10000 iterations for COCO. To approximate the gradient (3.3) we use relatively large
values of λ compared to (Vlastelica et al., 2019) since in-exact optimization might not
react to small perturbations correctly (for example the backward pass solution might not
even be equal to the one from the forward pass for λ→ 0). We also observed more stable
training curves for larger values of N and use N = 5 in our experiments.

3.4.3 Results

We compare panoptic quality (in terms of percentage) on both testing PQtest and validation
PQval splits of Cityscapes and COCO datasets, see Table 3.1. For the testing splits
evaluation requires submission to an online server. We also show performance on ‘thing’
classes PQth, and stuff classes PQst separately. To allow a fair comparison, we restrict
ourselves to results of competing approaches which are closest to our setting i.e., without
test-time augmentation, similar number of parameters in the network, not utilizing other
sources of training data, etc. For an overall comparison, we also consider at least one
state-of-the-art work from each other type of method (top-down, hybrid, etc.).

First, our fully trained model improves by more than 3 and 4 points in panoptic quality
for Cityscapes and COCO resp. in comparison to our baseline model. This is evidence our
panoptic loss surrogate and training in conjunction with the combinatorial solver works.
Especially, performance on the ‘thing’ classes improves which have internal boundaries.
We argue this is mainly due to better training of the affinity branch, which benefits more
from the AMWC supervisory signal. The methods SSAP (Gao et al., 2019), SMW (Wolf
et al., 2020) are closest to ours in-terms of the post-processing, and Panoptic-DeepLab
in-terms of architecture resp. Our fully trained model outperforms SSAP even in a setting

36 chapter 3. panoptic segmentation with end-to-end training

Table 3.1: Results on Cityscapes (above) and COCO (below) on validation and testing
splits. We divide the methods into two groups where lower half for each dataset contains
the approaches which are comparable to ours with bold numbers representing the best
performance in this category. R-X: ResNet-X, X-71: Xception-71, †: Mask selection (e.g.,
by Mask-RCNN), *: Uses test-time augmentation. (-) Marks the results which are not
reported for that setting.

Method Backbone PQtest PQtest
th PQtest

st PQval PQval
th PQval

st
Cityscapes

Axial-DL (Wang et al., 2020b) Axial-L 62.7 53.4 69.5 63.9 - -
Pan-DL (Cheng et al., 2020) X-71 60.7 - - 63.0 - -
Li et al. (2020)† R-50 61.0 52.7 67.1 61.4 54.7 66.3
Xiong et al. (2019)† R-50 - - - 59.3 54.6 62.7
Kirillov et al. (2019a)† R-101 - - - 58.1 52.0 62.5

SSAP (Gao et al., 2019)* R-101 58.9 48.4 66.5 61.1 55.0 -
Pan-DL (Cheng et al., 2020) R-50 58.0 - - 60.3 51.1 66.9
SMW (Wolf et al., 2020)† Multiple - - - 59.3 50.6 65.7
Li et al. (2020) R-50 - - - 59.0 50.2 65.3
SSAP (Gao et al., 2019) R-50 - - - 56.6 49.2 -
Our baseline R-50 56.7 46.0 64.5 58.5 48.3 66.0
Our full R-50 60.0 51.8 65.9 62.1 55.1 67.2

COCO
Max-DL (Wang et al., 2020a) MaX-S 49 54 41.6 - - -
Li et al. (2020)† R-50 43.6 48.9 35.6 43.4 48.6 35.5
Xiong et al. (2019)† R-50 - - - 42.5 48.5 33.4
Axial-DL (Wang et al., 2020b) Axial-S 42.2 46.5 35.7 41.8 46.1 35.2
Kirillov et al. (2019a)† R-101 40.9 48.3 29.7 40.3 47.5 29.5
Pan-DL (Cheng et al., 2020) X-71 38.8 - - 39.7 43.9 33.2

SSAP (Gao et al., 2019)* R-101 36.9 40.1 32 36.5 - -
Pan-DL (Cheng et al., 2020) R-50 35.2 - - 35.5 37.8 32.0
Our baseline R-50 34.2 35.2 32.8 34.3 34.9 33.4
Our full R-50 38.5 41.0 34.8 38.4 40.5 35.2

where SSAP uses test-time augmentation and a larger backbone. SMW reports results
only on Cityscapes using two independent DeepLabV3+ models and a Mask-RCNN. We
outperform it with our approach while still using a simpler model. While Pan-Deeplab
outperforms our baseline model, our full training scheme outperforms it on both datasets.

In Figure 3.4 we plot the PQ surrogate (3.5) during fully differentiable training using
different numbers of interpolation parameter N in (3.3). Our proposed improvement in
the backpropagation scheme of Vlastelica et al. (2019) trains faster and achieves better
panoptic quality. In Figure 3.5 we compare our differentiable PQ surrogate (3.5) with the
exact PQ metric (3.4) during training. Note that PQ surrogate overestimates exact PQ
because we smooth hard thresholding operators. Lastly, we see significant improvement
in PQ on evaluation set already after only 24 hours of training with a batch-size of 24
(baseline training took 11 days with 48 batch-size).

3.4 experiments 37

24 48 72

65

70

75

80

Wall clock time (hours)

P
Q
(%

)
→

N = 1 N = 5

Figure 3.4: Comparison of panoptic quality surrogate loss (higher values better) on
Cityscapes for different values of loss interpolation parameter N in (3.3). With N = 5
convergence is reached faster, even-though we do not parallelize over N .

12 24 36 48

40

50

60

Wall clock time (hours)

Pa
no

pt
ic

Q
ua

lit
y

(%
)

PQtrain PQtrain PQeval

Figure 3.5: Train, evaluation logs on COCO dataset during fully differentiable training.
Differentiable surrogate for panoptic quality PQtrain (3.5) and exact panoptic quality
PQtrain (3.4) is computed on training set. PQeval (3.4) is reported on the COCO validation
set after every 1000 training iterations.

Ablation study: simpler losses on AMWC. We directly apply loss on semantic
class labels x and edge labels y instead of panoptic labels. Since we do not use panoptic
labels, this approach does not require transformation to MWC (Alg. 1). The gradients can
be computed by perturbing associated semantic costs cV and edge costs cE and calling
the AMWC solver in the backward pass. Given ground-truth labels xg, yg, the losses are

LV =
1
|V |
∥x− xg∥1 (3.7)

LE = 1− yT yg

yT yg + 0.5(yT (1− yg) + (1− y)T yg)
(3.8)

38 chapter 3. panoptic segmentation with end-to-end training

Here the loss on edge labels is based on the F1-score following the approach of SMW (Wolf
et al., 2020) to account for class-imbalance. The loss (3.8) is applied separately on each
affinity classifier. Afterwards the approach of Vlastelica et al. (2019) can be directly
applied to compute gradients except that we use N = 5 using the robust backpropagation
formula (3.3) for a fair comparison with the panoptic quality surrogate. Lastly, the losses
are scaled to put more emphasis on small objects and ‘thing’ classes in the same way as
done for baseline pre-training.

We conduct a comparison on Cityscapes dataset and train using the same setup as for
the panoptic quality surrogate loss and use the checkpoint with lowest validation error.
Results are given in Table 3.2.

Table 3.2: Comparison of PQ surrogate loss with separate losses on AMWC output

Loss PQ PQth PQst
Separate losses 57.8 45.7 66.6
PQ surrogate 62.1 55.1 67.2

We observe that optimizing PQ surrogate gives better performance and using separate
losses decreases the performance especially on ‘thing’ classes. This is due to multiple
reasons: (a) The loss applied on affinities cannot perform well w.r.t. PQ because each edge
mis-classification is penalized arbitrarily instead of calculating its impact on PQ, (b) a
slight localization error in boundary detection is penalized in the same way as errors leading
to false merging/splitting of clusters. This issue was also observed by Arganda-Carreras
et al. (2015) for 3D instance segmentation.

3.4.4 Limitations

Inference times. Although parallelization can be simply done during training, our
approach lacks real-time performance during inference requiring around 2 seconds per
image from Cityscapes and 0.3 seconds for COCO datasets resp. In Chapter 4 we will aim
to address this shortcoming.

Two stage training. Our training procedure two steps. First we pre-train the network
using simpler losses and then finetune with panoptic quality surrogate loss by backpropa-
gating through AMWC. We follow this approach due to computational efficiency, since the
combinatorial part takes a significant amount of time. We hope that with better and faster
AMWC solvers training can be converted to a single stage in the future. Moreover we avoid
finetuning the whole model with panoptic quality surrogate because IoU based metrics are
not separable under expectations w.r.t. different images (Berman et al., 2018). To get good
estimates of the loss we therefore require larger batch sizes than for simpler losses used
in pre-training. This restriction makes it difficult to train all layers due to GPU memory
limitations. It would be interesting to train all parameters by backpropagation through
the combinatorial solver and forego the need for pre-training possibly on applications with
simpler losses and fast combinatorial solvers.

3.5 conclusion 39

Comparison with transformer based methods. The scope of our work is to evaluate
the benefits of backpropagation through AMWC for panoptic segmentation. We employ a
traditional CNN based backbone for easier experimentation. Due to this however, modern
transformer based approaches (Wang et al., 2020a,b; Jain et al., 2023) outperform our
approach. Such approaches also often do not require post-processing for inferring panoptic
predictions making them end-to-end trainable. As a drawback however, such methods
impose an upper bound on the number of instances. This can be a limitation in case
where panoptic predictions contain more than a few hundred objects e.g. in 3D volumes,
point clouds etc. As a future work it would be interesting to combine the best of both
worlds i.e., employ transformer architectures for learning and differentiable AMWC layer
for panoptic segmentation.

3.5 Conclusion

We have proposed a fully differentiable approach for panoptic segmentation incorporating
a combinatorial optimization (CO) layer for post-processing and directly minimizing
panoptic quality surrogate loss. Our choice has lead to a simple and elegant formulation
with a minimal number of hyperparameters. We argue that learning through CO layers
is possible and leads to improved performance even with simple and suboptimal solvers.
However, backpropagation schemes should be suitably augmented for robustness in this
case.

While our work suggests that CO is helpful in neural networks, most solvers (including
the ones we used) are sequential and executed on CPU, which limits their applicability.
For CO to become a more commonly used layer in neural networks, design of faster solvers
is imperative. This will be the focus of the upcoming Chapter 4

4Massively Parallel Multicut
Algorithms
Contents

4.1 Introduction . 40
4.2 Related Work . 41
4.3 Method . 42

4.3.1 Primal: Parallel Edge Contraction 42
4.3.2 Dual: Conflicted Cycles & Message Passing 44
4.3.3 Primal-Dual Updates . 46
4.3.4 GPU Implementations . 48

4.4 Experiments . 49
4.4.1 Results . 51

4.5 Conclusion . 53

In this chapter we propose a highly parallel primal-dual algorithm for the multicut
problem Our algorithm consists of three steps executed recursively: (1) Finding
conflicted cycles that correspond to violated inequalities of the underlying multicut

relaxation, (2) Performing message passing between the edges and cycles to optimize
the Lagrange relaxation coming from the found violated cycles producing reduced costs
and (3) Contracting edges with high reduced costs through matrix-matrix multiplications.
Our algorithm produces primal solutions and lower bounds that estimate the distance
to the optimum. We implement our algorithm on GPUs and show resulting one to two
orders-of-magnitude improvements in execution speed without sacrificing solution quality
compared to traditional sequential algorithms that run on CPUs. We can solve very
large-scale benchmark problems with up to O(108) variables in a few seconds with small
primal-dual gaps. Our code is available at https://github.com/pawelswoboda/RAMA.

4.1 Introduction

Multicut and its extensions are NP-hard to solve (Bansal et al., 2004; Demaine et al., 2006).
Since large problem instances with millions or even billions of variables typically occur,
powerful approximate algorithms have been developed (Keuper et al., 2015; Swoboda
et al., 2017a; Beier et al., 2014, 2016; Levinkov et al., 2017b). However, even simple
heuristics such as GAEC (Keuper et al., 2015) require very large running times for very
large instances. In particular, some instances, such as those investigated by Pape et al.
(2017) could not be solved in acceptable time (hence ad-hoc decomposition techniques
were used). In other scenarios very fast running times are essential e.g., when multicut
is used in end-to-end training as done by Song et al. (2019a) and also in Chapter 3.
Hence, the need for parallelization arises, preferably on GPUs. The parallelism offered by

40

https://github.com/pawelswoboda/RAMA

4.2 related work 41

GPUs is typically difficult to exploit due to irregular data structures and the inherently
sequential nature of most combinatorial optimization algorithms. This makes design of
combinatorial optimization algorithms challenging on GPUs. An additional benefit of
running our algorithms on GPU is that memory transfers between CPU and GPU are
avoided when used in a deep learning pipeline.

Our contribution is a new primal-dual method that can be massively parallelized
and run on GPU. This results in faster runtimes than previous multicut solvers while
still computing solutions which are similar or better than CPU based solvers in terms
of objective. Yet, our approach is rooted in solving a principled polyhedral relaxation
and yields both a primal solution and a dual lower bound. In particular, finding primal
solutions and approximate dual solving is interleaved such that both components of our
algorithm can profit from each other. In more detail, our algorithmic contribution can be
categorized as follows

Primal: Edge Contraction: Finding a primal solution depends similarly as in GAEC (Ke-
uper et al., 2015) on contracting edges that are highly likely to end up in the same
component of the final clustering. To this end, we propose to use a linear algebra ap-
proach by expressing edge contractions as sparse matrix-matrix multiplications. This
allows us to accelerate edge contraction by exploiting highly parallel matrix-matrix
multiplication GPU primitives.

Dual: Lagrange Relaxation & Message Passing: To find good edge contraction can-
didates, we consider approximately solving a relaxation by searching for conflicting
cycles, adding them to a Lagrange relaxation and updating the resulting Lagrange
multipliers by message passing. We propose a new message passing scheme that is
massively parallel thus speeding up the scheme of Swoboda et al. (2017a) by orders
of magnitude.

Recursive Primal-Dual: We interleave the above operations of finding and solving a
Lagrange relaxation and contracting edges, yielding the final graph decomposition.
Hence, our algorithm goes beyond classical polyhedral approaches (Swoboda et al.,
2017a; Kappes et al., 2011; Nowozin and Jegelka, 2009) that only consider the original
graph.

On the experimental side we obtain primal solutions that are of comparable or better
quality to those obtained by established high-quality heuristics (Keuper et al., 2015; Lange
et al., 2018) in a fraction of the execution time but with additional dual lower bounds
that help in estimating the quality of the solutions. We perform experiments on 2D and
3D instance segmentation problems for scene understanding (Cordts et al., 2016) and
connectomics (Pape et al., 2017) containing up to O(108) variables.

4.2 Related Work

For a detailed background on related works on multicut algorithms we refer to Sec 2.1.3.
We now discuss other related methods for graph clustering. The mutex watershed (Wolf
et al., 2020) and its generalizations (Bailoni et al., 2019) are closely related to the greedy

42 chapter 4. massively parallel multicut algorithms

additive edge fixation heuristic for multicut (Levinkov et al., 2017a). The corresponding
algorithms can be executed faster than their multicut counterparts on CPU, but are
sequential. Fast GPU scheme were proposed for agglomerative clusterings (Auer and
Bisseling, 2012). Last, spectral clustering can be implemented on GPU with runtime
gains (Jin and JaJa, 2016; Naumov and Moon, 2016). All these approaches however are
not based on any energy minimization problem, hence do not come with the theoretical
benefits that an optimization formulation offers.

4.3 Method

Recall a decomposition (or clustering) of a weighted graph G = (V , E, c) with vertices V ,
edges E and edge costs c ∈ RE can be obtained by solving the multicut problem (MC)

min
y∈MG

∑
ij∈E

cijyij . (MC)

In summary given an edge uv, positive costs cuv > 0 favor the nodes u and v to be in the
same component and vice versa. The multicut problem optimizes for an edge labeling
which straddles distinct components with minimum cost. The resulting edge label yuv for
an edge uv is 1 (resp. 0) if u and v belong to distinct (resp. same) components.

Below we detail the key components of our algorithm: Starting from a graph where each
node is a cluster, primal updates consist of edge contractions that iteratively merge clusters
by join operations. Dual updates optimize a Lagrange relaxation via message passing to
obtain better edge costs and lower bound. Primal and dual updates are interleaved to
yield our primal-dual multicut algorithm. We additionally detail how each operation can
be done in a highly parallel manner.

4.3.1 Primal: Parallel Edge Contraction

The idea of edge contraction algorithms is to iteratively choose edges with large positive
costs. Such edges prefer their endpoints to be in the same component, hence they are
contracted and end up in the same cluster. Edge contraction is performed until no
contraction candidates are found. The special case of greedy additive edge contraction
(GAEC) from Keuper et al. (2015) (Alg. 2.1) chooses in each iteration an edge with
maximum edge weight for contraction and stops if each edge in the contracted graph has
negative weight. The following Lemma describes the operation of edge contraction.

Lemma 5. Let an undirected weighted graph G = (V , E, c) and a set of edges S ⊆ E to
contract be given. Also let G′ = (V ′, E′, c′) be the graph obtained after edge contraction.

(a) The corresponding surjective contraction mapping f : V → V ′ mapping node
set V onto the contracted node set V ′ is up to isomorphism uniquely defined by
f(u) = f(v) ⇐⇒ ∃uv-path(V , S). The contracted edge set is given by E′ =
{f(u)f(v) : f(u) ̸= f(v), uv ∈ E}.

(b) The edge weights for contracted edges are c′
ij =

∑
uv∈E:f(u)=i,f(v)=j cuv, ∀ij ∈ E′.

4.3 method 43

p

r s

q

t

1

−2 −3 1

3 4

1

p q

r′

1

−2 −3 + 1

3 + 4 + 1

Figure 4.1: Contraction of a graph with contraction set S = {rs, st} where vertices
r, s and t are merged to form a cluster r′. The corresponding contraction mapping is
f(p) = p, f(q) = q, f(r) = f(s) = f(t) = r′. Notice that edges qs and qt become parallel
edges after contraction and their costs are added. Also notice the presence of self-loop in
the contracted graph with cost indicating intra-cluster similarity.

Lemma 5(a) relates the contraction mapping f with the set S of edges to contract. If
two nodes have the same value in f then there must be a path between them in graph
(V , S). Moreover the edges whose end points are not contracted are preserved in E′.
Lemma 5(b) provides the costs of contracted edges that are obtained by summing the
costs of parallel edges. An illustration of the lemma is given in Figure 4.1.

In order to perform edge contraction fast we will use a linear algebraic representation
that will allow to use highly parallel (sparse) matrix-matrix multiplication. We will perform
edge contraction with the help of an edge contraction matrix defined as follows.

Definition 6 (Edge Contraction Matrix). Given a weighted graph G = (V , E, c) and an
edge set S ⊂ E to contract, let f be the contraction mapping and V ′ the contracted node set.

The edge contraction matrix KS ∈ {0, 1}V ×V ′ is defined as (KS)uu′ =

1, f(u) = u′

0, otherwise
.

Lemma 7. Given a weighted graph G = (V , E, c), an edge set S ⊆ E to contract and an
associated edge contraction mapping f

(a) the adjacency matrix of the contracted graph is equal to K⊤
S AKS − diag(K⊤

S AKS),
where diag(·) is the diagonal part of a matrix,

(b) it holds for the diagonal entry (K⊤
S AKS)u′u′ =

∑
uv∈E:u′=f(u)=f(v) cuv.

Lemma 7(a) provides a way to compute the contracted graph in parallel by sparse
matrix-matrix multiplication. Lemma 7(b) allows to efficiently judge whether the newly
formed clusters decrease the multicut objective. Specifically if the diagonal contains all
positive terms then the corresponding multicut objective will also decrease after contraction.

A primal update iteration is given in Algorithm 4.1 that performs edge contraction as
in Lemma 7(a).
Finding contraction edge set S. A vital step for ensuring a good primal update is
selecting the edge set S for contraction in Algorithm 4.1. On one hand, we would like to

44 chapter 4. massively parallel multicut algorithms

Algorithm 4.1: Parallel Edge Contraction (PEC)
Data: Graph G = (V , E, c)
Result: Contracted Graph G′ = (V ′, E′, c′), contraction mapping f : V → V ′

1 Compute contraction set S ⊆ E
2 Compute adjacency matrix A from G
3 Construct contraction mapping f : V → V ′

4 Construct contraction matrix KS

5 A′ = K⊤
S AKS − diag(K⊤

S AKS)
6 Compute contracted graph G′ = (V ′, E′, c′) from A′

choose edges in a conservative manner to avoid erroneous contractions. On the other hand,
we need to contract as much edges as possible for efficiency. We propose two approaches
allowing us to be at the sweet spot for both criterion as follows.

Maximum matching: Perform a fast maximum matching on the positive edges in using
a GPU version of the Luby-Jones handshaking algorithm (Cohen and Castonguay,
2012) and select the matched edges for contraction.

Maximum spanning forest without conflicts: Compute a maximum spanning forest
on the positive edges with a fast GPU version of Borůvka’s algorithm (Wen-mei,
2011) to find initial contraction candidates. Afterwards, iterate over all negative
edges ij, find the unique path between i and j in the forest (if it exists) and remove
the smallest positive edge. We make use of GPU connected components (Jaiganesh
and Burtscher, 2018) to check for presence of these paths and to compute the final
contraction mapping.

Both of the above strategies ensure that the resulting join operation decreases the multicut
objective. We first find contraction edges via maximum matching. If not enough edges are
found (i.e., fewer than 0.1|V |), we switch to the spanning forest based approach. Note
that if we chose only one largest positive edge for contraction, Algorithm 4.1 specializes to
GAEC (Keuper et al., 2015). Since our algorithm depends upon many simultaneous edge
contractions for efficiency, we do not use this strategy.

4.3.2 Dual: Conflicted Cycles & Message Passing

Solving a dual of multicut problem (MC) can help in obtaining a lower bound on the
objective value and also yields a reparametrization of the edge costs which can help in better
primal updates. Our dual algorithm works on the cycle relaxation for the multicut problem
(Lemma 3). We present for its solution massively parallel inequality separation routines to
search for the most useful violated constraints and efficient dual block coordinate ascent
procedure for optimizing the resulting relaxation.
Cycle Inequalities & Lagrange Relaxation. While cycle inequalities (2.2) give us
a polyhedral relaxation of the multicut problem (MC), our algorithm will operate on a
Lagrangean decomposition that was proposed by Swoboda and Andres (2017). It consists

4.3 method 45

of two types of subproblems joined together via Lagrange variables: (i) edge subproblems
for each edge e ∈ E and (ii) triangle subproblems (i.e., cycles of length 3) for a subset

of triangles T ⊂
(

E
3

)
. Triangulation of cycles of length more than three is done to

get triangles defining the same polyhedral relaxation as the one with all possible cycle
inequalities (2.2) without loss of generality (Chopra and Rao, 1993). We define the set of
feasible multicuts on triangle graphs as

MT = {(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)} , (4.1)

which is a special case of (2.2) representing that either all edges are cut/joined or exactly
two edges are cut. Given a set of edge and triangle subproblems our Lagrange decomposition
is

max
λ

∑
uv∈E

min
y∈{0,1}

cλ
uv · y +

∑
t∈T

min
y∈MT

⟨cλ
t , y⟩

︸ ︷︷ ︸
=:LB(λ)

(4.2)

where the reparametrized edge costs cλ
uv ∈ R and triangle costs cλ

t ∈ R3 for triangle
t = {ij, jk, ki} ∈ T are

cλ
uv = cuv +

∑
t∈T :uv∈t

λt,uv (4.3a)

cλ
t = −(λt,ij , λt,jk, λt,ki) (4.3b)

LB(λ) in (4.2) is a lower bound on the cost of the optimum multicut for any λ. The
optimum objective value of (4.2) equals that of the polyhedral relaxation of Swoboda et al.
(2017a).
Cycle inequality separation. Similar to Lange et al. (2018) we enumerate only the
conflicted cycles (see Def. 2) of G for efficiency without loosening the relaxation. A cycle
is called a conflicted cycle if it contains exactly one repulsive edge.

Remark 8. The search for conflicted cycles can be performed in parallel for each ij ∈ E−

by finding shortest path w.r.t. hop distance between i and j in the graph (V , E+) making
good use of parallelization capabilities of GPUs.

Dual block coordinate ascent (DBCA). DBCA (a.k.a. message passing) was studied
by Swoboda and Andres (2017) for the multicut problem. However, the resulting message
passing schemes are not easily parallelizable. The underlying reason for the inherent
sequential nature of these schemes is that the effectiveness of the proposed message passing
operations depend on the previous ones being executed. We propose a message passing
scheme for multicut that is invariant to the message passing schedule, hence allowing
parallel computation. Similar to the work of Swoboda and Andres (2017), our scheme
iteratively improves the lower bound (4.2) by message passing between edges and triangles.

For each message passing operation we need to compute min-marginals i.e., the
difference of optimal costs on subproblems obtained by fixing a specified variable to 1
and 0. For edge costs the min-marginal is just the reparametrized edge cost. For triangle
subproblems it is given as follows.

46 chapter 4. massively parallel multicut algorithms

Definition 9 (Marginalization for triangle subproblems). Let t ∈ T be a triangle containing
an edge e.

mt→e(c
λ
t) = min

ye=1
y∈MT

⟨cλ
t , y⟩ − min

ye=0
y∈MT

⟨cλ
t , y⟩ (4.4)

is called min-marginal for triangle t and edge e.

Algorithm 4.2: Parallel Message Passing (PMP)
Data: Graph G = (V , E, c), triangles T , Lagrange multipliers λ.
Result: Updated Lagrange multipliers λ
// Messages from edges to triangles

1 for e ∈ E in parallel do
2 α = cλ

e

3 for t ∈ T : e ∈ t do
4 λt,e− = α

|t∈T :e∈t|
5 end
6 end

// Messages from triangles to edges
7 for t = {ij, jk, ki} ∈ T in parallel do
8 λt,ij+ = 1

3mt→ij(cλ
t)

9 λt,ik+ = 1
2mt→ik(c

λ
t)

10 λt,jk+ = mt→jk(c
λ
t)

11 λt,ij+ = 1
2mt→ij(cλ

t)

12 λt,ik+ = mt→ik(c
λ
t)

13 λt,ij+ = mt→ij(cλ
t)

14 end

The message passing algorithm iteratively sets min-marginal to zero first for edge
subproblems and then for triangles described in Algorithm 4.2. By sending messages
back and forth between subproblems they communicate their local optima and ultimately
the min-marginals converge towards agreement (i.e., their corresponding edge labels y
are consistent). It was shown by Swoboda et al. (2017a) that each such operation is
non-decreasing in the dual objective value, yielding an overall monotonic convergence.
Message are passed from edges to triangles in lines 2-5. After this step the reparametrized
edge costs cλ

e become zero. We perform multiple triangle to edge message passing updates
(line 8-13) similar to the way it was done by Tourani et al. (2018) that distribute messages
uniformly among all triangles which contain that edge. After this operation min-marginals
for cλ

t become zero.

4.3.3 Primal-Dual Updates

While the two building blocks of our multicut solver i.e., edge contraction and cycle
separation with message passing can be used in isolation to compute a primal solution

4.3 method 47

a b

c
d

e

Parallel
Message
passing a b

c
d

e

Parallel
Edge

contraction abc

de

Figure 4.2: Example iteration of our primal-dual multicut solver on a graph with repulsive
and attractive edges (best viewed in color). Width of the edges indicate absolute cost.
First we detect conflicted cycles (e.g., {bc, cd, bd} containing the repulsive edge cd). Next
we triangulate conflicted cycles to get triangles (indicated by ⟳). Afterwards, dual update
reparametrizes edge costs which resolving the conflicted cycles. Lastly, a primal update is
done by contracting attractive edges (i.e., {ab, bc, de}).

and lower bound, we propose an interleaved primal-dual solver in Algorithm 4.3 with an
example in Figure 4.2.

Algorithm 4.3: Primal-Dual Multicut
Data: Graph G = (V , E, c)
Result: Contraction mapping f : V → V ′

// Initialize each node as a separate cluster
1 f = V → V , f(v) = v ∀v ∈ V
2 while G has positive edges without conflicts do

// Find conflicted cycles (Remark 8)
3 T = Cycle-Separation(G)
4 for iter= 1, . . . , k do

// Do parallel message passing (Alg. 4.2)
5 λ = PMP(G, T)

// Reparametrize edge costs
6 ce = cλ

e ∀e ∈ E by (4.3a)
7 end

// Do parallel edge contraction (Alg. 4.1)
8 G, f ′ = PEC(G)

// Update contraction mapping
9 f(v) = f ′(f(v)) ∀v ∈ V

10 end

In each iteration we separate cycles and perform message passing to get reparameterized
edge costs. We use these reparametrized edge costs to perform parallel edge contraction.
This interleaved process continues until no edge contraction candidate can be found. Such
scheme has the following benefits

Better edge contraction costs: The reparametrization in line 6 produces edge costs cλ

that are more indicative of whether an edge is contracted or not in the final solution
thus yielding better primal updates in line 8. In case the relaxation (4.2) is tight,

48 chapter 4. massively parallel multicut algorithms

the sign of cλ
e perfectly predicts whether an edge e is separating two clusters or is

inside one.

Better cycle separation: For fast execution times we stop cycle separation for cycles
greater than a given length (5 in our case). Since cycle separation is performed again
after edge contraction, this corresponds to finding longer cycles in the original graph.
Such approach alleviates the need to perform a more exhaustive and time-consuming
initial search.

Note that a valid lower bound can be obtained from Algorithm 4.3 by recording (4.2) after
cycle separation and message passing on the original graph.

4.3.4 GPU Implementations

Edge contraction. We use a specialized implementation for edge contraction using
Thrust (Hoberock and Bell, 2010) which is faster than performing it via general sparse
matrix-matrix multiplication routines and most importantly has lesser memory footprint
allowing to run larger instances. We store the problem graph as an adjacency matrix
A = (I, J , C) in COO format, where I, J , C correspond to row indices, column indices
and edge costs resp. The pseudocode is given in Algorithm 4.4.

Algorithm 4.4: Parallel Edge Contraction pseudocode
Data: Adjacency matrix A = (I, J , C), Contraction mapping f : V → V ′

Result: Contracted adjacency matrix A′ = (I ′, J ′, C ′)
// Assign new node IDs

1 Î(v) = I(f(v)), ∀v ∈ V

2 Ĵ(v) = J(f(v)), ∀v ∈ V

3 COO-Sorting(Î, Ĵ , C)
// Remove duplicate edges and sum their costs

4 (I ′, J ′, C ′) = reduce_by_key(keys= (Î, Ĵ), values= Ĉ, accumulator = +)

Conflicted cycles. For detecting conflicted cycles we use specialized CUDA kernels.
The pseudocode for detecting 5-cycles is given in Algorithm 4.5. The algorithm searches
for conflicted cycles by parallelizing over repulsive edges. For nodes of each repulsive
edge it traverses the neighbors connected by attractive edges N+. To efficiently check for
intersection in Line 2 we store the adjacency matrix in CSR format.

4.4 experiments 49

Algorithm 4.5: Parallel Conflicted 5-Cycles pseudocode
Data: Graph G = (V , E, c)
Result: Conflicted cycles Y in A

1 Y = ∅
// Find attractive paths between repulsive edges

2 for v1v3 ∈ {N+(v0)×N+(v4) | cv0v4 < 0} in parallel do
3 for v2 ∈ N+(v1) ∩N+(v3) do
4 Y = Y ∪ {v0, v1, v2, v3, v4}
5 end
6 end

4.4 Experiments

We evaluate solvers on multicut problems for neuron segmentation for connectomics
in the fruit-fly brain (Pape et al., 2017) and unsupervised image segmentation on
Cityscapes (Cordts et al., 2016). We use a single NVIDIA Volta V100 (16GB) GPU
for our solvers unless otherwise stated and an AMD EPYC 7702 for CPU solvers. Our
solvers are implemented using the CUDA (NVIDIA et al., 2021) and Thrust (Hoberock
and Bell, 2010) GPU programming frameworks.
Datasets. We have chosen three datasets containing the largest multicut problem
instances we are aware of. The instances are made available by Swoboda et al. (2022a).

Connectomics-SP: Contains neuron segmentation problems from the fruit-fly brain (Pape
et al., 2017). The raw data is taken from the CREMI-challenge (Funke et al., 2016)
acquired by Zheng et al. (2018) and converted to multiple multicut instances by Pape
et al. (2017). For this conversion Pape et al. (2017) also reduced the problem size by
creating super-pixels. The majority of these instances are different crops of one global
problem. There are 3 small (400000− 600000 edges), 3 medium (4− 5 million edges)
and 5 large (28− 650 million edges) multicut instances. For the largest problem we
use an NVIDIA RTX 8000 (48GB) GPU.

Connectomics-Raw: We use the 3 test volumes (sample A+, B+, C+) from the CREMI-
challenge (Funke et al., 2016) segmenting directly on the pixel level without conversion
to super-pixels. Conversion to multicut instances is carried out using the framework
of Pape (2021). We report results on two types of instances: (i) The three full
problems where the underlying volumes have size 1250× 1250× 125 with around
700 million edges and (ii) six cropped problems created by halving each volume and
creating the corresponding multicut instances each containing almost 340 million
edges. For all these instances we use an NVIDIA RTX 8000 (48GB) GPU.

Cityscapes: Unsupervised image segmentation on 59 high resolution images (2048× 1024)
taken from the Cityscapes validation set (Cordts et al., 2016). Conversion to multicut
instances is done by computing the edge affinities produced from Sec 3.4 on a grid
graph with 4-connectivity and additional coarsely sampled longer range edges. Each
instance contains approximately 2 million nodes and 9 million edges.

50 chapter 4. massively parallel multicut algorithms

Algorithms. As baseline methods we have chosen, to our knowledge, the fastest primal
heuristics from the literature.

GAEC (Keuper et al., 2015): The greedy additive edge contraction Algorithm 2.1. It is
equivalent to Algorithm 4.2 when choosing a single highest edge to contract. We use
our own CPU implementation that is around 1.5 times faster than the one provided
by the authors.

KLj (Keuper et al., 2015): The Kernighan&Lin with joins algorithm performs local move
operations which can improve the objective. To avoid large runtimes the output of
GAEC is used for initialization.

GEF (Levinkov et al., 2017a): The greedy edge fixation algorithm is similar to GAEC but
additionally visits negative valued (repulsive) edges and adds non-link constraints
between their endpoints.

BEC (Kardoost and Keuper, 2018): Balanced edge contraction, a variant of GAEC which
chooses edges to contract based on their cost normalized by the size of the two
endpoints.

ICP (Lange et al., 2018): The iterated cycle packing algorithm searches for cycles and
greedily solves a packing problem that approximately solves the multicut dual (4.2).

P: Our purely primal Algorithm 4.1 using the maximum matching and spanning forest
based edge contraction strategy.

PD: Our primal-dual Algorithm 4.3 which additionally makes use of the dual information.
We find conflicted cycles up to length 5 on original graph and up to a length of 3 for
later iterations on contracted graphs.

PD+: Variant of PD which always considers conflicted cycles up to a length 5 for reparametriza-
tion which can lead to even better primal solutions although with higher runtime.

D: Our dual cycle separation algorithm followed by message passing on the original graph
via Algorithm 4.2 producing lower bounds.

4.4 experiments 51

−2.5 −2 −1.5 −1 −0.5
·106

1

10

100

Objective value (←)

Ru
nt

im
e

[s]
(←

)

BEC GEF GAEC PD+ PD P

Figure 4.3: Comparison of upper bounds (primal objectives) on Cityscapes dataset. Our
purely primal algorithm (P) is 30× faster than GAEC (Keuper et al., 2015) and GEF (Levinkov
et al., 2017a), although with worse objective values. Incorporating dual information enables
our solvers (PD, PD+) to even surpass the sequential solvers in objective while being faster
by an order of magnitude. Error bars mark the 0.25, 0.75-quantile. (KLj not shown due to
high runtime).

Connectomics-SP Connectomics-Raw Cityscapes
Small (3) Med. (3) Large (5) Crops (6) Full (3) (59)

Method C(×105) t(s) C(×105) t(s) C(×105) t(s) C(×108) t(s) C(×108) t(s) C(×106) t(s)
Primal

KLj −1.794 3.8 −9.225 125 † † † † † † −1.858 5e4
GAEC −1.794 0.4 −9.224 4.7 −1.512 280 −1.464 570 −2.963 1140 −1.826 13
GEF −1.793 0.7 −9.223 9.0 −1.511 699 −1.458 582 −2.949 1762 −1.743 14
BEC −1.787 0.5 −9.199 5.6 −1.507 309 −1.402 1688 −2.838 4150 −1.613 36
P −1.780 0.1 −9.173 0.6 −1.505 6 −1.430 9 −2.895 19 −1.711 0.4
PD −1.791 0.2 −9.217 1.0 −1.509 13 −1.477 24 −2.981 32 −1.846 1
PD+ −1.791 0.3 −9.219 1.4 −1.509 20 −1.480 115 −2.995 224 −1.862 2.2

Dual
ICP −1.798 0.8 −9.246 11.3 −1.518 1235 −1.507 513 −3.053 1091 −1.930 41.1
D −1.797 0.2 −9.241 0.8 −1.517 13 −1.499 34 * * −1.928 1.3

Table 4.1: Comparison of results on all datasets. (C: cost, t(s): time in seconds, †: timed
out, *: out of GPU memory). We report average primal and dual costs and runtime over
instances within each category. In terms of primal solutions our primal-dual solvers (PD,
PD+) achieve objectives close to or better than sequential solvers while being substantially
faster especially on larger instances. Moreover our parallel message passing approach
(D) gives better lower bounds than ICP with up to two orders of magnitude reduction in
runtime.

4.4.1 Results

Results on all datasets are given in Table 4.1. On the Connectomics-SP dataset we attain
primal objectives very close to those produced by GAEC (Keuper et al., 2015) but faster by
more than an order of magnitude on large instances.

For the Cityscapes and Connectomics-Raw datasets we achieve even better primal

52 chapter 4. massively parallel multicut algorithms

−2.5 −2 −1.5 −1
·1061

10

100

Lower bound →

Ru
nt

im
e

[s]

ICP D

Figure 4.4: Comparison of lower bounds from Cityscapes dataset. Our parallel message
passing scheme (D) is more than an order of magnitude faster than ICP (Lange et al., 2018)
and gives slightly better lower bounds. Error bars mark the 0.25, 0.75-quantile.

0B 0.1B 0.2B 0.3B 0.4B 0.5B
0

250
500
750

1,000

12s 22s 36s

Instance size |E|

Ru
nt

im
e

[s]

GAEC PD

Figure 4.5: Runtime scaling comparison computed on different crops of CREMI test data
showing that our PD algorithm scales very well as compared to GAEC (Keuper et al., 2015)
w.r.t. increasing problem sizes

solutions than sequential algorithms by incorporating dual information while also being
substantially faster. Our best solver (PD+) is more than 104 times faster than KLj (Keuper
et al., 2015) and produces better solutions. Distributions of runtimes and primal resp. dual
objectives for all instances of Cityscapes are shown in Figures 4.3 and 4.4. We compare
the scaling behaviour of our solver w.r.t. increasing instance sizes in Figure 4.5 showing
that our solver scales much more efficiently than GAEC.

Lastly, our dual algorithm (D) produces speedups of up to two orders of magnitude
and better lower bounds compared to the serial ICP (Lange et al., 2018), except on the
full instances of Connectomics-Raw where we run out of GPU memory.
Runtime breakdown. Runtime breakdown of our PD algorithm is given in Table 4.2.
Most of the time is spent in finding conflicted cycles which we found to be challenging
to implement on GPU while keeping runtime and memory consumption low. Future
improvements offer a potential for even better results and speedups by finding longer
cycles more efficiently.

Finding S Contract. Conf. cycles Message passing
30% 7% 43% 20%

Table 4.2: Runtime breakdown for PD algorithm on Cityscapes

4.5 conclusion 53

4.5 Conclusion

We have demonstrated that multicut, an important combinatorial optimization problem
for machine learning and computer vision, can be effectively parallelized on GPU. Our
approach produces better solutions than state of the art efficient heuristics on grid graphs
and comparable ones on super-pixel graphs while being faster by one to two orders-of-
magnitude. We believe that performance gap on super-pixel graphs is due to a graph
structure containing much more (and longer) conflicted cycles. Since our implementation
can only find cycles of length up to 5, better implementations that can efficiently handle
longer cycles might yield further improvements.

In contrast to CPU algorithms, where execution speed is the limiting factor, for our
GPU algorithm, comparatively smaller amount of GPU-memory limits application to even
larger instances. We hope that our work will enable more compute intensive applications
of multicut, where until now the slower serial CPU codepath has hindered its adoption.

5Efficient Multicut on Complete
Graphs
Contents

5.1 Introduction . 54
5.2 Related Work . 55
5.3 Method . 56

5.3.1 Greedy Additive Edge Contraction 56
5.3.2 Lazy Edge Contraction . 60
5.3.3 Varying Affinity Strength . 60
5.3.4 Computational Complexity . 62

5.4 Experiments . 63
5.4.1 ImageNet Clustering . 64
5.4.2 Panoptic Segmentation . 65

5.5 Conclusion . 68

In this chapter we propose a graph clustering formulation based on multicut on the
complete graph. Our formulation does not need specification of the graph topology
as in the original sparse formulation of multicut, making our approach simpler and

potentially better performing. In contrast to unweighted correlation clustering, we allow
for a more expressive weighted cost structure. In our formulation, the clustering objective
is given in a factorized form as the inner products of node feature vectors. This allows
for an efficient formulation and inference in contrast to multicut/weighted correlation
clustering, which has at least quadratic representation and computation complexity when
working on the complete graph. We show how to rewrite classical greedy algorithms for
multicut in our dense setting and how to modify them for greater efficiency and solution
quality. In particular, our algorithms scale to graphs with tens of thousands of nodes.
Empirical evidence on instance segmentation on Cityscapes and clustering of ImageNet
datasets shows the merits of our approach.

5.1 Introduction

Graph-based clustering approaches, primarily among them multicut (Chopra and Rao,
1993), are theoretically appealing: They do not need specification of the number of
clusters, but infer them as part of the optimization process. They allow for a flexible
clustering objective with attractive and repulsive costs between pairs of nodes. They
are also theoretically well-understood as optimization problems with intensively studied
polyhedral descriptions. Efficient solvers that scale well and give high quality solutions
have also been developed.

As a drawback, graph-based clustering approaches need specification of the underlying

54

5.2 related work 55

graph topology. In practice, this means an additional engineering effort as well as the
possibility to not get it right, which would decrease the downstream task performance.
Naively circumventing this challenge by using the complete graph is not scalable – the
number of edges grows quadratically. One approach to resolve this conundrum is graph
structure learning e.g., by extending the work of Kazi et al. (2022), but adds considerable
additional complexity.

We propose a method to solve graph clustering efficiently on complete graphs. Our
formulation will use the well-known edge-based multicut formulation and only restrict
the way edge costs can be computed: they need to be based on inner products of node
features. This has two advantages: First, it reduces storage requirements. Instead of
storing a full adjacency matrix of edge costs as in multicut, which grows quadratically
with the number of nodes, we only need to store a linear number of node features and can
compute edge costs on demand. Second, operations needed in multicut algorithms can be
made scalable. Instead of operating on the complete graph we can sparsify it adaptively
during the solving process. This allows to simulate the workings of multicut algorithms on
complete graphs by working on a small subset of it. The key technical ingredient to obtain
these sparse subgraphs will be fast nearest neighbor search, for which efficient and scalable
implementations exist (Johnson et al., 2019). In effect, this allows us to solve large dense
multicut instances in moderate time, which is not possible with existing solvers. In detail,
our contribution is as follows:

Formulation: We propose multicut on complete graphs with factorized edge costs as an
efficiently representable graph clustering formalism.

Algorithm: We propose scalable algorithms for solving the dense multicut problems,
one mimicking exactly the original greedy additive edge contraction (GAEC) algo-
rithm (Keuper et al., 2015), the other a more efficient variant in the spirit of the
balanced edge contraction heuristic (Kardoost and Keuper, 2018).

Empirical: We show efficacy in terms of memory and runtime of our solvers and show
the merit of using them for image segmentation on Cityscapes and clustering of
ImageNet classification dataset.

5.2 Related Work

Algorithms. Multicut algorithms such as the ones from Keuper et al. (2015); Levinkov
et al. (2017a) while relatively efficient, scale with the number of edges, making them
unsuitable for very large dense graphs. Algorithms for correlation clustering on complete
graphs were proposed by Pan et al. (2015); Veldt (2022). However, they only allow
unweighted edges. In this chapter we consider efficient algorithms on full graphs and with
weighted edges.
K-Means. The K-means problem (Lloyd, 1982) is similar to our approach in that it
works directly on feature representations and its objective is based on L2-distances between
features. Similarly to our algorithm, large number of points are handled by efficiently
computing kNN-graphs (Qaddoura et al., 2020), thereby reducing run time. In contrast to

56 chapter 5. efficient multicut on complete graphs

multicut, the number of clusters must be given a-priori, while in multicut it is derived as
part of the optimization process.
Other clustering approaches. There are a number of other paradigms for clustering.
A prominent approach is spectral clustering, in which a weighted graph is given and a clus-
tering is computed with the help of the eigenvectors of the graph Laplacian (Von Luxburg,
2007; Jia et al., 2014). The work of Dhillon et al. (2007) shows connections between
weighted k-means and multiple spectral clustering approaches. As for K-means and unlike
multicut, spectral clustering requires the number of clusters to be specified.

5.3 Method

Recall a decomposition (or clustering) of a weighted graph G = (V , E, c) with vertices V ,
edges E and edge costs c ∈ RE can be obtained by solving the multicut problem (MC)

min
y∈MG

∑
ij∈E

cijyij . (MC)

The goal of our work is to consider the scenario when the graph G is complete i.e.,
E = {ij : i ∈ V , j ∈ V \ {i}}. For large graphs storage and processing of edge costs c
becomes prohibitive. To address this issue we instead require as input a feature vector
fi ∈ Rd for each node i in V . The edge costs between a pair of nodes i and j can then
be measured on-demand through some function s(fi, fj)→ R. In this case the multicut
problem becomes

min
y∈MG

∑
i∈V

∑
j∈V \i

s(fi, fj)yij , (DM)

which we term as dense multicut problem. An illustration of our formulation is given in
Figure 5.1.

In the following we first revisit an algorithm to approximately solve the multicut
problem (MC) and show its extensions for the dense multicut problem (DM).

5.3.1 Greedy Additive Edge Contraction

The greedy additive edge contraction (GAEC) scheme (Keuper et al., 2015) as described
in Alg. 2.1 computes approximate solution of the multicut problem. It initializes each
node as a separate cluster and iteratively contracts a pair of nodes i, j with the largest
non-negative cost cij (if it exists). Let m be the node i and j are contracted to. The edge
costs of edges incident to m are

cml = cil + cjl, l ∈ N i ∪N j \{i, j}, (5.1)

where costs of non-existing edges are assumed to be 0 and N i corresponds to neighbors of
i in graph G. For complete graphs directly applying this algorithm by operating on edge
costs is computationally expensive. Moreover since each node is connected to all other
nodes (N i = V \ {i}), cost updates (5.1) during edge contraction take O(|V |) instructions.

5.3 method 57

i

j

fi fj

(0, 0)

Figure 5.1: Example illustration of dense multicut problem (DM) on 5 nodes. Each
node i is associated with a vector fi ∈ R2 and all possible edges between distinct nodes
are considered (i.e., the complete graph). The edge cost between a pair of nodes i, j is
measured by ⟨fi, fj⟩ and attractive/repulsive edges are colored green/red. Edge thickness
represents absolute edge cost. Also shown is the optimal partitioning to 2 clusters with
cut edges denoted by dashed lines.

Contraction on complete graphs. We show how to perform a more efficient (and
equivalent) contraction by operating on the node features f by our formulation (DM) for
the particular case of s(·, ·) defined as

s(fi, fj) = ⟨fi, fj⟩. (5.2)

From now on, unless stated otherwise, our edge costs will be given by (5.2).

Lemma 10 (Contraction with node features). Assume edge costs are measured by (5.2)
and nodes i and j are contracted to m. Then features of node m given by

fm = fi + fj (5.3)

produce contracted edge costs according to (5.1).

Proof. By applying (5.2) for l ∈ V and comparing with (5.1) we get

s(fm, fl) = ⟨fm, fl⟩ = ⟨fi, fl⟩+ ⟨fj , fl⟩ = s(fi, fl) + s(fj , fl) .

Next we will build on the previous result to devise heuristics for solving dense multicut
problem (DM) efficiently.
GAEC for complete graphs. We devise an algorithm which exactly imitates GAEC (Ke-
uper et al., 2015) but is applicable to our formulation on complete graphs (DM). Specifically
to make GAEC efficient with node features and a complete graph, we sparsify the original
graph G by working on its directed k-nearest neighbors (NN) graph (V ,A). The NN
graph stores candidate edges for contraction. The arc set A is populated by nearest
neighbor search w.r.t. feature similarity (5.2) and is updated on each edge contraction.
We denote outgoing neighbors of i as N+

i = {l|(i, l) ∈ A} and similarly N−
i as incoming

neighbors. We write N+
i ∪ N

+
j as N+

ij and similarly for incoming neighbors. Lastly, the

58 chapter 5. efficient multicut on complete graphs

set arg top-ks∈S g(s) contains the k elements of S having the largest values of g(s). The
complete strategy to obtain a feasible solution of dense multicut problem is described
in Algorithm 5.1. It imitates Algorithm 2.1 by iteratively searching and contracting the
most attractive edge, but it restricts its search only to the NN graph thereby reducing
computation. After contraction, the NN graph is updated (lines 5-8) by only recomputing
nearest neighbors of nodes which were affected by the contraction in the NN graph.

Algorithm 5.1: DenseGAEC
Data: Node features fi, ∀i ∈ V ; Number of nearest neighbors k
Result: Clusters V
// Find nearest neighbors of each node

1 A = {(i, j) | i ∈ V , j ∈ arg top-ki′ ̸=i⟨fi, fi′⟩} ;
2 while max(u,v)∈A⟨fu, fv⟩ ≥ 0 do
3 m := (i, j) = arg max(u,v)∈A⟨fu, fv⟩;

// Update nodes
4 fm = fi + fj ;
5 V = (V ∪m) \ {i, j} ;

// Update nodes having i, j as NN
6 H = {(q, r) | q ∈ N−

ij , r ∈ arg top-kl∈V \q⟨fq, fl⟩};
// NN of merged node

7 H = H ∪ {(m, r) | r ∈ arg top-kl∈V \m⟨fm, fl⟩};
// Add arcs and remove arcs with i, j

8 A = (A∪H) \ ({(·, i)} ∪ {(·, j)} ∪ {(i, ·)} ∪ {(j, ·)});
9 end

Proposition 11 (Dense Greedy Contraction). Algorithm 5.1 always merges a pair of
nodes i and j with the largest edge cost i.e.,

(i, j) ∈ arg max
(u,v)∈A

⟨fu, fv⟩ =⇒ ⟨fi, fj⟩ ≥ max
u,v ̸=u

⟨fu, fv⟩. (5.4)

Proof. The statement is trivially satisfied before any merge operation is performed since A
is constructed by nearest neighbor search over all nodes in line 1 of the algorithm. We now
show that after each merge operation (i.e., after line 8 of the algorithm) the statement (5.4)
still holds. We define Q = m∪N−

ij . Two cases can arise:
Case 1: {i, j} ∩Q ̸= ∅. Due to nearest neighbor search for all nodes in Q at lines 6
and 7, the statement holds.
Case 2: {i, j} ∩Q = ∅. In this case if i is the contracted node m from the last edge
contraction operation then (i, j) ∈ A due to line 6. If i ̸= m then it remains connected to
its nearest neighbors either due to the initial NN search at line 1 or the NN update at
lines 6 and 7.

Note that the claim of Prop. 11 does not ensure that the arcset A will contain all
nearest neighbor arcs after contraction. Instead it guarantees that the most attractive
edge will always be present in the nearest neighbor graph, foregoing the need to search in

5.3 method 59

the complete graph. This proves that the Algorithm 5.1 performs locally optimal merges
as proposed by Keuper et al. (2015) and is also scalable to large complete graphs. As a
downside the algorithm requires costly nearest neighbor search after every edge contraction.
Since computing nearest neighbors and contracting edges is not commutative, in the worst
case one has to recompute the nearest neighbors on the contracted graph from scratch.
Incremental nearest neighbors. For faster nearest neighbor updates after edge con-
traction we show how to reuse more of the previously computed nearest neighbors through
the following two approaches. First, for all nodes whose nearest neighbors are merging
nodes (i.e., line 6 of Alg. 5.1), we check if merged node m is already a nearest neighbor
without requiring exhaustive search. Specifically assume a contracting node i was a
k-nearest neighbor of some other node q ∈ V \ i. Then the merged node m is a k-nearest
neighbor of q if ⟨fq, fm⟩ ≥ minl∈N+

q
⟨fq, fl⟩. This check can be cheaply performed for all

such nodes thereby reducing computation. Second, we devise a criterion which can allow
to efficiently populate nearest neighbors of the contracted node m.

Proposition 12 (Incremental nearest neighbors). Let the k-nearest neighbors N+
i ,N+

j of
nodes i and j be given. Assume that nodes i, j are merged to form a new node m. Then
edge costs between nodes v ∈ V \N+

ij and m are bounded from above by

bij := min
p∈N+

i

⟨fi, fp⟩+ min
q∈N+

j

⟨fj , fq⟩

Proof. Since neighbors of i are computed by nearest neighbors search we have for all nodes
p′ /∈ N+

i

⟨fi, fp′⟩ ≤ min
p∈N+

i

⟨fi, fp⟩,

and similarly for node j. Then by definition of v and Lemma 10 we obtain

⟨fm, fv⟩ = ⟨fi, fv⟩+ ⟨fj , fv⟩
≤ min

p∈N+
i

⟨fi, fp⟩+ min
q∈N+

j

⟨fj , fq⟩ .

The above proposition gives an upper bound of feature similarity (i.e., edge cost) of
merged node m with all nodes not in N+

ij . Thus if a node in N+
ij exceeds this upper bound

it is more similar to m than all nodes not in N+
ij . This allows to possibly skip recomputing

the nearest neighbors of m in Alg. 5.1 (line 7).

Lemma 13. If
|{p ∈ N+

ij : ⟨fm, fp⟩ ≥ bij}| ≥ k (5.5)

then k-nearest neighbor of node m given by arg top-kv∈V \{i,j,m}⟨fm, fv⟩ can be chosen as
arg top-kp∈N+

ij
⟨fm, fp⟩.

Proof. Since the elements of N+
ij already satisfy the bound bij from Prop. 12 and there

are at least k many such elements, the k-nearest neighbors of node m can be taken from
N+

ij .

60 chapter 5. efficient multicut on complete graphs

i j

N+
i

N+
j

N −
ij

Figure 5.2: Illustration of nearest neighbor graph and an edge ij being contracted. The set
N+

ij = N
+
i ∪N

+
j is searched first to find nearest neighbors of the merged node efficiently

(Prop. 12). The nodes in set N−
ij need to update their nearest neighbors since their current

nearest neighbor nodes i, j are getting contracted. Only the arcs to/from i, j are shown.

Both of these approaches for efficiently updating the NN graph after contraction are
used in Alg. 5.2. Additionally in Alg. 5.2 we skip exhaustive search if a node still has
p-many nearest neighbors where p ∈ [1, k). Algorithm 5.2 can be used instead of lines 6
and 7 in Alg. 5.1 for improved performance. See Figure 5.2 for an illustration on nearest
neighbor graph and edge contraction update.

5.3.2 Lazy Edge Contraction

We further forego the need for nearest neighbors recomputation after edge contraction by
lifting the restriction of performing only greedy moves. This allows to maximally utilize
the NN graph: the algorithm performs contractions, including non-greedy ones, until no
contraction candidates are present in the NN graph. Specifically we do not perform the
exhaustive search in lines 4 and 11 of Alg. 5.2 and only return the nearest neighbors
which are easily computable. The NN graph is repopulated as lazily as possible i.e., when
no contraction candidates are left. In addition to being more efficient this strategy is
reminiscent of the balanced edge contraction approach of Kardoost and Keuper (2018). The
authors normalized the edge costs with cluster size of two end-points. These normalized
edge costs were used to find the edge to contract. This strategy encouraged consecutive
contractions to occur at different regions of the graph. As our lazy approach does not
always make the nearest neighbors of the contracted node available thus contractions can
only be done to nodes other than the contracted node. This also produces contractions in
different regions.

Lastly, we explore efficient methods for approximate nearest neighbor search (Malkov
and Yashunin, 2018) for populating the initial NN graph. For later searches we still use
exact methods as the search space is reduced due to contractions.

5.3.3 Varying Affinity Strength

Our basic edge costs computed by ⟨fi, fj⟩ for two features fi and fj have one fundamental
limitation: Clusters will by default occupy whole quadrants. In other words, whenever two

5.3 method 61

Algorithm 5.2: Incremental NN update
Data: Contracting nodes i, j; Contracted node m; NN graph (V ,A); Node

features fi, ∀i ∈ V ; Num. of neighbors k;
Result: Nearest neighbor arcs H to add in A
// NNs of m by Prop. 12

1 H = {(m, l) | l ∈ N+
ij , ⟨fm, fl⟩ ≥ bij};

// Keep at most k NN
2 H = arg top-k(m,l)∈H⟨fm, fl⟩;
3 if H = ∅ then
4 H = {(m, r) | r ∈ arg top-kl∈V \m⟨fm, fl⟩};
5 end
6 for q ∈ N−

ij \{i, j} do
// Check if m a NN of q

7 if ⟨fq, fm⟩ ≥ minl∈N+
q
⟨fq, fl⟩ then

8 H = H ∪ (q, m);
9 end

10 else
11 H = H ∪ {(q, r) | r ∈ arg top-kl∈V \q⟨fq, fl⟩)};
12 end
13 end

features have angle lower than 90◦ they are attractive and will prefer to be in the same
cluster, see Figure 5.3. In order to let our formulation favor larger or smaller clusters, we
modify our original similarity function s(·, ·) by adding an additional term indicated by
α-variables:

f i = [fi; αi], (5.6)
s(f i, f j) = ⟨fi, fj⟩ ± αi · αj , (5.7)

where we choose positive sign for favoring larger clusters and negative for smaller clusters.
In our experiments we will set αi = α > 0, with − in (5.7) to prefer many small sized
clusters. Moreover we note that our contraction mechanism carries over directly to this
extended setting.

Lemma 14. Aggregating features of the contracted node m by fm = f i + f j is equivalent
to setting edge costs as per (5.1) on complete graph.

Proof. Similar to the proof of Lemma 10 as follows

s(fm, f l) = ⟨fm, fl⟩ ± αm · αl

= ⟨fi + fj , fl⟩ ± (αi + αj) · αl

= ⟨fi, fl⟩ ± αi · αl + ⟨fj , fl⟩ ± αj · αl

= s(f i, f l) + s(f j , f l) .

Large clusters. For preferring larger clusters (corresponding to choosing + in (5.7)),
we work directly on the extended feature set f i = [fi; αi] and use it in the NN graph.

62 chapter 5. efficient multicut on complete graphs

fd

fe

ff
fg

fh

fa

fb

fc

⟨fc, fb⟩ > 0⟨fc, fd⟩ > 0

Figure 5.3: Illustration of edge costs between 8 nodes where feature vectors of each node i
is in two-dimensional space i.e., fi ∈ R2. If we want each node to be a separate cluster
then the edge costs measured by (5.2) are not suitable. This is because there will always
be atleast two vectors with positive costs preferring to be in the same cluster. Using a
large enough positive value of α with a − in (5.7) this issue can be resolved.

Small clusters. For preferring smaller clusters (corresponding to choosing − in (5.7)),
we must modify our algorithms slightly. In order to construct NN graphs we will use two
sets of features: First, the query nodes will have their features defined by f̂i = [fi,−αi]
and second, the pre-existing nodes j ∈ V in the graph will keep the same features f j

from (5.7). To search for nearest neighbors of node i in the graph V the modified similarity
function (5.7) can be implemented by an inner product as

s(f i, f j) = ⟨f̂i, f j⟩ . (5.8)

5.3.4 Computational Complexity

Our basic formulation (DM) with α = 0 in (5.7) is shown to be solvable in time O(|V |d2
)

by Veldt et al. (2017) through zonotope vertex enumeration (Onn and Schulman, 2001;
Stinson et al., 2016). These results are also applicable when choosing + in (5.7). In our
experiments having − in (5.7) is vital for obtaining a good clustering, in which case the
results of Veldt et al. (2017) are not directly transferable.
Time complexity analysis. Theoretically all of our algorithms have asymptotic time
complexity of O(d · |V |3). However, empirically we observe our algorithms show quadratic
behaviour and get faster through Prop. 12 and lazy contractions. In detail as a worst case
scenario of Alg. 5.1, the setN−

ij in line 6 can be V \{i, j}. Therefore nearest neighbor search
in line 6 has complexity O(d · |V |2) making each edge contraction operation quadratic.
Overall complexity of the algorithm will then be O(d · |V |3). Since, Prop. 12 can fail
to produce nearest neighbors thus exhaustive search can be required. Thus asymptotic
complexity with Alg. 5.2 for incremental computation remains unchanged.

Note that above complexity analysis assumes that the number of nearest neighbors k
is set to 1 which offers very limited potential for incremental nearest neighbor updates. A
larger value of k gives much speedup due to Alg. 5.2. A case distinction is provided below

5.4 experiments 63

k = 1: Assume the k-nearest neighbor graph with k = 1 before edge contraction has the
structure: V = {1, 2, ..., n}, A = {(2, 1), (3, 1), ...(n, 1)}. Thus node 1 is the nearest
neighbor of all other nodes. If an edge containing node 1 is contracted it will force all
other nodes to recompute their nearest neighbors. Note that there are still O(|V |)
many remaining nodes requiring nearest neighbor update. Due to this worst-case
scenario time complexity of one edge contraction becomes quadratic making overall
runtime cubic in the number of nodes.

k ≫ 2: Assume the node set after contracting an edge ij is V ′ := V \ {i, j}. Then each
node in V ′ still has k− 2 many nearest neighbors from within V ′. In this case nearest
neighbor queries only need to be performed between the merged node and nodes in
V ′. In such case an edge contraction operation can have linear complexity instead
of quadratic in the number of nodes. Since we use a value of k ∈ [1, 5] in all our
algorithms utilizing incremental updates, they show such a behaviour. This is also
going to be demonstrated empirically in Figure 5.4 in the next section.

5.4 Experiments

We study the benefits of multicut on complete graphs (DM) and compare possible algo-
rithms on the tasks of ImageNet (Deng et al., 2009) clustering and Cityscapes (Cordts
et al., 2016) panoptic segmentation. All datasets are made available in Swoboda et al.
(2022b).
Algorithms.

GAEC (Keuper et al., 2015): The greedy additive edge contraction algorithm from Keu-
per et al. (2015)(Alg. 2.1) is run on the complete graph where all edge costs are
precomputed and then passed to the algorithm.

RAMA (Chapter 4): We also compare with the GPU-based multicut solver of Abbas and
Swoboda (2022b) as studied in Chapter 4. Similar to GAEC we run it on the complete
graph. The solver uses dual optimization for better solution quality and also gives
lower bounds to the multicut objective. As a drawback it cannot handle large
instances due to high memory requirement of complete graphs. We evaluate on an
NVIDIA A40 GPU with 48GB of memory.

DGAEC: Our Algorithm 5.1 which operates on node features and performs contractions
according to Lemma 10. The nearest neighbor graph is updated by exhaustive search
after edge contraction. The number of nearest neighbors k is set to 1, a larger value
does not benefit since Prop. 12 is not utilized.

DGAECInc: Our Algorithm 5.1 which additionally makes use of Alg. 5.2 for incremental
neighbor updates after edge contraction. The value of k is set to 5.

DLAEC: A variant of our DGAECInc where non-greedy moves are also allowed as described
in Sec. 5.3.2.

64 chapter 5. efficient multicut on complete graphs

DAppLAEC: Another variant of our DLAEC where initial nearest neighbors are computed by
approximate nearest neighbor search method (Malkov and Yashunin, 2018) through
the library of Johnson et al. (2019).

For our dense multicut formulation (DM) on all datasets we set the value of affinity strength
αi in (5.8) to 0.4, preferring small clusters. We do not compare with the randomized
algorithm of Veldt et al. (2017) since it does not account for affinity strength with preference
on smaller clusters. All CPU algorithms are run on an AMD 7502P CPU with a maximum
of 16 threads to allow for faster nearest neighbor search.

5.4.1 ImageNet Clustering

We evaluate clustering of the ImageNet (Deng et al., 2009) validation set containing 50k
images. Each image in the dataset acts as a node for our dense multicut formulation. The
features of each image are computed by a ResNet50 (He et al., 2016a) backbone trained by
MoCov3 (Chen et al., 2021) in unsupervised fashion by a constrastive loss on the training
split of ImageNet. The features have a dimension of 2048 and are normalized to have unit
L2 norm. We create two problem instances containing 5k and 50k images by considering
100 and all 1000 classes respectively.
Clustering quality. Before comparing our algorithmic contributions we first test the
efficacy of our dense multicut formulation (DM) by comparing its clustering result with
k-means (Lloyd, 1982) using the implementation from Pedregosa et al. (2011) and initial-
ization of Arthur and Vassilvitskii (2007). Since k-means requires the number of clusters
to be known beforehand we set it to the number of classes in the problem instance. For
an additional comparison we also run k-means on the number of clusters given by our
dense multicut algorithm. The quality of clustering results are evaluated using normalized
mutual information (NMI) and adjusted mutual information (AMI) metrics (Vinh et al.,
2010). The results are given in Table 5.1. We observe that although our formulation does
not require the number of clusters to be specified, the results are on par with k-means.
Additionally the value of affinity strength α does not need to be changed for different
problem instances. As compared to k-means our algorithms are much faster especially
on the larger instance. The RAMA solver from Chapter 4 performs better than all other
approaches on the smaller instance but runs out of memory for the larger one. Lastly,
our formulation creates more clusters than the number of classes. This is mainly due to
presence of outliers in the feature space as the feature extractor is trained without any
groundtruth information.
Comparison of algorithms. We compare different algorithms for solving dense multicut
problem (DM) for ImageNet clustering in Table 5.2. Firstly, we see that on the smaller
instance the GPU based solver RAMA gives the best performance. Secondly using incremental
nearest neighbor search through Alg. 5.2 gives better run time than exhaustive search.
Lastly, our non-greedy algorithms give the best run time among all CPU-based algorithms
although with slightly worse objectives.

On the smaller instance, RAMA outperforms other algorithms in terms of the objective
value (DM) and also gives better clustering quality as compared to k-means. As a
drawback RAMA cannot handle large dense multicut instances. This shows multicut on

5.4 experiments 65

Table 5.1: Quality of clustering on ImageNet validation set. t [s]: compute time in seconds,
NMI: normalized mutual information, AMI: adjusted mutual information, # clusters:
number of clusters, †: out of GPU memory. For k-means the number of clusters was
specified as input.

Method t [s] ↓ NMI ↑ AMI ↑ # clusters
ImageNet-100 (|V | = 5k)

k-means 16 0.42 0.27 100
k-means 32 0.53 0.26 333
RAMA 0.9 0.57 0.29 639
DGAECInc 42 0.43 0.22 343
DAppLAEC 3.2 0.47 0.26 333

ImageNet-1000 (|V | = 50k)

k-means 701 0.54 0.2 1000
k-means 1801 0.61 0.19 2440
RAMA † † † †
DGAECInc 2964 0.49 0.19 2488
DAppLAEC 65 0.56 0.26 2440

complete graphs can be a suitable alternative to k-means. We speculate that algorithmic
improvements on top of our proposed algorithms will further improve clustering quality
for large graphs.

Lastly, we perform empirical time complexity analysis of our algorithms showing
quadratic and subquadratic behaviour in Figure 5.4.

5.4.2 Panoptic Segmentation

We evaluate our method on the task of panoptic segmentation (Kirillov et al., 2019c) on
the Cityscapes dataset (Cordts et al., 2016). The panoptic segmentation task consists of
assigning a class label to each pixel and partitioning different instances of classes with
object categories (e.g., car, person, etc.). We focus on the task of partitioning for which the
multicut formulation (MC) has been used by Kirillov et al. (2017) and Abbas and Swoboda
(2021) (Chapter 3). The latter work used a carefully crafted graph structure. Our dense
multicut (DM) formulation foregoes the need for finding a suitable graph structure. We
use the pretrained Axial-ResNet50 (Wang et al., 2021a) network from Yu et al. (2022),
made available by Weber et al. (2021) to compute the node features. Specifically, the
network computes L2-normalized, 128-dimensional and 4× downsampled features in its
intermediate stages which we use for our study without any training.

For our evaluation we first compute semantic class predictions and then create a dense
multicut instance for each semantic category with objects (i.e., car, person, etc.). Such
classes are also known as thing classes. The goal of the multicut problem is then to

66 chapter 5. efficient multicut on complete graphs

Table 5.2: Comparison of algorithms for solving dense multicut problem on two splits
of Imagenet validation set. t [s]: compute time in seconds, Obj: objective value of
clustering (DM), †: out of GPU mem. ⋆: no result within 3 hours.

ImageNet-100 ImageNet-1000
Method t [s] ↓ Obj ↓ t [s] ↓ Obj ↓
GAEC 4.5 -6.84e5 552 -9.353e7
RAMA 0.9 -6.95e5 † †
DGAEC 132 -6.84e5 ⋆ ⋆
DGAECInc 42 -6.84e5 2934 -9.353e7
DLAEC 5 -6.83e5 341 -9.332e7
DAppLAEC 3.2 -6.83e5 65 -9.332e7

partition all nodes belonging to same semantic class to different objects. This strategy
creates a total of 1631 dense multicut problem instances of varying sizes from 500 images
of the Cityscapes validation set. The largest problem instance contains around 43k nodes.
To upsample the clustering back to original image resolution we interpolate the node
features back to input image resolution. Afterwards each upsampled node is assigned to
the cluster whose mean feature embedding is most similar.
Clustering quality. As a first point of comparison we check whether formulating a
multicut problem on the complete graph by (DM) is beneficial as compared to a handcrafted
sparse graph structure. We take the sparse graph structure from Abbas and Swoboda
(2021) (Chapter 3) as a baseline. Their graph also includes long-range edges for dealing
with occlusions leading to about 10 · |V | edges in total. We compute the edge costs in this
sparse graph in the same way as for our dense formulation and use Alg. 2.1 for computing
multicut.

In Table 5.3 we compare the quality of clustering through the panoptic quality met-
ric (Kirillov et al., 2019c). We observe that our dense multicut formulation performs
better than multicut on the sparse handcrafted graph. This improvement is significant
for classes which can have many instances of the same class within an image (i.e., person,
car) thus making the partitioning problem difficult. For classes with large objects (e.g.,
truck) having more edges does not help since the sparse graph can already capture most
inter-pixel relations. On average our dense multicut formulation gives better results than
sparse multicut while alleviating the need for designing a graph structure.
Comparison of algorithms . We compare dense multicut algorithms for the panoptic
segmentation task in terms of objective value and run time. We were not able to run
RAMA since the GPU could not store large graphs. The comparison of performance to the
remaining algorithms averaged over all problem instances is given in Table 5.4.

In terms of run time, we see that our most naive algorithm DGAEC is slower than
GAEC which directly operates on edge costs. Our other algorithms however, surpass GAEC
reaching up to an order of magnitude run time improvement with lazy edge contractions
and approximate initial nearest neighbors search. In terms of objective value we see slight

5.4 experiments 67

10,000 20,000 40,000

8

32

128

512

2048

O(n
2)

Number of nodes (n)

T
im

e
(s
ec
.)

GAEC DGAECInc DLAEC DAppLAEC

Figure 5.4: Runtime comparison of our algorithms on instances of varying sizes taken
from ImageNet val. set by varying number of classes. Both axes are in log-scale. Our
algorithms DGAECInc and DLAEC show quadratic complexity. Our algorithm DAppLAEC
behaves subquadratically benefiting from approximate nearest neighbor search.

Table 5.3: Comparison of panoptic segmentation on Cityscapes dataset. Multicut on sparse
graph of Abbas and Swoboda (2021) is computed by Alg. 2.1. For our dense multicut
formulation (DM) we use our DAppLAEC algorithm. PQth: Average panoptic quality of all
thing classes.

Panoptic quality (%) ↑
Category Sparse multicut Dense multicut
Person 40.0 46.9
Rider 53.0 54.4
Car 50.7 60.5
Truck 52.7 52.3
Bus 72.1 71.1
Train 65.6 62.9
Motorcycle 47.0 46.8
Bicycle 45.7 46.9

PQth 53.3 55.2

improvement by our lazy contraction algorithms as compared to the greedy ones.
Sensitivity of affinity strength. In Table 5.5 we study the effect of changing the value
of α from (5.7). The results highlight that having α > 0 is essential for good clustering
quality. Last, we see further improvement if the value of α is set differently for each
semantic class. We refer to the Appendix for further results.

68 chapter 5. efficient multicut on complete graphs

Table 5.4: Comparison of algorithms for solving dense multicut problem on Cityscapes
validation set. (t [s]): average compute times in seconds, (Obj): average objective value of
clustering (DM).

Method t [s] ↓ Obj (×106) ↓
GAEC 7.7 -6.338
DGAEC 84.1 -6.338
DGAECInc 3.2 -6.338
DLAEC 2.1 -6.340
DAppLAEC 1.5 -6.341

Table 5.5: Results of panoptic segmentation via dense multicut with different values of
attraction/repulsion strength α in (5.7). PQth: Avg. panoptic quality over all thing classes.

α 0.2 0.3 0.4 0.5 0.6 0.7 0.8
PQth 54.5 55.8 55.2 55.0 54.1 52.0 49.3

5.5 Conclusion

We have demonstrated that optimizing multicut on large complete graphs is possible when
using factorized edge costs through inner products of features. We speculate that further
algorithmic improvements are possible e.g., by performing dual optimization directly on
the node features.

As a potential theoretical advantage our approach sidesteps the need for learning graph
structure. This offers a possibility to embed it as a differentiable layer in neural networks
similar to Chapter 3.

II
E f f i c i e n t & D i f f e r e n t i a b l e

I L P s o lv e r

6Background
Contents

6.1 Binary Programs . 70
6.2 Lagrangean Decomposition . 72
6.3 Lagrangean Optimization . 74

6.3.1 Dual Block Coordinate Ascent 74
6.3.2 Binary Decision Diagrams . 77

6.4 Common Approaches for Structured Prediction 79
6.4.1 Optimization & Heuristics coupled with Neural Networks . . . 79
6.4.2 Custom Neural Architectures 79

In this part of the thesis we divert our focus to a more general class of methods for
solving combinatorial optimization problems. We express the latter as integer linear
programs (ILP) and focus on the case where all variables are binary, a typical case

in structured prediction tasks from computer vision and machine learning. Although
general-purpose ILP solvers have undergone tremendous runtime improvement in past
decades, they suffer from scalability issues on large-scale problems. This has necessitated
the development of specialized solvers for narrow problem classes (e.g., Markov Random
Fields, graph matching, etc.) requiring considerable human effort. The work of Lange
and Swoboda (2021) aimed to alleviate this by proposing a general solver for binary ILPs.
In the next chapters, we will build on this work to improve its scalability. To this end,
we will focus on two key ingredients of massively parallel processing and deep learning.
Parallel processing will allow the use of GPUs for achieving faster runtime while learning
will help exploit prior solving experience (through training) to improve solver performance
on a given problem class. The necessary background and related work are discussed in the
upcoming sections, parallel algorithms in Chapter 7, and data-driven solver in Chapter 8.

6.1 Binary Programs

We consider a special case of mixed-integer linear programs where all variables take binary
values. The corresponding 0-1 integer linear program (ILP) is written as

min
x

c⊤x s.t. x ∈
⋂

j∈[m]

x ∈ {0, 1}n
∣∣∣ ∑

i∈[n]
aijxi ≤ bj

 , (6.1)

where c ∈ Rn is the objective vector, aij , bj ∈ R, and m denotes the number of constraints.
We provide some examples of 0–1 ILPs used for structured prediction tasks in the following.
Markov Random Fields. The problem of Maximum-A-Posteriori (MAP) inference
in Markov Random Fields (MRF) has applications in various domains. Informally the

70

6.1 binary programs 71

problem defines a set of nodes where each node indicates its preference of assigning a
particular label by some cost. Moreover, a set of factors is given where each factor connects
two or more nodes providing preferences about their joint label configurations through
higher order costs. The most notable case is where each such factor contains only pairwise
relationships. The 0–1 ILP formulation for this case is as follows.
Definition 3 (MAP-MRF as an ILP (Werner, 2007; Savchynskyy, 2019)). Assume a
graph G = (V , E) with label space Li for each node i ∈ V is given where each node i takes
a label li ∈ Li with a unary cost θi(li) ∈ R. Additionally pairwise costs θij(li, lj) ∈ R are
given for each edge ij ∈ E taking labels li ∈ Li and lj ∈ Lj. The 0–1 optimization problem
is

min
µ∈U

∑
i∈V

∑
li∈Li

θi(li) · µi(li) +
∑

ij∈E

∑
li∈Li

∑
lj∈Lj

θij(li, lj) · µij(li, lj) , (6.2)

where

U =


µ

∣∣∣∣∣∣∣∣∣∣∣∣

∑
li∈Li

µi(li) = 1 ∀i ∈ V∑
lj∈Lj

µij(li, lj) = µi(li) ∀ij ∈ E, li ∈ Li∑
li∈Li

µij(li, lj) = µj(lj) ∀ij ∈ E, lj ∈ Lj

µi(li) ∈ {0, 1} ∀i ∈ V , li ∈ Li

µij(li, lj) ∈ {0, 1} ∀ij ∈ E, li ∈ Li, lj ∈ Lj


. (6.3)

Graph Matching. Numerous visual computing tasks rely on finding correspondences
between two sets of objects. The problem of graph matching, in addition to considering
object-object relations also considers relations between pairs of objects. The latter allows
to consider the neighborhood of objects in the matching process.
Definition 4 (Graph matching as an ILP (Adams, 1994; Haller et al., 2022)). Assume
two sets of nodes V and W where |W | ≥ |V | and matching costs θvw ∈ R for each
v ∈ V , w ∈ W is given. Additionally, we have costs between pairs of nodes θvv′,ww′ ∈ R

for distinct v, v′ ∈ V and w, w′ ∈ W . Then the 0-1 optimization problem is

min
µ∈Γ

∑
v∈V

∑
w∈W

θvw · µvw +
∑

v,v′∈V
v ̸=v′

∑
w,w′∈W

w ̸=w′

θvv′,ww′ · µvv′,ww′ , (6.4)

where

Γ =


µ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
v∈V µvw ≤ 1 ∀w ∈ W∑
w∈W µvw = 1 ∀v ∈ V

µvw =
∑

v′∈V \v
∑

w′∈W \w µvv′,ww′ ∀v ∈ V , w ∈ W

µvw =
∑

v′∈V \v
∑

w′∈W \w µv′v,w′w ∀v ∈ V , w ∈ W

µv,w ∈ {0, 1} ∀v ∈ V , w ∈ W
µvv′,ww′ ∈ {0, 1} ∀v, v′ ∈ V , w, w′ ∈ W


, (6.5)

and the first set of constraints is written with an inequality since not every element in W
should be matched.

Due to the NP-hard nature of ILPs, relaxations are often employed inside methods
for finding solutions (e.g., branch and bound). In addition, relaxations provide lower
bounds to the optimal objective allowing us to judge the quality of obtained solutions.
In the following, we will discuss one such relaxation method often utilized in structured
prediction problems. Before that we will write 0–1 ILP (6.1) for convenience as follows

72 chapter 6. background

Definition 5 (Binary Program). Assume a set of variables I and an objective vector c in
RI is given. Moreover we are given a set of constraints J with corresponding feasible sets
Xj ⊂ {0, 1}Ij for all j ∈ J where Ij ⊆ I denotes the variables present in constraint j.
The corresponding binary program is defined as

min
x

c⊤x s.t. xIj
∈ Xj ∀j ∈ J , (BP)

where xIj
is the restriction of x to variables in Ij.

Remark 15. The 0-1 ILP (6.1) can be written as (BP) by setting I = [n], J = [m],
Ij = {i ∈ [n] | aij ̸= 0}, and Xj = {x ∈ {0, 1}Ij | ∑i∈Ij

aijxi ≤ bj}.

6.2 Lagrangean Decomposition

Many combinatorial optimization problems including ILPs (6.1) often have a decomposable
structure. The feasible set is comprised of a large number of constraints where optimization
over a single constraint is typically easy. Lagrangean decomposition (Guignard and Kim,
1987) exploits this structure for solving relaxations of ILPs and has been successfully
utilized in a variety of tasks. For example MAP inference in MRF (Kolmogorov, 2006),
graph matching (Hutschenreiter et al., 2021), cell tracking (Haller et al., 2020), multiple
object tracking (Hornakova et al., 2021). The work of Lange and Swoboda (2021) provides
a general approach to tackle binary programs through Lagrangean decomposition. Next,
we provide their decomposition strategy and the corresponding Lagrangean dual problem.
Before that, we summarize our notation in Table 6.1 with Figure 6.1 containing an example
illustration of the decomposition approach.

I, J Set of variables, constraints respectively
ci Cost associated with variable i
xi Optimization variable i
Xj Feasible set of constraint j
Ij Set of variables in constraint j
J i Set of constraints containing variable i
λij Lagrange multiplier for variable i in subproblem j
λj Lagrange multipliers for all variables in subproblem j i.e., (λij)i∈Ij

Ej(λj) Energy of subproblem j i.e., minx∈Xj
x⊤λj

mβ
ij Energy of subproblem j by setting xi to β i.e., minx∈Xj ,xi=β x⊤λj

Mij Min-marginal difference m1
ij −m0

ij .

Table 6.1: Description of symbols used in Lagrangean decomposition.

Lemma 16 (Lagrangean dual problem). Let J i = {j ∈ J | i ∈ Ij} be the set of constraints
containing variable i and λij ∈ R be the Lagrange multiplier associated with i ∈ I, j ∈ J i.
The energy for subproblem Xj w.r.t. Lagrangean dual variables λj := (λij)i∈Ij

∈ RIj is
written as

Ej(λj) := min
x∈Xj

x⊤λj . (6.6)

6.2 lagrangean decomposition 73

xu xv xw

Xa Xb

cu

I = {u, v, w}
J = {a, b}
Ia = {u, v}
Ib = {u, v, w}
Ju = Jv = {a, b}
Jw = {b}

ya
u ya

v yb
u yb

v yb
w

Xa Xb

λua λub

Figure 6.1: Example of a binary program (BP)(top) and its Lagrangean decomposi-
tion (D)(bottom). The binary program contains three variables u, v, w and two constraints
a, b. The variables xu and xv are duplicated to ya

u, yb
u and ya

v , yb
v respectively for the

decomposition. Costs c of the original problem (BP) constrain the associated Lagrange
variables λ in the dual (D). For example λua and λub should sum to cu.

Then the Lagrangean dual problem is defined as

max
λ

∑
j∈J

Ej(λj) s.t.
∑

j∈J i

λij = ci ∀i ∈ I, (D)

and provides a lower bound to the original problem (BP).

Proof. We introduce an additional set of variables yj which are independent for each
constraint j. The binary program (BP) can be equivalently written as

min
x,y c⊤x s.t. yj ∈ Xj ∀j ∈ J ,

yj
i = xi ∀j ∈ J , i ∈ Ij ,

, (6.7)

where the equality constraints enforce agreement among the variables of each constraint
without which the problem can be decoupled. Therefore we introduce a Lagrange multiplier
λij ∈ R for each equality constraint and obtain

min
x,{yj∈Xj}j

c⊤x +
∑
j∈J

∑
i∈Ij

λij(y
j
i − xi) (6.8a)

=min
x

∑
i

(ci −
∑

j∈J i

λij)xi +
∑
j∈J

min
yj∈Xj

λ⊤
j yj (6.8b)

=


−∞ ∃i ∈ I :

∑
j∈J i

λij ̸= ci∑
j∈J

min
yj∈Xj

λ⊤
j yj ∀i ∈ I :

∑
j∈J i

λij = ci
. (6.8c)

We can restrict to the second non-trivial case of ∑j∈J i
λij = ci for all i thus obtaining

the Lagrangean dual. The lower bound property of (D) can be seen by comparing (6.7)
with (6.8a).

74 chapter 6. background

If optima of the individual subproblems in (D) agree with each other then the consensus
vector obtained from stitching together individual subproblem solutions solves (6.7) and
thus also the original problem (BP). In general, (D) is a lower bound on (BP) due to the
previous Lemma 16.

6.3 Lagrangean Optimization

Several strategies for optimizing a Lagrangean decomposition are studied in the literature.
Since the dual problem (D) is a non-smooth, concave problem (Savchynskyy, 2019) a
simple strategy is based on supergradient ascent (Savchynskyy, 2019). Some example
works are (Storvik and Dahl, 2000; Komodakis and Tziritas, 2007; Komodakis et al., 2010)
for MAP-MRF and (Torresani et al., 2008) for graph matching problems. Although such
schemes have provable convergence guarantees they tend to be too slow for practical
purposes (Kappes et al., 2013).

Another related class is proximal methods which tackle non-smoothness of the de-
composed problems offering faster convergence than subgradient based methods. The
MAP-MRF problem has been studied in (Kappes et al., 2012; Ajanthan et al., 2017;
Swoboda and Kolmogorov, 2019; Kolmogorov, 2023). Some examples from other areas
include a scalable linear programming solver (Applegate et al., 2021) and a specialized
linear programming solver for neural network verification (Bunel et al., 2020). Although
such methods exhibit good performance in solving relaxations, it can be challenging to
decode a solution to the original problem if it contains integrality constraints.

A more popular class of methods is based on block coordinate ascent. Such algorithms
optimize the dual problem w.r.t. a subset of variables in each iteration while the rest
remain fixed. Although lacking optimality guarantees and the possibility of getting stuck in
suboptimal fixed points, these methods outperform their counterparts in terms of efficiency
and provide good solutions in practice (Kappes et al., 2013; Haller et al., 2022). Since our
work also aims towards efficiency we will aim to optimize the dual problem (D) through
such an approach and provide more details in the upcoming section.

6.3.1 Dual Block Coordinate Ascent

An extensive amount of literature exists on dual block coordinate ascent (DBCA) for the
MAP-MRF problem. The earliest work in this regard is by Kovalevsky and Koval (1975)
studied later by Werner (2007). Some notable approaches include TRW-S (Kolmogorov,
2006), SRMP (Kolmogorov, 2014), MPLP (Globerson and Jaakkola, 2008) and (Werner,
2007; Savchynskyy et al., 2012; Jancsary and Matz, 2011; Meltzer et al., 2012; Wang and
Koller, 2013; Johnson et al., 2007; Tourani et al., 2018). Applications in other problems
outside of MRF are graph matching (Zhang et al., 2016; Swoboda et al., 2017b, 2019),
multicut (Lange et al., 2018; Swoboda and Andres, 2017), multiple object tracking (Hor-
nakova et al., 2021) and cell tracking (Haller et al., 2020). A comparison of algorithms for
MAP-MRF (including DBCA) is done in the survey (Kappes et al., 2015) and for graph
matching in (Swoboda et al., 2017b; Haller et al., 2022). DBCA algorithms for MAP-MRF
are unified by Tourani et al. (2020) where the authors combine strengths of different

6.3 lagrangean optimization 75

methods to create an overall well-performing algorithm across a variety of graph structures.
The work of Swoboda et al. (2017a) provides a general framework for understanding and
comparing DBCA algorithms for many problem classes. The monograph (Savchynskyy,
2019) provides a detailed background on optimization for MRFs.

Despite the success of such DBCA approaches in solving a variety of problems, they
remain specialized warranting rework and human effort each time a new problem class is
encountered. A general Lagrange decomposition based scheme was considered by Lange
and Swoboda (2021) through binary decision diagrams (BDDs). This approach offered a
common framework to design and improve decomposition based ILP algorithms. Due to
its generality, we will build upon this work in the subsequent chapters.

A crucial set of quantities of DBCA algorithms for optimizing the Lagrangean (D), are
min-marginals.

Definition 6 (Min-marginals (Lange and Swoboda, 2021)). For a variable i ∈ I, constraint
j ∈ J i and β ∈ {0, 1} the min-marginal is defined as

mβ
ij = min

x∈Xj

x⊤λj s.t. xi = β. (MM)

Note that we denote min-marginals by mβ
ij instead of mβ

ij(λ) by always assuming the
latter unless stated otherwise. For notational convenience let us also define

Definition 7 (Min-marginal differences). For a variable i ∈ I and constraint j ∈ J i the
min-marginal difference is computed through (MM) as

Mij = m1
ij −m0

ij , (MD)

If Mij > 0 then assigning a value of 0 to variable i has a lower cost than assigning a
1 in the subproblem j and vice-versa. Thus, the quantity |Mij | indicates by how much
Ej(λj) increases if xi is fixed to 1 (if Mij > 0), respectively 0 (if Mij < 0). Due to this
min-marginals provide more information as compared to subgradients and offer faster
objective improvement per iteration (Swoboda et al., 2017b). Although in general cases
min-marginals are more costly to compute as compared to subgradients however, problem
decomposition is often done in a way that they can be computed efficiently. Moreover
many constraints occurring in structured prediction tasks naturally allow efficient min-
marginal computation. In the following, we provide a short description of the min-marginal
averaging algorithm of Lange and Swoboda (2021) for optimizing the dual problem (D).

Definition 8 (Min-marginal averaging). Assume min-marginal differences Mij (MD) for
a variable i ∈ I with all participating subproblems j ∈ J i be given. The min-marginal
averaging update for Lagrange variables λij for the variable i ∈ I and all j ∈ J i is defined
as

λij ← λij −Mij +
1
| J i |

∑
k∈J i

Mik (6.9)

.

76 chapter 6. background

In general terms, the min-marginal averaging update shares preferences of subproblems
regarding the assignment of a variable. Subtracting Mij in (6.9) results in subproblem
j sending its preferences about variable i, and in the summation these preferences are
averaged to get an overall estimate through ∑

k∈J i
Mik normalized by the number of

subproblems J i.
In the following, we show that each min-marginal averaging step guarantees a mono-

tonically non-decreasing sequence of dual objectives (D).

Lemma 17 (Min-marginal averaging guaranteed non-decrease (Lange and Swoboda,
2021)). The min-marginal averaging update (6.9) w.r.t. i ∈ I for all j ∈ J i increases the
dual objective (D) by the non-negative value

min{0,
∑

k∈J i

Mik} −
∑

k∈J i

min {0, Mik} .

Proof. Let λ̄ij = λij −Mij and recall Ej(λj) := minx∈Xj
x⊤λj from (D). Then

Ej(λ̄j) =

Ej(λj)−Mij if Mij < 0
Ej(λj) else

(6.10a)

= Ej(λj)−min{0, Mij}. (6.10b)

Note that min-marginal difference Mij becomes zero w.r.t. λ̄. Let ¯̄λij = λ̄ij +
1

| J i |
∑

k∈J i
Mik to obtain

Ej(¯̄λj) =

Ej(λ̄j) +
1

| J i |
∑

k∈J i
Mik if 1

| J i |
∑

k∈J i
Mik < 0

Ej(λ̄j) else
(6.11a)

= Ej(λ̄j) +
1
| J i |

min
 ∑

k∈J i

Mik, 0
 (6.11b)

Summing up contributions from all subproblems J i we get∑
j∈J i

Ej(¯̄λj)−Ej(λj) = min{0,
∑

k∈J i

Mik} −
∑

k∈J i

min{0, Mik} ≥ 0. (6.12)

For optimizing the dual (D) the min-marginal averaging step (6.9) needs to be repeated
for all variables. A simple way is choosing some variable arbitrary ordering for carrying out
the updates. However, more sophisticated strategies exist which can improve convergence.
These include sending averaged min-marginal differences to a subset of variables (Kol-
mogorov, 2006, 2014), damping min-marginal differences before sending (Werner et al.,
2020), etc. Note that although such strategies do not change the underlying LP relaxation
and thus also the optimum, their (suboptimal) fixed points and convergence speed can be
different. We refer to the studies of (Tourani et al., 2020; Swoboda et al., 2017a) which
compare such scheduling choices with their influence on optimization.

6.3 lagrangean optimization 77

6.3.2 Binary Decision Diagrams

To compute min-marginals in a general yet efficient manner binary decision diagrams
(BDDs) are utilized by Lange and Swoboda (2021). BDDs provide compact encoding for
commonly occurring constraints in structured prediction problems. Note that in worst-case
scenarios binary programming over a single constraint remains NP-hard (e.g., knapsack
constraint). We will utilize BDDs to represent the feasible sets Xj , j ∈ J and to compute
their min-marginals (MM). BDDs are in essence directed acyclic graphs whose paths
between two special nodes (root and terminal) encode all feasible solutions. Specifically,
we use reduced ordered Binary Decision Diagrams (Bryant, 1986).

a

b1

b2

c1

c2

c3

d1

d2

⊤

⊥
2

3

3

1

1

1

4

4

0 0

0 0

2 1

0 0

3 4

2 1

1 4

0 0

0 0

0 ∞

SP(a, ·) SP(·, ⊤)

P1 P2 P3 P4

Figure 6.2: Weighted BDD of a subproblem containing variables: I = (a, b, c, d) with
costs λ: (2, 3, 1, 4) resp. and constraint a− b− c + d = 0. The shortest path costs from
the root node a and the terminal node ⊤ are shown for each node. Here P1 = {a},P2 =
{b1, b2},P3 = {c1, c2, c3},P4 = {d1, d2}, s0(c2) = d1 and s1(c2) = ⊥. Dashed arcs have
cost 0 as they model assigning a 0 value to the corresponding variable.

Definition 9 (BDD (Abbas and Swoboda, 2022a)). Let an ordered variable set I =
{w1, . . . , wk} belonging to a constraint be given. A corresponding BDD is a directed acyclic
graph D = (V , A) with

Special nodes: root node r, terminals ⊥ and ⊤.

Outgoing Arcs: each node v ∈ V \{⊤,⊥} has exactly two successors s0(v), s1(v) with
outgoing arcs vs0(v) ∈ A (the zero arc) and vs1(v) ∈ A (the one arc).

Partition: the node set V is partitioned by {P1, . . . ,Pk}, ∪̇iPi = V \{⊤,⊥}. Each partition
holds all the nodes corresponding to a single variable e.g., Pi corresponds to variable
wi. It holds that P1 = {r} i.e., it only contains the root node.

Partition Ordering: when v ∈ Pi then s0(v), s1(v) ∈ Pi+1∪{⊥} for i < k and s0(v), s1(v) ∈
{⊥,⊤} for v ∈ Pk.

78 chapter 6. background

Definition 10 (Constraint Set Correspondence (Abbas and Swoboda, 2022a)). Each BDD
defines a constraint set X via the relation

x ∈ X ⇔
∃(v1, . . . , vk, vk+1) ∈ Paths(V , A) s.t.

v1 = r, vk+1 = ⊤,
vi+1 = sxi(vi) ∀i ∈ [k]

(6.13)

Thus each path between root r and terminal ⊤ in the BDD corresponds to some feasible
variable assignment x ∈ X .

Figure 6.2 illustrates BDD encoding of a subproblem representing a linear constraint.

Remark. In the literature (Bryant, 1986; Knuth, 2011) BDDs have additional requirements,
mainly that there are no isomorphic subgraphs. This allows for some additional canonicity
properties like uniqueness and minimality. While all the BDDs in our algorithms satisfy
the additional canonicity properties, only what is required in Definition 9 is needed for our
purposes, so we keep this simpler setting.

Efficient min-marginal computation. In order to compute min-marginals for sub-
problems we need to consider weighted BDDs.

Definition 11 (Weighted BDD (Abbas and Swoboda, 2022a)). A weighted BDD is a
BDD with arc costs. Let a function f(x) be defined as

f(x) =

x⊤λj x ∈ Xj

∞ otherwise
. (6.14)

The weighted BDD represents f if it satisfies Def. 10 for the given Xj and the arc costs

for an i ∈ [k], v ∈ Pi, vw ∈ A are set as

0 w ∈ s0(v)

λij w ∈ s1(v)
.

Min-marginals for a variable i ∈ I of a subproblem j can be computed by its weighted
BDD by calculating shortest path distances from r to all nodes in Pi and shortest path
distances from all nodes in Pi+1 to ⊤. We use SP(v, w) to denote the shortest path
distance between nodes v and w of a weighted BDD (see Figure 6.2 for an example). The
min-marginals as defined in (MM) can be computed as

mβ
ij = min

vsβ(v)∈A
v∈Pi

[
SP(r, v) + β · λij + SP(sβ(v),⊤)

]
(6.15)

Note that modification of some λij will update the costs of all outgoing arcs from BDD
nodes in Pi. Importantly, the shortest path costs from root to all nodes preceding Pi

and including Pi i.e., SP(r, v) for all v ∈ Pk, k ≤ i, remains unaffected. Same holds true
for SP(v,⊤) for all v ∈ Pl, l > i. The work from Lange and Swoboda (2021) relies on
this observation for efficient Lagrangean updates. Specifically shortest path distances are
reused and only updated at the affected regions.

6.4 common approaches for structured prediction 79

6.4 Common Approaches for Structured Predic-
tion

Below we review a general set of approaches (i.e., not necessarily involving combinatorial
optimization) for solving structured output prediction tasks in visual computing.

6.4.1 Optimization & Heuristics coupled with Neural Networks

In recent years where deep learning dominates many computer vision tasks, classical
algorithms are often employed in conjunction. Such hybrid pipelines can offer the best of
both worlds: neural networks utilize training data and predict preferences (e.g., matching
costs for key-point matching) for algorithms encoding problem-specific knowledge (e.g.,
each key-point matches exactly one other). Some recent works in this direction are
differentiable pose optimization for multi-view feature matching (Roessle and Nießner,
2023), linear programming solver on top of graph neural networks for tracking (Brasó
and Leal-Taixé, 2020; Cetintas et al., 2023), graph matching via integer programming
with end-to-end training (Rolínek et al., 2020b), optimal transport for object-centric
learning (Zhang et al., 2023), integer programming for shape matching (Windheuser et al.,
2011b; Roetzer et al., 2022, 2024), hough voting for panoptic segmentation (Cheng et al.,
2020), integer programming for tracking cells in videos paired with 3D convolutional neural
networks (Malin-Mayor et al., 2023), etc. For the cell tracking problem, the survey of Maška
et al. (2023) compares deep learning versus hand-designed approaches. The authors report
superior performance by deep learning based methods for detecting individual cells however,
for tracking across frames both deep learning and non-deep learning based methods the
performance is similar. Another recent example of deep learning with a graph clustering
algorithm is the work by Robert et al. (2024) for 3D panoptic segmentation. The authors
demonstrate a reduction in neural network size and faster training as compared to pure
neural network based approaches with only a slight degradation in the quality of results.

In other cases, optimization algorithms are employed to obtain supervisory signals for
training neural networks (Khoreva et al., 2017; Asano et al., 2019; Wang et al., 2022, 2023).
For example normalized cut is utilized by Wang et al. (2023) to infer training targets for
image segmentation tasks and optimal transport for training image classification under
limited supervision by Asano et al. (2019).

6.4.2 Custom Neural Architectures

Given enough training data neural networks offer a promising way to directly address many
structured prediction tasks. Problem-specific details at times can also be incorporated
through custom architectures. Examples of such include transformers with learnable queries
for panoptic segmentation (Wang et al., 2020a), graph neural networks for tracking (Brasó
and Leal-Taixé, 2020) and for feature matching (Lindenberger et al., 2023), 3D convolutional
architectures for multi-view stereo (Yao et al., 2018), recurrent layers for optical flow
mimicking first-order optimization (Teed and Deng, 2020), transformers for human pose

80 chapter 6. background

estimation with learned sub-structures (Geng et al., 2023), etc. A noteworthy example of
such methods outside of computer vision is the highly customized architecture for protein
folding by Jumper et al. (2021). In some cases however, these custom architectures are
highly specialized. For example transformer based panoptic segmentation methods such
as (Wang et al., 2020a) cannot explicitly handle a large number of clusters and graph neural
networks based tracking approach (Brasó and Leal-Taixé, 2020) needs post-processing via
linear programming to satisfy all problem constraints.

7Massively Parallel 0–1 ILP
Algorithms
Contents

7.1 Introduction . 81
7.2 Related Work . 82
7.3 Method . 84

7.3.1 Dual Optimization . 84
7.3.2 Primal Rounding . 90

7.4 Experiments . 91
7.4.1 Results . 93
7.4.2 Limitations . 95

7.5 Conclusion . 96

In this chapter we present a massively parallel Lagrange decomposition method for
solving 0–1 integer linear programs occurring in structured prediction. We propose
a new iterative update scheme for solving the Lagrangean dual and a perturbation

technique for decoding primal solutions. For representing subproblems we follow Lange
and Swoboda (2021) and use binary decision diagrams (BDDs). Our primal and dual
algorithms require little synchronization between subproblems and optimization over
BDDs needs only elementary operations without complicated control flow. This allows
us to exploit the parallelism offered by GPUs for all components of our method. We
present experimental results on combinatorial problems from MAP inference for Markov
Random Fields, quadratic assignment, and cell tracking for developmental biology. Our
highly parallel GPU implementation improves upon the running times of the algorithms
from Lange and Swoboda (2021) by up to an order of magnitude. In particular, we come
close to or outperform some state-of-the-art specialized heuristics while being problem-
agnostic. Our implementation is available at https://github.com/LPMP/BDD.

7.1 Introduction

Solving integer linear programs (ILP) efficiently on parallel computation devices is an
open research question. Done properly it would enable more practical usage of many
ILP problems from structured prediction in computer vision and machine learning. Cur-
rently, state-of-the-art generally applicable ILP solvers tend not to benefit much from
parallelism (Perumalla and Alam, 2021). In particular, linear program (LP) solvers
for computing relaxations benefit modestly (interior point) or not at all (simplex) from
multi-core architectures. In particular generally applicable solvers are not amenable for
execution on GPUs. To our knowledge there exists no practical and general GPU-based
optimization routine and only a few solvers for narrow problem classes have been made

81

https://github.com/LPMP/BDD

82 chapter 7. massively parallel 0–1 ilp algorithms

GPU-compatible e.g., the works from Shekhovtsov et al. (2016); Tourani et al. (2018); Xu
et al. (2020). This, and the superlinear runtime complexity of general ILP solvers has
hindered application of ILPs in large structured prediction problems, necessitating either
restriction to at most medium problem sizes or difficult and time-consuming development
of specialized solvers as observed for the special case of MAP-MRF (Kappes et al., 2015).

We argue that work on speeding up general-purpose ILP solvers has had only limited
success so far due to complicated control flow and computation interdependencies. We
pursue an overall different approach and do not base our work on the typically used
components of ILP solvers. Our approach is designed from the outset to only use operations
that offer sufficient parallelism for implementation on GPUs.

We argue that our approach sits on a sweet spot between general applicability
and efficiency for problems in structured prediction. Similar to general-purpose ILP
solvers (Gurobi Optimization, 2019; CPLEX, 2019), we aim for ease of accessibility. On
the other hand we outperform general-purpose ILP solvers in terms of execution speed
for large problems from structured prediction and achieve runtimes comparable to hand-
crafted specialized CPU solvers. We are only significantly outperformed by specialized
GPU solvers. However, development of fast specialized solvers especially on GPU is
time-consuming and needs to be repeated for every new problem class (e.g., as done in
Chapter 4 for the multicut problem).

Our work builds upon the work of Lange and Swoboda (2021) which utilizes a Lagrange
decomposition into subproblems represented by binary decision diagrams (BDD). For opti-
mizing the Lagrangean a sequential as well as a parallel algorithm was proposed. However
the parallel algorithm offers only a limited room for parallelization. We improve upon their
solver by proposing massively parallelizable GPU amenable routines for both Lagrangean
optimization and primal rounding. This results in significant runtime improvements as
compared to their approach.

7.2 Related Work

General purpose ILP solvers & parallelism. The most efficient implementation
of general-purpose ILP solvers (Gurobi Optimization, 2019; CPLEX, 2019) provided by
commercial vendors typically benefit only moderately from parallelism. A recent survey
in this direction is done by Perumalla and Alam (2021). The main ways parallelism is
utilized in ILP solvers are:

Multiple independent executions. State-of-the-art solvers (Gurobi Optimization, 2019; CPLEX,
2019) offer the option of running multiple algorithms (dual/primal simplex, interior
point, different parameters) solving the same problem in parallel until one finds
a solution. While easy and worthwhile for problems for which best algorithms
and parameters configurations are not known, such a simple approach can deliver
parallelization speedups only to a limited degree.

Parallel branch and bound tree traversal. While appealing on first glance, it has been
observed by Ralphs et al. (2018) that the order in which a branch and bound tree
is traversed is crucial due to exploitation of improved lower and upper bounds and

7.2 related work 83

generated cuts. Consequently, it seems hard to obtain significant parallelization
speedups and many recent improvements rely on a sequential execution. A separate
line of work (Sofranac et al., 2020) exploited GPU parallelism for domain propagation
allowing to decrease the size of the branch and bound tree.

Parallel LP solvers. Interior point methods rely on computing a sequence of solutions
of linear systems. This linear algebra can be parallelized for speeding up the
optimization (Gondzio and Sarkissian, 2003; Smith et al., 2012). However, for
sparse problems sequential simplex solvers still outperform parallelized interior
point methods. Also, a crossover step is needed to obtain a suitable basis for the
simplex method for reoptimizing for primal rounding and in branch-and-bound
searches, limiting the speedup obtainable by this sequential bottleneck. The simplex
method is less straightforward to parallelize. The work of Huangfu and Hall (2018)
reports a parallel implementation, however current state-of-the-art commercial solvers
outperform it with sequentially executed implementations.

Machine learning methods. Recently deep learning based methods have been proposed
for choosing variables to branch on (Gasse et al., 2019; Nair et al., 2020) and for
directly computing some easy to guess variables of a solution (Nair et al., 2020) or
improving a given one (Sonnerat et al., 2021). While parallelism is not the goal of
these works, the underlying deep networks are executed on GPUs and hence the
overall computation heavy approach is fast and brings speedups. Still, these parallel
components do not replace the sequential parts of the solution process but work in
conjunction with them, limiting the overall speedup attainable.

The above methods especially suffer in solving very large structured prediction problems
in machine learning and computer vision in a few minutes.
Parallel combinatorial solvers. For specialized combinatorial problem classes highly
parallel algorithms for GPU have been developed. For Maximum-A-Posteriori inference in
Markov Random Fields the works of (Shekhovtsov et al., 2016; Xu et al., 2020) proposed a
dual block coordinate ascent algorithm for sparse and Tourani et al. (2018) for dense graphs.
For multicut a primal-dual algorithm has been proposed in (Abbas and Swoboda, 2022b)
as also covered in Chapter 4. Max-flow GPU implementations have been investigated
in (Vineet and Narayanan, 2008; Wu et al., 2012). While some parts of the above specialized
algorithms can potentially be generalized, other key components cannot, limiting their
applicability to new problem classes and requiring time-consuming design of algorithms
whenever attempting to solve a different problem class.
Specialized CPU solvers. There is a large literature of specialized CPU solvers for
specific problem classes in structured prediction (see Sec. 6.4). Most of these algorithms
however are applicable on narrow problem classes and do not expose enough parallelism
to adequately exploit GPUs.
Optimization with binary decision diagrams. Our work builds upon (Lange and
Swoboda, 2021). The authors proposed a Lagrange decomposition of ILPs that can
be optimized via a sequential dual block coordinate ascent method or a decomposition
based approach that can utilize multiple CPU cores. The works of Bergman and Cire
(2016, 2018); Lozano et al. (2018) similarly consider decompositions into multiple BDDs

84 chapter 7. massively parallel 0–1 ilp algorithms

and solve the resulting problem with general-purpose ILP solvers. Optimization of
Lagrange decompositions through multi-valued decision diagrams coupled with subgradient
methods is investigated in Bergman et al. (2015). An extension for job sequencing was
proposed by Hooker (2019) and by Castro et al. (2020) for routing problems. Hybrid
solvers incorporating decision diagrams into mixed integer programming solvers were
proposed in (Tjandraatmadja and van Hoeve, 2020; González et al., 2020; González et al.,
2020). Andersen et al. (2007) utilize decision diagrams for computing a relaxation thus
yielding lower bounds. On the other hand a restriction approach for generating approximate
solutions was proposed by Bergman et al. (2016a,b).

In contrast to previous BDD-based optimization methods we propose a highly paral-
lelizable and problem agnostic approach that is amenable to GPU computation.

7.3 Method

We briefly introduce the Lagrange decomposition approach to binary ILPs as covered
in Sec. 6.1 and propose parallelizable algorithms for both dual and primal optimization.
Recall the (primal) binary program (BP)

min
x∈{0,1}n

c⊤x s.t. xIj
∈ Xj ∀j ∈ J , (BP)

its (dual) Lagrangean relaxation (D)

max
λ

∑
j∈J

min
x∈Xj

x⊤λj s.t.
∑

j∈J i

λij = ci ∀i ∈ I, (D)

and min-marginal difference Mij (MD) for variable i in subproblem j

Mij =

[
min

x∈Xj ,xi=1
x⊤λj

]
−
[

min
x∈Xj ,xi=0

x⊤λj

]
. (MD)

We will use min-marginal differences for both dual and primal optimization. An example
binary program and its subproblem representation via BDDs is illustrated in Figure 7.1.

Next we discuss our parallel update scheme for optimizing the Lagrangean dual (D)
followed by our parallel primal rounding algorithm for finding a feasible (not necessarily
optimal) of the binary program (BP).

7.3.1 Dual Optimization

We first cover our parallel dual block coordinate scheme for solving the dual problem (D).
Next we will make use of second-order information through (parallel) quasi-Newton updates
for faster convergence in solving (D).

7.3.1.1 Parallel Deferred Min-Marginal Averaging
To exploit GPU parallelism in solving the dual problem we would like to update multiple
dual variables in parallel. However, conventional dual update schemes are not friendly for

7.3 method 85

minx−5x1 + x2 + 4x3 + 3x4

X1 : x1 + x2 + x3 ≤ 2,
(x1, x2, x3) ∈ {0, 1} X2 : x2 + x3 − x4 = 0,

(x2, x3, x4) ∈ {0, 1}

rx1

x2 x3
⊤

⊥
−5

0.5

0.5

2

2

λ1 = (−5, 0.5, 2),
(x1, x2, x3) ∈ X1

rx2

x3 x4
⊤

⊥
0.5

2

2
3

3

λ2 = (0.5, 2, 3),
(x2, x3, x4) ∈ X2

Figure 7.1: Example decomposition of a binary program into two subproblems (X1, X2),
one for each constraint. Each subproblem is represented by a weighted BDD where solid
arcs model the cost λ of assigning a 1 to the variable and dashed arcs have 0 cost which
model assigning a 0. All r −⊤ paths in BDDs encode feasible variable assignments of
corresponding subproblems (and r−⊥ infeasible). Optimal assignments w.r.t. current (non-
optimal) λ are highlighted in green, i.e. x1 = 1, x2 = x3 = 0 for X1 and x2 = x3 = x4 = 0
for X2. Our dual update scheme processes multiple variables in parallel which are indicated
in the same color (e.g., x1, x2 in X1,X2 resp.).

parallelization. For example the dual update scheme of Lange and Swoboda (2021) for
variable i in subproblem j is

λij ← λij −Mij +
1
| J i |

∑
k∈J i

Mik ,
︸ ︷︷ ︸

min-marginal averaging

(7.1)

where Mij is min-marginals difference (MD). This update scheme requires communication
between all subproblems J i containing variable i for the min-marginal averaging step
and thus requires synchronization. To overcome this limitation we propose a novel dual
optimization procedure which performs this averaging step on min-marginal differences
from the previous iteration M as follows

λij ← λij − ωMij +
1
| J i |

∑
k∈J i

M ik. (7.2)

Since M was computed in the previous iteration, the above dual updates can be performed
in parallel for all subproblems without requiring synchronization. Following the work
of Werner et al. (2020) we use a damping factor ω ∈ (0, 1) (0.5 in our experiments) to
obtain better final solutions.

Our proposed scheme is given in Algorithm 7.1. We iterate over all subproblems j
in parallel. For each subproblem, variables are visited in order and min-marginals are

86 chapter 7. massively parallel 0–1 ilp algorithms

Algorithm 7.1: Parallel Deferred Min-Marginal Averaging (ParallelMMA)
Input: Lagrange variables λij ∈ R∀i ∈ I, j ∈ J i, Constraint sets

Xj ⊂ {0, 1}Ij ∀j ∈ J , Damping factor ω ∈ (0, 1]
1 Initialize deferred min-marginal diff. M = 0
2 while (stopping criterion not met) do
3 for j ∈ J in parallel do
4 for i ∈ Ij in ascending order do
5 Compute min-marginal difference Mij (MD) i.e.

Mij =

[
min

x∈Xj ,xi=1
x⊤λj

]
−
[

min
x∈Xj ,xi=0

x⊤λj

]
.

6 Update dual variables λij via (7.2) i.e.,
λij ← λij − ωMij +

1
| J i |

∑
k∈J i

M ik.
7 end
8 end
9 Update deferred min-marginal difference M ← ωM

10 Repeat lines 3-6 in descending order of Ij at line 4
11 end
12 for j ∈ J , i ∈ Ij do
13 Add deferred min-marginal differences: λij ← λij + M ij

14 end

computed and stored for updates in the next iteration (lines 4-5). The current min-marginal
difference is subtracted and the one from previous iteration is added (line 6) by distributing
it equally among subproblems J i. At termination (line 13) we perform a min-marginal
averaging step to account for the deferred update from last iteration. For stopping criteria
we use relative change in dual objective between two subsequent iterations. We initialize
the input Lagrange variables by λij = ci/| J i |, ∀i ∈ I, j ∈ J i.

Proposition 18. In each dual iteration the Lagrange multipliers along with the deferred
min-marginals can be used to satisfy dual feasibility and the dual lower bound (D) is
non-decreasing.

Proof.
Feasibility of iterates We prove∑

j∈J i

λij + ωMij = ci (7.3)

just before line 9 in Algorithm 7.1. We do an inductive proof over the number of iterates
w.r.t. iterations t.

k = 0: Follows from M = 0 and the uniform distribution of costs at initialization.

k > 0: Let λ(k − 1), M(k − 1), M(k − 1) be previous iterations’ Lagrange multipliers,
min-marginals differences and (deferred) min-marginal differences. Also let λ(k),

7.3 method 87

M(k) and M(k) be the same from current iteration just before line 9. Note that
M(k) = M(k− 1). It holds that∑

j∈J i

[λij(k) + ωMij(k)] (7.4a)

=
∑

j∈J i

λij(k− 1)− ωMij(k) +
∑

l∈J i

(
ω

| J i |
M il(k)

)
+ ωMij(k)

 (7.4b)

=
∑

j∈J i

[λij(k− 1) + ωMij(k− 1)] (7.4c)

=ci . (7.4d)

Non-decreasing lower bound. In order to prove that iterates have non-decreasing
lower bound we will consider an equivalent lifted representation in which proving the
non-decreasing lower bound will be easier.
Lifted representation. Introduce λβ

ij for β ∈ {0, 1} and the subproblems

E(λ1
j , λ0

j) = min
x∈Xj

x⊤λ1
j + (1− x)⊤λ0

j (7.5)

Then (D) is equivalent to

max
λ1,λ0

∑
j∈J

E(λ1
j , λ0

j) s.t.
∑

j∈J i

λβ
ij = β · ci (7.6)

We have the transformation from original to lifted λ

λ 7→ (λ1 ← λ, λ0 ← 0) (7.7)
and from lifted to original λ (except a constant term)

(λ1, λ0) 7→ λ1 − λ0 . (7.8)
It can be shown that the lower bounds are invariant under the above mappings and feasible
λ for (D) are mapped to feasible ones for (7.6) and vice versa.

The update rule line 6 in Algorithm 7.1 for the lifted representation can be written as
λβ

ij ← λβ
ij − ω ·min(mβ

ij −m1−β
ij , 0) + ω ·min(mβ

ij −m1−β
ij , 0) (7.9)

It can be shown that (7.9) and line 6 in Algorithm 7.1 are corresponding to each other
under the transformation from lifted to original λ.
Continuation of non-decreasing lower bound. Define

γβ
ij = λij − ω ·min(mβ

ij −m1−β
ij , 0) . (7.10)

Then E(γ1
j , γ0

j) = E(λ1
j , λ0

j) due to the definition of min-marginals. Define next

δβ
ij = γβ

ij + ω ·min(mβ
ij −m1−β

ij , 0) . (7.11)

Then E(δ1
j , δ0

j) ≥ E(γ1
j , γ1

j) since δ ≥ γ. This proves the claim. Another side-benefit of the
lifted update scheme (7.9) is that evaluating E(λ1

j , λ0
j) during the course of optimization

in Algorithm 7.1 always gives a lower bound to the true dual objective calculated after
accounting for deferred min-marginal differences.

88 chapter 7. massively parallel 0–1 ilp algorithms

r r ⊥ ⊥. . .

ascending order

descending order

X1 X1 X1

X2 X2

X1

X2

Figure 7.2: Arrangement of BDD nodes in GPU memory for the ILP in Figure 7.1. For
ascending order in Alg. 7.1 we proceed from root to terminal nodes and vice versa for
descending.

Similar to other dual block coordinate ascent schemes Algorithm 7.1 can get stuck in
suboptimal points (Werner et al., 2020; Werner, 2007). However, as seen in our experiments
these are usually not far away from the optimum.

Efficient min-marginal computation. For efficient min-marginal computation in
Algorithm 7.1 we reuse shortest path distances (6.15) as also discussed in Section 6.1.
Specifically, for computing min-marginals in lines 4-5 of Alg. 7.1 we use Alg. 7.2 for
ascending variable order and Alg. 7.3 for descending variable order in line 10.

Algorithm 7.2: Forward Pass Min-Marginal Computation
1 for v ∈ Pi do
2 SP(r, v) = min

{
min

u:s0(u)=v
SP(r, u), min

u:s1(u)=v
SP(r, u) + λi

}
3 end
4 Compute mβ

i via (6.15)

Algorithm 7.3: Backward Pass Min-Marginal Computation
1 for v ∈ Pi+1 do
2 SP(v,⊤) = min

{
SP(s0(v),⊤), SP(s1(v),⊤) + λi+1

}
3 end
4 Compute mβ

i via (6.15)

Efficient GPU implementation. In addition to solving all subproblems in parallel, we
also exploit parallelism within each subproblem during shortest path updates. Specifically
in Alg. 7.2, we parallelize over all v ∈ Pi and perform the min operation atomically.
Similarly in Alg. 7.3 we parallelize over all v ∈ Pi+1 but without requiring atomic update.

To enable fast GPU memory access via memory coalescing we arrange BDD nodes in
the following fashion. First, all nodes within a BDD which belong to the same partition P
(thus corresponding to same variable) are laid out consecutively. Secondly, across different
BDDs, nodes are ordered w.r.t. increasing hop distance from their corresponding root
nodes. Such arrangement for the ILP in Figure 7.1 is shown in Figure 7.2.

7.3 method 89

7.3.1.2 Quasi-Newton updates via L-BFGS

We interleave quasi-Newton update steps via limited memory BFGS (L-BFGS) algorithm
(Nocedal, 1980; Liu and Nocedal, 1989) with the parallel min-marginal averaging steps
(Alg. 7.1). This allows to harness second-order information in the optimization process
and empirically aids in faster convergence especially for large instances. An iteration of
our algorithm for optimizing (D) is given in Algorithm 7.4.

Algorithm 7.4: Quasi-Newton update with Min-Marginal Averaging
Input: Lagrange variables λ, Estimate of Hessian inverse Ĥ, Previous step size γ,

1 gj(λ) := arg minx∈Xj
x⊤λj , ∀j ∈ J // Supergradient of dual obj. (D)

2 d̂ = Ĥg(λ) // Compute update direction

3 dij = d̂ij − 1
|Ji|

∑
k∈Ji

d̂ik, ∀i ∈ I, j ∈ Ji // Make update direction feasible (D)

4 γ ← FindStepSize(λ, d, γ)
5 λ← λ + γ · d // Apply update
6 λ← ParallelMMA(λ) // One iteration of Alg. 7.1

7 Ĥ ← L-BFGS(Ĥ, g(λ)) // Update Hessian estimate

8 return λ, Ĥ, γ
9 Procedure FindStepSize(λ, d, γ)

10 γm = γ
11 Einit = E(λ + γd) // Compute initial objective (D)
12 for t = 1, . . . , K do
13 if E(λ + γd) ≤ Einit then
14 γ = αγ // Decrease step size
15 else
16 γ = αγ // Increase step size
17 if E(λ + γd) ≥ E(λ + γmd) then
18 γm = γ
19 if E(λ + γd)−Einit ≥ ∆min then
20 break
21 end
22 return γm

In detail, we first compute a subgradient of the objective by finding a minimizing
assignment for each subproblem. Next, we calculate the search direction by multiplying
the subgradient with an estimate of the inverse Hessian. However, naively updating the
Lagrange variables in this search direction does not preserve dual feasibility (D). To
address this, we modify the update direction d to ensure that ∑j dij is zero for all i.
Subsequently, a suitable step size is determined that provides sufficient improvement in
the objective. Using this step size, we perform the quasi-Newton update, followed by a
forward and backward parallel min-marginal averaging iteration of Alg. 7.1. Finally, the
estimate of the inverse Hessian is updated for use in subsequent iterations. In essence, our
algorithm combines two distinct update schemes for optimizing the Lagrangean dual (D).
It employs a first-order update through parallel min-marginal averaging (PMMA), which

90 chapter 7. massively parallel 0–1 ilp algorithms

guarantees non-decreasing objective values. The L-BFGS update leverages second-order
information to facilitate faster convergence towards the optimum. Empirically, we observe
this hybrid scheme to be significantly faster than either L-BFGS or min-marginal averaging
alone.
Step size selection. The strategy for step size selection for quasi-Newton updates
is given in Alg. 7.4 (line 9). In detail, the step size is increased by a factor α > 1 if
non-negative improvement is found in the objective but it is below the threshold ∆min and
decrease the step size by 0 < α < 1 if we find non-improvement in the objective. The step
size search is done for at most K many iterations for efficiency reasons. If the final step
size does not yield an improvement in the objective we do not perform the quasi-Newton
update in the current iteration. The updated value of step size is also used as an initial
estimate in the next iteration. For ensuring sufficient ascent we check improvement in
the objective in a relative sense by setting ∆min = 10−6 · [E(λ(1))−E(λ(0))] where λ(0)
denotes Lagrange variables at the start of dual optimization and λ(1) after first invocation
of Alg. 7.4. Rest of the parameters are set as K = 5, α = 0.8, α = 1.1. For L-BFGS
updates we store past 5 iterates and use the scheme of Liu and Nocedal (1989) with our
lightweight line search strategy.

7.3.2 Primal Rounding

In order to obtain a primal solution to (BP) from an approximative solution to (D) we
propose a GPU friendly primal rounding scheme based on cost perturbation. We iteratively
change costs in a way that variable assignments across subproblems agree with each other.
If all variables agree by favoring a single assignment, we can reconstruct a primal solution
(not necessarily the optimal). Instead of only using variable assignments of all subproblems
we use min-marginal differences (MD) as they additionally indicate how strongly a variable
favors a particular assignment.

Algorithm 7.5 details our method. We iterate over all variables in parallel and check
min-marginal differences. If for a variable i all min-marginal differences indicate that the
optimal solution is 0 (resp. 1) Lagrange variables λ are increased (resp. decreased) leaving
even more certain min-marginals differences for these variables. This step imitates variable
fixation as done in branch-and-bound, however we only perform soft fixation implicitly
through cost perturbation. In case min-marginal differences are equal we randomly perturb
corresponding dual costs. Lastly, if min-marginals differences indicate conflicting solutions
we compute total min-marginal difference and decide accordingly. In the last two cases we
add more perturbation to force towards non-conflicts. For faster convergence we increase
the perturbation magnitude after each iteration.

Note that the modified λ variables via Alg. 7.5 need not be feasible for the dual
problem (D). Although our primal rounding algorithm is not guaranteed to terminate, in
our experiments a solution was always found in less than 150 iterations.

Remark. A similar strategy to the primal heuristic presented here was given by Wedelin
(1995b,a) for a limited class of problems (binary constraint matrix). This was later
generalized by Bastert et al. (2010) where different types of constraints are handled as
special cases. Our BDD representation however, can handle a variety of constraints directly

7.4 experiments 91

Algorithm 7.5: Perturbation Primal Rounding
Input: Lagrange variables λij ∈ R∀i ∈ I, j ∈ J i, Constraint sets

Xj ⊂ {0, 1}Ij ∀j ∈ J , Initial perturbation strength δ ∈ R+, perturbation
growth rate α

Output: Feasible labeling x ∈ {0, 1}n
1 Compute min-marginal differences Mij for all i ∈ I, j ∈ J i (MD)
2 while ∃i ∈ I and j ̸= k ∈ J i s.t. sign(Mij) ̸= sign(Mik) do
3 for variables i ∈ I in parallel do
4 Sample r uniformly from [−δ, δ]
5 if Mij > 0 ∀j ∈ J i then

// Variables in all subproblems prefer 0 assignment, increase cost
6 λij += δ ∀j ∈ J i

7 end
8 else if Mij < 0 ∀j ∈ J i then

// Variables in all subproblems prefer 1 assignment, decrease cost
9 λij −= δ ∀j ∈ J i

10 end
11 else if Mij = 0 ∀j ∈ J i then

// Variables have no preference, perturb randomly
12 λij += r · δ ∀j ∈ J i

13 end
14 else

// Variables have different preferences, decide by majority decision
15 Compute total min-marginal difference: Mi =

∑
j∈J i

Mij

16 λij += sign(Mi) · |r| · δ ∀j ∈ J i

17 end
18 end
19 Increase perturbation: δ ← δ · α
20 Reoptimize dual problem (D) on perturbed λ via Alg. 7.1 or Alg. 7.4
21 Recompute min-marginals Mij ∀i, j w.r.t. optimized λ

22 end

and allows for parallel processing on GPU.

7.4 Experiments

We show effectiveness of our solver against a state-of-the-art ILP solver (Gurobi Optimiza-
tion, 2019), the BDD-based solver (Lange and Swoboda, 2021) which runs on CPU and
specialized CPU solvers for specific problem classes. We have chosen a variety structured
prediction binary ILPs from the literature the we know of and are publicly available. Our
results are computed on a single NVIDIA RTX 8000 (48GB) GPU. For CPU solvers we
use AMD EPYC 7702 CPU with 16 threads.

92 chapter 7. massively parallel 0–1 ilp algorithms

Datasets. Our benchmark problems obtained from (Swoboda et al., 2022b) can be
categorized as follows.

Cell tracking: Instances from Haller et al. (2020) which we partition into small and large
instances as also done by Lange and Swoboda (2021).

Graph matching: Quadratic assignment problems (often called graph matching in the
literature) for correspondence in computer vision by Torresani et al. (2008) (hotel,
house) and for developmental biology by Kainmueller et al. (2014) (worms).

Markov Random Field (MRF): Several datasets from the OpenGM benchmark (Kappes
et al., 2015), containing both small and large instances with varying topologies
and number of labels. We have chosen the datasets color-seg-n4, color-seg-n8 and
object-seg.

QAPLib: The widely used benchmark dataset of Burkard et al. (1997) for quadratic
assignment problems used in the combinatorial optimization community. We partition
QAPLib instances into small (up to 50 vertices) and large (up to 128 vertices)
instances. Conversion to ILP is done via (2.7)-(2.16) of Loiola et al. (2007)

Shape matching (SM): Problems for 3D shape matching from Roetzer et al. (2024) released
by Swoboda et al. (2022b). The underlying shapes are from the works of Magnet
et al. (2022) and Li et al. (2021). We evaluate on instances capturing a more realistic
scenario of cross category shape matching (DT4D-Inter). The underlying shapes are
non-isometrically deformed and contain from 500 to 800 triangles. The results of
Gurobi are not reported as it takes more than an hour to solve an instance (in most
cases).

Algorithms. We compare results on the following algorithms.

Gurobi: The commercial ILP solver (Gurobi Optimization, 2019) as reported in Lange
and Swoboda (2021). The dual simplex algorithm is used for all datasets except
QAPLib. On QAPLib dataset the barrier method is faster than dual simplex on
small instances. However for large instances it needs more than an hour to report
any result. Therefore we compare both algorithms and report results of the better
performing one for each instance.

BDD-CPU: BDD-based min-marginal averaging approach of Lange and Swoboda (2021).
The algorithm runs on CPU with 16 threads for parallelization. Primal solutions are
rounded using their BDD-based depth-first search scheme.

Specialized solvers: State-of-the-art problem specific solver for each dataset. For cell
tracking the solver from Haller et al. (2020). For graph matching the fastest solvers
from recent benchmark by Haller et al. (2022) i.e., dd-ls3 for house, hotel and
fm-bca for worms. For MRF we take TRWS solver by Kolmogorov (2006).

FastDOG: Our approach where for the GPU implementation we use the CUDA (NVIDIA
et al., 2021) and Thrust (Hoberock and Bell, 2010) programming frameworks. For
rounding primal solutions with Algorithm 7.5 we set δ = 1.0 and α = 1.2 and
perform dual optimization for a maximum of 500 iterations (Alg. 7.1, line 20). For
constructing BDDs out of linear (in)equalities we use the same approach as for
BDD-CPU.

7.4 experiments 93

FastDOG-QN: Our approach where we additionally use quasi-Newton updates via Algo-
rithm 7.4 for dual optimization. For primal recovery we use same strategy as FastDOG
except we run dual optimization for at most 100 iterations (instead of 500) for dual
optimization on perturbed costs.

For MRF, parallel algorithm from Tourani et al. (2018) exist however TRWS is faster
on the sparse problems we consider. While we are aware of even faster purely primal
heuristics (Komodakis and Tziritas, 2007; Boykov et al., 2001) for MRF they do not
optimize a convex relaxation and hence do not provide lower bounds. Hence we have chosen
solvers which optimize an equivalent LP relaxation or similar Lagrange decomposition (D)
and are thus directly comparable.

7.4.1 Results

Cell tracking Graph matching MRF QAPLib SM
Small Large Hotel House Worms C-seg-n4 C-seg-n8 O-seg Small Large

instances 10 5 105 105 30 9 9 5 105 29 15
nmax(×106) 1.2 10 0.3 0.3 1.5 1.2 1.4 0.69 3 49 14
mmax(×106) 0.2 2.3 0.05 0.05 0.2 4.2 8.3 2.2 0.24 2 11
obj. multiplier 106 108 103 103 104 104 104 104 106 105 1

Dual objective (lower bound) ↑
Gurobi −4.382 −1.545 −4.293 −3.778 −4.849 1.9757 1.9729 3.1311 8.585 0.2 -
BDD-CPU −4.387 −1.549 −4.293 −3.778 −4.878 1.9643 1.9631 3.1248 3.675 81 5.82
Specialized −4.385 −1.551 −4.293 −3.778 −4.846 2.0012 1.9991 3.1317 - - -
FastDOG −4.387 −1.549 −4.293 −3.778 −4.893 2.0011 1.9990 3.1317 3.747 89 5.83
FastDOG-QN −4.385 −1.547 −4.293 −3.778 −4.850 2.0011 1.9991 3.1317 4.701 174 5.83

Primal objective (upper bound) ↓
Gurobi −4.382 −1.524 −4.293 −3.778 −4.842 2.8464 2.7829 14.981 51.86 1431 -
BDD-CPU −4.337 −1.515 −4.293 −3.778 −4.783 2.1781 2.2338 3.1525 52.39 1452 -
Specialized −4.361 −1.531 −4.293 −3.778 −4.851 2.0012 1.9991 3.1317 - - -
FastDOG −4.376 −1.541 −4.293 −3.778 −4.831 2.0016 1.9995 3.1322 43.30 1376 5.86
FastDOG-QN −4.377 −1.544 −4.293 −3.778 −4.839 2.0016 1.9995 3.1341 35.68 1427 5.86

Runtimes [s] ↓
Gurobi 1 1584 4 7 1048 980 1337 1506 3948 6742 -
BDD-CPU 14 216 6 12 528 107 218 232 357 5952 2788
Specialized 1.5 90 1 1 1 9 30 3 - - -
FastDOG 13 110 0.2 0.4 54 9 13 39 137 6928 741
FastDOG-QN 14.8 185 0.6 1.4 13 9 19 64 101 2561 336

Table 7.1: Results comparison on all datasets where the values are averaged within a
dataset. Numbers in bold highlight the best performance. nmax, mmax: Maximum number
of variables, constraints in the category and obj. multiplier represents postscaling of dual
and primal objectives for recovering their original values.

In Table 7.1 we show aggregated results over all instances of each specific benchmark
dataset. Runtimes are taken w.r.t. computation of both primal and dual bounds.

In Figure 7.3 we show averaged convergence plots for various solvers. In general we
offer a very good anytime performance producing at most times and in general during

94 chapter 7. massively parallel 0–1 ilp algorithms

8Gurobi BDD CPU Spec. FastDOG FastDOG-QN

100 101 102 103
−1.58

−1.56

−1.54

−1.52

−1.5 ·10
8

Time [s]

P
ri
m
al

(
)
&

D
u
al

(
—

)
ob

j.

(a) Cell tracking: large

100 101 102 103
−4.95

−4.9

−4.85

−4.8

−4.75 ·10
4

Time [s]

(b) Graph matching: worms

100 101 102 103
1

1.5

2

2.5

3
·104

Time [s]

P
ri
m
al

(
),
d
u
al

(—
)
ob

j.

(c) MRF: color-seg-n8

101 102 103
5.2

5.4

5.6

5.8

6

6.2

Time [s]

(d) Shape matching

Figure 7.3: Convergence plots averaged over all instances of a dataset. The curves represent
lower bounds (larger values are better) while markers denote objectives of rounded primal
solutions (smaller values are better). The x-axis is plotted in log-scale.

the beginning better lower bounds than our baselines. For QAPLib-small dataset we
additionally show convergence plot in Figure 7.4. In this case due to large variance in dual
objectives within the dataset we compare solvers in terms of relative gaps gt defined as

gt = min
(

Emax −Et

Emax −Emin
, 1
)

, (7.12)

where Emax denotes the largest (not necessarily optimal) lower bound to (BP), Et the
objective of relaxation (D) at time t and Emin is the minimum objective over all solvers
(for normalization).
Discussion. In general, FastDOG gives up to an order of magnitude runtime improvement
as compared to BDD-CPU from Lange and Swoboda (2021) and except on worms it achieves
similar or better lower bounds. The variant FastDOG-QN sometimes lags behind FastDOG
in early phase when inverse Hessian estimate is begin built. However later on FastDOG-QN

7.4 experiments 95

Gurobi BDD-CPU FastDOG FastDOG-QN

101 102 103
0

0.2

0.4

0.6

0.8

1

Time [s]

R
el
at
iv
e
d
u
al

ga
p
(←

)

(a) QAPLib-Small (upto 50 vertices)

101 102 103
0

0.2

0.4

0.6

0.8

1

Time [s]

(b) QAPLib-Large (56 to 128 vertices)

Figure 7.4: Relative dual gap (7.12) w.r.t. time on different splits of QAPLib dataset. The
results are averaged on all instances within each split. The x-axis is plotted in log-scale.

achieves faster convergence and better dual objectives in almost all cases as compared
to FastDOG. The small instances of Graph matching problems i.e., (hotel, house) are
easily solved by FastDOG in less than 100 iterations therefore second order updates via
FastDOG-QN do not yield further benefits.

In comparison to the respective hand-crafted Specialized CPU solvers our solvers
FastDOG and FastDOG-QN are better for Cell tracking problems and worse for Graph
matching problems (Fig. 7.3). On MRF problems both FastDOG and FastDOG-QN perform
similar to the Specialized solver.

While Gurobi achieves, if given unlimited time, better lower bounds and primal
solutions, our FastDOG-QN solver outperforms it on large instances under a one hour time
limit. On small QAPLib instances Gurobi gives better lower bounds than all other solvers
which get stuck in suboptimal fixed points (Fig. 7.4a).

In Figure 7.5 we compare per iteration performance of different methods for optimizing
the Lagrangean relaxation (D) on Shape matching dataset. The parallel scheme in Alg. 7.1
needs roughly 5 times more iterations to reach the same lower bound as its sequential
version in BDD-CPU. Hence, when counting the number of arithmetic operations the parallel
scheme is less efficient in terms of objective improvement per iteration. Nonetheless, since
more iterations of Alg. 7.1 can be performed per second this still leads to an overall faster
algorithm. Lastly, we observe that FastDOG-QN outperforms both FastDOG and BDD-CPU
as it additionally performs a quasi-Newton update in each iteration.

7.4.2 Limitations

As compared to Gurobi our schemes for both primal and dual optimization come without
optimality guarantees. The dual optimization scheme is based on block coordinate ascent
of non-smooth objective which can get stuck in suboptimal fixed points (Werner et al.,

96 chapter 7. massively parallel 0–1 ilp algorithms

101 102 103
5

5.2

5.4

5.6

5.8

6

Iterations

D
u
al

ob
je
ct
iv
e

BDD CPU FastDOG FastDOG-QN

Figure 7.5: Comparison of schemes for solving the Lagrangean relaxation (D) w.r.t. number
of iterations. The y-axis represents the lower bound (larger values are better) and x-axis
denotes the number of iterations. Results are averaged over all instances of Shape matching
dataset as also reported in Fig. 7.3d.

2020). Similarly for primal optimization the Algorithm 7.5 need not find a feasible solution
for the NP-hard binary program (BP). However, empirically on the problem types we
considered our primal heuristic did find good feasible solutions.

Technically our approach can also tackle problems with exponentially many inequalities
such as the multicut problem (MC) via cutting planes. Our GPU implementation however,
does not allow inserting additional inequalities efficiently. This is because reorganization
of BDDs is required for maximum GPU utilization (see Figure 7.2).

7.5 Conclusion

We have proposed a massively parallelizable generic algorithm that can solve a wide variety
of binary ILPs on GPU. Our results indicate that the performance of specialized efficient
CPU solvers can be matched or even surpassed by a completely generic GPU solver. Our
implementation is a first prototype and we conjecture that more speedups can be gained by
elaborate implementation techniques e.g., compression of the BDD representation, better
memory layout for better memory coalescing, multi-GPU support, etc. We argue that
future improvements in optimization algorithms for structured prediction can be made by
developing GPU friendly problem specific solvers and with improvements in our or other
generic GPU solvers that can benefit many problem classes simultaneously. Another future
avenue is optimization of ILPs from other domains e.g., on the MIPLib benchmark (Gleixner
et al., 2021). These problems include integer and continuous-valued variable domains and
constraints that are harder to represent as BDDs. Integer-valued variables can be tackled
through multi-valued decision diagrams however handling continuous-valued variable
remains a challenge. For handling exponential blowup in BDD representation additional
encoding techniques are needed such as the works of Abío et al. (2012); Fujita et al. (2000)
and Cappart et al. (2019).

8Learning to Solve 0–1 ILP
Relaxations
Contents

8.1 Introduction . 97
8.2 Related Work . 99
8.3 Method . 100

8.3.1 Lagrange Decomposition . 100
8.3.2 Optimization of Lagrangean Dual 100
8.3.3 Backpropagation through Dual Optimization 101
8.3.4 Non-parametric Updates . 104
8.3.5 Graph Neural Network . 104
8.3.6 Overall Pipeline . 106

8.4 Experiments . 107
8.4.1 Results . 109
8.4.2 Limitations . 112

8.5 Conclusion . 112

In this chapter we present a fast, scalable, data-driven approach for solving relaxations
of 0-1 integer linear programs. We use a combination of graph neural networks (GNN)
and the Lagrange decomposition based algorithm from Chapter 7. We generalize

the latter, make it differentiable for end-to-end training, and use GNNs to predict its
algorithmic parameters. This allows to retain the algorithm’s theoretical properties
including dual feasibility and guaranteed non-decrease in the lower bound while improving
it via training. We overcome suboptimal fixed points of the basic solver by additional
non-parametric GNN update steps maintaining dual feasibility. For training, we use
a self-supervised loss. We train on smaller problems and test on larger ones showing
strong generalization performance with a GNN comprising only around 10k parameters.
Our solver achieves significantly faster performance and better dual objectives than its
non-learned version, achieving close to optimal objective values of LP relaxations of very
large structured prediction problems and on selected combinatorial ones. In particular, we
achieve better objective values than specialized approximate solvers for specific problem
classes while retaining their efficiency. Our solver has better any-time performance over a
large time period compared to a commercial solver. Our implementation is available at
https://github.com/LPMP/BDD.

8.1 Introduction

Integer linear programs (ILP) are a universal tool for solving combinatorial optimization
problems. While great progress has been made on improving ILP solvers over the past

97

https://github.com/LPMP/BDD

98 chapter 8. learning to solve 0–1 ilp relaxations

several decades, there is recent interest in leveraging machine learning to enhance ILP
algorithms. Almost all ILP solving subroutines, except ILP relaxation algorithms, have
been recently shown to benefit from learning, including variable selection for branch-
and bound by Nair et al. (2020) or cutting plane selection (Huang et al., 2022; Turner
et al., 2022; Paulus et al., 2022). Moreover a number of specialized heuristics as well
as meta-algorithms using heuristics as subroutines have used ML for greatly improving
performance for some problem classes (Sun and Yang, 2023; Qiu et al., 2022). However no
general-purpose ILP relaxation algorithm has yet benefited from machine learning.

We make a contribution towards general ML-enabled solvers for optimization by learning
a problem-agnostic solver for LP-relaxations of ILPs. LP solving is a key step taking most
time in traditional ILP pipelines. State of the art LP solvers (Gurobi Optimization, 2019;
CPLEX, 2019; FICO, 2022; MOSEK ApS, 2022; Gamrath et al., 2020) are not amenable
to ML since they are non-differentiable, sequential and have very complex implementations.
This makes utilization of neural networks and GPUs for solver improvement difficult.
For these reasons we build upon the massively parallel solver from Chapter 7 and show
that it can be made differentiable. This allows to train our problem agnostic solver for
specific problem classes resulting in equal or better performance as compared to efficient
hand-designed specialized solvers.
Contributions. Our high-level contributions are conceptual and empirical: (i) We show
that embedding good inductive biases coming from non-learned solvers (i.e., the highly
parallel block coordinate ascent algorithm from Chapter 7) into neural networks leads to
greatly improved performance. In particular, we give evidence to the hypothesis that similar
to vision (convolutions) and NLP (sequence models) the right inductive biases coming
from solver primitives are a promising way to use the potential of ML for optimization.
(ii) Our approach is more economical as compared to developing efficient problem specific
heuristics, as is customary for large-scale problems in structured prediction tasks e.g., the
works of Haller et al. (2020) for cell tracking and Hutschenreiter et al. (2021) for graph
matching. Instead of spending much time and effort in designing and implementing new
algorithms, one can train our problem agnostic solver with a few problem instances coming
from the problem class of interest and obtain a state of the art GPU-enabled solver for it.
To this end, we propose to learn the Lagrange decomposition algorithm of Chapter 7 for
solving LP relaxations of ILPs and show its benefits. In particular,

• We generalize the deferred min-marginal averaging Algorithm 7.1 for optimizing the
dual problem by allowing for a larger space of parameter updates.

• We make our dual optimization algorithm efficiently differentiable and embed it as a
layer in a neural network. This enables us to predict parameters of the algorithm
leading to faster convergence compared to manually designed rules.

• We train a predictor for arbitrary non-parametric updates that allow to escape
suboptimal fixed points encountered by Alg. 7.1 (and our generalized variant).

• Our predictors for both of the above updates are trained in a fully self-supervised
manner. Our loss optimizes for producing large improvements in the dual objective.

• We show the benefits of our learned approach on a wide range of problems. We have
chosen large-scale structured prediction tasks of graph matching (Kainmueller et al.,

8.2 related work 99

2014) and cell tracking (Haller et al., 2020). From theoretical computer science we
compare on the QAPLib (Burkard et al., 1997) dataset and on randomly generated
independent set problems (Prouvost et al., 2020).

8.2 Related Work

Learning to solve combinatorial optimization. ML has been used to improve various
aspects of solving combinatorial problems. For the standard branch-and-cut ILP solvers
the works by Gasse et al. (2019); Gupta et al. (2020); Nair et al. (2020); Gupta et al.
(2022); Scavuzzo et al. (2022) learn variable selection for branching. The approaches
by Ding et al. (2020); Nair et al. (2020) learn to fix a subset of integer variables in ILPs to
their hopefully optimal values to improve finding high quality primal solutions. Variable
selection for the large neighborhood search heuristic is explored by Sonnerat et al. (2021);
Wu et al. (2021) for obtaining primal solutions to ILPs. Selecting good cuts by scoring
them with neural networks was investigated by Huang et al. (2022); Turner et al. (2022).
While all these approaches result in runtime and solution quality improvements, only a few
works tackle the important task of speeding up ILP relaxations by ML. Specifically, graph
neural network (GNN) were used by Cappart et al. (2019) to predict variable orderings of
decision diagrams representing combinatorial optimization problems. The goal is to obtain
an ordering such that a corresponding dual lower bound is maximal. To our knowledge
it is the only work that accelerates ILP relaxation computation with ML. For constraint
satisfaction problems, GNNs were used by Selsam et al. (2018); Cameron et al. (2020);
Tönshoff et al. (2021) while the latter train in a self-supervised manner. For inference in
graphical models parameters of belief propagation are predicted by neural networks for
faster convergence by Deng et al. (2022), in a similar spirit to our work. However our
method is applicable to a more general class of problems, allows escaping fixed points, and
is scalable to larger problems due to efficient implementation. For narrow subclasses of
problems primal heuristics have been augmented through learning some of their decisions
e.g., for capacitated vehicle routing (Nazari et al., 2018), graph matching (Wang et al.,
2021b) and traveling salesman (Xin et al., 2021). For a more complete overview of ML
for combinatorial optimization we refer to the detailed surveys of Bengio et al. (2021)
and Cappart et al. (2023).

Unrolling algorithms for parameter learning. Algorithms containing differentiable
iterative procedures are combined with neural networks for improving performance of such
algorithms. Such approaches show more generalization power than pure neural networks
based ones as shown in the survey of Monga et al. (2021). The work of Gregor and LeCun
(2010) embedded sparse coding algorithms in a neural network by unrolling. For solving
inverse problems the works of Yang et al. (2020b); Chen and Pock (2017) unroll through
ADMM and non-linear diffusion resp. Lastly, neural networks were used to predict update
directions for training other neural networks e.g., by Andrychowicz et al. (2016) and Metz
et al. (2022).

100 chapter 8. learning to solve 0–1 ilp relaxations

8.3 Method

We give an overview of the Lagrange decomposition approach to binary ILPs and generalize
the dual optimization scheme (Alg. 7.1) for faster convergence. Then we will show how to
backpropagate through the optimization scheme allowing to train a graph neural network
for predicting its parameters. For more detailed introduction we refer to Sec. 6.1.

8.3.1 Lagrange Decomposition

Recall the binary program (BP)

min
x∈{0,1}I

⟨c, x⟩ s.t. xIj
∈ Xj ∀j ∈ J , (BP)

and its Lagrangean relaxation (D)

max
λ

∑
j∈J

min
x∈Xj

⟨λj , x⟩ s.t.
∑

j∈J i

λij = ci ∀i ∈ I . (D)

The problem (D) provides a lower bound to the NP-hard optimization problem (BP) and
is also useful for primal recovery e.g., via Alg. 7.5. Our goal is to learn a neural network
for optimizing the dual (D) efficiently and to reach better objective values.

8.3.2 Optimization of Lagrangean Dual

In chapter 7 we proposed a parallelization friendly iterative scheme for optimizing (D)
with hand-designed parameters. We generalize this scheme in Algorithm 8.1, exposing a
much larger set of parameters allowing more control over the optimization process. Since
this large parameter space is difficult to be tuned manually, we will employ a GNN for
predicting these parameters.

In detail, Alg. 8.1 greedily assigns the Lagrange variables in u-many disjoint blocks
B1, . . . , Bu in such a way that each block contains at most one Lagrange variable from
each subproblem and all variables within a block are updated in parallel (same as Alg. 7.1).
As before, the dual update scheme relies on computing min-marginal differences. These
min-marginal differences are averaged out across subproblems via updates to Lagrange
variables. Our algorithm relies on two important set of parameters, damping factors and
averaging weights which are set separately for each Lagrange variable. The damping
factor ωij determines the fraction of min-marginal difference to subtract from variable i in
subproblem j. The averaging weight αij parameterizes the fraction of total min-marginal
difference (∑ik Mik) variable i in subproblem j receives. Note that we have described
Alg. 8.1 in a slightly different form than Alg. 7.1. This is to allow for an easier description
of its backpropagation routine in the forthcoming section.

Remark. The deferred min-marginal averaging algorithm Alg. 7.1 is a specialized form of
our generalized Algorithm 8.1 if the parameters were set as ωij = 0.5 and αij =

1
| J i | for

all i, j.

8.3 method 101

Algorithm 8.1: Generalized Min-Marginal Averaging (GenMMA)
Input: Lagrange variables λij ∀i ∈ I, j ∈ J i,

damping factors ωij ∈ (0, 1) ∀i ∈ I, j ∈ J i,
averaging weights αij ∈ (0, 1) ∀i ∈ I, j ∈ J i,
max. number of iterations T .

1 Initialize deferred min-marginal diff. M = 0
2 for T iterations do
3 for block B ∈ (B1, . . . Bu) do
4 λ, M ← BlockUpdate (B, λ, M , α, ω)
5 end
6 for block B ∈ (Bu, . . . B1) do
7 λ, M ← BlockUpdate (B, λ, M , α, ω)
8 end
9 end

10 return λ, M
11 Procedure BlockUpdate(B, λin, Min, α, ω)
12 for ij ∈ B in parallel do

// Compute min-marginal diff. and scale by damping factor

13 Mout
ij = ωij ·

[
min

x∈Xj :
xi=1

⟨λin
j , x⟩ − min

x∈Xj :
xi=0

⟨λin
j , x⟩

]
// Subtract current min-marginal diff. and distribute previous one w.r.t.

averaging weights
14 λout

ij = λin
ij −Mout

ij + αij ·
∑

k∈J i
Min

ik

15 end
16 return λout, Mout

We generalize the min-marginal update step by considering damping factors ωij in [0, 1]
and averaging weights to be arbitrary convex combinations (αij ≥ 0 with ∑j∈J i

αij = 1).
This generalized update step still preserves the desirable property of guaranteed non-
improvement in the dual objective.

Proposition 19 (Dual Feasibility and Monotonicity of Generalized Min-marginal Aver-
aging). For any αij ≥ 0 with ∑j∈J i

αij = 1 and ωij ∈ [0, 1] the min-marginal averaging
step in line 14 in Algorithm 8.1 retains dual feasibility and is non-decreasing in the dual
lower bound.

Proof. Can be seen by setting α and ω appropriately in Prop. 18 from the previous
chapter.

8.3.3 Backpropagation through Dual Optimization

We show below how to differentiate through Algorithm 8.1 with respect to its parameters α
and ω. This will ultimately allow us to learn these parameters such that faster convergence
is achieved. To this end, we describe backpropagation for a block update (lines 11-16) of

102 chapter 8. learning to solve 0–1 ilp relaxations

min
x∈Xj :xi=1

⟨λin
j , x⟩

min
x∈Xj :xi=0

⟨λin
j , x⟩

λin

ω

ω · (m1 −m0)
m0

m1

αij
∑

k∈J i
Min

ik

Min

α

−

+ λout

Mout

Figure 8.1: Computational graph of BlockUpdate from Alg. 8.1

Alg. 8.1. All other operations can be tackled by automatic differentiation. For a block
B in {B1, . . . , Bu} we view the Lagrangean update as a mapping H : (R|B|)4 → (R|B|)2,
(λin, Min, α, ω) 7→ (λout, Mout).

Given a loss function L : RN → R we denote ∂L/∂x by ẋ. Algorithm 8.2 shows
backpropagation through H to compute the gradients λ̇in, Ṁin, α̇ and ω̇.

Algorithm 8.2: BlockUpdate backpropagation
Input: Forward pass inputs: B, λin, Min, α, ω, gradients of forward pass output:

λ̇out, Ṁout, gradients of parameters α̇, ω̇
1 for ij ∈ B in parallel do
2 Ṁin

ij =
∑

k∈J i
λ̇out

ik αik

3 Ṁout
ij = Ṁout

ij − λ̇out
ij

4 α̇ij = α̇ij + λ̇ij
∑

k∈J i
Min

ik

5 ω̇ij = ω̇ij + Ṁout
ij [Mout

ij /ωij]

6 Compute for β ∈ {0, 1} sj(i, β) = arg min
x∈Xj :xi=β

⟨λin
j , x⟩

7 λ̇in
pj = λ̇out

pj + Ṁout
ij ωij [sj

p(i, 1)− sj
p(i, 0)], ∀p ∈ Ij

8 end
9 return λ̇in, Ṁin, α̇, ω̇

Proposition 20. Alg. 8.2 performs backpropagation through H.

Proof. The computational graph of BlockUpdate in Alg. 8.1 is shown in Figure 8.1.
Assuming gradients ∂L/∂Mout and ∂L/∂λout are given. We first focus on lower part of
Figure 8.1. By applying chain rule gradient of Min

ij ∀ij ∈ B is computed as

∂L
∂Min

ij

=
∑
p∈I

∑
k∈J p

∂L
∂λout

pk

∂λout
pk

∂Min
ij

=
∑

k∈J i

∂L
∂λout

ik

∂λout
ik

∂Min
ij

=
∑

k∈J i

∂L
∂λout

ik

αij . (8.1)

Similarly gradient for αij ∀ij ∈ B is

∂L
∂αij

=
∑
p∈I

∑
k∈J p

∂L
∂λout

pk

∂λout
pk

∂αij
=

∂L
∂λout

ij

∂λout
ij

∂αij
=

∂L
∂λout

ij

∑
k∈J i

Min
ik , (8.2)

8.3 method 103

Since we allow running Alg. 8.1 for more than one iteration with same parameters (α, ω),
the above gradient (8.2) is accumulated to existing gradients of α to obtain the result
given by Alg. 8.2.

For the upper part of Figure 8.1 we first backpropagate gradients of λout to Mout to
account for subtraction (−) as

∂L
∂Mout =

∂L
∂Mout −

∂L
∂λout . (8.3)

Then the gradient w.r.t. damping factors ωij ∀ij ∈ B is

∂L
∂ωij

=
∂L

∂Mout
ij

∂Mout
ij

∂ωij
=

∂L
∂Mout

ij

(
m1

ij −m0
ij

)
=

∂L
∂Mout

ij

(
Mout

ij

ωij

)
, (8.4)

which also needs to be accumulated to existing gradient as done for gradients of α.
Lastly, to backpropagate gradients to λin we first calculate

∂L
∂m0

ij

=
∂L

∂Mout
ij

∂Mout
ij

∂m0
ij

= − ∂L
∂Mout

ij

ωij , (8.5a)

∂L
∂m1

ij

=
∂L

∂Mout
ij

∂Mout
ij

∂m1
ij

=
∂L

∂Mout
ij

ωij . (8.5b)

Then (sub-)gradient of min-marginals m0
ij , m1

ij ∀ij ∈ B w.r.t. λin is

∂mβ
ij

∂λin
j

= arg min
x∈Xj :xij=β

⟨λin
j , x⟩, ∀β ∈ {0, 1}. (8.6)

Using the above relations (8.5), (8.6) and applying chain rule we obtain

∂L
∂λin

ij

=
∂L

∂λout
ij

+
∑

β∈{0,1}

∑
p∈I

∑
k∈J p

∂L
∂mβ

pk

∂mβ
pk

λin
ij

(8.7a)

=
∂L

∂λout
ij

+
∑

β∈{0,1}

∑
p∈Ij

∂L
∂mβ

pj

∂mβ
pj

λin
ij

, ∀ij ∈ B. (8.7b)

Efficient implementation. Generally, the naive computation of min-marginal differ-
ences and its backpropagation are both expensive operations as they require solving
two optimization problems for each dual variable. Similar to Chapter 7 here we also
represent each subproblem by a binary decision diagram (BDD) for fast computation of
min-marginal differences. The final algorithm results in a computation graph involving
only elementary arithmetic operations and taking minima over several variables. Using
this computational graph we can implement the abstract Algorithm 8.2 efficiently on GPU.
For further performance gains we implement custom routines for backpropagation.

104 chapter 8. learning to solve 0–1 ilp relaxations

8.3.4 Non-parametric Updates

Although the min-marginal averaging scheme of Alg. 8.1 guarantees a non-decreasing lower
bound, it can get stuck in suboptimal fixed points. A discussion for the special case of
MAP inference in Markov Random Fields is by Werner (2007) and a more general setting
by Werner et al. (2020). To address this issue we allow arbitrary updates to Lagrange
variables through a vector θ̂ ∈ R|λ| as

λij ← λij + θ̂ij −
1
|J i|

∑
k∈J i

θ̂ik ∀i ∈ I, j ∈ J i, (8.8)

where the last term ensures feasibility of updated Lagrange variables w.r.t. the dual
problem (D).

8.3.5 Graph Neural Network

A graph neural network (GNN) is used to predict the parameters α, ω ∈ R|λ| of Alg. 8.1
and also the non-parametric update θ ∈ R|λ| for (8.8). To this end, the dual problem (D)
is encoded on a bipartite graph G = (V , E). The nodes V correspond to primal variables
I and subproblems J i.e., V = I ∪J and edges E = {ij | i ∈ I, j ∈ J i} correspond to
Lagrange multipliers. We need to predict values of αij , ωij and θij for each edge ij in E .
Hand-crafted features. We associate features f = (fI , fJ , fE) with each entity (nodes,
edges) of the bipartite graph. Lagrange multipliers λin and deferred min-marginals Min

encode the current state of Alg. 8.1 as a part of edge features. Additionally, we provide a
number of quantities which can allow the GNN to make better updates. Moving average
of previously computed features is provided for information about the goodness of past
updates, thus allowing for change of (implicit) step-sizes. A subgradient of the dual
problem (D) is encoded in the edge features fE . This enables the GNN to effectively utilize
more information in parameter prediction than conventional hand-designed updates rules
can manage. For example min-marginal averaging schemes can get stuck in suboptimal
fixed points due to zero min-marginal differences (Werner et al., 2020). Since the GNN
additionally has access to subgradient of the dual problem it can escape such fixed points.
In addition we provide gradients of smoothed dual objective (D) as edge features. To this
end, we replace each subproblem Ej(λj) with its smoothed variant (Lange and Swoboda,
2021, Sec. A.5)

Ej
α(λj) = α · log

 ∑
x∈Xj

exp
(
⟨λj , x⟩

α

) , (8.9)

with varying values of smoothing factor α > 0. A complete list of features is provided in
Table 8.1
Graph convolution. We use the transformer based graph convolution scheme (Shi
et al., 2021). As a first step, embeddings of all subproblems j in J are computed by
receiving messages from adjacent nodes and edges as

CONVJ (fI , fJ , fE , E)j = Wsfj +
∑

i:ij∈E
aij(fj , fI , fE ; Wa) [Wtfi + Wefij] , (8.10)

8.3 method 105

Table 8.1: List of hand-crafted features provided to the GNN. Exponentially averaged
features are computed with a smoothing factor of 0.9. Features corresponding to the ILP
remain fixed (i.e., node degrees, constraint type, c, A, b) whereas the remaining features
are updated based on current Lagrange variables λ.

Types Feature description

Primal variables fI
Normalized cost vector c/∥c∥∞
Node degree (| J i | ∀i ∈ I)

Subproblems fJ

Node degree (| Ij | ∀j ∈ J)
RHS vector b in constraints Ax ≤ b
Indicator for constraint type (≤ or =)
Current objective value per subproblem [E1(λ1), . . . , Em(λj)]
Exp. moving avg. of first, second order change in objective
Change in objective value from last non-parametric update (8.8)

Dual variables fE

Normalized Lagrange variables
Normalized deferred min-marginal differences
Coefficients of constraint matrix A
Optimal assignment of each subproblem (i.e., subgradient of (D))
Exp. moving average of the optimal assignment
Gradient of the smoothed objective (8.9) for all α in {1.0, 10.0, 100.0}

where Wa, Ws, Wt, We are trainable parameters and aij(fj , fI , fE ; Wa) is the softmax
attention weight between nodes i and j parameterized by Wa. The above step is repeated
in the reverse direction to compute embeddings for variables I. A similar strategy for
message passing on bipartite graphs was done by Gasse et al. (2019).
Recurrent connections. Our default GNN as mentioned above only uses hand-crafted
features to maintain a history of previous optimization rounds. To learn a summary
of the past updates we optionally allow recurrent connections through an LSTM with
forget gate (Gers et al., 1999). The LSTM is only applied on primal variable nodes I
and maintains cell states sI which can be updated and used for parameter prediction in
subsequent optimization rounds.
Prediction. The learned embeddings from GNN, LSTM outputs and solver features are
consumed by a multi-layer perceptron Φ to predict the required variables for each edge
ij in E . Afterwards we transform these outputs so that they satisfy Prop. 19. The exact
sequence of operations performed by the graph neural network are shown in Alg. 8.3 where
[u1, . . . , uk] denotes concatenation of vectors u1, . . . , uk, LN denotes layer normalization (Ba
et al., 2016) and LSTMI stands for an LSTM cell operating on primal variables I.
Loss. Given the Lagrange variables λ we directly use the dual objective (D) as a self-
supervised loss to train the GNN. Thus, we maximize the loss L defined as

L(λ) =
∑
j∈J

min
x∈Xj

⟨λj , x⟩ (8.11)

For a mini-batch of instances during training we take the mean of corresponding per-
instance losses. For backpropagation, gradient of the loss L w.r.t. Lagrange variables of

106 chapter 8. learning to solve 0–1 ilp relaxations

Algorithm 8.3: Parameter prediction by GNN
Input: Primal variable features fI and cell states sI , Subproblem features fJ ,

Dual variable (edge) features fE , Set of edges E .
1 hJ = ReLU (LN (CONVJ (fI , fJ , fE , E))) // Compute subproblems embeddings
2 hI = ReLU (LN (CONVI (fI , [fJ , hJ], fE , E))) // Compute primal var embeddings
3 zI , sI = LSTMI(hI , sI) // Compute output and cell state

4 (α̂, ω̂, θ̂) = Φ ([fI , hI , zI], [fJ , hJ], fE , E) // Prediction per edge
5 [αij]j∈J i

= Softmax ([α̂ij]j∈J i), ∀i ∈ I,
ωij = Sigmoid(ω̂ij), ∀i ∈ I, j ∈ J i // Ensure non-decreasing obj., (Prop 19)

6 θij = θ̂ij − 1
|J i|

∑
k∈J i

θ̂ik, ∀i ∈ I, j ∈ J i // Maintain dual feasibility

7 return α, ω, θ, sI

a subproblem j is computed by finding a minimizing assignment for that subproblem,
written as (

∂L
∂λ

)
j

= arg min
x∈Xj

⟨λj , x⟩ ∈ {0, 1}Ij . (8.12)

This gradient is then sent as input for backpropagation. For computing the minimizing
assignment efficiently we use binary decision diagram representation of each subproblem.

8.3.6 Overall Pipeline

We train our pipeline (Fig. 8.2) which contains multiple dual optimization rounds in a
fashion similar to that of recurrent neural networks. One round of our dual optimization
consists of message passing by GNN, a non-parametric update step and T iterations of
generalized min-marginal averaging. For computational efficiency we run our pipeline for
at most R dual optimization rounds during training. On each mini-batch we randomly
sample a number of optimization rounds r in [R], run r − 1 rounds without tracking
gradients and backpropagate through the last round by computing the loss (8.11). For the
pipeline with recurrent connections we backpropagate through last 3 rounds and apply
the loss after each of these rounds. Since the task of dual optimization is relatively easier
in early rounds as compared to later ones we use two neural networks. The early stage
network is trained if the randomly sampled r is in [0, R/2] and the late stage network is
chosen otherwise. During testing we switch to the later stage network when the relative
improvement in the dual objective by the early stage network becomes less than 10−6. For
computational efficiency during testing we query the GNN for parameter updates only
after T ≫ 1 iterations of Alg. 8.1.

8.4 experiments 107

i1

i2

i3

j1

j2

ILP representation
fE fJfI

GNN
Dual

updates
Non-param.

update θ

Param. update α, ω

Features fI , fJ , fE

Dual optimization rounds

Loss
Dual
vars.

λsI

Non-parametric
update (8.8)

θ ∈ R|E|

GenMMA
(Alg. 8.1)

α, ω ∈ R|E|

λ

Dual optimization rounds

Dual updates (in detail)

Figure 8.2: (Top:) Our pipeline for optimizing the Lagrangean dual (D). The dual problem
is encoded on a bipartite graph containing features fI , fJ and fE for primal variables,
subproblems and dual variables resp. A graph neural network (GNN) predicts θ, α, ω for
dual updates. In one dual update block (bottom), current set of Lagrange multipliers λ
are first updated by the non-parametric update using θ and parametric update is done via
Alg. 8.1 using α, ω. The updated solver features f and LSTM cell states sI are sent to
the GNN in next optimization round. These rounds are repeated at most R-times during
training and until convergence of the dual objective (D) during inference.

8.4 Experiments

Evaluation. As main evaluation metric we report convergence plots of the relative dual
gap g(t) ∈ [0, 1] at time t by

g(t) = min
(

d∗ − d(t)

d∗ − dinit
, 1.0

)
(8.13)

where d(t) is the dual objective at time t, d∗ is the optimal (or best known) objective
value of the Lagrange relaxation (D) and dinit is the objective before optimization as also
computed in Sec 7.4. Additionally we also report per dataset averages of the best objective
value (E) and time taken (t) to obtain the best objective.
Datasets. We evaluate our approach on a variety of datasets from different domains.
For each dataset we train our pipeline on smaller instances and test on larger ones.
Cell tracking: Instances of developing flywing tissue from cell tracking challenge (Ulman

et al., 2017) processed by Haller et al. (2020) and made available by Swoboda et al.
(2022b). We use the largest and hardest 3 instances, train on the 2 smaller instances
and test on the largest one.

108 chapter 8. learning to solve 0–1 ilp relaxations

Graph matching: Instances of graph matching for matching nuclei in 3D microscopic
images (Long et al., 2009) processed by Kainmueller et al. (2014) and made publicly
available as ILPs by Swoboda et al. (2022b). We train on 10 instances and test on
the remaining 20.

Independent set: Random instances of independent set problem generated by the library
of Prouvost et al. (2020). For training we use 240 instances with 10k nodes each
and test on 60 instances with 50k nodes.

QAPLib: The benchmark dataset for quadratic assignment problems used in the combi-
natorial optimization community (Burkard et al., 1997). The benchmark contains
problems arising from a variety of domains e.g., keyboard design, hospital layout,
circuit synthesis, facility location, etc. We train on 61 instances having up to 30
nodes and test on 35 instances containing up to 70 nodes. Conversion to ILP is done
via (2.7)-(2.16) of Loiola et al. (2007)

For each dataset the size of dual problems (D) are reported in Table 8.2.

Table 8.2: Statistics of datasets where the values are averaged within each train/test split.
Number of edges in the GNN equal the number of Lagrange multipliers λ.

Dataset # variables (×106) # constraints (×106) # edges (×106)
train test train test train test

Cell tracking 3.1 10.1 0.6 2.2 8.5 27.5
Graph matching 1.5 0.1 1.5 0.1 3.3 3.3
Independent set 0.01 0.05 0.04 0.4 0.1 1.1
QAPLib 0.1 2.5 0.02 0.2 0.6 10.6

Hyperparameters. Due to varying instance sizes we use a separate set of hyperparame-
ters for each dataset. The hyperparameters used in experiments are reported in Table 8.3.
During training time we run the Alg. 8.1 for only a few iterations for computational
efficiency since more iterations can make the backward pass much slower due to reverse
mode autodifferentiation. For test time we run Alg. 8.1 for more iterations since backward
pass is not required. For QAPLib dataset we need more training time than other datasets
because training set is quite large and has more diversity as compared to other datasets.
Hyperparameter validation is done on the training set itself.

For the cell tracking dataset we only predict θ ∈ R|λ| for non-parametric update
steps (8.8) and fix the parameters α, ω in Alg. 8.1 to their default values from Chapter 7.
Learning these parameters gave worse performance on the training set following our
evaluation protocol. We attribute this to lack of generalization to longer time-horizons
(Table 8.3).
Algorithms.

Gurobi: The dual simplex algorithm from the commercial solver (Gurobi Optimization,
2019). For QAPLib dataset we run both dual simplex and interior point methods
and choose the best performing one for each instance.

8.4 experiments 109

Table 8.3: Hyperparameters of our approach for each dataset. T : Num. of iterations of
Alg. 8.1 in each optimization round; R: max. number of training rounds; # itr. train:
Num. of training iterations.

Dataset T
R

batch
size

learn.
rate

itr.
train

train time
[hrs]train test

Cell tracking 1 100 400 1 1e-3 500 14
Graph matching 20 200 20 2 1e-3 400 4
Independent set 20 50 20 8 1e-3 2500 10
QAPLib 5 20 500 4 1e-3 1600 48

Spec.: For graph matching and cell tracking datasets we also report results of state-of-
the-art dataset specific solvers. For cell tracking the solver of Haller et al. (2020)
and for graph matching the best performing solver (fm-bca) from recent benchmark
of Haller et al. (2022).

FastDOG: The non-learned baseline via Alg. 7.1 with hand-designed parameters ωij = 0.5
and αij = 1/| J i | as a specialization of Alg. 8.1.

FastDOG-QN: The variant of FastDOG with additional quasi-Newton updates (Alg. 7.4).
From the experiments in Sec. 7.4 it was the best performing general-purpose algorithm
on large instances.

DOGE: Our approach where we learn to predict parametric and non-parametric updates by
using two graph neural networks for early and late-stage optimization. Size of the
learned embeddings h computed by the GNN in Alg. 8.3 is set to 16 for nodes and 8
for edges. For computing attention weights in (8.10) we use only one attention head
for efficiency. The predictor Φ in Alg. 8.3 contains 4 linear layers with the ReLU
activation. We train the networks using the Adam optimizer (Kingma and Ba, 2014).
To prevent gradient overflow we use gradient clipping on model parameters by an l2

norm of 50. The number of trainable parameters is 8k.
DOGE-M: Variant of our method where we additionally use recurrent connections using

LSTM. The cell state vector si for each primal variable node i ∈ I has a size of 16.
The number of trainable parameters is 12k.

Note the test instances require millions of solver parameters to be predicted (ref. Table 8.2)
while our largest GNN has 12k parameters.

For training we use PyTorch and implement the Algorithms 8.1 and 8.2 in CUDA.
CPU solvers use AMD EPYC 7702 CPU with 16 threads. GPU solvers use either an
NVIDIA RTX 8000 (48GB) or a A100 (80GB) GPU depending on problem size.

8.4.1 Results

For each dataset we evaluate our methods on corresponding testing split. Convergence
plots of relative dual gaps change (averaged over all test instances) are given in Figure 8.3.
Other evaluation metrics are reported in Table 8.4.

110 chapter 8. learning to solve 0–1 ilp relaxations

Gurobi Spec. FastDOG FastDOG-QN DOGE DOGE-M

101 102 103
10−4

10−3

10−2

10−1

100

R
el
at
iv
e
d
u
al

ga
p

(a) Cell tracking
100 101 102 103

10−4

10−3

10−2

10−1

100

(b) Graph matching

10−1 100 101 102
10−3

10−2

10−1

100

Time [s]

R
el
at
iv
e
d
u
a
l
ga
p

(c) Independent set

101 102 103
10−2

10−1

100

Time [s]

(d) QAPLib

Figure 8.3: Convergence plots for g(t) (8.13) the relative dual gap to the optimum (or
maximum suboptimal objective among all methods) of the relaxation (D). X-axis indicates
wall clock time and both axes are logarithmic. The value of g(t) is averaged over all test
instances in each dataset.

Table 8.4: Results on test instances where the values are averaged within a dataset.
Numbers in bold highlight the best performance and underlines indicate the second best
objective. E: objective value (D) (larger values are better), t[s]: runtime (in seconds) to
attain objective E.

Cell tracking Graph matching Independent set QAPLib
E(×108) t[s] E(×104) t[s] E(×104) t[s] E(×106) t[s]

Gurobi −3.852 809 −4.8433 278 −2.4457 52 9.5 3600
Spec. −3.866 1673 −4.8443 100 - - - -
FastDOG −3.863 1005 −4.8912 61 −2.4913 9 5.7 1680
FastDOG-QN −3.858 75 −4.8444 10 −2.4907 7 7.8 246
DOGE −3.854 1015 −4.8439 17 −2.4460 8 12.1 720
DOGE-M −3.854 730 −4.8436 21 −2.4459 5 14.5 861

8.4 experiments 111

Discussion. As compared to the non-learned hand-designed solvers FastDOG and FastDOG-QN
we reach much more accurate relaxation solutions, almost closing the gap to optimum as
computed by Gurobi. Even though given unlimited time Gurobi attains the optimum,
we often reach reasonably close values that are considered correct for practical purposes.
For example the graph matching benchmark (Haller et al., 2022) considers a relative gap
less than 10−3 as optimal (we achieve 10−4). Moreover our learned solvers reach much
better objective values as compared to specialized solvers. Using LSTM in DOGE-M further
improves the performance especially on the most difficult QAPLib dataset. On QAPLib
Gurobi does not converge on instances with more than 40 nodes within the time limit of
one hour. Our difference to Gurobi is most pronounced w.r.t. anytime performance as our
solver reaches good solutions relatively early.
Ablation study. We evaluate the importance of various components in our approach.
Starting from Alg. 7.1 (FastDOG) as a baseline we first predict all parameters α, ω, θ
through the two multi-layer perceptrons Φ for early and late stage optimization without
using the GNN. Next, we report results of using one network (instead of two) which
is trained and tested for both early and later rounds of dual optimization. Lastly, we
aim to seek the importance of learning parameters of Alg. 8.2 and the non-parametric
update (8.8). To this end, we learn to predict only the non-parametric update and apply
the loss directly on updated λ without requiring backpropagation through Alg. 8.1. We
also try learning a subset of parameters i.e., not predicting averaging weights α or damping
factors ω. Lastly, we report results of DOGE-M which uses recurrent connections. The
results for graph matching dataset are in Table 8.5.

Table 8.5: Ablation study results on the Graph matching dataset. w/o GNN: Use only the
two predictors Φ without GNN for early and late stage optimization; same network: use
one network (GNN, Φ) for both early and late stage; only non-param., param.: predict
only the non-parametric update (8.8) or the parametric update (Alg. 8.1); w/o α, ω: does
not predict α or ω resp.

FastDOG w/o
GNN

same
network

only
non-param.

only
param. w/o α w/o ω DOGE DOGE-M

E (↑) −48912 −48440 −48444 −48476 −48444 −48439 −48439 −48439 −48436

t[s] (↓) 61 29 24 51 74 30 30 17 21

Firstly, from our ablation study we observe that learning even one of the two types of
updates i.e., non-parametric or parametric already gives better results than the non-learned
solver FastDOG. This is because non-parametric update can help in escaping fixed points
when they occur and the parametric update can help Alg. 8.1 in avoiding such fixed points.
Combining both of these strategies further improves the results. Secondly, we observe
that GNN gives improvement over only using the MLP. Thirdly, we find using separate
networks for early and late stage optimization gives better performance than using the
same network for all stages. Lastly, using recurrent connections through an LSTM gives
the best performance.
CUDA implementation. The Algorithm 8.1 can be implemented via scatter, gather
operations available in Pytorch (Paszke et al., 2019) and Pytorch Geometric (Fey and

112 chapter 8. learning to solve 0–1 ilp relaxations

Lenssen, 2019) making use of automatic differentiation and alleviating the need for custom
backpropagation routines. This however leads to high GPU memory requirements for
large instances and also hinders training of the GNN. Therefore for further computational
efficiency we implement Algorithm 8.1 and its backpropagation in CUDA (NVIDIA
et al., 2021; Hoberock and Bell, 2010) and expose via pybind (Jakob et al., 2017). Since
backpropagation requires intermediate forward pass iterates, this strategy allows to trade
memory by (re-)computation during backpropagation of Alg. 8.1. A comparison between
our Pytorch implementation which relies on automatic differentation with our CUDA
implementation is given in Table 8.6. We observe that for all datasets containing large
instances (i.e., all datasets except Independent set) GPU memory usage is drastically
reduced through our CUDA implementation. Additionally, runtimes for both forward and
backward pass are reduced.

Table 8.6: Runtime and peak GPU memory usage statistics of one generalized min-marginal
averaging iteration in Algorithm 8.1 and its backpropagation via Algorithm 8.2. FP, BP:
Forward pass (one iteration of Alg. 8.1) and its backward pass resp.; mem.: Maximum
GPU memory in GB used during both forward and backward pass. The values are averaged
over all training instances within each dataset.

Cell tracking Graph matching Independent set QAPLib
time [ms] mem.

(GB)
time [ms] mem.

(GB)
time [ms] mem.

(GB)
time [ms] mem.

(GB)FP BP FP BP FP BP FP BP
PyTorch 305 1039 31 153 344 11 11 16 0.7 43.5 70 7.3
CUDA 16 171 3.4 7 68 1.8 0.7 5.7 0.7 1.6 16 1.6

8.4.2 Limitations

Easy problem classes, including small cell tracking (Haller et al., 2020) and easy Markov
Random Field (MRF) inference (Kappes et al., 2013) do not benefit from learning, since
FastDOG already solves the problem in few iterations. Some problem classes have sequential
bottlenecks due to long subproblems, including MRFs for protein folding (Jaimovich et al.,
2006) and shape matching (Windheuser et al., 2011a,b), which makes training difficult
due to slow dual optimization.

Although our method requires training for each problem class, the cost of training
is manageable. Nonetheless devising a generalizable approach is an interesting research
direction requiring at least: a large and diverse training set, powerful neural network and
multi-GPU implementation.

8.5 Conclusion

We have proposed an self-supervised learning approach for solving relaxations to combi-
natorial optimization problems by backpropagating through and learning parameters for

8.5 conclusion 113

an ILP relaxation solver. We demonstrated its potential in obtaining close to optimal
solutions much faster than with traditional methods. Although our solvers require training
as compared to conventional solvers, this overhead is negligible as compared to the human
effort required for developing efficient specialized solvers (which are also often outperformed
by our approach).

Our work generalizes efficient approximate solver development: instead of developing a
specialized solver we propose to use a generically applicable one and train it to obtain
fast and accurate optimization algorithm. Going one step further and training a universal
model that generalizes across different problem classes remains a challenge for future
work.

9Conclusion

This thesis studied methods for large-scale combinatorial optimization (CO) problems
arising from structured output prediction tasks in visual computing.

In the first part we studied a particular class of CO problems i.e., the multicut
problem and its variants, for applications in partitioning tasks from computer vision. We
studied modeling aspects of the multicut problem i.e., specifying graph structure and
edge costs. For predicting the edge costs we utilized neural networks in an end-to-end
fashion by backpropagating through the multicut problem. Our approach resulted in
a better segmentation quality as compared to existing methods on comparable neural
network architectures. For the problem of graph structure design we circumvented the
problem by devising a compact formulation (i.e., dense multicut) on fully connected
graphs accompanied by efficient algorithms. The resulting method yielded better panoptic
segmentation as compared to multicut on a hand-designed graph. Lastly, to overcome
the scalability issues of multicut algorithms on large problem sizes and meet real-time
performance requirements we developed massively parallel algorithms achieving a speed-up
of more than an order of magnitude over the prior art.

Our study of the multicut problem opens interesting future research directions. Since
our work studied three aspects of the multicut problem separately, considering them
in unison is also appealing. For example, our dense multicut formulation offers greater
expressiveness than the conventional one and thus can benefit neural network pipelines for
clustering problems. However more work needs to be done for devising its backpropagation
scheme. Another interesting topic is devising massively parallel algorithms for variants
of the multicut problem such as asymmetric multiway cut, lifted multicut (Keuper et al.,
2015), and our proposed dense multicut case. Going one step further, development of a
unified solver along with backpropagation mechanisms for such approaches can be a long
term goal in this direction.

In the second part we aimed towards a general-purpose and efficient integer pro-
gramming (IP) approach for tackling CO problems for structured prediction tasks. For
improving performance of CO algorithms we sought a means to exploit machine learning
and parallel computing. To this end we forewent conventional IP paradigms and studied
parallelizable and differentiable solver primitives. We first devised parallel schemes for
solving IP relaxations via parallel dual block coordinate ascent and primal decoding by
cost perturbation. The resulting GPU algorithm offered better anytime performance
as compared to a general-purpose commercial solver and an on-par performance with
domain-specific sequential solvers. In the last chapter we utilized machine learning (ML)
via graph neural networks for solving IP relaxations. Our learning enhanced solver yielded
substantial improvement over its non-learned counterpart on many problem classes and
achieved better solutions as compared to two hand-designed domain-specific CPU solvers.

Our work is a first prototype in the direction of speeding-up relaxation solvers through

114

115

ML. Our learned solver requires training for each problem class and does not generalize
across problem classes. Progress in this direction might require a more powerful neural
network, diverse dataset, better training scheme, multi-GPU implementation etc. A related
work in this direction is from Metz et al. (2022) where ML is used for optimizing other
neural networks. Another avenue is making our cost perturbation based primal decoding
scheme more powerful e.g., by backtracking, maintaining history, etc. Utilizing ML for the
latter is an interesting open problem.

Although, our CO algorithms work reasonably well for many structured prediction
problems and a few cases from operations research, an even wider applicability requires
further investigation. Specifically, our schemes for optimizing the Lagrangean relaxation
cannot provably find the optimal solution and our primal heuristics also lack guarantees.
While the latter limitation can be side-stepped by employing for example a branch-and-
bound framework, more work need to be done to overcome the former. Specifically, an
open problem is to make our relaxation algorithms provably optimal while retaining their
desirable traits of being differentiable and parallelizable.

In general terms we investigated a longstanding question of how to effectively leverage
CO in ML and ML in CO. For the former we improved techniques for gradient estimation
through CO problems yielding better panoptic segmentation results than comparable
approaches. For the latter we showed a possibility by designing a solver containing
differentiable primitives while also being general-purpose. To enable both of these aspects
we devised massively parallel algorithms with efficient GPU implementations yielding
benefits (among others) in faster training of neural networks containing such CO solvers.

List of Algorithms

2.1 Greedy Additive Edge Contraction (GAEC) 21

3.1 Backward pass through panoptic segmentation 33

4.1 Parallel Edge Contraction (PEC) . 44
4.2 Parallel Message Passing (PMP) . 46
4.3 Primal-Dual Multicut . 47
4.4 Parallel Edge Contraction pseudocode . 48
4.5 Parallel Conflicted 5-Cycles pseudocode . 49

5.1 DenseGAEC . 58
5.2 Incremental NN update . 61

7.1 Parallel Deferred Min-Marginal Averaging (ParallelMMA) 86
7.2 Forward Pass Min-Marginal Computation 88
7.3 Backward Pass Min-Marginal Computation 88
7.4 Quasi-Newton update with Min-Marginal Averaging 89
7.5 Perturbation Primal Rounding . 91

8.1 Generalized Min-Marginal Averaging (GenMMA) 101
8.2 BlockUpdate backpropagation . 102
8.3 Parameter prediction by GNN . 106

116

List of Figures

2.1 Multicut of a graph . 19
3.1 Overview of architecture for panoptic segmentation 28
3.2 Example multiway cut and asymmetric multiway cut problem solutions . . 30
3.3 Gradient computation through asymmetric multiway cut 33
3.4 Training convergence comparison of our robust gradient estimation technique 37
3.5 Panoptic quality surrogate versus exact panoptic quality 37
4.1 Edge contraction example . 43
4.2 Example iteration of our primal-dual multicut solver 47
4.3 Comparison of multicut upper bounds . 51
4.4 Comparison of multicut lower bounds . 52
4.5 Comparison of runtime over different problem sizes 52
5.1 Example illustration of dense multicut problem 57
5.2 Example illustration of nearest neighbor search after edge contraction . . . 60
5.3 Example illustration of dense multicut in 2D space 62
5.4 ImageNet runtime comparison . 67
6.1 Example of a binary program with its Lagrangean decomposition 73
6.2 Illustration of a weighted Binary Decision Diagram (BDD) 77
7.1 Example decomposition of a binary program 85
7.2 BDD nodes arrangement in GPU memory 88
7.3 Convergence plots on all datasets . 94
7.4 Convergence plots for small and large QAPLib instances 95
7.5 Comparison of algorithms in terms of number of iterations 96
8.1 Computational graph of GenMMA . 102
8.2 Pipeline for learning to solve ILP relaxations 107
8.3 Lower bound convergence plots for all datasets 110

117

List of Tables

Tab. 3.1 Panoptic segmentation results . 36
Tab. 3.2 Comparison of PQ surrogate loss with separate losses on AMWC output 38
Tab. 4.1 Comparison of lower and upper bounds on all datasets 51
Tab. 4.2 Runtime breakdown . 52
Tab. 5.1 Quality of clustering on ImageNet validation set 65
Tab. 5.2 Comparison of algorithms for dense multicut problem on ImageNet . 66
Tab. 5.3 Comparison of panoptic segmentation on sparse and dense graph . . . 67
Tab. 5.4 Comparison of algorithms for dense multicut problem on Cityscapes . 68
Tab. 5.5 Influence of affinity strength . 68
Tab. 6.1 Notation for Lagrangean decomposition of a binary program 72
Tab. 7.1 Comparison of lower bounds, upper bounds, and runtimes on all datasets 93
Tab. 8.1 List of hand-crafted features for GNN 105
Tab. 8.2 Dataset statistics . 108
Tab. 8.3 Hyperparameters . 109
Tab. 8.4 Lower bounds comparison on all datasets 110
Tab. 8.5 Ablation study results . 111
Tab. 8.6 Efficiency comparison of custom CUDA implementation 112

118

Bibliography

A. Abbas and P. Swoboda. Combinatorial optimization for panoptic segmentation: A fully
differentiable approach. Advances in Neural Information Processing Systems, 34:15635–15649,
2021. Cited on pages 14, 65, 66, and 67.

A. Abbas and P. Swoboda. FastDOG: Fast discrete optimization on GPU. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2022a. Cited on pages 15,
77, and 78.

A. Abbas and P. Swoboda. RAMA: A Rapid Multicut Algorithm on GPU. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
8193–8202, June 2022b. Cited on pages 14, 63, and 83.

A. Abbas and P. Swoboda. ClusterFuG: clustering fully connected graphs by multicut. In
Proceedings of the 40th International Conference on Machine Learning, ICML’23. JMLR.org,
2023. Cited on page 14.

A. Abbas and P. Swoboda. Doge-train: Discrete optimization on gpu with end-to-end training.
Proceedings of the AAAI Conference on Artificial Intelligence, 38(18):20623–20631, Mar. 2024.
doi: 10.1609/aaai.v38i18.30048. URL https://ojs.aaai.org/index.php/AAAI/article/
view/30048. Cited on page 15.

I. Abío, R. Nieuwenhuis, A. Oliveras, E. Rodríguez-Carbonell, and V. Mayer-Eichberger. A new
look at bdds for pseudo-boolean constraints. Journal of Artificial Intelligence Research, 45:
443–480, 2012. Cited on page 96.

W. P. Adams. Improved linear programming based lower bounds for the quadratic assignment
problem. Quadratic assignment and related problems, DIMACS series in discrete mathematics
and theoretical computer science, 16:43–77, 1994. Cited on page 71.

A. Agrawal, S. Barratt, and S. Boyd. Learning convex optimization models. arXiv preprint
arXiv:2006.04248, 2020. Cited on page 27.

T. Ajanthan, A. Desmaison, R. Bunel, M. Salzmann, P. H. Torr, and M. Pawan Kumar. Efficient
linear programming for dense crfs. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3298–3306, 2017. Cited on page 74.

A. Alush and J. Goldberger. Ensemble segmentation using efficient integer linear programming.
IEEE transactions on pattern analysis and machine intelligence, 34(10):1966–1977, 2012.
Cited on page 22.

A. Alush and J. Goldberger. Break and conquer: Efficient correlation clustering for image
segmentation. In International Workshop on Similarity-Based Pattern Recognition, pages
134–147. Springer, 2013. Cited on page 23.

B. Amos and J. Z. Kolter. Optnet: Differentiable optimization as a layer in neural networks. In
International Conference on Machine Learning, pages 136–145. PMLR, 2017. Cited on page
27.

119

https://ojs.aaai.org/index.php/AAAI/article/view/30048
https://ojs.aaai.org/index.php/AAAI/article/view/30048

120 BIBLIOGRAPHY

H. R. Andersen, T. Hadzic, J. N. Hooker, and P. Tiedemann. A constraint store based on
multivalued decision diagrams. In International Conference on Principles and Practice of
Constraint Programming, pages 118–132. Springer, 2007. Cited on page 84.

B. Andres, J. H. Kappes, T. Beier, U. Köthe, and F. A. Hamprecht. Probabilistic image
segmentation with closedness constraints. In ICCV, 2011. doi: 10.1109/ICCV.2011.6126550.
Cited on page 23.

B. Andres, T. Kröger, K. L. Briggman, W. Denk, N. Korogod, G. Knott, U. Köthe, and F. A.
Hamprecht. Globally optimal closed-surface segmentation for connectomics. In ECCV, 2012.
doi: 10.1007/978-3-642-33712-3_56. Cited on page 23.

B. Andres, J. Yarkony, B. Manjunath, S. Kirchhoff, E. Turetken, C. C. Fowlkes, and H. Pfister.
Segmenting planar superpixel adjacency graphs wrt non-planar superpixel affinity graphs. In
International Workshop on Energy Minimization Methods in Computer Vision and Pattern
Recognition, pages 266–279. Springer, 2013. Cited on page 23.

M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau, T. Schaul, B. Shillingford, and
N. De Freitas. Learning to learn by gradient descent by gradient descent. Advances in neural
information processing systems, 29, 2016. Cited on page 99.

D. Applegate, M. Díaz, O. Hinder, H. Lu, M. Lubin, B. O’Donoghue, and W. Schudy. Practical
large-scale linear programming using primal-dual hybrid gradient. In NeurIPS 2021, 2021.
Cited on page 74.

I. Arganda-Carreras, S. C. Turaga, D. R. Berger, D. Cireşan, A. Giusti, L. M. Gambardella,
J. Schmidhuber, D. Laptev, S. Dwivedi, J. M. Buhmann, T. Liu, M. Seyedhosseini, T. Tasdizen,
L. Kamentsky, R. Burget, V. Uher, X. Tan, C. Sun, T. D. Pham, E. Bas, M. G. Uzunbas,
A. Cardona, J. Schindelin, and H. S. Seung. Crowdsourcing the creation of image segmentation
algorithms for connectomics. Frontiers in Neuroanatomy, 9:142, 2015. ISSN 1662-5129. doi:
10.3389/fnana.2015.00142. Cited on page 38.

A. Arnab, S. Zheng, S. Jayasumana, B. Romera-Paredes, M. Larsson, A. Kirillov, B. Savchynskyy,
C. Rother, F. Kahl, and P. H. Torr. Conditional random fields meet deep neural networks
for semantic segmentation: Combining probabilistic graphical models with deep learning for
structured prediction. IEEE Signal Processing Magazine, 35(1):37–52, 2018. Cited on page
27.

D. Arthur and S. Vassilvitskii. K-means++: The advantages of careful seeding. In Proceedings
of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’07, page
1027–1035, USA, 2007. Society for Industrial and Applied Mathematics. ISBN 9780898716245.
Cited on page 64.

Y. Asano, C. Rupprecht, and A. Vedaldi. Self-labelling via simultaneous clustering and represen-
tation learning. In International Conference on Learning Representations, 2019. Cited on
page 79.

B. F. Auer and R. H. Bisseling. Graph coarsening and clustering on the GPU. Graph Partitioning
and Graph Clustering, 588:223, 2012. Cited on page 42.

J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016. Cited on page 105.

BIBLIOGRAPHY 121

S. Bai, J. Z. Kolter, and V. Koltun. Deep equilibrium models. arXiv preprint arXiv:1909.01377,
2019. Cited on page 27.

A. Bailoni, C. Pape, S. Wolf, T. Beier, A. Kreshuk, and F. A. Hamprecht. A generalized
framework for agglomerative clustering of signed graphs applied to instance segmentation.
arXiv preprint arXiv:1906.11713, 2019. Cited on page 41.

A. Bailoni, C. Pape, N. Hütsch, S. Wolf, T. Beier, A. Kreshuk, and F. A. Hamprecht. GASP, a
Generalized Framework for Agglomerative Clustering of Signed Graphs and Its Application to
Instance Segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 11645–11655, 2022. Cited on page 21.

D. H. Ballard. Generalizing the hough transform to detect arbitrary shapes. Pattern recognition,
13(2):111–122, 1981. Cited on page 26.

N. Bansal, A. Blum, and S. Chawla. Correlation clustering. Machine learning, 56(1-3):89–113,
2004. Cited on pages 19, 20, and 40.

O. Bastert, B. Hummel, and S. de Vries. A generalized wedelin heuristic for integer programming.
INFORMS Journal on Computing, 22(1):93–107, 2010. Cited on page 90.

T. Beier, T. Kroeger, J. H. Kappes, U. Kothe, and F. A. Hamprecht. Cut, glue & cut: A
fast, approximate solver for multicut partitioning. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2014. Cited on pages 22 and 40.

T. Beier, B. Andres, U. Köthe, and F. A. Hamprecht. An efficient fusion move algorithm for the
minimum cost lifted multicut problem. In European Conference on Computer Vision. Springer,
2016. Cited on pages 22 and 40.

T. Beier, C. Pape, N. Rahaman, T. Prange, S. Berg, D. D. Bock, A. Cardona, G. W. Knott,
S. M. Plaza, L. K. Scheffer, et al. Multicut brings automated neurite segmentation closer to
human performance. Nature methods, 14(2):101, 2017. Cited on page 23.

Y. Bengio, N. Léonard, and A. Courville. Estimating or propagating gradients through stochastic
neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013. Cited on page
31.

Y. Bengio, A. Lodi, and A. Prouvost. Machine learning for combinatorial optimization: a
methodological tour d’horizon. European Journal of Operational Research, 290(2):405–421,
2021. Cited on page 99.

D. Bergman and A. A. Cire. Decomposition based on decision diagrams. In C.-G. Quimper,
editor, Integration of AI and OR Techniques in Constraint Programming, pages 45–54, Cham,
2016. Springer International Publishing. Cited on page 83.

D. Bergman and A. A. Cire. Discrete nonlinear optimization by state-space decompositions.
Management Science, 64(10):4700–4720, 2018. Cited on page 83.

D. Bergman, A. A. Cire, and W.-J. van Hoeve. Lagrangian bounds from decision diagrams.
Constraints, 20(3):346–361, 2015. Cited on page 84.

D. Bergman, A. A. Cire, W.-J. Van Hoeve, and J. Hooker. Decision diagrams for optimization,
volume 1. Springer, 2016a. Cited on page 84.

122 BIBLIOGRAPHY

D. Bergman, A. A. Cire, W.-J. van Hoeve, and J. N. Hooker. Discrete optimization with decision
diagrams. INFORMS Journal on Computing, 28(1):47–66, 2016b. Cited on page 84.

M. Berman, A. R. Triki, and M. B. Blaschko. The lovász-softmax loss: A tractable surrogate for
the optimization of the intersection-over-union measure in neural networks. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 4413–4421, 2018.
Cited on page 38.

G. Bertasius, Q. Liu, L. Torresani, and J. Shi. Local perturb-and-map for structured prediction.
In Artificial Intelligence and Statistics, pages 585–594. PMLR, 2017. Cited on page 27.

Q. Berthet, M. Blondel, O. Teboul, M. Cuturi, J.-P. Vert, and F. Bach. Learning with differentiable
perturbed optimizers. arXiv preprint arXiv:2002.08676, 2020. Cited on pages 25 and 28.

Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts.
IEEE Transactions on pattern analysis and machine intelligence, 23(11):1222–1239, 2001.
Cited on page 93.

G. Brasó and L. Leal-Taixé. Learning a neural solver for multiple object tracking. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 6247–6257,
2020. Cited on pages 79 and 80.

R. E. Bryant. Graph-based algorithms for boolean function manipulation. Computers, IEEE
Transactions on, 100(8):677–691, 1986. Cited on pages 77 and 78.

R. Bunel, A. De Palma, A. Desmaison, K. Dvijotham, P. Kohli, P. Torr, and M. P. Kumar.
Lagrangian decomposition for neural network verification. In Conference on Uncertainty in
Artificial Intelligence, pages 370–379. PMLR, 2020. Cited on page 74.

R. E. Burkard, S. E. Karisch, and F. Rendl. QAPLIB–a quadratic assignment problem library.
Journal of Global optimization, 10(4):391–403, 1997. Cited on pages 92, 99, and 108.

G. Calinescu. Multiway Cut, pages 567–569. Springer US, Boston, MA, 2008. ISBN 978-0-387-
30162-4. doi: 10.1007/978-0-387-30162-4_253. Cited on page 29.

C. Cameron, R. Chen, J. Hartford, and K. Leyton-Brown. Predicting Propositional Satisfiability
via End-to-End Learning. Proceedings of the AAAI Conference on Artificial Intelligence, 34
(04):3324–3331, Apr. 2020. doi: 10.1609/aaai.v34i04.5733. Cited on page 99.

Q. Cappart, E. Goutierre, D. Bergman, and L.-M. Rousseau. Improving optimization bounds
using machine learning: Decision diagrams meet deep reinforcement learning. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 33, pages 1443–1451, 2019. Cited
on pages 96 and 99.

Q. Cappart, D. Chételat, E. B. Khalil, A. Lodi, C. Morris, and P. Velickovic. Combinatorial
optimization and reasoning with graph neural networks. J. Mach. Learn. Res., 24:130–1, 2023.
Cited on page 99.

N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko. End-to-end object
detection with transformers. In European Conference on Computer Vision, pages 213–229.
Springer, 2020. Cited on pages 26 and 27.

BIBLIOGRAPHY 123

M. P. Castro, A. A. Cire, and J. C. Beck. An mdd-based lagrangian approach to the multi-
commodity pickup-and-delivery tsp. INFORMS Journal on Computing, 32(2):263–278, 2020.
Cited on page 84.

O. Cetintas, G. Brasó, and L. Leal-Taixé. Unifying short and long-term tracking with graph
hierarchies. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 22877–22887, 2023. Cited on page 79.

L.-C. Chen, A. G. Schwing, A. L. Yuille, and R. Urtasun. Learning deep structured models, 2015.
Cited on page 27.

L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In Proceedings of the European
conference on computer vision (ECCV), pages 801–818, 2018. Cited on pages 25 and 29.

X. Chen, S. Xie, and K. He. An empirical study of training self-supervised vision transformers. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 9640–9649,
2021. Cited on page 64.

Y. Chen and T. Pock. Trainable nonlinear reaction diffusion: A flexible framework for fast and
effective image restoration. IEEE transactions on pattern analysis and machine intelligence,
39(6):1256–1272, 2016. Cited on page 27.

Y. Chen and T. Pock. Trainable nonlinear reaction diffusion: A flexible framework for fast and
effective image restoration. IEEE Transactions on Pattern Analysis and Machine Intelligence,
39(6):1256–1272, 2017. doi: 10.1109/TPAMI.2016.2596743. Cited on page 99.

B. Cheng, M. D. Collins, Y. Zhu, T. Liu, T. S. Huang, H. Adam, and L.-C. Chen. Panoptic-deeplab:
A simple, strong, and fast baseline for bottom-up panoptic segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12475–12485,
2020. Cited on pages 25, 26, 29, 32, 34, 35, 36, and 79.

S. Chopra and M. R. Rao. On the multiway cut polyhedron. Networks, 21(1):51–89, 1991. Cited
on page 23.

S. Chopra and M. R. Rao. The partition problem. Mathematical Programming, 59(1-3):87–115,
1993. Cited on pages 19, 20, 45, and 54.

B. Christianson. Reverse accumulation and attractive fixed points. Optimization Methods and
Software, 3(4):311–326, 1994. Cited on page 27.

J. Cohen and P. Castonguay. Efficient graph matching and coloring on the gpu. In GTC. NVIDIA,
2012. Cited on page 44.

M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth,
and B. Schiele. The cityscapes dataset for semantic urban scene understanding. In Proceedings
of the IEEE conference on computer vision and pattern recognition, 2016. Cited on pages 34,
41, 49, 63, and 65.

C. Corro and I. Titov. Differentiable Perturb-and-Parse: Semi-Supervised Parsing with a
Structured Variational Autoencoder. In International Conference on Learning Representations,
2019. Cited on page 28.

124 BIBLIOGRAPHY

CPLEX. CPLEX Optimization Studio 12.10, 2019. Cited on pages 15, 82, and 98.

M. Cuturi, O. Teboul, and J.-P. Vert. Differentiable ranking and sorting using optimal transport.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 32, 2019. Cited on page 27.

E. D. Demaine, D. Emanuel, A. Fiat, and N. Immorlica. Correlation clustering in general
weighted graphs. Theoretical Computer Science, 361(2-3):172–187, 2006. Cited on pages 19,
20, and 40.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pages
248–255. Ieee, 2009. Cited on pages 29, 63, and 64.

Y. Deng, S. Kong, C. Liu, and B. An. Deep attentive belief propagation: Integrating reasoning
and learning for solving constraint optimization problems. Advances in Neural Information
Processing Systems, 35:25436–25449, 2022. Cited on page 99.

M. Deza, M. Grötschel, and M. Laurent. Clique-web facets for multicut polytopes. Mathematics
of Operations Research, 17(4):981–1000, 1992. Cited on page 20.

I. S. Dhillon, Y. Guan, and B. Kulis. Weighted graph cuts without eigenvectors a multilevel
approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(11):1944–1957,
2007. doi: 10.1109/TPAMI.2007.1115. Cited on page 56.

J.-Y. Ding, C. Zhang, L. Shen, S. Li, B. Wang, Y. Xu, and L. Song. Accelerating primal solution
findings for mixed integer programs based on solution prediction. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pages 1452–1459, 2020. Cited on page 99.

J. Djolonga and A. Krause. Differentiable learning of submodular models. Advances in Neural
Information Processing Systems, 30:1013–1023, 2017. Cited on page 27.

J. Domke. Implicit differentiation by perturbation. Advances in Neural Information Processing
Systems, 23:523–531, 2010. Cited on pages 25, 27, 28, and 31.

J. Domke. Learning graphical model parameters with approximate marginal inference. IEEE
transactions on pattern analysis and machine intelligence, 35(10):2454–2467, 2013. Cited on
page 27.

A. Ferber, B. Wilder, B. Dilkina, and M. Tambe. Mipaal: Mixed integer program as a layer. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 1504–1511,
2020. Cited on page 25.

M. Fey and J. E. Lenssen. Fast graph representation learning with PyTorch Geometric. In ICLR
Workshop on Representation Learning on Graphs and Manifolds, 2019. Cited on page 111.

FICO. FICO Xpress Optimization Suite, 2022. Cited on page 98.

M. Fujita, Y. Lu, E. Clarke, and J. Jain. Efficient Variable Ordering using aBDD based Sampling.
In Design Automation Conference, pages 687–692, Los Alamitos, CA, USA, jun 2000. IEEE
Computer Society. doi: 10.1109/DAC.2000.855402. Cited on page 96.

BIBLIOGRAPHY 125

J. Funke, S. Saalfeld, D. Bock, S. Turaga, and E. Perlman. CREMI MICCAI Challenge on circuit
reconstruction from Electron Microscopy Images, 2016. URL https://cremi.org. Cited on
page 49.

G. Gamrath, D. Anderson, K. Bestuzheva, W.-K. Chen, L. Eifler, M. Gasse, P. Gemander,
A. Gleixner, L. Gottwald, K. Halbig, G. Hendel, C. Hojny, T. Koch, P. L. Bodic, S. J. Maher,
F. Matter, M. Miltenberger, E. Mühmer, B. Müller, M. Pfetsch, F. Schlösser, F. Serrano,
Y. Shinano, C. Tawfik, S. Vigerske, F. Wegscheider, D. Weninger, and J. Witzig. The SCIP
Optimization Suite 7.0. Technical Report 20-10, ZIB, Takustr. 7, 14195 Berlin, 2020. Cited
on page 98.

N. Gao, Y. Shan, Y. Wang, X. Zhao, Y. Yu, M. Yang, and K. Huang. SSAP: Single-Shot
Instance Segmentation With Affinity Pyramid . In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 642–651, 2019. Cited on pages 25, 26, 35, and 36.

M. Gasse, D. Chételat, N. Ferroni, L. Charlin, and A. Lodi. Exact combinatorial optimization
with graph convolutional neural networks. arXiv preprint arXiv:1906.01629, 2019. Cited on
pages 83, 99, and 105.

Z. Geng, C. Wang, Y. Wei, Z. Liu, H. Li, and H. Hu. Human pose as compositional tokens. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
660–671, 2023. Cited on page 80.

F. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: continual prediction with LSTM.
In 1999 Ninth International Conference on Artificial Neural Networks ICANN 99. (Conf. Publ.
No. 470), volume 2, pages 850–855 vol.2, 1999. doi: 10.1049/cp:19991218. Cited on page 105.

A. Gleixner, G. Hendel, G. Gamrath, T. Achterberg, M. Bastubbe, T. Berthold, P. M. Christophel,
K. Jarck, T. Koch, J. Linderoth, M. Lübbecke, H. D. Mittelmann, D. Ozyurt, T. K. Ralphs,
D. Salvagnin, and Y. Shinano. MIPLIB 2017: Data-Driven Compilation of the 6th Mixed-
Integer Programming Library. Mathematical Programming Computation, 2021. doi: 10.1007/
s12532-020-00194-3. Cited on page 96.

A. Globerson and T. S. Jaakkola. Fixing max-product: Convergent message passing algorithms
for MAP LP-relaxations. In Advances in neural information processing systems, pages 553–560,
2008. Cited on page 74.

J. Gondzio and R. Sarkissian. Parallel interior-point solver for structured linear programs.
Mathematical Programming, 96(3):561–584, 2003. Cited on page 83.

J. E. González, A. A. Cire, A. Lodi, and L.-M. Rousseau. BDD-based optimization for the
quadratic stable set problem. Discrete Optimization, page 100610, 2020. Cited on page 84.

J. E. González, A. A. Cire, A. Lodi, and L.-M. Rousseau. Integrated integer programming and
decision diagram search tree with an application to the maximum independent set problem.
Constraints, pages 1–24, 2020. Cited on page 84.

S. Gould, R. Hartley, and D. Campbell. Deep declarative networks: A new hope. arXiv preprint
arXiv:1909.04866, 2019. Cited on page 27.

K. Gregor and Y. LeCun. Learning fast approximations of sparse coding. In Proceedings of the
27th International Conference on International Conference on Machine Learning, ICML’10,
page 399–406, Madison, WI, USA, 2010. Omnipress. ISBN 9781605589077. Cited on page 99.

https://cremi.org

126 BIBLIOGRAPHY

M. Grötschel and Y. Wakabayashi. A cutting plane algorithm for a clustering problem. Mathe-
matical Programming, 45:59–96, 1989. Cited on page 20.

M. Grötschel and Y. Wakabayashi. Facets of the clique partitioning polytope. Mathematical
Programming, 47(1):367–387, 1990. Cited on page 20.

M. Guignard and S. Kim. Lagrangean decomposition: A model yielding stronger lagrangean
bounds. Mathematical programming, 39(2):215–228, 1987. Cited on page 72.

P. Gupta, M. Gasse, E. Khalil, P. Mudigonda, A. Lodi, and Y. Bengio. Hybrid models for
learning to branch. Advances in neural information processing systems, 33:18087–18097, 2020.
Cited on page 99.

P. Gupta, E. B. Khalil, D. Chetélat, M. Gasse, Y. Bengio, A. Lodi, and M. P. Kumar. Lookback
for learning to branch. arXiv preprint arXiv:2206.14987, 2022. Cited on page 99.

L. Gurobi Optimization. Gurobi optimizer reference manual, 2019. URL http://www.gurobi.com.
Cited on pages 15, 22, 82, 91, 92, 98, and 108.

S. Haller, M. Prakash, L. Hutschenreiter, T. Pietzsch, C. Rother, F. Jug, P. Swoboda, and
B. Savchynskyy. A primal-dual solver for large-scale tracking-by-assignment. In AISTATS,
2020. Cited on pages 72, 74, 92, 98, 99, 107, 109, and 112.

S. Haller, L. Feineis, L. Hutschenreiter, F. Bernard, C. Rother, D. Kainmüller, P. Swoboda, and
B. Savchynskyy. A comparative study of graph matching algorithms in computer vision. In
Proceedings of the European Conference on Computer Vision, 2022. Cited on pages 71, 74, 92,
109, and 111.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016a.
Cited on page 64.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016b.
Cited on page 28.

K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask R-CNN. In Proceedings of the IEEE
international conference on computer vision, pages 2961–2969, 2017. Cited on page 26.

J. Hoberock and N. Bell. Thrust: A parallel template library, 2010. URL http://thrust.
github.io/. Version 1.7.0. Cited on pages 48, 49, 92, and 112.

J. N. Hooker. Improved job sequencing bounds from decision diagrams. In T. Schiex and
S. de Givry, editors, Principles and Practice of Constraint Programming, pages 268–283, Cham,
2019. Springer International Publishing. ISBN 978-3-030-30048-7. Cited on page 84.

A. Hornakova, R. Henschel, B. Rosenhahn, and P. Swoboda. Lifted disjoint paths with application
in multiple object tracking. In International Conference on Machine Learning, pages 4364–4375.
PMLR, 2020. Cited on page 23.

A. Hornakova, T. Kaiser, P. Swoboda, M. Rolinek, B. Rosenhahn, and R. Henschel. Making
higher order MOT scalable: An efficient approximate solver for lifted disjoint paths. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 6330–6340,
2021. Cited on pages 72 and 74.

http://www.gurobi.com
http://thrust.github.io/
http://thrust.github.io/

BIBLIOGRAPHY 127

T. C. Hu. Multi-commodity network flows. Operations research, 11(3):344–360, 1963. Cited on
page 20.

Z. Huang, K. Wang, F. Liu, H.-L. Zhen, W. Zhang, M. Yuan, J. Hao, Y. Yu, and J. Wang.
Learning to select cuts for efficient mixed-integer programming. Pattern Recognition, 123:
108353, 2022. Cited on pages 98 and 99.

Q. Huangfu and J. A. J. Hall. Parallelizing the dual revised simplex method. Math. Program.
Comput., 10(1):119–142, 2018. doi: 10.1007/s12532-017-0130-5. Cited on page 83.

L. Hutschenreiter, S. Haller, L. Feineis, C. Rother, D. Kainmüller, and B. Savchynskyy. Fusion
moves for graph matching. In ICCV, 2021. Cited on pages 72 and 98.

H. C. Indelman and T. Hazan. Learning randomly perturbed structured predictors for direct
loss minimization. arXiv preprint arXiv:2007.05724, 2020. Cited on pages 25 and 31.

E. Insafutdinov, M. Andriluka, L. Pishchulin, S. Tang, E. Levinkov, B. Andres, and B. Schiele.
Arttrack: Articulated multi-person tracking in the wild. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), July 2017. Cited on page 23.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International conference on machine learning, pages 448–456.
PMLR, 2015. Cited on page 35.

J. Jaiganesh and M. Burtscher. A high-performance connected components implementation for
GPUs. In Proceedings of the 27th International Symposium on High-Performance Parallel and
Distributed Computing, pages 92–104, 2018. Cited on page 44.

A. Jaimovich, G. Elidan, H. Margalit, and N. Friedman. Towards an integrated protein–protein
interaction network: A relational markov network approach. Journal of Computational Biology,
13(2):145–164, 2006. Cited on page 112.

J. Jain, J. Li, M. T. Chiu, A. Hassani, N. Orlov, and H. Shi. Oneformer: One transformer to
rule universal image segmentation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 2989–2998, 2023. Cited on page 39.

W. Jakob, J. Rhinelander, and D. Moldovan. pybind11 – Seamless operability between C++11
and Python, 2017. https://github.com/pybind/pybind11. Cited on page 112.

J. Jancsary and G. Matz. Convergent decomposition solvers for tree-reweighted free energies. In
Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics,
pages 388–398, 2011. Cited on page 74.

H. Jia, S. Ding, X. Xu, and R. Nie. The latest research progress on spectral clustering. Neural
Comput. Appl., 24(7–8):1477–1486, jun 2014. ISSN 0941-0643. doi: 10.1007/s00521-013-1439-2.
Cited on page 56.

Y. Jin and J. F. JaJa. A high performance implementation of spectral clustering on CPU-
GPU platforms. In Parallel and Distributed Processing Symposium Workshops, 2016 IEEE
International, pages 825–834. IEEE, 2016. Cited on page 42.

J. Johnson, M. Douze, and H. Jégou. Billion-scale similarity search with GPUs. IEEE Transactions
on Big Data, 7(3):535–547, 2019. Cited on pages 55 and 64.

128 BIBLIOGRAPHY

J. K. Johnson, D. M. Malioutov, and A. S. Willsky. Lagrangian relaxation for MAP estimation
in graphical models. arXiv preprint arXiv:0710.0013, 2007. Cited on page 74.

F. Jug, E. Levinkov, C. Blasse, E. W. Myers, and B. Andres. Moral lineage tracing. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2016. Cited on page
23.

J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool,
R. Bates, A. Žídek, A. Potapenko, et al. Highly accurate protein structure prediction with
alphafold. Nature, 596(7873):583–589, 2021. Cited on page 80.

D. Kainmueller, F. Jug, C. Rother, and G. Myers. Active graph matching for automatic joint
segmentation and annotation of C. elegans. In International Conference on Medical Image
Computing and Computer-Assisted Intervention, pages 81–88. Springer, 2014. Cited on pages
92, 98, and 108.

J. Kappes, B. Andres, F. Hamprecht, C. Schnorr, S. Nowozin, D. Batra, S. Kim, B. Kausler,
J. Lellmann, N. Komodakis, et al. A comparative study of modern inference techniques for
discrete energy minimization problems. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1328–1335, 2013. Cited on pages 74 and 112.

J. H. Kappes, M. Speth, B. Andres, G. Reinelt, and C. Schn. Globally optimal image partitioning
by multicuts. In International Workshop on Energy Minimization Methods in Computer Vision
and Pattern Recognition. Springer, 2011. Cited on pages 22 and 41.

J. H. Kappes, B. Savchynskyy, and C. Schnörr. A bundle approach to efficient map-inference by
lagrangian relaxation. In 2012 IEEE Conference on Computer Vision and Pattern Recognition,
pages 1688–1695. IEEE, 2012. Cited on page 74.

J. H. Kappes, B. Andres, F. A. Hamprecht, C. Schnörr, S. Nowozin, D. Batra, S. Kim, B. X.
Kausler, T. Kröger, J. Lellmann, N. Komodakis, B. Savchynskyy, and C. Rother. A comparative
study of modern inference techniques for structured discrete energy minimization problems. In-
ternational Journal of Computer Vision, 115(2):155–184, 2015. doi: 10.1007/s11263-015-0809-x.
Cited on pages 74, 82, and 92.

J. H. Kappes, M. Speth, G. Reinelt, and C. Schnörr. Higher-order segmentation via multicuts.
Computer Vision and Image Understanding, 143:104–119, 2016. Cited on page 23.

A. Kardoost and M. Keuper. Solving minimum cost lifted multicut problems by node agglomera-
tion. In Asian Conference on Computer Vision, pages 74–89. Springer, 2018. Cited on pages
21, 50, 55, and 60.

A. Kazi, L. Cosmo, S.-A. Ahmadi, N. Navab, and M. M. Bronstein. Differentiable graph module
(dgm) for graph convolutional networks. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45(2):1606–1617, 2022. Cited on page 55.

A. Kendall, Y. Gal, and R. Cipolla. Multi-task learning using uncertainty to weigh losses for
scene geometry and semantics. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 7482–7491, 2018. Cited on page 27.

B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. Bell system
technical journal, 49(2):291–307, 1970. Cited on page 22.

BIBLIOGRAPHY 129

M. Keuper, E. Levinkov, N. Bonneel, G. Lavoué, T. Brox, and B. Andres. Efficient decomposition
of image and mesh graphs by lifted multicuts. In Proceedings of the IEEE International
Conference on Computer Vision, 2015. Cited on pages 21, 22, 23, 30, 40, 41, 42, 44, 50, 51,
52, 55, 56, 57, 59, 63, and 114.

M. Keuper, S. Tang, B. Andres, T. Brox, and B. Schiele. Motion segmentation & multiple object
tracking by correlation co-clustering. IEEE transactions on pattern analysis and machine
intelligence, 42(1):140–153, 2018. Cited on page 23.

A. Khoreva, R. Benenson, J. Hosang, M. Hein, and B. Schiele. Simple does it: Weakly supervised
instance and semantic segmentation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 876–885, 2017. Cited on page 79.

S. Kim, S. Nowozin, P. Kohli, and C. D. Yoo. Higher-order correlation clustering for image
segmentation. In Advances in neural information processing systems, 2011. Cited on pages 22
and 23.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. Cited on pages 34 and 109.

A. Kirillov, D. Schlesinger, S. Zheng, B. Savchynskyy, P. H. S. Torr, and C. Rother. Joint training
of generic cnn-crf models with stochastic optimization, 2016. Cited on page 27.

A. Kirillov, E. Levinkov, B. Andres, B. Savchynskyy, and C. Rother. Instancecut: from edges
to instances with multicut. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017. Cited on pages 23, 26, 30, and 65.

A. Kirillov, R. Girshick, K. He, and P. Dollár. Panoptic feature pyramid networks. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6399–6408,
2019a. Cited on pages 26 and 36.

A. Kirillov, K. He, R. Girshick, C. Rother, and P. Dollár. Panoptic segmentation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9404–9413,
2019b. Cited on pages 24, 25, 26, 31, and 32.

A. Kirillov, K. He, R. Girshick, C. Rother, and P. Dollár. Panoptic segmentation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9404–9413,
2019c. Cited on pages 65 and 66.

P. Knobelreiter, C. Sormann, A. Shekhovtsov, F. Fraundorfer, and T. Pock. Belief propagation
reloaded: Learning bp-layers for labeling problems. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 7900–7909, 2020. Cited on page 27.

D. E. Knuth. The art of computer programming, volume 4A: combinatorial algorithms, part 1.
Pearson Education India, 2011. Cited on page 78.

V. Kolmogorov. Convergent tree-reweighted message passing for energy minimization. IEEE
transactions on pattern analysis and machine intelligence, 28(10):1568–1583, 2006. Cited on
pages 72, 74, 76, and 92.

V. Kolmogorov. A new look at reweighted message passing. IEEE transactions on pattern
analysis and machine intelligence, 37(5):919–930, 2014. Cited on pages 74 and 76.

130 BIBLIOGRAPHY

V. Kolmogorov. Solving relaxations of map-mrf problems: Combinatorial in-face frank-wolfe
directions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11980–11989, 2023. Cited on page 74.

N. Komodakis and G. Tziritas. Approximate labeling via graph cuts based on linear programming.
IEEE transactions on pattern analysis and machine intelligence, 29(8):1436–1453, 2007. Cited
on pages 74 and 93.

N. Komodakis, N. Paragios, and G. Tziritas. Mrf energy minimization and beyond via dual
decomposition. IEEE transactions on pattern analysis and machine intelligence, 33(3):531–552,
2010. Cited on page 74.

J. Kotary, F. Fioretto, P. Van Hentenryck, and B. Wilder. End-to-end constrained optimization
learning: A survey. arXiv preprint arXiv:2103.16378, 2021. Cited on page 27.

V. Kovalevsky and V. Koval. A diffusion algorithm for decreasing energy of max-sum labeling
problem. Glushkov Institute of Cybernetics, Kiev, USSR, 1975. Cited on page 74.

T. Kroeger, J. H. Kappes, T. Beier, U. Koethe, and F. A. Hamprecht. Asymmetric cuts: Joint
image labeling and partitioning. In German Conference on Pattern Recognition. Springer,
2014. Cited on pages 14, 23, 25, and 29.

J.-H. Lange. Multicut Optimization Guarantees & Geometry of Lifted Multicuts (Ph.D. thesis).
2020. Cited on page 22.

J.-H. Lange and P. Swoboda. Efficient message passing for 0–1 ILPs with binary decision
diagrams. In International Conference on Machine Learning, pages 6000–6010. PMLR, 2021.
Cited on pages 15, 70, 72, 75, 76, 77, 78, 81, 82, 83, 85, 91, 92, 94, and 104.

J.-H. Lange, A. Karrenbauer, and B. Andres. Partial optimality and fast lower bounds for
weighted correlation clustering. In International Conference on Machine Learning, pages
2892–2901. PMLR, 2018. Cited on pages 20, 22, 41, 45, 50, 52, and 74.

J.-H. Lange, B. Andres, and P. Swoboda. Combinatorial persistency criteria for multicut and
max-cut. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6093–6102, 2019. Cited on page 22.

E. Levinkov, A. Kirillov, and B. Andres. A comparative study of local search algorithms for
correlation clustering. In GCPR, 2017a. Cited on pages 21, 42, 50, 51, and 55.

E. Levinkov, A. Kirillov, and B. Andres. A comparative study of local search algorithms for
correlation clustering. In German Conference on Pattern Recognition. Springer, 2017b. Cited
on page 40.

E. Levinkov, J. Uhrig, S. Tang, M. Omran, E. Insafutdinov, A. Kirillov, C. Rother, T. Brox,
B. Schiele, and B. Andres. Joint graph decomposition & node labeling: Problem, algorithms,
applications. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017c. Cited on page 23.

J. Li, A. Raventos, A. Bhargava, T. Tagawa, and A. Gaidon. Learning to fuse things and stuff.
arXiv preprint arXiv:1812.01192, 2018a. Cited on page 26.

BIBLIOGRAPHY 131

K. Li, K. Swersky, and R. Zemel. Efficient feature learning using perturb-and-map. In Neural
Information Processing Systems Workshop on Perturbations, Optimization, and Statistics,
2013. Cited on page 27.

Q. Li, A. Arnab, and P. H. Torr. Weakly-and semi-supervised panoptic segmentation. In
Proceedings of the European conference on computer vision (ECCV), pages 102–118, 2018b.
Cited on page 26.

Q. Li, X. Qi, and P. H. Torr. Unifying training and inference for panoptic segmentation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
13320–13328, 2020. Cited on pages 26, 27, and 36.

Y. Li, H. Takehara, T. Taketomi, B. Zheng, and M. Nießner. 4dcomplete: Non-rigid motion
estimation beyond the observable surface. In ICCV, 2021. Cited on page 92.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick.
Microsoft coco: Common objects in context. In European conference on computer vision, pages
740–755. Springer, 2G014. Cited on page 34.

P. Lindenberger, P.-E. Sarlin, and M. Pollefeys. Lightglue: Local feature matching at light speed.
arXiv preprint arXiv:2306.13643, 2023. Cited on page 79.

D. C. Liu and J. Nocedal. On the limited memory BFGS method for large scale optimization.
Mathematical programming, 45(1-3):503–528, 1989. Cited on pages 89 and 90.

Y. Liu, S. Yang, B. Li, W. Zhou, J. Xu, H. Li, and Y. Lu. Affinity derivation and graph merge
for instance segmentation. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 686–703, 2018. Cited on page 26.

S. Lloyd. Least squares quantization in pcm. IEEE Transactions on Information Theory, 28(2):
129–137, 1982. doi: 10.1109/TIT.1982.1056489. Cited on pages 55 and 64.

E. M. Loiola, N. M. M. De Abreu, P. O. Boaventura-Netto, P. Hahn, and T. Querido. A survey for
the quadratic assignment problem. European journal of operational research, 176(2):657–690,
2007. Cited on pages 92 and 108.

F. Long, H. Peng, X. Liu, S. K. Kim, and E. Myers. A 3D digital atlas of C. elegans and its
application to single-cell analyses. Nature methods, 6(9):667–672, 2009. Cited on page 108.

L. Lozano, D. Bergman, and J. C. Smith. On the consistent path problem. Optimization Online
e-prints, 2018. Cited on page 83.

J. Lukasik, M. Keuper, M. Singh, and J. Yarkony. A benders decomposition approach to correla-
tion clustering. In 2020 IEEE/ACM Workshop on Machine Learning in High Performance
Computing Environments (MLHPC) and Workshop on Artificial Intelligence and Machine
Learning for Scientific Applications (AI4S). IEEE, 2020. Cited on page 22.

R. Magnet, J. Ren, O. Sorkine-Hornung, and M. Ovsjanikov. Smooth non-rigid shape matching
via effective dirichlet energy optimization. In International Conference on 3D Vision (3DV),
2022. Cited on page 92.

132 BIBLIOGRAPHY

C. Malin-Mayor, P. Hirsch, L. Guignard, K. McDole, Y. Wan, W. C. Lemon, D. Kainmueller, P. J.
Keller, S. Preibisch, and J. Funke. Automated reconstruction of whole-embryo cell lineages by
learning from sparse annotations. Nature Biotechnology, 41(1):44–49, 2023. Cited on page 79.

Y. A. Malkov and D. A. Yashunin. Efficient and robust approximate nearest neighbor search
using hierarchical navigable small world graphs. IEEE transactions on pattern analysis and
machine intelligence, 42(4):824–836, 2018. Cited on pages 60 and 64.

M. Maška, V. Ulman, P. Delgado-Rodriguez, E. Gómez-de Mariscal, T. Nečasová, F. A. Guer-
rero Peña, T. I. Ren, E. M. Meyerowitz, T. Scherr, K. Löffler, et al. The cell tracking challenge:
10 years of objective benchmarking. Nature Methods, pages 1–11, 2023. Cited on page 79.

D. A. McAllester, T. Hazan, and J. Keshet. Direct loss minimization for structured prediction.
In NIPS, volume 1, page 3. Citeseer, 2010. Cited on pages 28 and 31.

T. Meltzer, A. Globerson, and Y. Weiss. Convergent message passing algorithms-a unifying view.
arXiv preprint arXiv:1205.2625, 2012. Cited on page 74.

A. Mensch and M. Blondel. Differentiable dynamic programming for structured prediction and
attention. In International Conference on Machine Learning, pages 3462–3471. PMLR, 2018.
Cited on page 27.

L. Metz, J. Harrison, C. D. Freeman, A. Merchant, L. Beyer, J. Bradbury, N. Agrawal, B. Poole,
I. Mordatch, A. Roberts, et al. Velo: Training versatile learned optimizers by scaling up. arXiv
preprint arXiv:2211.09760, 2022. Cited on pages 99 and 115.

S. Minaee, Y. Y. Boykov, F. Porikli, A. J. Plaza, N. Kehtarnavaz, and D. Terzopoulos. Image
segmentation using deep learning: A survey. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2021. Cited on page 26.

R. Mohan and A. Valada. Efficientps: Efficient panoptic segmentation. International Journal of
Computer Vision, pages 1–29, 2021. Cited on page 26.

V. Monga, Y. Li, and Y. C. Eldar. Algorithm unrolling: Interpretable, efficient deep learning
for signal and image processing. IEEE Signal Processing Magazine, 38(2):18–44, 2021. doi:
10.1109/MSP.2020.3016905. Cited on page 99.

MOSEK ApS. 9.0.105, 2022. Cited on page 98.

V. Nair, S. Bartunov, F. Gimeno, I. von Glehn, P. Lichocki, I. Lobov, B. O’Donoghue, N. Sonnerat,
C. Tjandraatmadja, P. Wang, et al. Solving mixed integer programs using neural networks.
arXiv preprint arXiv:2012.13349, 2020. Cited on pages 83, 98, and 99.

M. Naumov and T. Moon. Parallel spectral graph partitioning. tech. rep., NVIDIA tech. rep,
2016. Cited on page 42.

M. Nazari, A. Oroojlooy, L. Snyder, and M. Takác. Reinforcement learning for solving the vehicle
routing problem. Advances in neural information processing systems, 31, 2018. Cited on page
99.

J. Nocedal. Updating quasi-newton matrices with limited storage. Mathematics of computation,
35(151):773–782, 1980. Cited on page 89.

BIBLIOGRAPHY 133

S. Nowozin and S. Jegelka. Solution stability in linear programming relaxations: Graph parti-
tioning and unsupervised learning. In Proceedings of the 26th Annual International Conference
on Machine Learning, pages 769–776, 2009. Cited on page 41.

NVIDIA, P. Vingelmann, and F. H. Fitzek. CUDA, release: 11.2, 2021. URL https://developer.
nvidia.com/cuda-toolkit. Cited on pages 49, 92, and 112.

S. Onn and L. J. Schulman. The vector partition problem for convex objective functions.
Mathematics of Operations Research, 26(3):583–590, 2001. Cited on page 62.

M. Oosten, J. H. Rutten, and F. C. Spieksma. The clique partitioning problem: facets and
patching facets. Networks: An International Journal, 38(4):209–226, 2001. Cited on page 20.

X. Pan, D. Papailiopoulos, S. Oymak, B. Recht, K. Ramchandran, and M. I. Jordan. Parallel
correlation clustering on big graphs. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 28. Curran
Associates, Inc., 2015. Cited on page 55.

G. Papandreou and A. L. Yuille. Perturb-and-map random fields: Using discrete optimization to
learn and sample from energy models. In 2011 International Conference on Computer Vision,
pages 193–200. IEEE, 2011. Cited on page 27.

C. Pape. torch-em. https://github.com/constantinpape/torch-em, 2021. Cited on page 49.

C. Pape, T. Beier, P. Li, V. Jain, D. D. Bock, and A. Kreshuk. Solving large multicut problems for
connectomics via domain decomposition. In Proceedings of the IEEE International Conference
on Computer Vision, 2017. Cited on pages 23, 40, 41, and 49.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages 8024–8035.
Curran Associates, Inc., 2019. Cited on pages 34 and 111.

M. B. Paulus, D. Choi, D. Tarlow, A. Krause, and C. J. Maddison. Gradient estimation with
stochastic softmax tricks. arXiv preprint arXiv:2006.08063, 2020. Cited on page 28.

M. B. Paulus, G. Zarpellon, A. Krause, L. Charlin, and C. Maddison. Learning to cut by looking
ahead: Cutting plane selection via imitation learning. In International conference on machine
learning, pages 17584–17600. PMLR, 2022. Cited on page 98.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011. Cited on page 64.

H. Peng, S. Thomson, and N. A. Smith. Backpropagating through structured argmax using a
spigot. arXiv preprint arXiv:1805.04658, 2018. Cited on page 25.

K. Perumalla and M. Alam. Design Considerations for GPU-Based Mixed Integer Programming
on Parallel Computing Platforms. Association for Computing Machinery, New York, NY,
USA, 2021. ISBN 9781450384414. Cited on pages 81 and 82.

https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://github.com/constantinpape/torch-em

134 BIBLIOGRAPHY

T. Plötz and S. Roth. Neural nearest neighbors networks. Advances in Neural Information
Processing Systems, 31:1087–1098, 2018. Cited on page 27.

L. Porzi, S. R. Bulo, A. Colovic, and P. Kontschieder. Seamless scene segmentation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8277–8286,
2019. Cited on pages 26 and 32.

A. Prouvost, J. Dumouchelle, L. Scavuzzo, M. Gasse, D. Chételat, and A. Lodi. Ecole: A
Gym-like Library for Machine Learning in Combinatorial Optimization Solvers. In Learning
Meets Combinatorial Algorithms at NeurIPS2020, 2020. Cited on pages 99 and 108.

R. Qaddoura, H. Faris, and I. Aljarah. An efficient clustering algorithm based on the k-nearest
neighbors with an indexing ratio. International Journal of Machine Learning and Cybernetics,
11(3):675–714, 2020. Cited on page 55.

S. Qiao, L.-C. Chen, and A. Yuille. Detectors: Detecting objects with recursive feature pyramid
and switchable atrous convolution. arXiv preprint arXiv:2006.02334, 2020. Cited on page 26.

R. Qiu, Z. Sun, and Y. Yang. DIMES: A differentiable meta solver for combinatorial optimization
problems. In A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, editors, Advances in Neural
Information Processing Systems, 2022. Cited on page 98.

T. Ralphs, Y. Shinano, T. Berthold, and T. Koch. Parallel solvers for mixed integer linear
optimization. In Handbook of parallel constraint reasoning, pages 283–336. Springer, 2018.
Cited on page 82.

D. Robert, H. Raguet, and L. Landrieu. Scalable 3d panoptic segmentation as superpoint graph
clustering. Proceedings of the IEEE International Conference on 3D Vision, 2024. Cited on
page 79.

B. Roessle and M. Nießner. End2end multi-view feature matching with differentiable pose
optimization. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 477–487, 2023. Cited on page 79.

P. Roetzer, P. Swoboda, D. Cremers, and F. Bernard. A scalable combinatorial solver for elastic
geometrically consistent 3d shape matching. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 428–438, 2022. Cited on page 79.

P. Roetzer, A. Abbas, D. Cao, F. Bernard, and P. Swoboda. DiscoMatch: Fast Discrete
Optimisation for Geometrically Consistent 3D Shape Matching. In Proceedings of the European
conference on computer vision (ECCV) (to appear), 2024. Cited on pages 15, 79, and 92.

M. Rolínek, V. Musil, A. Paulus, M. Vlastelica, C. Michaelis, and G. Martius. Optimizing
rank-based metrics with blackbox differentiation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 7620–7630, 2020a. Cited on page 28.

M. Rolínek, P. Swoboda, D. Zietlow, A. Paulus, V. Musil, and G. Martius. Deep graph matching
via blackbox differentiation of combinatorial solvers. In European Conference on Computer
Vision, pages 407–424. Springer, 2020b. Cited on pages 28 and 79.

B. Savchynskyy. Discrete graphical models—an optimization perspective. Foundations and
Trends® in Computer Graphics and Vision, 11(3-4):160–429, 2019. Cited on pages 71, 74,
and 75.

BIBLIOGRAPHY 135

B. Savchynskyy, S. Schmidt, J. H. Kappes, and C. Schnörr. Efficient MRF energy minimization
via adaptive diminishing smoothing. UAI. Proceedings, pages 746–755, 2012. 1. Cited on
page 74.

L. Scavuzzo, F. Chen, D. Chételat, M. Gasse, A. Lodi, N. Yorke-Smith, and K. Aardal. Learning
to branch with tree mdps. Advances in Neural Information Processing Systems, 35:18514–18526,
2022. Cited on page 99.

D. Selsam, M. Lamm, B. Bünz, P. Liang, L. de Moura, and D. L. Dill. Learning a SAT solver
from single-bit supervision. arXiv preprint arXiv:1802.03685, 2018. Cited on page 99.

A. Shekhovtsov, C. Reinbacher, G. Graber, and T. Pock. Solving dense image matching in
real-time using discrete-continuous optimization. In Proceedings of the 21st Computer Vision
Winter Workshop (CVWW), page 13, 2016. ISBN 978-3-85125-388-7. Cited on pages 82
and 83.

Y. Shi, Z. Huang, S. Feng, H. Zhong, W. Wang, and Y. Sun. Masked label prediction: Unified
message passing model for semi-supervised classification. In Z.-H. Zhou, editor, Proceedings
of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pages
1548–1554. International Joint Conferences on Artificial Intelligence Organization, 8 2021. doi:
10.24963/ijcai.2021/214. Main Track. Cited on page 104.

E. Smith, J. Gondzio, and J. Hall. GPU acceleration of the matrix-free interior point method. In
R. Wyrzykowski, J. Dongarra, K. Karczewski, and J. Waśniewski, editors, Parallel Processing
and Applied Mathematics, pages 681–689, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.
ISBN 978-3-642-31464-3. Cited on page 83.

B. Sofranac, A. Gleixner, and S. Pokutta. Accelerating domain propagation: an efficient GPU-
parallel algorithm over sparse matrices. In 2020 IEEE/ACM 10th Workshop on Irregular
Applications: Architectures and Algorithms (IA3), pages 1–11. IEEE, 2020. Cited on page 83.

J. Song, B. Andres, M. J. Black, O. Hilliges, and S. Tang. End-to-end learning for graph
decomposition. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019a. Cited on page 40.

J. Song, B. Andres, M. J. Black, O. Hilliges, and S. Tang. End-to-end learning for graph
decomposition. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 10093–10102, 2019b. Cited on page 27.

N. Sonnerat, P. Wang, I. Ktena, S. Bartunov, and V. Nair. Learning a large neighborhood search
algorithm for mixed integer programs. arXiv preprint arXiv:2107.10201, 2021. Cited on pages
83 and 99.

K. Stinson, D. F. Gleich, and P. G. Constantine. A randomized algorithm for enumerating
zonotope vertices. arXiv preprint arXiv:1602.06620, 2016. Cited on page 62.

G. Storvik and G. Dahl. Lagrangian-based methods for finding map solutions for mrf models.
IEEE Transactions on Image Processing, 9(3):469–479, 2000. Cited on page 74.

Z. Sun and Y. Yang. DIFUSCO: Graph-based Diffusion Solvers for Combinatorial Optimization.
arXiv preprint arXiv:2302.08224, 2023. Cited on page 98.

136 BIBLIOGRAPHY

P. Swoboda and B. Andres. A message passing algorithm for the minimum cost multicut problem.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.
Cited on pages 20, 22, 44, 45, and 74.

P. Swoboda and V. Kolmogorov. Map inference via block-coordinate frank-wolfe algorithm. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
11146–11155, 2019. Cited on page 74.

P. Swoboda, J. Kuske, and B. Savchynskyy. A dual ascent framework for lagrangean decomposition
of combinatorial problems. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1596–1606, 2017a. Cited on pages 40, 41, 45, 46, 75, and 76.

P. Swoboda, C. Rother, H. Abu Alhaija, D. Kainmuller, and B. Savchynskyy. A study of
lagrangean decompositions and dual ascent solvers for graph matching. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 1607–1616, 2017b.
Cited on pages 74 and 75.

P. Swoboda, A. Mokarian, C. Theobalt, F. Bernard, et al. A convex relaxation for multi-graph
matching. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 11156–11165, 2019. Cited on page 74.

P. Swoboda, A. Hornakova, P. Roetzer, and A. Abbas. Structured Prediction Problem Archive.
arXiv preprint arXiv:2202.03574, 2022a. Cited on page 49.

P. Swoboda, A. Hornakova, P. Roetzer, B. Savchynskyy, and A. Abbas. Structured prediction
problem archive. arXiv preprint arXiv:2202.03574, 2022b. Cited on pages 63, 92, 107, and 108.

S. Tang, M. Andriluka, B. Andres, and B. Schiele. Multiple people tracking by lifted multicut
and person re-identification. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017. Cited on page 23.

Z. Teed and J. Deng. Raft: Recurrent all-pairs field transforms for optical flow. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part II 16, pages 402–419. Springer, 2020. Cited on page 79.

Z. Tian, C. Shen, and H. Chen. Conditional convolutions for instance segmentation. arXiv
preprint arXiv:2003.05664, 2020. Cited on pages 26 and 30.

C. Tjandraatmadja and W.-J. van Hoeve. Incorporating bounds from decision diagrams into
integer programming. Mathematical Programming Computation, pages 1–32, 2020. Cited on
page 84.

L. Torresani, V. Kolmogorov, and C. Rother. Feature correspondence via graph matching: Models
and global optimization. In European conference on computer vision, pages 596–609. Springer,
2008. Cited on pages 74 and 92.

S. Tourani, A. Shekhovtsov, C. Rother, and B. Savchynskyy. MPLP++: Fast, parallel dual
block-coordinate ascent for dense graphical models. In Proceedings of the European Conference
on Computer Vision (ECCV), 2018. Cited on pages 46, 74, 82, 83, and 93.

S. Tourani, A. Shekhovtsov, C. Rother, and B. Savchynskyy. Taxonomy of dual block-coordinate
ascent methods for discrete energy minimization. In AISTATS, 2020. Cited on pages 74
and 76.

BIBLIOGRAPHY 137

M. Turner, T. Koch, F. Serrano, and M. Winkler. Adaptive cut selection in mixed-integer linear
programming. arXiv preprint arXiv:2202.10962, 2022. Cited on pages 98 and 99.

J. Tönshoff, M. Ritzert, H. Wolf, and M. Grohe. Graph Neural Networks for Maximum
Constraint Satisfaction. Frontiers in Artificial Intelligence, 3, 2021. ISSN 2624-8212. doi:
10.3389/frai.2020.580607. Cited on page 99.

V. Ulman, M. Maška, K. E. Magnusson, O. Ronneberger, C. Haubold, N. Harder, P. Matula,
P. Matula, D. Svoboda, M. Radojevic, et al. An objective comparison of cell-tracking algorithms.
Nature methods, 14(12):1141–1152, 2017. Cited on page 107.

N. Veldt. Correlation clustering via strong triadic closure labeling: Fast approximation algorithms
and practical lower bounds. In International Conference on Machine Learning, pages 22060–
22083. PMLR, 2022. Cited on page 55.

N. Veldt, A. I. Wirth, and D. F. Gleich. Correlation clustering with low-rank matrices. In
Proceedings of the 26th International Conference on World Wide Web, pages 1025–1034, 2017.
Cited on pages 62 and 64.

V. Vineet and P. Narayanan. CUDA cuts: Fast graph cuts on the GPU. In 2008 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition Workshops, pages 1–8. IEEE,
2008. Cited on page 83.

N. X. Vinh, J. Epps, and J. Bailey. Information theoretic measures for clusterings comparison:
Variants, properties, normalization and correction for chance. Journal of Machine Learning
Research, 11(95):2837–2854, 2010. Cited on page 64.

M. Vlastelica, A. Paulus, V. Musil, G. Martius, and M. Rolinek. Differentiation of blackbox
combinatorial solvers. In International Conference on Learning Representations, 2019. Cited
on pages 25, 28, 30, 31, 35, 36, and 38.

U. Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395–416, 2007.
Cited on page 56.

H. Wang and D. Koller. Subproblem-tree calibration: A unified approach to max-product message
passing. In ICML (2), pages 190–198, 2013. Cited on page 74.

H. Wang, Y. Zhu, H. Adam, A. Yuille, and L.-C. Chen. Max-deeplab: End-to-end panoptic
segmentation with mask transformers. arXiv preprint arXiv:2012.00759, 2020a. Cited on
pages 25, 26, 27, 30, 36, 39, 79, and 80.

H. Wang, Y. Zhu, B. Green, H. Adam, A. Yuille, and L.-C. Chen. Axial-deeplab: Stand-alone
axial-attention for panoptic segmentation. In European Conference on Computer Vision, pages
108–126. Springer, 2020b. Cited on pages 26, 36, and 39.

H. Wang, Y. Zhu, H. Adam, A. Yuille, and L.-C. Chen. Max-deeplab: End-to-end panoptic
segmentation with mask transformers. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 5463–5474, 2021a. Cited on page 65.

P.-W. Wang, P. Donti, B. Wilder, and Z. Kolter. Satnet: Bridging deep learning and logical
reasoning using a differentiable satisfiability solver. In International Conference on Machine
Learning, pages 6545–6554. PMLR, 2019. Cited on page 27.

138 BIBLIOGRAPHY

R. Wang, J. Yan, and X. Yang. Neural graph matching network: Learning lawler’s quadratic
assignment problem with extension to hypergraph and multiple-graph matching. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 44(9):5261–5279, 2021b. Cited
on page 99.

W. Wang, M. Feiszli, H. Wang, J. Malik, and D. Tran. Open-world instance segmentation:
Exploiting pseudo ground truth from learned pairwise affinity. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 4422–4432, 2022. Cited on
page 79.

X. Wang, R. Girdhar, S. X. Yu, and I. Misra. Cut and learn for unsupervised object detection
and instance segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 3124–3134, 2023. Cited on page 79.

M. Weber, H. Wang, S. Qiao, J. Xie, M. D. Collins, Y. Zhu, L. Yuan, D. Kim, Q. Yu, D. Cremers,
L. Leal-Taixe, A. L. Yuille, F. Schroff, H. Adam, and L.-C. Chen. DeepLab2: A TensorFlow
Library for Deep Labeling. arXiv: 2106.09748, 2021. Cited on page 65.

D. Wedelin. An algorithm for large scale 0–1 integer programming with application to airline
crew scheduling. Annals of operations research, 57(1):283–301, 1995a. Cited on page 90.

D. Wedelin. The design of a 0–1 integer optimizer and its application in the carmen system.
European journal of operational research, 87(3):722–730, 1995b. Cited on page 90.

W. H. Wen-mei. GPU Computing Gems Jade Edition. Elsevier, 2011. Cited on page 44.

T. Werner. A linear programming approach to max-sum problem: A review. IEEE transactions
on pattern analysis and machine intelligence, 29(7):1165–1179, 2007. Cited on pages 71, 74,
88, and 104.

T. Werner, D. Průša, and T. Dlask. Relative interior rule in block-coordinate descent. In
Proceedings of the IEEE International Conference on Computer Vision, 2020. Cited on pages
76, 85, 88, 95, and 104.

B. Wilder, E. Ewing, B. Dilkina, and M. Tambe. End to end learning and optimization on graphs.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.
Cited on page 27.

T. Windheuser, U. Schlickewei, F. R. Schmidt, and D. Cremers. Geometrically consistent elastic
matching of 3d shapes: A linear programming solution. In 2011 International Conference on
Computer Vision, pages 2134–2141. IEEE, 2011a. Cited on page 112.

T. Windheuser, U. Schlickwei, F. R. Schimdt, and D. Cremers. Large-scale integer linear
programming for orientation preserving 3d shape matching. In Computer Graphics Forum,
volume 30, pages 1471–1480. Wiley Online Library, 2011b. Cited on pages 79 and 112.

S. Wolf, Y. Li, C. Pape, A. Bailoni, A. Kreshuk, and F. A. Hamprecht. The semantic mutex
watershed for efficient bottom-up semantic instance segmentation. In European Conference on
Computer Vision, pages 208–224. Springer, 2020. Cited on pages 25, 26, 35, 36, 38, and 41.

BIBLIOGRAPHY 139

J. Wu, Z. He, and B. Hong. Chapter 5 - efficient CUDA algorithms for the maximum network flow
problem. In W. mei W. Hwu, editor, GPU Computing Gems Jade Edition, Applications of GPU
Computing Series, pages 55–66. Morgan Kaufmann, Boston, 2012. ISBN 978-0-12-385963-1.
Cited on page 83.

Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick. Detectron2. https://github.com/
facebookresearch/detectron2, 2019. Cited on page 34.

Y. Wu, W. Song, Z. Cao, and J. Zhang. Learning large neighborhood search policy for integer
programming. Advances in Neural Information Processing Systems, 34, 2021. Cited on page
99.

Z. Wu, Y. Xiong, S. X. Yu, and D. Lin. Unsupervised feature learning via non-parametric
instance discrimination. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3733–3742, 2018. Cited on page 26.

Y. Xie, H. Dai, M. Chen, B. Dai, T. Zhao, H. Zha, W. Wei, and T. Pfister. Differentiable top-k
operator with optimal transport. arXiv preprint arXiv:2002.06504, 2020. Cited on page 27.

L. Xin, W. Song, Z. Cao, and J. Zhang. NeuroLKH: Combining Deep Learning Model with
Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem. Advances in
Neural Information Processing Systems, 34, 2021. Cited on page 99.

Y. Xiong, R. Liao, H. Zhao, R. Hu, M. Bai, E. Yumer, and R. Urtasun. Upsnet: A unified
panoptic segmentation network. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 8818–8826, 2019. Cited on pages 26, 30, 32, and 36.

Z. Xu, T. Ajanthan, and R. Hartley. Fast and differentiable message passing on pairwise markov
random fields. In Proceedings of the Asian Conference on Computer Vision, 2020. Cited on
pages 82 and 83.

T.-J. Yang, M. D. Collins, Y. Zhu, J.-J. Hwang, T. Liu, X. Zhang, V. Sze, G. Papandreou, and
L.-C. Chen. Deeperlab: Single-shot image parser. arXiv preprint arXiv:1902.05093, 2019.
Cited on pages 26, 28, and 35.

Y. Yang, H. Li, X. Li, Q. Zhao, J. Wu, and Z. Lin. Sognet: Scene overlap graph network for
panoptic segmentation. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 12637–12644, 2020a. Cited on page 26.

Y. Yang, J. Sun, H. Li, and Z. Xu. ADMM-CSNet: A Deep Learning Approach for Image
Compressive Sensing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42
(3):521–538, 2020b. doi: 10.1109/TPAMI.2018.2883941. Cited on page 99.

Y. Yao, Z. Luo, S. Li, T. Fang, and L. Quan. Mvsnet: Depth inference for unstructured multi-view
stereo. In Proceedings of the European conference on computer vision (ECCV), pages 767–783,
2018. Cited on page 79.

J. Yarkony, A. Ihler, and C. C. Fowlkes. Fast planar correlation clustering for image segmentation.
In European Conference on Computer Vision. Springer, 2012. Cited on pages 22 and 23.

J. Yarkony, T. Beier, P. Baldi, and F. A. Hamprecht. Parallel multicut segmentation via dual
decomposition. In International Workshop on New Frontiers in Mining Complex Patterns,
pages 56–68. Springer, 2014. Cited on page 20.

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

140 BIBLIOGRAPHY

Q. Yu, H. Wang, S. Qiao, M. Collins, Y. Zhu, H. Adam, A. Yuille, and L.-C. Chen. k-means
mask transformer. In European Conference on Computer Vision, pages 288–307. Springer,
2022. Cited on page 65.

X. Zeng, R. Liao, L. Gu, Y. Xiong, S. Fidler, and R. Urtasun. Dmm-net: Differentiable
mask-matching network for video object segmentation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 3929–3938, 2019. Cited on page 27.

Y. Zhang, D. W. Zhang, S. Lacoste-Julien, G. J. Burghouts, and C. G. Snoek. Unlocking slot
attention by changing optimal transport costs. arXiv preprint arXiv:2301.13197, 2023. Cited
on page 79.

Z. Zhang, Q. Shi, J. McAuley, W. Wei, Y. Zhang, and A. Van Den Hengel. Pairwise matching
through max-weight bipartite belief propagation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1202–1210, 2016. Cited on page 74.

S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang, and P. H.
Torr. Conditional random fields as recurrent neural networks. In Proceedings of the IEEE
international conference on computer vision, pages 1529–1537, 2015. Cited on page 27.

Z. Zheng, J. S. Lauritzen, E. Perlman, C. G. Robinson, M. Nichols, D. Milkie, O. Torrens,
J. Price, C. B. Fisher, N. Sharifi, et al. A complete electron microscopy volume of the brain of
adult Drosophila melanogaster. Cell, 174(3):730–743, 2018. Cited on page 49.

	Title Page
	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	Contents
	1 Introduction
	1.1 Contributions and Outline
	1.1.1 Navigating NP-Hardness

	I Efficient & differentiable multicut algorithms
	2 Background
	2.1 Multicut Problem
	2.1.1 Integer Linear Program
	2.1.2 Related Problems
	2.1.3 Algorithms
	2.1.4 Applications

	3 Panoptic Segmentation with End-to-end Training
	3.1 Introduction
	3.2 Related Work
	3.2.1 Panoptic Segmentation
	3.2.2 Algorithms as a Layer in Neural Networks

	3.3 Method
	3.3.1 Convolutional neural network (CNN) architecture
	3.3.2 (Asymmetric) Multiway Cut
	3.3.3 Fully Differentiable Training

	3.4 Experiments
	3.4.1 Datasets
	3.4.2 Training
	3.4.3 Results
	3.4.4 Limitations

	3.5 Conclusion

	4 Massively Parallel Multicut Algorithms
	4.1 Introduction
	4.2 Related Work
	4.3 Method
	4.3.1 Primal: Parallel Edge Contraction
	4.3.2 Dual: Conflicted Cycles & Message Passing
	4.3.3 Primal-Dual Updates
	4.3.4 GPU Implementations

	4.4 Experiments
	4.4.1 Results

	4.5 Conclusion

	5 Efficient Multicut on Complete Graphs
	5.1 Introduction
	5.2 Related Work
	5.3 Method
	5.3.1 Greedy Additive Edge Contraction
	5.3.2 Lazy Edge Contraction
	5.3.3 Varying Affinity Strength
	5.3.4 Computational Complexity

	5.4 Experiments
	5.4.1 ImageNet Clustering
	5.4.2 Panoptic Segmentation

	5.5 Conclusion

	II Efficient & differentiable ILP solver
	6 Background
	6.1 Binary Programs
	6.2 Lagrangean Decomposition
	6.3 Lagrangean Optimization
	6.3.1 Dual Block Coordinate Ascent
	6.3.2 Binary Decision Diagrams

	6.4 Common Approaches for Structured Prediction
	6.4.1 Optimization & Heuristics coupled with Neural Networks
	6.4.2 Custom Neural Architectures

	7 Massively Parallel 0–1 ILP Algorithms
	7.1 Introduction
	7.2 Related Work
	7.3 Method
	7.3.1 Dual Optimization
	7.3.2 Primal Rounding

	7.4 Experiments
	7.4.1 Results
	7.4.2 Limitations

	7.5 Conclusion

	8 Learning to Solve 0–1 ILP Relaxations
	8.1 Introduction
	8.2 Related Work
	8.3 Method
	8.3.1 Lagrange Decomposition
	8.3.2 Optimization of Lagrangean Dual
	8.3.3 Backpropagation through Dual Optimization
	8.3.4 Non-parametric Updates
	8.3.5 Graph Neural Network
	8.3.6 Overall Pipeline

	8.4 Experiments
	8.4.1 Results
	8.4.2 Limitations

	8.5 Conclusion

	9 Conclusion
	List of Algorithms
	List of Figures
	List of Tables
	Bibliography

